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1 Introduction

Trees are particular types of graphs that on the surface appear to be quite
specialized, so much so that they might not seem to merit in-depth investi-
gation. Perhaps, surprisingly, just the opposite is true. As we will see in this
chapter, tree optimization problems arise in many applications, pose signifi-
cant modeling and algorithmic challenges, are building blocks for construct-
ing many complex models, and provide a concrete setting for illustrating
many key ideas from the field of combinatorial optimization.

A tree1 is a connected graph containing no cycles. A tree (or subtree) of
a general undirected graph G = (V, E) with a node (or vertex) set V and
edge set E is a connected subgraph T = (V', E') containing no cycles. We
say that the tree spans the nodes V'. For convenience, we sometimes refer to
a tree by its set of edges with the understanding that the tree also contains
the nodes incident to these edges. We say that T is a spanning tree (of G)
if T spans all the nodes V of G, that is, V' = V. Recall that adding an edge
{i,j} joining two nodes in a tree T creates a unique cycle with the edges
already in the tree. Moreover, a graph with n nodes is a spanning tree if and
only if it is connected and contains n - 1 edges

Trees are important for several reasons:
(i) Trees are the minimal graphs that connect any set of nodes, thereby

permitting all the nodes to communicate with each other without any re-
dundancies (that is, no extra arcs are needed to ensure connectivity). As a
result, if the arcs of a network have positive costs, the minimum cost sub-
graph connecting all the nodes is a tree that spans all of the nodes. We refer
to any such tree as a spanning tree of the network.

(ii) Many tree optimization problems are quite easy to solve; for example,
efficient types of greedy, or single pass, algorithms are able to find the least
cost spanning tree of a network (we define and analyze this problem in Section
2). In this setting, we are given a general network and wish to find an optimal
tree within this network. In another class of models, we wish to solve an
optimization problem defined on a tree, for example, find an optimal set of

1Throughout this chapter, we assume familiarity with the basic definitions of graphs
including such concepts as paths and cycles, cuts, edges incident to a node, node degrees,
and connected graphs. We also assume familiarity with the max-flow min-cut theorem of
network flows and with the elements of linear programming. The final few sections require
some basic concepts from integer programming.
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facility locations on a tree. In this setting, dynamic programming algorithms
typically are efficient methods for finding optimal solutions.

(iii) Tree optimization problems arise in a surprisingly large number of ap-
plications in such fields as computer networking, energy distribution, facility
location, manufacturing, and telecommunications.

(iv) Trees provide optimal solutions to many network optimization prob-
lems.

Indeed, any network flow problem with a concave objective function al-
ways has an optimal tree solution (in a sense that we will define later). In
particular, because (spanning) tree solutions correspond to basic solutions of
linear programs, linear programming network problems always have (span-
ning) tree solutions.

(v) A tree is a core combinatorial object that embodies key structural
properties that other, more general, combinatorial models share. For exam-
ple, spanning trees are the maximal independent sets of one of the simplest
types of matroids, and so the study of trees provides considerable insight
about both the structure and solution methods for matroids (for example,
the greedy algorithm for solving these problems, or linear programming rep-
resentations of the problems). Because trees are the simplest type of network
design model, the study of trees also provides valuable lessons concerning the
analysis of more general network design problems.

(vi) Many optimization models, such as the ubiquitous traveling salesman
problem, have embedded tree structure; algorithms for solving these models
can often exploit the embedded tree structure.

Coverage

This paper has two broad objectives. First, it describes a number of core
results concerning tree optimization problems. These results show that even
though trees are rather simple combinatorial objects, their analysis raises a
number of fascinating issues that require fairly deep insight to resolve. Sec-
ond, because the analysis of optimal trees poses many of the same issues
that arise in more general settings of combinatorial optimization and inte-
ger programming, the study of optimal trees provides an accessible and yet
fertile arena for introducing many key ideas from the branch of combinato-
rial optimization known as polyhedral combinatorics (the study of integer
polyhedra).
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In addressing these issues, we will consider the following questions:

* Can we devise computationally efficient algorithms for solving tree op-
timization problems?

* What is the relationship between various (integer programming) for-
mulations of tree optimization problems?

* Can we describe the underlying mathematical structure of these mod-
els, particularly the structure of the polyhedra that are defined by
relaxing the integrality restrictions in their integer programming for-
mulations?

