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Abstract

Laparoscopic surgery is perhaps the most common minimally invasive procedure for many

diseases in the abdomen and thorax. Since the laparoscopic camera provides only the surface

view of the internal organs, in many procedures, surgeons use laparoscopic ultrasound (LUS)

to visualize deep-seated surgical targets. Conventionally, the 2D LUS image is visualized

in a display spatially separate from that which displays the laparoscopic video. Therefore,

reasoning about the geometry of hidden targets requires mentally solving the spatial alignment

and resolving the modality differences, which are cognitively very challenging. Moreover, the

mental representation of hidden targets in space acquired through such cognitive mediation

may be error prone, and cause incorrect actions to be performed.

To remedy this, advanced visualization strategies are required where the US information

is visualized in the context of the laparoscopic video. To realize such visualization schemes,

efficient computational methods are required (i) to accurately align the US image coordinate

system with that centred in the camera, (ii) to accurately represent 3D information of hidden

targets from a series of 2D US images, and (iii) to blend the US information with the surface

image provided by the camera such that the surgeons perceive the geometry of hidden targets

accurately.

In this thesis, a complete pipeline is described to visualize hidden targets, imaged by a

LUS probe, in 3D in the context of the laparoscopic video. A novel method to register US

images with a coordinate system centred in the camera is detailed with an experimental in-

vestigation into accuracy bounds in representing an imaged target in this coordinate system.

This method eliminates the requirement for extrinsic tracking devices in the operating room

(OR), significantly reducing both the financial and logistical overhead. An improved method

to blend US information with the surface view provided by the camera is also presented with

an experimental investigation into the accuracy of perception of the target locations in space.

The work presented here, together with concurrent development in related fields, will en-

able image-guidance in laparoscopic soft-tissue surgery. The suggested improvements will

ii



increase both the efficiency and the safety of many minimally invasive abdominal procedures.

Keywords: Laparoscopic Surgery, Laparoscopic Ultrasound, Visualization, Pose Estima-

tion, Ultrasound Reconstruction, Direct Volume Rendering, Psychophysical Evaluation
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Chapter 1

Introduction

Today, surgery is the only curative treatment for many life threatening diseases. During a

surgical procedure, the surgeon navigates to the proximity of the diseased region in an organ,

and executes a curative surgical action (excision, suturing, thermally destroying diseased tissue

etc.). To help access the target region manually, visualize the pathology with the surgeons’

direct vision and apply the curative treatment, traditionally, surgeries are performed with large

incisions, hence the term open-surgery. These incisions not only cause significant hemorrhage,

pain, and increased healing time, they elevate the risk of post-operative complications like

infections and hernia, which may require secondary interventions.

To minimize undesired side-effects in open surgery, minimally invasive surgical (MIS) ap-

proaches were introduced over time to treat many diseases in the brain, heart, and the abdomen.

In contrast to the large incisions in open surgery, the MIS procedures are performed through

small incisions that are optimal for the surgical task. Therefore, hemorrhage, risk for infections

and post-operative complications can be drastically reduced. Even though MIS approaches

bring significant benefits to the patient, they require advanced surgical skills to be performed

safely: Small incisions obstruct the surgeons direct vision while the direct access to the pathol-

ogy is restricted. Therefore, the surgeons require reliable, indirect means to visualize, and

access the organs of interest. Traditionally, real-time imaging modalities such as optical, ultra-

1



2 Chapter 1. Introduction

sound (US), and fluoroscopy replace the surgeon’s direct vision while catheters or miniature

instruments that are manipulated from outside the patient’s body are used to perform surgical

actions indirectly. For instance, in minimally invasive surgery to repair aotic/mitral value in the

heart, fluoroscopy and transesophageal echocardiography, a real-time US stream obtained from

a probe inserted through the esophagus, provides real-time imaging of the surgical site. Surgi-

cal actions are performed at the distal end of a catheter [1], or miniaturized special instrument

[2]. Conventionally, the real-time images are viewed in a display placed at a distance from

the patient. Therefore, additional cognitive efforts are necessary to fuse information from the

images, and coordinate the required action at the distal ends of the tools. In addition, images

provided by some modalities are difficult to interpret. For example, US images often contain

speckle noise, and are very difficult to interpret without a-priori knowledge about the imaged

anatomy. Fluoroscopy lacks soft-tissue contrast, hence, a-priori knowledge may be necessary

to prevent accidentally hitting a critical structure. Thus, fusing anatomical knowledge with the

images to interpret them, relating the images to the patient’s anatomy, and coordinating the

actions at the distal tips of the instruments is an essential skill the surgeons need to master in

order to safely perform surgeries using MIS approaches.

1.1 Image-guided Minimally Invasive Surgery

To make the surgery safe by minimizing the required cognitive efforts, image-guided surgi-

cal (IGS) system were introduced to MIS approaches. These systems employ technologies to

track the position and orientation of surgical tools and imaging devices relative to the patient,

allowing tools and images to be registered to the patient, and displayed in a common frame of

reference. Since the images and the tools are registered to the patient, surgeons can visualize

where they are in the image space while they operate. In addition to real-time imaging modal-

ities, pre-operative images such as x-ray computed tomography (CT) and magnetic resonance

imaging (MRI) can also be registered to the patient either using external fiducials, or using
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anatomical landmarks [3]. In this manner, pre-operative plans may be brought into the surgical

suite enabling easy translation of the plans into actual surgery. With pre-operative images, sur-

gical tools, and other imaging sources registered with the patient, surgeons now have wealth of

information to compensate for the lost direct vision in MIS.

IGS systems have improved the safety of many minimally invasive procedures. They have

become an essential part of the operating room (OR), particularly in neuro and orthopaedic

surgeries. The relatively static, rigid nature of the anatomical regions of interest makes the

registration processes simple and easy, which is one of the reasons behind wide adaptation

of these systems by neuro and orthopaedic surgical communities. When the environment is

deformable, the registrations can be updated by registering the intra-operative images with the

pre-operative images using deformable registration methods [4]. However, such techniques are

typically computationally expensive, and hence may not be suitable for realtime applications.

Nevertheless, several attempts to extend the use of IGS systems to highly deformable, dynamic

tissue environments can be found in the literature [5, 6].

1.2 Visualization in Image-guided Surgery

Visualizing multiple images registered to a common coordinate system is a challenging task. To

avoid unnecessary visual clutter in the visual field that may degrade the surgeon’s performance,

only the most relevant information should be presented to the surgeon at the appropriate time

during the procedure. To mitigate this situation, advanced visualization techniques have been

developed as outlined by Seilhorst et al. [7], making IGS more effective and safe.

Most IGS systems use naı̈ve rendering methods to visualize registered pre-operative and

intra-operative image together with 3D models of the surgical tools in a common coordinate

system [2, 10, 11]. Typically such images are visualized in a monoscopic display placed 1-2

feet away from the patient. Volumetric images are rendered in this coordinate system using sur-

face rendering [12], or direct volume rendering (DVR) methods [13]. Rather than rendering the
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(a) (b)

Figure 1.1: (a) A CT image registered to the patient is rendered in a video see-through HMD
[8] c© IEEE 2007, (b) Volume rendering of blood vessels visualized in the context of an image
captured by a camera affixed to the surgical microscope in brain surgery [9] c© Springer 2015

whole volume, some systems employ manual, interactive or fully-automatic [14] segmentation

methods to extract a regions of interest, and render. Several attempts to render information in

stereoscopic displays can be found in the literature [15], with the intention of improving depth

perception, and thereby improving the accuracy of the guided surgical task. A major drawback

in these systems is that significant cognitive efforts are necessary to relate the visualization to

the action site. The cognitive processes involved in this may result in erroneous surgical actions

to be performed that may end up in undesired consequences.

To minimize errors due to dissociated perception from action, images registered to the pa-

tient are displayed at the correct spatial location through head-mounted displays (HMD) (Fig.

1.1(a)) [8, 16–18]. Since the images are rendered in the patient frame of reference, the percep-

tual system is coupled with the action frame of reference, making the actions more intuitive,

hence improvement in sugical performance can be expected. In neurosurgery, the surgical mi-

croscope itself can be modified to display rendered images in the context of the real anatomy

[9, 19–21] eliminating the need for an HMD (Fig. 1.1(b)). Whichever display technology used,

the virtual objects should be blended properly with the real scene to guarantee accurate per-

ception of the location of the rendered targets. As discussed in section 1.8, inaccurate mental

representations acquired from the rendered targets may result in undesirable, life threatening
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consequences.

1.3 Assessment of IGS Systems

The performance of an IGS system depends not only on the technical aspects of the system,

but also on how the surgeon interacts with the system and the patient. Therefore, assessing an

IGS system performance is a complex procedure. Jannin and Korb [22] define six levels of

IGS system assessment depending on the assessed property of the system. At the lowest level,

technical parameters of the system such as the accuracy, precision, latency etc. are assessed

under laboratory conditions. At level two, the therapeutic/diagnostic reliability of the system

is evaluated under simulated laboratory environments such as phantom studies. At level three,

surgical performance is assessed to determine the efficacy of the system in the clinic. Levels

4-6 assess patient outcomes, economic aspects, and social, legal, and ethical aspects based on

data gathered routinely in the clinic at multiple centers. Thus, thorough evaluation of IGS

systems at all these levels requires studies over a lengthy period involving patients at multiple

clinical facilities.

Before an IGS technology is tested for performance in surgery involving patients, its tech-

nical parameters and reliability should be evaluated under laboratory conditions. Technical

parameters of the system can be assessed objectively fairly easily using highly accurate mea-

suring systems. However, assessment of the reliability of a system is a complex process since

the experiments should have control over fairly large parameter space. To maintain high de-

gree of control over the experiment, the surgical scenario may be simulated at a cost of losing

realism. On the other hand, experiments can be conducted in more realistic surgical setting,

but at a cost of loosing the control over the experiment. It is important to assess the system

under different testing environments to gain a thorough understanding about the system.

Quantifying complex human-machine interactions is another complication in level 2 IGS

system assessment. Phantom-based psychophysical studies can be designed to objectively
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study human factors, but the results may vary among different subject groups. For instance,

experienced surgeons may be better/worse at certain surgical tasks compared to resident sur-

geons, and produce completely different results. Therefore, subject demographics should be

taken into consideration during experimental design. There are certain human factors that can-

not be quantitatively measured. Subjective assessments using a ranking system such as the

NASA Task Load Index (NASA TLX) [23] may help in these cases.

1.4 Image Guidance in Soft-tissue Surgery

Unlike in neurosurgery and orthopaedic surgery where the surgical environment is relatively

static, image-guidance in soft-tissue surgery is very challenging. Due to the highly deformable

and dynamic nature of the environment, pre-operative images registered to the patient’s anatomy,

do not provide reliable means to localize, and target hidden surgical structures. As an alterna-

tive, surgeons use complimentary intra-operative imaging modalities (optical, ultrasound, in-

traoperative single-photon emission computed tomography (SPECT) imaging with miniature

gamma probes[24]) to help them acquire a detailed understanding about the geometry (spatial

location, 3D form etc.) of the surgical targets and the surrounding. Such a detailed under-

standing of the surgical environment is crucial for accurate execution of therapeutic actions.

However, the conventional method of visualizing these intra-operative imaging modalities on

separate displays is far from intuitive and may result in erroneous mental representations of the

task. As a result, surgical errors may occur that have life-threatening consequences. This dis-

sertation attempts to identify technical limitations in fusing two real-time imaging modalities,

namely intra-operative US and optical imaging, and propose clinically viable solutions that

have the potential to improve surgical performance. While it focuses mainly on laparoscopic

interventions, the concepts developed can be easily adapted to any intervention involving ul-

trasound and optical imaging.
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(a) (b)

Figure 1.2: (a) a cross section of the abdomen during a laparoscopic intervention. The sur-
geon holds the laparoscopic camera while he/she operates on the patient using a laparoscopic
instrument. Typically the abdominal cavity is filled with CO2 to increase the working space,
(b) conventionally, the laparoscopic video, monocular in this case, is displayed in a monitor
that is placed away from the patient. The surgeon has to operate on the patient while his eyes
are focused on the display, thus decoupling his/her action from the perception.

1.5 Laparoscopic Surgery

Since its first use in humans over a century ago [25], laparoscopy has received enormous at-

tention as an effective minimally invasive surgical approach. Unlike open-surgery, where the

surgeon accesses the organ of interest through a wide incision made on the patients’ abdomen

or thorax, in laparoscopy, the surgery is performed through small incisions typically on the

order of 5− 15mm across. These incisions, known as ports, provide restricted access to the pa-

tient’s body cavity. While a fiber-optic camera with a light source, inserted through one of the

ports, provides visualization of the surgical site, the surgery is performed through long, slender

instruments (Fig. 1.2(a)). The video from the camera is conventionally displayed in a monitor

placed in front of the surgeon, but 1 − 2 meters away from the patient(Fig. 1.2(b)). This video

is typically monoscopic, but stereoscopic cameras and display systems have been introduced,

and are used in a few surgical centers worldwide. Prior to the invention of the CCD chip,

the analog video captured by the camera was displayed on an analog monitor. However, with
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the advancement of video technology, most ORs today are equipped with digital laparoscopic

cameras and high definition (HD) video displays. This not only improves the visual fidelity of

the captured anatomy, but also allows manipulation, enhancement, and storage of the captured

videos for improved surgical guidance, teaching and training purposes.

Compared to the open surgical approach for many procedures [26–29], laparoscopy of-

fers significantly lower pain, haemorrhage, and fewer post-operative complications, but with

comparable clinical outcomes to conventional surgical procedures. Despite these advantages

however, it presents several significant challenges to the surgeon. The laparoscopic video,

displayed in a monitor remote from the patient, dissociates surgeon’s perception from his ac-

tions. In addition, the monoscopic display used even in modern ORs today, offers limited depth

perception. As a result, surgeons must master skills to infer depth from monocular depth cues,

and execute actions at a location that is spatially disassociated from their perception. Moreover,

surgical actions performed with long, slender instruments not only limit the range of motion,

but also requires the mastery of difficult motor skills to compensate for the fulcrum effect[30].

These instruments significantly reduce tactile sensation, making it very difficult to determine

the forces exerted at the tip of the instrument accurately. Nevertheless following years of train-

ing, surgeons learn to operate under these conditions and perform complex procedures on a

daily basis.

1.6 Robot-Assisted Laparoscopic Surgery

Robot-assisted laparoscopic surgical systems such as the daVinci (Intuitive Surgic Inc.) robotic

system (Fig. 1.3) have been introduced with the intention of eliminating ergonomical issues

with conventional laparoscopy. These systems replace the monoscopic laparoscopic camera

with a stereoscopic one (Fig. 1.4(a)), and display the captured video in a stereoscopic display

at the surgeon’s console(Fig. 1.4(b)) where the surgeon sits comfortably rather than standing

at the patient at an awkward posture. This allows the surgeon to perform very long procedures
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Figure 1.3: daVinci surgical robotic system. The surgeon sits at the console where his gestures
are captured and converted to commands that control the slave-robot at the patient site. At
the console the surgeon gets stereoscopic visual feedback. Typically these system have four
robotic arms: one to hold the stereoscopic laparoscopic camera, two arms controlling surgical
instruments, and one auxiliary arm. Image courtesy of Intuitive Surgical Inc.

without fatigue impairing his/her performance. The surgeon’s hand gestures are captured by

the mechanical gesture tracking system (Fig. 1.4(b)) at the surgeon’s console, allowing the

manipulators at the distal ends of the robotic arms to be driven interactively. Thus, these

systems effectively replicate the surgeon’s gestures at the wristed laparoscopic instruments

with the ability to scale the magnitude of their motion as desired.

One major advantage the robotic surgical systems offer over the conventional laparoscopic

techniques is the improved dexterous manipulation of the end-effectors. This allows the sur-

geons to operate inside highly constrained spaces, such as the pelvic cavity, just as intuitively

as they would perform in an open surgery with their hands inside the patients body. In addition,

the flexible surgical tools controlled by sophisticated algorithms in some of these systems (e.g.

