152 research outputs found

    An integrated placement and routing approach

    Get PDF
    As the feature size continues scaling down, interconnects become the major contributor of signal delay. Since interconnects are mainly determined by placement and routing, these two stages play key roles to achieve high performance. Historically, they are divided into two separate stages to make the problem tractable. Therefore, the routing information is not available during the placement process. Net models such as HPWL, are employed to approximate the routing to simplify the placement problem. However, the good placement in terms of these objectives may not be routable at all in the routing stage because different objectives are optimized in placement and routing stages. This inconsistancy makes the results obtained by the two-step optimization method far from optimal;In order to achieve high-quality placement solution and ensure the following routing, we propose an integrated placement and routing approach. In this approach, we integrate placement and routing into the same framework so that the objective optimized in placement is the same as that in routing. Since both placement and routing are very hard problems (NP-hard), we need to have very efficient algorithms so that integrating them together will not lead to intractable complexity;In this dissertation, we first develop a highly efficient placer - FastPlace 3.0 for large-scale mixed-size placement problem. Then, an efficient and effective detailed placer - FastDP is proposed to improve global placement by moving standard cells in designs. For high-degree nets in designs, we propose a novel performance-driven topology design algorithm to generate good topologies to achieve very strict timing requirement. In the routing phase, we develop two global routers, FastRoute and FastRoute 2.0. Compared to traditional global routers, they can generate better solutions and are two orders of magnitude faster. Finally, based on these efficient and high-quality placement and routing algorithms, we propose a new flow which integrates placement and routing together closely. In this flow, global routing is extensively applied to obtain the interconnect information and direct the placement process. In this way, we can get very good placement solutions with guaranteed routability

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    A New Multicommodity Flow Model for the Job Sequencing and Tool Switching Problem

    Get PDF
    Artigo científico.In this paper a new multicommodity flow mathematical model for the Job Sequencing and Tool Switching Problem (SSP) is presented. The proposed model has a LP relaxation lower bound equal to the number of tools minus the tool machine’s capacity. Computational tests were performed comparing the new model with the models of the literature. The proposed model performed better, both in execution time and in the number of instances solved to optimality.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    A Multiple-objective ILP based Global Routing Approach for VLSI ASIC Design

    Get PDF
    A VLSI chip can today contain hundreds of millions transistors and is expected to contain more than 1 billion transistors in the next decade. In order to handle this rapid growth in integration technology, the design procedure is therefore divided into a sequence of design steps. Circuit layout is the design step in which a physical realization of a circuit is obtained from its functional description. Global routing is one of the key subproblems of the circuit layout which involves finding an approximate path for the wires connecting the elements of the circuit without violating resource constraints. The global routing problem is NP-hard, therefore, heuristics capable of producing high quality routes with little computational effort are required as we move into the Deep Sub-Micron (DSM) regime. In this thesis, different approaches for global routing problem are first reviewed. The advantages and disadvantages of these approaches are also summarized. According to this literature review, several mathematical programming based global routing models are fully investigated. Quality of solution obtained by these models are then compared with traditional Maze routing technique. The experimental results show that the proposed model can optimize several global routing objectives simultaneously and effectively. Also, it is easy to incorporate new objectives into the proposed global routing model. To speedup the computation time of the proposed ILP based global router, several hierarchical methods are combined with the flat ILP based global routing approach. The experimental results indicate that the bottom-up global routing method can reduce the computation time effectively with a slight increase of maximum routing density. In addition to wire area, routability, and vias, performance and low power are also important goals in global routing, especially in deep submicron designs. Previous efforts that focused on power optimization for global routing are hindered by excessively long run times or the routing of a subset of the nets. Accordingly, a power efficient multi-pin global routing technique (PIRT) is proposed in this thesis. This integer linear programming based techniques strives to find a power efficient global routing solution. The results indicate that an average power savings as high as 32\% for the 130-nm technology can be achieved with no impact on the maximum chip frequency

