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Résumé

Objectif: Le traitement du cancer du foie, qui est l’une des maladies les plus courantes dans
le monde, s’effectuer souvent par la résection hépatique. Les chirurgiens enlèvent complète-
ment les tumeurs, tout en préservant autant de tissus sains que possible. La tendance principale
est d’utiliser des procédures plus sûres avec moins de complications, comme les traitements
mini-invasifs. Cependant, au cours de ces procédures, la zone de fonctionnement n’est pas vis-
ible directement. Par conséquent, les chirurgiens utilisent diverses modalités d’imagerie médi-
cales, comme les caméras laparoscopiques 3D, mais dont le champ de vision est limité. Dans ce
cas, une solution complémentaire consiste à utiliser un modèle qui simule le comportement de
l’organe réel. Adapté à la partie visible, il prédit les positions des parties invisibles de la zone
d’intérêt et montre les emplacements des tumeurs préalablement recalées.

Les conditions aux limites (CAL) sont l’un des éléments cruciaux de la description mé-
canique d’un système biologique. Pour décrire un problème mécanique, il est nécessaire
d’établir ce qui se passe à la surface ou à la limite du domaine d’intérêt. Des CAL soigneuse-
ment définies améliorent grandement la capacité prédictive du modèle biomécanique du foie.
Par conséquent, le but principal de ce travail est d’estimer les CAL du tissu hépatique.

Malheureusement, dans le cas du foie, les CAL sont principalement donnés par des liga-
ments, les vaisseaux sanguins et les organes environnants, dont les propriétés ne peuvent pas
être mesurées de manière fiable. Quoi qu’il en soit, le comportement du foie peut être enreg-
istré sur une caméra stéréo, une échographie ou une autre modalité, mais, en raison d’erreurs
d’observation, il existe une incertitude dans les données obtenues. L’idée est donc de proposer
une approche d’assimilation des données où la déformation du tissu hépatique est utilisée pour
estimer les attaches d’organes.

Méthode: Nous proposons d’estimer les CAL en deux étapes. Dans la première étape, nous
créons une approximation initiale généralisée des CAL. Dans la deuxième étape, nous corri-
geons l’approximation basée sur des données spécifiques au patient obtenues à partir d’une
modalité d’image utilisée en intervention chirurgicale.

Pour une première approximation, l’idée générale est d’utiliser un atlas statistique. Mal-
gré le fait que l’atlas ne peut pas nous fournir les propriétés exactes des CAL pour un patient
spécifique, il contribue toujours à réduire la zone d’intérêt couverte. Cela permet d’éviter de
nombreux calculs redondants, ce qui est crucial pour le processus en temps réel. Généralement,
l’atlas contient une forme moyenne qui est générée à partir de la base de données de plusieurs
images hépatiques. Pour construire l’atlas, des structures anatomiques segmentées manuelle-
ment sur les modèles hépatiques sont utilisées. Les formes de la base de données sont enreg-
istrées de manière déformable sur la forme moyenne, en utilisant une cartographie métrique
difféomorphe. Puis les différences entre les éléments segmentés sont utilisées pour créer des
informations statistiques sur l’emplacement des CAL. La procédure de recalage de l’atlas vers
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le foie du patient utilise la même méthode, mais dans ce cas, la correspondance des foies est
utilisée pour transférer les données statistiques sur le modèle de foie cible.

Par contre, pour corriger les CAL, il est nécessaire d’estimer les paramètres par simulation
inverse. Pour atteindre cet objectif, nous proposons de modéliser les CAL avec des ressorts dont
les raideurs sont des variables stochastiques et d’utiliser le filtre de Kalman pour estimation de
ces paramètres. Le filtre consiste en un processus itératif, calculant les valeurs attendues en
fonction des probabilités pour des données et une simulation par éléments finis qui décrit la dé-
formation du foie. Les données initiales pour le filtre sont prises à partir de matériaux préopéra-
toires, puis, pendant la procédure chirurgicale, les valeurs des paramètres sont corrigées. Afin
de répondre aux exigences de la chirurgie, le filtre doit effectuer les calculs en temps réel. Par
conséquent, nous utilisons un filtrage de Kalman d’ordre réduit, qui diminue la complexité de
notre modèle, améliorant ainsi la vitesse de calcul.

Résultats: Nous avons réalisé des expériences synthétiques pour évaluer l’approche de fil-
trage. Plusieurs ressorts non linéaires ont émulé les CAL pour le modèle de foie. Pour manip-
uler le foie, une force périodique a été appliquée. L’approche par filtrage de Kalman corrige
généralement les valeurs des paramètres estimés en fonction des informations obtenues à par-
tir des données disponibles. Les paramètres de certains ressorts n’ont pas été bien estimés,
mais dans les expériences de validation, le comportement du modèle de foie avec les CAL cor-
rigés était généralement plus proche des données de base qu’avec les approximations initiales.
L’erreur entre les différences maximales et moyennes était plus faible après la correction. Par
conséquent, le processus de filtrage améliore l’approximation initiale pour simuler plus précisé-
ment l’influence des CAL sur le modèle de foie.

L’atlas a été créé à l’aide de 15 modèles de foie, et les positions de leurs ligaments respectifs
ont été segmentées par un expert. Pour garantir la qualité de l’atlas, un modèle a été sélectionné
pour validation. Des statistiques ont été calculées, puis l’atlas a été enregistré sur un modèle
ciblé afin de comparer la position moyenne avec la position segmentée. Les résultats montrent
une différence moyenne de quelques centimètres. Par conséquent, la moyenne statistique diffère
de la position des ligaments segmentés, mais nous pensons pouvoir compenser cet écart en
estimant des paramètres légèrement différents lors de l’étape de correction.

Finalement, nous avons réalisé une expérience basée sur des données réelles. Nous avons
pris un cadavre humain et simulé la procédure chirurgicale. Nous avons attaché plusieurs mar-
queurs qui servent comme observations et données de validation. Pour effectuer la manipulation,
on a utilisé des outils chirurgicaux laparoscopiques. Nous avons aussi enregistré ces manipula-
tions à l’aide d’une caméra RGB-D. À partir de l’image tomographie par ordinateur, nous avons
reconstruit le modèle volumique du foie ainsi que les positions des marqueurs. Pour générer les
attaches de ressort, nous avons construit ensuite un atlas statistique à partir de 15 modèles et
l’avons enregistré sur le maillage volumique. Après on a effectué un processus d’assimilation
de données. Pour la validation, nous avons extrait des marqueurs d’une autre tomographie par
ordinateur, où le foie est déformé. Nous comparons les cas où seuls les vaisseaux sanguins ont
été fixés, avec estimation initiale des ligaments et avec estimation des paramètres des ligaments.
Les résultats montrent une faible amélioration de la précision lorsqu’un modèle de ligament est
ajouté et ensuite estimé, mais cela pourrait dépendre de questions supplémentaires comme les
contraintes unilatérales que nous ne prenons pas en compte.
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Abstract

Objective: A typical treatment for the liver cancer, which is one of the most common world-
wide diseases, is hepatic resection. Surgeons completely remove the tumors, while preserving
as much healthy tissue as possible. The main trend is to use safer procedures with fewer com-
plications, such as minimally invasive treatment. However, during such procedures, there is no
direct vision at the area under operation. Therefore, surgeons use various medical modalities,
such as three-dimensional laparoscopic cameras, which limit their range of views. In this case, a
complementary solution is to use a model that simulates the behavior of the real organ. Matched
to the visible part, it predicts the positions of invisible parts for the area of interest and shows
the locations of initially registered tumors.

Boundary conditions (BCs) are among the crucial elements in mechanical description of a
biological system. To describe a mechanical problem, it is necessary to establish what is hap-
pening on the surface or boundary of the considered domain. Carefully defined BCs essentially
improves the predictive capacity of the biomechanical model. Therefore, the main purpose of
the work is to estimate the BCs of the liver tissue.

Unfortunately, in case of the liver, BCs are mainly given by ligaments, blood vessels, and
surrounding organs, the properties of which cannot be measured reliably. Anyway, the behavior
of the liver can be recorded on a stereo camera, ultrasound, or some other modality, but, due to
observational errors, there is a high amount of uncertainty in the system. Therefore, the idea is
to propose the data assimilation approach where the deformation of the liver tissue is used to
estimate the organ attachments.

Method: We propose to estimate BCs in two steps. In the first step, we create generalized
initial approximation of BCs. In the second step, we correct the approximation based on patient-
specific data obtained from a modality used in surgical intervention.

For initial approximation, the general idea is to use a statistical atlas. Despite the fact that
atlas cannot provide us with the exact properties of BCs in patient specific case, it still helps to
reduce the covered area of interest. This helps to avoid a lot of redundant calculations, which
is crucial in real-time context. Generally, the atlas contains a mean shape that is generated
from a database of several liver images. To construct the atlas, manually segmented anatomical
structures on the liver models are used. The database shapes are nonrigidly registered on the
average shape, using diffeomorphic metric mapping. Then the differences between segmented
elements are used to create statistical information about the location of BCs. The procedure of
atlas to patient registration uses the same method, but in this case, the livers matching is used to
transfer the statistical data on the target liver model.

On the other hand, to correct BCs, it is necessary to estimate parameters using an inverse
simulation. To achieve this goal, we propose to model BCs as stochastic stiffness values for
elastic springs and to use the Kalman filter for their estimation. The filter obtains the result
as an iterative process, computing the expected values based on probabilities for given data
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and for a finite element simulation that describes liver deformation. The initial data for the
filter is taken from pre-operative materials, and then, during the surgical procedure, the values
of parameters are corrected. In order to fulfill the requirements of surgery, the filter needs to
perform computations in real time. Therefore, we are using the reduced order Kalman filtering,
which decreases the complexity of our model, thus improving the computation speed.

Results: We performed synthetic experiments to assess the filtering approach. Several non-
linear springs emulated BCs for the liver model. To manipulate the liver, a periodic force was
applied. The Kalman filtering approach in general corrects the values of estimated parameters
according to obtained information from available data. The parameters of some springs were
not estimated well, but in validation experiments the behavior of the liver model with corrected
BCs in general was closer to groundtruth data than with initial approximations. The error be-
tween maximal and average differences was smaller after correction. Therefore, filtering pro-
cess improves the initial approximation to simulate the BCs influence for the liver model more
accurately.

The atlas was created using 15 liver models, and their respective ligament positions were
segmented by an expert. To ensure the quality of the atlas, one model was selected for validation
purposes. The statistics were computed and then the atlas was registered on a target model to
compare the average position with segmented one. The results show the average difference for a
couple of centimeters. Therefore, the statistical average differs from the ground ligaments posi-
tion, but we expect to compensate for this deviation by estimating slightly different parameters
during the correction step.

Finally, we performed an experiment based on real data. We took a human cadaver and
simulated the surgical procedure. Several markers attached to it served as observations and
validation data. To perform the manipulation, laparoscopic surgical tools were used. The ma-
nipulations were recorded using an RGB-D camera. From the computed tomography image, we
reconstructed the volume model of the liver as well as the positions of the markers. To generate
the spring attachments, a statistical atlas from 15 models was constructed and registered to the
volume mesh. Afterwards, a data assimilation process was performed. For validation, we ex-
tracted markers from another computer tomography scan, where the recorded liver is deformed.
We compare the cases where only blood vessels were fixed with initial estimation of ligaments
and with estimation of ligament parameters. The results show some improvement in the accu-
racy when a ligament model is added and then estimated. But such small rank of improvement
might be due to additional issues such as unilateral constraints, which we have not considered
yet.
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1.1 Liver surgery
The liver is the largest organ in the human body. It plays a fundamental role in several vital
functions, which include detoxification of various metabolites, synthesizing of proteins, and
production of biochemicals necessary for digestive and growth. Therefore, liver diseases might
cause severe problems that lead to a variety of abnormalities and shorter life expectancy. Partic-
ularly, it is vulnerable to primary liver cancer, which is the fifth most common cancer worldwide
and the third most common cause of cancer mortality [53]. The liver organ also suffers from
other metastases, caused by illness such as colorectal cancer diseases. This includes approxi-
mately 16 % of all cases [110]. The cancer disease is characterized by appearing of abnormal
cells that do not provide their ordinary functions. Tumors are abnormal tissues made of such
cells. They have different size and shape and might appear in any part of the organ (Fig. 1.1).

Despite the fact that several therapies and a transplantation procedure are available to treat
the hepatic cancers, liver resection remains the most common treatment for patients with such
metastases (Fig. 1.2). This includes patient cases with intrahepatic cholangiocarcinoma and with
hepatocellular carcinoma [57, 167]. The median survival for untreated patients is 36 months for
early stage tumors and 3-16 months for more complex cases [57], while after resection the
estimated 5-year survival rate is approximately 70 % [199]. A successful surgical resection
requires complete removal of the tumor(s) while keeping as much healthy tissue as possible.
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Introduction 2

Figure 1.1: Overview of liver tumors. The size, shape, number, and position of tumors vary from
one patient to another. Images taken from [219].

Also the vital liver parts like arteries and veins must be spared by the surgery or strategically
divided. All these restrictions make resection procedures quite complex both from technical
and clinical views. So it is important to help surgeons with additional tools that will simplify
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3 1.1. Liver surgery

the resection procedure and, therefore, increase the patient eligibility and improve the survival
prognosis.

Figure 1.2: Laparoscope surgical theater for liver resection procedures. The display on the right-
hand side shows an operating field.

Nowadays surgical rooms are equipped with different complex technologies. Various imag-
ing modalities, including computer tomography (CT), magnetic resonance imaging (MRI), ul-
trasound (US) probes, and laparoscopic/stereoscopic cameras, allow surgeons looking inside the
patient body and observe organs and tissues that are not visible directly. Besides that, the new
laparoscopic tools help surgeons to perform treatment procedures for organs without having
direct access to them.

Typically, before clinical procedures, for diagnosis and planning purposes, an initial CT
scan is acquired, which is called preoperative CT, of the patient abdominal area. Based on the
obtained data, the doctors localize the positions of tumors and then select the best treatment
procedure.

In case of liver resection, two options are available: open or laparoscopic surgery. Open
surgery is a more traditional procedure, when surgeons open abdomen of a patient and then
eliminate tumors, having a direct access to a liver. The back part of the liver and internal liver
structure, however, remain invisible. This simplifies eliminating tumors, close to vital liver parts
and blood vessels, or which are hard to get access to, but such operations have certain conse-
quences. The main problems for such type of surgery are that they have lower survival rate
prognosis, higher risk of getting an infection with complications, the larger rehabilitation hos-
pital time, and the big scar on the abdomen skin.

However, new technologies lead to new surgical procedures such as minimally invasive liver
surgery. In this case, small holes in abdomen of patients are made, through which some trocars
are placed. The surgeons then perform resection procedures by manipulating the laparoscopic
tools inserted through the trocars and observe the operating field with surgical mini camera.
The advantage is that for laparoscopic procedure patients have less hospital stays and fewer
complications [31, 61]. But surgical modalities can provide surgeons only with limited amount
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of view related to the disease and its problematic nature. And laparoscopic tools apply certain
restrictions to manipulations.

To compensate for the lack of observability, the general tool that is currently used in surgery
is image-guided surgery (IGS) systems. The main idea is to reconstruct the three-dimensional
liver model with internal structures from preoperative CT images. During image analysis and
preoperative planning, surgeons manually segment the tumors. The three-dimensional model
can be then presented together with intraoperative view. Thus, during surgery, the clinicians
can observe the liver model with marked tumors and approximately locate their positions on
the real organ. In addition to that, the image-guided surgery system allows to mark the posi-
tions of surgical tools. However, such systems show only static images and do not depict the
dynamic behavior of an organ. Also, the model does not take into account additional conditions
like abdominal area inflation or different patient position compared with the preoperative scan.
Therefore the position of a real tumor might vary significantly from the positions on the recon-
structed model. Moreover, the model construction process is semi-automatic (or even manual)
and, thus, requires a lot of human resources.

A described approach could be improved by providing an augmented reality (AR) view
for the liver organ (Fig. 1.3). An augmented reality is an interactive demonstration of a real-
world environment where the objects from the real world are enhanced by computer-generated
perceptual information. This would be a nice addition. It not only provides an overlay of the
three-dimensional liver model with the intraoperative view, but also performs a corresponding
real-time deformation update. Therefore, surgeons will observe and track various structures
such as tumors, blood vessels, and unobserved part of the organ. Consequently AR system will
increase surgical accuracy and reduce the time of the operation.

Figure 1.3: Illustration of an augmented reality in surgery: a visual liver model is overlaid with
the intraoperative view during open surgery.

The liver is a soft organ, which changes in shape not only because surgeons perform manipu-
lations, but also due to respiratory and cardiac motions. Providing such a system during surgery,
therefore, requires to solve several challenges. Firstly, the three-dimensional (3D) model of the
virtual anatomy needs to be registered onto the real organ using an available intraoperative im-
age data, which in general covers only small part of a surface. It has to take into account the
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organ properties of a specific patient. It also needs to follow the actual tissue motion in real
time, and it has to provide an accurate estimation of the location for the internal structures. In
addition to that, it has to be integrated easily in most modern operating rooms, which requires
no additional equipment, necessary for AR.

1.2 Image guided systems for liver surgery
The last decade of image-guided surgery, including liver surgery, has progressively become
more popular due to various clinical benefits. Therefore creation of computer-aided tools be-
came an attractive topic for scientific research. This resulted in increasing number of published
works during the recent years. The proposed ideas are different in terms of applied methodology
and numerical approaches. However, we think they can be classified into several groups. In this
section we will give a general overview of them.

1.2.1 IGS without preoperative data
Generally, to understand the nature of a disease, an initial scan is acquired for the patient (usu-
ally computer tomography, but sometimes it might be magnetic resonance imaging), based on
which the plan for liver treatment is created. These images describe the liver organ in good
details. Thus, the idea for most of IGS methods is to use this data for providing additional in-
formation on intraoperative view. However, some approaches attempts to create an augmented
reality view based only on intraoperative data.

The main advantage of such approaches is that they do not require preoperative data reg-
istration. This registration has several challenges since preoperative images, and intraoperative
data are not in the same coordinate system. Moreover, they are taken for a patient in a different
position.

1.2.1.1 IGS based on intraoperative CT or MRI

To obtain internal data intraoperatively, some approaches rely on a special equipment, such as
intraoperative CT or MRI. Such devices allow acquiring an up-to-date three-dimensional view
of the operating field. But they are very rare and not available in a typical hospital. Moreover,
the quality of intraoperative scans is bounded because of the radiation doses issues (in case of
CT) or operation time limitations (in case of MRI). In case of liver operation, surgeons also
prefer to create a resection plan based on preoperative data. Therefore, it is quite important to
register it for visualization during surgery, which can be done alongside with preoperative data
fusion.

The main ideas are listed below.
Renewable view with CT. Some works use intraoperative CT to create a volumetric view.

In the work [54], to get an augmented view, the main idea is to find the position of cone beam
computed tomography (CBCT) and a laparoscope camera in the common world coordinate
system. So, the researchers put retroreflective spherical markers on the laparoscope pointer and
on flat-panel detector of the CBCT and use optical cameras for their simultaneous tracking.

5
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In [55], the same authors extend their approach by acquiring additional intraoperative CT scan,
which is done before an operation procedure, in order to get images with better quality. To
register the new scan, a set of self-adhesive fiducials is attached to the patient skin. After CT
acquisition, the laparoscope device is moved around each fiducial, to find a reference between
retroreflective markers and fiducial positions.

The authors from [215] use intraoperative CT together with a laparoscopic camera. Initially,
they perform a contrast-enhanced CT to get the volume view of the operation field, which is
then followed by low-dose scans just to update the intraoperative view. The registration be-
tween computer tomography scans is done based on the algorithm from [238], while initial
alignment with laparoscopic camera is done using Amira software [222]. To keep overlaying
the laparoscopic images with CT data, the authors use an optical tracker and infrared markers,
which are attached to the laparoscopic pointer.

Renewable view with MRI. To get the volume rendering, the researchers from [140, 148,
209, 230] rely on intraoperative MRI, which consequently generated images during operation.
In [230], infrared markers attached to a laparoscopic camera and an optical device is used to
track the camera movements. Additionally, some markers are put on patient abdomen skin to
register MRI in optical tracking coordinates. The authors from [209] propose to show the several
types of MRI images at the same time to simplify the needle navigation for ablation. In [140], the
authors set markers on magnetic resonance imaging device and laparoscopic camera to register
them in the global coordinate system. To avoid misregistration during respiratory motion, they
use an optical displacement indicator, which follows the abdomen movement. The MRI image is
updated with laparoscopic view only when certain thresholds in respiratory phases are achieved.

MRI based respiratory adjustment. Researchers from [227] perform a respiratory com-
pensation with intraoperative MRI. Firstly, they propose to record the respiratory motion before
operation. To monitor respiratory phase, they use a magnetic resonance echo tracking of the
liver and diaphragm. During operation, a respiratory state is again monitored, and a 3D image
correspondent to the current state is extracted from the recorded four-dimensional (4D) data,
therefore providing surgeons with a pseudo-real 3D image.

1.2.1.2 IGS based on intraoperative laparoscopic devices

Another group of methods attempt to construct an internal presentation based only on a laparo-
scopic camera. Sometimes they also use structured light emitters with patterns that are easy to
detect and reconstruct.

The main limitation of such approaches is that laparoscopic cameras can provide us only
with a superficial view. Since tumors and other areas of interest are mostly located inside the
liver, these approaches cannot give us valuable information about them. Also, laparoscopic
imaging modalities have limited observability in abdominal area; thus, we cannot reconstruct
hardly accessible parts (such as back parts of organs, for example). However, assuming the
availability of preoperative data, the intraoperative surface reconstruction will simplify its reg-
istration and following navigation process.

SLAM-based technique. In [25], the authors propose to create internal view based only
on stereoscopic camera. The idea is to build incrementally a geometric representation of an

6



7 1.2.1 IGS without preoperative data

abdominal area based on the simultaneous localization and mapping (SLAM) approach. The
SLAM method helps to identify the position of the camera, while simultaneously performing
cross-correlation stereo matching.

The main limitation of this idea is an impossibility to detect features on the liver surface. A
lot of particular points could be easily detected on objects with textured surfaces. But liver is
rather homogeneous, and, consequently, not a lot of features are detectable on its surface, which
dramatically influence the whole reconstruction process.

Structured light. The authors from [122, 123] propose to use a multispectral laser light
emitter and reconstruct the organ surface based on its reflections (Fig. 1.4). First of all, the
reflected light is segmented to find spots with colors. Then, the pattern is decoded together with
estimation of the relative position between the laparoscopic camera and the laser probe. Given
that information, the 3D positions of the found spots are determined. The object surface is
then reconstructed by spline-based interpolation over spot centers positions. In [67], the authors
insert a grid pattern projector inside a laparoscopic camera. They use a neural network system to
extract features from a structured projection. Then, with light sectioning method, a depth image
is obtained. Finally, the researchers construct an active bundle adjustment method to stitch all
3D shapes in a single surface.

Figure 1.4: Left: structured light emitter for object surface reconstruction. The description of
emitter components used to generate a structured light pattern. Right: Example of a miniaturized
structured light probe in vivo. Images are taken from [122].

1.2.1.3 IGS based on ultrasound

Because of its simplicity and low price as well as the possibility to observe the internal struc-
tures, the ultrasound technology is often used to track the positions of tumors or other organ
structures. In general, small part of the organ is visible through the US probe. Therefore, to
plan surgery a scan of the whole abdominal (usually preoperative) area has to be acquired.
However, the proposed ideas use only US probe scanning the region of interest during the pro-
cedure. Therefore we decided to classify them in a separate section of methods based only on
intraoperative data.

The main drawback of the proposed ideas is that ultrasound probe allows tracking only very
limited region. Because of attachments and various constraints, different parts of organ change
its shape in a different way. Consequently the deformation behavior can be predicted more or
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less accurately only in a small neighborhood around the tracked area. It is also worth marking
that not all lesions are observable by the US.

Deformation compensation. In the papers [151, 213], the scientists propose ideas to com-
pensate for respiration motion using a 3D US system. In [151], the porta hepatic of the pig
is tracked with an US probe during several respiratory circles. At the same time, the probe it-
self is tracked with a magnetic tracker. From the tracking data, using multilevel B-splines, the
displacement and deformation fields are recovered, which in its turn allows constructing a 4D
respiration motion.

The researchers from paper [213] propose to compensate for a tumor movement with ultra-
sound. Initially, using an US probe, they detect and segment a tumor. During surgical operation,
the position is updated using newly acquired ultrasound images. The position tracking allows
target location correcting during navigation.

The researchers from [237] use 4D ultrasound for navigation. To compensate for various
motions, they propose to use a non-rigid registration technique from [142] for the entire 4D
sequence. The motion between two US frames is interpolated based on free-form B-spline de-
formation model. This way, it becomes possible to get object description at any moment.

1.2.2 IGS based on preoperative data
To improve the liver image-guided surgery systems, other proposed solutions take into account
the preoperative data done for treatment planning. The main advantage of such approaches is
that the preoperative scan is acquired to analyze the anatomical situation of the patient and
therefore has sufficient quality. The additional information, such as resection planning, could
also be fused with the intraoperative view.

But, using preoperative scans requires its matching with intraoperative data. The fact that
it was done at another time, with a different acquisition device, for a particular patient posi-
tion, and in another environment makes the registration process nontrivial. Anyway, scientists
propose various ways to perform it. There are four main groups, in which the preoperative
data registration methods can be classified. In case of manual registration, the user manually
performs transformation of preoperative data. The markers-based registration group is focused
on minimizing the difference between selected points in preoperative and intraoperative data.
They might have a complex shape and be set either manually or in some specific way. The
shape-based registration approaches attempt to find surface shape similarities for both sets of
data. Finally, anatomical-landmarks based registration is focused on searching for anatomical
features and fusing them.

Based on the presented ideas, the image-guided surgery techniques can be classified accord-
ing to the liver motion model, used during surgical navigation. The following sections provide
a more detailed description of the available solutions.

1.2.2.1 IGS with a rigid model

Some approaches rely on rigid liver model, which does not follow the organ deformations. They
are based on the visible part of the intraoperative surface and focus mainly on its segmentation
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9 1.2.2 IGS based on preoperative data

and reconstruction. During the final step, the preoperative data is registered on the reconstructed
shape. Numerous papers are also focused on the development of the new equipment used to
track the liver motions. The augmented reality, constructed in such a way, is not accurate and,
therefore, gives only approximate information about internal structures. On the other hand, the
main advantage of these methods is their simplicity and stability.

The main ideas of this category proposed recently are given further.
Manual markers selection for registration. In [11, 177], the authors proposed a new nav-

igation system in the operating room. The laparoscopic camera or any other device is tracked
using several markers attached to a tool and a passive optical system. To register the preopera-
tive data, several points have to be selected. After selecting the same points in the intraoperative
data, the system reconstructs their three-dimensional positions and perform preoperative data
registration. Recently, the created system was tested during surgical operations [12, 96, 189]. It
has been proven that such systems will bring a benefit to a surgical navigation during surgery.

SLAM-based technique. In [133], the authors rely on a SLAM approach, similar to the case
given in [25]. They introduce modifications to handle several issues, such as tracking failure
due to occlusions. The registration of the preoperative data is based on several anchor points
manually selected on a skin mesh. Then, the same points have to be selected on a camera video
stream. By combining the two sets of points, the preoperative data can be matched to the live
video stream.

The main drawback of these approaches is manual selection of marker positions. It heavily
depends on a human expertise and might negatively affect the surgical workflow depending on
the level of interaction.

Machine learning based registration. The authors from [131] propose to perform surface
creation based on a machine learning algorithm. They use neural networks to reconstruct the
surface from intraoperative images and to preprocess the preoperative scan. Then the recon-
structed surface is registered to the preoperative surface with globally optimal iterative closest
point method [253].

Depth reconstruction with laser scanner. In [68, 198], a system combined of a laparo-
scopic camera and a laser range scanner is proposed for three-dimensional intraoperative surface
reconstruction. The scanner is used to generate visible points, which are detected by the camera.
Several retroreflective markers are attached to both the devices, and the optical tracking system
is used for tracking them and compute a relative position. By computing transformations, it is
possible to register the coordinate systems of the devices in a global space and, thus, to get the
3D coordinates of laser points. After generating a sufficient number of points, a preoperative
data can be registered.

Intraoperative depth sensors. Researchers in [141, 175] introduce a time of flight system
to get a depth information. The time of flight sensor allows estimating the distance to the ob-
served scene using the disparity between the light emitted by a diode and its reflection. The
obtained depth map is used to reconstruct the observed 3D surface, to which the preoperative
data can be registered. In [141], the authors perform CT registration by minimizing differences
between surfaces. In the following works [102, 103], the time of flight sensor was replaced by
a range sensor since it has a better spatial resolution.
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1.2.2.2 IGS based on ultrasound

A number of works propose to use ultrasound probes (or its modifications) for intraoperative
navigation. In general, the US gives a possibility to see the internal structures of the organ or
tissue in real time. Besides that, it is the only modality that is cheap, easily accessible and,
consequently, widely distributed.

However, a huge drawback is that ultrasound probe allows observing only very limited re-
gion and, thus, the localization of structures and tumors in liver parenchyma is difficult. Also,
it is an active technique, which means that it is possible to observe data only in performing
scanning. So, when the scanning procedure is stopped, the data becomes outdated. As well, the
main issues are ultrasound registration, because limited range images are hard to register, and
reliable tracking inside abdomen, since US probes are in general flexible and can easily change
their shape.

Despite all these drawbacks, people propose solutions to guide surgery with ultrasound
probes. The recent ideas are presented further.

Probe tracking. In [13, 97], the authors track the rigid US probe with infrared markers and
optical tracking system. In [13], the tracking system is used to align images in global coordinate
system and generate a volume image. Also, the authors use their own marker-based approach to
perform a CT to US registration [14].

The authors from [115] integrated the tracking ultrasound probe in the da Vinci robotic
system. For a stereo endoscope, also tracked optically, they found a relative transformation with
US device. After registration, the robot kinematics can follow the endoscope movement, to
place the US probe the way that its view corresponds to endoscopic one.

In the approach from [106], a flexible US probe was used. Therefore, the authors equip
it with an electro-magnetic sensor, and use a magnetic system to track it. The registration of
preoperative CT was based on markers with the usage of external fiducials and internal lesions.

The idea in [176] is to use for preoperative data a registration based on a single landmark
with a very particular shape. The method uses the orientation of an optically tracked tool and
reference points, which are marked manually, to align roughly the US image data to the ref-
erence frame of preoperative CT. Then, based on positions of target lesions visible through
ultrasound, a registration update is performed.

Combined optical and electromagnetic tracking. In [104, 105, 152], the main idea is
to perform a combined magneto-optic tracking for an endoscope and US probe to integrate
ultrasound into an augmented reality system (Fig. 1.5). To track the position of the probe, the
authors attach a magnetic sensor to it. They also add a magnetic field generator in their system.
By tracking several markers fixed on an endoscope and the magnetic generator, the researchers
compute the relative orientation for the devices. By combining the optical coordinate system
with the magnetic one, they get the aligned view for the US. To register preoperative data,
in [104, 105], the authors rely on the method described in [14].

Respiratory compensation. The authors from [18] propose a compensating alignment of
a preoperative plan with the intraoperative US images. As in most works, the ultrasound probe
is tracked using an optical tracking system. Before navigation procedure, a sequence of MRI
images is acquired. Then the rigid registration between US and MRI is performed based on sim-
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11 1.2.2 IGS based on preoperative data

Figure 1.5: Left: architecture of the combined navigation system with an endoscope, ultrasound
probe and magneto-optic trackers. Right: monitoring screen of the navigation system. It includes
preoperative CT, US, and endoscopic view. Images are taken from [105].

ilarities of the blood vessel system. Using interpolation with B-splines, the researchers construct
a motion model and use it to find the best interpolated shape for breathing phase correspondent
to US. Finally, to get an augmented reality, they overlay the interpolated MRI data with the US.