SinglePort by Intuitive Surgical, SPORT system by Titan medical, Surgibot by TransEntrix) al-

low the surgeon to reach locations inside the patient’s body through a single incision and with

minimal damage to the surrounding anatomy[31–33]. The high definition stereoscopic vision

system in these tele-operated systems enable improved depth perception, permitting complex
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(a) (b)

Figure 1.4: (a) stereoscopic laparoscopic camera used in the daVinci surgical system. It has a
baseline of 5-6mm. A fiber-optic light source illuminates the surgical site, (b) stereoscopic dis-
play and the gesture capturing hardware at the surgeon’s console of a daVinci surgical system.

surgical tasks to be performed with significantly fewer errors compared to the performance with

monoscopic viewing[34]. Thus, these systems assist both experienced and novice surgeons to

perform otherwise very difficult surgeries safely and efficiently.

1.7 Intra-operative Ultrasound in Laparoscopic Surgery

The laparoscopic camera can capture only the surface view of the internal organs. When the

surgeons need to visualize hidden critical structures, they often use laparoscopic ultrasound

(LUS), which employs an ultrasound probe designed specifically for laparoscopic applications.

These probes are usually cylindrical in shape, and have a linear or a curvilinear array of trans-

ducers at the distal end (Fig.1.5(a)). The transducer arrays are typically one dimensional, and

provide a 2D cross-sectional image. Although several attempts to provide real-time volumetric

imaging with 2D transducer arrays can be found in the literature[35], these technologies have

not yet made their way to the OR. The distal end of these probes can be rigid, or articulated

manually using the controllers at the handle (Fig. 1.5(a)). Clinically, probes with articulated,

rather than rigid, tips are preferred since they offer better maneuverability. Recently, miniature
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(a) (b)

Figure 1.5: (a) laparoscopic ultrasound probe with an articulated tip. The linear transducer
array provides a 2D US image while the manual controller at the handle enables articulation
of the tip to reach otherwise difficult space, (b) drop-in (or pick-up) US probe with a curvi-
linear transducer array, designed specifically for robot-assisted surgical procedures. The probe
has a grooved ridge that fits a laparoscopic/robotic grasper, enabling it to be picked up and
manipulated. Image courtesy of BK Medical Systems Inc.

ultrasound probes that can be picked up and manipulated by a grasper tool were introduced

with application to robot-assisted surgery (Fig. 1.5(b)). Since these probes provide improved

maneuverability and surgeon autonomy, they are preferred over conventional versions in many

robot-assisted surgical procedures[36].

The 2D ultrasound image captured by a laparoscopic ultrasound probe is typically visu-

alized in a display separate to that displaying the laparoscopic video. During conventional

laparoscopic surgery, this second display is usually on the ultrasound machine itself, while in

robot-assisted surgery with the daVinci system the image is presented in a separate display

panel known as the TileProTM (Fig. 1.6). In either case, the ultrasound image and the laparo-

scopic video are spatially dissociated. In addition, these two modalities provide two distinct

types of information: laparoscopy, being a projective imaging modality, provides a perspective

projection of the scene, while the ultrasound image provides a tomographic view into the tis-

sue. Therefore, reasoning about the geometry of the hidden surgical targets requires mentally

solving the spatial alignment problem and the resolving the modality differences which are

cognitively very challenging[37, 38].
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Figure 1.6: The TileProTM display (bottom) in daVinci surgeon’s console, with the primary dis-
play providing the camera view (top). This secondary display allows the surgeons to visualize
pre-operative/intra-operative images, or physiological measurements during an intervention.
Image courtesy of Intuitive Surgical Inc.

Planning and execution of many critical surgical tasks benefit from the use of ultrasound

during laparoscopic interventions. In laparoscopic and robot-assisted partial nephrectomy, tu-

mor margins and resection plans for both endophytic tumours (that have grown into the tissue)

and exophytic tumours (that have grown outward beyond the organ surface) can be

determined with a higher degree of certainty with laparoscopic ultrasound [33]. Moreover, ul-

trasound helps to improve the understanding of the adjacent structures that should be avoided

to prevent complications [39]. During tumor resection tasks for small nodules in the lung

with the minimally invasive video assisted thoracic surgical (VATS) approach, the use of in-

traoperative ultrasound has the potential to improve the localization of small, non-visible and

non-palpable nodules[40]. The use of US also significantly reduces the risk of conversion of

VATS procedures into more invasive thoracotomies[41]. In laparoscopic cholecystectomy, the

use of laparoscopic ultrasound has been shown to be an effective means of delineating the

bile-duct anatomy during difficult situations[42] while damage to the bile-duct is significantly
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reduced[43]. Even though the simultaneous use of these two modalities enable numerous ad-

vantages, the conventional method of mental fusion of information may result in surgical errors,

due to the error-prone cognitive processes involved. In oncologic surgery, these errors could

occur in the form of a positive resection margin, or hitting a major surgical structure, in laparo-

scopic cholecystectomy, bile-duct damage, or severe bleeding. Typically, these intraoperative

complications are life threatening.

1.8 Cognitive Processes in Ultrasound-guided Action

A human reaching action guided by the visual system can be described by a sequence of trans-

formations [44] (Fig. 1.7(b)): (1) the transformation that construct a mental representation of

the target in space with visual inputs, (2) the transformation that produces an action plan with

specific movement parameters based on the mental representation, and (3) the transformation

that converts the action plan to motor commands to execute the action. Under transformation

(1), image-centered target representation D is transformed to an internal spatial representation

D′ with respect to the perceptual frame of reference. For actions guided by the direct vision,

this transformation causes no alternation to the input information because the target is already

in the perceptual frame of reference. This internal representation is then mapped to the action

centered frame of reference, and an action plan consisting of specific parameters is determined

under transformation (2). The mapping (3) uses these parameters, and transforms them to spe-

cific motor commands that execute the specified action. Any of these mappings is subject to

error while accumulation of error across various stages is also a possibility.

In laparoscopic surgery, the surgeons do not have direct visualization of the action site; the

laparoscopic camera captures the surgical scene and displays a magnified view on a monitor

that is displaced from the action site. Thus, the reference frame for surgical actions is no longer

coupled to the reference frame for perception. In addition, the action site is only accessible

through long slender tools, or through robotic instruments, hence the hand-centered frame of
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Figure 1.7: (a) Schematic of laparoscopic surgery where laparoscopic ultrasound is used to
visualize subcutaneous structures: An internal representation is constructed from the image in-
formation read from the two images, based on which surgical actions are planned and executed,
(b) Cognitive transformations in visually-guided action: Target represented in image reference
frame is transformed to an internal representation. Based on this representation, an action plan
is derived based on which appropriate motor commands are derived

reference, where action is naturally centered, is decoupled from end-effector centered frame

of reference (Fig. 1.7(a)). However, the visual feedback of the movement of the end-effector

allows learning of the mapping from the hand-centered reference frame to the end effector

reference frame, yet any change in the camera pose necessitates a re-learning. According to

perceptual-motor learning theory, such learning, at least at their early stages, requires cognitive

mediation [45, 46], and the performance may vary depending on the level of the surgeons
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experience [47].

When a surgeon uses an US image visualized on a monitor that is spatially dissociated from

that displays the laparoscopic video to guide a surgical action (Fig. 1.7(a)), additional mental

transformations are required to construct an accurate mental representation of the target in the

perceptual reference frame. This mental transformation involves at least mental translation, and

mental scaling to account for the scaling difference between two displays. In practice, however,

mental rotations are always involved, requiring significant taxing cognitive resources, and can

easily cause excessive cognitive load [48, 49]. Given limited cognitive resources, as well as

timing constrains associated with certain surgical actions [50], these cognitive processes may

be vulnerable to error. Such errors directly affect the accuracy of the mental representations,

and may propagate to the action plan, and eventually to the surgical action. Erroneous surgical

actions could have life threatening consequences, hence avoiding them is of utmost importance.

In addition to the errors in the mental representation, errors in the other parts of the trans-

formation chain depicted in (Fig. 1.7(a)) could lead to surgical errors as well. A major source

of error could be the transformation from the hand-centered frame of reference to the end-

effector centered frame of reference. Similar to the cognitively mediated spatial representation

of the targets, the learning of this mapping requires access to limited cognitive resources. Their

scarcity, and time constraints may result in learning an erroneous mapping that may lead to un-

desirable consequences. However, with extensive training and with the ergonomically designed

surgical robotic systems, the occurrence of such error can be reduced drastically.

1.9 Perceiving 3D Form from Cross-sectional Images

The success of many laparoscopic tasks guided by laparoscopic US depends not only on the

accurate understanding of where the target is located in space, but also on the understanding of

the 3D form of the target and its surrounding. Prior to the intervention, the surgeon typically

constructs a mental representation of the 3D form of the targets from pre-operative CT or MRI
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images. These images are either visualized by conventional methods such as scrolling through

a stack of tomographic images, or by using volume visualization method such as ray tracing

[51]. However, due to the highly deformable nature of the organs (e.g. kidney, liver, lung

etc.) and the surrounding soft-tissue environment in the thoraco-abdominal cavity, this pre-

operatively constructed mental representation may not accurately represent the reality during a

laparoscopic surgery.

An intraoperative imaging modality such as US can help acquire an updated representation

of the 3D form of the targets. Since the current technology, at least as far as it is employed in

laparoscopy, is limited to 1D-array transducers that produce 2D US images, revealing the 3D

geometry of hidden targets in laparoscopy requires moving the probe over the region of interest

and viewing the 2D images that vary with the probe motion. From the directly perceived 2D

images, the surgeon constructs a mental 3D representation of the target and its surroundings.

This process of visualizing 3D objects from a series of 2D cross-sectional images is analo-

gous to the aperture viewing phenomenon known as anorthoscopic perception that has been

widely studied in cognitive science[52]. During experiments designed to study the underlying

cognitive processes involved in this phenomenon, subjects visualize a larger picture through a

small slit that provides a limited field of view. Either the picture or the slit moves relative to

the other, exposing parts of the picture to the subjects as it moves. By stitching the piecemeal

images, the subjects can perceive the whole picture, possibly with minor distortions[53, 54].

Several hypotheses attempt to describe the underlying cognitive mechanisms in anorthoscopic

perception. One of these - the post-retinal storage hypothesis[55], posits that the piecemeal in-

formation is stored in working memory and then combined to construct the whole image. This

theory requires some means of localizing each visible aperture in a common spatial frame of

reference[56]. In a configuration where the aperture moves relative to the static image, which

is analogous to US probe moving over the target region of interest, the spatial location of suc-

cessive visual inputs with respect to a common frame of reference is used. Kinesthetic cues

may also be used if the observer controls the movement[57]. Once the visual apertures are
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localized, they are combined to construct a representation of the entire image.

When US, visualized in a separate display, is used to understand the 3D form of hidden

targets during a laparoscopic procedure, the common frame of reference for localization is that

centered on the laparoscopic display. Therefore, the image structures localized in the US dis-

play frame of reference must be mentally transformed to the frame of reference of the laparo-

scopic display. Such mental transformation, as described above, requires additional cognitive

processes, and access to scarce cognitive resources. Surgeons may obtain very limited kines-

thetic cues in a laparoscopic environment due to indirect manipulation of the probe. However,

it is often the case that a surgical assistant manipulates the LUS probe while the surgeon con-

trols other instruments. When this happens, no kinesthetic cues contribute in the localization

of the US images, and the process depends entirely on the visual cues. Once the images are

localized, the piecemeal representations require storage in the working memory before they

are aggregated to construct a complete mental representation. However, the limited cognitive

resources, and time constraints associated with certain laparoscopic surgical tasks may render

these cognitive processes error-prone, resulting in erroneous mental representations. The ac-

curacy of such cognitively mediated representations may also depend on the observers’ spatial

ability [58, 59]. To minimize these errors, and reduce the risks of erroneous surgical actions

that have life threatening consequences, improvements in visualization methods for this type

of image fusion are necessary.

1.10 In Situ Visualization of US

The conventional strategy of visualizing US information, known as ex situ visualization be-

cause the visualization occurs off site, invokes several cognitive processes to construct a mental

representation of both the spatial location and the 3D form of a hidden target, as discussed in

Sections 1.8 and 1.9. An alternative approach where the visualization happens at the imaging

origin is known as in situ visualization. With this mode of visualization, expensive cognitive
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(a) (b)

Figure 1.8: (a) schematic diagram of the SonicFlashlight device. The half-silvered mirror
places a virtual US image at the correct spatial location allowing (in situ) visualization, (b) a
realization of the schematic illustrated in (a). c© 2005 IEEE

processes that transform information across different frames of reference are eliminated since

the perception and action frames of reference are coupled. Perception-action coupling is very

important for performing visually-guided action intuitively with a high degree of accuracy.

In laparoscopic surgery, perception and action are already disconnected. However, with

extensive learning, the surgeon can maintain a good coupling between the visual perception

and the surgical action at the end-effector of the laparoscopic tool. In robot-assisted surgery

this coupling may be achieved relatively easily as a consequence of the ergonomic design of

these systems. Assuming that a such coupling can be achieved, if US information can also

be visualized in the frame of reference of the laparoscopic video display, US guided actions

could be more accurate, since the mental representations in such a visualization strategy do

not depend on cognitive processes that are vulnerable to error. Such a visualization could be

termed hybrid in situ visualization.

Several studies have been conducted in the past to investigate the advantages of in situ US
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visualization. Wu et al. [60, 61] demonstrated that in situ visualization of US helps the ob-

servers localize completely hidden targets significantly more accurately compared to the ex situ

visualization technique in their study using a hand-held apparatus called the Sonic Flashlight

that allows the US image to be visualized at the imaged location (Fig. 1.8). Further experiments

showed that the in situ visualization technique significantly improves the understanding of the

3D form of hidden objects compared to the ex situ visualization strategy[56, 62]. They attribute

these improvements to the accurate internal representations the observers acquire through per-

ception, in contrast to those constructed through cognitive mediation. These studies focused

on non-laparoscopic use of US where the subjects held the probe manually while direct vi-

sion to the imaging/action site was allowed. In laparoscopic surgery however, since surgeons

visualize the surgical site through a monocular/stereoscopic laparoscopic camera, their visual

perception is drastically different from direct vision. Unlike in these studies, surgeons’ per-

ception is dissociated from their actions, introducing a new set of variables to consider during

experimental design. In addition, in laparoscopic surgery, the surgeon may not be holding the

probe himself, hence, unlike in these experiments, kinesthetic cues may not be available to

help localize US images. Given these conditions in laparoscopy, further experiments may be

required to investigate the the efficacy of hybrid in situ visualization of US during laparoscopic

interventions.

1.11 Motivation: Ultrasound-augmented Laparoscopy

The hypothesis that the mental representations acquired through perception is more accurate

than the cognitively mediated ones may apply to LUS as well. However, the efficiency of such

representations in laparoscopy depends on two major factors: (1) the accuracy with which US

information can be spatially registered with the laparoscopic video frame of reference, and (2)

the method of presentation of the US information in the context of the laparoscopic video.

To display US image information in this manner to enable internal representations through



20 Chapter 1. Introduction

(a) (b) (c)

Figure 1.9: (a) laparoscopic camera image (monocular) showing the imaging tip of a LUS
probe lying on an abdominal organ, (b) 2D US image for the probe depicted in (a), and (c)
LUS image presented in the context of the laparoscopic camera image. Note that even the
image is rendered at the correct scale and pose, it is perceived to float above the rest of the
scene

perception, the transformation that maps each US pixel to the frame of reference centered in the

laparoscopic camera should be first determined by some external means. In the conventional,

ex situ visualization paradigm, this transformation is determined mentally with the involvement

of expensive cognitive processes. Given the rigidity of the US transducer, this transform can

be modeled by six degrees of freedom (6DoF; 3DoF in rotation, and 3DoF in translation) rigid

body transformation in 3D space. One can easily estimate this transformation by employing

an extrinsic tracking system (magnetic[63], optical[64], magneto-optic hybrid [65] etc.) to

track both the camera and the probe in a common frame of reference. However, such extrin-

sic methods add financial and logistical overhead to the existing work-flow. In addition, the

accuracy of some of these tracking systems may be affected by the presence of ferromagnetic

materials in the OR. Therefore, an alternative means of tracking that is robust to the variables

in a laparoscopic environment is required. Such a method should be able to compute the 6DoF

transformation at least at the camera frame rate, which ranges from 24-60 frames per second

(fps), to enable smooth operation. The method should be sufficiently accurate since it directly

affects where the US image information is presented in the laparoscopic video frame of refer-

ence. Eventually, its accuracy will determine where the observer perceives the spatial location

of a clinically important target.
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Once registered to the laparoscopic video frame of reference, US image information should

be presented to the observer in a manner that allows him/her to perceive the spatial location and

the 3D form of a hidden target without ambiguity. A popular method used to achieve this is to

texture map the US image to a 2D plane that is placed at the correct spatial position, orientation,

and scale[63, 64, 66]. The laparoscopic camera image is set as the background texture to

provide the context (Fig. 1.9(c)). This method of presentation conveys ambiguous depth cues

resulting in perception that the US image is in front of the rest of the scene. Moreover, the

interpretation of the content in the US image in this presentation becomes difficult at certain

probe poses. In many laparoscopic applications, the camera is situated directly above the LUS

probe due to the standard placement of laparoscopic ports. In such situations, the US image

plane is nearly perpendicular to the camera imaging plane, making it difficult to interpret its

content if this mode of presentation is used. Moreover, the overlay of a single image still

requires cognitively involved mental integration of images for 3D form perception, even though

hybrid in situ visualization helps in localizing the 2D US images in the frame of reference of

the laparoscopic video. Reconstructing a 3D image by compounding 2D US images as the

surgeon moves the probe over an organ, and presenting 3D US image information instead

of 2D images, may be less cognitively taxing since it avoids mental integration. With an

appropriate method of blending US information with the camera image, such a method may

help surgeons perceive the spatial location as well as the 3D form of a hidden surgical target

without cognitive mediation. Surgical actions that rely on mental representations acquired

through such a visualization could be significantly less susceptible to error.

