2,133 research outputs found

    A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes

    Full text link
    In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady non-linear Leray-Lions problems. The proposed method has several assets, including the support for arbitrary approximation orders and general polytopal meshes. This is achieved by combining two key ingredients devised at the local level: a gradient reconstruction and a high-order stabilization term that generalizes the one originally introduced in the linear case. The convergence analysis is carried out using a compactness technique. Extending this technique to HHO methods has prompted us to develop a set of discrete functional analysis tools whose interest goes beyond the specific problem and method addressed in this work: (direct and) reverse Lebesgue and Sobolev embeddings for local polynomial spaces, LpL^{p}-stability and Ws,pW^{s,p}-approximation properties for L2L^{2}-projectors on such spaces, and Sobolev embeddings for hybrid polynomial spaces. Numerical tests are presented to validate the theoretical results for the original method and variants thereof

    Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids

    Full text link
    In this paper, we consider anisotropic diffusion with decay, and the diffusivity coefficient to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with increase in the decay coefficient for isotropic medium and violates the discrete maximum principle. However, in the case of isotropic medium, the extent of violation decreases with mesh refinement. We then show that, in the case of anisotropic medium, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation

    A mimetic finite difference based quasi-static magnetohydrodynamic solver for force-free plasmas in tokamak disruptions

    Full text link
    Force-free plasmas are a good approximation where the plasma pressure is tiny compared with the magnetic pressure, which is the case during the cold vertical displacement event (VDE) of a major disruption in a tokamak. On time scales long compared with the transit time of Alfven waves, the evolution of a force-free plasma is most efficiently described by the quasi-static magnetohydrodynamic (MHD) model, which ignores the plasma inertia. Here we consider a regularized quasi-static MHD model for force-free plasmas in tokamak disruptions and propose a mimetic finite difference (MFD) algorithm. The full geometry of an ITER-like tokamak reactor is treated, with a blanket module region, a vacuum vessel region, and the plasma region. Specifically, we develop a parallel, fully implicit, and scalable MFD solver based on PETSc and its DMStag data structure for the discretization of the five-field quasi-static perpendicular plasma dynamics model on a 3D structured mesh. The MFD spatial discretization is coupled with a fully implicit DIRK scheme. The algorithm exactly preserves the divergence-free condition of the magnetic field under the resistive Ohm's law. The preconditioner employed is a four-level fieldsplit preconditioner, which is created by combining separate preconditioners for individual fields, that calls multigrid or direct solvers for sub-blocks or exact factorization on the separate fields. The numerical results confirm the divergence-free constraint is strongly satisfied and demonstrate the performance of the fieldsplit preconditioner and overall algorithm. The simulation of ITER VDE cases over the actual plasma current diffusion time is also presented.Comment: 43 page

    A Stress/Displacement Virtual Element Method for Plane Elasticity Problems

    Full text link
    The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a-priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis

    On the Virtual Element Method for Topology Optimization on polygonal meshes: a numerical study

    Get PDF
    It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods

    Highly corrupted image inpainting through hypoelliptic diffusion

    Get PDF
    We present a new image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in [SIAM J. Imaging Sci., vol. 7, no. 2, pp. 669--695, 2014] and based upon a semi-discrete variation of the Citti-Petitot-Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad-hoc local averaging techniques. In particular, we focus on reconstructing highly corrupted images (i.e. where more than the 80% of the image is missing), for which we obtain reconstructions comparable with the state-of-the-art.Comment: 15 pages, 10 figure
    corecore