1.2.2.3 IGS with respiratory adjusting

The general idea for more advanced image-guided surgery systems is not only to track the
surgical equipment, but also to construct a model to adjust the liver deformation that inevitably
happens during surgery. It covers mainly respiratory, which is a vital function, and thus can
be stopped only for a small period of time (1-5 minutes). So, most of these approaches try to
improve the preoperative data registration by compensating the respiratory movements.

However, these approaches mainly consider respiratory as periodic cyclic motion, while
in general, the breathing is not regular. Moreover, the proposed approaches update the AR at
the correspondent respiratory state, but they do not simulate the organ movement in real time.
Apart from cyclic movements like respiratory motion or heart beating, there are also casual
movements that might appear because of, for example, surgical tool manipulation. These move-
ments have unpredictable nature; therefore, it is hard (if even possible) to adjust them. Even
supposing this, it is difficult to predict the organ behavior on account of the influence from the
additional constraints caused by surrounding organs and tissues.

The approaches using ultrasound systems were already discussed in previous sections (see
subsection 1.2.2.2). The other approaches are listed further.

Surface markers tracking. In paper [124], the authors propose to put a custom shape mark-
ers on patient skin and use a tracking system to track their positions. The same markers are used
to acquire a preoperative CT, and therefore the preoperative data can be automatically regis-
tered by minimizing the distance between them. The augmented reality is updated only when
the shape of a marker cloud corresponds to preoperative shape set.

CT based respiratory adjustment. In [159], the researchers construct the augmented re-
ality with a CT and a visual system composed of two jointly calibrated cameras. They place
several radio-opaque markers on skin to register them on CT scan and camera images. To ad-
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just the breathing motion, they use respiratory gating technique with a monitoring system. The
augmented reality is updated only when respiration phase fits the phase when CT was taken.
Finally, they also add a possibility to track a needle, to know its position inside the abdominal
area.

SLAM-based technique. In the work [150], the authors propose to construct the AR, based
on motion compensated simultaneous localization and mapping technique (Fig. 1.6). The ab-
dominal area around the liver is updated in iterative way, while the stereoscopic camera is
tracking inside. To handle respiratory motion the researchers improve SLAM by including
asymmetric respiration model [130]. In [149], the authors improve their work further by using
CBCT scan as a connective element to register a preoperative CT and a laparoscopic camera
in the global coordinate system. The preoperative data is registered on the CBCT using biome-
chanically driven approach [165]. The registration of the stereoscopic camera on CBCT is done
in several steps. First of all, the respiration phase is determined. After that, the correspondent
3D features are detected on the stereoscopic point cloud and cone beam computed tomography.
Lastly, a surface to surface registration is performed based on difference minimization approach.
The authors claim that the proposed registration allows matching the preoperative data and the
stereoscopic images with sufficient accuracy.

Figure 1.6: Left: main steps of a motion compensated SLAM approach. The approach sequen-
tially in a loop improves the accuracy of the model and specifies the positions of the camera.
Right: respiratory simulation for the liver organ. The motion of the region is tracked and the
analytical respiration model is fitted to it. Images taken from [150].

The existing drawbacks impose a huge limitation to the application of the available propo-
sitions. As a result, we think a simulation model of liver behavior will be a better solution for
IGS systems.

1.2.2.4 IGS based on a simulation of liver deformation

The general idea of the simulation methods is to model the behavior of the whole organ based
on tracking data that is obtained during surgery procedures. The simulation approaches might
vary from simple interpolation between tracking points up to complex biomechanical modeling.
They can be split into two groups.

12



13 1.3. Guided surgery for other highly deformable organs

Parametric interpolation. The authors from [114, 134, 136] propose to construct liver de-
formation by interpolating data from a bundle of electromagnetically tracked flexible needles.
They acquire an initial CT scan after needles insertion to use their positions for CT registra-
tion on the intraoperative tracking system. The transformation for the registered image is then
computed through an interpolation based on tracking positions.

The idea in [135] is to track the motion using a set of optically tracked needles. The ini-
tial computer tomography is registered via spline interpolation. During intervention, the three-
dimensional model is updated based on similar interpolation and the positions of needles.

The main drawback of the proposed approaches is that they do not consider the anatomy of
a specific patient. The interpolated parameters are computed based on some general equations,
but depending on liver properties the actual deformation might differ. The accuracy of the sim-
ulation is highly dependent on the number of tracked markers, but it is not possible to insert a
lot of needles in patient organs due to ethical restrictions and possible additional complications.

Biomechanical modeling. A large set of ideas are based on physically based modeling,
which describe, more or less accurately, the organ deformation, based on measured hyperelas-
tic properties. The papers [74, 188] describe the patient-specific biomechanical model and its
correspondence to real data from a laparoscopic camera. The registration of preoperative scan
is done based on anatomical landmarks visible intraoperatively. The tracking algorithm, which
works during an operation process, basically relies on feature detection and Lucas-Kanade op-
tical flow approach.

In [23], the authors describe the linear Finite Element Method (FEM) to simulate the organ
deformation during image-guided surgery. During operation, the information about the liver
surface is obtained using a laser range scanner. For preoperative CT registration, the scientists
minimize the difference between CT and the obtained surface. To control the deformations
of biomechanical model, the researchers use an optical tracking system, which tracks probes
embedded with infrared diodes attached to the scanner.

Synthetic data-driven biomechanical modeling. In [20], the authors proposed an approach
combining a Finite Element Method and a deep neural network to learn complex elastic defor-
mations. From preoperative computer tomography data they construct a biomechanical model,
which allows them to simulate various deformations for network training. Based on tracking
data obtained from an RGB-D camera, the network predicts the deformation for the whole vol-
ume model.

The main disadvantage of the proposed solutions is their complexity. The Finite Element
Method is time consuming and, in general, not applicable in real-time context. However, the
recent researches [35, 179] show that the finite element based modeling process can be enhanced
to provide a real-time simulation.

1.3 Guided surgery for other highly deformable organs
It is important to mark that simulating organ behavior using physically based approach is quite
general and could be easily integrated in navigation systems for other deformable organs.

For example, during respiration, the tumors inside lungs can move from 1 to 3 centime-
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ters [197]. In addition to that, there is also a change in the lung volume. The difference in
volume for free breathing and gated inhale volumes ranged from 25 % up to 46 %.

The papers about computer-assisted lung surgery are not numerous. In [60], the authors pub-
lish a study of using an augmented reality system to treat a lung cancer. In [205], the authors
use virtual reality as a navigation tool combined with CBCT to guide intraoperative localization
of tumors. The researchers from [225] create the three-dimensional virtual model by separating
segmentation of trachea and blood vessels. They also merge them with pulmonary parenchyma
to get a single model. But all created systems show only the static model of the lung, while
a possibility to model dynamic behavior makes navigation more accurate. Recently a Finite
Element approach was proposed to compensate for lung deformations during initial data regis-
tration [7]. Therefore, a real-time biomechanical model would be a nice solution since it could
simulate breathing as well as other motions.

Kidney is another organ that changes its position during respiration. The research show
the movement up to 3.5 cm for a normal respiration and up to 8.6 cm for a deep one [144].
However, the scientists from [210] claim that their deformation is limited. Currently, most of
the available approaches use rigid registration of preoperative data. But usage of a deformable
model gives a better precision for tumor positions. For example, the authors from [56] show
that biomechanical model for kidney improves an average localization error on 29 %.

The recent overview of all available approaches is given in [41]. In general, it is possible to
say that navigation is done using various approaches, from using additional navigation aids [15]
up to more complex intensity-based approach [192]. The latter attempts to fuse the preoperative
data with the intraoperative images. Here, to improve the approach, the authors introduce the
recovery algorithm because of occlusions that often happen during surgery. Anyway, there are
several attempts to model kidneys using biomechanical models. In [6], the authors use an elastic
biomechanical model to simulate the behavior of a kidney. The authors from [166] use deforma-
tion model based on Biot’s consolidation theory. In [56], the authors use linear Finite Element
Method to simulate the deformation. Finally, in [162], the authors propose to use hyperelastic
FEM, which simulates kidney behavior more accurately. All these works mark an increasing in-
terest in physically based modeling; it is considered as a feasible solution to predict the position
of the whole organ and, particularly, invisible tumors with a given limited observability.

1.4 The selected approach for a liver augmented reality
All in all, we decided to construct the augmented reality for the liver using a physically based
modeling. During hepatic surgery, only a small part of a liver surface is observed, for both open
and laparoscopic surgery, from which a displacement field for the whole organ volume has to
be recovered. Also, compared with other organs, such as bones, liver undergo various deforma-
tions, due to tools manipulations, respiration motion, and abdominal area inflation (in case of
laparoscopic surgery). Biomechanical modeling has proven to be useful in simulating the large
deformations, as well as in cases with limited amount of intraoperative data. Consequently, in
this case, a physically based solution looks very efficient at estimating the in-depth displace-
ment from surface motion or sparse data. Finally, it is important to mark that biomechanical
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modeling can be easily combined with other equipment such as ultrasound probes, which are
used during surgery, or other tracking tools.

1.5 Research work overview
There are several main components that every mechanical problem contains: (1) a numerical
approach, like a Finite Element Method, that interconnect the geometry of deformation with
material strain; (2) an optimization method, such as Newton-Raphson scheme that deals with
equations of equilibrium between stress and applied tensions or external forces; (3) a consti-
tutive law that describes material properties by interconnecting stress and strain; and (4) a set
of boundary conditions (BCs) that characterize how the region of interest is connected to the
surrounding environment.

In the domain of modeling for medicine, the described components are highly dependent
on anatomical characteristics of a specific patient. Indeed, the shape of the organ, tissue prop-
erties, the connections to the surrounding environment, and biological processes influence the
mechanical behavior and, therefore, play an essential role in the simulation process. While some
information, such as liver shape, can be easily obtained using medical equipment, other is much
harder to get. The main issue comes from the impossibility to identify certain anatomical struc-
tures and their biomechanical properties.

Some time ago, a new Dynamic Data Driven Applications System (DDDAS) paradigm was
introduced [38]. According to this paradigm, the behavior of a dynamic system is predicted by
a model, but also the model is updated by indirect measurements obtained from the system.
It seems that to construct the accurate AR system for surgical needs we have to follow this
paradigm. The characteristics could be estimated by assimilating data from various medical
modalities such as laparoscopic cameras, ultrasound probes, and so on that are used during
surgery. It is worth marking that anatomical properties of organs might vary a lot between
different patients. But the main advantage here is that the assimilated data takes into account
the characteristics of a specific organ or tissue.

The liver organ is studied quite extensively. A lot of works are dedicated to it; the good
overview is presented in [138]. However, a huge number of papers related to the construction
of a numerical model for real-time liver simulations, necessary to create the AR system, and to
the description of hyperelastic liver material properties. And much less work has addressed to
the role of BCs in the organ deformation.

Liver boundary conditions are described very poorly. The description of liver connective
tissues is limited only to a generic idea about their position. The main issue comes from the
impossibility to identify anatomical structures constraining the liver, mainly ligaments, from the
preoperative CT and the difficulties with their visibility on magnetic resonance imaging [50],
especially healthy tissues. Moreover, in generally, the information about their biomechanical
properties is missing. As a result, it is nearly impossible to get a correct description of the liver
boundary conditions.

The main idea, therefore, is to use the available recordings of liver deformation. Since there
is no exact information about BCs, their properties can be estimated based on a data assimilation
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process. Also, it is essentially important when surgeons operate a person who has a non-typical
anatomy. For example, the patient might not have a specific ligament because it was cut during
previous surgery. We have to note that, in general, it is not possible to identify a ground truth
BCs, only to find some effective values, which will allow improving the simulation accuracy.
However, the corrected BCs will clarify the biomechanical model, which results in an accurate
simulation of the organ even when observations are very noisy or missing.

All in all, there is a need to develop a better navigation platform that will overcome the draw-
backs of the traditional IGS system. This is the main goal of "HiPerNav" project, which aims
to provide a navigation mechanism to deal with issues during cancer and metastases treatment.
The project is based on collaboration among several universities, research institutes, hospitals,
and industrial partners from all over Europe. Every partner is responsible for work on a specific
aspect of the constructed platform (Fig. 1.7).

Figure 1.7: Overview of research areas that are covered by the HiPerNav project
(https://hipernav.eu).

Together with other requirements, the platform should be able to monitor and manage the
surgical workflow in intraoperative resection and ablation. The current PhD work is also a part
of HiPerNav project. The main idea of the work is to propose a solution to estimate the liver
boundary conditions, in order to predict its behavior more accurately. It will result in a well
suited augmented reality for image-guided liver surgery. The introduced idea relies on a combi-
nation of a liver model and a nonlinear ligament presentation, initialized from a statistical atlas
and corrected by a stochastic data assimilation process.

The main contribution of this thesis is the following:

• A presentation of boundary conditions around liver as a mass-spring system with poly-
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nomial stress-strain relation. The nonlinear mass-spring system allows simulating hyper-
elastic tissues with sufficient accuracy, but nearly 30 times faster.

• A nonlinear Kalman filtering based approach to estimate liver BCs using available in-
formation from intraoperative data. The essential moment is that the method does not
precisely simulate characteristics of liver surrounding organs and tissues, but improves
the prediction accuracy of a biomechanical model to simulate liver behavior.

• A statistical atlas construction and parameters initialization procedure to create the initial
approximation of BCs around the liver. Based on set of liver meshes, with ligament po-
sitions segmented by experts, and a stress-strain curve taken from literature, it constructs
the initial set-up for position and elastic properties.

• A preconditioned transformation of uncertainty or ensemble members for stochastic data
assimilation process. When used inside the prediction step, it allows decreasing the com-
putation speed without sufficient loss of accuracy in estimated parameters.

The structure of this manuscript is as follows:

Chapter 2 gives an overview of biomechanics for liver and ligaments and depicts a numerical
approach that simulates their behavior. Finally, it argues about the selected approach that was
made to simulate the behavior of the organs and tissues.

Chapter 3 argues for the Kalman filtering approach as a best choice to perform data assimila-
tion process under given accuracy and time constraints. It then gives a detailed description of the
Kalman filtering approach and two of its nonlinear extensions together with some experimental
results.

Chapter 4 describes an atlas construction and parameters initialization for initial BCs ap-
proximation. It then focuses on the preconditioning approach to improve the performance for
data assimilation process.

Finally, Chapter 5 depicts the experiments and estimation results of liver boundary condi-
tions for synthetic model and then for a real human organ. The chapter is followed with their
discussion, possible limitations, and future steps.

The manuscript is finalized with the conclusion and bibliography list.
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In this chapter, we will present how the knowledge about liver and ligaments anatomy and
properties is used to construct a biomechanical model. Firstly, we will give a description of the
liver organ and depict an overview of available hyperelastic materials to simulate its behavior.
We will then argue for our model choice. We will also show that boundary conditions have a
huge influence on the shape of the object during a simulation process. For the liver, the BCs are
mainly presented by ligaments. So, we will describe a state of the art addressing various ideas to
simulate ligaments in human body. After, we will present an experiment to validate our choice
for a ligament model.
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Chapter 2. Biomechanics of liver and ligaments 20

2.1 The fundamentals of liver modeling

2.1.1 Liver anatomy
The liver is the largest human gland, which produces substance called bile, and plays an im-
portant role in digestion. It also has a unique capability of regeneration. The bile substance is
stored in the gallbladder and discharged into the duodenum where it aids with the digestion of
lipids. Apart from that, the liver provides a number of vital functions to maintain the metabolic
balance. It synthesizes various essential molecules, extracts and metabolizes nutriments, filters
out different toxins from the blood, stores and processes metabolic products, neutralizes and
detoxifies alien antigens and bacteria [9].

Right lobe Left lobe

Anterior surface
Left lobe

Caudate lobe

Right lobe

Posterior surface

Gallbladder

Quadrate lobe

Figure 2.1: Liver anatomy overview with labeled lobes.

The liver is situated in the upper part of the abdomen on the right side. Its color is dark red-
brown. The shape of the liver can be roughly described by a triangular prism with the base on
the right and top on the left (Fig. 2.1). The weight of the liver varies from 1.2 to 1.6 kilograms.
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21 2.1.1 Liver anatomy

Generally, its greatest transverse measurement can vary from 20 cm to 22.5 cm. Vertically, near
its side or right surface, it measures about 15 cm to 17.5 cm. Also, its greatest anteroposterior
size is from 10 cm to 12.5 cm. Opposite to the vertebral column, the size is reduced to 7.5
cm [72]. The liver volume varies from 1200 cm3 up to almost 2000 cm3 [8]. The liver contains
three surfaces: inferior, superior, and posterior. It can also be split into four lobes: left, right,
caudate, and quadrate [72].

Right anterior

medial segment (V)

Right posterior

lateral segment (VII)

Anterior view

Right posterior

Left medial segment (IV)

Posterior view

Left posterior

Figure 2.2: Overview of the liver segments that are commonly used for resection planning.

But usually, according to Couinaud classification, the organ is considered as a composition
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Chapter 2. Biomechanics of liver and ligaments 22

of functional segments. The overview of the segments is presented in Fig. 2.2. This classification
is more preferred for surgeons since it divides the liver into eight independent parts. Each of
these parts has its own vascular inflow and outflow, and, therefore, they could be resected or
operated without damaging the remaining part of the organ. The exception is the caudate lobe,
which gets the blood supply from the two vascular branches.

The liver is sustained by hepatic artery and two veins. Inside liver tissue, these vessels are
divided onto hundreds of small capillaries, which are called liver sinusoids. The blood from
a portal vein and portal artery, which together with a bile duct form a portal triad, is filtered
and mixed inside the sinusoids. It goes then to a central vein, which transfers it further to a
hepatic vein. The sinusoids are covered by hepatic cells of the liver lobules. The lobules are
small granular bodies with a diameter from 1 mm to 2.5 mm (Fig. 2.3). They are separated by

Figure 2.3: The functional units of liver shown in the hierarchical order. Image taken from [17]
licensed under CC BY 4.0.

a very thin areolar tissue [72]. Most of the metabolic functions are going inside the lobules,
so they could be called the main components of liver tissue. However, commonly biologists
consider an acinus as the elementary functional unit of the liver. The acinus is a rhombic region
artificially constructed on parts of two adjacent lobules and bounded by two portal triads and
two central veins (Fig. 2.3).
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23 2.1.2 Liver biomechanics

The whole mass of lobules (or acini) together forms the essence of the liver tissue sub-
stance, which is called parenchyma. The functional units have more or less regular structure;
consequently, the parenchyma has quite homogeneous mechanical properties. It is nearly in-
compressible tissue, and the average Young’s modulus ranges from 1 kPa up to 20 kPa. The
blood vessels, however, have different properties, and, therefore, they influence the homogene-
ity of the tissue.

Liver cancer diseases are characterizing by appearing abnormal cells, which do not provide
their normal function. A solid tumor is an abnormal tissue made of cancer cells and a variety
of normal organ cells (Fig. 2.4). In general, the liver cancer caused more often by metasta-
sis - the cancer cells that are spread from other organs - because of the huge blood flow that
is going through the liver. The normal tissue is participated in complex metabolic processes.
The metabolism is regulated by biophysical equilibrium between lobules and extracellular ma-
trix [231, 247]. The cancer cells violate this balance, which results in changing the physical and
mechanical properties of the cells. The most cancer diseases are characterized by desmoplasia.
When it occurs, the fibrous and connective tissues are extensively growing, which increase the
stiffness of the tumor. The stiff tissue affects the blood vessels with enormous pressure, mak-
ing them more leaky and facilitating tumor progression as well as its metastasis. In addition,
the tumor stress affects the surrounding normal tissue, helping the tumor to grow and spread
further. The recent research shows the increasing interest in the role of mechanical forces and
stress in the tumor and its influence on the surrounding tissues. It is described in more details
in [86, 158]. As a result, the tumor can be considered as a substance much stiffer than the cells
of a normal tissue.

Figure 2.4: Liver parenchyma and tumors reconstructed from CT images. Since tumors have
abnormal mechanical properties, they have different intensity on CT and MRI images, which is
used to segment and reconstruct their shape. Image taken from [219].

2.1.2 Liver biomechanics
The material properties of an organ or tissue are described by the characteristics of cells as well
as the structure of an extracellular matrix. Protein fibers, hepatocytes, and other components
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Chapter 2. Biomechanics of liver and ligaments 24

make a contribution to a final mechanical characteristics, so any change in this composition
leads to a variation in mechanical properties.

Historically, the stiffness of any material was described in terms of linear elastic theory.
It is given by two properties: Young’s modulus and Poisson’s ratio. However, such as many
other soft tissues and organs, the liver has nonlinear behavior. Various experiments were per-
formed to evaluate its characteristics. For example, in [22], to estimate stress-strain relationship,
the authors rely on indentation test; in [155], the authors use an aspiration device. The results
are presented in Fig. 2.5. It is nice to mark that authors presented stress-strain curves for ex-
periments with both healthy and diseased organs. Despite the fact the diseased liver respond
differently to stretching forces, it has the similar curve shape. Consequently it allows us to use
the common hyperelastic material for both cases. The ideas that have been proposed to simulate
its deformation are described further.

Figure 2.5: Overview of the liver constitutive law. Left: four normal livers (dotted lines) and one
obstructive liver disease (solid line), taken from [22]. Right: the chart shows the nominal stress
τ as a function of the stretch ratio λ, taken from [155].

2.1.3 Simulation of liver deformations
Because of its regenerating capabilities, the liver organ is an often target for surgical resection
procedures. Therefore many research projects focus on liver modeling for various simulators
and computer aided tools. Depending on the area of application and performance requirements,
various methods are proposed.

2.1.3.1 Elastic materials

Despite the fact that liver has nonlinear behavior, in some works a linear elastic material is
proposed. The main motivation in this case is a requirement for real-time computations. In [23],
the linear Finite Element Method (FEM) was used to simulate the organ deformation during
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25 2.1.3 Simulation of liver deformations

image-guided surgery. In [33], the authors also use a linear elastic model to create a real-time
liver simulator for surgical training. The result of such simulations is fast, but it is correct only
for deformations with small strains. So the main tendency is to use various hyperelastic models.

2.1.3.2 Hyperelastic materials

The simplest approach proposed to model nonlinear deformations is co-rotational FEM [156].
The main idea is to model the deformation as a combination of a rigid object rotation and linear
deformation. More precisely, the stiffness in this case can be written as:

Knonlinear = RT KR (2.1)

where matrix R represents the rigid rotation of the object and K is the linear stiffness matrix
(see section 2.1.4.1 for more details).

Despite the fact that this approach is not truly hyperelastic and various issues, such as sta-
bility problems, it can be used easily in real-time context. Therefore, it was used in a number of
works related to a fast liver behavior simulation [36, 179].

Among hyperelastic materials, the simplest one is Saint Venant-Kirchhoff (StVK). It is a
generalization of the isotropic linear model where the linear strain tensor is replaced by the
nonlinear Green-Lagrange strain tensor. The relationship between stress and strain is expressed
through the strain energy density function Ψ (see section 2.1.4.1) as:

Ψ(ξξξ) =
µ1

2
(
tr(ξξξ)

)2
+µ2

(
tr(ξξξ2

)
)
, ξξξ =

1
2
(ccc− I) (2.2)

where ξξξ is a tensor that describes material strain, µ1 and µ2 are two Lame coefficients, ccc is
the Cauchy-Green deformation tensor, and I is the identity matrix. The use of StVK model
was proposed, for example, in [40] where the authors make an attempt to create a real-time
surgical simulator. Some approaches rely on StVK model with a further improvement for better
performance. In [161], the authors apply proper generalized decomposition to accelerate the
simulation process. The authors from [183], to achieve a real-time performance, compute the
nonlinear part of the force only for the parts which exceed certain threshold. As a result, we can
say that StVK material is quite popular for modeling deformations in real-time context.

Neo-Hookean material is another simple hyperelastic material that can be used to predict
the nonlinear stress-strain behavior. The strain energy density function Ψ is expressed as:

Ψ(I1) =
µ1

2
(
I1 −3

)
, I1 = tr(ccc) (2.3)

where µ1 is the first Lame coefficient, characterizing material stiffness, and I1 is first invariant or
the trace of the Green deformation tensor. Some works, such as [4], propose to use this material
to simulate liver behavior.

The Mooney-Rivlin material is usually considered as a generalization of Neo-Hookean
model. In generalized version the strain energy density is presented as:

Ψ(I1, I2) =
N

∑
i+ j>0

θi j
(

I1 −3
)i(

I2 −3
) j
, I2 =

1
2

[(
tr(ccc)

)2
+ tr(ccc2)

]
(2.4)
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where θi j are material constants, I2 is the second material invariant in the line. For N equals to
1, the generalized equation becomes a simple Mooney-Rivlin material.

The Mooney-Rivlin model is selected quite often for various simulations. For example,
in [81], the authors choose Mooney-Rivlin material to find parameters from real tissue sam-
ples. The authors from [63, 64, 233] also propose to use a second order Mooney-Rivlin model.
In [251], the authors show an extension of the nonlinear FEM based on Mooney-Rivlin model.
They use this model to simulate the liver behavior for a surgical training simulator.

Among other models, the commonly used one to simulate the behavior of hyperelastic ma-
terials is Ogden model. In this model, the relationship between stress and strain is expressed
through the strain energy density function Ψ as:

Ψ(λi) =
N

∑
i=1

νi

αi

(
λ

αi
1 +λ

αi
2 +λ

αi
3 −3

)
(2.5)

Here νi and αi are material parameters and λi are principal stretches. The stretches are connected
with material invariants given earlier via simple equations:

I1 = λ
2
1 +λ

2
2 +λ

2
3, I2 = λ

2
1λ

2
2 +λ

2
2λ

2
3 +λ

2
3λ

2
1 (2.6)

The researches who propose to use the Ogden model are given in [69, 81, 125]. In [234],
the authors search for Ogden model parameters based on experiments with bovine livers. And
in [127, 235, 126], the authors estimate Ogden parameters for human liver.

Alternative solutions consider more complex models. For example, in [125], the authors rely
on a reduced polynomial model to simulate the liver. In [202, 204, 258], the authors describe ex-
ponential models. The researchers from [255] perform verification on how Veronda-Westmann
material fits to the experimental data. Unfortunately, the available material parameters are ob-
tained for animal livers, but not for human ones.

An interesting research was done in [27, 28] where the authors compare different hypere-
lastic models. Finally, they propose to use a combined logarithmic and polynomial material as
the most accurate one. However, the result of their research shows that all models apart from
the simplest ones simulate liver hyperelastic behavior with a sufficient accuracy.

2.1.3.3 Viscosity and porosity

Besides hyperelastic aspect, the certain number of papers covers viscosity description in FEM.
There are two generally proposed approaches to model liver viscosity.

The first one is related to linear viscoelasticity. In this case, the material constants are pre-
sented as a time-dependent relaxation function. To determine this function, it is usually written
in a form of Prony series, the coefficients of which is easy to obtain from viscosity experiments.
For example, in [143], the authors obtain the final material by adding this presentation to a spe-
cific form of generalized Mooney-Rivlin model. In [208], the researchers add viscosity to the
Ogden model in the same way. And in [154, 153], the authors use reduced polynomial model
for the hyperelastic part.

The other one is quasi-linear viscoelastic theory. This theory assumes that the stress his-
tory can be expressed as multiplication of two independent terms, where the former describes
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27 2.1.4 The numerical simulation of liver

time relaxation and the latter indicates the instantaneous elastic response. In [224], the authors
show by experiments that quasi-linear model can describe viscoelastic properties of the liver.
To simulate stress-strain relationship, they use exponential model described in [65]. In [95], the
authors also use quasi-linearity, but with Mooney-Rivlin material to simulate hyperelasticity.

Several research works develop other constitutive models to predict more accurate liver
behavior for large strains. In [221], the authors create their own model. The model includes
the initial elastic response, the rate-dependent part to simulate viscous flow behavior, and the
nonlinear strain hardening that increases sufficiently at large strains. However, they develop
their model for high strain rate and high-speed impact loading that happens, for example, during
vehicle crashes. The authors from [160] propose to use the similar hardening law to simulate
the nonlinear viscosity. They extend the linear relaxation modulus by introducing a stiffness
multiplier depending on the strain rate. The parameters for this model are estimated based on
experiments with porcine livers.

In other research works, the authors develop even their own approaches or use nonstandard
ones for simulation. In [99], the authors simulate liver behavior to insert a needle accurately.
They extend the standard Finite Element Method with the cubic function to model nonlinear
constitutive law and quadratic function to model viscosity. In [212], the authors propose to
create a nonlinear model by adding corrective functions to a linear mass-tensor system. The
modification describes the correction for Lamé coefficients and viscous force proportional to
speed of deformation. In [226], the researchers extend the Neo-Hookean model with anisotropy
and append linear viscosity based on Prony series. To simulate liver deformations, the authors
propose to use a Total Lagrangian Explicit Dynamic formulation.

In the paper [98], the authors do not consider hyperelasticity at all. To simulate liver viscos-
ity, they use a Kelvin-Voigt model.

Apart from viscoelasticity, some researchers make an attempt to include porosity for mod-
eling liver behavior. In [88], the authors propose to model viscosity by adding relaxation to
the shear modulus and to model porosity by adding it to the bulk modulus. The experiments,
done on a porcine liver, show that they can identify parameters to simulate material response
accurately. In papers [138, 139, 196], the researchers construct a liver model for injury analysis
and surgical training. The porosity is modeled using Darcy’s law that describes a flow of a fluid
through a porous substance. The solid part of the liver was modeled as viscoelastic material. Un-
fortunately, all tests were performed with pig livers and just a few obtained parameters, which
makes it difficult to set the similar material characteristics for human liver. Also, the simulation
for the result poroviscohyperelastic material is far from real time.

2.1.4 The numerical simulation of liver
Solving nonlinear partial differential equations for object deformation requires an appropriate
numerical technique. The Finite Element Method (FEM) is often used in this case. The surface
of a real object is considered as a domain, also called mesh. The mesh is discretized into simple
geometrical shapes, called cells or elements. Depending on the nature of the problem and overall
geometry, they can be different polytopes.

In this work, we model the liver using tetrahedral elements. The general idea of augmented
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reality is to provide surgeons with information about internal tumors and structures. Therefore
we need a model to predict the behavior of an invisible internal organ part, which can be done
using a volumetric model. The volume elements are easy to generate from a 3D surface mesh
of the organ. The surface can be reconstructed from the segmented images of the liver in almost
automatic way.

2.1.4.1 Finite element modeling

In this section we describe a finite element method in more details. Let us suppose that some
domain Ω = ΩN was deformed under some external forces. The deformation of the body can
be described by some transformation function Φ that associates to every element s its deformed
position Φ(s). The displacement vector u = Φ(s)− s shows the difference between positions
without rigid motion. The deformation is usually characterized through deformation gradient
F that describes the distance difference changing between elements [250].

F = ∇sΦ = 1+∇su (2.7)

In deformation, the distances between elements are changing. The distance changing is char-
acterized by a second order measurements [109]. For strain, a number of second-order tensors
from the deformation gradient are obtained. The simplest is the Cauchy-Green deformation
(strain) tensor ccc, which describes the deformation of the domain and equals to a squared gradi-
ent:

ccc = F T F (2.8)

The Green-Lagrange strain tensor ξξξ describes the deformation after the rigid motion has been
removed. It is defined as:

ξξξ =
1
2
(
F T F − I

)
=

1
2
(
ccc− I

)
(2.9)

The deformation of the body occurs because of some external constraints. In this case, the
internal forces tend to return the body into its rest position. For any part of the body, the total
internal force equals to sum of all the forces acted on small volume elements. On the other hand,
the external force is applied only to the surface of the element. Therefore the internal volume
forces f can be converted to a surface form [109]:

˚

V

fdV =

‹

S(V )

βββdS (2.10)

where dV is a unit volume, dS is a surface element. The tensor βββ that describes the nature of
external forces is called the Cauchy stress tensor.

We guess that we consider elastic materials, which means the energy is not lost or trans-
formed to internal state. In this case, the stress and strain tensors are connected to each other,
and their relationship is described by a strain energy density function Ψ.