1.12 Hypothesis and Research Questions

Based on the primitive hypothesis that mental representations of a hidden target in space ac-

quired through perception is more accurate than those that are cognitively mediated, a slightly

different hypothesis can be derived with specific application to laparoscopic interventions;



22 Chapter 1. Introduction

compared to the conventional ex situ visualization, hybrid in situ visualization of US improves

the surgeon’s ability to perceive the spatial location and the 3D form of hidden surgical targets

in laparoscopic interventions. However, as mentioned in the previous section, the improve-

ments may depend on the accuracy of spatial registration of laparoscopic video and the LUS

video, and the method of presentation of the registered LUS information. Given these fac-

tors, the following research questions arise, which should be adequately answered to guide the

development of an effective hybrid in situ visualization strategy.

1. How do we spatially register LUS image the laparoscopic camera image with minimal

overhead to the existing OR work-flow? What are the error-bounds in such a registration?

2. How do we reveal 3D information of hidden surgical targets from 2D US without cogni-

tively involved visualization approach? What errors should we expect in such a compu-

tational approach?

3. How do we present spatially registered US information in the context of the laparoscopic

video such that the surgeons perceive the spatial location and the 3D form without ambi-

guity?

The answers to these questions pave the path to an effective visualization pipeline with

which we can test the above mentioned hypothesis that is specific to laparoscopic interventions.

The testing of this secondary hypothesis may strengthen (or weaken) the primary hypothesis

which it is based on, and will help us understand visually-guided human action better.

1.13 Thesis Outline

The mission of this thesis is to answer the research questions raised in Section 1.12, with the

underlying hypothesis that hybrid in situ visualization of LUS improves the perception of the

spatial location and the 3D form of hidden surgical targets. The search for answers to these

research questions resulted in the development of a set of algorithms to spatially register LUS
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with the laparoscopic video stream, and effectively visualize LUS information in the context of

the laparoscopic video, that are superior to the state-of-the-art. These algorithms are described

in detail in Chapter 2 through 4. Moreover, in Chapter 4, a set of experiments is described

that involve experienced US users, and attempts to test the hypothesis mentioned in Section

1.12. The results of these experiments supports the hypothesis, but further experiments may be

required to prove their validity in the clinic.

1.13.1 Robust, Intrinsic Tracking of a Laparoscopic Ultrasound Probe

Chapter 2 describes a novel method to spatially register the LUS information with real-time

laparoscopic video, that involves a special fiducial pattern attached to the curved back surface

of the LUS probe. Compared to other methods based on extrinsic tracking methods, such as

magnetic tracking, this method adds minimal overhead to the existing OR work-flow. The

algorithm uses monocular laparoscopic images to estimate the 6DoF pose of the probe with

respect to the camera, and by using priors on the pose, and on the probe motion, it runs in

video frame-rates. It is robust to partial occlusion of the fiducial pattern, and demonstrates sub-

milimeter target registration errors against an optical tracking-based reference. The chapter

also describes how the proposed method can be extended to stereo/multi-view camera images

with application to robot-assisted laparoscopic interventions.

1.13.2 Accuracy in Freehand 3D US Reconstruction with Robust Visual

Tracking

In Chapter 3, computational methods to compound 2D US images into a 3D volume that are

suitable to laparoscopic interventions is described. The GPU-implemented algorithm described

in this chapter runs at very high frame-rates, making it suitable for hybrid in situ visualization

applications. By imaging a tissue-mimicking phantom with structures resembling anatomical

targets, it is demonstrated that the 3D US volumes resulted from this method are geometrically
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accurate. Both quantitative and qualitative results are presented.

1.13.3 Visualizing Ultrasound In the Context of Laparoscopy

The methods described in Chapters 2 and 3 allows 3D US information to be brought to the

frame of reference of the laparoscopic video. Methods to present this information in the con-

text of the laparoscopic video are detailed in chapter 4. The naı̈ve method of blending US

information with the surface view provided by the laparoscopic video results in ambiguous

depth cues. To alleviate this issue, an intuitive technique is described in this section. The effi-

cacy of the proposed method is determined in a series of experiments involving experienced US

users in an environment that mimic a laparoscopic interventions. The results of the experiments

reveal the strengths and weaknesses of the proposed method, and highlight the importance of

incorporating depth cues in an ultrasound-augmented laparoscopic display.
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Chapter 2

Robust, Intrinsic Tracking of a

Laparoscopic Ultrasound Probe

This chapter is adapted from the papers,

• Jayarathne U.L., McLeod A.J., Peters T.M., Chen E.C.S. (2013) Robust Intraoperative
US Probe Tracking Using a Monocular Endoscopic Camera. In: Mori K., Sakuma I.,
Sato Y., Barillot C., Navab N. (eds) Medical Image Computing and Computer-Assisted
Intervention MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol
8151. Springer, Berlin, Heidelberg

• Jayarathne U.L., Luo X., Chen E.C.S., Peters T.M. (2015) Simultaneous Estimation of
Feature Correspondence and Stereo Object Pose with Application to Ultrasound Aug-
mented Robotic Laparoscopy. In: Linte C., Yaniv Z., Fallavollita P. (eds) Augmented
Environments for Computer-Assisted Interventions. MICCAI 2015. Lecture Notes in
Computer Science, vol 9365. Springer, Cham

• Uditha L. Jayarathne, Elvis C.S Chen, John Moore, Terry M. Peters, ”Robust, Intrinsic
Tracking of a Laparoscopic Ultrasound Probe for Ultrasound-augmented Laparoscopy”,
IEEE Transactions on Medical Imaging, (submitted)

2.1 Introduction

In many laparoscopic procedures, surgeons use laparoscopic ultrasound (LUS) to visualize sur-

gical targets hidden deep inside organs. For example, in laparoscopic resection tasks of many
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endophytic tumors, LUS is used to determine the resection margins, and to gain better under-

standing about the 3D form of the tumor and its surrounding [1–3]. During these procedures,

the 2D ultrasound (US) image is conventionally displayed separately from the laparoscopic

video. During conventional laparoscopic surgery, this second display is usually on the ultra-

sound machine itself, while in robot-assisted surgery with the daVinci system the US image is

presented in a separate display panel known as the TileProTM. In either case, the ultrasound

image and the laparoscopic video are spatially dissociated. In addition, these two modalities

provide two distinct types of information: laparoscopy, being a projective imaging modality,

provides a perspective projection of the scene, while the ultrasound image provides a tomo-

graphic view into the tissue. Therefore, reasoning about the geometry of the hidden surgical

targets requires mentally solving the spatial alignment problem and the resolving the modality

differences, which is cognitively very challenging [4, 5]. Mental representations of the hidden

surgical targets in space acquired through such cognitive mediation are error-prone [6], and

may cause incorrect surgical actions to be performed. Hybrid in situ visualization where US

information is displayed in the frame of reference of the laparoscopic video enables mental

representations of the targets through perception [7] which are more accurate. Such visualiza-

tions require the US image to be mapped to the camera coordinate system which involves a six

degrees of freedom (6DoF) rigid transformation to be solved at camera frame rate.

2.1.1 Related Work

Many attempts to solve the rigid transformation that maps US image to a camera centered co-

ordinate system can be found in the literature. A popular approach is to employ an extrinsic

tracking system to track both the laparoscopic camera, and the ultrasound probe in a common

coordinate system. Magnetic [8, 9], optical [10], or combined magnetic and optical tracking

[11] are commonly used methods with application to conventional laparoscopy. However, op-

tical tracking alone cannot be used to track the articulated imaging tip of commonly used LUS

probes, since the line-of-sight constraints require the retro-reflective spheres to be attached on
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the probe handle. With application to robot-assisted surgery, one could compute this transform

based on kinematic tracking of the camera and the robotic manipulator that holds the US probe

[12]. However, such approaches require the US probe to be rigidly attached to the robotic arm,

so that the transformation of the imaging tip with respect to the kinematic coordinate system

can be computed by aggregating the pose of the end-effector with the constant transforma-

tion from the end-effector to the imaging tip. This constant transformation can be determined

apriori through a calibration process. Despite its popularity, extrinsic-tracking-based solu-

tions adds financial and logistical overhead to the existing operating room (OR) work-flow. In

addition, the accuracy of such solutions may be affected by error accumulation in long trans-

formation chains involved, or by the factors in the OR that affect the robustness of tracking. In

particular, the accuracy of magnetic-tracking-based solutions may be affected by the presence

of ferromagnetic materials in most ORs.

An attractive alternative to extrinsic-tracking-based solutions is image-based, intrinsic meth-

ods. During US guided tasks, the imaging tip of the LUS probe is always visible in the camera

image. Therefore, image-based techniques can be developed to estimate the 6DoF pose of the

LUS probe in the camera coordinate system. Leven et. al. [12] evaluated the feasibility of

image-based pose tracking with stereoscopic video by attaching a colour marker to the back

surface of a LUS probe. A spiralled-stripe on the marker enabled the estimation of the ax-

ial rotation. However, the reported tracking accuracy is not adequate for clinical applications,

which could be partly attributed to high uncertainty in feature segmentation and localization.

A slightly different approach, where an alternative, highly localized fiducial pattern is used,

has demonstrated clinically acceptable accuracy bounds [13–17]. The fiducials, localized at

the intersection of two high contrast edges or at the center of a circle, provides a point-cloud in

3D space, and a set of 2D coordinates in the image space. The 3D point cloud is defined with

respect to a coordinate system defined arbitrarily on the pattern itself. If the correspondence

between the 3D point-cloud and the 2D point-set localized in the image-space is known, the

6DoF pose can be estimated as a solution to the perspective-n-point (PnP) problem which can
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be solved accurately and efficiently [18–20]. In stereo-laparoscopy, where two views of the

fiducial pattern are available simultaneously, the corresponding points localized in each image

can be triangulated to obtain a 3D point-cloud in the camera coordinate system. The pose is

then determined by registering this point-cloud with the fiducial point cloud by using an algo-

rithm such as iterative closest point (ICP) [21] that solves for the 3D-3D correspondence, and

the rigid transformation simultaneously.

Methods that rely on highly localized point-fiducials effectively solve two computational

problems; (a) the 3D-to-2D point correspondence problem, and (b) the pose estimation prob-

lem. The use of a planar and structured fiducial geometry enables easy computation of a solu-

tion to the correspondence problem. For this reason the best performing methods use fiducial

patterns arranged in a planar-grid [13–15, 17]. Since the fiducial geometry is known and sim-

ple, the 2D coordinate of an undetected fiducial can be interpolated to improve the robustness

of tracking. However, most of the clinically used LUS probes are cylindrical in shape, mak-

ing the planar fiducial pattern difficult to use. In addition, a planar pattern has a very limited

tracking range. In a recent paper, Zhang et al. [16] described a method in which the fiducial

pattern could cover the entire curved, back surface of a clinically used LUS probe. However,

the method makes several assumptions that may not be true in practical surgery. In particular, it

is not clear how the proposed method handles fiducial occlusions (either due to physical occlu-

sion, or the feature detector being insensitive), as well as outliers, all of which are unavoidable

in practice.

2.1.2 Contributions

In this chapter, I describe an image-based, intrinsic method to compute the pose of a fiducial

pattern with fiducials randomly distributed over the curved back surface of a clinical LUS

probe. The method allows some fiducials to be occluded while outliers, detected as a result

of an imperfect feature detector, are properly handled. Instead of solving the correspondence

problem and the pose problem sequentially, they are solved jointly using a Kalman Filter-based
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framework [22], that allows easy integration of priors on the pose based on the topology of the

pose space, and the probe motion. Incorporation of strong priors based on probe motion allows

the algorithm to converge to a solution quickly, enabling real-time performance. Moreover, the

uncertainty of the solution is also reported, which is very useful in acquiring a comprehensive

understanding about the tracking performance. The chapter includes a detailed description of a

monocular image-based method as well as its extension to stereo/multi-view imaging models,

an empirical investigation into the efficacy of the proposed methods, and a detailed discussion

including limitations and insight into the future.

2.2 Methods

Since most clinical LUS probes do not provide adequate visual cues to be tracked in 6DoF, a

special fiducial pattern is attached to the curved back surface of the probe. One could attach

any textured pattern to the probe, and employ state-of-the-art detectors such as SIFT [23]/SURF

[24] to localize interest points in image space. This will allow the correspondence problem to

be solved explicitly using the descriptors computed by SIFT/SURF for each of the detected

interest points. However, as demonstrated by Zeisl et al. [25], such features may introduce

significant Fiducial Localization Error (FLE) that may propagate to the pose estimates. There-

fore, to minimize the FLE, the fiducials in the pattern used in this work are localized at the

intersection of two high contrast edges.

In the following subsections I describe the mathematical details of the pose estimation algo-

rithm. This discussion assumes that the the laparoscopic camera image is free from geometric

distortions while the camera is approximated by the pinhole model with its intrinsic matrix A

known through an appropriate calibration method. When multiple views are involved, the pose

Pc of one camera relative to the other is assumed to be known, in addition to the intrinsic matrix

of each camera.
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2.2.1 Preliminaries

Let us assume that each fiducial marker (model poitns) in the pattern in 3D space, is determined

with respect to a local coordinate system by some means, and that the coordinate of the ith point

is given by Mi. Let the cardinality of the model points set be N. When the fiducial pattern is

visible in the nth frame of a camera, an image processing routine (feature detector) is applied

to the image to localize the fiducial points in the camera image. Let u j be the 2D coordinate of

the jth fiducial localized in the image space. Occlusions of some fiducials, and outliers in the

image space due to imperfections of the feature detector are allowed, hence, the cardinality of

the two point-sets may not be equal. The rigid pose Pn of the fiducial pattern with respect to the

camera in the nth frame (Fig. 2.1(a)), is parameterized as a 6D vector Pn = [r1, r2, r3, tx, ty, tz]T

with three parameters representing rotations1, and three parameters representing translation in

3D space. Given the model points M, feature detector response u, and the camera intrinsics A,

the objective is to estimate Pn.

2.2.2 Simultaneous Pose and Correspondence from a Single View

Let us begin by assuming a Gaussian prior on the pose represented by its mean pose Pn, and its

6x6 covariance matrix Σp
n for the nth camera frame. Section 2.2.4 details how these priors are

computed in this tracking framework. Given this prior, the image space location mi of model

point Mi is given by the Eq. (2.1) while the corresponding image space covariance Σi is given

by Eq. (2.2),

mi = Pro j(Pn,Mi) (2.1)

Σi = J(Mi)Σp
n J(Mi)T + R (2.2)

where Pro j(Pn,Mi) is the operator that projects the ith model point with pose Pn, J(.) is its

Jacobian, and R is a 2x2 diagonal matrix representing isotropic measurement uncertainty. Σi

1exponential maps are used to parameterize rotations
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defines a search region for a putative match, and I only consider 2D points such that

(mi − u j)TΣi(mi − u j) ≤ Ψ (2.3)

with Ψ = 3 giving 99% confidence in matching. Thus, the search space for a match for Mi

reduces to an elliptical region (Fig. 2.1(b)). Inside the search region for putative matches,

several feature points may be found, each of which is equally probable to be a correct match.

