7,284 research outputs found

    Wave Function Engineering for Spectrally-Uncorrelated Biphotons in the Telecommunication Band based on a Machine-Learning Framework

    Full text link
    Indistinguishable single photons are key ingredient for a plethora of quantum information processing applications ranging from quantum communications to photonic quantum computing. A mainstream platform to produce indistinguishable single photons over a wide spectral range is based on biphoton generation through spontaneous parametric down-conversion (SPDC) in nonlinear crystals. The purity of the SPDC biphotons, however, is limited by their spectral correlations. Here, we present a design recipe, based on a machine-learning framework, for the engineering of biphoton joint spectrum amplitudes over a wide spectral range. By customizing the poling profile of the KTiOPO4_4 (KTP) crystal, we show, numerically, that spectral purities of 99.22%, 99.99%, and 99.82% can be achieved, respectively, in the 1310-nm, 1550-nm, and 1600-nm bands after applying a moderate 8-nm filter. The machine-learning framework thus enables the generation of near-indistinguishable single photons over the entire telecommunication band without resorting to KTP crystal's group-velocity-matching wavelength window near 1582 nm

    Reconfigurable and transportable container-integrated production system

    Get PDF
    In this paper, the concept and the prototype realization of a novel reconfigurable small-footprint manufacturing system in a transportable container is presented. The containerized format enables transportation of the system to provide on-site manufacturing, enabling the benefits of localized service delivery without duplication of equipment at multiple locations. Three industrial product use cases with varying manufacturing and performance requirements were analyzed. All of the use cases demanded highly customized products with high quality in low production volumes. Based on their requirements, a general system specification was derived and used to develop a concept for the container-integrated factory. A reconfigurable, modular manufacturing system is integral to the overall container concept. Production equipment was integrated in the form of interchangeable process modules, which can be quickly connected by standard utility supply and control interfaces. A modular and self-configuring control system provides assisted production workflow programming, while a modular process chain combining Additive Manufacturing, milling, precision assembly and cleaning processes has been developed. A prototype of the container-integrated factory with reconfigurable process modules and control system has been established, with full functionality and feasibility of the system demonstrated

    A framework for variable content document generation with multiple actors

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in Information and Software Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information and Software Technology, Volume 56, Issue 9, September 2014, Pages 1101–1121 DOI10.1016/j.infsof.2013.12.006Context - Advances in customization have highlighted the need for tools supporting variable content document management and generation in many domains. Current tools allow the generation of highly customized documents that are variable in both content and layout. However, most frameworks are technology-oriented, and their use requires advanced skills in implementation-related tools, which means their use by end users (i.e. document designers) is severely limited. Objective - Starting from past and current trends for customized document authoring, our goal is to provide a document generation alternative in which variants are specified at a high level of abstraction and content reuse can be maximized in high variability scenarios. Method Based on our experience in Document Engineering, we identified areas in the variable content document management and generation field open to further improvement. We first classified the primary sources of variability in document composition processes and then developed a methodology, which we called DPL based on Software Product Lines principles to support document generation in high variability scenarios. Results - In order to validate the applicability of our methodology we implemented a tool DPLfw to carry out DPL processes. After using this in different scenarios, we compared our proposal with other state-of-the-art tools for variable content document management and generation. Conclusion - The DPLfw showed a good capacity for the automatic generation of variable content documents equal to or in some cases surpassing other currently available approaches. To the best of our knowledge, DPLfw is the only framework that combines variable content and document workflow facilities, easing the generation of variable content documents in which multiple actors play different roles.This work has been partially funded by the Spanish Ministerio de Economia y Competitividad under Grant TIPEx (TIN2010-19859-C03-03).Gómez Llana, A.; Penadés Gramage, MC.; Canos Cerda, JH.; Borges, MR.; Llavador Campos, M. (2014). A framework for variable content document generation with multiple actors. Information and Software Technology. 56(9):1101-1121. https://doi.org/10.1016/j.infsof.2013.12.006S1101112156

    The Interface of Technology in Culinary Arts Education

    Full text link
    Introduction: A culinary educator must make many decisions that affect the day-to-day activities in both the classroom and the lab. One of the more important decisions is how to select the most appropriate technology to implement for use in teaching and administrative activities. The research presented here is intended to help the educator identify specific needs, decide where the use of technology is desirable, and offer information designed to help the educator make an informed decision about using technology as a teaching tool. Purpose Statement: The purpose of this paper is to inform the culinary educator about the technology available for use in both the classroom and the lab setting. There is an ever-increasing pool of technology, making it more important than ever that the educator choose the appropriate lab/kitchen equipment and software programs for use in a specific culinary program. Making an informed decision ensures maximum usefulness of the technology in the setting