    Optimal Trees

    Get PDF
    Not Availabl

    Branch-and-price and multicommodity flows

    Get PDF
    Tese de doutoramento em Engenharia de Produção e Sistemas, área de Investigação OperacionalIn this Thesis, we address column generation based methods for linear and integer programming and apply them to three multicommodity flow problems. For (mixed) integer programming problems, the approach taken consists in reformulating an original model, using the Dantzig-Wolfe decomposition principle, and then combining column generation with branch-and-bound (branch-and-price) in order to obtain optimal solutions. The main issue when developing a branch-and-price algorithm is the branching scheme. The approach explored in this work is to branch on the variables of the original model, keeping the structure of the subproblems of the column generation method unchanged. The incorporation of cuts (branch-and-price-and-cut), again without changing the structure of the subproblem, is also explored. Based on that general methodology, we developed a set of C++ classes (ADDing - Automatic Dantzig-Wolfe Decomposition for INteger column Generation), which implements abranch-and-price algorithm. Its main distinctive feature is that it can be used as a “black-box”: all the user is required to do is to provide the original model. ADDing can also be customised to meet a specific problem, if the user is willing to provide a subproblem solver and/or specific branching schemes. We developed column generation based algorithms for three multicommodity flow problems. In this type of problems, it is desired to route a set of commodities through a capacitated network at a minimum cost. In the linear problem, each unit of each commodity is divisible. By using a model with variables associated with paths and circuits, we obtained significant improvements on the solution times over the standard column generation approach, for instances defined in planar networks (in several instances the relative improvement was greater than 60%). In the integer problem, each unit of each commodity is indivisible; the flow of a commodity can be split between different paths, but the flow on each of those paths must be integer. In general, the proposed branch-and-price algorithm was more efficient than Cplex 6.6 in the sets of instances where each commodity is defined by an origin-destination pair; for some of the other sets of instances, Cplex 6.6 gave better time results. In the binary problem, all the flow of each commodity must be routed along a single path. We developed a branch-and-price algorithm based on a knapsack decomposition and modified (by using a different branching scheme) a previously described branch-and-price-and-cut algorithm based on a path decomposition. The outcome of the computational tests was surprising, given that it is usually assumed that specific methods are more efficient than general ones. For the instances tested, a state-of-the-art general-purpose (Cplex 8.1) gave, in general, much better results than both decomposition approaches.Nesta Tese, abordam-se métodos de geração de colunas para programação linear e inteira. A sua aplicação é feita em três problemas de fluxo multicomodidade. Para problemas de programação inteira (mista), a abordagem seguida é a de reformular um modelo original, utilizando o princípio de decomposição de Dantzig-Wolfe, e combinar geração de colunas com o método de partição e avaliação (partição e geração de colunas) para a obtenção de soluções óptimas. A questão essencial no desenvolvimento de um algoritmo deste tipo é a estratégia de partição. A abordagem seguida neste trabalho é a de realizar a partição nas variáveis do modelo original, mantendo a estrutura do subproblema do método de geração de colunas. A incorporação de cortes, ainda sem alteração da estrutura do subproblema, é também explorada. Com base nesta metodologia geral, foi desenvolvido um conjunto de classes em C++ (ADDing - Automatic Dantzig-Wolfe Decomposition for INteger column Generation), que implementa um algorithmo de partição e geração de colunas. A sua característica fundamental é apenas ser requerido ao utilizador a definição de um modelo original. Num modo mais avançado, o utilizador pode implementar algoritmos para resolver o subproblema e/ou esquemas de partição. Foram desenvolvidos algoritmos baseados em geração de colunas para três problemas de fluxo multicomodidade. Neste tipo de problemas, pretende-se encaminhar um conjunto de comodidades através de uma rede capacitada, minimizando o custo. No problema linear, cada unidade de cada comodidade é divisível. Utilizando um modelo com variáveis associadas a caminhos e a circuitos, obtiveram-se melhorias significativas nos tempos de resolução em relação ao método de geração de colunas usual, para instâncias definidas em redes planares (em várias instâncias a melhoria relativa foi superior a 60%). No problema inteiro, cada unidade de cada comodidade é indivisível; o fluxo de uma comodidade pode ser dividido por diferentes caminhos, mas o fluxo em cada um deles tem de ser inteiro. Em geral, o algoritmo de partição e geração de colunas foi mais eficiente do que o software Cplex 6.6 nos conjuntos de instâncias em que cada comodidade é definida por um par origem-destino; para alguns dos outros conjuntos de instâncias, o software Cplex 6.6 obteve melhores resultados. No problema binário, todo o fluxo de cada comodidade apenas pode utilizar um caminho. Foi desenvolvido um algoritmo de partição e geração de colunas baseado numa decomposição de mochila e modificado (através de um esquema de partição diferente) um algoritmo de partição e geração de colunas com cortes, previamente descrito, baseado numa decomposição por caminhos. Os resultados dos testes computacionais foram surpreendentes, dado que é usualmente assumido que métodos específicos são mais eficientes do que métodos gerais. Para as instâncias testadas, o software Cplex 8.1 obteve, em geral, resultados muito melhores do que as duas decomposições