Hypothesizing that one such point u j is the correct match, the pose and its covariance are

updated using Extended Kalman Filter (EKF) equations, Eq. (2.4) and Eq. (2.5).

P′n = Pn + K(u j −mi); (2.4)

Σ′
p
n = (I −KJ(Pn))Σn, (2.5)

where, K is the optimal Kalman gain and I is an identity matrix.

With the updated pose and its covariance, the image space locations and their covariances

for model points are computed again using Eqs. (2.1) and (2.2). As illustrated in Fig. 2.1(c),

the image space covariance has been reduced as a result of the established correspondence.

Note that the image space covariance of the previously considered model point has now shrunk

to the level of measurement noise. At this stage, a match is searched for a different fiducial

in its corresponding search region. One could select this fiducial such that the covariance

is maximally reduced [26, 27]. However, in this work, the fiducial to be considered next is

randomly selected. For a putative match, the pose and its covariance is updated again using

Eqs. (2.4) and (2.5) to yield further reduced image space covariance (Fig. 2.1(d)). A match is

searched in another search region, and the pose and its covariance is updated again. After three

such pose updates, the image space covariance does not evolve significantly. At this point, all

the fiducial points are projected into the image space and the euclidean distance to the closest

2D point is computed. If no feature is found within a predefined distance threshold D for a
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projected fiducial, the particular fiducial is considered to be occluded. The error in Eq. 2.6 is

then computed to test the correctness of the hypothesized correspondence triplet,

Error(P) =
∑

(M,u)∈Matches

‖u − Pro j(P,M)‖

+ λ|NotDetected|

(2.6)

where ‖.‖ represent the euclidean norm, |NotDetected| is the cardinality of undetected fiducials,

and λ is a tunable parameter.

If the error in Eq. (2.6) drops below a pre-defined threshold, the hypothesized correspon-

dence triplet is consistent with image data, and hence is considered to be correct. Therefore the

pose can be further refined to yield a more accurate estimate. Note that at this point, correct

3D-2D point correspondence is known, hence, more accurate PnP solvers [28] can be used for

pose refinement. However, in this work, the refined final pose is achieved by applying an EKF

update using Eqs. (2.4) and (2.5) for each model-feature correspondence. If the error thresh-

old cannot be met, the algorithm backtracks and evaluates the error with the next probable

correspondence candidate.

To manage correspondence hypotheses during the search for the pose that minimizes Eq.

(2.6), a tree data structure traversed in depth first order is used. Each node in the tree holds

a 3D-2D correspondence pair, the current pose and its covariance. To better understand the

traversal process, consider the following scenario illustrated in Fig. (2.2). Suppose that we

begin with a Gaussian prior on the pose given by its mean P0
n, and covariance Σ0

n. At the first

depth level, child nodes hold values for {P0
n,Σ

0
n,Mi}. Let us assume that model point M1 is

chosen, and there are k putative matches. The hypothesis that the 2D point u1 is the correct

match results in a child node that holds values for {P1
n,Σ

1
n,M1,u1} with P1

n and Σ1
n being the

updated pose and its covariance (Fig. 2.2). Let us now assume that we select the search space

for M3, and that u5 is hypothesized to be the correct match among p putative matches. This

results in the child node containing values for {P2
n,Σ

2
n,M3,u5}, where P2

n, and Σ2
n represents
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Figure 2.2: The correspondence hypotheses are managed in a tree data structure traversed
in depth-first order. Each child node contains a correspondence pair, the current pose and its
covariance. Indicated in blue are the nodes that have been visited in the discussed scenario.

the updated pose and its uncertainty at this node. Another hypothesis that model point M5

pairs with 2D point u7 spawns a child node that stores {P3
n,Σ

3
n,M5,u7} with updated pose and

covariance. At this point, the correctness of the three hypotheses is evaluated by checking

whether the error in Eq.(2.6) drops below the pre-defined threshold, the value of which is

determined empirically. If the threshold is not met, the algorithm backtracks and hypothesizes

a different pairing spawning a new child. This process is continued until the error threshold is

met.

2.2.3 Handling Not-Detected Points

After three consecutive correspondence hypotheses, all the fiducials are projected into the im-

age space, and the fiducials that do not find a 2D point within a pre-defined distance radius

are considered to be undetected. However, the fiducials involved in the hypotheses triplet itself

might not have been detected in the first place. Such situations are handled by modeling the
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probability of multiple consecutive not detected points as a process of sampling without re-

placement [22]: Given the number of model points N, the cardinality of the not detected points

Nd, the probability of picking r not detected fiducials is,

Pr = Nd!(N − r)!/(Nd − r)!N! (2.7)

Since the number of undetected fiducials at a given frame is not known a priori, the value of Nd

is set such that at least 70% of these are visible in a given frame. When this probability drops

below a pre-defined value, 5% in the experiments, the three fiducials involved are considered

to be detected.

2.2.4 Priors

The joint pose and correspondence estimation framework described above begins with an initial

prior on the pose and its covariance, and converges to a solution that is consistent with image

data. This prior for the first frame is provided by a Gaussian Mixture distribution [22] that

models the 6D pose space for the LUS probe. By assuming minimum and the maximum

orientation and the translation constraints on the probe motion, pose samples are simulated,

and a Gaussian Mixture model (GMM), a weighted sum of 6D Gaussian components given by

Eq. (2.8), is learned [29] offline to represent the 6D pose space.

p(P) =

K∑
i=1

wiN(Pi,Σi) (2.8)

Alternatively, one could employ an extrinsic tracking system to acquire adequate number of

pose samples to learn the GMM. During initialization, starting from the Gaussian component

with the highest weight, each component is sequentially selected to provide the mean pose

and the covariance for algorithm initialization. If a pose is not found for a particular Gaussian

component, that with the next highest weight is selected. Once the algorithm converges to a

solution, the initial pose and the covariance for the next frame is predicted based on the Kalman
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filter state prediction step. An identity process model given by Eq. (2.9) and Eq. (2.10) is used,

where the subscript n stands for the frame number, and Q is the process noise.

Pn+1 = Pn (2.9)

Σn+1 = Σn + Q (2.10)

These motion-based priors are much stronger than those based on the GMM, hence, the algo-

rithm to converges rapidly.

2.2.5 Extension to Multiple Views

The joint correspondence and pose estimation framework described above can be extended to

multiple views with minor modifications. A notation similar to that used in section 2.2.2 is

employed to describe the algorithmic details here. Let mc
i be a vector of the form [m1

i , ...,m
C
i ]T

representing the locations of the model point Mi on C different camera images, and Σc
i its

covariance. Unlike the linearization approach used in the previous EKF-based method (Eq.

(2.1) and Eq. (2.2)), the Unscented Transform (UT) [30] is used to determine mc
i and Σc

i . The

UT avoids complex Jacobian computation in the EKF-based approach, and its superiority in

handling non-linearities in the multi-view imaging model results in better numerical stability.

The UT uses 2L + 1 sigma points X, a set of samples in the input space acquired through a

deterministic sampling approach, that are propagated through the non-linear transformation to

compute the mean and the covariance in the transformed space. Here L is the dimension of the

state vector, six in this work. The sigma points are given in the Eq. (2.11),

X = [Pn Pn + γSn Pn − γSn] (2.11)

where Sn = chol{Σp
n}with chol{.} representing the matrix square-root operator via Cholesky

factorization, and γ =
√

L + λ with λ = α2(L + κ) − L where α and κ are scaling parameters.
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In all the experiments α and κ is set to a very a small value (0.0001). Image space location and

covariance of the model point Mi is given by Eq. (2.12) through Eq. (2.14).

mc
i =

l=2L∑
l=0

W (m)
l Pro jc(Xl,Mi); (2.12)

Σc
i = qr{

[√
W (c)

1 [Pro jc(X1:2L,Mi) −mc
i ]
√

R
]
}; (2.13)

Σc
i = cholupdate{Σc

i , Pro jc(X0,Mi),W
(c)
0 }, (2.14)

where Xl is the lth sigma point and the operator Pro jc(Xl, .) returns the vector of the image

space locations in the Cth camera for the sigma point Xl. {Wi} is a set of scalar weights such that

W (m)
0 = λ/(L + λ),W (c)

0 = λ/(L + λ) + (1−α2 + β),W (m)
i = W (c)

i = 1/(2(L + λ)) with i = 1, ..., 2L.

Assuming all the distributions are Gaussian, the scalar parameter β is set to 2 in this work.

qr{.} is a short-hand notation for the QR Decomposition where the upper triangular matrix

is returned, and cholupdate{.} represents the Cholesky update process which is necessary to

account for negative values of W0.

Once the image space location and covariance are determined for the initial pose Pn and its

covariance Σn, an elliptic search region (Fig. 2.3(a)) is chosen and putative matches are sought,

similar to the approach described in Section 2.2.2. Since each model point Mi is imaged by

multiple cameras, putative matches must be searched in corresponding elliptical regions across

multiple images. If multiple 2D points are found in the elliptical search regions for a given

model point, the search space for the pose could grow exponentially since each combination is

equally likely. To prevent this from happening, the geometry of multiple views is exploited: For

each feature point lying inside the elliptical search region in the kth camera, Samson distance

[31] given by Eq. (2.15) is computed to each point in the k + 1th camera lying inside the

corresponding search ellipse. Here the 3x3 matrix F is the fundamental matrix between the

two cameras considered, determined through a calibration process.
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dsampson =
(mk+1

i
T Fmk

i )
2

||Fmk
i ||

2 + ||FT mk+1
i ||

2
(2.15)

By pairing feature points that are less than a predefined Sampsons distance threshold (Fig.

2.3(b)), correspondence hypotheses that are geometrically inconsistent are eliminated. A geo-

metrically consistent point-pair forms a vector u j, which is hypothesized to correspond to the

model point Mi. Based on this hypothesis, the pose and its covariance is updated using the

Square-Root Kalman Filter (SRUKF) state update equations given by Eq. (2.16) through Eq.

(2.18),

P′n = Pn + Ks(mc
i − uc

j) (2.16)

U = KsΣ
c
i (2.17)

S′n = cholupdate{Sn,U,−1} (2.18)

where Ks is the Kalman Gain. Note that S′n is the square-root of the updated covariance of the

pose, from which Σ′n is derived from it.

This update reduces the covariance of the pose further constraining the search regions

across images, as illustrated by the shrinkage of the search ellipses in Fig. 2.3(c). Model

points are projected back again with the updated pose and the covariance, and a putative match

is searched as described above. After three such updates the evolution of the pose (and the

covariance) becomes negligible, and at this point, the model points are projected to each im-

age and the error in Eq. (2.19) is computed to evaluate the validity of the three hypothesized

correspondences.
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Error(P) =

k=C∑
k=1

∑
(M,uk)∈Matches

‖uk − Pro jk(P,M)‖

+ λ|NotDetected|

(2.19)

Here uk is the 2D point closest to the model point projected to the kth camera, Pro jk(., .) is

the projection operator for the kth image, and C is the number of cameras. If this error drops be-

low a pre-defined threshold, the updated pose is further refined by applying an SRUKF-update

(Eq. (2.16) through Eq. (2.18)) for each model-feature correspondence to yield a more accu-

rate estimate. Otherwise, the algorithm continues with a different correspondence hypothesis

similar to the strategy described in Section 2.2.2. Similar to the EKF-based method described

for the monocular case, the search space is managed using a tree data structure traversed in

depth-first fashion, and non-detected points are handled in a similar manner. Priors described

in Section 2.2.4 are used to initialize the pose and the covariance for a given frame.

2.3 Experiments and Results

In this section, I detail the experiments conducted followed by the results to quantitatively and

qualitatively demonstrate the efficacy of the methods developed for a monoscopic camera as

well as for a stereoscopic camera.

2.3.1 Experimental Setup

An Olympus stereo-laparoscopic camera from the daVinci S (Intuitive Surgical Inc., USA)

surgical system was used in all the conducted experiments, with the left camera channel used

for monocular-image-based tracking experiments. Videos from from left and the right cameras

were captured at 640x480 resolution, and the geometric calibration for each was performed by

employing a checkerobard calibration pattern[32]. In addition, the fundamental matrix for the
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stereo-pair was derived with a method based on least median of squares [33].

To qualitatively demonstrate the efficacy of the image-based tracking framework with appli-

cation to US-augmented laparoscopy, a clinical LUS probe (LAP9-4/38, Ultrasonix, Canada)

was used with a fiducial pattern attached to the curved back surface of its imaging tip (Fig.

3.1(a)). The 3D position of each fiducial was determined accurately with a measurement mi-

croscope (STM6-LM, Olympus, Japan), and a local coordinate system was defined on the

fiducial space with one fiducial arbitrarily chosen as the origin. To evaluate the accuracy of the

pose estimates, a mock-probe was 3D printed . A fiducial pattern similar to that attached to the

LUS probe was attached to the curved back-surface of the mock-probe, and the locations of the

fiducials were determined by using the measurement microscope. The mock-probe was rigidly

placed at the geometric center of an optically tracked assembly (validation tool) (Fig.3.1 (b)).

When the LUS probe, or the validation tool was visible in camera images, the 2D image loca-

tions of the fiducials were determined by employing an efficient algorithm[34] in each left and

right camera frame with its output refined to sub-pixel accuracy.

An optical tracking system (OTS) (Spectra, NDI, Canada) was used to provide the refer-

ence poses by tracking a stereoscopic endoscope and the validation tool. To be able to compare

the image-based estimates with the ground truth, the transformation from the dynamic refer-

ence body (DRB) attached to the laparoscopic camera to the coordinate system centered at the

optical origin of the left camera, known as the hand-eye calibration, was estimated by using a

globally optimal algorithm [35]. The transformation between the fiducial pattern and the opti-

cally tracked DRB on the validation tool was determined by a robust method that minimizes the

least squared error [36]. Videos from the camera were saved, and the pose of the probe or the

validation tool was estimated for each video frame offline using image-based methods detailed

in Sections 2.2.2 and 2.2.5, implemented in Matlab. All the computations were performed in

a computer with Intel Core i7 (3.4GHz) 64-bit CPU and 16 GB of RAM running Microsoft

Windows 7.
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2.3.2 Comparison to the Optical Tracking-based Reference

The validation tool was moved in the 3D space in front of the camera while the endoscope and

the validation tool were tracked by the optical tracking system. The stereoscopic video was

saved together with the OTS-based pose of the validation tool with respect to the DRB on the

camera. Pose estimates of the mock-probe were then computed using three image-based meth-

ods: monocular image-based method described in Section 2.2.2 termed MONO, multi-view

image-based method detailed in Section 2.2.5 applied to stereoscopic images termed STEREO,

and the stereoscopic triangulation-based method termed TR. Conventionally, the TR method

works by first establishing feature correspondence across the two views and triangulating [37]

to obtain a 3D point-cloud in the camera coordinate system. This point-cloud is then rigidly

registered to the model-points using an algorithm like ICP that solves for both 3D-3D point

correspondence and the rigid body transformation. However, the ICP algorithm is sensitive to

initialization, and may converge to the wrong solution in the presence of occlusion and clutter

in the triangulated point-set. Therefore, to avoid any biases in the TR implementation, the 3D-

2D point correspondences solved by the STEREO method were used, and recovered the pose

parameters by registering the point-sets using the standard orthogonal procrustes analysis [38].

2.3.3 US-Video Overlay

To demonstrate the suitability of the proposed intrinsic tracking methods for the intended la-

paroscopic application (i.e in-situ US visualization), a phantom-based experiment was con-

ducted. To this end, the constant transformation between the US image-based coordinate sys-

tem to the fiducial marker-based coordinate system, known as US calibration transformation,

is required in addition to the pose of the fiducial pattern. This transformation was determined

using a conventional method that employs a Z-phantom [39] adapted to this application. The

Z-phantom was filled with polyvinyl chloride-plastisol (PVC) compound, which serves as a

clear tissue-mimicking medium (Fig. 3.1(c)). A rectangular checkerboard pattern was rigidly

attached to a planar surface of the phantom to enable image-based 6DoF tracking of the phan-
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tom using an iterative technique based on Levenberg-Marquard optimization [33].