βββ = ∇ξξξΨ (2.11)
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29 2.1.4 The numerical simulation of liver

Various strain energy density functions define various types of materials. Several most common
hyperelastic materials were presented earlier.

Finally, to combine all deformation characteristics together, we have to set some equilibrium
state for the system. Typically, a principle of virtual work (or weak form of linear momentum)
is used. This principle states that we select only those displacements where the total internal
work, given by the integral of elastic energy over the body, is equal to the total external work,
given by application of volume and surface forces:

ˆ
Ω

ΨappdV =

ˆ
Ω

uappfV dV +

ˆ
∂Ω

uappfS dS (2.12)

where ∂Ω is the boundary of the domain, uapp is the appropriate displacement, Ψapp is the
appropriate strain energy density function, fV and fS are volume and surface forces. It is also
important to note that the displacement is compatible with the specified boundary conditions.

2.1.4.2 Deformation equilibrium simulation

Once an external impact is applied, the object undergoes some deformation until an equilibrium
between external forces and internal stresses is achieved. The deformation goes the way to
minimize the total energy inside the object. Since the system is nonlinear, it has to be solved
using some iterative optimization method.

In this work, an implicit Euler method is used. The general equation of motion is obtained
from the Newton’s second law:

Mü+ fint(u, u̇) = fext (2.13)

where M is the mass of the body, fint are internal forces, and fext are external ones. Since
fint(u, u̇) is nonlinear, a Taylor series approximation over time t up to the first order is applied:

fint(ut , u̇t)≈ fint(ut−1, u̇t−1)+
∂fint

∂u
du+

∂fint

∂u̇
du̇ (2.14)

The matrix that describes the relationship between stress and strain or stiffness can be noted
as K. The derivative ∂fint/∂u = K(u). The derivative ∂fint/∂u̇ = D is called damping matrix,
which is responsible for friction modeling. It is usually presented as combination of mass and
stiffness:

D = ζMM+ζKK(u) (2.15)

where ζM and ζK are some constants, called reyleigh mass and reyleigh stiffness. In addition,
according to the numerical difference du = u̇t−1dt +ütdt2 and du̇ = ütdt. Substituting these
equations in 2.13 and rearranging them, we obtain:(

M+Ddt +K(ut−1)dt2)üt = fext − fint(ut−1, u̇t−1)−K(ut−1)u̇t−1dt (2.16)

We can solve this equation to find üt . Then, using it, to obtain the new estimation ut =
ut−1 + u̇tdt. The optimization is performed until the system converges to some final solution
u f inal or until some maximum number of iterations Nmax is reached. In the latter case, it is
supposed that the data are invalid and the system cannot be solved.
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A corotational formulation describes a special modification to model nonlinear behavior
based on linear elasticity [156]. The authors split the general deformation on rigid rotation
and linear elastic deformation; therefore, K(u) = K. The internal forces are also expressed as
two separate members that are linearly dependent on the strain and damping. To extract the
rigid motion from the whole deformation, a stiffness decomposition onto orthogonal and upper
triangular matrices (QR) is performed. Thus, the equations 2.13 and 2.15 are transformed to:{

Mü+Du̇+RT KRu = fext

D = ζMM+ζKK
(2.17)

Then, this system is solved the way similar to the general nonlinear case.

2.1.5 The selected approach to simulate liver deformations
To simulate liver behavior various approaches rely on FEM with various hyperelastic materials.
The choice of material depends on the requirements and is the trade off between real-time
performance and accurate simulation.

The crucial element of our system is the real-time simulation. We think it is better to sacrifice
the system accuracy, but observe the changes in real time, instead of predicting the behavior of
the organ very accurately, but with a certain delay. The latter case makes the interaction with
the system almost impossible. Therefore we are looking at the simplest hyperelastic materials
since more complex ones are too time consuming.

Commonly, liver undergoes large deformations during surgery, and that means we have
to model its nonlinear elastic behavior. We also suggest that the surgical manipulations are
quite slow and, therefore, we do not need to consider the tissue viscosity. Consequently, there
are several possibilities. We can use corotational FE formulation or nonlinear Finite Element
Method with hyperelastic materials. The real-time context constrains us to consider only the
simplest nonlinear models. So for the experiment we took several hyperelastic materials: StVK,
Neo-Hookean, and Mooney-Rivlin.

To access posterior parts, surgeons usually bend anterior liver part, so we decided to com-
pare liver models based on a bending deformation. We took a beam comparable with liver
measurements (15×3×3 cm3) composed of approximately 26000 elements. We fixed it from
one side and apply a bending load uniformly distributed across the inferior surface. For the
Neo-Hookean material, we used parameters from a paper [214] (µ1/2 = 0.2587 MPa), where
the authors find values for a rubber material in case of various hyperelastic models using ex-
perimental stretch. For the Mooney-Rivlin material, we manually estimated parameter values
(θ10 = 0.2112 MPa, θ01 = 0.0617 MPa) since the parameter related to the second invariant has
to be positive. For more corresponding comparison, we also used the Young’s modulus (E =
1.542 MPa) computed from the Neo-Hookean parameter and the fact that the material is almost
incompressible (Poisson’s ratio is 0.49).

The results are presented in Fig. 2.6. They show that corotational formulation and nonlinear
FEM with hyperelastic materials behaves the similar way. The maximal relative deformation
difference for the corotational, Saint Venant-Kirchhoff, and Mooney-Rivlin does not exceed
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3.2 %. For Neo-Hookean model, the relative difference is a bit bigger (almost 4.5 %). But their
behavior differs a lot compared with behavior of a linear FEM model. The maximal difference
is almost 102 %, which is comparable with the deformation displacement.

Figure 2.6: Linear and hyperelastic models behavior comparison for a bending deformation. For
all cases, the same mesh, applied forces, and BCs were used.

To compare the performance, we computed the total time for 500 iterations of deformation.
The average time for one iteration is presented in Table. 2.1. The fastest approach is FEM with
corotational formulation. The hyperelastic model with StVK material is 5.53 % slower. The
Neo-Hookean material is a bit more than 12 % slower, and Mooney-Rivlin is slightly slower
(nearly 27 %).

FEM type Corotational St. Venant-Kirchhoff Neo-Hookean Mooney-Rivlin
Computation time

for one iteration, ms
402.73 425.02 451.64 503.68

Table 2.1: Computation time of models with different hyperelastic materials for a bending de-
formation. For all cases, the same mesh, applied forces, and BCs were used.

However, despite its simplicity, the corotational model is quite unstable, mainly because
any deformation can be described by a certain combination of linear deformation together with
rigid rotation. The more serious problem is that this instability might influence the estimation
process which will result in worse-parameter estimation. All in all, the deformation difference
between simulation results is small for all nonlinear tested variants, and StVK material shows a
bit slower results than corotational formulation. Therefore we finally decided to select a hyper-
elastic model with StVK material to simulate the deformations of the liver.
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2.2 Liver boundary conditions

2.2.1 Importance of boundary conditions
Apart from mechanical properties of the object, its behavior is formed by a way the object is
attached to the surrounding environment. Equations that interconnect the geometry of defor-
mation with material strain, equations of equilibrium between stress and applied tensions or
external forces, a constitutive law that interconnects strain and stress are necessary to describe
the problem, but they are not sufficient. In addition, it is important to define what is happening
on the boundary of the domain of interest [62, 79].

The boundary conditions are complement to the mechanics of the object; together they form
the unified complete system. The combination of domain equations and BCs is called a bound-
ary value problem. This problem is well known in different areas of physics and, particularly,
in theory of elasticity. It is important to add that different BCs specify different boundary value
problems. Thus, in order to avoid an issue of ambiguity, it is necessary to determine BCs.

To demonstrate the influence of boundary conditions on the object during deformation
we show a simple experiment, illustrated in Fig. 2.7. We took a thin rectangle membrane

Figure 2.7: Left: membrane stretching experiment. Original conditions and model parameters.
Right: visual overview of membrane stretching results under modified conditions.

10 × 15 × 1 cm, made of approximately 420 elements. To simulate an elastic behavior of
almost incompressible tissue, the StVK material was used with the Young’s modulus equals to
10 kPa and Poisson’s ratio equals to 0.49. A fixed region was formed around one edge, and a
uniform force was applied from the opposite edge. To compare the shape of the model, we used
several “validation points” uniformly distributed on the front surface of the object. For compar-
ison, we took scenarios where we changed the Young’s modulus of the object, the size of the
FE, and boundary conditions. After the deformation was imposed, we compared the positions
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of points with respect to deformation for initial parameters. The main results are presented in
Fig. 2.8. We can see that specification of positions for BCs has a comparable influence for the
cases when the material stiffness is increased by 100 % or decreased by 33 %. At the same time,
the size of FE has a much less influence (we increased 16 times the number of elements). Thus,
these results show that BCs problem has the same rate of importance as the characterization of
material properties.

Figure 2.8: The difference between validation points for membrane stretched under original and
modified conditions. The type of modification is given in the legend.

2.2.2 Theoretical description of boundary conditions
In formal theory, a boundary value problem is formed by a set of differential equations together
with description of boundary conditions. Generally, differential equations have a family of so-
lutions. So, one of them that satisfies the set of BCs is selected. It becomes the solution for a
problem.

There are different types of boundary conditions, but all of them represent easy definitions
for what happens on the boundary of the considered domain. To show them, let us suppose that
we consider some domain Ω again, which has a boundary ∂Ω, and a transformation function
Φ that describes deformation for any point s. We want to find the difference between deformed
and rest positions u(s) = Φ(s)− s.

Dirichlet boundary conditions Dirichlet boundary conditions are also called first-type
boundary conditions or fixed boundary conditions. They are fixed in general sense, not in space,
since they fix the solution on a boundary as a known function BD:

u(s)|s∈∂Ω
= BD(s) (2.18)

Often the boundary function is defined with zeros to set the BCs fixed in space ( BD = 0 ), but
sometimes they have more complex description.

Neumann boundary conditions In Neumann boundary conditions or second-type bound-
ary conditions the normal derivatives of the solutions on the boundary are fixed.

∂u(s)
∂n

∣∣∣∣
s∈∂Ω

= BN(s) (2.19)
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where n is the external normal to the boundary ∂Ω and BN is the known function. They can be
considered as impulses obtained from forces and applied to the boundaries of the object.

Mixed boundary conditions In case of Mixed boundary conditions the domain is split on
disjoint parts. On every part a Dirichlet or Neumann boundary conditions are specified. The
definition, therefore, looks like:

u(s)|s∈∂Ω1
= BD(s)

∂u(s)
∂n

∣∣∣∣
s∈∂Ω2

= BN(s) ∂Ω1 ∪∂Ω2 = ∂Ω (2.20)

Robin boundary conditions Robin boundary conditions are boundary conditions where the
linear combination of the values and the normal derivatives of the solutions is specified on the
boundary.

A1u(s)+A2
∂u(s)

∂n

∣∣∣∣
s∈∂Ω

= BR(s) (2.21)

where A1 and A2 are some nonzero constants and BR is the known description. If A1 is zero,
then Robin boundary conditions become second-type BCs; otherwise, if A2 is zero, then they
become first-type BCs. In more general form, the constants can be replaced by some functions.

To find a solution for particular problems in physics, more complex boundary conditions
can be specified. But they are out of the scope of this work, and we are not considering them.

2.2.3 Anatomy of liver boundary conditions
The boundary conditions that are applied to the liver are formed by two types of constraints.
First conditions are bilateral constraints. These constraints are active all the time. They are
induced by connective tissues, ligaments (Fig. 2.9), blood vessels, and bile ducts (Fig. 2.10). The
second type is unilateral constraints. They appear when the liver is in contact with surrounding
organs such as stomach or diaphragm. This usually happens in case of tissue motion caused by
respiratory or application of external forces during surgery.

The description of ligaments and other connective tissues can be found in [1, 9, 72, 157].
Generally, the liver is connected to the lower part of the diaphragm and to the anterior wall of
the abdomen by five ligaments: falciform, coronary, two lateral ligaments, and round ligament.
The liver is also attached to the lesser curvature of the stomach by the hepatogastric ligament
and to the duodenum by the hepatoduodenal ligament.

The falciform ligament is a thin and broad antero-posterior peritoneal fold. It obliquely lies
in an antero-posterior plane. The one surface of the ligament is in contact with the peritoneum
behind the right rectus and the diaphragm, while the other is in contact with the left lobe of
the liver. The falciform ligament is formed from two layers of peritoneum that lie close to each
other [72].

The coronary ligament consists of upper and lower layers. The upper layer lasts from the
upper border of the liver bare area to the lower surface of the diaphragm. It is the continuation
of the falciform ligament layers. The lower layer is connected to the lower border of the bare
area and the right kidney. Both layers are also formed by the peritoneum.

There are two triangular ligaments: right and left. The right triangular ligament is located
at the right extremity of the bare area. The upper and lower layers of the coronary ligament
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Figure 2.9: Liver ligaments anatomy.

finally turn into it, so the ligament looks like a small fold, connected to the diaphragm. The left
triangular ligament is also a fold of considerable size. It connects the posterior part of the liver
upper surface and the diaphragm. The anterior layer of left triangular ligament is transformed
into the left layer of the falciform ligament [72].

The round ligament is a fibrous cord resulting from the umbilical vein. It lasts from the
umbilicus, near the free margin of the falciform ligament, to the umbilical notch (the anterior
border of the liver crossed by the falciform ligament) of the liver. Here, it may be tracked on the
inferior surface of the liver to the porta where it combines with the ligamentum venosum.

Apart from ligaments, liver is also connected to surrounding organs with several blood ves-
sels and bile ducts (Fig. 2.10). The blood vessels names are hepatic artery, portal vein, and
hepatic veins [72, 157].

The hepatic artery and portal vein are connected to the porta, between the layers of the
lesser omentum. It is also the place where the bile duct and the lymphatic vessels go away from
the liver. The bile duct lies to the right, while the hepatic artery to the left, and the portal vein
between them. The hepatic veins transfer the blood from the liver. The cells of liver binds them
only closely to the walls of the canals through which they run. Thus, on the section of the organ,
they remain widely open and may be easily distinguished from the vessels of the portal vein.

Several factors hold the liver in place. The first are the connections of the liver to the di-
aphragm, made by the coronary and triangular ligaments. Together with the connection of the
inferior vena cava by the connective tissue and hepatic veins, they fix the posterior part of the
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Figure 2.10: Liver vascular system description.

liver. Some support is provided by the pressure of the abdominal viscera. Generally, it com-
pletely fills the abdomen and its muscles are always in a state of tonic contraction. The superior
surface is perfectly fitted to the bottom surface of the diaphragm. Therefore the atmospheric
pressure is enough to hold it against the diaphragm. In its turn, the diaphragm itself is held up
by the negative pressure in the chest. The falciform ligament does not give a lot of support, but
it might limit the lateral displacement of the liver [72].

Therefore, the attachments around the liver are formed mainly by peritoneum, but, despite
this fact, they are usually called as ligaments. Unfortunately, the information about liver attach-
ments is limited to general description of their position. There is no information about neither
their biomechanical properties nor the characteristics of connective structures, from which the
ligaments are formed. A comprehensive overview about peritoneum is given in [85]. But the
authors conclude that it is studied quite poorly since up to the recent time it was not considered
as an independent connective tissue.

Another essential restriction for the determination of BCs is the impossibility to observe
the whole liver organ during operation. In laparoscopic surgery the visible area is restricted by
the camera, but even in open surgery the visible area is limited to the anterior part of the liver.
Therefore it is quite complicated to specify the exact place where the connective tissues are
attached to the liver. The area of attachment might also vary from one patient to another.

The unilateral constraints are also poorly described. Contacts between the liver and sur-
rounding anatomy depend on organ shapes. The type of manipulations that are performed during
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surgery also have an influence. But it is not known in advance what manipulations the surgeons
will perform during liver resection for a particular patient.

2.2.4 Boundary conditions simplification
As we can see, the boundary conditions around liver are presented by various tissues [1, 9, 72].
Also, they might be active always or appear only under certain conditions. And so, it is difficult
to describe them using simple equations.

However, for this work we decided to consider mainly ligaments attachments. First of all,
unlike blood vessels, peritoneum folds cover various parts of liver. So, while arteries and veins
predict the position of the liver in general, the ligaments have an influence on deformation
behavior of various segments. Secondly, unlike blood vessels, ligaments are not visible on CT
scans, and therefore we have to predict their position somehow. Thirdly, smooth muscles, which
is the main component of blood vessels, are studied much better than peritoneum. So it is easier
to construct an appropriate biomechanical model for them.

Anyway, in this work we are constructing the general model to describe the liver boundary
conditions. It is important to mark that our final purpose is to accurately simulate the positions
of liver tumors and internal structures. Therefore we need to focus on the impact of boundary
conditions for the liver model, but not the internal structure and biomechanical behavior of the
BCs. In addition, we can say that all external liver blood vessels are more or less surrounded by
ligaments; therefore, they form a combined bilateral attachment for the liver. Consequently, we
decided to consider a unified model of BCs, which is based on ligament biomechanics.

Talking about unilateral constraints, the main issue is that there is not enough information
about positions and properties of the surrounding organs. Even having this information, it is
difficult to understand their influence on the liver shape and the final amount of contribution in
behavior prediction. So, for simplicity, in this work we decided to ignore them.

2.3 The fundamentals of ligaments modeling

2.3.1 Ligaments anatomy
Liver ligaments are formed mainly by peritoneum. The peritoneum is a smooth tissue (serous
membrane) consisting of two layers of mesothelium that secrete serous fluid, together with a
thin layer of connective tissue [85]. The inner layer that covers organs (viscera) in body cavities
is called the visceral membrane. A second layer of epithelial cells formed from the serous
membrane, called the parietal layer, lines the body wall. Between the two layers, there is a
potential space, mostly empty apart from a few milliliters of lubricating serous fluid secreted
by the two serous membranes. The peritoneum covers most of the intra-abdominal (coelomic)
organs. This peritoneal lining of the cavity supports many of the abdominal organs and serves as
a conduit for their blood vessels, lymphatic vessels, and nerves. Around the liver, the folds are
formed by the inner layer (visceral) of peritoneum. And the outer layer (paretial) of peritoneum,
connected to the diaphragm and posterior abdominal wall, attach them to the liver.
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Typically the peritoneum is regarded as a protective barrier and frictionless interphase that
covers the abdominal area and organs, but it has much more complex structure with a great
variety of functions. Apart from participating in the embryogenesis of primitive gut, peritoneal
functions also include selective fluid and cell transport, physiological barrier, immune induc-
tion, modulation, and inhibition, tissue repair and scarring, preventing adhesion and tumoral
dissemination migration [85].

Addressing the biomechanical properties of the human peritoneum, a review of the liter-
ature does not provide any information about it. A few experiments were performed to study
the mechanical properties of porcine [246] and bovine [207] peritoneum, but they describe only
stress-strain curves and membrane parameters obtained from stretching experiments (Fig. 2.12).
Since there was no attempt to create a model for peritoneum, we decided to consider the liga-
ment description in general and give an overview of approaches that attempts to simulate them
accurately.

The good description of ligaments and tendons model is given in [113, 200]. Ligaments are
multiphasic composites. They are composed of solid substance, which is presented mainly by
collagen, and water. The collagen is the main structural protein in the various connective tissues.
In ligaments, it is organized in a complex hierarchical structure (Fig. 2.11). Collagen threads are
tied in tropocollagen monomers to form fibrils (50 nm – 200 nm diameter) at nanoscale level.
Then fibrils form fibers (2 µm – 50 µm diameter) at the microscale level. Fibers are arranged
mainly in parallel fashion. At the mesoscale level, fibers are assembled into fascicles (5 µm –
500 µm diameter), and, finally, fascicles form the whole ligament at the macroscale level (100
µm – 1 mm diameter). Ligament components, such as fascicles and fibers, are surrounded by a
thin fascia.

The extracellular matrix of ligaments is formed by proteins and consists of water on ap-
proximately 70 %. The solid part is primarily composed of type I collagen (60–80 %), with the
remainder consisting of elastin, proteoglycans and glycosaminoglycans, other types of collagen
(types III, IV, V, VI), fibrillin, and other proteins [200].

Therefore, ligaments can be presented as collagen threads that are bundled in various fiber
structures and surrounded by a liquid.

2.3.2 Biomechanics of ligaments
As was already said, the human peritoneum is studied very poorly. The experiments that were
performed covers only mechanical properties of animal peritoneum [207, 246]. But they give a
general idea about its stress-strain relationship (Fig. 2.12).

On the other hand, the properties of other human ligaments are studied in more details [200].
An analysis performed by Witz et al. [249] shows that the peritoneum shares several similarities
with ligaments. Consequently, we choose to investigate the biomechanics of "true" ligaments
for our work. Their general stress-strain curve is presented in Fig. 2.12. It is important to mark
that ligaments response to stress is very dependent on the properties of fibers, which form the
ligaments. In rest state, ligaments contain twisted fibers, which resistance for small strains is
limited. As fibers are straightened, the stress increases rapidly, leading to a stronger nonlinear
stress-strain relationship.
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Figure 2.11: Anatomy of a typical ligament. The internal fibrils and fibers are organized in a
hierarchical structure. Image taken from [113].

The experimental results to biomechanical response of a ligament for different kinds of
deformation is presented in Fig. 2.13. Generally, the tensile stiffness along the fiber direction is
an order of magnitude stiffer than in the transverse direction. In shear, the ligament is two orders
of magnitude more compliant than in transverse direction. Also, in compression, the ligament
is over three times more compliant than in tension.

To conclude, the ligaments can be described by a transversely isotropic model, which is stiff
in the direction of fibers, but quite soft in other directions. Because the fibers resist stretching,
but do not resist any kind of bending. The model can also be compressed easily since the fibers
are twisting during compression.

2.3.3 Ligaments simulation
Unlike liver, ligaments are not so well studied. Most researchers consider ligaments as a com-
ponent of joints in human body. It mainly includes ankle and knee joints, but also shoulders and
arms. The works that study ligament as a separate tissue are quite seldom.

2.3.3.1 Hyperelastic materials

There are several hyperelastic methods that were proposed to simulate ligaments behavior.
The most commonly used approach is to present a material as combination of two compo-

nents and simulate its behavior using FEM. The first part describes the properties of the extra-
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Figure 2.12: Overview of the experimental porcine peritoneum stress-strain curve (left image)
taken from [246] and the theoretical ligament constitutive law (right image) taken from [203].
The constitutive law of ligaments is very dependent on collagen. After the fibers untwisting and
a short linear response, fiber elasticity rapidly reaches a limit where microscopic failures appear.

Figure 2.13: The elastic behavior of ligament for different types of deformations (E is the
Young’s modulus). The nonlinear tension stress is much larger than compression or shear stress.
Image taken from [200].

cellular matrix, while the second part characterizes the fiber behavior. In this case, the strain
energy density function Ψ is presented as:

Ψ = Ψm(I1, I2)+Ψ f (λ) (2.22)

where Ψm is strain energy for the extracellular matrix, I1 and I2 are first and second material
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invariants, Ψ f is strain energy for collagen fibers, λ is stretching ratio along the local fibers
direction.

Commonly, to model the extracellular matrix an isotropic hyperelastic material is used. For
example, in [193, 244, 120], the authors use the Neo-Hookean constitutive material. These
papers present study of the anterior cruciate ligament in combination with the medial collateral
ligament. Some other works use more complex materials. In [195], the Mooney-Rivlin model
is proposed, and in [242], the authors use the Veronda-Westman one.

The second part simulates fiber behavior as transversely isotropic hyperelastic material. For
its modeling, a special component is proposed, defined as a function of the fiber stretch [244]:

λ
∂Ψ f

∂λ
=


0 λ ⩽ 1
c1
(

exp[c2(λ−1)]−1
)

1 < λ < λ∗

c3λ+ c4 λ ⩾ λ∗
(2.23)

Here c1 scales the exponential stress, c2 specifies the rate of collagen uncrimping, c3 is the mod-
ulus, and c4 is the additional parameter of straightened collagen fibers, λ∗ is threshold stretch,
at which the collagen is straightened. The material constants c1, c2, c3, and c4 are determined
from stretching experiments.

In [49, 70, 241, 257], to study the behavior of ligaments, the authors use the similar combi-
nation. However, to make a compressible material, they add an additional member to the strain
energy density based on bulk modulus. The same model is used in [173, 239] to investigate
the kinematics of a knee joint. In [119, 121], to simplify the response of fibers, the researchers
remove the linear part (the third element) from the equation 2.23.

The alternative models are more rarely used, but researchers still propose their own variants
of ligament constitutive laws. For example, the authors from [58] investigate and simulate ankle
ligaments. The strain energy density function is composed of three parts:

Ψ = Ψmi(I1)+Ψmv(J)+Ψ f (I4) (2.24)

where Ψmi is responsible for isovolumetric behavior, Ψmv describes incompressibility of the
tissues, and Ψ f characterizes ligament fibers. They are defined as:

Ψmi(I1) =
c1
α1

(
exp[α1(I1 −3)]−1

)
Ψmv(J) = Kv

2+r(r+1)

[
(J−1)2 + J−r + rJ− (r+1)

]
Ψ f (I4) =

c4
(α4)2

(
exp[α4(I4 −1)]−α4(I4 −1)−1

) (2.25)

where J is the deformation Jacobian, which specifies the volume change, I1 is the first principal
scalar invariant, I4 is an invariant that characterizes the transversely isotropic material [80].
The c1 and α1 are material parameters that describe the shear stiffness, Kv and r are material
parameters characterizing the material compressibility, c4 defines fiber initial stiffness, and α4
characterizes wavy fiber conformation.

In [78], to model the anterior cruciate ligament for a human knee, the authors propose to
simulate the extracellular matrix as Mooney-Rivlin material and present fibers as two families
of connections with bilinear stress-strain relationship.
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Some researchers use more specific models to simulate ligaments. Lanir et al. [111] pro-
posed a Lanir model. The fiber tissues, including ligaments, are presented as networks of dif-
ferent fibers incorporated in a fluid intracellular matrix. In [195], the authors show that Lanir
model simulates ligament deformation with the satisfactory accuracy. The authors from [94] to
learn the behavior of a vocal ligament use Gasser-Ogden-Holzapfel model described in [71].
The parameters for it are obtained from histology of tissue and biomechanical experiments.

In [220], to simulate human knee ligaments, the authors decided to use a unified material
for the extracellular matrix and fibers. So, they rely on a Veronda-Westman material, which
describes exponential stress-strain relationship.

Some papers attempts to simplify ligament models. It is usually done when the work is
focused on the modeling of ligaments impact rather than their accurate simulation. In [73],
the authors propose to model ligaments using beam elements. In other works, ligaments are
presented as nonlinear springs [117, 248], line elements (squared springs) [147], or straight line
fibers [256].

2.3.3.2 Adding viscosity

The papers describing ligaments viscosity modeling are not very numerous. They can be clas-
sified into two groups.

In the first group, the authors rely on the quasi-linear viscoelastic model, which is added to
the given hyperelastic constitutive law. The researchers use it to simulate, for example, an ankle
ligament [66], a medial collateral ligament [193], or an anterior cruciate ligament [39].

In the second group, the authors construct their own nonlinear models. It is worth marking
that the general nonlinearity implies the combined expression to simulate the viscoelastic stress
response. Consequently the constructed models are quite complex, despite assumptions and
simplifications made by researchers [37, 58, 174, 185].

The attempts to include even more complexity in the ligament models are rare; however,
some researchers mark that ligaments have complex behavior. For example, in [243], the au-
thors claim that some ligaments such as human medial collateral ligament have permeability
properties.

2.3.4 The model for ligaments
As described above, the most of the proposed approaches simulate ligaments as FEM with
complex hyperelastic or viscohyperelastic materials. But the general idea in most of the works
is to understand how ligament influence the joint connection and its possibilities to bend or
twist. In current work, there is no need for a detailed ligaments simulation. The final goal is
to create a model for an accurate liver simulation, but not its surrounding environment. On the
other hand, the crucial moment is real-time performance, which is obviously not the case for
complex simulations. Therefore we have to look for simplified models that can simulate impact
behavior. Among others, there are several papers where ligaments are modeled with simplified
models [73, 117, 147, 248, 256].
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Membranes are very thin structures, which are very hard to segment, assuming they are
visible in the preoperative images. Therefore it is quite difficult to construct the appropriate
mesh for ligaments. Their geometry calls typically for a surface discretization. Flat elements,
such as shells or triangles, are usual options for modeling such structures while accounting for
their small thickness. It is also possible to model such thin structures using volume elements
though the size of the elements has to be small. Also, for accurate simulation, a sufficient num-
ber of elements have to be created, and, to process simulation, these models require enough
computational resources.

So to model thin membranes we address the theory of plates. This theory describes defor-
mations of very thin objects and provides a mechanism, which employs the in-plane coordinates
in a three-dimensional coordinate system as independent variables. There are several options to
build such type of models.

One option is flat elements. It is a way to model the thin object based on the simplest idea.
The object is presented as a set of two-dimensional elements. Every element describes elastic
behavior, similar to volume FEM, but only on the surface defined by its vertices. However, the
elements might rotate around each other independently. Among the advantages we can mark
the simple integration with general Finite Element Method. The main drawback is computation
complexity. It is similar to the volumetric FEM, which has comparable element sizes and the
single layer of elements for depth. We will now give the brief description of the main possibili-
ties.

Constant strain triangle. Constant strain triangle is the simplest flat element that describes
elastic deformation. The domain is discretized using triangles. Every triangular element is char-
acterized by six parameters. Three of them are responsible for rigid body motions, and three
others indicate the strain. Such elements are capable of representing only states where the strain
within the element remains constant [43]. Consequently, constant strain triangles are very sim-
ple and computationally effective. But the elements can simulate only linear deformations. So,
they are valid only for small strains, and to obtain an accurate result the element size has to be
small enough.

Linear strain triangle. The enhancement of the previous approach is linear strain trian-
gle where the idea is to use triangular elements of high order. The element has six nodes and
twelve degrees of freedom, which allows it to represent all linear variations in the strain [42].
Linear strain triangle allows simulating much more complex material deformations, but they
are more computationally expensive. Additionally, to use them, we have to identify extra model
parameters.

Shell elements. A shell is a three-dimensional elastic body that is characterized by its mid-
dle surface and thickness. There is a huge theoretical background behind the shells. Unlike plate
elements, shells can simulate more complex deformations like twisting [30]. To perform simula-
tions with shell elements, scientists use different approaches. For example, in [32], the authors
proposed to use triangular shell elements. They get shell elements by combining an in-plane
energy, which is described by a typical triangular FE, and off-plane energy to describe bending
and twisting. The latter part is presented as an additional matrix and integrated into the final
equation. The main advantage of this method is that shell elements allow simulating complex
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deformations. On the other side, it has excessive complexity for scenarios with a simple object
behavior.

Another general way is to approximate the membrane behavior. In this case, the membrane
model is replaced with a set of simple elements that behave the similar way. This allows per-
forming a fast computation, but in general, we lack the simulation accuracy. However, when
we have to simulate the influence of the component on the system rather than the component
behavior itself, it might be a possible choice.

Mass-Spring Model. Mass-Spring Model (MSM) is an approach where the object is pre-
sented as a set mass points connected with springs. The points depict the position of the object
in space, and springs are responsible for simulating the properties of material [93]. This makes
them computationally efficient and able to handle large deformations and topological changes
with ease. The main drawback of MSM is that they do not necessarily describe the mechani-
cal behavior of actual deformable bodies accurately because the direct link between material
properties and spring parameters is absent.

Beam elements. A beam element is a model of a straight bar with a uniform cross section.
It can resist axial, shearing, bending, and twisting forces [191]. In beam elements approach the
object is presented as a combination of such elements. The stiffness matrix that describes the
beam is 12 × 12 since it takes into account the angular and spatial positions of each its end.
The beam element model allows very accurate modeling of material parameters in one specific
direction. So it is usually used to model objects, the properties of which can be neglected in
all directions apart from the principal one, such as catheters [46]. Among the drawbacks, it is
worth marking the difficulties related to an extension of this model to simulate the properties of
objects in more than one direction.