* How can we use the study of optimal tree problems to learn about key
ideas from the field of combinatorial optimization such as the design
and analysis of combinatorial algorithms, the use of bounding proce-
dures (particularly, Lagrangian relaxation) as an analytic tool, and
basic approaches and proof methods from the field of polyhedral com-
binatorics?

We begin in Section 2 with a taxonomy of tree optimization problems to-
gether with illustrations of optimal tree applications in such fields as telecom-
munications, electric power distribution, vehicle routing, computer chip de-
sign, and production planning. In Section 3, we study the renowned min-
imum spanning tree problem. We introduce and analyze a greedy solution
procedure and examine the polyhedral structure of the convex hull of inci-
dence vectors of spanning trees. In the context of this discussion, we examine
the relationship between eight different formulations of the minimum span-
ning tree problem that are variants of certain packing, cut, and network flow
models.

In Section 4, we examine another basic tree optimization problem, finding
an optimal rooted tree within a tree. After showing how to solve this problem
efficiently using dynamic programming, we then use three different arguments
(a network flow argument, a dynamic programming argument, and a general
"optimal" inequality argument from the field of polyhedral combinatorics)
to show that a particular linear programming formulation defines the convex
hull of incidence vectors of rooted trees. Because the basic result in this
section is fairly easy to establish, this problem provides an attractive setting
for introducing these important proof techniques.
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In Section 5, we consider two other tree models that can be solved effi-
ciently by combinatorial algorithms-a degree constrained minimum span-
ning tree problem (with a degree constraint imposed upon a single node) and
a directed version of the minimum spanning tree problem. For both prob-
lems, we describe an efficient algorithmic procedure and fully describe the
underlying integer polyhedron.

In Sections 6-9 we consider more general models that are, from the per-
spective of computational complexity theory, difficult to solve. For each of
these problems, we provide a partial description of the underlying integer
polyhedron and describe one or more solution approaches.

We begin in Section 6 by studying a network version of the well-known
Steiner tree problem. Actually, we consider a more general problem known
as the node weighted Steiner tree problem. Generalizing our discussion of
the spanning tree problem in Section 3, we examine the relationship between
the polyhedron defined by five different formulations of the problem. For one
model, we show that the objective value for a linear programming relaxation
of the Steiner tree problem has an optimal objective value no more than
twice the cost of an optimal Steiner tree. Using this result, we are able to
show that a particular spanning tree heuristic always produces a solution
whose cost is no more than twice the cost of an optimal Steiner tree. In
this discussion, we also comment' briefly on solution methods for solving the
Steiner tree problem.

In Section 7, we study the problem of packing rooted trees in a given
tree. This model arises in certain applications in production planning (the
economic lot-sizing problem) and in facility location on a tree (for example,
in locating message handling facilities in a telecommunications network).
We show how to solve uncapacitated versions of this problem by dynamic
programming and, in this case, we completely describe the structure of the
underlying integer polyhedron. For more complex constrained problems, we
show how to "paste" together the convex hull of certain subproblems to ob-
tain the convex hull of the overall problem (this is one of the few results
of this type in the field of combinatorial optimization). We also describe
three different solution approaches for solving the problem-a cutting plane
procedure, a column generation procedure, and a Lagrangian relaxation pro-
cedure.

In Section 8, we consider the more general problem of packing subtrees
in a general graph. This problem arises in such varied problem settings as
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multi-item production planning, clustering, computer networking, and vehi-
cle routing. This class of models permits constraints that limit the number
of subtrees or that limit the size (number of nodes) of any subtree. Our dis-
cussion focuses on extending the algorithms we have considered previously
in Section 7 when we considered optimal subtrees of a tree.

In Section 9, we briefly introduce one final set of models, hierarchical tree
problems that contain two types of edges-those with high reliability versus
those with low reliability (or high capacity versus low capacity). In these in-
stances, we need to connect certain "primary" nodes with the highly reliable
(or high capacity) edges. We describe an integer programming formulation of
this problem that combines formulations of the minimum spanning tree and
Steiner tree problems as well as a heuristic algorithm; we also give a bound
on how far both the heuristic solution and the optimal objective value of the
linear programming relaxation can be from optimality.

Section 10 is a brief summary of the chapter and Section 11 contains notes
and references for each section.