Seventeen US/video image pairs were acquired for calibration. For each video frame, the

pose of the LUS probe with respect to the camera was determined using the monocular image-

based method described in Section 2.2.2, and the pose is transformed to checkerboard pattern-

based coordinate system on the phantom. In each US image, the two fiducials, corresponding

to the cross line of the Z-phantom were manually identified to obtain a total of 34 homologous

points in both the US image and the 3D space. The calibration was accomplished using the

Orthogonal Procrustes algorithm which resulted in mean Fiducial Registration Error (FRE) of

2.2 ± 0.3mm.

Once US calibration is determined, it was used to overlay US images in video together with

the poses of the LUS probe. A block of PVC through which a surgical needle was inserted was

imaged. The alignment of the US visible portion with the portion visible in the laparoscopic

image qualitatively validates the pose estimates computed by the proposed method. To demon-

strate the ability of the proposed method to estimate the pose under fiducial occlusion, several

fiducials were covered with a surgical instrument.

2.3.4 Results

Over 650 frames, 95% confidence interval (CI) of the root mean squared error (RMSE) of the

translation was observed to be 2.0±0.1mm, 1.6±0.1mm and 2.4±0.1mm for MONO, STEREO

and TR respectively. Assuming that the translation errors are Gaussian, independently and

identically distributed (i.i.d), a paired t-test revealed that the translational error resulted from

the STERO method is significantly lower compared to the MONO method (p < 0.001), and the

TR method (p < 0.001). In addition, the TR method resulted in the largest translational error

(p < 0.001). The angular errors were analyzed as errors of rotation around the axes in the cam-

era coordinate system (Fig 2.5). With the same assumption as above, paired t-tests were carried

out for rotational errors as well. The TR method demonstrated significantly larger rotational

error about the camera x-axis (95% CI [0.17 ± 0.01], compared to [0.02 ± 0.002] in STEREO,
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p < 0.001), while the errors from the other two methods were statistically indistinguishable

(p > 0.6). In estimating the rotation about the camera y-axis, TR method demonstrated the

worst performance (95% CI [5.45 ± 0.35], p < 0.001), compared to the MONO (95% CI

[0.82±0.08]), and the STEREO method (95% CI [0.63±0.05]). Even though the estimates re-

sulting from the STEREO and MONO methods are practically indistinguishable, the STEREO

method resulted in statistically better estimates (p < 0.001). Once again, the worst rotational

errors about the z-axis came from the TR method (95% CI [0.84 ± 0.05], p < 0.001). Sta-

tistically, the MONO method resulted in better estimates (95% CI [0.36 ± 0.02, p < 0.001)

compared to the STEREO method (95% CI [0.42 ± 0.03]).

Considering 3D points corresponding to each US pixel as targets, the Target Registration

Error (TRE) was computed for MONO, STEREO and TR methods, using the estimated US

calibration matrix to transform US pixel locations to the coordinate system defined on the

fiducial pattern. TRE measures the true registration error at targets that the surgeon is interested

in. In this application, 3D locations imaged by the LUS probe are the targets of interest. The

mean TRE maps for each method are shown in Fig. 2.6. The TR method demonstrates the

worst TRE (mean ranging from 1.6−4.9mm), while the TRE results in STEREO demonstrates

the best (mean ranging from 0.9 − 1.1mm). Even though minor, an improvement in the mean

TRE is observed in STEREO compared to that in MONO (compare range of mean TRE in

MONO, 1.1 − 1.3mm, to that in STEREO).

To investigate the computational performance of the proposed methods, the running time

of MONO and STEREO method in the Matlab implementation was measured. MONO method

required 44ms for initialization from the GMM-based prior, while the STEREO method took

196.2ms. Once initialized, MONO method required 15.6ms on average to compute the pose

per camera frame while the STEREO method required 37.9ms.

Fig. 2.7 qualitatively demonstrates the performance of the proposed methods. As illus-

trated in Fig. 2.7(a), the STEREO method estimates the pose, and correspondence (2D-2D

correspondence cross images, and 3D-2D model-to-image correspondence) even under occlu-
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sion of some fiducials by a surgical tool. In the augmented image in Fig. 2.7(b), note that

the needle seen in US image is in alignment with the ends of the needle protruding from the

phantom, visually validating the estimated pose. Also, note that the pose has been estimated

even under partial feature occlusion. It is important to notice that the overlaid US image in Fig.

2.7(b) is perceived to be floating above the rest of the scene, even though it is rendered at the

correct spatial location. Remedies to the issue of naı̈ve rendering are discussed in the following

chapters.
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Figure 2.5: Error in pose estimates, RMSE in translation (a), absolute error in rotation in
YZ-plane (b), absolute error in rotation in the XZ-plane (c), and the absolute error in rotation
about the XY-plane (d). All the errors are computed with respect to the OTS measurements.
Errors in TR, MONO, and STEREO methods are indicated in green, red, and blue respectively
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2.4 Discussion

Based on the experiments with the validation tool, the MONO and STEREO methods both

produce significantly more accurate estimates compared to the TR method. The uncertainty

in stereo triangulation could be culprit for the increased error in the TR method. In this

method, the uncertainty in localization propagates to uncertainty in the triangulated points,

and eventually results higher uncertainty in the computed estimates. In the Kalman filter-based

approaches in both MONO and STEREO methods, each model-feature correspondence pair

updates the pose vector directly without an intermediate step such as triangulation. There-

fore, the accuracy of the computed pose by these two methods depends only on the fiducial

localization uncertainty in the image space, and the nonlinear propagation of the uncertainty

between the pose space and the measurement space. In the MONO method, this propagation

is achieved by using the Jacobian of the nonlinear transformation, while in the STEREO the

unscented transform is involved. The Jacobian approximation captures the nonlinearity only at

first order accuracy (Taylor series expansion) while the unscented transform demonstrates third

order accuracy for Gaussian distributions [40]. This difference in accuracy could be one reason

why the STEREO method produces significantly better estimations, particularly in translation.

Another reason for the improved performances of the STEREO method could be the wealth of

depth information contained in the multiple-views.

The estimates resulting from the MONO and the STEREO methods are significantly less

jittery compared to those from the TR method. One can use a separate Kalman filter to

smooth the output from the TR method, but that will add computational cost on top of the pose

computation. The embedded Kalman filter in the MONO and the STEREO methods enables

smooth evolution of the estimates over time within the pose estimation framework itself with-

out adding extra computational cost. Compared to the STEREO method, the MONO approach

demonstrates better run-time performance, which could be attributed to the Jacobian-based lin-

earization of the nonlinear transformation which can be computed efficiently. The unscented

transform increases computational cost, thereby increasing the the computational cost of the
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STEREO method. However, the STEREO method still demonstrates video rate (24fps) run-

ning time even with the unoptimized Matlab implementation. I believe that with optimized

C/C++ -based, perhaps on parallel hardware, higher frame rates can be achieved.

Despite the improved performance, the proposed methods have some limitations that may

be resolved with further research. As indicated in the results section, the GMM-prior-based

initialization is quite expensive. This is revealed by the proposed methods spending signif-

icant time during initialization compared to subsequent estimation. Compared to the GMM

representation of the pose space, the probe-motion-based prior used in subsequent frames is

very strong. This results in tight search ellipses that significantly reduce the search space for

the correspondences. Incorporating more prior knowledge into the GMM is one method of

reducing the computational cost during the initialization. A parallel implementation where

each Gaussian component is evaluated simultaneously could be another method of reducing

the computational burden. In addition, the errors computed in the quantitative experiment us-

ing the validation tool could have contributions from both the hand-eye calibration, and the

calibration from the transformation between the DRB on the validation tool and the fiducial

pattern. However, this error contribution equally affects the three pose estimation methods

compared. Therefore, the conclusions made from this experiment are still valid. Nevertheless,

future research could investigate methods to minimize this error contribution to investigate the

absolute error bounds of the proposed methods.

2.5 Conclusions

In this chapter, an image-based method is proposed to estimate the pose of a laparoscopic ultra-

sound probe for in situ visualization of ultrasound in laparoscopic surgery. It does not require

an extrinsic spatial tracking system while the only requirement is to attach a fiducial pattern

to the curved back surface of the probe. The probe pose and the image-to-fiducial correspon-

dence is estimated simultaneously using the a Kalman filter-based framework. The framework
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is generalized to multiple views with application to stereo/robot-assisted laparoscopy, but with

the expense of increased computational cost. With reference to an optical tracking-based ref-

erence, the proposed multi-view pose estimation framework achieves sub-millimeter TREs

for targets imaged by the US probe, while the monocular image-based method demonstrates

slightly degraded accuracy. Both of the methods achieve more accurate estimates compared

to the conventional stereo-triangulation based pose estimation strategy that commercial optical

tracking systems are based on. Future research should look into methods of further improv-

ing the running time of the proposed methods, particularly the multi-view-based method, and

further improving the accuracy of the estimates by fusing multiple visual cues (points, edges,

depth, etc.).
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Chapter 3

Accuracy in Freehand 3D-US

Reconstruction with Robust Visual

Tracking

This chapter is adapted from the papers,

• Uditha L. Jayarathne, Elvis C. S. Chen, John Moore, Terry M. Peters, ”Freehand 3D-
US reconstruction with robust visual tracking with application to ultrasound-augmented
laparoscopy,” Proc. SPIE 9786, Medical Imaging 2016: Image-Guided Procedures,
Robotic Interventions, and Modeling, 978617 (18 March 2016)

• Uditha L. Jayarathne, John Moore, Elvis C.S. Chen, and Terry M. Peters, “Visualizing
Ultrasound In the Context of Laparoscopy”, IEEE Transactions on Visualization and
Computer Graphics, (submitted)

3.1 Introduction

The robust visual tracking method described in the previous chapter enables US images to be

transformed to the coordinate system centered in the laparoscopic camera. The next challenge

is to present this transformed US information to the surgeon in the context of the surface image

provided by the camera, such that the surgeon perceives both the spatial location, and the 3D

form of the imaged targets accurately. A popular approach to this visualization problem is to

63
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texture map the image to a 2D plane scaled appropriately and placed at the correct spatial pose

in front of a virtual camera, with the intrinsics of the virtual camera matching those of the real

camera. The surface image is set as the background to provide the context. As discussed in

detail in the next chapter, this method of visualization has several issues: (1) the content in

the augmented-US image is difficult to interpret at certain probe poses, and (2) perception of

3D form of the imaged targets require mental integration of 2D images across space and time.

One strategy to eliminate these issues is to reconstruct a 3D US volume as the probe moves

over the region of interest, and to render the volume at the correct spatial pose in the camera

coordinate system. The 3D rendering of the volume eliminates the vantage point-based issue,

and off-loads expensive cognitive processes minimizing room for error. However, this method

requires a very fast reconstruction technique to enable real-time performance. In addition,

the reconstruction technique should be accurate, as erroneous reconstructions may result in

inaccurate spatial perception leading to surgical errors.

Many 3D US reconstruction techniques exist in the literature, where a predefined voxel grid

is filled by US pixels in 2D US images tracked in a common coordinate system. Depending on

the manner whereby the voxels in the structured grid are filled, these methods are categorized

into three groups: (1) pixel-based, (2) voxel-based, and (3) hybrid methods. In pixel-based

methods, each US pixel is transformed to the voxel space using tracking information, and is

assigned to the nearest voxel, as in the pixel-nearest-neighbor method [1, 2], or smeared to

nearby voxels through a 3D kernel [3, 4]. These methods are sometimes known as forward

methods. One major issue with pixel-base approaches is that some voxels may never get filled,

hence, a hole-filling method is required to obtain a high quality reconstruction [1]. Unfortu-

nately, hole-filling is an expensive process, which hinders the running time of the algorithm.

Voxel-based methods operate by assigning the nearest US pixel for a given voxel in the grid

without any weighting, as in voxel-nearest-neighbor method [5, 6], or with weighing-based on

perpendicular distance to the corresponding US image [7, 8]. This method fills all the voxels,

hence, the hole-filling step is generally not required. However, this approach requires that all
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the US images to be available before the reconstruction begins, which renders it unsuitable

for real-time applications. Hybrid methods attempt to exploit the best characteristics of these

two methods, transforming a fixed number of US images to the voxel coordinate system, and

employing a voxel-based approach to fill a region of interest (ROI) in the volume. In this

manner, high quality reconstruction can be achieved quickly without employing an expensive

hole-filling step.

This chapter describes a hybrid freehand US reconstruction technique that can be imple-

mented in the GPU to achieve real-time performance. It achieves high quality reconstructions

without the requirement for a hole-filling step. While any tracking method, either extrinsic or

intrinsic, can be used to track US images in 6DoF, in this work the robust, image-based tracking

method described in detail in Chapter 2 is employed. The experiments detailed in this chapter

help validate the visual tracking method itself, while enabling an investigation of gross errors

introduced by the system in representing a hidden target in 3D.

3.2 Methods

In this section, the technical details of the hybrid US reconstruction method are described

in detail. This is followed by a description of a phantom-based experiments conducted to

demonstrate the geometric accuracy of reconstruction. Throughout the experiments, a clinical

laparoscopic probe is employed with a fiducial pattern attached to the curved back surface

to enable tracking. The robust, monocular visual tracking method detailed in Chapter 2, is

employed to track the probe in 6DoF in the laparoscopic camera coordinate system. The quality

of the US reconstruction with visual tracking is demonstrated by scanning a PVA-C phantom

that includes lumens and some embedded spherical fiducials. These fiducials allow registration

of the US volume with a micro-CT scan of the phantom, enabling the alignment of the lumens

localized in the US volume to be compared to that localized in the CT.
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3.2.1 Robust Intrinsic Tracking

To track the LUS probe in 6DoF, the robust intrinsic tracking method described in chapter

2 was employed. A fiducial pattern was attached to the curved back surface of a clinical

laparoscopic US probe (LAP9-4/38, Ultrasonix, Canada)(Fig. 3.1(a)), and the 3D locations

of the fiducials, refered to as model-points, were determined accurately using a measurement

microscope (STM6-LM, Olympus, Japan), and a coordinate system was defined with respect

to an arbitrarily chosen fiducial point. Video frames, captured from the left channel of a stereo

laparoscopic camera used in a da Vinci S surgical system (Intuitive Surgical Inc., USA) at a

resolution 640x480 at 30 frames per second, were streamed to a portable computer via modules

included in the PLUS software library [9]. The video image was corrected for barrel and

tangential distortions estimated using the OpenCV software library [10]. In each video frame,

the 2D location of each fiducial is determined by an efficient method [11] followed by sub-

pixel refinement. Model-points, their image-space locations, and the intrinsics determined by

a generic camera calibration method [12] were the input to the monoscopic-image-based pose

estimation algorithm.

Given the 3D fiducial locations (model-points) mi, i = 1, 2, ...,M, and detected 2D locations

uk, k = 1, 2, ...,N, the algorithm estimates the model-to-feature correspondence and the 6DoF

pose P of the probe jointly by minimizing the objective in Eq. 3.1 using an Extended Kalman

Filter (EKF)-based algorithm;

Error(P) =
∑

(m,u)∈Matches

‖u − Pro j(P; m)‖ + τ|,NotDetected| (3.1)

where Pro j(P,mi) is the operator that projects the model point mi with the pose p, |NotDetected|

is the cardinality of the undetected model points, while γ is a tuning parameter. The reader is

referred to the chapter 2 for full details of the algorithm.

The pose that minimizes Eq. 3.1 was further refined by applying an EKF state update step
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for each matched correspondence. Based on the refined pose, the prior for the subsequent

frame was determined by a standard EKF prediction step with an identity process model.

The algorithm was implemented in Matlab and applied to the captured video to obtain the

pose estimates offline.
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3.2.2 US Calibration

The method described in section 3.2.1 allows the probe to be tracked relative to a coordinate

system in the camera. To track the US images in this coordinate system, the constant transfor-

mation from the US-image-based coordinate system to that based on the tracking fiducials is

required. To determine this transform, a novel method that casts the problem as a point-to-line

registration problem was employed [13, 14].

A hollow plastic straw was used as the calibration object, whose 3D orientation can be

tracked relative to the camera coordinate system using a checkerboard pattern attached to the

flat surface of its plastic holder (Fig. 3.1(a) and Fig. 3.2(a)). The holder was designed and 3D

printed such that two points on the central axis of the plastic straw are known with respect to

a coordinate system on the checkerboard pattern. One could also use a tracked needle, but the

hollow straw enables highly accurate localization in the US image resulting in accurate esti-

mates [15]. While the LUS probe was fixed and stationary, the calibration object was moved

such that the plastic straw could be imaged at different parts of the US image upto a maxi-

mum depth of 4cms. The video image was saved at standard definition (640x480) resolution

together with the US image captured at 645x595 resolution. For each camera image, the image-

based method described in section 3.2.1 provided the pose of the probe while the pose of the

checkerboard pattern was determined by an accurate, iterative algorthm [16] implemented in

the OpenCV software library. In each US frame, the centroid of the image of the straw (Fig.