Among available approaches, without interest to model the exact location of ligaments, we
decided to choose a Mass-Spring Model. It is important to note that springs do not simulate the
behavior of real boundaries; they only mimic elastic attachments to particular areas of the liver
surface. Also, in case of nonlinear springs, it is quite easy to simulate the desired constitutive
law by just fitting spring parameters.

We choose to use a cubic spring for approximating the constitutive law of ligaments. In such
springs, the force f applied by each spring is given as:

f =

{(
kα|∆l|3 + kβ|∆l|2 + kγ|∆l|

)
∆l
|∆l| ∆l > 0

0 ∆l ⩽ 0
(2.26)

where kα,kβ,kγ are the stiffness parameters for a spring and ∆l is the length variation. In addi-
tion, f = 0 when ∆l < 0, which represents the fact that ligaments only generate sufficient forces
on the liver under extension.

Talking about space location, for every spring we decided to attach one of its ends to the
liver and fixed another one. The spring direction corresponds to the liver surface normal where
the spring is attached. The length of the springs was taken based on measurements of the human
falciform ligament, available in [118].

From a theoretical point of view, our BCs for liver form a complex model since the springs
make a combination between impulses and displacements. However, if we consider MSM as a
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part of our model, then BCs of the combined system can be described as Dirichlet boundary
conditions with predefined zero displacements.

Since MSM might not describe the mechanical behavior of actual deformable tissues accu-
rately, we decided to compare the MSM with the more accurate FEM. We perform the compar-
ison based on a stretching experiment.

We looked through experimental curves in [246] that describe parameters of porcine peri-
toneum. The human ankle [58] and knee [184] ligaments are well studied, so we also took into
account the available experimental data. Based on considered constitutive laws, we selected
experimental data related to the softest and stiffest samples (Fig. 2.14). Then we identified the

Figure 2.14: The selected experimental stress-strain curves related to the softest sample (left
image) taken from [246] and the stiffest sample (right image) taken from [58]

stiffness of the Neo-Hookean material, which behaves similarly to the given stress-strain curves.
For this, we used curve fitting approach based on Levenberg-Marquardt algorithm available in
FEBio software [132]. We got the Young’s modulus of 403 kPa for the softest sample and
72 MPa for the stiffest one. To take into account the possible measurement deviations, we
increased the diapason of possible values; therefore, we took 150 kPa as minimal value and
500 MPa as maximal one.

Then we created a thin rectangle shape (40×100×1 mm3) composed of approximately
3700 elements, which we initialized using Neo-Hookean materials with minimal and maxi-
mal Young’s moduli values. A layer of springs with the same rectangular size was generated
(Fig. 2.15). We assimilated spring parameters based on Neo-Hookean model stretching and us-
ing the reduced-order unscented Kalman filter approach described in the Chapter 3. Then we
compared results. Since finally we are interested in predicting the position of the liver, but not
ligaments, we compared only the nodes in the region where the ligaments are attached to the
liver, marked as yellow spheres in Fig. 2.15.

The results show an average error between both models of less than 2.7 mm in a stretching
scenario for both cases and strains up to 45 % (that is, covering the range of ligaments strain in
surgery). The maximal error in the same diapason of strains does not exceed 4 mm (Fig. 2.16).
We suggest that the error rate is the same for Neo-Hookean materials with Young’s modulus
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Figure 2.15: MSM stretching experiment description. A thin rectangle shape modeled by FE
with Neo-Hookean material and the estimated Young’s modulus was used as a reference model
(left image). The MSM with diagonal springs were constructed and the parameters were assim-
ilated from the FE model (right image).

Figure 2.16: Comparison for stretching deformation. The average and maximal difference is
computed for FEM with Neo-Hookean material and the indicated Young’s modulus and MSM
with assimilated springs coefficients.

values in between the considered limits. This indicates that the behavior of our mass-spring
system is similar to a Neo-Hookean material.

We also compared the computation time between models. To show the performance of the
Mass-Spring Model, we also added the hyperelastic Finite Element Method with StVK mate-
rial, which is one of the fastest nonlinear FEM. The simulation time was computed for 1000
iterations, and the results are presented in Table. 2.2.

Model type Cubic MSM St. Venant-Kirchhoff FEM Neo-Hookean FEM
Computation time for

one iteration, ms
0.847 24.119 28.138

Table 2.2: Stretching simulation computation time. For FEM, a mesh with 3700 elements were
taken, and MSM was composed of 6 edge springs and 12 diagonal ones (Fig. 2.15).
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47 2.3.4 The model for ligaments

The Mass-Spring Model that replaces the model with almost 4000 elements is 28.5 aver-
age times faster FEM with StVK material and 33 times faster the model with Neo-Hookean ma-
terial. Therefore, it makes reasonable to replace complex models with simpler MSM to achieve
a real-time performance.

As a result, we want to say that cubic springs are a good choice in the context of our work.
Unlike liver model, we are not interested in exact positions of ligaments, and Mass-Spring
Model is one of the fastest approaches that allows us to simulate the behavior of an object.
In AR systems, real time is one of the crucial moments, which determines our choices for
the specified problem. And, consequently, we stick to usage of the mass-spring system for the
ligament behavior simulation.
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CHAPTER 3

DATA ASSIMILATION AND KALMAN
FILTER
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As shown in the previous chapter, the liver attachment to surrounding organs has not been
well studied, and, thus, it is difficult to construct a model that will describe their behavior.
So, we need to identify them. During both open and laparoscopic surgery, the surgeons use
cameras, which provide them with some information about liver shape and its modification.
Thus the main idea is to identify BCs based on these movements, while performing various
manipulations. In this chapter, we will give a brief overview of the available methods that allows
us to perform such estimation. Then we will focus on the Kalman filtering approach, which we
believe is a best choice under given restrictions.
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3.1 Overview of the parameters estimation procedures
Generally, biomechanical characteristics of organs vary significantly for different persons. Con-
sequently, to estimate model parameters, we can rely only on information obtained from specific
patient i.e., intra-operative surgical images. However, they contain certain measurement errors.
Moreover, they provide us only with limited range of scope. Therefore we need an approach
that is able to deal with the appeared complications. We considered several possible directions
that are presented further.

Neural networks. For estimation purposes, neural networks combined with deep learning
algorithms are one of the most popular approaches nowadays. They are used in various domains
of science: image processing, pattern recognition, and so on. Much literature is dedicated to this
topic, for example [2, 75]. The general idea is to train a network on available data to predict a
process behavior or a structure of the system in a similar scenario. But for training, some data
is needed. In general, there has to be a huge amount of available data. Unfortunately, due to
various personal information privacy rules, the description of the liver boundary conditions as
well as intraoperative surgical recordings are unavailable publicly. Therefore this approach is
hard to apply under current circumstances.

Variational data assimilation. Variational data assimilation is a family of approaches that
are derived from the theory of optimal control [10]. The main idea of these approaches is to
construct a cost function, which includes the model and real world measurements with some
uncertainties. The solution of the problem is then obtained by gradient descent that minimizes
the cost function. The main limitation of this approach is related to the context of our problem.

There are two main branches in the family: 3D-Var and 4D-Var.
In case of 3D-Var, also called the stationary case, the cost function is based on the covariance

of the constructed system. Therefore, we need to know it, but in our context the covariance is
strictly connected to the unknown stiffness, which we are trying to estimate. This limitation
makes 3D-Var inapplicable for our estimation.

In 4D-Var (the nonstationary case), the data assimilation is based on observations that are
acquired over a certain time interval, and the cost function is constructed for the sequence of
process states. In order to obtain the gradient of the cost, we have to perform backward simu-
lations. However, due to very limited available information, we want to use as many available
real observations or measurements as possible, but the estimated data has to be used in surgical
process, which provides us with the observations. Under this restriction, the way and the time
we have to construct the cost function remain the open question. Of course, different solutions
could be proposed, but Bayesian inference methodology described below allows us to update
naturally the previous optimal estimation as soon as new data becomes available.

Bayesian inference. The Bayesian inference (BI) is a statistical inference that allows im-
proving the estimation sequentially. In its essence, the Bayes’ theorem is used to update the
probability for a hypothesis when more evidence or information becomes available. BI incor-
porates the statistical noises of experimental devices and provides a statistical regularization,
which makes inverse problems with limited observations solvable. Due to the nature of our
process, for the correction, we decided to choose a Bayesian inference methodology.

There exist several implementations related to the Bayesian inference.
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51 3.2. Kalman filtering approach and its extensions

One group is based on the Monte Carlo method [206], which allows presenting complex
non-Gaussian distributions by sampling the probability density functions. For example, this is
valid for a Particle filter (Sequential Monte Carlo) [26]. These methods allow simulating various
complex probabilistic distributions, but their main drawback is quite huge computational cost.

On the other side, one of the fastest implementations is the Kalman filter [92] and its ex-
tensions: unscented Kalman filter [91] with modifications and ensemble Kalman filter [52] that
are able to process nonlinear systems. In Kalman filtering context, the estimated unknown data
is called the state of the system. The probability of unknown data is presented as a Gaussian
distribution with some mean and variance. The nice property of the Gaussian distribution is that
it can be transformed through a nonlinear system with just a couple of sample points. For mul-
tidimensional space it can be reduced even further by combining information related to several
unknowns into a single sample.

The different modifications of the general filtering approach are applied to solve problems
in various domains, including biomechanics. For example, a reduced-order unscented Kalman
filter is applied to estimate parameters for a vascular model [145] or a cardiac system of a
specific patient [137, 146]. This work is also based on [180], where the authors proposed to use
such a filter for BCs estimation.

Thus, the Kalman filtering method combines the possibility to work with uncertainty, the
way to sequentially, and therefore fast, update the optimal estimations when new data becomes
available, and the computational efficiency with potential to work in real time. So, among all
possibilities, we decided to stick to the estimation correction based on a filtering approach.

3.2 Kalman filtering approach and its extensions

3.2.1 Kalman filtering approach
The Kalman filtering or linear quadratic estimation approach is one of the best-known methods
for data assimilation in case of measurements with some noise or other inaccuracies. The un-
scented extension requires to compute neither inversion of a matrix that describes the system,
nor the derivative of the system. This makes the filtering approach very attractive to the complex
ill-posed problems, which usually have limited amount of available information.

In general, the Kalman filtering approach deals with a dynamic process of a system, which
occurs during certain periods of time. We have an imperfect model that describes our system,
and we want to estimate some unknown parameters or state of the system, which is not directly
measurable. Instead of that, some noisy data is available that has a certain relationship with the
state. This data is known as observations. Both state and observations are presented as random
variables. They reflect the fact that we work with the hypothesis from theory of probability.
Also, it is important to note that the process is discrete in time. In case of continuous one, it
can be discretized. For a nonlinear system, the process with the state can be determined via
mathematical equations as:

xi+1 = T (xi,bi)+qi, qi ∼ N (0,Q) (3.1)
zi+1 = H (xi+1)+vi, vi ∼ N (0,V)
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here xi is the unknown state with size Nx, which we want to estimate, bi is some control se-
quence, zi is the observed data or measurements, T is a transformation operator that describes
the process flow, which in given work is a FE based simulation model, H is an observation
operator that describes a relationship between process and measurements, qi is a process noise,
and vi is a measurement noise. The process and measurement noises are assumed to have a
Gaussian distribution N with zero mean and covariances Q and V, respectively.

In its essence, the Kalman filtering approach is a loop that contains two parts [245]. Before
estimation, we take some preliminary approximation of our unknown state. The first part, called
prediction, relates to the simulation of the next step using current estimation of unknowns. The
second part performs the correction, also called analysis, for the unknowns based on the differ-
ence of modeled and real system behaviors. The difference describes the discrepancy between
predicted and real observations and is called innovation.

For the prediction part, the next step of the simulation process is predicted based on a current
approximation of unknowns:

x̃i+1 = T (xi,bi) (3.2)

P̃i+1 = T cov(Pi,bi)+Q

where Pi is the covariance for the unknown state, x̃i+1 is the predicted state, and P̃i+1 is the
predicted covariance. The main issue here is the transferring of the random variables together
with their covariances through the nonlinear system.

To deal with it, several modifications of Kalman filtering were proposed. The simplest filters
are the extended Kalman filter [245] and the unscented Kalman filter (UKF) [89]. The extended
Kalman filter assumes linearization of the process transformation operator. The calculations
are then performed as for the linear system. The main drawback here is that this filter requires
computation of the Jacobian operator. This is a complex step, and for some systems, where
the transition model is not defined clearly, it is very hard to get. In addition to that, the linear
approximation might be quite inaccurate, which leads to instabilities in estimation.

The UKF discretizes the probabilistic space of the unknowns. The propagation via a non-
linear system is performed through the so-called transformation of unscentainty, presented in
Fig. 3.1. The main idea is to parametrize the Gaussian distribution using a set of samples called
sigma points, which hold the mean and covariance information, but are easy to transfer through
a nonlinear function [91]. The next state of the process is predicted for each of these sigma
points, and then the predicted distribution is reconstructed based on their combination. There-
fore, the equations 3.2 are transformed to:

xσk
i = xi +

√
PiI (k) (3.3)

x̃i+1 = E
(

T (xσk
i ,bi)

)
P̃i+1 =

(
T (xσk

i ,bi)− x̃i+1

)(
T (xσk

i ,bi)− x̃i+1

)T

+Q

where xσk
i is a sigma point with index k, I (k) is a matrix of unitary sigma points, and E is the

statistical mean.
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53 3.2.1 Kalman filtering approach

1-dimensional space
2-dimensional space

Figure 3.1: The transformation of uncertainty. To transform the Gaussian distribution through
a nonlinear system a set of sigma points have to be selected in space. The new distribution is
reconstructed based on the transformed points.

The unitary points describe the topological space used for distribution propagation. There
are several main possibilities. The most accurate topology is star sigma points, which is defined
such as:

I (k) =


√

Nxek 1 ⩽ k ⩽ Nx

−
√

Nxek−Nx Nx +1 ⩽ k ⩽ 2Nx

0 k = 2Nx +1
(3.4)

where ek is a canonical vector in the state space and Nx is the unknown state size. Thus, star
topology identifies 2Nx+1 sigma points. Without considering the last sigma point, this topology
transforms to a set of canonical sigma points, which is defined as:

I (k) =

{√
Nxek 1 ⩽ k ⩽ Nx

−
√

Nxek−Nx Nx +1 ⩽ k ⩽ 2Nx
(3.5)

Also, the variant with the smallest amount of sigma points, necessary to transfer the proba-
bility distribution with a sufficient accuracy, is called simplex sigma points. In [90], the authors
proposed to construct these points based on minimal skew (third order moment), which results
in recursive construction procedure. One option is to use a set of points equidistant from the
mean value [146]. So, now the matrix looks like:

I (1) =
(
−

√
Nx√
2

√
Nx√
2

)

I (k) =


0

I (k−1) ...
0√

Nx√
k(k+1)

√
Nx√

k(k+1)

√
Nx√

k(k+1)
−k

√
Nx√

k(k+1)

 2 ⩽ k ⩽ Nx
(3.6)

More information about unitary points generation is given in [90, 146].
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Compared to an extended Kalman Filter, the unscented filter does not require to compute the
Jacobian of the system. On the other hand, the nonlinear transformation has to be performed for
every sigma point. It might not be an issue in case of simple systems; however, for a simulation
with a Finite Element Method, it means that we have to compute a full simulation step for every
sigma point.

Now, let us consider the correction step. Since model and observations in Kalman filtering
context have uncertainties, we do not trust completely either the model, or the observations, but
instead of that, we compute a conditional probability based on their expectations. The correc-
tion is computed by the minimization of an a posteriori state error covariance [10, 218]. Or, as it
can be shown, it equivalently minimizes the sum of squared Mahalanobis distances (a distance
metric to measure the distance between an element and a distribution). The distance is taken
between current and already predicted model states and also between simulated and real obser-
vations. It is done with respect to the available covariances, as cost function J shows [10, 218]:

J (x̂) =
1
2
(
x̂− x̃i+1

)T P̃
−1
i+1
(
x̂− x̃i+1

)
+

1
2
(
zi+1 −H (x̂)

)T V−1(zi+1 −H (x̂)
)

(3.7)

So, we look for the state xi+1, where the derivative of the cost function reaches zero. After
performing mathematical operations, we get the next expressions for the updated state and then
for its covariance [91]:

z̃i+1 = H (x̃i+1) (3.8)

Pxz = cov
(
x̃i+1, z̃i+1

)
Pz = cov

(
z̃i+1, z̃i+1

)
+V

K = Pxz
(
Pz
)−1

xi+1 = x̃i+1 +K
(
zi+1 − z̃i+1

)
Pi+1 = P̃i+1 −Pxz

(
Pz
)−1PT

xz

where z̃i+1 are the predicted measurements, cov is the cross covariance operator, Pxz is the
covariance for predicted estimations and observations, Pz is the covariance for predicted ob-
servations, K is the Kalman gain, xi+1 is the corrected state, and Pi+1 is the corrected state
covariance. The technical details are available in [89, 91].

Additionally, we can say that, at any iteration, the predicted unknowns contain some initial
approximation and their correction for differences between observations, obtained from all pre-
vious iterations. Therefore, the essence of the Kalman filter is to find the solution that fits the
best for all available measurements.

The general algorithm for the unscented Kalman filter is described in Alg. 1. It consists of
an initialization part and a loop that contains prediction and correction steps. Inside both steps,
there is an additional loop to predict state and compute observations separately for every sigma
point. Commonly, the state contains object nodes and unknown stiffness parameters.
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55 3.2.2 Reduced-order unscented Kalman filter

Algorithm 1: Unscented Kalman filter
1: Initialize data:
2: set x1 - models positions and unknown parameters
3: set I (k), P1, Q, V - initial filter parameters
4: get b(c)

1 - control features at the initial step
5: set T = T (x1,b

(c)
1 ) - finite element model

6: for each simulation step i do
7: Compute prediction phase:
8: get b(c)

i+1 - control features
9: xσ∗

i = xi +
√

PiI (k) - generate sigma points
10: for each sigma point k do
11: x̃σk

i+1 = T (xσk
i ,b(c)

i+1) - get result from deformation step
12: end for
13: x̃i+1 = E

(
x̃σ∗

i+1
)

- compute predicted state as mean of sigma points
14: P̃i+1 =

(
x̃σ∗

i+1 − x̃i+1
)(

x̃σ∗
i+1 − x̃i+1

)T
+Q - compute predicted covariance

15: Compute correction phase:
16: get zi+1 - observation features
17: for each sigma point k do
18: z̃i+1

σk = H (x̃σk
i+1) - get predicted observation

19: end for
20: Pxz =

(
x̃σ∗

i+1 − x̃i+1
)(

z̃i+1
σk −E

(
z̃i+1

σ∗
))T - compute cross covariance

21: Pz =
(
z̃i+1

σk −E
(
z̃i+1

σ∗
))(

z̃i+1
σk −E

(
z̃i+1

σ∗
))T

+V - compute observation covariance
22: K i+1 = PxzP−1

z - compute Kalman gain
23: xi+1 = x̃i+1 +K i+1

(
zi+1 −E

(
z̃i+1

σ∗
))

- compute corrected state

24: Pi+1 = P̃i+1 −PxzP−1
z PT

xz - compute corrected covariance
25: end for

The prediction step can be very costly in case when using a model with many degrees of
freedom. Even for the simplex topological set, to transform the sigma points would require
M + 1 simulations if M is the number of elements in the stochastic state vector (line 11 of the
algorithm). With a deformable mesh of N nodes and K stiffness parameters, this would mean
3N +K+1 simulations. So, a simple FE mesh of only a few hundred nodes would be too time-
consuming for a clinical application, as it would require more than several hundred simulations
for each step of the assimilation process.

To solve this issue, we rely on filter improvements that are described in the next sections.

3.2.2 Reduced-order unscented Kalman filter
The unscented transformation is based on the fact that it is easier to sample a Gaussian distri-
bution with known properties than to process an arbitrary nonlinear system. The issue here is
that every sample point has to be transferred through a nonlinear model. Therefore, when we
have a lot of unknowns that we are trying to estimate, many sigma points are generated, and the
nonlinear transformation for them becomes computationally costly. In current context, the state
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elements of the Kalman filter does not necessarily contain only stiffness values, but also hold
positions (locations) of elements for an object in space, which dramatically increase the state
size.

The idea to reduce the number of sigma points for better performance was already discussed
in a certain number of papers. In [90], the authors propose to construct a set of sigma points
the way to keep only the first statistical moments for the propagated data. The other ideas are
dedicated to reduction of the state covariance matrix, so the modifications of the Kalman filter,
namely reduced-rank square root Kalman filter [236] and, its variance, singular evolute inter-
polated Kalman filter [182] appeared. Later, a similar modification of unscented Kalman filter
was proposed [146]. There, only essential part of unknowns is discretized by sigma points and
goes through modeling process. All other parameters can be expressed the unique way through
them, and are considered to be known based on estimations of the essential part. In [145], the
authors apply this approach to estimate BCs, presented as penalty impacts, for an aorta vessel
model. In the paper [180], the authors use the same approach to identify boundary conditions
for a porcine liver. A very simple model was used, but the main point was to show that the
boundary conditions estimated in such a way will improve the simulation accuracy.

To reduce the dimension of unknown space, the idea is to process the covariance matrices
in the factorized form [146]. It is presented in the Fig. 3.2:

Figure 3.2: State covariance transformation to a reduce order. Since state covariance matrix is
symmetric, it looks like matrix spectral, eigen, or VDV decomposition.

In filtering context, the decomposition for the covariance matrix can be written as:

P̃ = LU−1LT (3.9)

where U is the reduced-order covariance, which is an invertible matrix, and L is the transfor-
mation between reduced-order and normal states.

The final dimension depends on the selected components, which represent the system state.
So, if the value r is smaller than the covariance size N, then after performing its spectral de-
composition, the size of the factorized matrix will be less than the size of the source one. And
thus, in filtering equations we could construct and transform sigma points, related only to this
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reduced matrix. Taking this into account, the system of equations 3.3 can be now rewritten as:

xσk
i = xi +Li

√
U−1

i I (k) (3.10)

x̃i+1 = E
(

T (xσk
i ,bi)

)
Li+1 = X̃

σ∗
i+1I (k)T

P̃i+1 = Li+1
(
I (k)I (k)T)−1LT

i+1 +Q

where X̃
σ∗ is a matrix composed from sigma points. The index k is now related to the size of the

reduced-order data Ui. We should note that in general a deviation of state and its mean is used
to update the reduced-order transformation matrix. But in case when sigma points are centered
(with zero empirical mean), it is possible to update it using only transferred sigma points [146].

During filter correction step, initially, the updated reduced-order covariance is computed:

z̃i+1 = H (x̃i+1) (3.11)

Hi+1 = z̃i+1I (k)T

Ui+1 = 1+HT
i+1V−1Hi+1

where H is an additional matrix to process observations in reduced-order space. Then, the
Kalman gain and corrected covariance are computed through the reduce-order data:

K i+1 = Li+1U−1
i+1HT

i+1V−1 (3.12)

Pi+1 = Li+1U−1
i+1LT

i+1

The final algorithm for the reduced-order unscented Kalman filter (ROUKF) is presented in
Alg. 2. We have to note the given transformations are valid only for simplex sigma points; thus,
for other topologies some modifications have to be performed.

The reduced-order method might significantly decrease the computation time since fewer
simulations are required. In current work, for the best case, the reduced state is bounded up to
the unknown parameters. However, we still need to keep a good approximation of the original
space. Otherwise, the estimation process might be inaccurate.
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Algorithm 2: Reduced-order unscented Kalman filter
1: Initialize data:
2: set x1 - model positions and unknown parameters
3: set I (k) - unitary sigma points
4: set P1, Q, V - initial filter parameters
5: P1 = L1U−1

1 LT
1 - perform LULT decomposition of initial covariance

6: get b(c)
1 - control features at the initial step

7: set T = T (x1,b
(c)
1 ) - finite element model

8: for each simulation step i do
9: Compute prediction phase:

10: get b(c)
i+1 - control features

11: xσ∗
i = xi +Li

√
U−1

i I (k) - generate sigma points
12: for each sigma point k do
13: x̃σk

i+1 = T (xσk
i ,b(c)

i+1) - get result from deformation step
14: end for
15: x̃i+1 = E

(
x̃σ∗

i+1
)

- compute predicted state as mean of sigma points
16: Li+1 = x̃σ∗

i+1I (k)T - updated transformation matrix to reduced space
17: P̃i+1 = Li+1

(
I (k)I (k)T )−1LT

i+1 +Q - compute predicted covariance
18: Compute correction phase:
19: get zi+1 - observation features
20: for each sigma point k do
21: z̃i+1

σk = H (x̃σk
i+1) - get predicted observation

22: end for
23: Hi+1 = z̃i+1

σ∗I (k)T - update transformation matrix to reduced observation space
24: Ui+1 = 1+HT

i+1V−1Hi+1 - compute reduced covariance
25: K i+1 = Li+1U−1

i+1HT
i+1V−1 - compute Kalman gain

26: xi+1 = x̃i+1 +K i+1
(
zi+1 −E

(
z̃i+1

σ∗
))

- compute corrected state

27: Pi+1 = Li+1U−1
i+1LT

i+1 - compute corrected covariance
28: end for

It is important to say that, initially, to estimate boundary conditions for a liver, the reduced
version was proposed in the paper [180], where the authors estimate the properties of the at-
tachments for the pig liver lobe.

3.2.3 Ensemble transform Kalman filter
Another possible option for parameter estimation is ensemble Kalman filter. Despite the fact
that initially it was proposed as a derivation from the Monte Carlo approach, with some as-
sumptions, it could be considered as a nonlinear Kalman filter with a reduced-order state. There
exists several different variations for this type of filter. In this work, we decided to focus on the
ensemble transform Kalman filter (ETKF).

The Ensemble Kalman filter was initially proposed in [52]. Its main applications are weather
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forecasting, oceanography, and climate description systems, but it can also be used in various
areas of science.

The main idea of the filter is to present the probability distribution as a set of state parti-
cles, which are called ensemble members (Fig. 3.3). Instead of propagating the state covariance
through the nonlinear system using linearization or a set of sigma points, it is approximated by
the Monte Carlo estimator. Here, we keep more information about the uncertainty of the sys-
tem state using the fewer number of the sample elements, which increases the computational
speed [10].

Figure 3.3: Transformation of ensemble members through a nonlinear system. The probability
distribution is reconstructed using Monte Carlo estimator applied to the transformed members.

The other important difference is that, unlike uncertainty transformation processing, the
ensemble particles are generated only once during initialization. So, during the prediction step,
we just transfer the ensemble members through a nonlinear system and compute their mean and
covariance [10, 84]:

x̃enk
i+1 = T (xenk

i ,bi) (3.13)

x̃i+1 =
1

Nen

Nen

∑
k=1

x̃enk
i+1

P̃i+1 =
1

Nen −1

Nen

∑
k=1

(
X̃

enk
i+1 − x̃i+1

)(
X̃

enk
i+1 − x̃i+1

)T

where xenk
i is an ensemble member, x̃enk

i+1 is a predicted member, X̃
enk
i+1 is a matrix composed of

predicted members, and Nen is their total number.
For the efficient computation of the analysis (correction) step, it is also performed for the

ensemble members [83]. Therefore the state size has to be reduced up to the ensemble subspace:

xi+1 = x̃i+1 +
(
X̃

en
i+1 − x̃i+1

)
ω = x̃i+1 + X̃

di f f
i+1 ωi+1 (3.14)
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here X̃
di f f
i+1 shows the difference between ensemble members and their mean, ωi+1 describes

state coefficients in ensemble subspace [10]. Inserting the obtained equation in the cost function,
the equation 3.7 is now reformulated as [83]:

J (ω) =
1
2
(
Nen −1

)
ωω

T +
1
2

(
zi+1 −H

(
x̃i+1 + X̃

di f f
i+1 ω

))T

V−1
(

zi+1 −H
(
x̃i+1 + X̃

di f f
i+1 ω

))
(3.15)

To solve the equation, we assume that the observation operator is quasi-linear:

H
(
x̃i+1 + X̃

di f f
i+1 ω

)
= H

(
x̃i+1

)
+H

(
X̃

di f f
i+1
)
ω = z̃i+1 + Z̃

di f f
i+1 ω (3.16)

where Z̃
di f f
i+1 is the observation difference related to the correspondent state difference. By

minimizing the cost function, we get [83]:

ωi+1 =

[
(Nen −1)1+

(
Z̃

di f f
i+1

)T

V−1Z̃
di f f
i+1

]−1(
Z̃

di f f
i+1

)T

V−1(zi+1 −H
(
x̃i+1

))
(3.17)

Finally, we generate the corrected ensemble members xenk
i+1 :

xenk
i+1 = x̃i+1 + X̃

di f f
i+1

(
ωi+1 +

√
(Nen −1)

[
(Nen −1)1+

(
Z̃

di f f
i+1
)T V−1Z̃

di f f
i+1

]−1)
(3.18)

The transformation and correction of ensemble members are handled in a loop, like in a case of
a general Kalman filter.

Since the covariance matrix is always approximated by a small number of ensemble mem-
bers, an estimation error appears. Without additional steps, this error is accumulating, which
results in filter divergence. Fortunately, there are two essential moments that have to be taken
into account to avoid it. They are localization and inflation [10, 84].

Localization implies that to correct a state we need to use only local observations. However,
the important moment is that, unlike huge systems, we estimate boundary conditions for the
same organ we observe. So when the observations are moving under any external impact, the
organ is deformed, and some boundary conditions are definitely active. Consequently we think
that all observations are strongly correlated with estimated parameters and consider the case
when all of them are local.

Inflation is an additional parameter that is added to ensemble members to prevent the filter
divergence. It can also be considered as a way to take into account the process uncertainty,
added after the prediction step. So, to make it similar to unscented Kalman filter, we decided
to put it in an additive form after ensemble members prediction as an additional parameter ιi,
where E(ιiι

T
i ) = Q.

The final algorithm is presented in Alg. 3. It is important to note that the number of en-
semble members might be less than unknown state size, which might reach several thousand
elements. However, it is not obvious whether we transfer the sufficient amount of information
to reconstruct the probability distribution accurately.
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Algorithm 3: Ensemble transform Kalman filter
1: Initialize data:
2: set x1 - model positions and unknown parameters
3: set Nen - ensemble members amount
4: set P1, Q, ι1, V - initial filter parameters
5: for each ensemble member k do
6: xenk

1 = x1 +P1 ∗Gaussian_rand(0,1) - generate ensemble members
7: end for
8: get b(c)

1 - control features at the initial step
9: set T = T (x1,b

(c)
1 ) - finite element model

10: for each simulation step i do
11: Compute prediction phase:
12: get b(c)

i+1 - control features
13: for each ensemble member k do
14: x̃enk

i+1 = T (xenk
i ,b(c)

i+1) - get result from deformation step
15: end for
16: x̃i+1 =

1
Nen

∑
Nen
k=1 x̃enk

i+1 - compute prediction mean
17: for each ensemble member k do
18: x̃di f f k

i+1 = x̃enk
i+1 − x̃i+1 + ιi+1 - compute perturbation with inflation

19: end for

20: P̃i+1 =
1

Nen−1 X̃
di f f ∗
i+1

(
X̃

di f f ∗
i+1

)T

- compute predicted covariance of ensemble members

21: Compute correction phase:
22: get zi+1 - observation features
23: for each ensemble member k do
24: z̃i+1

enk = H (x̃enk
i+1) - get predicted observation

25: end for
26: z̃i+1 =

1
Nen

∑
Nen
k=1 z̃i+1

enk - compute observations mean
27: for each ensemble member k do
28: z̃i+1

di f f k = z̃i+1
enk − z̃i+1 - get observation perturbation

29: end for

30: A i+1 =

[
(Nen −1)1+

(
Z̃i+1

di f f ∗
)T

V−1Z̃i+1
di f f ∗

]−1

31: ωi+1 = A i+1

(
Z̃i+1

di f f ∗
)T

V−1(zi+1 − z̃i+1) - compute state coefficients in ensemble space

32: xi+1 = x̃i+1 + X̃
di f f ∗
i+1 ωi+1 - compute corrected (analysis) state mean

33: Y i+1 =
√
(Nen −1)A i+1

34: Pi+1 =
1

(Nen−1) X̃
di f f ∗
i+1 Y i+1Y T

i+1

(
X̃

di f f ∗
i+1

)T

- compute corrected (analysis) covariance

35: for each ensemble member k do
36: xenk

i+1 = xi+1 + x̃di f f k
i+1 Y i+1 - compute correction (analysis)

37: end for
38: end for
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All in all, we decided to perform experiments and compare the accuracy as well as perfor-
mance for different variants of filters.