    The DECIDE Project: Designing and Implementing a Prototype Service for Supporting Early Diagnosis of Alzheimer's Disease

    Get PDF
    This paper will present the design and implementation challenges of the innovative DECIDE service, to support research and early diagnosis of Alzheimer’s and other neurodegenerative diseases. DECIDE service, which is based on a Grid eInfrastructure, offers a set of tools providing quantitative measurements, to help researchers and clinicians make more informed diagnosis. As the service specifically targets the clinical community, it differs significantly from other initiatives since it needs to comply with the requirements imposed by the clinical routine in terms of accuracy, robustness, ease of use, data handling policies, adherence to clinical praxis. Moreover, sustainability aspects will also be discussed, since DECIDE aims to propose such service as a reference at European level, possibly extending it to other pathologies. We will then summarize the main results obtained to date, and the possible future developments

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Microtechnologies for Discharge-based Sensors.

    Full text link
    Microdischarge-based sensors are known to offer advantages such as the ability to operate at temperature extremes and to provide large output signals that do not require local amplification. This work is primarily directed at the design and microfabrication of pressure sensors that use differential microdischarge currents. Two approaches are evaluated. The first uses a common anode and reference cathode located on a glass substrate, whereas a sensing cathode is located on an opposing silicon diaphragm that is deflected by applied pressure. Leads are transferred by electroplated through-glass vias. The second uses a common cathode and reference anode located on a silicon substrate, whereas a sensing anode is located on a thin film diaphragm that deflects under applied pressure. Leads are transferred by through-wafer isolated bulk-silicon lead transfer (TWIST). Fabricated sensors with 200-µm diameter have footprints as small as 300×300 µm2, and volume of ≈0.01 mm3, which is 150× smaller than prior work. The fractional differential current (I1-I2)/(I1+I2) increases monotonically from -0.7 to 0.2 as external pressure increases from 1 atm to 8 atm. The TWIST process can also be used to fabricate ultra-miniature capacitive pressure sensors with backside contacts that minimize the form factor and allow stacking of the sensor on interface electronics. A sensor with a 100-µm diameter diaphragm measures 150×150 µm2 in size. Fabricated sensors with thicknesses of 3 µm (C100t3) and 5 µm (C100t5) have dynamic ranges of 20 MPa and 50 MPa, respectively. Pressure responses in the non-contact mode and the contact mode are 3.1 fF/MPa, 5.3 fF/MPa for C100t3, and 1.6 fF/MPa, 1.6 fF/Ma for C100t5, respectively. This thesis also describes a preliminary exploration of options to initiate microdischarges using scavenged energy – in this case from mechanical impact. A miniature high voltage generator is formed by connecting multiple electrode pairs in series on a single PZT element. This strategy amplifies voltage roughly in proportion to the electrode pair count; a three electrode-pair device is used to successfully initiate microdischarges with peak voltages exceeding 1.35 kV.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111467/1/xinluo_1.pd

    Europeana communication bug: which intervention strategy for a better cooperation with creative industry?

    Get PDF
    Although Europeana as well as many GLAMs are very engaged - beside the main mission, i.e. spreading cultural heritage knowledge- in developing new strategies in order to make digital contents reusable for creative industry, these efforts have been successful just only in sporadic cases. A significant know how deficits in communication often compromises expected outcomes and impact. Indeed, what prevails is an idea of communication like an enhancement “instrument” intended on the one hand in purely economic (development) sense, on the other hand as a way for increasing and spreading knowledge. The main reference model is more or less as follows: digital objects are to be captured and/or transformed by digital technologies into sellable goods to put into circulation. Nevertheless, this approach risks neglecting the real nature of communication, and more in detail the one of digital heritage where it is strategic not so much producing objects and goods as taking part into sharing environments creation (media) by engaged communities, small or large they may be. The environments act as meeting and interchange point, and consequently as driving force of enhancing. Only in a complex context of network interaction on line accessible digital heritage contents become a strategic resource for creating environments in which their re/mediation can occur – provided that credible strategies exist, shared by stakeholders and users. This paper particularly describes a case study including proposals for an effective connection among Europeana, GLAMs and Creative Industry in the framework of Food and Drink digital heritage enhancement and promotion. Experimental experiences as the one described in this paper anyway confirm the relevance of up-to-date policies based on an adequate communication concept, on solid partnerships with enterprise and association networks, on collaborative on line environments, on effective availability at least for most of contents by increasing free licensing, and finally on grassroots content implementation involving prosumers audience, even if filtered by GLAMs

    User Toolkits for Innovation

    Get PDF
    corecore