3.2(c)) was manually determined. These centroids, together with the orientation of the plas-

tic straw were fed into the Anisotropic-Scaled ICP(AS-ICP) algorithm (Appendix A), where

the point-to-line registration transform in form of anisotropic scales, followed by rotation and

translation, is the US calibration we seek.
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3.2.3 Realtime 3D Ultrasound Reconstruction

With the pose of the US images determined by the concatenation of the transforms determined

by the methods described in sections 3.2.1 and 3.2.2, they are stitched to a 3D volume by

using the hybrid reconstruction technique described by Ludvigsen [17]. In this method, the US

images are approximated by 2D planes, with their poses known with respect to a coordinate

system centered in the camera. The rectangular extent of the 3D volume is determined a-priori

using a scout scan that can be acquired quickly even for complex anatomy, since image quality

is inconsequential. In practice, the region of interest (ROI) determined by scout is small (up to

about 7 cms) for target sizes associated with the intended laparoscopic applications.

The W most recent 2D US images with their corresponding poses are accumulated into a

buffer. Using the pose of the US image, we transform three points, pi
0,p

i
1 and pi

2, corresponding

to three corners in the ith image, to obtain their coordinates Pi
0,P

i
1 and Pi

2 in the coordinate

system centered in the camera. Triplets of these points define a unique set of planes in 3D (Fig.

3.3(a)) given by,

aiX + biY + ciZ + di = 0 (3.2)

where ai = nx, bi = ny, ci = nz, di = −ni · P0, and ni is the normal vector to the ith plane. Given

the planar approximation of US images, the points between two adjacent image planes lie on

rays, starting at pixel point ri on the ith image plane in the direction rd of the other image, with

their coordinates are given by

Pi j = (ri + trd)/∆v (3.3)

where the scalar t = −((ai, bi, ci) · r0 + d)/((ai, bi, ci) · rd) and ∆v is the voxel spacing in the

output volume.

The intensity of a voxel with coordinates given by equation (3.3) receives contribution from

the closest pixels in W adjacent images. A distance weighted orthogonal projection scheme

[7](Fig. 3.3 (b)) is used to determine intensity contributions: Let Ui be be the pixel location in

the ith image closest to the voxel Pi j, and let li be the distance. Let Ii be the pixel intensity at Ui
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ri

dr
P0

P2

P1

ith image

i+1th imagePj

(a) (b)

Figure 3.3: (a) 2D US images are represented by their planer equations using three points,
and (b) the intensity value of a voxel between US scans is determined based on the distance
weighted orthogonal projection method

determined using bilinear interpolation involving four surrounding pixels. The intensity of the

voxel Pi j is the distance weighted intensity average given by,

I =

∑
liIi∑
li

(3.4)

where the summation is over W adjacent images.

It is often the case that the same voxel is visited multiple times during scanning. In such sit-

uations, we alpha-blend the existing intensity value of the voxel with the new one, eliminating

the need for a memory intensive accumulation buffer.

Implementation

To enable easy integration with the rendering pipeline detailed in chapter 4, and to achieve

real-time frame-rates, the 3D reconstruction algorithm is implemented in C/C++ as a VTK

filter with GPU acceleration. In the following experiments, a window of four US images is

used (W = 4) to improve the reconstruction quality. The isotropic output voxel resolution was

set to be 0.5 mm. When the voxels are visited multiple times, alpha-blending was used with
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the alpha value set to 0.7.

3.2.4 Experiments

The geometric accuracy of the reconstruction method was demonstrated by imaging a phantom

that mimics soft-tissue. The phantom, a 80mm x 50mm x 50mm block of polyvinyl alcohol

cryogel (PVA-C), underwent one freeze-thaw cycle, and was equipped with two embedded

lumens, one 20mm from the base, the other 30mm. The latter lumen bifurcated near the center

of the block, at a 50 degree angle. Eight plastic beads mounted on pins, were placed randomly

around the lumens (Fig. 3.1(b)), to be used as fiducial markers to register a CT-image of the

phantom to the US volume. An ellipsoidal geometry was used for the lumens (2mm high, 5mm

wide), to represent collapsed bronchi or blood vessels under probe pressure. These lumens

were water-filled during imaging. A 5mm thick boundary was added to the inside walls and

the base to improve US image quality by damping ultrasound reflection artifacts. Finally, a

micro-CT of the phantom was obtained at 0.154mm isotroic resolution to provide the reference

for structures visible in the US image.

The phantom was imaged by the LUS probe while its motion was captured by the laparo-

scopic camera at a resolution 640x480 at 30 frames per second. Corresponding US frames

were saved at the same frame rate. The 6DoF pose of the US probe was determined for each

frame offline by the robust, image-based tracking method described in section 3.2.1, and with

concatenation with the US calibration, the pose of the US captured US images were deter-

mined relative the camera coordinate system. The poses and the US images were the input to

the freehand US reconstruction method implemented in OpenCL as detailed in section 3.2.3

to run in the GPU. A computer with an Intel Core i7 processor, 8 GBs of RAM, a GTX 1070

GPU running Microsoft Windows 10 was used for the experiments.

In the reconstructed US volume, the distance between the plastic beads localized manually

in the 3D US volume were compared to the reference provided by the micro-CT to assess ge-

ometric distortion during reconstruction. These fiducials were then used to align the 3D US
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volume with the micro-CT volume through a rigid transform, using the Landmark Registra-

tion module in 3D Slicer (www.slicer.org). The lumens were manually segmented in both

volumes (3D US and micro-CT) and the centerlines were determined by using a skeletoniza-

tion algorithm [18] followed by manual adjustments. The voxels in the 3D US centerlines were

then transformed to micro-CT coordinate system using the rigid transformation, and the closest

Euclidean distance to micro-CT centerline voxels was determined.

3.3 Results

A sample laparoscopic camera image is shown in Fig. 3.2(b), with the correspondence ac-

curately solved by the image-based pose estimation method. Note that some fiducials have

not been detected while some outliers have been picked by the feature detector. The pose

estimation algorithm has nevertheless determined the correct correspondence, and the pose,

regardless of these imperfections in the feature detector. The US calibration using the poses

determined by this method resulted in Fiducial Registration Error (FRE) of 0.57mm for 20 US

frames corresponding to different poses of the plastic straw.

A Direct Volume Rendering (DVR) of the reconstructed 3D US volume using a one-

dimensional transfer function is shown in Fig. 4.5(a). Note that the lumens are clearly visible

while the strong US reflections from the plastic beads can be easily identified in this rendering.

The 15 distance measurements computed between the plastic beads localized in the 3D US vol-

ume differs from those measured in the micro-CT volume by 2.27mm on average (Table 3.1).

The FRE of the rigid registration between the US volume and the micro-CT volume was cal-

culated to be 1.38mm. Fig. 4.5(b) qualitatively represents the accuracy of this transformation.

Note how the lumen walls in the US image align with the corresponding micro-CT structures.

Fig. 3.6 shows the Euclidean distance error between the centerlines of the tubular struc-

tures after registration. This is equivalent to the target registration error (TRE), which measures

the true registration error, hence is clinically very important. The color in every point in the

www.slicer.org


3.3. Results 75

lumen wall in Fig. 3.6 indicates the error associated with the closest centerline voxel. Note

the increase in the error as the probe moves further away from the camera. The mean and the

standard deviation of the distance between the two centerlines were 1.52mm and 1.14mm re-

spectively (Table 3.1) while its maximum was 4.82mm. The histogram of centerline alignment

errors is also shown in Fig. 3.4.
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Figure 3.4: Histogram of distances (in milimeters) between the centerlines of the tubular
structures extracted from the micro-CT scan and the registered 3D US volume

N Mean(mm) STD(mm) 95% Confidence Intervals (mm)

Fiducial Distance Error 15 2.27 1.09 [1.67, 2.87]
Centerline Distance Error 239 1.52 1.14 [1.37, 1.66]

Table 3.1: Fiducial distance error and the centerline distance error after the registration
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3.4 Discussion

This chapter describes the investigation of the accuracy of freehand US reconstruction with the

robust, visual tracking method detailed in chapter 2 using a PVA phantom that mimic anatom-

ical structures. A 3D US volume reconstructed with a GPU-accelerated hybrid algorithm is

registered to a micro-CT scan of the phantom via manually localized fiducials. The distances

between these fiducials are calculated in each volume to obtain a quantitative measure on the

geometric accuracy of the reconstruction. After registration, the distance between the cen-

terlines of the tubular structures of the phantom is computed providing another quantitative

measurement on the reconstruction quality. In addition, an overlay visualization of US and

micro-CT images, and DVR visualization of the reconstructed US volume obtained by apply-

ing the estimated registration provides qualitative measures.

In addition to the errors in probe tracking and calibration, a significant contributor to the

TRE is manual localization of plastic bead fiducials in the US volume. Strong US reflections

from these fiducials render pin-pointing their location difficult and error-prone, as reflected in

the reported FRE of the US and micro-CT registration. In addition, the deformation of the

phantom due to probe pressure could also have an effect on the TRE.

The error map in Fig. 3.6 has an increasing trend as the probe moves away from the camera

(see Fig. 3.1(b) for details on how the phantom was placed in front of the camera), and this

tendency could be due to the drop in accuracy of pose estimates along the positive Z-axis of

the camera and due to inaccurately modeled lens distortions. Significant improvements to pose

estimates can be obtained with multi-view cameras as described in chapter 2, while errors due

to inaccurately modeled lens distortion can be reduced by employing non-parametric distortion

model [19].

The reconstruction method detailed in this chapter, stitches 2D US images into a 3D volume

in real-time. Since the US images are tracked relative to the camera coordinate system, the

pose of the reconstructed volume is intrinsically known in this coordinate system. Therefore,

the volume can be rendered in the camera coordinate system enabling visualization of hidden
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anatomy in 3D in the context of the laparoscopic camera image. Technical details of achieve

such visualization, and a study of human factors associated are dealt within the following

chapter.

3.5 Conclusions

In this chapter, geometric accuracy of freehand, real-time 3D US reconstruction with visual

tracking is investigated with a phantom study. The results suggest that errors up to four mil-

limeters can be expected with the system, while an increase an error could be expected when

the probe moves away from the camera center. In addition, deformations due to the probe

pressure may have a significant contribution. The experiment helps in estimating the average

gross error the system introduces in representing a hidden target in 3D when the image-based

method proposed in Chapter 2 is used for localization.
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Chapter 4

Visualizing Ultrasound In the Context of

Laparoscopy

This chapter is adapted from the papers,

• Jayarathne U.L., Moore J., Chen E.C.S., Pautler S.E., Peters T.M. (2017) Real-Time 3D
Ultrasound Reconstruction and Visualization in the Context of Laparoscopy. In: De-
scoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical
Image Computing and Computer-Assisted Intervention MICCAI 2017. MICCAI 2017.
Lecture Notes in Computer Science, vol 10434. Springer, Cham

• Uditha L. Jayarathne, John Moore, Elvis C.S. Chen, and Terry M. Peters, “Visualizing
Ultrasound In the Context of Laparoscopy”, IEEE Transactions on Visualization and
Computer Graphics, (submitted)

4.1 Introduction

Chapters 2 and 3 discuss methodologies to bring 2D US into the camera coordinate system,

and capture the 3D geometry of hidden targets by stitching 2D US images into a volume. In

addition, these chapters discuss the expected accuracy bounds in presenting a hidden target

in 3D. Methods to render this information in the context of the laparoscopic video, and how

different rendering methods affect the perception of the location of the target are discussed

in this chapter. As formalized in the Introduction, I use the term hybrid in situ to describe
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visualizations where US information is rendered in the context of the laparoscopic image.

An effective hybrid in situ visualization strategy requires efficient solutions to two prob-

lems: (1) mapping US image pixel information from the US image coordinate system to that

based on the laparoscopic camera, and (2) presenting US image information in the context of

the laparoscopic video such that the surgeon perceives the spatial location and the 3D form

of imaged targets accurately. State-of-the art methods to solve the problem (1), and a novel

image-based method that eliminates the need for extrinsic tracking systems is detailed in chap-

ter 2. Interestingly, very few attempts to solve the visualization problem (2), can be found in

the literature. The focus of this chapter is to propose a practical solution to this problem, and

assess it performance through a series of perceptual experiments.

4.2 Related Work

The most common strategy to render US data transformed to the laparoscopic camera frame of

reference is to texture map the US image to a 2D plane placed at the correct spatial position,

orientation, and scale [1–4] in the camera frame of reference. The laparoscopic camera image

is set as the background texture to provide the context. The textured US image plane is then

blended with the background by adjusting its transparency to avoid complete occlusion of the

scene by the US image. This method of rendering conveys ambiguous depth cues resulting in

perception that the US image is in front of the rest of the scene. To remedy this, Hughes-Hallett

et al. [5] overlaid the US image on an inner surface of a cube that moves with the probe, allow-

ing the surgeons to appreciate depth more easily. However, the efficacy of this approach has

not been investigated experimentally. In addition, the interpretation of the content in the US

image in these schemes becomes difficult at certain probe poses, particularly when the rendered

image plane makes a nearly perpendicular angle with the camera imaging plane. In many la-

paroscopic applications including laparoscopic partial adrenalectomy [6] and in thoracoscopic

localization of pulmonary nodules using LUS in VATS [7], such situations are common due to
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the standard placement of laparoscopic ports. An overlaid single image may not convey much

information in these situations.

Very few attempts have been made to render 3D US information reconstructed from 2D

US images in the context of the laparoscopic video. In a recent article, Oh et al. [8] pre-

sented a method where an US volume is reconstructed by mechanically moving the probe, and

the maximum intensity projection (MIP) of the volume is overlaid in the laparoscopic video.

The mechanical assembly proposed in this work adds logistical overhead in practical surgery.

Moreover, the volume reconstruction takes several seconds which may not be practical in ab-

dominal surgery involving moving soft-tissues. In addition, the alpha blended volume appears

to convey inaccurate depth cues.

4.2.1 Contributions

In this chapter, a visualization strategy to eliminate issues in the existing hybrid in situ vi-

sualization techniques is presented. This allows the surgeon to interactively visualize hidden

targets in 3D, in contrast to the cognitively demanding method of 3D form perception through

mental integration of 2D cross-section images cross space and time [9]. In contrast to similar

US visualization techniques [10], the proposed method reconstructs a full 3D US volume of

the scanned anatomy in real-time. This volume can be used to register pre-operative images,

allowing pre-operative plans to be brought into the surgical scene if required. The GPU accel-

erated implementation of the proposed method runs in real-time, and is fully compatible with

the Visualization Toolkit1 (VTK). In addition, a perceptual study involving experienced US

users is conducted to investigate efficacy of the proposed visualization scheme, and compare

its performance to the conventional method of visualizing US in a separate display.

1http://www.vtk.org/
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4.3 Methodology

In this section, technical details of the visualization scheme are described. The pose of the US

probe with respect to a camera-centered coordinate system is assumed to be known by an in-

trinsic or an extrinsic tracking technology. In addition, the constant transformation between the

US image coordinate system to that centered in the tracking sensor/marker, known as the US

calibration transformation, is assumed to be known through an appropriate calibration method.

The pose of the probe coupled with the US calibration transform allows the US image to be

mapped to the coordinate system centered in the camera. When the surgeon moves the probe

over tissue to explore the underlying 3D anatomy, the tracked 2D US images are stitched into a

3D volume in the camera coordinate system. The 3D reconstruction algorithm is implemented

in the GPU to enable real-time performance. The reconstructed volume is then rendered by

using an efficient ray-casting algorithm, which is also implemented on the GPU to accelerate

computations. The rendered image of the 3D US volume is then blended with the laparoscopic

camera image providing the surface view of the organs, using two different blending meth-

ods; one naı̈ve alpha blending method, the other a distance dependent opacity function. This

transparency function is also modulated by high frequency information in the surface image.

These blending schemes are described in detail in Section 4.3.2. The proposed visualization

scheme is compared to the conventional method of viewing US, by conducting a perceptual

study involving experienced US users using the setup detailed in Section 4.3.3.