3.3 Software module for data-driven simulation
To perform stochastic simulations, we need a software that implements filtering approaches and
enables estimating various characteristics of a biomechanical model. Additionally, the context
of our work requires real-time execution. The framework SOFA [5], which is used to create vari-
ous models for medicine, allows performing complex simulations in real-time context, including
several types of physically based models. But unfortunately, there is no additional functionality
that provides a data-driven simulation processing.

Therefore, to satisfy the considered requirements, a plugin called Optimus was imple-
mented, which is currently freely available online [181]. The main purpose of the plugin is
to provide a testing environment for data-driven physically based modeling. Since we intended
to verify different types of estimators, the created architecture allows adding approaches with
generic prediction-correction structure. However, currently only several nonlinear Kalman fil-
tering approaches are implemented. The framework contains approximately 21k lines of C++
code and 1.5k lines related to additional Python scripts. Apart from other functionality, there are
several examples to show how data-driven configuration scripts have to be created and bench-
mark tests to verify whether any proposed modification of code works according to the general
processing workflow.

The main idea behind the plugin is to separate a state of the system or stochastic state, using
in the Kalman filtering approaches, from a mechanical state, necessary for the physically based
simulation. This way, we minimize the existing dependencies between the data assimilation
code and SOFA software components, which describe the mechanical aspects of the problem.
Therefore, on the one hand, we can easily add new methods based on the predictor-corrector
scheme such as, for example, a particle filter or a sequential least square. And on the other
hand, we can use various possibilities for physically based modeling as well as other function-
ality available in SOFA, including those from other plugins and extensions. It is worth noting
that technically with Optimus it is possible to estimate or identify any quantity defined in the
configuration data.

The overview of the plugin components is presented in Fig. 3.4. Roughly talking, they can
be organized into four groups, depending on their main purpose.

The classes from the filtering group (yellow square in Fig. 3.4) implement nonlinear filter-
ing approaches. The image depicts only main approaches, while some slightly modified filters,
created mainly for testing purposes, are replaced by "three points" symbol. All filtering compo-
nents are organized in one big hierarchy headed by abstract class called StochasticFilterBase,
which defines the main filtering interface including prediction and correction declarations.

The components from observation handlers group (green square) define different methods
to process noisy, mapped, or partially missing observations. Again, many options were imple-
mented, so three most using approaches are shown. As in case for the filtering components, the
observation handlers are organized in a big hierarchy with abstract class ObservationManager.
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63 3.3. Software module for data-driven simulation

Figure 3.4: Overview of the components implemented in the Optimus plugin. They can be
classified into four groups. Filtering group holds implementation of different Kalman filtering
approaches. Observation manager group contains solutions to process the available observa-
tions. State wrappers group contains classes to transfer between filtering and mechanical states.
Auxiliary components handle some additional issues to launch the data-driven process.

There are three main methods declared there. The first is verification whether there are available
observations in the current step. If there are no observations, the correction step will be omitted.
The second is getting predicted observations, which are required for some filtering approaches.
The final method is computing innovation for the correction procedure. It is up to a specific im-
plementation in the observation manager to decide whether the given observations are valuable
enough to perform the correction step or they are just useless. But when the manager declares
that it possesses observations, it has to compute the predicted observations and the innovation.

The third group is state wrapper components (violet square). These components transfer the
stochastic state to the mechanical one together with the parameters and vice versa. There is no
specific hierarchy here since finally the data transfer goes in a unique way.

Finally, the fourth group is presented by several components that add some additional func-
tionality to execute the data assimilation process together with a possibility to take various
model parameters for estimation.

Now, we will describe the workflow of the data assimilation process. The common SOFA
configuration looks like a set of different components, each of which are responsible for a
certain functionality. They are organized in a hierarchical structure that is usually called a scene.
Primarily, an initialization is performed to extract all necessary data from the items and to
create a physically based model. The simulation represents a loop AnimationLoop, in which a
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modeling step is performed for a constructed system until the required outcome or any threshold
condition is achieved.

In case of a data assimilation scene, the Optimus components described above are added to
the scene in a specific order. The AnimationLoop is replaced with a data assimilation loop, im-
plemented in the FilteringAnimationLoop class. Also, the filtering instance is put directly under
the loop, and state wrappers are placed above the SOFA components. The place in hierarchy for
the other Optimus components depends on the context of the problem.

The initialization part works like in a general case. The only essential difference is that
plugin components are processed at the last moment since, to initialize a filter, they extract data
from the created system.

The simulation now works with the FilteringAnimationLoop class where a prediction and
correction steps are invoked (see Fig. 3.5). Thus, a single prediction and correction invocations
correspond to one general simulation step in SOFA.

Figure 3.5: C++ example to illustrate the main idea of the FilteringAnimationLoop component.

A few words have to be said about the PreStochasticWrapper, noted in the code listing.
During the simulation, the object under interest might interact with other objects, which we
need to model as well. If we are not interested in estimating their state and, thus, want to keep
outside the filtering process, we have to declare them as deterministic parts of the configuration
by wrapping with the PreStochasticWrapper. The items wrapped by it behave like in the case of
a general SOFA simulation.

All necessary calculations for the data-driven estimation are performed inside prediction
and correction procedures.

3.3.1 Prediction procedure
In the prediction procedure, the filter computes prediction like in the Alg. 1, 2, and 3, given in
Sections 3.2.1, 3.2.2, and 3.2.3. In fact, the mechanical components are hidden inside the trans-
formation operator T . This abstract layer is implemented inside the component called Stochas-
ticStateWrapper, which serves as a wrapper above all physical components under interest and
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provides the correspondence between filtering and mechanical states. The filter computes pre-
diction for sigma points by invoking the computePerturbedStates method of the wrapper. Inside
it, the transformation is executed for every sigma point or ensemble member stored in a matrix,
as Fig. 3.6 shows.

Figure 3.6: C++ example to illustrate the transformation of sigma points inside the state wrapper.

The function transformState converts sigma point data to the mechanical state (Fig. 3.7),
execute the animation step (like step function in the AnimationLoop), and perform back conver-
sion. So, for the components placed below the StochasticStateWrapper in the hierarchy, this is
just a single step of the simulation.

Here, the OptimParams component has to be noted, which participates in the conversion
procedure (Fig. 3.7). In general, only object positions and velocities (if presented) are directly
put to the correspondent SOFA components. But, depending on the problem, estimated parame-
ters are usually presented in different components. The OptimParams class helps to create a link
between filtering state and the parameters to update them directly before the animation step. In
addition, it specifies the initial value and standard deviation for the estimated parameters. When
needed, there is a possibility to create a set of OptimParams items to estimate several different
parameters in the system.

Therefore, during the prediction step, for every sigma point a separate simulation is com-
puted. Because of this, the prediction step is computationally expensive. And the SOFA frame-
work, the purpose of which is to perform real-time simulations, is one of the best choices for
such data estimation procedures.

After prediction, the filtering state is corrected inside the correction procedure.

3.3.2 Correction (Analysis) procedure
The correction procedure is almost exclusively performed in the filtering class, as given in the
Alg. 1, 2, 3. The only component that, apart from the filter, participates in this process is Obser-
vationManager. Its main responsibilities are to answer whether there are available observations,
to provide the filter with predicted observations, and to compute innovations.
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Figure 3.7: C++ example to illustrate the data transferring from a sigma point to a mechanical
state.

For now, the implementation works only with the cases where observations are attached to
the object of interest. Therefore simulated observations are held in a separate component, which
is mapped to the object position. To compute predicted observations for every sigma point or
ensemble member, the ObservationManager extracts data from the StochasticStateWrapper and
applies mapping (Fig. 3.8).

The real observations are extracted from a file where they were saved during data processing
stage that is performed separately. To load them, a SimulatedStateObservationsSource compo-
nent is used. So the ObservationManager just sends a request to the SimulatedStateObserva-
tionsSource about the data availability in the file (Fig. 3.9). The innovation is computed as a
difference between predicted and real observations. After that, the observation manager returns
all necessary data to the filter, and it continues correcting the stochastic state. Finally, after the
correction procedure and before the next circle, the filter requests the StochasticStateWrapper
to update the mechanical components with the corrected values.
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Figure 3.8: C++ example to illustrate the computation of predicted observations.

Figure 3.9: C++ example to illustrate the verification of observations availability.

A more detailed documentation together with several examples is available at [181] in the
doc folder.

3.4 Estimation using Kalman filtering
In the final part of this chapter, we describe several experiments to demonstrate the potential of
the Kalman filtering approach. It is important to note that despite the main goal of this work is
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to estimate accurately the boundary conditions, the filtering methods can also be used to esti-
mate other model parameters. For example, the constructed models might use incorrect material
characteristics or physical measurements.

A typical experimental process consists of three parts (Fig. 3.10). During the first step, we
generate synthetic data that describe shape deformation of the object and its position in space.
The model is deformed according to an applied external impact. The deformation continues up
to some final state. During the simulation, we store the tracks of the markers as well as the
validation points. This data is used in the next parts of the experiment. In case of real data, this
step is replaced by observed features, obtained from medical recordings.

Figure 3.10: Overview of the experimental workflow. The process contains three steps. The
first part relates to generating groundtruth observations and validation. Then, data assimilation
process is performed to estimate the unknowns. Finally, the simulation based on estimated pa-
rameters is compared with the groundtruth one.

The second step is dedicated to Kalman filtering process. Based on available observations,
the specified unknowns are estimated according to a selected Kalman filtering approach. In this
process, the Young’s modulus or elasticity of the selected domain is presented as unknown pa-
rameters with Gaussian distribution, as required by filter. The tracks, stored during the previous
step, are used by filter as some observed features. As a result, some estimations of the unknowns
are obtained. We also compute the time of the estimation process to compare its performance
with the real-time requirements. All tests have been done on a computer with CPU Intel Core
I7-6700K and 16 GB RAM.

Finally, a validation simulation is performed. In this step, the estimation is compared with
the groundtruth data. For this, a set of selected validation points is used. In general, their po-
sitions are different from observations. Usually, they distributed more or less uniformly inside
the mesh volume to approximate the deviations between deformations for the whole model. In
case of real data processing, the groundtruth validation points are taken from CT images. For
comparison, we generate the validation data based on the simulation with estimated parameters
and compute the difference with the groundtruth points generated during the first step of the
experiment. We then visualize the computed results for several estimated cases.
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69 3.4.1 Object stiffness estimation

3.4.1 Object stiffness estimation
In the first experiment, we wanted to observe the potential of the nonlinear Kalman filtering
methods in their ability to estimate properly the stiffness of a moving object. We decided to start
from the Young’s modulus estimation problem since this task is simple and it is easy to analyze
the filtering behavior. For the experiment, we took a simple cylindrical object and applied a
periodic force to simulate a continuous movement like in real surgical case. The overview of
the experiment is illustrated in Fig. 3.11 left and its conditions are given in the list below:

• Idea: Young’s modulus estimation

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: 915 nodes and nearly 3000 finite elements

• Material properties: StVK material with Young’s modulus equals to 8 kPa and Poisson’s
ratio to 0.49

• Boundary conditions: cylinder is fixed from both sides

• Applied impact: periodic force in indicated direction is applied

• Observations: 15 markers uniformly distributed on a part of the frontal surface (see
Fig. 3.11)

• Estimation method: data assimilation using UKF, ETKF with 6 ensemble members, and
ROUKF

• Initial approximation: Young’s modulus is equal to 4 kPa and standard deviation to
350 Pa

• Validation points: 915 nodes of the mesh

For this experiment, we decided to observe the estimation process under ideal conditions. Thus,
to avoid any errors caused by inaccurate modeling, we used the same discretization of the do-
main for generating the groundtruth and for data assimilation process.

It is also important to say that for all performed experiments we used groundtruth observa-
tions only during first 1600 iterations. But then we continued the process without them to show
how the model with assimilated parameters will behave in case when observations are missing.

The results are presented in Fig. 3.11 right. They show that UKF as well as reduced versions
are converging to the groundtruth Young’s modulus, which indicates that for the ideal case the
filters are able to find the correct solution. Also, the convergence rate for all versions of the filter
is approximately the same.

Fig. 3.12 shows the average difference for validation points. They were computed for the
groundtruth data and simulation with estimated parameters as well as initial approximation. The
results show that if the Young’s modulus is estimated correctly, the model behaves almost like
the groundtruth one, while for the values taken as an initial approximation there is a certain
difference in deformation.

Finally, the average and maximal relative errors with respect to deformation bounds of
groundtruth data and the computation time are presented in Table. 3.1. According to these re-
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Figure 3.11: Left: Overview of the experimental model, attached observations, and applied
force. Right: Estimation results of the Young’s modulus for different filters. The meshes used to
generate the groundtruth and to simulate the object deformations are the same.

Figure 3.12: The average difference for validation points between groundtruth and simulation
results obtained for initial and estimated Young’s moduli. The meshes used to generate the
groundtruth and to simulate the object deformations are the same.

sults, the estimation error for the reduced versions is less than 1 % bigger than for UKF, while
the last one is 230 - 420 times slower. This can be explained by the fact that in UKF the filter
state contains 915 model points, and therefore approximately 2700 sigma points are generated.
Each of these points requires computing a simulation of deformation, so together it takes a lot
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Method UKF ETKF ROUKF
Average error wrt max.

deformation, %
0.135 0.143 0.48

Maximal error wrt max.
deformation, %

0.282 0.303 1.0

Computation time for
one time step, s

39.1899 0.1635 0.0915

Table 3.1: Young’s modulus estimation for the case when the meshes used to generate the
groundtruth and to simulate the object deformations are the same. Estimation results relative
comparison and computation time for different filters.

of time even for coarse meshes. In the next experiments, we are not going to consider the UKF
anymore, because the huge computation time make it impossible to use in real-time context.

The second experiment was made to investigate the filter behavior in case of a more realistic
scenario. To generate the deformation of an object for the groundtruth data more accurately,
we used a denser domain discretization. We also took another hyperelastic material to express
the fact that our simulation is different from the groundtruth. On the other hand, the estimation
during surgical process has to be close to real time. So for data assimilation process we kept the
same coarse model. The updated conditions for the experiment are presented in the list:

• Idea: Young’s modulus estimation

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: Groundtruth: 11125 nodes and nearly 52000 finite elements,
Estimation: 915 nodes and nearly 3000 finite elements

• Material properties: Groundtruth: Neo-Hookean material with Young’s modulus
equals to 8 kPa and Poisson’s ratio 0.49, Estimation: StVK material with the same Pois-
son’s ratio

• Boundary conditions: cylinder is fixed from both sides

• Applied impact: periodic force in indicated direction is applied

• Observations: 15 markers uniformly distributed on a part of the frontal surface

• Estimation method: data assimilation using ETKF with 6 ensemble members and
ROUKF

• Initial approximation: Young’s modulus is equal to 4 kPa and standard deviation to
350 Pa

• Validation points: 915 nodes of the coarse mesh

Fig. 3.13 depicts estimation results for reduced versions of filters. As in previous scenario,
we estimated parameters during the first 1600 iterations and then removed the observations.
According to the results, it is obvious that filters do not estimate the original value of the Young’s
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modulus. Instead of that, they converge to some "effective" values. But with the approximated
Young’s modulus, the behavior of the coarser mesh, which is stiffer in general as shown in [211],
is similar to the behavior of the groundtruth data. Also, both ROUKF and ETKF give very
similar estimation results.

Figure 3.13: Estimation results of the Young’s modulus for the reduced filter versions. The mesh
used to generate the groundtruth is denser than the one used to simulate the object deformations.

The comparison for validation points is presented in Fig. 3.14. It is worth noting that, com-
pared with the previous experiment, the difference between groundtruth and simulation based
on estimated modulus is bigger. But, anyway, the model with estimated stiffness is more accu-
rate than with initial one.

Table 3.2 shows the relative errors and computation time for both filters. Both ETKF and
ROUKF have the same relative errors, but the second one is 44 % faster. This is explained by
the fact that to estimate the Young’s modulus in ROUKF only 2 sigma points are generated,
while in ETKF 6 ensemble members are used. Of course, it is possible to reduce the number
of the members up to 2, but then the result in ETKF becomes very dependent on each of them.
And since a random element is included in the ensemble members generation, the result be-
comes unpredictable and sometimes quite unstable. Therefore ROUKF is more preferred for
our estimations.

3.4.2 Estimation of boundary conditions
Unlike the Young’s modulus identification, estimation of boundary conditions is a more com-
plex problem. There are several reasons for this. First of all, it is an ill-posed problem since
generally there exists an infinite number of BCs combinations, for which the considered object
behaves the same way. Secondly, by observing only the part of the system and predicting prop-
erties outside the observed area, we are trying to solve an extrapolation problem. And in general
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Figure 3.14: The average difference for validation points between groundtruth and simula-
tion results obtained for initial and estimated Young’s moduli. The mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations.

Method ETKF ROUKF
Average error wrt max.

deformation, %
1.2 1.2

Maximal error wrt max.
deformation, %

3.15 3.15

Computation time for
one time step, s

0.1637 0.0902

Table 3.2: Young’s modulus estimation for the case when the mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations. Estimation re-
sults relative comparison and computation time for the ETKF and ROUKF.

case, such type of problems do not have clear solutions. We can find only some statistical ap-
proximation. Finally, there is no well-known methodology to deal with boundary conditions.
Usually, people model them by just fixing parts of the system in space and time, but for certain
problems this is not an appropriate solution. Particularly, it relates to the case of liver modeling
since the organ is attached to the other organs and tissues that are able to move under breathing
and other impacts.

However, we want to note that even under these nontrivial conditions the Kalman filtering
approaches are still able to perform some statistical estimations. Their results can improve the
accuracy of the influence made by boundary conditions. As in previous experiments, we per-
formed estimation during initial 1600 iterations and then continued the process to show the
improvement of the model accuracy when there are no available observations.
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In the first experiment, we wanted to verify how estimation of boundary conditions works in
case of an ideal scenario. Therefore, as for the experiment with the Young’s modulus estimation,
we used the same domain discretization for the groundtruth generation and simulation process.
The region of interest was represented by 3 cubic springs, which replaced fixed region (see
Fig. 3.15 left). These springs connected the cylinder to some points fixed in space. The points
were constructed by selecting several mesh points and their extrusion along the object normals.
By boundary conditions estimation we consider estimation of the springs stiffness coefficients.
The general conditions for the experiment are given below:

• Idea: spring stiffness estimation

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: 915 nodes and nearly 3000 finite elements

• Material properties: StVK material with Young’s modulus equals to 8 kPa and Poisson’s
ratio to 0.49

• Boundary conditions: cylinder is fixed from one side, 3 cubic springs with 3 cm length
shared the common stiffness are attached to the other side. Groundtruth coefficients of
springs are [4, 7, 20] N/m

• Applied impact: periodic force in indicated direction is applied

• Observations: 15 markers uniformly distributed on a part of the frontal surface (see
Fig. 3.15)

• Estimation method: data assimilation using ETKF with 6 ensemble members and
ROUKF

• Initial approximation: coefficients equal to [10, 10, 10] N/m and standard deviations
equal to [4, 4, 4] N/m

• Validation points: 915 nodes of the mesh

The estimation results for all spring coefficients are presented in Fig. 3.15 right. They show
that filters are not able to estimate the groundtruth values, while they still have a general ten-
dency to converge with them. This can be explained by the fact that there exists many solutions
for which the object behaves the same way, so the filters just use the most probable one as
estimation result. Also, we can say that both versions of reduced filters converge to slightly
different values.

Fig. 3.16 presents average difference between validation points positions for different esti-
mated coefficients. Compared with the original stiffness, the estimations made by filters help to
improve the modeling accuracy of the object deformation. Also, despite the fact the filters find
slightly different values, the behavior of the object for the estimated values is almost the same.

Table 3.3 shows the maximal and average relative error with respect to cylinder deformation
and computation time results. According to the results, the difference between estimations does
not exceed 1 %, but the reduced-order unscented Kalman filter is approximately 24 % faster.
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75 3.4.2 Estimation of boundary conditions

Figure 3.15: Left: Overview of the experimental model, attached springs, observations, and
applied force. Right: Estimation results of cubic springs coefficients for different types of filters.
The meshes used to generate the groundtruth and to simulate the object deformations are the
same.

Figure 3.16: The average difference for validation points between groundtruth and simulation
results obtained for initial and estimated spring coefficients. The meshes used to generate the
groundtruth and to simulate the object deformations are the same.

The next experiment was dedicated to a more realistic scenario. To generate groundtruth
data, we took a denser mesh discretization. However, we did not change the hyperelastic mate-
rial, since springs attached to a Neo-Hookean model caused some instabilities during the sim-
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Method ETKF ROUKF
Average error wrt max.

deformation, %
0.55 0.31

Maximal error wrt max.
deformation, %

5.56 4.61

Computation time for
one time step, s

0.1876 0.1425

Table 3.3: Springs coefficients estimation for the case when the meshes used to generate the
groundtruth and to simulate the object deformations are the same. Estimation results relative
comparison and computation time for the ETKF and ROUKF.

ulation process. Like in previous case, we estimated the parameters of springs. The conditions
of the experiment are given further:

• Idea: spring stiffness estimation

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: Groundtruth: 11125 nodes and nearly 52000 finite elements,
Estimation: 915 nodes and nearly 3000 finite elements

• Material properties: StVK material with Young’s modulus equals to 8 kPa and Poisson’s
ratio to 0.49

• Boundary conditions: cylinder is fixed from one side, 3 cubic springs with 3 cm length
shared the common stiffness are attached to the other side. Groundtruth coefficients of
springs are [4, 7, 20] N/m

• Applied impact: periodic force in indicated direction is applied

• Observations: 15 markers uniformly distributed on a part of frontal surface (see
Fig. 3.15)

• Estimation method: data assimilation using ETKF with 6 ensemble members and
ROUKF

• Initial approximation: coefficients equal to [10, 10, 10] N/m and standard deviations
equal to [4, 4, 4] N/m

• Validation points: 915 nodes of the coarse mesh

The estimation results are presented in Fig. 3.17. Unlike the previous experiment, filters
converged to completely different values. However, in both cases, the estimated values improve
the simulation accuracy. The modeling difference is decreased from 4 mm up to approximately
2.3 mm, as Fig. 3.18 shows.

Table 3.4 depicts the relative error and computation time for both filters. In this experiment,
the estimation result of the ETKF is a bit better than the result made by the ROUKF, but the
latter one is, as usual, faster averagely on 26%.
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77 3.4.2 Estimation of boundary conditions

Figure 3.17: Estimation results of cubic springs coefficients for the ETKF and ROUKF. The
mesh used to generate the groundtruth is denser than the one used to simulate the object defor-
mations.

Figure 3.18: The average difference for validation points between groundtruth and simulation
results obtained for initial and estimated spring coefficients. The mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations.

The performance of the ROUKF is explained by the fact that to estimate three unknown
parameters, in case of the simplex topology, we need to generate only 4 sigma points for ev-
ery simulation step. And for the ensemble transform Kalman filter we still keep 6 ensemble
members.

If we reduce the number of ensemble members, the performance of the ETKF will increase,
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Method ETKF ROUKF
Average error wrt max.

deformation, %
3.05 3.07

Maximal error wrt max.
deformation, %

6.08 6.14

Computation time for
one time step, s

0.192 0.142

Table 3.4: Springs coefficients estimation for the case when the mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations. Estimation results
relative comparison and computation time for the ETKF and ROUKF.

but this might lead to stability problems. The reason for this is still a subject for research, but
we guess that for a few ensemble members the filter becomes too dependent on each of them.
Therefore, if one of them is converging to a completely different result, which is typical for
ill-posed problems, the statistical result also deviates. In the end, this might cause instabilities
in the simulation.

3.4.3 Correction of boundary conditions
In the final experiment, we wanted to investigate the estimation process in case of BCs mod-
ification. During surgical procedure, surgeons often cut ligaments or perform other operations
that modify the model topological structure. So it would be nice to observe how the estimation
process reacts to such changes.

For this experiment, we took the same model as the one used for boundary conditions esti-
mation. The main difference is that at some moment we performed the emulation of a "cutting
procedure". In it, the shared stiffness of the springs was set to a zero value. Then the deformation
process continued up to the final stage.

Therefore, there are three modeling segments. For the first 1600 iterations, the estimation
went like in previous cases, then we performed "cutting", and during next 1600 iterations we
kept performing estimation for the modified system. Finally, we eliminated observations to
watch how accurately the corrected model behaves. The conditions of the experiment are given
below:

• Idea: spring stiffness estimation in case of a "cutting procedure"

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: Groundtruth: 11125 nodes and nearly 52000 finite elements,
Estimation: 915 nodes and nearly 3000 finite elements

• Material properties: StVK material with Young’s modulus equals to 8 kPa and Poisson’s
ratio to 0.49
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79 3.4.3 Correction of boundary conditions

• Boundary conditions: cylinder is fixed from one side, 3 cubic springs with 3 cm length
shared the common stiffness are attached to the other side. Groundtruth coefficients of
springs are [4, 7, 20] N/m

• Applied impact: periodic force in indicated direction is applied. After 1600 iterations, a
"cutting procedure" is performed, where the stiffness of springs is set to zero

• Observations: 15 markers uniformly distributed on a part of frontal surface (see
Fig. 3.15)

• Estimation method: data assimilation using ETKF with 6 ensemble members and
ROUKF

• Initial approximation: coefficients equal to [10, 10, 10] N/m and standard deviations
equal to [4, 4, 4] N/m

• Validation points: 915 nodes of the coarse mesh

The estimation results are presented in Fig. 3.19. For the better view, a cubic scale was
applied to the estimated parameters. Looking at them, we might say that the estimation process
quickly recognizes changes in the system and modify the estimated parameters accordingly.

Figure 3.19: Estimation results of springs coefficients after the "cutting procedure" for the ETKF
and ROUKF. The mesh used to generate the groundtruth is denser than the one used to simulate
the object deformations.

Fig. 3.20 shows the difference for validation points in cases when parameters were corrected
after the "cutting procedure" and were originally estimated without it. To show the differences
more clearly, the difference distances are presented in a squared scale.
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Figure 3.20: The average difference for validation points between groundtruth and simulation
results. The initially estimated coefficients are compared with ones estimated after the "cutting
procedure". The mesh used to generate the groundtruth is denser than the one used to simulate
the object deformations.

It is worth noting that parameters correction after the cutting procedure will sufficiently
improve the accuracy of the model. However, the difference between estimations after cutting
and groundtruth values is still big. This can be explained by the difference between meshes used
for the groudtruth generation and the estimation process. After cutting, these differences cannot
be compensated anymore by correcting spring parameters, which finally results in a bigger error,
compared with results from other experiments.

Table 3.5 shows the relative difference for cases when estimations are corrected after the

ETKF ROUKF
Method ETKF ROUKF without cutting without cutting

Average error wrt max.
deformation, %

8.93 8.26 33.21 33.30

Maximal error wrt max.
deformation, %

20.30 18.60 80.91 81.01

Table 3.5: Springs coefficients estimation for the case when the mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations. Estimation results
relative comparison for the ETKF and ROUKF in cases when spring parameters are corrected
after the "cutting procedure" and not.
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"cutting procedure" and are not. As in other experiments, both versions of filters show ap-
proximately the same accuracy. The small average errors compared with maximal ones can be
described by the fact that a certain part of simulation of the object happens near rest shape
position, where differences in simulations are small.

As a result of these experiments, it is worth saying that filtering approach can be used not
only to estimate the initial parameters, but also to correct them in time. This correction can
be done for various objects, and the deformation does not need to be necessarily simple and
straightforward.

All in all, based on the all performed experiments we decided to stick to the ROUKF ap-
proach as giving more stable results, while taking less computation time.
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ESTIMATION OF LIVER BOUNDARY
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In the previous chapter, we presented the intention to estimate boundary conditions for the
liver using a nonlinear Kalman filter. But this approach goes with certain prerequisites. Firstly,
we need to have an initial approximation of the liver boundary conditions, which, in general,
is not available for a specific patient. Secondly, the estimation has to be done close to real
time, since it is based on observations obtained during surgery for the biomechanical model
used in the same surgery. In this chapter, we will give a general outline and the details of our
process, which holds the possible solutions for the given issues. We will present a statistical
atlas to construct an initial approximation of ligaments position on the liver model. We will also
show how the initial spring parameters are approximated based on an available constitutive law.
Finally, the preconditioning approach that allows accelerating the simulation process will be
described.
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4.1 Boundary conditions identification
The idea of identifying BCs is not new. In the area of biomechanics, it has been already ad-
dressed by a few authors.

Some approaches attempt to specify BCs based on statistics obtained from real or generated
synthetic data. The work of Hu et al. [82] is dedicated to registration method using a statistical
motion model for image-guided prostate interventions. In this work, a Finite Element patient-
specific model is built using preoperative MRI data. To create a statistical motion model, which
is needed for further registration process, a set of deformations with randomly sampled material
properties and boundary conditions are computed and evaluated statistically. However, for such
analysis a good description of object boundaries is needed, including available possibilities for
their positions and biomechanical properties.

The authors from [87] describe a training database of liver deformations obtained from
medical data. As available data, the authors have both preoperative and intraoperative CT im-
ages, from which they generate models and their displacements, as well as information about
abdominal pressure and boundary conditions. When preoperative images for a new liver are ob-
tained, the similarities between this data and database models are computed. The intraoperative
model together with BCs are then computed as a weighted average of displacements observed in
database models. However, first of all, this method requires a database of intraoperative CT im-
ages, which is hard to get. It also models boundary conditions as zero displacement constraints,
which does not take into account their properties and a possibility of modification over time.

Plantefeve et al. [187] proposed a method for modeling boundary conditions in deformable
anatomical structures using a statistical atlas. The atlas gathers information about the connec-
tive structures attached to the organ. Then it is transferred to a patient-specific anatomy using a
physically based registration technique. The resulting BCs are computed based on the mean po-
sition and variance of the ligaments. While this approach already shows a benefit in integrating
this information in the model, it has certain limitations. First of all, atlas construction takes into
account only rigid transformations, while the liver shape of different patients might vary signif-
icantly. It also implicitly implies knowing the correspondences between liver meshes, which in
general is not the case. Finally, it is neither truly patient specific, nor models the parameters of
boundary conditions correctly.

Another general way to determine BCs is to apply various estimation algorithms. In [169],
the authors estimate what they call compliance boundary conditions. Recently, this approach
was validated for several scenarios [170]. The authors suppose that the observed area of an
object is attached to the remaining part of it with aligned springs. These springs create an addi-
tional restriction for the deformation, whose properties could be estimated by comparing uncon-
strained and constraint motions. Anyway, for this approach, in the case of a volumetric object,
a sufficient number of internal observations need to be made and, moreover, they have to be
accurate enough.

In [178], the authors try to estimate BCs based on two deformed configurations of a liver.
Matching the shapes gives a constraint that was applied to get the transformation between both
configurations. The researchers present boundary conditions as Lagrangian multipliers with
unknown parameters, and shape matching allows estimating them. Unfortunately, two different
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shapes are necessary for this approach, whereas, in common, for diagnosis purposes surgeons
take only one.

In [112], an inverse simulation method is proposed. The authors present BCs as forces with
unknown intensities. To obtain a solution for unknowns, they apply traction and solve a gap
minimization problem between simulated and observed positions. Here, it is implicitly sup-
posed that the model is accurate enough to simulate the real object. But in the context of AR,
the accuracy is often waived in favor of performance. The observed positions also have to be
measured with high accuracy.