    Mathematical programming based approaches for classes of complex network problems : economical and sociological applications

    Get PDF
    The thesis deals with the theoretical and practical study of mathematical programming methodologies to the analysis complex networks and their application in economic and social problems. More specifically, it applies models and methods for solving linear and integer programming problems to network models exploiting the matrix structure of such models, resulting in efficient computational procedures and small processing time. As a consequence, it allows the study of larger and more complex networks models that arise in many economical and sociological applications. The main efforts have been addressed to the development of a rigorous mathematical programming based framework, which is able to capture many classes of complex network problems. Such a framework involves a general and flexible modeling approach, based on linear and integer programmin, as well as a collection of efficient probabilistic procedures to deal with these models. The computer implementation has been carried out by high level programming languages, such as Java, MatLab, R and AMPL. The final chapter of the thesis introduced an extension of the analyzed model to the case of microeconomic interaction, providing a fruitful mathematical linkage between its optimization-like properties and its multi-agents properties. The theoretical and practical use of optimization methods represents the trait-de-union of the different chapters. The overall structure of the thesis manuscript contains three parts: Part I: The fine-grained structure of complex networks: theories, models and methods; Chapter 1 and Chapter 2. Part II: Mathematical Programming based approaches for random models of network formation; Chapter 3, Chapter 4 and Chapter 5. Part III: Strategic models of network formation. Chapter 6. Results of this research have generated four working papers in quality scientific journals: one has been accepted and three are under review. Some results have been also presented in four international conferences.La tesis aborda el estudio teórico y práctico de las metodologías de programación matemática para el análisis de redes complejas y su aplicación a problemas económicos y sociales. Más específicamente, se aplica modelos y métodos para resolver problemas de programación lineal y de programación lineal entera explotando las estructuras matriciales de tales modelos, lo que resulta en procedimientos computacionales eficientes y bajo coste de procesamiento. Como consecuencia de ello, las metodologías propuestas permiten el estudio de modelos complejos de gran dimensión, para redes complejas que surgen en muchas aplicaciones económicas y sociológicas. Los principales esfuerzos se han dirigido al desarrollo de un marco teórico basado en la programación matemática, que es capaz de capturar muchas clases de problemas de redes complejas. Dicho marco teórico envuelve un sistema general y flexible de modelado y una colección de procedimientos probabilísticos para solucionar eficientemente dichos modelos, basados en la programación linear y entera. Las implementaciones informáticas se han llevado a cabo mediante lenguajes de programación de alto nivel, como Java, Matlab, R y AMPL. El último capítulo de la tesis introduce una extensión de los modelos analizados, para el caso de la interacción microeconómica, con el objetivo de establecer un nexo metodológico entre sus propiedades de optimización y sus propiedades multi-agentes. El uso teórico y práctico de los métodos de optimización representa el elemento de conjunción de los distintos capítulos. Parte I: The fine-grained structure of complex networks: theories, models and methods; - Capitulo 1 y Capitulo 2. Parte II: Mathematical Programming based approaches for random models of network formation; - Capitulo 3, Capitulo 4 y Capitulo 5. Parte III: Strategic models of network formation. - Capitulo 6. Los resultados de esta investigación han generado cuatro papers en revistas científicas indexadas: uno ha sido aceptado, tres están en revisión. Algunos resultados han sido también presentados en cuatro conferencias internacionale