4.3.1 Real-time 3D US Reconstruction

The visualization pipeline employs the high quality 3D ultrasound reconstruction algorithm

detailed in Chapter 3, implemented in the GPU to achieve real-time performance. The US

images are approximated by 2D planes, with their pose known with respect to a coordinate

system centered in the camera. The rectangular extent of the 3D volume is determined a-priori

using a scout scan that can be acquired quickly, even for complex anatomy, since image quality
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is inconsequential. In practice, the region of interest (ROI) determined by the scout is small

(up to about 7 cms) for target sizes associated with the intended laparoscopic applications.

For each four US frames captured, the voxel grid is updated using a distance weighted

orthogonal projection scheme [11]. Thus, as the surgeon scans an organ of interest, a 3D US

volume is incrementally filled. It is often the case that the same voxel is visited multiple times

during scanning. In such situations, the existing intensity value of the voxel is alpha-blended

with the new one, eliminating the need for a memory intensive accumulation buffer. For a

detailed description of the reconstruction method, the reader is referred to the Chapter 3.

4.3.2 Blending the US Volume with the Camera Image

As the surgeon move the probe on the target region, the 2D US images are captured and a 3D

volume is reconstructed. For technical details of the algorithm the reader is refered to the Chap-

ter 3. The objective is to visualize the targets of interest captured by this volume in the context

of the laparoscopic image. Since the pose of each 2D US image is determined with respect

the camera coordinate system, the pose of the reconstructed volume is intrinsically determined

in this coordinate system. For every US image captured, the 3D volume is updated, and ren-

dered using a GPU-accelerated, efficient ray-casting method [12]. A simple one-dimensional

transfer function is used in this work while higher-dimensional transfer functions can be easily

integrated. The volume is rendered in front of a virtual camera whose intrinsic parameters

match with those of the laparoscopic camera. The resulting 2D image is blended with the

laparoscopic camera image resulting in an US-augmented image (Fig. 4.2(d)).

Two blending schemes are used. In the first, naı̈ve blending scheme, the output of ray-

casting is blended with the camera image with a constant alpha value for every pixel. In this

scheme, the output pixel value Irgb is given by,

Irgb = αIv
rgb + (1 − α)Ic

rgb (4.1)
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where Iv
rgb and Ic

rgb are intensity in the rendered volume, and the camera image respectively.

In the second scheme, refered to as keyhole blending scheme, the rendered volume is

blended with the camera image through a circular opacity window, or keyhole. Inside the

keyhole the opacity changes as a function of the Euclidean distance from the centre (Fig.4.1),

while the opacity outside the keyhole is saturated making the surface image completely opaque.

The edge map of the camera image, obtained with the sobel operator, modulates the opacity

inside the window to yield the opacity function depicted in Fig. 4.2(c). The final image is

the alpha-blending (Eq. 4.1) of the rendered volume (Fig. 4.2(a)) and the camera image (Fig.

4.2(b)), with alpha value determined by the opacity function in Fig. 4.2(c). This blending

scheme results in the image shown in Fig. 4.2(d). Note the improved perception of depth or-

dering as a result of edge features inside the keyhole. In the literature, similar methods have

been described by several other authors [13–15] to blend volumetric images (CT/MRI) with a

camera image.

Implementation

For every camera and US image captured, the US volume is rendered to the texture memory of

the GPU, to which the camera image is also copied. Edge response and opacity computations

are performed by fragment shader programs implemented in C/C++ as part of a render-pass in

VTK, and the output of the shader programs is rendered to a monoscopic/stereoscopic display.

The alpha value in the naı̈ve blending scheme is set to be 0.7 in all the following experiments.
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Figure 4.1: Distance dependent transparency function inside a circular region. Function val-
ues for pixels through the red line are shown on the right. Note that the full transparency
corresponds to the pixel in the center
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4.3.3 Experimental Setup

The efficacy of the hybrid in situ visualization scheme, detailed in Section 4.3.2 is studied,

by conducting a perceptual study involving phantoms. The experimental configuration com-

prised of a stereoscopic laparoscopic camera (Olympus, Japan) providing the surface image,

an ultrasound machine with a hand-held linear probe (Ultrasonix, Analogic, Canada) providing

tomographic image, an optical tracking system (Vicra, Northern Digital Inc., Canada) tracking

the imaging devices and tools, a passive stereoscopic display system (VisionSense, PA, USA)

enabling both monoscopic and stereoscopic visualization, and a portable computer providing

the required computational power (Fig. 4.3). Retro-reflective fiducials were attached to the

camera, linear US probe, phantoms, and a pointing-tool to enable tracking of their pose in six

degrees of freedom (6DoF) by the optical tracking system. The constant transformation cTDRBc

from the fiducial coordinate system to that centered in the camera, known as hand-eye cali-

bration, was determined accurately using a Procrustean Perspective-n-Point solution [16]. In

addition, US calibration DRBuTus, the transformation from the fiducial coordinate system on the

probe to the US image, was determined using an algorithm that cast the problem as a point-to-

line registration [17]. These calibrations, together with the poses read from the optical tracking

system, allow the pose of the US image cTus to be computed in the camera coordinate system,

cTus =c TDRBc.
[w

TDRBc

]−1
.wTDRBu.

DRBuTus (4.2)

where wTDRBc, and wTDRBu are 4x4 matrices representing the pose of the dynamic reference

body (DRB) on the camera, and the US probe respectively. The experiments were conducted

with the subject seated (Fig. 4.3) while a surgical drape blocks their direct line-of-sight to the

action site. The display and the US machine were placed in front of the subject, mimicking

the setup in surgery. The laparoscopic images, captured at 800x600 resolution, together with

the US image were streamed using the PLUS software library [18] to the portable computer

with an Intel Core i7 processor, 32 GB RAM and a Quadro K5000 GPU, running Microsoft
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Optical Tracking 
System Laparoscopic 

Camera

Ultrasound 
Machine

Stereoscopic 
Display

Portable 
Computer

Surgical Drape to 
Block Direct Sight

Figure 4.3: The experimental setup: The laparoscopic and the ultrasound videos are captured
by the portable computer, processed and the output is displayed in the passive stereoscopic
monitor in front of the subject. This monitor enables both monoscopic and stereoscopic visual-
ization while polarizing glasses are required for stereoscopic viewing. The subjects direct sight
was occluded by a surgical drape to avoid any biases. An optical tracking system was used to
track the pose of the US probe, camera, and the phantom in a common coordinate system al-
lowing US to be rendered in the context of the laparoscopic image, and enabling perceived
target location to be compared to the CT-based reference

Windows 7. The portable computer composed the final image, with or without US overlay,

to be rendered in the display in monoscopic/stereoscopic mode depending on the visualization

mode.

Six identical box phantoms, inner space measuring 10 cm x 10 cm x 5 cm (LxWxH), were

3D printed using an Ultimaker 2e2 3D printer. In each box, eight 6.35 mm of diameter hemi-

spherical divots, used for landmark based registration, surrounded the outer walls, with a DRB

2www.ultimaker.com
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mounted to one wall to enable 3D tracking. Each of the six boxes held three silicone spheres,

6.2 mm in diameter, mounted on thin shafts and placed such that their relative locations roughly

form an equilateral triangle at the center. The spheres were placed at three different depth lev-

els, approximately 5 mm, 15 mm and 25 mm from the surface, with their ordering randomized

across phantoms to avoid learning effects. The inner walls of the boxes were coated with 4

mm of Mold Star 16 FAST silicone3, to dampen US reflections (Fig. 4.4(a)). Three of the

boxes were then filled with polyvinyl alcohol cryogel (PVA-C) for ultrasound imaging, while

the other three were left open to be used to assess subjects’ base-line localization performance.

A 1 mm thick layer of silicone (green), textured with black silicone was placed on top of the

PVA-C (Fig.4.4 (b-c)). The silicone was added to prevent water evaporation from the PVA-C

while the black texture provided surface features. Finally, a CT image of each phantom was

obtained at 0.42 mm x 0.42 mm x 0.83 mm resolution and was registered to the tracking DRB

using the divots on the walls. Using this registration to transform 2D/3D US localized tar-

gets to CT space, the mean target registration error (TRE) of the system was measured to be

1.35 ± 0.07 mm with 2D US images, and 0.99 ± 0.17 mm in 3D US volumes.

4.4 Experiments and Results

In the experiments, the subjects’ ability to localize a hidden target using ultrasound in both

monoscopic and stereoscopic laparoscopy was assessed. Seven experienced US users, four

male and three female, consented under a protocol approved by the Western University Re-

search Ethics Board, participated in the study using the setup described in Section 4.3.3. All

subjects had normal or corrected-to-normal vision with stereo acuity better than 40” of arc

assessed on the stereoscopic display [19].

Four modes of ultrasound visualization were tested per viewing condition (stereoscopic /

monoscopic): (1) conventional method with US displayed in the monitor on the US machine,

3www.smooth-on.com
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(2) hybrid in situ visualization approach with naı̈ve blending (Fig.4.4 (b)), (3) hybrid in situ

visualization with the keyhole blending (Fig.4.4 (c)), and (4) hybrid approach where the keyhole

blending approach is used while the subjects were allowed to read the depth of the target from

the US image on the machine. During the experiment, the subjects interactively visualized the

targets in the PVA-C filled phantoms using US in different visualizaiton modes. The perceived

position was then indicated by the triangulation-by-pointing method [20], where the subjects

pointed an optically tracked tool to the centroid of the target at three different poses. During

an experimental trial, three pointer poses relative to the phantom were recorded, and the error

between the perceived location, determined by triangulation [21], and the reference location

given by the CT was computed (Fig. 4.4(d)). The task duration was also saved to be used in

the analysis following the experiment.

With each visualization mode, subjects localized the targets in all three PVA-filled phan-

toms, each subject providing three data points per target depth per visualization mode. The

order of presentation of the phantoms and the order of visualization were counterbalanced

across different subjects to minimize any bias. Following the US-based localization experi-

ments, the subjects localized targets under direct laparoscopic viewing using phantoms that

had the PVA-C medium removed, allowing their base-line performance to be assesed. The

stereoscopic viewing experiments were performed at the same time as the experiments with

the monoscopic viewing condition, with their order couterbalanced across different subjects to

eliminate any bias. Finally, the users provided their subjective opinion on the difficulty of the

task by using the NASA TLX ranking system [22].
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4.4.1 Experiment I: Monoscopic Viewing

In this experiment, the subjects’ ability to localize a hidden target using ultrasound in monoc-

ular laparoscopy was assessed. The accuracy of localization, as well as the time required to

complete the task, was measured.

Experiment

A 3 (depth) x 5 (visualization mode: conventional, hybrid in situ with naı̈ve blending, hybrid in

situ with keyhole blending, hybrid, and direct laparoscopic visualization), 2-way experimental

design was implemented with three replications, resulting in 45 trials per subject. The target

localization in clear phantoms under direct laparoscopic viewing was performed at the end to

avoid any bias. Other visualization modes, and phantom testing order were counterbalanced

across subjects, to avoid bias. When a target was localized, subjects indicated its perceived

location by pointing to its centroid at three different poses. For each target, three poses to-

gether with the localization time were saved for post experimental analysis. After testing each

visualization mode (except the direct laparoscopic visualization mode), the subjective ranking

on the difficulty of the localization task was indicated by the subjects in the NASA TLX scale.

Results

A 2-way repeated measures ANOVA was applied to the depth component of the localization

measurements to reveal that both the visualization mode and the target depth have effects on

depth perception (main effect (visualization): F(2.79, 55.84) = 8.793, p < 0.001, main effect

(depth): F(2, 40) = 6.354, p = 0.006 ). Moreover, an interaction between the visualization

mode and the target depth was observed (depth x visualization: F(4.60, 92.01) = 3.763, p =

0.005). The Mauchly’s test for sphericity indicated that the assumption for sphericity, the

condition where the variance of the differences between all combinations of related levels are

equal, has been violated with two effects (visualization mode and its interaction with target

depth). Violation of the assumption for sphericity increases the Type I error rate, hence, in
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these cases, the Greenhouse-Geisser correction was applied to achieve more valid critical F

value. To reveal the effect of the mode of visualization at each depth level, three 1-way re-

peated measure ANOVAs were applied, with Greenhouse-Gaisser correction applied whenever

the sphericity assumption has been violated. At the shallowest depth level, the mode of visual-

ization indicated no effect on depth perception (F(2.47, 49.45) = 0.199, p = 0.862). However,

at the depth level 15 mm from the phantom surface, the visualization mode was revealed to

have an effect (F(2.85, 57.05) = 3.151, p = 0.034). Post-hoc analysis with Sidak correction

further showed that the hybrid visualization method resulted in perception of significantly more

depth compared to the naı̈ve blending-based method and the direct laparoscopic localization

method (Fig. 4.5(a)). The visualization mode had an effect on depth perception at depth level

25 mm from the surface (F(2.91, 58.14) = 8.781, p < 0.001). Post-hoc analysis with Sidak

correction further revealed that with the hybrid visualization method subjects perceived more

depth compared to the other modes of visualization (p < 0.04). Interestingly, this method

resulted in slight overestimation of depth (Fig. 4.5(a)).

Fig. 4.5(b) shows the perceived x-y locations of the hidden targets localized using different

modes of visualization with the monoscopic viewing conditions. The direct laparoscopic local-

ization method demonstrated a small bias in both x and y directions, compared to all the other

modes of visualization (main effect (x - visualization): F(2.33, 46.55) = 15.952, p < 0.001,

target depth: F(2, 40) = 1.185, p = 0.316, target depth x visualization: F(3.20, 63.93) =

1.573, p = 0.202; main effect (y - visualization): F(2.89, 57.70) = 7.287, p < 0.001, tar-

get depth: F(1.42, 28.35) = 24.527, p < 0.001, target depth x visualization F(4.22, 84.38) =

4.538, p = 0.002). Greenhouse-Geisser correction was applied whenever the sphericity as-

sumption was violated

Fig. 4.5(c) summarizes the results for task duration for each visualization mode. A 2-way

repeated measure ANOVA was applied to the data to reveal that the visualization mode has

an effect on the task duration (main effect(visualization mode): F(1.96, 39.13) = 5.031, p =

0.012, main effect (depth): F(2, 40) = 0.597, p = 0.555, target depth x visualization: F(3.21, 64.27) =
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1.243, p = 0.058). Post-hoc analysis with Sidak correction revealed that the conventional

method required significantly more time compared to the keyhole blending-based method (p =

0.045), and the hybrid method (p = 0.034).

Based on the NASA TLX-based reporting, summarized in Fig. 4.6(a), subjects experienced

on average lowest mental demand, physical demand, temporal demand, effort and frustration

with the keyhole blending-based method while their subjective evaluation on performance was

maximum with the hybrid technique. Statistically the hybrid method was not different from the

keyhole blending-based method with respect to all other parameters. The conventional method

required, on average, highest mental, physical and temporal demand, effort and result in high

frustration. Moreover, with the conventional method, subjects felt significantly low confidence

on their performance compared to the hybrid method.
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4.4.2 Experiment II: Stereoscopic Viewing

The objective of this experiment was to assess the subjects ability to localize hidden targets

using ultrasound in stereo-laparoscopy with a passive stereoscopic display (Fig. 4.3). The

stereoscopic depth cue binocular disparity is available to the viewers with a passive stereo-

scopic display, and as a result, improved depth perception can be expected. The experimental

conditions in this experiment matched those in Experiment I allowing comparison of the results

obtained with this experiment with those obtained from the Experiment I, permitting assess-

ment of the effect of binocular disparity in a hybrid in situ US visualization environment.

Experiment

The same experimental procedure with a 3(depth) x 5(visualization mode), 2-way experimental

design as in Experiment I was followed, except that the laparoscopic image with / without US-

overlay was rendered in stereo. During the experiment, subjects wore passive polarizing glasses

to enable stereoscopic visualization. Similar to the Experiment I, three pointer poses and task

duration were recorded for analysis, with the subjective opinion on task difficulty reported in

the NASA TLX scale.