In case, when observations are obtained through a laparoscopic camera, only several dozens
of features can be detected on the liver. These features are usually located on the visible part of
the liver, so almost no information about boundary positions are given. Moreover, the number
of parameters that can be estimated is highly dependent on the amount of given data. Therefore
the methods described above are not applicable in this context. However, in our work, we follow
the idea of the statistical atlas, which is still relevant since the available information can provide
us with some initial approximation related to BCs.

4.2 The estimation approach
In this section, we describe the main steps of our method. We keep an important focus on
patient-specific modeling and the possibility to deploy our method in a clinical context without
the need for additional equipment. Fig. 4.1 depicts an overview of our solution.

In general, all connective tissues have nonlinear properties, and, thus, we use a nonlinear
model to simulate the liver BCs. The model of the boundary conditions has to take into account
the anatomy of a specific patient. The essential moment here is that in general the available
information is limited to a preoperative model and intraoperative images, which cannot indicate
us the exact locations of boundary conditions. Therefore, we try to identify them in two steps.
Initially we create a generalized initial approximation of the BCs. Then we correct it using an
extension of the Kalman filter. The approximation is based on patient-specific data obtained
from a laparoscopic camera or some other modality used during surgical intervention.

For the initial approximation, the general idea is to use a statistical atlas from available
datasets (like in [187]) and stress-strain curve data from the literature. Despite the fact that an
atlas cannot give the exact properties of boundary conditions for a certain patient, it still helps
to restrict the variability of locations and their characteristics.

In order to correct BCs with the available data, our Kalman filtering approach takes into
account that we have some uncertainty both in the numerical solution and the intraopertavely
obtained information. Therefore we combine the benefits of both initial approximation and cor-
rection steps to make fast and robust estimation in a patient-specific context.

The Kalman filter was described in detail in the Chapter 3; therefore, we will now focus on
constructing the initial approximation of the BCs for the liver and the optimization process.
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Figure 4.1: General identification process of BCs. The BCs are presented as cubic springs with
unknown parameters. The estimation workflow contains two steps. 1 - Initial approximation
based on statistics from liver database and constitutive laws from the literature. 2 - Correction
based on intraoperative images. Ligament constitutive law taken from [246].

4.3 Statistical atlas construction

4.3.1 Overview of the available approaches
The prediction of unknown information that is based on statistics is quite a general approach,
used in various domains of science. Yet, it has particular importance for medical imaging and
biomechanics where, in general, images can provide us only with limited amount of informa-
tion. The general idea is to create a database with detailed models or images and to segment all
necessary anatomical details using the most accurate techniques and help of experts. From that,
a statistical atlas is constructed, which can be used to describe approximately the anatomy for a
general patient.

For example, the statistical atlases are quite often used in brain image analysis [48, 51, 194],
where they help to detect various brain deviations that cause diseases. Another domain covers
bones research [16, 128] where atlases help to perform their segmentation in medical images.

Since the liver is a common target for surgery, there is also a certain number of works related
to atlas creation for liver models. There are two general types of regarded atlases: probabilistic
and statistical ones.

Liver probabilistic atlases are commonly used for liver segmentation. In general, for every
single space element, the probabilistic atlas shows its probability to be a part of an organ. For
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example, in [45], the authors describe probabilistic atlas for the liver and, in [171, 172], for the
whole abdominal area. Based on available segmented images, they compute the probability for
every voxel to be inside the liver. It is taken as a number of images where it is inside the organ
over their whole number. For the mean, a set of voxels with probability more than 50 % is taken,
and diapason from 0 % to 100 % shows the variance of organ shapes.

In [21], a probabilistic atlas is created by computing probability using Gaussian mixture
models. In [44], the authors propose to compute the combination of the distance function mean
and the coverage function mean computed on images. In [252], to obtain an atlas, a superpo-
sition for all images is computed using the Procrustes method, and then they are mapped via
optimal diffeomorphic deformation.

Probabilistic atlases are good for processing images to perform, for example, organ seg-
mentations, but not so useful to work with shapes. However, in the context of our work, we are
dealing with three-dimensional biomechanical model. Consequently, liver BCs have to be seg-
mented on three-dimensional organ shapes. So, the statistics will be computed based on meshes.
In this case, a statistical atlas is a more appropriate solution.

Statistical atlases or statistical shape models can be presented as a set of three-dimensional
shapes with a mean and variations. Commonly, a reference frame is selected, on which all avail-
able shapes are registered. Then, for shape deviation analysis, a principal component analysis
(PCA) is used.

A certain number of research works are dedicated to the construction of a statistical atlas for
the liver. In [107], a liver statistical shape model is described. Nevertheless, the correspondences
between shapes are computed using manually annotated features. They might be difficult to find
on liver surfaces and require a lot of work for a database with hundreds of models. In [254], the
authors construct both probabilistic and statistical models. They use CT images of the whole
abdominal area and align them based on the spinal column. After that, they compute the modes
of the liver variations. But the result gives rather variations of the liver location in the abdominal
area than variations of the liver shape.

Some works perform attempts to improve model database registration and determination
of markers correspondence. In [127, 129], the modification of an iterative closest point (ICP)
approach is used to register all models on a selected reference frame. Then a set of uniformly
distributed points over the shapes are generated, and correspondence between these points is
constructed. Finally, a principal component analysis is performed for the correspondences. In
the paper [59], the researchers use the minimal description length approach to find correspon-
dent points and carry out a generalized Procrustes analysis for models registration. In addition,
they improve the atlas by classifying database models into different populations. A separate
atlas is constructed for every population. For analysis, the correspondent atlas is selected ac-
cording to the target model classification. Unfortunately, the registration for correspondence
searching is based on rigid transformations, which does not take into account the variability of
the liver shape.

In [108], the main idea is to split liver surface on several patches and to compute corre-
spondences for every segment. To segment patches, a bundle of bound points has to be marked
manually, connected by the shortest geodesic path computed later. Since all liver meshes have
different topologies, the idea is to map every segment onto a plane and find correspondences on
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this plane. The main drawback of this approach is that atlas construction still requires manual
work because the patches of borders have to be marked.

In [100, 101, 232], the researchers propose another method to generate a liver atlas. Using
the marching cube algorithm, they construct triangulated meshes. Then they use non-rigid reg-
istration taken from [29] to find the correspondent points and PCA to obtain the variations. The
proposed approach does not require a cloud of correspondent points for every shape and allows
performing a non-rigid registration. However, it is not obvious whether this approach allows
handling large variations between organs shapes. Also, the final result relates to the analysis of
the liver shape itself, but not to its anatomical structures.

Several other papers try to improve the accuracy of the statistics. In [201], in order to com-
pute the anatomical variability, the authors use a principal factor analysis [3] instead of gen-
erally used PCA. In [76], the key moment is to construct a special Lie group, based on mesh
triangle positions, and compute mean and statistics using mathematical transformations of this
group. In [163], a multi-level statistical shape models are proposed. The idea is to organize all
organs and parts hierarchically starting from an abdominal area. To link the regions in a simple
model, the authors introduce the so-called adhesive constraints. In [164], the authors extend
their approach to compute statistics for many organs. But all proposed solutions still require the
presence of correspondences between elements, over which the statistics will be computed.

An interesting idea is given in [228]. The researchers try to construct a combination of sta-
tistical and probabilistic atlases. Together with the statistical model creation, a set of features
is also extracted, and later they are used as additional conditions. To get the range of available
values, a mean and a variance are identified for the features. Lastly, for a test data, a correla-
tion between observed features and feature statistics is computed. Based on the result, the set
of available features can be taken into account, which will simplify elements recognition and
segmentation.

All in all, the papers described above mainly deal with the liver shape, which helps to ana-
lyze the variations and execute segmentation in medical images. However, the main idea of the
current work is to identify the boundary conditions around the liver, but not the variation of its
shape.

A more relevant work is described in [187]. The authors discussed the construction of an
atlas for BCs and its registration on a target model. Initially, they register a set of correspondent
points on each mesh from the database. This step is not described in detail, but in [186], the
authors specify that the registration was done with a biomechanical model. To create a set of
correspondent points, a selected liver shape is scaled and non-rigidly registered on all other
meshes. From this clouds a generalized Procrustes analysis is performed to align all models in a
common reference frame. Then, like in other methods, a PCA is executed for each structure of
the interest, including boundary conditions, to compute the principal modes of the deformation.
The final step of the approach is atlas to patient registration and boundary conditions projection.
To find the BCs of a patient model, the authors use a biomechanically based registration on a
preoperative data. This registration is guided by dynamically weighted iterative closest point.

The main issue of the described approach is that it is difficult to find a set of correspondent
points, necessary for further processing, since liver parenchyma shape varies a lot from one
patient to another. A biomechanically based registration allows compensating for object defor-
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mations, but not for anatomical differences in liver structures such as, for example, lobes. So this
method is quite questionable for the case when a liver with a specific shape has to be registered
to another one. Also, the alignment of models is based on rigid transformation; therefore, PCA
analysis includes variations not only for ligament positions, but also for the liver parenchyma.
Finally, the authors analyzed the positions of several anatomical landmarks, but no investigation
was performed to compare ligaments positions.

Consequently, we propose a new approach for atlas construction related to boundary condi-
tions, which we will describe hereafter.

4.3.2 Large deformation diffeomorphic metric mapping
The proposed approach is based on a solution that is called large deformation diffeomorphic
metric mapping (LDDMM). The main idea is to present an object mesh deformation or dis-
placement as a diffeomorphic transformation, independent on the mesh topology, and express
shape variations through its properties. In this way, for any shape, the transformation parame-
ters define bundle of shapes that are diffeomorphic to the original one. The similarity between
shapes can be measured as amount of deformation (displacement) needed to transfer one shape
to another. One possible instance of such a construction is to do a parametrizing with a set of
control points [19, 47]. The modifications of the object shape are then reconstructed by interpo-
lation functions based on the control points.

So, in the interpolation framework, the displacement ν(s) = Φ(s)− s of any transformation
Φ and simple element s can be presented as a sum of radial functions based on control point
positions:

ν(s) =
Np

∑
i=1

Γ
(
s,gi
)
wi (4.1)

where gi is a set of control points, Np is their amount, wi is a set of weight coefficients,
which are called moments, and Γ is an interpolation kernel. The interpolation kernel is a
scalar function that takes any pair of values. In [47], a Gaussian kernel is used, with Γ

(
x,y
)
=

exp
(
−∥ x − y ∥2 / η2 ). The kernel width η controls the size of the generated deformation

patterns.
The set of displacements, constructed in such a way, forms a space where the inner product

for elements can be defined:
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To handle the large displacements, the idea is to use an instantaneous velocity field instead
of the displacement one. Considering the control points gi and moments wi as trajectories, the
velocity field at any instant l for an element s can be written as:

νl(s) =
Np

∑
i=1

Γ
(
s,gi(l)

)
wi(l) (4.3)
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for l ∈ [0, lmax]. For every positive l, the equation given above forms a diffeomorphism of the
initial object. More details are given in [47].

The same equation can also be applied to specify the control points. In case of the moments
wi, the possible solution might be to choose trajectories that minimize the kinetic energy along
the path. Therefore the equations that drive the motion are now given as:{

ġk(l) = ∑
Np
i=1 Γ

(
gk(l),gi(l)

)
wi(l)

ẇk(l) =−∑
Np
i=1 wk(l)T wi(l)∇Γ

(
gk(l),gi(l)

) (4.4)

A set of points can be combined in a single vector, and then the system can be solved using
some numerical method. It is important to note that the flow of transformation is now entirely
parametrized by the initial positions of control points gi(0) and initial moments wi(0).

To compare two meshes, some metric is needed. Among approaches that do not require
correspondences, there exist a metric based on varifolds [24]. The basic idea behind a varifold
is to present smooth curves or surfaces as distributions of basic curvatures in an extended space,
where they could be compared with specific metrics. Particularly, the distance between two
meshes can be computed as:distV
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here M is a surface of a mesh, e is a center point of a mesh face, and n is its normal. ΓV is a
kernel of a varifold, which is usually a Gaussian function.

The varifold metric is too general and does not allow identification of the transformation
between objects in a unique way. To perform a non-rigid registration, one possible way is to
use the distances based on diffeomorphisms to measure the transformation increment. For two
objects M 1 and M 2, let Φdi f f

l where l ∈ [0, lmax] be a diffeomorphic transformation such that
Φdi f f

0(M 1) = M 1 and Φdi f f
lmax(M 1) = M 2. Then the difference between two meshes can be

defined as the length of the trajectory with the minimal kinetic energy:

distΦdi f f
(
M 1,M 2

)2
=

Np

∑
i=1

Np

∑
k=1

wi(0)T
Γ
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)
wk(0) = wT

0 Γ
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)
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where g0 = g(0) and w0 = w(0) are the vectors constructed on the sets of control points and
moments, such that Φdi f f

lmax,w0(M 1) = M 2 [47]. The initial moment, in its turn, is selected the
way to minimize the varifold distance between transformed and target shapes:

w0 = argmin
w

[
distV

(
Φ

di f f
lmax,w0(M 1),M 2

)]2 (4.7)

Thus, the distance between varifolds is used to find the deformed shape that is close to the target
one. And the correspondent diffeomorphic distance depicts the amount of the transformation.

Finally, for a set of shapes registered non-rigidly, a statistically average shape is defined as
a Fréchet mean, which minimizes the shape variance: M atlas = argmin

M

[
∑i distΦdi f f

(
M ,M i

)2].
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Since the computation of the diffeomorphism looks for the minimization of the varifold metric,
the final solution is obtained as a combination of two minimization problems:

M atlas = argmin
g0[wi

0]

[Nmeshes

∑
i=1

(
distV

[
Φ

di f f
lmax,wi

0
(M atlas),M i

]2
+(wi

0)
T

Γ
(
g0,g0

)
wi

0

)]
(4.8)

The mean shape construction and non-rigid registration procedures, depicted above, are used to
generate statistics for ligament positions.

4.3.3 Atlas construction procedure
To construct the atlas for ligaments, the main idea is to perform a non-rigid registration, which
is based on diffeomorphic metric mapping, of the liver models with segmented ligaments on
the average shape. This allows determining a probability distribution of the ligaments location
on a human liver (see Fig. 4.2). The average shape is the most natural choice for statistics
computation since it does not have any particular anatomical deviations.

Figure 4.2: Statistical atlas construction for ligaments location. A set of models (left part of
image) with segmented ligaments (white strips between red and blue) are registered on a mean
liver model (right part of image). A registered statistical atlas has expected ligament location
(green strips) and a range of probable locations (white region).

Consequently, the first step of the construction procedure is to construct an average
shape (Fig. 4.3). Here, we use a shape that is computed as a Fréchet mean for the database
shapes. Then, we register every liver shape from the database on the mean shape and extract
segmented data. This procedure allows us to have all segmented ligaments (and other data) on
the single surface.

Since ligament positions were segmented as liver mesh edges, their extraction looks such
as a set of piecewise linear curves. To get statistics, we need to compute the mean and variance
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for the available curves (Fig. 4.3). In this case, the general idea is to deal with all curves in a
parametric form. There, the curve shape is presented as a function of an independent parameter
l ∈ [0, lmax]: x = x(l),y = y(l),z = z(l) in a three-dimensional space. So, the next step is to
generate a discretization for the l and to compute statistics for the points obtained from the set
of discrete values li. Unfortunately, we do not have any analytical parametrization of the curves.
Therefore we decided to intersect the curves with a set of planes. Depending on the segmented
ligaments, the planes have different spacial configuration. The statistics are then computed for
the points of intersections in each of these planes.

Figure 4.3: Main steps of the atlas construction process and its registration on the target model.
Green rectangles depict actions, while red ones describe correspondent data.

Currently, for simplicity, we compute mean and variance in Euclidean space, but generally
it is also possible to compute statistics in geodesic space related to the liver mean shape curve,
which might be more accurate. Since the Euclidean statistical result might not be on the shape
surface, the results are projected on it. The projected point is selected as a point on liver mesh
with a minimal distance to the given point.

The final step is statistical data registration on the target shape. To attach the statistical data
to the mean shape, a barycentric interpolation is generated. This mapping describes liver mesh
positions and interpolation values to obtain the positions of the curve points. After that, the
mean shape is non-rigidly registered on the target shape, and barycentric interpolation is used
to obtain statistics for the target.

4.4 Ligaments properties initialization
Apart from the positions, the model of BCs is also dependent on mechanical parameters. Of
course, as initial values, it is possible to put some casual numbers, but a more natural way
is to rely on the available biomechanical data. So, we propose to take the stress-strain curves
from [246], measured for porcine tissues, and use them to obtain the initial approximation. The
general workflow is presented in Fig. 4.4.

Our idea contains two steps. During the first step, we select a referent hyperelastic model
with a strain energy density function Ψ and identify its parameters C mat , based on least squares
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93 4.5. Preconditioning for data assimilation procedure

Figure 4.4: Main steps of the elastic parameters initialization process for ligaments. Green rect-
angles depict actions, while red ones describe correspondent data. Ligament constitutive law
taken from [246].

curve fitting approach. The fitting process finds hyperelastic material parameters in such a way
that the model behavior matches the best way a series of data points extracted from stress-strain
measurements. Or, in other words, we are trying to minimize the difference e:

e =
N

∑
j=1

[
τ j − τ(λ j,Ψ,C mat)

]2 −→ min (4.9)

where τ j and λ j are stress and stretch values obtained from the measured data, τ() is a result of
a simulation. It computes a uniform stress for a particular strain based on a selected hyperelastic
material with the strain energy density function Ψ and given parameters C mat . There exist many
algorithms that perform such optimization. One possible way is to use the Levenberg-Marquardt
approach [116], available in the FEBio software [132].

The second step is to determine the parameters for the mass-spring system the way that
it will behave such as the given hyperelastic FEM. Unfortunately, there is no mathematical
expression to compute parameters under the required constraints. However, we can use the
Kalman filtering approach to approximate the spring parameters. For data assimilation process,
we took a brick constructed from hyperelastic elements and a set of springs. We then performed
stretching deformation for data assimilation, comparing only bounds of both models, like it was
done in Section 2.3.4. The filter estimates spring parameters in a way to minimize the difference
for the compared positions. The estimated parameters are then considered as an approximation
of the material properties and are taken for the correction procedure.

4.5 Preconditioning for data assimilation procedure
The correction procedure for BCs, given in Fig. 4.1, is performed using the Kalman filtering ap-
proach, as it was described in the Chapter 3. As far as new intraoperative data becomes available,
the unknown parameters are updated, based on a prediction-correction scheme. Consequently
we have their best estimation with respect to the available observations and the computation
complexity of the procedure.
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However, in the context of biomechanical modeling, the prediction step can be time consum-
ing, since physically based simulation has to be executed for every sample point of the filter.
The ROUKF or ETKF allow us to reduce the size of the unknown state. This results in fewer
simulations for every prediction step. But anyway, if we estimate a huge number of parameters,
the prediction will be still time consuming. To accelerate the simulation further, we propose to
augment it with a technique called preconditioning.

4.5.1 Conjugate gradients and system preconditioning
During simulation process, an object deformation is computed to achieve an equilibrium be-
tween external impact and internal stress. The correspondent mechanical problem is commonly
solved iteratively with an optimization method until system convergence. Regardless the type
of optimization, at each iteration a linear system is constructed, and by solving it we obtain the
closer result to the final solution.

In case of the Euler solver, which is used in our work, the linear system is described by
equation 2.16 from Section 2.1.4.2. It can be equivalently written in a general form. So we have
the system with an unknown vector y, a transformation or system matrix A, and a vector of free
or known values d:

Ay = d (4.10)

The left part of this equation contains the stiffness matrix for the whole mechanical system. So,
if the body mesh is quite dense, or we have a lot of interacting objects, the matrix is large. But to
solve the system, a transformation matrix has to be inverted, which might be time consuming.
Therefore there is a need in a way to solve the considered system fast and effectively.

In this case, we can stick to Conjugate gradient method (CG) [77] to solve it. In theory
of elasticity, stiffness and mass matrices are symmetric and positive definite, so it is likely to
be the fastest method to find a solution for the constructed equations. In CG, we iteratively
get closer to the exact solution y by minimizing the difference, also called error, between the
correct solution and the current result y(k): e(k) = y(k)−y. The error for the iteration i depends
on the initial error in accordance with the inequality:

∥e(i)∥A ≤ 2

[(√
κ+1√
κ−1

)i

+

(√
κ−1√
κ+1

)i]−1

∥e(0)∥A ⇋ δ∥e(0)∥A (4.11)

where ∥e(0)∥A is the initial error and κ is a condition number of the matrix A. The condition
number for a matrix shows the relationship between its maximal and minimal eigenvalues. The
maximum number of required iterations can also be expressed through the matrix condition
number:

imax ≤

[
1
2
√

κln

(
2
δ

)]
(4.12)

More details about the Conjugate gradient method analysis can be found in [216, 217].
Anyway, the important moment we want to precise here is that the CG convergence rate and,

thus, the whole performance is very dependent on the condition number of the system matrix.
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So, it would be useful to find a way to decrease its value. One existing possibility for this is
called preconditioning.

The first preconditioner to solve a linear system was proposed in [223]. There, the authors
attempt to approximate the inverse of the symmetric matrix A by a circulant matrix C. If the
matrix A has a lot of small values on the most outer diagonals, the multiplication C−1A is very
close to the unique matrix [240]. Thus, the essence of the preconditioning approach is to solve
the system

C−1Ay = C−1d (4.13)

instead of equation 4.10, where the condition number of the multiplication follows the inequal-
ity κ(C−1A) ≪ κ(A). In fact, this multiplication performs system transformation to a more
regular space, which allows CG converging in a fewer iterations. However, there are a lot of
restrictions that have to be applied for the matrix C. For example, the multiplication does not
have to add new solutions to the system or eliminate existing solutions from it. In the real-time
context, there is one more limitation to this technique, the computational overhead does not
have to exceed the amount of time saved by increasing the CG convergence rate.

4.5.2 Preconditioned data assimilation process
For real-time deformable object simulations, to find the preconditioning matrix, several ap-
proaches have been proposed, starting from taking the diagonal of the matrix and up to ap-
proximation of the matrix inversion. Among others, an interesting idea was proposed in [34].
The authors notice that during the simulation process between any two iterations the assem-
bled system matrix A undergoes small perturbations. Therefore they take the inversion of the
first iteration matrix, which they obtained using Cholesky factorization, and use it for a certain
number of following simulation steps. Their results show the performance improvement up to
several times.

Therefore, to accelerate the assimilation process further, we decided to adopt the solution
proposed in [34]. The main idea in our work is to compute the matrix inversion for the first

Figure 4.5: Preconditioning for the transformation of uncertainty or the ensemble members
transformation. The idea is to compute an inverse matrix for one of sigma points or an ensemble
member and use it as a preconditioning in transformation for all other points.
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sigma point or ensemble member. And then we could use it to compute simulations for all other
sigma points (ensemble members) at a given iteration, as Fig. 4.5 depicts.

The nature of data assimilation process does not differ much from the general simulation.
Indeed, the difference between simulation for all such sigma points is small, since every sigma
point is obtained by performing some perturbations from original values. This perturbation
affects only a subset of the process state and parameters, and, thus, the preconditioning trans-
formation gives almost a unique matrix. So, despite the fact that we use stochastic approach,
the deformation difference between simulation iterations remains small. Moreover, it is still
possible to use the preconditioning in a similar way as it was used in [34].

The modified algorithm for the reduced-order unscented Kalman filter is presented in Alg. 4
and for the ensemble transform Kalman filter in Alg. 5.

Algorithm 4: Reduced-order unscented Kalman filter with preconditioning
1: Initialize filter data() - initialize data like in the general case
2: C = A−1

(T ) - compute initial preconditioning for finite elements

3: set T = T (C,x1,b
(c)
1 ) - preconditioned finite element model

4: for each simulation step i do
5: Compute prediction phase:
6: get b(c)

i+1 - control features

7: xσk
i = xi +Li

√
U−1

i I (k) - generate sigma points

8: Ci+1 = A−1
(T )i+1 - recompute preconditioner if needed

9: for each sigma point k do
10: x̃σk

i+1 = T (Ci+1,xσk
i ,b(c)

i+1) - get result from deformation step
11: end for
12: x̃i+1 = E

(
x̃σ∗

i+1
)

- compute predicted state as mean of sigma points
13: Li+1 = x̃σ∗

i+1I (k)T - updated transformation matrix to reduced space
14: P̃i+1 = Li+1

(
I (k)I (k)T )−1LT

i+1 +Q - compute predicted covariance
15: Compute correction phase() - the same as in the general case
16: end for

We also want to point out here that, despite the fact we modify the linear system, the CG still
converges to the similar final solution. Thus the preconditioning does not influence significantly
on the process of parameters estimation. However, since in case of BCs the estimation solution
is not unique, we finally might converge to a completely different result.

4.5.3 Experiments with preconditioning
Now, let us perform an experiment to see how the preconditioning improves the estimation
process.

For this experiment, we took the similar setup like for boundary conditions estimation (see
Fig. 3.15 left), that is the cylinder, which is fixed from one side and attached by springs from
another. However, the preconditioning shows significant improvement when we use it for many
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Algorithm 5: Ensemble transform Kalman filter with preconditioning
1: Initialize filter data() - initialize data like in the general case
2: C = A−1

(T ) - compute initial preconditioning for finite elements

3: set T = T (C,x1,b
(c)
1 ) - preconditioned finite element model

4: for each simulation step i do
5: Compute prediction phase:
6: get b(c)

i+1 - control features
7: Ci+1 = A−1

(T )i+1 - recompute preconditioner if needed
8: for each ensemble member k do
9: x̃enk

i+1 = T (Ci+1,xenk
i ,b(c)

i+1) - get result from deformation step
10: end for
11: x̃i+1 =

1
Nen

∑
Nen
k=1 x̃enk

i+1 - compute prediction mean
12: for each ensemble member k do
13: x̃di f f k

i+1 = x̃enk
i+1 − x̃i+1 + ιi+1 - compute perturbation with inflation

14: end for

15: P̃i+1 =
1

Nen−1 X̃
di f f ∗
i+1

(
X̃

di f f ∗
i+1

)T

- compute predicted covariance of ensemble members

16: Compute correction phase() - the same as in the general case
17: end for

identical simulations. Therefore we considered a scenario where springs do not share a com-
mon stiffness, and these parameters were estimated separately. So we had 3 springs, each of
which had 3 polynomial parameters, 9 values in common. The conditions of the experiment are
described in the following list:

• Idea: spring stiffness estimation with preconditioning

• Domain geometry: cylinder, 3 cm diameter, 18 cm length

• Domain discretization: Groundtruth: 11125 nodes and nearly 52000 finite elements,
Estimation: 915 nodes and nearly 3000 finite elements

• Material properties: StVK material with Young’s modulus equals to 8 kPa and Poisson’s
ratio to 0.49

• Boundary conditions: cylinder is fixed from one side, 3 cubic springs with 3 cm length,
all coefficients estimated separately, are attached to the other side. Groundtruth coeffi-
cients for every spring are [4, 7, 20] N/m

• Applied impact: periodic force in indicated direction is applied.

• Observations: 15 markers uniformly distributed on a part of the frontal surface (see
Fig. 3.15)

• Estimation method: data assimilation using ETKF with 6 ensemble members and
ROUKF with and without preconditioning

• Initial approximation: coefficients equal to [10, 10, 10] N/m and standard deviation
equal to [4, 4, 4] N/m
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• Validation points: 915 nodes of the coarse mesh

Fig. 4.6 shows the average difference for validation points computed for preconditioned
and simple simulations. According to the obtained results, the estimation with preconditioned
simulation is slightly worse than the original one. But after 1600 iterations, where we performed
initial parameter estimation, the difference between simulation results does not exceed 0.5 mm.

Figure 4.6: The average difference for validation points between groundtruth and simulation
results. The results are computed for the ETKF and ROUKF with and without preconditioning.
The mesh used to generate the groundtruth is denser than the one used to simulate the object
deformations.

Table 4.1 depicts the relative error and computation time for the all performed simulations.
The results show that preconditioned estimation is less precise with up to 3 % loss in accuracy.
On the other side, it decreases the computation time on approximately 25 %. As usual, the
ROUKF shows slightly better results, which makes it preferable for using in the parameter
estimation process.

The obtained results show that, regardless expectations, the preconditioning does not pro-
vide a very significant computational improvement for our system. However, it is generally
known that it works very efficiently for large systems, where it helps to reduce the complexity
of a matrix inversion. Because of real-time constraints, we use quite coarse meshes; therefore,
the advantage of this technique might be negligible. Anyway, it still provides us with some
improvement related to the computation process.
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ETKF with ROUKF with
Method ETKF ROUKF preconditioning preconditioning

Average error wrt max.
deformation, %

2.25 2.56 3.55 2.69

Maximal error wrt max.
deformation, %

7.84 8.28 8.24 11.48

Computation time for
one time step, s

0.2562 0.2301 0.1948 0.1703

Table 4.1: Springs coefficients estimation for the case when the mesh used to generate the
groundtruth is denser than the one used to simulate the object deformations. Estimation results
relative comparison and computation time for the ETKF and ROUKF with and without precon-
ditioning.

4.6 Constructed process for boundary conditions estimation
The main idea of the work is to estimate boundary conditions around the liver for a more precise
simulation, but the properties of surrounding organs, particularly ligaments, are not well known.
However, during the surgical operation, the position of the liver is caught by the camera or some
other modality. This requires to have a combined model of the liver and its attachments. Only
in that condition can we estimate BCs, while observing the liver.

Since the aim of the work is to provide a predictive simulation in the context of augmented
reality, it implies additional constraints for the estimation process. First of all, real-time sim-
ulation is a crucial element in augmented surgery to provide a model compatibility with high
quality visual rendering. A typical frame rate for visual display is in the range of 20-60 Hz.
Thus it is not possible to simulate all the biomechanical complexity of the liver. We have to
simplify the models to optimize the computational efficiency.

The ability to handle soft tissue cutting and suturing has also a primary importance. The
impact of such operations in terms of tissue modeling is considerable since it implies changing
tissue topology over time. The cost of such a topological change depends largely on the chosen
geometric representation, but also on the numerical method that is adopted to compute tissue
deformation.

Finally, we are estimating properties of tissues that are not directly visible. Imaging devices
are installed only in operable area. Surgeons usually cut all visible ligaments to be able to get
access to the liver parenchyma, and therefore there are no attachments. Consequently, we have
to extrapolate the observed information in order to perform some estimations. Also, during
manipulations, the camera records different parts of the liver, so the areas of interest can be
visible partially and discontinuously.

To perform the numerical simulation for the liver, we rely on the FEM method based on
Saint Venant-Kirchhoff material. The boundary conditions around the liver model are presented
as a set of nonlinear springs, attached to the liver and some fixed points in space. It is impor-
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tant to point out that springs do not simulate the behavior of real boundaries, but only their
contributions to the elastic properties of the particular areas on the liver surface.

Generally, the whole liver surface has to be covered with springs, but fortunately the statisti-
cal atlas will provide us with domains, which are more likely to be attached. Thus it is sufficient
to generate springs only in these specific areas. Since there is no specific description for liver
ligaments, the best option is to perform initial parameters approximation based on stress-strain
curves available in literature [246]. Also, not knowing the exact information about the ligaments
length for a specific case, it is possible to take an average of the measurements [118].

The observations that are required to correct the model prediction and estimate the unknown
parameters are typically obtained during surgery. As we noted, it is difficult to observe the lig-
aments; consequently, we mainly rely on features of the liver surface. These features follow the
liver deformation behavior and can be tracked by the medical equipment during the surgical
procedure. So it is quite natural to consider the liver deformation modeling as a dynamic pro-
cess that can be managed by the Kalman filtering approach. The stiffness values of boundary
springs are presented as unknowns that have to be estimated and tracked markers as observa-
tions. By performing the data assimilation process, we will find the more accurate estimation of
the boundary conditions.