    Robust and stochastic approaches to network capacity design under demand uncertainty

    Get PDF
    This thesis considers the network capacity design problem with demand uncertainty using the stochastic, robust and distributionally robust stochastic optimization approaches (DRSO). Network modeling in itself has found wide areas of application in most fields of human endeavor. The network would normally consist of source (origin) and sink (destination) nodes connected by arcs that allow for flows of an entity from the origin to the destination nodes. In this thesis, a special type of the minimum cost flow problem is addressed, the multi-commodity network flow problem. Commodities are the flow types that are transported on a shared network. Offered demands are, for the most part, unknown or uncertain, hence a model that immune against this uncertainty becomes the focus as well as the practicability of such models in the industry. This problem falls under the two-stage optimization framework where a decision is delayed in time to adjust for the first decision earlier made. The first stage decision is called the "here and now", while the second stage traffic re-adjustment is the "wait and see" decision. In the literature, the decision-maker is often believed to know the shape of the uncertainty, hence we address this by considering a data-driven uncertainty set. The research also addressed the non-linearity of cost function despite the abundance of literature assuming linearity and models proposed for this. This thesis consist of four main chapters excluding the "Introduction" chapter and the "Approaches to Optimization under Uncertainty" chapter where the methodologies are reviewed. The first of these four, Chapter 3, proposes the two models for the Robust Network Capacity Expansion Problem (RNCEP) with cost non-linearity. These two are the RNCEP with fixed-charge cost and RNCEP with piecewise-linear cost. The next chapter, Chapter 4, compares the RNCEP models under two types of uncertainties in order to address the issue of usefulness in a real world setting. The resulting two robust models are also comapared with the stochastic optimization model with distribution mean. Chapter 5 re-examines the earlier problem using machine learning approaches to generate the two uncertainty sets while the last of these chapters, Chapter 6, investigates DRSO model to network capacity planning and proposes an efficient solution technique

    Modelling, solution and evaluation techniques for Train Timetable Rescheduling via optimisation

    Get PDF
    It is common on railways for a single train delay to cause other trains to become delayed, multiplying the negative consequences of the original problem. However, making appropriate changes to the timetable in response to the initial delay can help to reduce the amount of further delay caused. In this thesis, we tackle the Train Timetable Rescheduling Problem (TTRP), the task of finding the best combination of timetable changes to make in any given traffic scenario. The TTRP can be formulated as an optimisation problem and solved computationally to aid the process of railway traffic control. Although this approach has received considerable research attention, the practical deployment of optimisation methods for the TTRP has hitherto been limited. In this thesis, we identify and address three outstanding research challenges that remain barriers to deployment. First, we find that existing TTRP models for large station areas are either not sufficiently realistic or cannot be solved quickly enough to be used in a real-time environment. In response, a new TTRP model is introduced that models the signalling system in station areas in fine detail. Using a new set of real instances from Doncaster station, we show that our tailored solution algorithm can obtain provably optimal or near-optimal solutions in sufficiently short times. Second, we argue that existing ways of modelling train speed in TTRP models are either unrealistic, overly complex, or lead to models that cannot be solved in real-time. To address this, innovative extensions are made to our TTRP model that allow speed to be modelled parsimoniously. Real instances for Derby station are used to demonstrate that these modelling enhancements do not incur any extra computational cost. Finally, a lack of evidence is identified concerning the fairness of TTRP models with respect to competing train operators. New evaluation techniques are developed to fill this gap, and these techniques are applied to a case study of Doncaster station. We find that unfairness is present when efficiency is maximised, and find that it mostly results from competition between a small number of operators. Moreover, we find that fairness can be improved up to a point by increasing the priority given to local trains. This work represents an important step forward in optimisation techniques for the TTRP. Our results, obtained using real instances from both Doncaster and Derby stations, add significantly to the body of evidence showing that optimisation is a viable approach for the TTRP. In the long run this will make deployment of such technology more likely
    corecore