Results

A 2-way repeated measures ANOVA was applied to the perceived depth data to check for any

effects. Both visualization and the target depth were revealed to have an effect on depth percep-

tion (main effect (visualization): F(F(4, 80) = 15.790, p < 0.001), main effect (target depth):

F(2, 40) = 7.661, p = 0.002). In addition, an interaction between the visualization mode

and the target depth was observed (visualization x target depth: F(4.60, 92.05) = 5.187, p <

0.001). The Mauchly’s test indicated that the sphericity assumption with the interaction effect

has been violated, hence, Greenhouse-Geisser correction was applied. Three 1-way repeated

measures ANOVAs were applied to the data to investigate the effect of visualization at each

depth level. At the shallowest depth level no effect was observed (main effect (visualization):
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F(2.50, 49.78) = 1.711, p = 0.184). At 15 mm from the surface, the visualization mode had

an effect of the perceived depth (main effect (visualization): F(4, 80) = 4.923, p = 0.001).

Post-hoc analysis with the Sidak correction revealed that with the hybrid method, subjects per-

ceived significantly more depth compared to the naı̈ve blending-based method (p < 0.001),

and the direct laparoscopic viewing method (p = 0.005). The keyhole blending method re-

sulted in the perception of significantly more depth compared to the naı̈ve blending method

(p = 0.02) at this depth level. At more profound depth levels (25 mm from the surface), the

visualization mode has an effect on depth perception (main effect (visualization): F(4, 80) =

12.234, p < 0.001), with, based on post-hoc analysis with Sidak correction, the hybrid method

outperforming other modes of visualization (p < 0.026). Similar to the experiment I, a slight

overestimation in depth was observed with this method (Fig. 4.5(d)).

A 2-way repeated measure ANOVA was applied to both x and y directional components of

localization errors. Both the visualization and the target depth had effects on localization ac-

curacy while interactions were also observed (main effect (x - visualization): F(2.50, 50.15) =

12.184, p < 0.001, main effect (x - depth): F(2, 40) = 10.061, p < 0.001, visualization x target

depth: F(2.97, 59.36) = 3.067, p = 0.035; main effect (y - visualization): F(2.65, 53.03) =

9.210, p < 0.001, main effect (y - depth): F(1.40, 27.91) = 13.619, p < 0.001, visualization x

target depth: F(4.48, 89.60) = 5.961, p < 0.001). Greenhouse-Geisser correction was applied

whenever the sphericity assumption was violated. Post-hoc analysis revealed that the direct

laparoscopic localization has a significant bias in both x and y directions (Fig. 4.5(e)).

In Fig. 4.5(f) task duration results for the study with stereoscopic viewing is summarized.

A 2-way repeated measures ANOVA was applied to this data to determine that the visualization

mode has an effect on the task duration irrespective of the target depth (main effect (visualiza-

tion): F(3, 60) = 4.849, p = 0.004, main effect (target depth): F(2, 40) = 1.903, p = 0.162,

visualization x target depth: F(3.5, 70) = 2.492, p = 0.058). Post-hoc analysis revealed that

the hybrid method required significantly more time compared to the keyhole blending-based

method under stereoscopic viewing conditions.
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Based on subjective ranking on the NASA TLX scale (Fig. 4.6(b)), on average, the hybrid

method required lowest mental demand and effort. The subjects demonstrated significantly

high levels of confidence in task performance with this approach compared to the other meth-

ods. In addition, the keyhole blending-based method was preferred over naı̈ve blending-based

method when it comes to task performance.
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4.5 Discussion

Results of Experiment I reveal the effects of the US visualization method on the perception of

the location of hidden targets under monoscopic laparoscopy. The subjects perceived slightly

more depth when the keyhole blending-based method was used compared to the naı̈ve blend-

ing-based methods, but the improvement appear to plateau with increasing depth. The high

frequency surface features inside the trasparent region in the keyhole blending approach cue

the subjects about depth ordering. These cues, together with the distance dependent trans-

parency function, result in improved depth perception. Interestingly, the conventional method

of US visualization outperforms these two overlay visualization methods in terms of depth per-

ception with deeper targets. Subjects can always read the depth of the target from the depth

scale associated with the US image with the conventional approach, whereas in the overlay

visualization methods they are limited by the depth cues provided by the monoscopic display.

The depth scale result in more accurate internal representations compared to that acquired from

the two overlay visualization methods. However, the accuracy comes at the expense of higher

cognitive effort, as indicated by significantly higher task duration and subjective ranking asso-

ciated with the conventional visualization method. Moreover, the conventional approach tends

to underestimate the distance with increasing depth [21]. The hybrid approach, where the sub-

jects combine the depth scale with the overlay, finds a good compromise between localization

accuracy and task duration. The trends in subjective rankings confirms that hybrid visual-

ization approach outperforms the other modes of visualization, particularly at more profound

depth levels.

Trends similar to those observed in monoscopic visualization were observed with stereo-

scopic visualization. The naı̈ve blending-based method resulted in worst depth perception

while the keyhole blending-based method and the conventional visualization method resulted

in performance similar to what one would demonstrate with direct laparoscopic localization.

However, larger depths were significantly under estimated. Again, the hybrid method resulted

in improved depth perception even though the depth is over estimated slightly. Interestingly
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however, this method required the longest time to complete the task. This could be due to

the interplay of two cognitively expensive processes; stereopsis computation, and fusing depth

information read from the US depth scale with the percept acquired from the overlay. Never-

theless, the trends in subjective ranking suggests that the hybrid visualization method provides

significantly high confidence in task performance with comparatively low cognitive effort.

In both stereoscopic and monoscopic visualization experiments, the direct laparoscopic

localization method resulted in biases along both x and y directions. When US is used for

localization, the probe is placed directly above the target providing strong cues about its x-y

location. This cue does not exist in direct laparoscopic localization technique, hence the bias.

Wu et al. [21] observed similar behavior with their experiments with the Sonic FlashLight

device.

In the experiments a significant effect of stereopsis on depth perception was not observed.

This could be either due to the limited depth resolution in the passive stereoscopic display

system employed, or a result of vergence-accommodation mismatch: Consider the following

equation that relates the disparity δ created by two points in space [23],

δ ≈ I∆D/D2 (4.3)

where I is the interpupillary distance, and D is the viewing distance. To estimate ∆D, D

needs to be estimated from the vergence angle, but in principle it can be estimated by the

accommodation system as well. For a target rendered beyond the display screen where the

subjects eyes are fixated, D will be underestimated if the accommodation system has significant

contribution for the estimation of D. As a result, ∆D will be underestimated. With a series of

psychophysical experiments Watt et. al [24] demonstrated that this is in fact the case. We may

be observing the effects of this phenomenon in the experiments with the stereoscopic viewing.

A major hurdle one needs to overcome in translating the proposed hybrid in situ visualiza-

tion pipeline detailed in this chapter to the clinic is the design of the opacity transfer function.
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While the current implementation uses a one-dimensional transfer function for simplicity, it

provides supports for higher dimensional transfer functions. Future research will evaluate the

learning of complex transfer functions to reveal clinically important targets surrounded by

soft-tissue. In addition, future studies should study the 3D form perception with the proposed

visualization scheme.

4.6 Conclusion

In this chapter, a method to visualize hidden surgical targets in 3D using laparoscopic ultra-

sound in laparoscopic surgery was presented. In this approach, as the surgeon scans an organ

of interest, the 2D US are compounded into a 3D volume in real-time, and rendered in the

context of the laparoscopic image at the correct spatial pose, hence referred to as hybrid in situ

visualization. Different methods of blending the rendered volume, and the laparoscopic image

were considered, and using psychophysical experiments involving experienced US users, com-

pared to the conventional method of visualizing US in a separate display. The results of the

experiments suggest that hybrid in situ visualization with a keyhole blending scheme, where the

volume is blended using a custom opacity function featuring high frequency surface features,

results in the perception of the location of hidden targets with reduced cognitive efforts, both in

monoscopic and stereoscopic laparoscopy. By combining numerical depth value of the imaged

target with this visualization scheme resulting in a hybrid approach, improvements in depth

perception could be achieved, but with a reasonable compromise in cognitive efforts. Future

studies are required to reveal the efficacy of the proposed methods in terms of perception of 3D

form of hidden targets.
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Chapter 5

Conclusion

The objective of this thesis was to develop an effective visualization method to render LUS

information in the context of the laparoscopic video to enable accurate perception of the spatial

location of surgically important hidden targets. In achieving this objective, answers to several

research questions were sought, and Chapters 2 through 4 summarize the mission in search for

answers for these questions.

In Chapter 2, an efficient method to register 2D US images with a coordinate system cen-

tered in the laparoscopic camera was investigated. The method eliminates the need for extrinsic

tracking systems, resulting in potentially lower-cost devices, and smaller operating room foot-

prints for the devices. However, it requires a minor cosmetic modifications to the probe to

provide sufficient features to enable full 6DoF pose estimation. The computational methods

detailed in this chapter estimate the pose of the probe in real-time by using information in

monoscopic or stereoscopic laparoscopic camera images. The chapter also studied the accu-

racy of the estimated pose parameters using an optical tracking system as the reference. In

addition, error in registering a target imaged by the US image to the camera-centered coordi-

nate system by using the proposed intrinsic method was also investigated. Overall, the chapter

attempted to answer the question of how LUS images are registered to the laparoscopic camera

frame of reference with minimal overhead to the existing OR work-flow, and what error-bounds

109
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should be expected.

Chapter 3 seeks answers to the question of how 3D information of hidden targets can be

captured by a series of 2D US images, and what error-bounds should be expected in such

a process. The hybrid US reconstruction algorithm introduced in this chapter can be imple-

mented on the GPU to enable reconstruction of a 3D US volume by incrementally stitching

2D US images as the LUS probe moves over an organ of interest. The geometric accuracy

of the reconstructed volume was investigated by imaging a PVA-C phantom, and registering

the reconstructed volume to its micro-CT. The results of this study reveal the gross error the

system introduces when a hidden target is represented in 3D in the camera-centered coordinate

system.

Methods to render hidden surgical targets in 3D in the context of the laparoscopic video was

investigated in Chapter 4. A 3D US volume can be reconstructed by incrementally stitching 2D

US images in the camera coordinate system by using the methods detailed in Chapters 2 and

3. This volume can be blended with the surface image provided by the laparoscopic camera

to yield a more intuitive US-augmented video by using the techniques detailed in this chapter.

Chapter 4 also discussed the results of a perceptual study conducted involving experienced

US users to investigate the accuracy of localizing a hidden target using different visualization

methods, both under monoscopic and stereoscopic viewing conditions. Overall, the chapter

attempted to answer the question of how the spatially registered US information should be

presented, such that the surgeons perceives the spatial location and the 3D form of hidden

targets accurately.

The thesis was based on the hypothesis that, compared to the conventional ex situ visual-

ization, hybrid in situ visualization of US improves the surgeons ability to perceive the spatial

location and the 3D form of hidden surgical targets in conventional and robot-assisted laparo-

scopic surgery. The perceptual study detailed in Chapter 4 allows this hypothesis to be tested

for the particular visualization method, detailed in Chapters 2, 3 and 4, in a simulated surgical

environment. Thus, the system has been assessed up to the level two in the IGS system assess-
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ment scheme described by Jannin and Korb [1]. The results of the experiments supports the

hypothesis on which this thesis is based under simulated surgical environment. Further studies

may be necessary to test this hypothesis in more realistic surgical environments involving both

novice and experienced laparoscopic surgeons.

5.1 Concurrent Development

During the time this thesis was prepared, there were several development by other researchers

in related fields. The work by Pratt et al. [2, 3] on image-based tracking, and visualization

of US in robot-assisted surgery is one such example. The authors use a planar fiducial pat-

tern attached to a custom-made micro-US probe that is tracked in 6DoF in real-time based on

the information in the laparoscopic images. They developed an intuitive method to visualize

2D US images in the context of the laparoscopic images, and demonstrated their efficacy in

clinical settings. In addition, they utilized their tracking method in autonomous soft-tissue

scanning applications intended for autonomous tumor resections [4], and motion-compensated

US reconstructions [5].

A major challenge in visualizing 2D US images in the context of the laparoscopic images,

is that for certain probe poses, particularly when the US image is nearly perpendicular to the

camera imaging plane, the content in the augmented-image is difficult to interpret. One solu-

tion to this problem is to synthesize an appropriate view of the scene using the appearance and

the structure of the surgical scene captured by the camera. Such views must be generated at

real-time frame-rates to be useful in practice. The structure of the scene can be computed in

real-time either by using passive stereo techniques, or by structured-light techniques. Chang

et al. [6] developed a real-time passive stereo method based on variational optimization to

reconstruct the structure of the surgical scene. The GPU-accelerated method was reported to

demonstrate near-real-time performance, but further development may be necessary to improve

the method to be useful in the view synthesis problem. A simple and practical structured light
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system that can be tracked by an image-based technique, was recently developed by Edge-

cumbe et al. [7]. The method allows a surface point-cloud to be constructed in the camera

coordinate system, which can be used to approximate the structure of the surgical scene. How-

ever, further development may be necessary to assess the efficacy of this method in the clinical

environment.

5.2 A Look Into the Future

At the end of each chapter in this thesis, I suggested future research directions for each method

described. However, the most valuable future research direction will be the assessment of

performance and the limitations of the proposed methods in clinical settings. Without thorough

assessment, proving the clinical importance of the developed tools will be difficult. The thesis

investigated the perception of only the spatial location of the hidden targets. Therefore, further

studies that involve both novice and experienced surgeons are necessary to investigate whether

hybrid in situ visualization improves the surgeons perception of 3D form of hidden target and

the surrounding critical structures.

5.2.1 Future Image-guided Soft-tissue Surgery

The techniques developed in this thesis, together with the developments in related fields, will

enable image-guidance in soft-tissue surgery in future: Improved image-based tracking meth-

ods, such as that described in Chapter 2, will allow intraoperative imaging probes such as

LUS and hand-held nuclear imaging probes, and surgical tools to be tracked with respect to

the camera coordinate system. If the camera is also tracked by using a sparse [8–10], or a

dense localization technique [11], intra-operative images, and surgical tools can be related to

the patient coordinate system. Assistance from robotic systems may be required to compensate

for tissue motion in these registrations. Once all the information sources are registered to a

common coordinate system, several research question will arise:
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• How should the registered information be rendered such that intended surgical actions

can be performed optimally?

• How accurately can the particular surgical task can be performed with the help of the the

guidance system?

• Does the system improve the performance irrespective of the surgeons experience?

To answer these question, properly designed experiments involving both novice and expe-

rienced surgeons will be required, and the results will determine the value of the developed

technology in the clinic.

5.2.2 Fusing Pre-operative and Intra-operative Imaging

Even though intraoperative imaging can provide a real-time visual feedback into the soft-tissue

structures, in certain situations the quality of such images may limit their usefulness in surgery.

For instance, in lung resection surgeries for small nodules using the VATS approach, LUS is

often used to localize the nodules and determine resection margins [12]. Typically, the lung

is fully collapsed to enable US penetration, but due to trapped air the quality of US is of-

ten affected, rendering nodule localization task difficult. As a result, many VATS procedures

are converted into more invasive thoracotomies so that the nodules can be localized by pal-

pation. One way to solve the quality issue in intraoperative images is to register them with a

pre-operative image of the anatomy, so that the pre-operative images can complement those

obtained intra-operatively. However, large deformation of the anatomy from its pre-operative

to intra-operative state may render the registration problem extremely difficult. In addition, the

algorithms to solve this registration problem should run at adequate speed to make sure such

techniques are useful in practical surgery. Future research should focus on such registration

problems. In addition to improving the image quality, such registration algorithms will enable

pre-operative plans to be brought into the surgical scene to increase both the efficiency and

safety of the surgical procedure.
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Appendix A

Anisotropically Scaled ICP

Let X, and Y be two point sets with their one-to-one correspondence known. The Anisotrop-

ically Scalled Iterative Closest Point (ASICP), a variant of the well known Iterative Closest

Point (ICP) algorithm [1], estimates the rigid transformation that registers the two point sets by

minimizing,

FRE =
1

Np

Np∑
i=1

||(RSXi + t) − Yi|| (A.1)

where R is a rotational matrix, S = diag{s1, s2, s3} is a diagonal scaling matrix, Np is the

number of point pairs, and ||.|| is the Eclidean norm. An algorithm to solve this minimization

problem is give below.
Demean the data to obtain X̂ and Ŷ, and B = ŶT .X̂;

Normalize the row of X̂ such that X̂.X̂T = 1;

while ∆FRE > threshold do
[U,Λ,V] = svd(B.diag(diag(RT .B))

R = U.diag(1, 1, det(U.V)).VT

compute new FRE

end

S = diag(BT .R)
Algorithm 1: Anisotropically Scaled ICP (AICP) Algorithm
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