One essential point here is a combination of the process modeling with the filtering loop.
It is presented in Fig. 4.7. We propose to perform it like in the description below. During the

Figure 4.7: Stochastic process workflow for estimation of boundary conditions. In the prediction
step, the deformation related to next video frame is modeled based on given springs stiffness es-
timation. In the correction step, the values are corrected based on difference between simulated
observations and real data.

prediction step, the deformation related to the next video frame is simulated using the given
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estimation of the spring parameters. And the transformation of uncertainty allows us to use the
nonlinear models in the simulation. During the correction step, the simulated features are com-
pared with the data obtained from real recordings. The correction is performed based on the
probability distributions comparison. Therefore the system takes into account the fact that ex-
tracted data can be noisy. The process repeatedly continues until the end of the procedure. This
way, we perform estimation based on all available information related to the surgery. However,
if, for any reason, the observations are very noisy or missing, we simulate liver deformation
based on currently estimated parameters.

The preconditioning for sigma points will help us to reduce the computational time for
the prediction step and, therefore, increase estimation performance. However, we still do not
process data in real time. One possible solution is to perform a delayed parameter estimation in
a separate system process. The simulation improvement will go slower, but, after certain period
of time, the model will be more accurate. Also, in case of force feedback absence, to perform
the deformation of the liver and to compare the simulation with real data it is possible to extract
two sets of points from medical images. The set of control points is responsible for forming the
model deformation, and the set of observation points is used to correct estimation of unknowns.
The authors in [180] describe this in more details.
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In this last chapter, we want to present the experimental results that depict how the proposed
ideas specify the ligaments positions and improve the simulation accuracy. Initially, we will
consider a simplified scenario with observations generated synthetically. Then, we will focus
on the experiments with data obtained from real human livers and try to cover the complex
scenarios. We will show the results related to the statistical atlas and then stochastic estimation
process based on the reduced-order unscented Kalman filter.

5.1 Estimation based on synthetic observations
The idea of this experiment is to investigate how the estimation of BCs using the Kalman fil-
tering approach improves the simulation accuracy. The experiment is based on observations
generated synthetically, for which the liver was taken from a segmented CT scan of a patient.
Here, we decided to focus only on the estimation process and did not to take into account the
contribution made by the statistical atlas. Therefore we processed a model where the ligaments
locations were defined by an expert.

For simplicity, we decided to consider only the falciform ligament. This ligament is close
to a front surface of the liver, and therefore, compared with other attachments, it has a larger
influence on the visible part of the organ.

The reference (groundtruth) simulation was computed with the help of FEBio soft-
ware [132]. This framework allows using various hyperelastic models for the both volumetric
liver model and membrane ligament. Fig. 5.1 depicts an overview of the constructed model.
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For the liver we generated a tetrahedron model with approximately 14300 nodes and 73000
elements. An Ogden material was used for it with parameters taken from [127] (α1 = 0.88, µ1 =
16.47 kPa, G = 7.21 kPa).

Figure 5.1: Numerical simulation mimicking a manipulation of the liver, from which observa-
tions were extracted.

The mesh of the ligament (shell elements) was generated by the segmentation nodes extru-
sion in the direction of the liver surface normals. Fixed constraints were applied to the furthest
nodes from the liver, and bilateral constraints were used to couple the liver and ligament models.
We decided to take 3 cm as an extrusion distance. According to [118], the falciform ligament
has a width of several centimeters (1.1 - 4.9 cm), and therefore 3 cm is some sort of an average
for its size. A Neo-Hookean material was used for the ligaments with the Young’s modulus
equals to 200 kPa and Poisson’s ratio to 0.48.

To generate a representative deformation of a surgical manipulation, we applied nonconstant
periodic loads to the right and left lobes of the liver (see Fig. 5.1). To the right lobe, only the
downside load was applied since there is a diaphragm upside, and thus the lobe cannot move in
that direction. To the left lobe, we applied two sequential forces in opposite directions.

We also attached 14 markers that present some features on the liver observed during the
operation procedure (Fig. 5.2 left). We saved their tracks and used the savings as known infor-
mation in the data assimilation process.

The estimation procedure was implemented using SOFA framework [5]. Since we intend to
use the constructed liver model for navigation purposes during surgery, it has to be coarser to
process deformations in real time. Therefore for data assimilation process we generated a mesh
that contains 2150 nodes and approximately 7500 elements. The ligaments were also extruded
along the liver surface normal as two layers of non-linear springs (Fig. 5.2 right).

The springs parameters were inferred as discussed in the Section 4.4. As a reference model,
we used a hyperelastic FEM with the Neo-Hookean material. We estimated the material mod-

104



105 5.1. Estimation based on synthetic observations

Figure 5.2: Left: Overview of generated observations attached to the liver anterior surface.
Right: liver model created for AR with generated validation points. To observe the internal
part, the liver model is made transparent.

ulus from a stress-strain curve available for a porcine peritoneum [246] (Fig.7a, x direction).
For the process, we used a parameter optimization module available in FEBio [132], and we
got 403 kPa as a result. Then, taking the hyperelastic finite element model as the groundtruth,
we performed initial approximation of spring parameters using the data assimilation method
(ROUKF).

To correct parameters in the patient-specific context, we used a data assimilation approach
based on the preconditioned reduced-order unscented Kalman filter. This method is imple-
mented as an open plugin of SOFA framework, and is available online [181]. To optimize further
the assimilation process, we split all springs onto a set of regions and shared the same stiffness
parameters for each of them. Such parameters processing is just an optimization to speed up the
estimation of the BCs, and it can be adjusted depending on the amount of data or available time.

To validate our estimation, we generated 12 internal validation markers that are uniformly
distributed inside the liver model (Fig. 5.2 right). To compare the marker positions, we used
the naive approach where the falciform ligament is presented as a set of fixed nodes. During
the validation deformation, we computed the difference between groundtruth and results for the
markers in case of the estimated data and the naive approach. For validation points, we got the
average difference presented in Fig. 5.3 and the maximal one presented in Fig 5.4.

The results show that for boundary conditions estimated with our method, the mean error
in the deformation is only 2.1 mm (±0.9 mm), while it is 5.9 mm (±3.6 mm) when using
predefined constant BCs. Similarly, the maximal error is only 3.2 mm (±1.6 mm), while it is
9.9 mm (±6.3 mm) for fixed boundaries. Therefore for the largest deformation, the error is
reduced by approximately 67 %, as shown in the validation images.
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Figure 5.3: Average difference for validation points between groundtruth and simulation results
with estimated BCs (green curve) and between groundtruth and simulation with fixed BCs (blue
curve). The x-axis shows iterations of the validation process.

Figure 5.4: Maximal difference for validation points between groundtruth and simulation results
with estimated BCs (green curve) and between groundtruth and simulation with fixed BCs (blue
curve). The x-axis shows iterations of the validation process.

We also calculated time required by the data assimilation process to perform 1400 iterations.
For the preconditioned system, the average time per iteration achieves 1.32 seconds.
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As a result, it is worth saying that the estimated boundary conditions essentially improve
the simulation accuracy of the biomechanical model. The differences in deformation results
presented here are bigger than the ones obtained for the experiments in the Chapter 3. But it
can be explained by the fact that we do not only estimate parameters of BCs, but also replace
the fixed boundary by a mass-spring system, which simulates the environment more accurately.
However, without data assimilation process it is not obvious how the parameters of springs can
be specified. Also, the data assimilation process is not real time, but when set as a background
process, it allows correcting spring parameters in a reasonable time.

5.2 Atlas construction results
In this section, we will focus on a statistical atlas construction experiment needed to indicate the
liver BCs. Since in general, for a particular patient, there is no information about their positions,
it makes sense to initialize them from some statistics. The statistical atlas can be constructed
from a set of 3D annotated liver shapes. Its computation and target mesh registration workflow,
described in the Chapter 4, allows us to determine a probability distribution for the location of
ligaments and other anatomical landmarks.

Now, we describe the experiment performed to validate the atlas generation idea. For this,
we took 15 liver shapes created using anatomies of real patients. Several ligaments, including
falciform, coronary, left and right triangular ones, were segmented by an expert on each of the
shapes. We took 14 liver meshes, presented in Fig. 5.5, as a dataset to construct the statistics,
and 1 mesh (Fig. 5.6) to validate the accuracy of the atlas. Here, we computed statistics for
falciform, coronary, and both triangular ligaments.

Before any processing, there is a need to align liver meshes. For a common reference, we
matched their bounding box centers, but the orientation alignment was done manually. The
reason for that is the difficulties to find any matching parameters for a correct orientation. The
anatomical landmarks also did not work well because of their huge variations. Anyway, in real
scenario it could be done by hand since we need to construct this atlas only once, and then we
will reuse it for any patient. In addition to that, we did not change the shapes scale, which we
hope results in a more accurate registration for ligaments.

The average shape construction and database registration on the average shape was done
based on the large deformation diffeomorphic metric mapping method (see Chapter 4), accord-
ing to the workflow given in Section 4.3.3 (Fig. 4.3). For these procedures we used Deformetrica
software [19], available under a free non-commercial license.

The next step consists in statistics creation for the registered curves. However, it might be
difficult since there is no available parametrization, based on which they can be compared. As
a solution, we decided to intersect the curves with a set of planes.

The falciform ligament has attachments with anterior and superior surfaces of the liver (see
Section 2.2.3), the shapes of which are rather round. Therefore we performed intersections with
a set of radial planes. Each plane went through the liver center and was parallel to its transverse
direction. The intersection points for all the registered curves are presented in Fig. 5.7.

On the other side, the coronary and triangular ligaments lie close to the liver posterior sur-
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Figure 5.5: The liver meshes used to construct the statistical atlas for ligaments, anterior view.
White strips (between red and blue) represent annotated layers of falciform ligaments. Yellow
meshes are round ligaments.

Figure 5.6: The liver mesh selected to validate the statistical atlas, anterior view. The two layers
of the falciform ligament are segmented as white strips (between red and blue), and yellow
mesh is a round ligament.

face (Section 2.2.3), whose shape is flatter. Therefore we created a set of parallel planes, per-
pendicular to the liver transverse direction. The intersection results are presented in Fig. 5.8.

The intersection points give us a possibility to compute statistics inside each of the plane.
Roughly talking, the statistics has to be computed on the average shape, but we just computed
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Figure 5.7: The annotated right layers (left image) and left layers (right image) of the falciform
ligament taken from liver dataset and registered on the average shape. Each curve is marked as
a set of points with a color from green-blue color map.

Figure 5.8: The annotated upper layers (left image) and lower layers (right image) of the coro-
nary ligament with left and right triangular ones taken from liver dataset and registered on the
average shape. Each curve is marked as a set of points with a color from green-blue color map.

the Euclidean metric in space and then performed its projection on the shape using minimal
distances. Additionally, we computed statistics for the all available intersections. So if there
were fewer than 14 intersections in a given plane, we computed the mean and standard deviation
values anyway.

Finally, the average mesh together with the statistics was registered on a target model based
on the same LDDMM approach. To transfer the computed results, we created barycentric co-
ordinates for mean and standard deviation positions in the average shape subspace. After target
registration, we calculated them, to restore the coordinates of the registered statistics. For the
validation model, the registration results for the faciform ligament are presented in Fig. 5.9 and
for the coronary as well as the triangular ligaments in Fig. 5.10.
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Figure 5.9: Registration results overview for the right (left image) and left (right image) falci-
form ligament layers on the validation model. The mean (yellow dots) and standard deviation
(violet dots) are superposed with manual segmentation (black dots).

Figure 5.10: Registration results overview for the upper (left image) and lower (right image)
coronary layers, together with left and right triangular ligaments, on the validation model. The
mean (yellow dots) and standard deviation (violet dots) are superposed with manual segmenta-
tion (black dots).

To assess the accuracy, we computed the Target Registration Error (TRE) between registered
averages and the curves that were segmented by the expert. For comparison, we used the same
plane intersections technique as described above. We counted the difference only for planes
where both compared curves have intersections. The results are presented in Table 5.1.

We should note that there is a certain difference between statistical average and segmented
curves, particularly for the falciform ligament. This might be caused by several reasons. First of
all, there is a huge anatomical deviation both in ligament positions and liver parenchyma shapes.
It especially affects the falciform ligament because it lies on a smooth surface far from sharp
segments. However, in general, such segments are used as referent elements for the accurate
registration. Likewise, we used only 14 livers for the statistics, which cannot provide us with a
very confident result. Also, since the initial alignment was manual, it might be inaccurate.
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Ligament Average difference, mm Maximal difference, mm
Falciform right layer 14.7 26.9
Falciform left layer 23.6 36.1

Coronary upper layer from left
side and part of left triangular

2.9 9.6

Coronary lower layer from left
side and part of left triangular

5.3 12.0

Coronary upper layer from right
side and part of right triangular

11.1 16.7

Coronary lower layer from right
side and part of right triangular

6.5 12.1

Table 5.1: The Target Registration Error between registered statistical average and manual seg-
mentation for the given ligaments on the validation model.

Anyway, according to our experience, the proposed approximation is the best we know for
initializing the ligaments positions. For any constructed atlas, there will always be a certain
deviation between real positions and statistical results. Consequently we expect we can still
compensate it by estimating slightly different stiffness parameters.

5.3 Experiments with human liver
In our final experiment, we would like to demonstrate the results obtained for the liver of the
real human. Simulations based on synthetic data allows us to investigate the estimation process
under simplified conditions. But only experiments with real data show the whole complexity of
the considered problem and depict how the proposed solution attempts to solve it.

For this experiment, a human cadaver was taken (woman, 89 years old, the weight is approx-
imately 80 kg) from the Institute of Normal Anatomy in Strasbourg. The cadavers are stored
frozen, so before the experiment a 72 hours defrosting was done. The defrosting process was
held under room temperature and standard conditions.

The overview of the operating field is presented in Fig. 5.11. In this setup, we emulated an
open surgery procedure.

The various liver manipulations were done by a surgeon using common surgical tools. Sev-
eral laparoscopic tackers were attached to the liver surface to form visible observations that can
be tracked by a camera (Fig. 5.12 left). Their positions were recorded by an Intel RealSense
D435 RGB-D camera (Fig. 5.12 right), which was placed over the surgical table (not visible in
Fig. 5.11). This camera, in addition to an RGB sensor, has an infrared emitter and two infrared
sensors, which allow us to obtain 3D positions for the pixels selected on the RGB image.

For validation, we used 9 internal fiducials, which were inserted in different parts of the liver
parenchyma to be more or less uniformly distributed inside the organ. We acquired CT scans
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Figure 5.11: Overview of the operating field for the human liver experiment. To track the liver
movements, a set of laparoscopic tackers were attached to its surface. To simplify segmenta-
tion, we added colored papers to the tackers. The manipulations were recorded with an Intel
RealSense D435 RGB-D camera.

Figure 5.12: Left: Example of a laparoscopic tacker, which is generally used to attach artificial
materials to the tissues. Right: Overview of an Intel RealSense D435 RGB-D camera. It has
a color sensor to obtain an RGB image and an infrared (IR) projector with two IR sensors to
reconstruct the scene depth.

during the experiment, including several for the deformed organ, to reconstruct the shape of the
liver as well as the markers positions.

After the manipulation experiment, the recordings were post-processed. We constructed the
finite element liver model with spring attachments, fulfilled the data assimilation process, and
validated our estimations.

The liver shape was reconstructed from a CT scan, holding its undeformed shape. Using
CGAL library [190] integrated in SOFA, a 3D mesh was constructed. We generated a mesh
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that contains 2350 nodes and approximately 7700 elements. Together with the liver organ, we
segmented a set of superficial tackers and internal fiducials, detected by CT. Their relative
positions are presented in Fig. 5.13.

Figure 5.13: Left: overview of the reconstructed laparoscopic tackers on the liver surface. Right:
overview of the reconstructed deep fiducials labeled with numbers. To observe the internal parts,
the liver model is made transparent.

The statistical atlas, needed to initialize the ligaments positions, was generated from 15
segmented liver shapes (Fig. 5.5 and 5.6), according to the workflow described in Section 5.2.
The statistical average was then registered on the human liver mesh. The registration results are
presented in Fig. 5.14 and 5.15.

Figure 5.14: Statistical average registration result for the falciform ligament on the human liver
shown in superior (left image) and anterior (right image) views. The layers colored differently
to clarify their registered positions.

Based on registered point cloud, a mass-spring system representing ligaments was created.
We manually annotated a set of points, the shape of which looks like a curve. The points were
extruded along the mesh surface normals, and fixed constraints were applied to the furthest
nodes. The distance of the extrusion was equal to the average falciform ligament size (approxi-
mately 3 cm), noted in [118]. Finally, we generated the springs. The result model with generated
mass-spring system is presented in Fig. 5.16.
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Figure 5.15: Statistical average registration result for the upper (left image) and lower (right
image) layers of the coronary ligament and both triangular ligaments on the human liver. The
layers colored differently to clarify their registered positions.

Figure 5.16: Finite element model with the constructed mass-spring system shown in the supe-
rior (left image) and posterior (right image) views.

The observations for data assimilation process were taken from liver manipulation record-
ings. To extract the spatial information for visible points, we had to segment them on image
sequence. Unfortunately, the modern approaches are mainly based on convolutional neural net-
works [229], which require already processed data for training. In our case, we did not have it.
Therefore, without having any other appropriate solution, we segmented sets of points manu-
ally. After segmentation, to extract markers trajectories, we had to find points correspondences
between neighbor frames. Currently, we used an approach based on the minimal distances. The
idea is to compute the squared distance matrix for the two sets of points, and then couple them
by selecting pairs with the minimal available distance from the uncoupled subset.

To perform the data assimilation step, the constructed model had to be registered on intraop-
erative view. The registration was based on the superficial tackers. Since the same tackers were
recorded by the RGB-D camera, we had their spatial positions for intraoperative data. With two
available point clouds, the registration procedure can be performed based on iterative closest
point approach.

To simulate the liver behavior, we used a hyperelastic Finite Element Method with StVK ma-
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terial. Unfortunately, we did not have a possibility to measure the liver Young’s modulus, so we
took it as 15 kPa, which is an approximate average for the measurements done in the literature
(for example, in [168]). However, in general case, it is possible to estimate the modulus using,
for example, ultrasound elastography. We also took Poisson’s ratio as 0.49 since liver tissues are
almost incompressible. The spring parameters were inferred according to the description, given
in Section 4.4. As a reference stress-strain curve, we used data from porcine peritoneum [246],
(Fig.7a, x direction). We estimated the Young’s modulus for the reference Neo-Hookean model
using the parameter optimization method available in FEBio [132] (we got 403 kPa). Then, we
performed initial approximation of spring parameters using the ROUKF.

The data assimilation was performed with the preconditioned ROUKF. After that, we com-
puted a Target Registration Error to validate the corrected model and process computation time.

For validation, we used another CT scan where the liver was fixed in the deformed state.
The deformation was obtained by putting a roller piece under it. With these conditions, the
modified liver shape differed from the reconstructed one. The difference between the CT scans
is presented in Fig. 5.17. From the second CT we extracted only surface tackers and internal
fiducials.

Figure 5.17: Visual comparison of two CT scans for the liver organ in its rest shape (left image)
and deformed shape (right image).

We supposed that two CT scans are aligned, so we can directly compare the two sets of
points. Also, for comparison, we mapped surface markers from both configurations and com-
pared the position of internal fiducials. Roughly talking, it is not very accurate since the biome-
chanical model deformation is based on mechanical parameters, which only approximate the
behavior of real tissues. At the same time, we just created matches between surfaces regardless
the model behavior. Anyway, without having any force feedback in the system, this comparison
is the best idea we have and still can give us some general results related to model accuracy.

We considered three scenarios:

1. Only blood vessels, as BCs visible on a CT scan, are modeled. They are placed as a fixed
region.

2. The known BCs are modeled including blood vessels and ligaments obtained from the
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statistical atlas. The blood vessels are placed as a fixed region, while the parameters of
springs are initialized based on the porcine peritoneum stress-strain curve.

3. The known BCs are modeled including blood vessels and ligaments obtained from the
statistical atlas. The blood vessels are placed as a fixed region, and parameters of springs
are estimated based on the reduced-order unscented Kalman filter with preconditioning.

The Target Registration Error for all three scenarios is presented in Fig. 5.18. Since only 9

Figure 5.18: TRE for the internal fiducials between the groundtruth and the simulation results in
three scenarios. In the first scenario, only blood vessels as fixed BCs are modeled. In the second
one, a mass-spring system is added with parameters estimated from pig peritoneum stress-strain
curve. In the third one, a mass-spring system is added with spring parameters estimated by the
preconditioned ROUKF. The fiducials labels are correspondent to ones in Fig. 5.13 right.

internal markers were inserted, we show the difference separately for each of them. The average
difference for the first case is 17.5 mm. For the second case related to the initial approximation,
it is 16.1 mm, and for the last one 14 mm. For data assimilation process with preconditioning,
the computation time for one iteration takes 1.97 seconds on average.

The results show that for the case with added BCs there is a certain improvement in simu-
lation accuracy. The estimated BCs give further improvement for several deep fiducials, while
the positions of others become less accurate. Anyway, the average difference decreases further.

It is worth saying that in this experiment we expected to observe much more accurate sim-
ulation for the last two cases. The reasons why we do not have so much improvement might be
different. First of all, we map superficial points, therefore, forcing the system to behave accord-
ing to the observed part of the liver, but not to its biomechanical properties. Then it might also
be due to unilateral BCs, which we do not consider at all, but they still have a huge influence
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on the simulation process. In addition, we observe too little data with too big noise, which does
not allow us to assimilate a lot of information. It is also worth noting that in general case we
could track the surgical tool outside the abdominal area with an optical system and, therefore,
simulate its influence more accurately. But without having this information, we just used some
of the observations to control the deformation, which also appends additional error.

5.4 Discussion
This work is dedicated to the problem of BCs identification for the more accurate liver behavior
simulation. The corrected simulation can be used in augmented reality system to reveal the
internal parts of the organ, which would help surgeons to perform quicker and safer procedures.

To correct values of the boundary conditions, the nonlinear Kalman filter has been em-
ployed. The initial approximation is made based on a statistical atlas and a constitutive law
available in the literature. This statistic is not always available in practice. But it is possible to
perform the necessary segmentation and other measurements for several samples manually, and
the results can already be used as an initial approximation.

To perform correction, the filtering approach uses data obtained from surgical recordings.
As observed markers, any trackable points on the liver surface can be used, such as standard or
reflective markers or marks burned with a surgical tool. An important issue is to observe and
track their motion; otherwise, nothing can be learned about the behavior of the organ.

The boundary conditions are presented as nonlinear springs with unknown parameters. To-
gether with the liver nodes, they form the state estimated by the filter. The mass-spring system
is computationally fast and allows handling topological changes without complex mesh restruc-
turing. Of course, it does not simulate the behavior of boundary conditions accurately. However,
we are mainly interested in predicting the deformation of the liver organ but not its surrounding
tissues. On the other side, we reduce the complexity of the model, while keeping simulation of
liver deformations with sufficient accuracy. The results show that by estimating BCs this way,
the simulation error decreases significantly.

Both liver and ligaments as well as other human organs and tissues have nonlinear proper-
ties. The unscented Kalman filter and its extensions are an interesting choice since they handle
the nonlinearity without computing the system derivatives, which is not trivial for the hyper-
elastic Finite Element method. The essential challenge, however, is that this transformation
requires to perform the simulation for every generated sigma point, which is time consuming.
On the other hand, the model has to simulate the liver in real time because surgeons have to
observe directly the results of their manipulations. Therefore we focus on the reduced filters,
which enable us to decrease essentially the computational cost, while keeping approximately
the same level of estimation accuracy.

It is also important to point out that the nonlinear Kalman filter can update the estimation
in time. If surgeons perform certain modifications of BCs, such as ligament cutting, it could
be corrected by the upcoming data assimilation. The results show that the filtering approach
quickly reacts to such changes and is able to estimate the modified parameters.

The idea to precondition the computation of the sigma points can give us some improvement
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in computation speed, but a frame rate (20-60 Hz) suited for human vision cannot be achieved
yet. Anyway, filters allow obtaining intermediate results, which could be used to improve the
estimation for the AR system in a workflow scenario. In this case, a possible solution is to put
the filtering approach in a separate background process, which updates the real-time simulation
as far as a new estimation is ready. It will perform estimation with a certain delay, but, with the
lapse of time, the real-time simulation will get the updated parameters, and this will improve its
accuracy.

One of the main advantages for the filtering approach is its uncertainty nature. It incorporates
the observation errors of intraoperative images and takes into account that the liver model is
inaccurate. Therefore, we could use a simplified but less accurate model to be close to real time
and be sure our model is processed properly. Also, together with expected values, the filters give
us estimation statistics, which we could use as an additional information for the investigations,
such as exploring the dependency of the estimated values on various system parameters.

On the other hand, the filtering approach requires the certain knowledge about system uncer-
tainty, since it has parameters that have to be tuned appropriately. In ideal case, the measurement
and model noise have to be known, but in context of our work it depends on so many factors that
we cannot estimate them easily. A possible way to avoid this might be to use estimation with
adaptive parameters tuning, but there is no well-defined methodology related to this domain.

In addition to that, the Gaussian distribution might not be the best probability distribution
to estimate stiffness parameters. However, we have to keep using it since non-Gaussian distri-
butions are computationally expensive and cannot be applied for the real-time systems.

The estimation process is dependent on the initial stiffness value and its covariance. The
choice for the initial stiffness is not trivial. It cannot be negative due to unrealistic behavior, and
it also has to be small enough since stiff objects are almost solid, and therefore there is little
information for data assimilation. The idea is to take the softest values available in the literature,
which are reasonable and relate to the available data. Ideally, in this case, it will provide us with
the most relevant information.

Looking at the covariance, for small values the process might take too much time to con-
verge, but for big ones sigma points will get too different simulations, which might cause huge
deviations and, finally, divergence.

Despite all drawbacks and limitations, we still think the proposed method is the best possi-
ble solution to estimate BCs, taking into account the given constraints and general knowledge
absence about patient specific description of liver boundaries.
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CHAPTER 6

CONCLUSION

In this work we proposed a new method to estimate BCs based on reduced-order unscented
Kalman filtering approach. The boundary conditions are presented as springs with unknown
parameters. The filter estimates them using patient-specific information obtained during surgery.
The initial approximation of BCs is taken from a statistical atlas, constructed from a set of liver
models with segmented ligaments, and an experimental constitutive law using the parameters
fitting approach.

We believe the proposed solution offers a great potential. The atlas registration allows fo-
cusing only on the specific areas of interest and does not take into account other regions. The
data assimilation process helps us to correct the initial approximation according to data obtained
from a specific patient, which is a huge benefit. Generally, the anatomy of every person has spe-
cific variations, and this makes it different from a statistical average. Moreover, filtering process
allows us to perform parameters correction in close to real-time context. This is an essential
point for the cases when the recorded data has to be processed during the procedure, or there is
no additional time for calculations.

Our main area of interest is the simulation of soft tissues in the clinical context. However,
the proposed approach could be used in various areas. Finite element method is one of the most
popular methods to solve systems of partial derivatives. Preconditioning is a common approach
to improve the convergence for linear systems. Kalman filtering is also a general approach for
estimation of some unknowns in a dynamic process. Thus, the main restrictions of the proposed
approach are the presence of dynamics in a considered event and the existence of observations
that track it.

We are trying to estimate the liver boundary conditions, but, commonly, we could estimate
various parameters of the constructed model, created for any organ or tissue. The parameters
might be either time dependent or not. Also, in our work, we mainly focus on cameras, but,
in general case, other medical modalities could be used, such as ultrasound probes, magnetic
trackers, or infrared sensors.

In addition to that, we guess such approach has a primary importance for medical robotic
systems. Unlike humans, robots process only the data they observe, and, therefore, a possibility
to correct constantly the procedure according to the obtained information will definitely increase
their positive outcome.

There are possibilities for further improvement of our approach. The main issue is that,
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despite the data assimilation procedure is close to real-time performance, it is still not there.
So, it would be nice to improve further the computational time. The sigma points can be easily
parallelized since they process independent simulations. Moreover, it is possible to perform it
on a GPU, which in general is faster. The narrow place is CPU to GPU transformation, but we
need to transfer only stochastic state, while all other data related to biomechanical simulation
could be kept in the GPU.

In addition, it would be interesting to add a mechanism to estimate unilateral constraints
(contacts) using the Kalman filter. Unlike ligaments and other attachments, these constraints
are active only when liver contacts surrounding organs and tissues, so for their estimation a
special protocol is required. A possible solution might be to select a certain video sequence,
where surgeons perform specific manipulations to activate all contacts, and use a Kalman filter
to estimate only their characteristics.

Another possibility is the improvement of the filtering approach itself. Data assimilation
is composed of two classes. They are statistical, which includes various versions of Kalman
filters, and variational, which were obtained from optimal control theory. Each of them has its
own advantages and drawbacks. In recent investigations, researchers are trying to combine them
to keep advantages from both classes. As a result, new hybrid variational-statistical methods
appear. In the domain of biomedical modeling and particularly liver BCs estimation, they might
give some advantage for the accuracy over performance rate.

It is also possible to look at how the observations are obtained. Currently a general optical
tracking approach is used. The RGB-D camera is a recent development that allows reconstruct-
ing three-dimensional positions based on selected image pixels. But in this case, instead of just
selecting features, it is possible to segment the visible part of the object surface, reconstruct
the point cloud related to it, and then create points matching between frames. This will help
to avoid putting any markers on the surface. But the main question, which remains here, is the
creation of a reliable matching between point clouds.

Consequently, in the future work, it would be important to focus the research on the indi-
cated remarks.
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Introduction
Le foie est un des plus grands organes du corps humain. Il joue un rôle fondamental dans de
nombreuses fonctions vitales, notamment la détoxification de divers métabolites, la synthèse
des protéines et la production de substances biochimiques nécessaires à la digestion et à la
croissance. Par conséquent, les maladies du foie peuvent entraîner de graves problèmes qui se
traduisent par diverses anomalies et une réduction de l’espérance de la vie. Il est particulière-
ment vulnérable au cancer primaire du foie, qui est le cinquième cancer le plus fréquent dans le
monde et la troisième cause de décès par cancer. L’organe hépatique souffre également d’autres
métastases, causées par des maladies telles que le cancer colorectal.

Avec la transplantation, le traitement typique du cancer pour le foie est la résection chirur-
gicale. Les chirurgiens enlèvent complètement les tumeurs, tout en préservant autant de tis-
sus sains que possible. Actuellement la tendance principale est d’utiliser des procédures plus
sûres avec moins de complications, comme les traitements mini-invasifs. Cependant, pendant
ces procédures, il n’y a pas de vue directe de la zone à opérer. C’est pourquoi les chirurgiens
utilisent diverses modalités d’imagerie médicales, telles que des caméras laparoscopiques 3D,
qui n’offrent qu’un champ de vision limité. Pour améliorer cette situation, une solution possible
est d’utiliser un modèle qui simule le comportement de l’organe réel. Adapté à la partie visible,
il prédit les positions des parties invisibles et montre les emplacements des tumeurs initialement
reconstruites, formant ainsi une réalité augmentée pour l’organe considéré.

Le foie est un organe mou, qui change de forme pendant la chirurgie, mais aussi en raison
des mouvements respiratoires et cardiaques. Fournir une vue augmentée du foie pendant la
chirurgie nécessite donc de relever plusieurs défis: le modèle 3D de l’anatomie virtuelle doit être
recalé sur l’organe réel en utilisant uniquement des données de surface partielles; il doit suivre
le mouvement réel des tissus en temps réel; et il doit fournir une estimation de l’emplacement
des structures internes avec une bonne précision.

Pour atteindre ces objectifs, différentes solutions ont été proposées. Certaines méthodes pro-
posent d’utiliser des modalités d’imagerie médicales peropératoires comme la tomographie par
ordinateur ou l’imagerie par résonance magnétique. D’autres essaient de reconstruire progres-
sivement la région abdominale. Mais les approches principales sont soit des méthodes basées
sur l’intensité, qui tentent de fusionner les données avec l’image peropératoire, soit des méth-
odes basées sur la physique, qui décrivent la déformation de l’organe avec plus ou moins de
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précision. Lors d’une chirurgie hépatique, le principal système visuel reste la vision directe
(en chirurgie ouverte) ou à travers une caméra (dans les procédures laparoscopiques). Par con-
séquent, seule une petite partie de la surface du foie est observée, à partir de laquelle un champ
de déplacement dense doit être récupéré. Dans ce contexte, une solution basée sur la physique
est très efficace pour estimer le déplacement en profondeur à partir du mouvement de la surface,
ou plus généralement à partir de données éparses.

