49 research outputs found

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Ultrasound-Augmented Laparoscopy

    Get PDF
    Laparoscopic surgery is perhaps the most common minimally invasive procedure for many diseases in the abdomen. Since the laparoscopic camera provides only the surface view of the internal organs, in many procedures, surgeons use laparoscopic ultrasound (LUS) to visualize deep-seated surgical targets. Conventionally, the 2D LUS image is visualized in a display spatially separate from that displays the laparoscopic video. Therefore, reasoning about the geometry of hidden targets requires mentally solving the spatial alignment, and resolving the modality differences, which is cognitively very challenging. Moreover, the mental representation of hidden targets in space acquired through such cognitive medication may be error prone, and cause incorrect actions to be performed. To remedy this, advanced visualization strategies are required where the US information is visualized in the context of the laparoscopic video. To this end, efficient computational methods are required to accurately align the US image coordinate system with that centred in the camera, and to render the registered image information in the context of the camera such that surgeons perceive the geometry of hidden targets accurately. In this thesis, such a visualization pipeline is described. A novel method to register US images with a camera centric coordinate system is detailed with an experimental investigation into its accuracy bounds. An improved method to blend US information with the surface view is also presented with an experimental investigation into the accuracy of perception of the target locations in space

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Performance of image guided navigation in laparoscopic liver surgery – A systematic review

    Get PDF
    Background: Compared to open surgery, minimally invasive liver resection has improved short term outcomes. It is however technically more challenging. Navigated image guidance systems (IGS) are being developed to overcome these challenges. The aim of this systematic review is to provide an overview of their current capabilities and limitations. Methods: Medline, Embase and Cochrane databases were searched using free text terms and corresponding controlled vocabulary. Titles and abstracts of retrieved articles were screened for inclusion criteria. Due to the heterogeneity of the retrieved data it was not possible to conduct a meta-analysis. Therefore results are presented in tabulated and narrative format. Results: Out of 2015 articles, 17 pre-clinical and 33 clinical papers met inclusion criteria. Data from 24 articles that reported on accuracy indicates that in recent years navigation accuracy has been in the range of 8–15 mm. Due to discrepancies in evaluation methods it is difficult to compare accuracy metrics between different systems. Surgeon feedback suggests that current state of the art IGS may be useful as a supplementary navigation tool, especially in small liver lesions that are difficult to locate. They are however not able to reliably localise all relevant anatomical structures. Only one article investigated IGS impact on clinical outcomes. Conclusions: Further improvements in navigation accuracy are needed to enable reliable visualisation of tumour margins with the precision required for oncological resections. To enhance comparability between different IGS it is crucial to find a consensus on the assessment of navigation accuracy as a minimum reporting standard

    A Computational Image-Based Guidance System for Precision Laparoscopy

    Get PDF
    This dissertation presents our progress toward the goal of building a computational image-based guidance system for precision laparoscopy; in particular, laparoscopic liver resection. As we aim to keep our working goal as simple as possible, we have focused on the most important questions of laparoscopy - predicting the new location of tumors and resection plane after a liver maneuver during surgery. Our approach was to build a mechanical model of the organ based on pre-operative images and register it to intra-operative data. We proposed several practical and cost-effective methods to obtain the intra-operative data in the real procedure. We integrated all of them into a framework on which we could develop new techniques without redoing everything. To test the system, we did an experiment with a porcine liver in a controlled setup: a wooden lever was used to elevate a part of the liver to access the posterior of the liver. We were able to confirm that our model has decent accuracy for tumor location (approximately 2 mm error) and resection plane (1% difference in remaining liver volume after resection). However, the overall shape of the liver and the fiducial markers still left a lot to be desired. For further corrections to the model, we also developed an algorithm to reconstruct the 3D surface of the liver utilizing Smart Trocars, a new surgical instrument recognition system. The algorithm had been verified by an experiment on a plastic model using the laparoscopic camera as a mean to obtain surface images. This method had millimetric accuracy provided the angle between two endoscope views is not too small. In an effort to transit our research from porcine livers to human livers, in-vivo experiments had been conducted on cadavers. From those studies, we found a new method that used a high-frequency ventilator to eliminate respiratory motion. The framework showed the potential to work on real organs in clinical settings. Hence, the studies on cadavers needed to be continued to improve those techniques and complete the guidance system.Computer Science, Department o

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan

    Virtual and Augmented Reality Techniques for Minimally Invasive Cardiac Interventions: Concept, Design, Evaluation and Pre-clinical Implementation

    Get PDF
    While less invasive techniques have been employed for some procedures, most intracardiac interventions are still performed under cardiopulmonary bypass, on the drained, arrested heart. The progress toward off-pump intracardiac interventions has been hampered by the lack of adequate visualization inside the beating heart. This thesis describes the development, assessment, and pre-clinical implementation of a mixed reality environment that integrates pre-operative imaging and modeling with surgical tracking technologies and real-time ultrasound imaging. The intra-operative echo images are augmented with pre-operative representations of the cardiac anatomy and virtual models of the delivery instruments tracked in real time using magnetic tracking technologies. As a result, the otherwise context-less images can now be interpreted within the anatomical context provided by the anatomical models. The virtual models assist the user with the tool-to-target navigation, while real-time ultrasound ensures accurate positioning of the tool on target, providing the surgeon with sufficient information to ``see\u27\u27 and manipulate instruments in absence of direct vision. Several pre-clinical acute evaluation studies have been conducted in vivo on swine models to assess the feasibility of the proposed environment in a clinical context. Following direct access inside the beating heart using the UCI, the proposed mixed reality environment was used to provide the necessary visualization and navigation to position a prosthetic mitral valve on the the native annulus, or to place a repair patch on a created septal defect in vivo in porcine models. Following further development and seamless integration into the clinical workflow, we hope that the proposed mixed reality guidance environment may become a significant milestone toward enabling minimally invasive therapy on the beating heart

    Identification et caractérisation des conditions aux limites pour des simulations biomécaniques patient-spécifiques

    Get PDF
    The purpose of the work is to find a way to estimate the boundary conditions of the liver. They play an essential role in forming the predictive capacity of the biomechanical model, but are presented mainly by ligaments, vessels, and surrounding organs, the properties of which are "patient specific" and cannot be measured reliably. We propose to present the boundary conditions as nonlinear springs and estimate their parameters. Firstly, we create a generalized initial approximation using the constitutive law available in the literature and a statistical atlas, obtained from a set of models with segmented ligaments. Then, we correct the approximation based on the nonlinear Kalman filtering approach, which assimilates data obtained from a modality during surgical intervention. To assess the approach, we performed experiments for both synthetic and real data. The results show a certain improvement in simulation accuracy for the cases with estimated boundaries.L'objectif de ce travail est trouvé un moyen d'estimer les conditions aux limites du foie. Elles jouent un rôle essentiel dans la capacité de prédiction du modèle biomécanique, mais sont principalement présentées par les ligaments, les vaisseaux et les organes environnants, dont les propriétés sont "spécifiques au patient" et ne peuvent être mesurées fidèlement. Nous proposons de présenter ces conditions comme des ressorts non linéaires et d'estimer ses paramètres. D’abord, nous créons une approximation initiale en utilisant la loi constitutive disponible dans la littérature et un atlas statistique obtenu à partir des modèles avec des ligaments segmentés. Après, nous la corrigeons basée sur le filtrage de Kalman non linéaire, qui assimile les données acquises d'une modalité pendant la chirurgie. Pour évaluation, nous avons réalisé des expériences avec des données synthétiques et réelles. Les résultats montrent une amélioration de la précision pour les cas avec des limites estimées
    corecore