Tout problème mécanique comporte plusieurs composantes principales: (1) une approche
numérique, telle que la méthode des éléments finis, qui relient la géométrie de la déformation
avec la déformation du matériau; (2) une méthode d’optimisation, telle que celle de Newton-
Raphson, qui traite les équations d’équilibre entre la contrainte interne et les contraintes ap-
pliquées ou les forces externes; (3) une loi constitutive qui décrit les propriétés du matériau en
interconnectant la contrainte et la déformation; et (4) un ensemble de conditions aux limites
(CAL) qui caractérisent la façon dont la région d’intérêt est connectée au milieu environnant.
Actuellement, un certain nombre d’articles liés à ce sujet (y compris ceux énumérés ci-dessus)
sont consacrés à la construction d’un modèle numérique pour les simulations de foie en temps
réel, nécessaire pour créer le système de réalité augmentée. D’autres décrivent des propriétés
matérielles hyperélastiques du foie. Cependant, beaucoup moins de travaux ont porté sur le rôle
des conditions aux limites dans la déformation des tissus mous.

Malheureusement, dans le cas du foie, les CAL sont principalement donnés par les liga-
ments, les vaisseaux sanguins et les organes environnants, dont les propriétés ne peuvent être
mesurées de manière fiable. Dans tous les cas, le comportement du foie peut être recalé à
l’aide d’une caméra, d’une échographie ou d’une autre modalité, mais en raison des erreurs
d’observation, il existe une grande incertitude dans le système. Par conséquent, nous avons be-
soin de trouver une approche qui peut permettre d’estimer les caractéristiques des attaches de
l’organe en utilisant la déformation observée du tissu hépatique.

Le système d’estimation des conditions aux limites
Nous proposons une solution pour estimer les conditions aux limites du foie afin d’avoir une
simulation plus précise de sa déformation. Elle est basée sur la combinaison d’un modèle hy-
perélastique du foie et d’une simulation non linéaire du ligament, initialisée à partir d’un atlas
statistique et corrigée par un processus d’assimilation de données stochastiques. Dans notre ap-
proche, nous gardons un fort accent sur la modélisation spécifique au patient et la possibilité de
déployer notre méthode dans un cadre clinique sans avoir besoin d’équipement supplémentaire.

Notre idée comporte deux étapes principales. Dans la première étape, nous créons
une approximation initiale généralisée des CAL. Dans la deuxième étape, nous corrigeons
l’approximation sur la base de données spécifiques au patient obtenues à partir d’une modalité
utilisée dans la procédure chirurgicale.
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Modèle Saint Venant-Kirchhoff pour simuler le comportement du foie
L’un des principaux défis auxquels nous avons été confrontés était lié au choix du meilleur
modèle pour simuler le comportement du foie. Il doit être rapide pour effectuer une simulation
en temps réel, mais aussi être capable de simuler un comportement non linéaire puisque le
tissu hépatique a des propriétés hyperélastiques. Les principales possibilités disponibles sont
la méthode des éléments finissent corotatifs et les approches par éléments finis avec l’un des
modèles de matériaux hyperélastiques de base. Pour notre expérience, nous avons choisi les
modèles Saint Venant-Kirchhoff, Néo-Hookéen et Mooney-Rivlin comme étant les plus simples
et nous les avons comparés au modèle corotatif. Nous avons décidé d’utiliser la déformation par
flexion car les chirurgiens plient généralement les parties antérieures du foie pour accéder aux
parties postérieures. Nous avons plié un objet cylindrique à l’aide de quatre modèles différents
et comparé les formes obtenues.

Les résultats montrent que le modèle corotatif fonctionne aussi bien que les modèles hy-
perélastiques de Saint Venant-Kirchhoff, de Néo-Hookéen et de Mooney-Rivlin avec des dif-
férences de moins que 5%, tandis que le modèle linéaire a un comportement complètement
différent. En matière de temps de calcul, le modèle corotatif est légèrement plus rapide que
le modèle Saint Venant-Kirchhoff et plus rapide que les modèles Néo-Hookéen et Mooney-
Rivlin. Cependant, malgré sa simplicité, le modèle corotationnel est assez instable, principale-
ment parce que toute déformation peut être décrite par une combinaison de déformation linéaire
et de rotation rigide. Le problème le plus grave est que cette instabilité pourrait influencer le pro-
cessus d’estimation, entraînant une mauvaise estimation des paramètres. Comme les différences
des résultats de simulation et de temps de calcul sont faibles entre les matériaux corotationnels
et Saint Venant-Kirchhoff, nous avons finalement décidé de choisir un modèle hyperélastique
avec un matériau Saint Venant-Kirchhoff pour simuler les déformations du foie.

Ressorts cubiques pour simuler les déformations des ligaments
Une autre question importante est la simulation des attaches du foie. Le point principal ici est
que nous prenons en compte les CAL pour améliorer la précision prédictive du modèle. Par
conséquent, nous n’avons pas besoin de simuler la déformation exacte des attaches. D’un autre
côté, comme elles sont faites d’un matériau mou, nous avons besoin d’un modèle qui prenne en
compte leurs déformations.

Les principales conditions aux limites du foie sont constituées par le péritoine, qui forme la
plupart des ligaments (falciforme, coronaire, triangulaire, hépatogastrique et hépatoduodénal).
Ces ligaments couvrent de grandes régions de la surface du foie. Ils jouent donc un rôle essentiel
dans la formation des contraintes lors des déformations du foie. Le ligament rond, quant à lui,
est un cordon fibreux dérivé de la veine ombilicale, et possède donc des propriétés différentes.

Il existe plusieurs approches pour modéliser les ligaments: des modèles linéaires basés sur
les éléments finis (éléments finis à volume mince, triangles à déformation constante, éléments
finis plans), des éléments de poutre, et aussi un modèle masse-ressort. Ce dernier est préférable
pour nous car il est rapide et permet de traiter les changements topologiques d’une manière
simple. À titre de comparaison, nous avons réalisé une expérience dans laquelle nous avons
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étiré un rectangle échantillon, modélisé avec les éléments finis à volume mince et le modèle
masse-ressort.

Comme les tissus humains ont des propriétés non linéaires, nous avons décidé d’utiliser
des ressorts avec une relation contrainte-déformation non linéaire, pour une modélisation stable
des attaches du foie. Malheureusement, il n’existe aucun article décrivant les propriétés biomé-
caniques du péritoine abdominal. Nous avons donc choisi des propriétés générales pour tous
les ligaments. Les articles décrivant les ligaments de la cheville et du genou chez l’homme,
ainsi que le péritoine de porc, montrent que la relation contrainte-déformation d’un ligament
ressemble généralement à une courbe polynomiale. Nous avons donc décidé de prendre des
ressorts cubiques avec des coefficients inconnus, qui seront identifiés au cours du processus
d’estimation.

Pour valider le comportement des ressorts, nous utilisons l’approche par éléments finis hy-
perélastiques comme modèle de référence. Sur la base des données obtenues dans des articles,
nous avons modélisé une forme rectangulaire mince en utilisant un matériau Néo-Hookéen et
avons choisi une paramétrisation qui produirait des courbes de contrainte-déformation simi-
laires. Cela a conduit à un ensemble de lois constitutives avec un module d’Young dans une
certaine plage. Ensuite, nous avons généré une discrétisation du même domaine à l’aide de
ressorts et assimilé les paramètres des ressorts. Puisque seule la région du ligament attaché au
foie a une influence sur son mouvement, nous ne comparons que les noeuds de cette région.

Les résultats montrent une erreur moyenne entre les deux modèles d’environ plusieurs mil-
limètres, pour des déformations allant jusqu’à 45% (c’est-à-dire couvrant la gamme de déforma-
tion du ligament en chirurgie). Cela montre que le comportement de notre système masse-ressort
est similaire à celui d’un matériau Néo-Hookéen. Les expériences de performance réalisées pour
les mêmes modèles montrent que le système masse-ressort est 35 fois plus rapide à calculer et
peut-être généré automatiquement à partir de l’atlas.

Construction d’atlas statistique
Pour approximer les positions de ligaments au stade initial, l’idée est d’utiliser un atlas statis-
tique. Bien que l’atlas ne puisse pas nous fournir les propriétés exactes des CAL dans le cas
spécifique du patient, il nous permet de réduire la zone potentielle d’estimation des CAL. Cela
permet d’éviter un grand nombre de calculs redondants, ce qui est crucial dans un contexte de
modélisation en temps réel.

La construction de l’atlas est basée sur une technique appelée cartographie métrique dif-
féomorphe à grande déformation. Dans cette méthode, un recalage deformable de modèle est
considéré comme une construction d’une transformation difféomorphe entre des formes. Pour
construire une forme moyenne, la forme sélectionnée est recalée sur toutes les formes d’une
base de données. Et ensuite, la moyenne est calculée en tant que minimisation de la transforma-
tion différentielle globale.

Notre atlas contient une forme moyenne générée à base de données d’images obtenues à
partir d’un ensemble de foies réels. D’autres formes avec des positions de ligament segmen-
tées sont recalées sur la forme moyenne en utilisant la cartographie métrique difféomorphe.
Il permet d’effectuer un recalage avec une minimisation des différences de forme. On essaye
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de garder donc seulement la différence entre les positions de ligaments. Les attaches ligamen-
taires extraites ressemblent à un ensemble de courbes. Cependant, nous n’avons pas de descrip-
tion paramétrique définie pour ces dernières. Donc, pour calculer la statistique, l’ensemble des
courbes est intersecté par un certain nombre de plans et les points moyens avec l’écart-type sont
calculés pour chaque intersection. Enfin, la forme moyenne avec la statistique est recalée sur le
patient cible du foie en utilisant la même approche de recalage déformable.

Initialisation des paramètres des ligaments
Les paramètres du ressort doivent également être initialisés d’une manière ou d’une autre. Pour
définir l’approximation initiale, des recherches ont été menées sur les propriétés du péritoine
de porc. Nous avons décidé de nous appuyer sur cette loi constitutive comme base pour le
modèle de CAL. Les coefficients du matériau hyperélastique pour le modèle d’éléments finis
non linéaires ont été calculés à l’aide de l’algorithme de Levenberg-Marquardt, qui est utilisé
pour résoudre les problèmes d’ajustement de courbe par les moindres carrés non linéaires. Nous
utilisons le modèle Néo-Hookéen et estimons son module d’Young.

Les paramètres du ressort ont ensuite été estimés en utilisant une approche d’assimilation
de données. Nous utilisons le comportement contrainte-déformation du modèle hyperélastique
comme modèle de référence. Sur la base de la description des plis du péritoine tiré de la littéra-
ture, nous avons modélisé une forme rectangulaire et un matériau Néo-Hookéen. Ensuite, nous
avons généré une discrétisation du même domaine à l’aide de ressorts et assimilé les paramètres
des ressorts. Puisque seule la région du ligament attaché au foie a une influence sur son mou-
vement, nous ne comparons que les noeuds de cette région. Les résultats de l’assimilation sont
ensuite utilisés comme valeurs initiales pour l’étape de correction.

Correction stochastique
La deuxième étape, c’est la correction des conditions aux limites. Le processus de correction est
soumis à plusieurs exigences. Il doit être réalisé en temps réel puisque la correction est effectuée
pendant une procédure chirurgicale, mais aussi gérer les changements topologiques puisque les
chirurgiens coupent souvent des ligaments pour accéder aux parties arrière du foie. Enfin, il doit
gérer des observations bruitées, car les caméras médicales suivent le foie avec certaines erreurs
de mesure.

Pour faire face à cette incertitude, nous proposons d’utiliser l’inférence bayésienne. Elle
permet d’estimer l’emplacement et la rigidité des ligaments. En bref, cette approche utilise
le théorème de Bayes pour mettre à jour la probabilité d’une hypothèse lorsque de nouvelles
preuves ou informations sont disponibles. L’inférence bayésienne tient compte du bruit statis-
tique dans les données et fournit une régularisation probabiliste, ce qui permet de résoudre les
problèmes inverses avec des observations limitées.

Une implémentation efficace d’une méthode d’inférence bayésienne, capable de traiter des
systèmes non linéaires comme nos modèles, est le filtre de Kalman. Dans cette méthode,
l’algorithme général consiste en une boucle qui contient deux étapes principales. Dans l’étape
de prédiction, nous formons la nouvelle hypothèse sur l’état estimé, tandis que dans l’étape
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de correction, nous la corrigeons en comparant les mesures prédites aux observations réelles
(bruitées et partielles).

Pour traiter les systèmes non linéaires, il existe deux extensions principales de l’approche de
filtrage. Le filtre de Kalman étendu suppose la linéarisation de l’opérateur du processus, prin-
cipalement à l’aide du Jacobien. Une autre option est le filtre de Kalman dit "unscented". Par
rapport à un filtre de Kalman étendu, il ne nécessite pas le calcul du Jacobien du système, ce qui
est difficile étant donné le contexte de notre problème. Les inconnues pour l’estimation (l’état
stochastique du système) sont décrites comme une distribution gaussienne, dont la transforma-
tion à travers le système non linéaire est effectuée en utilisant une transformation unscented.
L’idée principale est de paramétrer la distribution gaussienne en utilisant une série de points
sigma, qui contiennent les informations de moyenne et de covariance, mais qui sont plus faciles
à transférer à travers une transformation non linéaire.

Chaque point sigma dans l’étape de prédiction correspond à des valeurs de paramètres et à
des positions de modèle perturbées. Le système d’éléments finis est résolu en prenant les po-
sitions modifiées au lieu des positions originales. Ensuite, l’état prédit est calculé comme une
moyenne des résultats de la simulation d’éléments finis pour tous les points sigma. Par con-
séquent, l’étape de prédiction peut être très coûteuse lorsqu’on utilise un modèle comportant
de nombreux degrés de liberté, comme c’est le cas lorsqu’on utilise une méthode d’éléments
finis. En utilisant la méthode du simplexe pour générer les points sigma, et avec un maillage de
N noeuds et K paramètres de rigidité, cela impliquerait 3N +K + 1 simulations. Un maillage
simple de seulement quelques centaines de noeuds prendrait trop de temps pour une applica-
tion clinique, car il faudrait plus de trois cents simulations pour chaque étape du processus
d’assimilation.

Une idée pour résoudre ce problème est d’utiliser un filtre de Kalman unscented d’ordre
réduit. L’idée principale est de manipuler la matrice d’état sous la forme factorisée. Donc le
coût de calcul réduit considérablement jusqu’à K +1 simulations (dans le meilleur des cas).

Une autre option consiste à utiliser le filtre de Kalman d’ensemble. Ici l’idée est de présenter
la distribution de probabilité comme une série de particules appelées membres de l’ensemble.
Au lieu de propager la covariance d’état à travers le système non linéaire en utilisant la linéari-
sation ou un ensemble de points sigma, elle est approximée par l’estimateur de Monte Carlo.
Par conséquent, l’état peut être prédit par un plus petit nombre de membres transformés.

Les deux options permettent de calculer les étapes de prédiction avec une quantité essen-
tiellement plus faible de simulations réalisées.

Logiciel Optimus
Pour réaliser des expériences liées à une simulation stochastique, nous avons besoin d’un logi-
ciel qui met en oeuvre des approches de filtrage et permet d’estimer diverses caractéristiques
du modèle biomécanique. Par conséquent, nous avons implémenté notre propre plugiciel pour
le logiciel SOFA, appelé Optimus. Maintenant, il est disponible gratuitement sur Internet. Nous
avons créé une architecture qui permet d’ajouter une approche générique en suivant la structure
prédiction-correction.

L’idée principale de ce plugiciel est la séparation entre l’état stochastique, utilisé dans
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l’algorithme de Kalman, et de l’état mécanique, nécessaire pour la simulation physique. De
cette façon, nous minimisons le nombre de dépendances entre les approches d’assimilation de
données et les composants logiciels liés à la simulation physique. Ainsi, d’une part, nous pou-
vons facilement ajouter de nouvelles méthodes qui sont basées sur le schéma prédicteur cor-
recteur comme, par exemple, un filtre particulaire ou une approche séquentielle des moindres
carrés. D’autre part, nous pouvons utiliser différents types de modèles basés sur la physique et
d’autres composants dans SOFA, y compris ceux disponibles dans l’autres plugiciels et exten-
sions développés sur la base de SOFA. Il est intéressant de noter que le plugiciel Optimus permet
techniquement d’estimer ou d’identifier toute quantité spécifiée dans le système construit.

Préconditionnement pour accélérer le processus d’estimation
Comme nous l’avons noté ci-dessus, la partie la plus coûteuse en calcul du processus de filtrage
est la prédiction. Pour prédire l’étape suivante de la simulation du foie, un certain nombre de
simulations doivent être effectuées. La version d’ordre réduit ou le filtre Kalman d’ensemble
nous permet de réduire le nombre de points sigma, mais, dans tous les cas, si nous estimons
plus de quelques paramètres, l’ensemble du processus prendra encore du temps. Pour améliorer
encore la simulation, nous proposons d’utiliser un préconditionneur.

En général, le préconditionneur est un opérateur qui effectue la transformation d’un prob-
lème biomécanique vers un espace beaucoup plus régulier. Cela permet de faire converger une
étape du processus de simulation en quelques itérations seulement. Dans le cas idéal, le pré-
conditionneur est l’inverse de la matrice du système, mais en pratique, il suffit d’avoir une
approximation. Par conséquent, l’idée est de calculer le préconditionneur pour le premier point
sigma et de l’utiliser pour tous les autres points dans des étapes de simulation données. En ef-
fet, chaque point sigma est obtenu à partir des valeurs originales en effectuant la perturbation
de quelques inconnues seulement. Donc, la différence entre les matrices de simulation pour
tous ces points sigma est faible et, par conséquent, la transformation de préconditionnement
donne une matrice presque unique. Dans ce cas, la simulation sera effectuée rapidement pour
tous les points sigma sauf le premier. Ainsi, le préconditionneur peut également améliorer les
performances du processus d’estimation.

Expériences d’estimation des conditions aux limites
Pour répondre aux exigences du contexte chirurgical, nous avons choisi un modèle d’éléments
finis hyperélastiques avec un matériau de Saint Venant-Kirchhoff pour simuler les déformations
du foie et un système masse-ressort pour les attaches du foie. Ces deux modèles sont rapides, ce
qui nous permet de les utiliser dans un contexte de temps réel. De plus, dans le modèle masse-
ressort, il est facile d’effectuer des changements topologiques sans restructuration complexe du
maillage. Le filtre a également besoin d’effectuer des calculs presque en temps réel.
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Comparaison des versions du filtre
Tout d’abord, nous avons décidé de comparer les versions différentes de filtres. Pour les ex-
périences, nous avons pris un objet de forme simple et appliqué des forces périodiques pour le
déformer. Nous avons considéré deux scénarios possibles de conditions aux limites: des con-
ditions fixes et le système masse-ressort. Nous estimons les coefficients des matériaux et les
paramètres du ressort à la frontière ainsi que le temps de calcul.

Les résultats montrent que les deux versions réduites sont beaucoup plus rapides que le
filtre de Kalman unscented. Et en général, la version réduite est plus rapide que le filtre de
Kalman d’ensemble, tout en ayant des résultats d’estimation similaires. En réduisant davantage
le nombre de membres de l’ensemble, la version d’ensemble pourrait être plus rapide que la
version réduite, mais cela pourrait également entraîner des instabilités de simulation et des
divergences dans le processus d’assimilation des données.

Nous avons également réalisé une expérience pour observer comment les filtres se com-
porteront en cas de changement topologique. Pour effectuer ce changement, nous avons simulé
la coupure des ligaments en fixant simplement leur rigidité à des valeurs nulles. Les résultats
montrent que les filtres sont capables de s’adapter rapidement à ces changements, avec des
résultats de performance similaires aux autres expériences. C’est pourquoi, finalement, nous
avons décidé de nous appuyer sur la version d’ordre réduit du filtrage de Kalman unscented.

Pour vérifier l’amélioration des performances en cas de préconditionneur, nous avons réalisé
une expérience avec le même modèle. Le modèle était fixé par des ressorts, dont la rigidité était
estimée. Pendant le processus d’estimation, nous avons enregistré le temps de calcul de mil-
liers d’itérations pour les cas avec et sans préconditionneur. Les résultats montrent qu’avec le
préconditionneur, le temps de calcul est presque 25% moins élevé que sans lui. D’autre part, la
différence entre les valeurs estimées est faible et peut-être négligée. Globalement, le précondi-
tionneur n’améliore pas de manière significative les performances pour l’ensemble du processus
d’estimation, mais nous pouvons tout de même obtenir un certain avantage.

Expériences avec modèle du foie et observations synthétiques
Nous avons d’abord validé notre modèle de foie optimisé par rapport à une solution numérique.
Le foie a été généré à partir d’un scanner segmenté d’un patient, et l’emplacement des ligaments
a été défini par un expert. Pour des raisons de simplicité, nous avons décidé de ne pas considérer
d’atlas et de se concentrer sur le ligament falciforme.

La simulation de référence est calculée à l’aide du logiciel FEBio. Le foie a été maillé
avec environ soixante-dix mille éléments tétraédriques linéaires. Les mailles du ligament (élé-
ments coques) ont été générées par extrusion dans la direction de la normale à la surface du
foie. Des contraintes de Dirichlet ont été appliquées aux noeuds les plus éloignés du foie, et
des contraintes bilatérales ont été utilisées pour coupler les modèles de foie et de ligament.
Un modèle d’Ogden a été utilisé pour le foie et un matériau Néo-Hookéen pour les ligaments.
Pour générer une déformation représentative de la manipulation chirurgicale, nous avons ap-
pliqué des charges périodiques aux deux lobes du foie. Nous avons également défini plusieurs

128



129

marqueurs virtuels pour représenter les observations qui pourraient être obtenues lors d’une
chirurgie réelle. Ils ont été utilisés dans le processus d’assimilation des données.

D’autre part, le modèle de foie et de ligament en temps réel a été implémenté en utilisant
le logiciel SOFA. Le maillage du foie a été généré avec environ plusieurs milliers d’éléments.
Nous avons utilisé un modèle Saint Venant-Kirchhoff, pour lequel un coefficient de Poisson
de matériau presque incompressible. Les ligaments ont été également extrudés le long de la
normale à la surface du foie comme deux couches de ressorts non linéaires. Les paramètres
des ressorts ont été déduits de la courbe contrainte-déformation du péritoine de porc en util-
isant la méthode d’initialisation décrite précédemment. Pour optimiser davantage le processus
d’assimilation, nous avons divisé l’ensemble des ressorts en groupes qui partagent les mêmes
paramètres de rigidité. De cette façon, nous avons estimé les paramètres pour chaque région,
mais pas pour chaque ressort.

Pour évaluer nos résultats, nous avons utilisé des marqueurs virtuels uniformément répar-
tis sur le modèle de foie. Pour montrer comment notre estimation des CAL peut améliorer la
précision globale de la déformation du foie, nous avons comparé les positions des marqueurs
obtenues avec notre méthode avec une simulation impliquant le même modèle de foie mais
utilisant des CAL fixes. Les résultats montrent que pour les CAL estimés avec notre méthode,
l’erreur moyenne de déformation n’est que de 2 millimètres, alors qu’elle est de 7 millimètres
lorsqu’on utilise des CAL constants prédéfinis. Pour la plus grande déformation, l’erreur est
réduite d’environ quatre fois.

Résultats de construction de l’atlas statistique
Pour la construction de l’atlas, nous avons pris 15 modèles de foie où les ligaments ont été
segmentés par un expert. Nous avons utilisé 14 maillages pour générer l’atlas statistique et 1
pour la validation. Nous avons également réalisé des statistiques pour les ligaments falciforme,
coronaire et triangulaire.

La construction de la forme moyenne et le recalage déformable étaient basés sur la car-
tographie métrique difféomorphe à grande déformation. Pour l’effectuer, on a utilisé le logiciel
Deformetrica. Ensuite, pour calculer les statistiques des courbes, nous avons intersecté la région
d’intérêt avec une série de plans. Pour générer des statistiques en cas de ligament falciforme,
nous avons utilisé des plans radiaux, tandis que pour les ligaments coronaux et triangulaires,
nous avons sélectionné une série de planes parallèles. Enfin, en utilisant la cartographie barycen-
trique et recalage déformable, nous avons fait correspondre les résultats statistiques à la forme
moyenne, recalé la forme sur un modèle de validation, et extrait les statistiques avec les coor-
données barycentriques.

Les résultats montrent que la différence entre la moyenne statistique et la segmentation de
la vérité fondamentale dépend de la position du ligament et atteint 3,5 centimètres. Quoi qu’il
en soit, d’après notre expérience, il s’agit de la meilleure approximation que nous connaissions
pour initialiser les positions du ligament. Et nous pensons que nous pouvons encore compenser
cette différence en estimant des paramètres de rigidité légèrement différents.
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Expériences avec foie humain
Finalement, nous avons réalisé une expérience basée sur des données réelles. Nous avons pris
un cadavre humain et simulé la véritable procédure chirurgicale. Nous avons attaché plusieurs
marqueurs à la surface du foie qui servent comme observations et des points profondes pour
valider la différence entre les déformations. Plusieurs images de tomographie par ordinateur
ont été acquises au cours de l’expérience. Pour effectuer la manipulation, on a utilisé des out-
ils chirurgicaux laparoscopiques. Pendant la manipulation, nous avons enregistré les tackers à
l’aide d’une caméra RGB-D.

À partir de l’image tomographie par ordinateur, nous avons reconstruit le modèle volumique
du foie ainsi que les positions des marqueurs. Nous avons construit ensuite un atlas statistique
à partir de 15 modèles comme décrit ci-dessus et l’enregistrons sur le maillage volumique.
Sur la base de l’atlas statistique, nous avons généré les attaches de ressort. Les ligaments ont
été extrudés le long de la normale à la surface du foie. Comme les tackers sont également
visibles sur la séquence de données RGB-D, l’enregistrement du modèle reconstruit à partir
des données RGB-D a été effectué en minimisant la différence entre les tackers à l’aide d’une
approche itérative du point le plus proche. L’étape finale de l’expérience consiste à effectuer un
processus d’assimilation de données et à montrer la différence entre les repères profonds. Pour
l’assimilation nous avons utilisé un modèle Saint Venant-Kirchhoff, pour lequel un coefficient
de Poisson de matériau presque incompressible.

Pour la validation, nous avons extrait des marqueurs d’une autre tomographie par ordina-
teur, où le foie est déformé. Nous avons comparé les cas où seuls les vaisseaux sanguins ont été
fixés, avec estimation initiale des ligaments et avec estimation des paramètres des ligaments.
Les résultats montrent que la précision s’améliore lorsque nous ajoutons un modèle de ligament
et que nous l’estimons ensuite, mais le résultat dépend également de la façon dont nous effec-
tuons le processus de validation, qui peut ne pas être très précis. Cela pourrait aussi dépendre
de questions supplémentaires comme les contraintes unilatérales que nous ne prenons pas en
compte.

Conclusion
Dans ce travail, nous avons proposé une nouvelle méthode pour estimer des CAL, basée sur
une approche de filtrage de Kalman unscented. Les CAL sont présentées comme des ressorts
avec des paramètres inconnus. Le filtre les estime en utilisant des informations spécifiques au
patient obtenues pendant la chirurgie. L’approximation initiale des CAL est dérivée d’un atlas
statistique, construit à partir d’une série de modèles de foie avec des ligaments segmentés, et
d’une loi constitutive expérimentale.

Nous pensons que la solution proposée a un grand potentiel. Le recalage de l’atlas permet de
se concentrer uniquement sur les zones spécifiques d’intérêt et ne prend pas en compte les autres
régions. Le processus d’assimilation des données nous permet de corriger l’approximation ini-
tiale en fonction des données obtenues sur un patient spécifique, ce qui constitue un grand
avantage. En général, l’anatomie de chaque personne présente des variations spécifiques, ce
qui la rend différente d’une moyenne statistique. Le processus de filtrage nous permet aussi
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d’effectuer la correction des paramètres dans un contexte proche du temps réel. Ceci est essen-
tiel dans les cas où les données recalées doivent être traitées pendant la procédure, ou lorsqu’il
n’y a pas de temps supplémentaire pour les calculs.

Notre principal domaine d’intérêt est la simulation des tissus mous dans le contexte clin-
ique. Cependant, l’approche proposée pourrait être utilisée dans des domaines divers. La méth-
ode des éléments finis est l’une des méthodes les plus populaires pour résoudre les systèmes
différentiels partiels. Le préconditionnement est une approche courante pour améliorer la con-
vergence des systèmes linéaires. Le filtrage de Kalman est également une approche générale
pour l’estimation de certaines inconnues dans un processus dynamique. Ainsi, les principales
restrictions de l’approche proposée sont la présence d’une dynamique dans un événement con-
sidéré et l’existence d’une observation qui le suit. Nous essayons également d’estimer les CAL
du foie, mais dans le cas général, nous pourrions estimer divers paramètres du modèle con-
struit créé pour n’importe quel organe ou tissu. Les paramètres peuvent être dépendants ou
indépendants du temps. De plus, dans notre travail, nous nous concentrons principalement sur
les caméras, mais en général, d’autres modalités d’imagerie médicales pourraient être utilisées,
telles que les sondes à ultrasons, les trackers magnétiques ou les capteurs infrarouges.

Par conséquent, il existe de nombreuses possibilités d’utiliser l’approche proposée et ses
parties pour résoudre les problèmes qui apparaissent dans des situations diverses.
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Sergei NIKOLAEV 

Identification et  

caractérisation des conditions aux limites pour des 

simulation biomécaniques patient-spécifiques 

Résumé 

L'objectif de ce travail est trouvé un moyen d'estimer les conditions aux limites du foie. Elles jouent un rôle essentiel 

dans la capacité de prédiction du modèle biomécanique, mais sont principalement présentées par les ligaments, les 

vaisseaux et les organes environnants, dont les propriétés sont "spécifiques au patient" et ne peuvent être mesurées 

fidèlement. Nous proposons de présenter ces conditions comme des ressorts non linéaires et d'estimer ses paramètres. 

D’abord, nous créons une approximation initiale en utilisant la loi constitutive disponible dans la littérature et un atlas 

statistique obtenu à partir des modèles avec des ligaments segmentés. Après, nous la corrigeons basée sur le filtrage 

de Kalman non linéaire, qui assimile les données acquises d'une modalité pendant la chirurgie. Pour évaluation, nous 

avons réalisé des expériences avec des données synthétiques et réelles. Les résultats montrent une amélioration de la 

précision pour les cas avec des limites estimées. 

 

Mots-clefs: Modélisation spécifique au patient, Simulation numérique, Assimilation de données, Réalité augmentée, 

Biomécanique, Chirurgie assistée par ordinateur, Atlas statistique 

 

 

Résumé en anglais 

The purpose of the work is to find a way to estimate the boundary conditions of the liver. They play an essential role 

in forming the predictive capacity of the biomechanical model, but are presented mainly by ligaments, vessels, and 

surrounding organs, the properties of which are "patient specific" and cannot be measured reliably. We propose to 

present the boundary conditions as nonlinear springs and estimate their parameters. Firstly, we create a generalized 

initial approximation using the constitutive law available in the literature and a statistical atlas, obtained from a set of 

models with segmented ligaments. Then, we correct the approximation based on the nonlinear Kalman filtering 

approach, which assimilates data obtained from a modality during surgical intervention. To assess the approach, we 

performed experiments for both synthetic and real data. The results show a certain improvement in simulation 

accuracy for the cases with estimated boundaries. 

  

Keywords: Patient-specific modeling, Numerical simulation, Data assimilation, Augmented reality, Biomechanics, 

Computer-aided surgery, Statistical atlas 
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