Notation

Frequently in our discussion, we want to consider a subset of the edges
in a graph G = (V, E). We use the following notation. If S and T are any
two subsets of nodes, not necessarily distinct, we let E(S, T) = {e = {i, j} E
E : i E S and j E T} denote the set of edges with one end node in S and
the other end node in T. We let E(S) E(S, S) denote the set of edges
whose end nodes are both in S. S = V \ S denotes the complement of S
and let (S) denote the cutset determined by S, that is, 6(S) = E(S,S)
={e = {i,j} E E: i E S and j E S}. For any graph G, we let V(G) denote
its set of nodes and for any set of edges E of any graph, we let V(E) denote
the set of nodes that are incident to one of the edges in E.

At times, we consider directed graphs, or digraphs, D = (V, A) containing
a set A of directed arcs. In these situations, we let 6+(S) = {e = (i,j) E A:
i E S and j E S} denote the cutset directed out of the node set S and let
6-(S) = {e = (i,j) E A: i E S and j E S} denote the cutset directed into
the node set S. We also let A(S) = {e = (i,j) E E : i E S and j S} and
define V(D) and V(A) for any set A of arcs, respectively, as the nodes in the
digraph D and the nodes in the digraph that are incident to one of the arcs
in A.
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As shorthand notation, for any node v, we let 6(v) = ({v}), 6+(v) =

6+({v}), and 6-(v) = 6-({v}).
We also let 1 denote a vector of ones, whose dimension will be clear from

context, let R m denote the space of m-dimensional real numbers, and let Zm
denote the space of m-dimensional integer vectors.

The set notation A C B denotes A C B and A 74 B.
For any set S, we let conv(S) denote the convex hull of S, that is the set of

points x = k=l Ajs j : SEk=j = 1 and Aj > O for j = 1, . k, and some
points s j E S} obtained as weighted combinations of points in S.

Recall that a polyhedron in R ' is the set of solutions of a finite number
of linear inequalities (and equalites). If a polyhedron is bounded, then it also
is the convex hull of its extreme points. If each extreme point is an integer
vector, we say that the polyhedron is an integer polyhedron.

Let A and B be two given matrices and b be a column vector, all with
the same number of rows. Frequently, we will consider systems of inequalites
Ax + Dy < b defined by two sets x and y of variables. We refer to the set of
points {x : Ax + Dy < b for some vector y} as the set of x-feasible solutions
to this system. Note that Q = {x: Ax + Dy < b for some vector y} is the
projection of the polyhedron P = {(x, y) : Ax + Dy < b} onto the space
of x-variables. As is well known, Q itself is a polyhedron, that is, can be
expressed as the set of solutions of a finite number of inequalities involving
only the x-variables.

6
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2 Tree Optimization Problems

Tree optimization problems arise in many forms. In this chapter, we consider
two generic problem types:

(a) Optimal trees. Given a graph G = (V, E) with node set V and edge set
E and with a weight we defined on each edge e E E, find a tree T in G that
optimizes (maximizes or minimizes) the total weight of the edges in T. The
tree might also have a designated root node r and have various constraints
imposed on the root node or on the subtrees created if we eliminate the root
node and its incident edges.

(b) Optimal subtrees of a tree (packing subtrees in a tree). Given a tree
T, suppose we wish to find a set of node disjoint subtrees of T, each with
a designated root node. Each node v has a weight wr that depends upon
the root node r of the subtree that contains it, and we wish to optimize
(maximize or minimize) the total weight of the nodes in the subtrees. Note
that this model permits edge weights as well as node weights since once we
have selected a root node for each subtree, each edge of the tree has a uniquely
associated node, namely the first node on the path connecting that edge to
the root. Therefore, by associating the edge weight with this node, we can
formulate the tree packing problem with edge weights as an equivalent model
with weights defined only on the nodes.

Figures 1 and 2 give a schematic representation of both of these problem
types. We might also consider another problem type: packing subtrees in a
general network. In principle, we might view this problem as a composite of
the other two: first, we find a tree in the network and then we pack subtrees
in this tree.

Figure 1: Optimal Tree in a Graph

Both the optimal tree problem and optimal subtrees in a tree problem
arise in several different forms, depending upon the restrictions we impose

7
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L A/K A
Figure 2: Optimal Rooted Subtrees of a Tree

upon the set of (feasible) trees/subtrees we wish to consider. The following
constraints arise in several practical problem settings (the root node in these
constraints is either a designated single root in the optimal tree problem, or
the root node of any subtree in the packing subtree problem):

* A size constraint imposed upon the number of nodes in any (sub)tree.

* Topological constraints imposed on any (sub)tree [e.g., maximum or
minimum node degrees, restrictions that certain specific nodes need to
be included in a (sub)treej. In particular, we might impose a degree
constraint on the root node.

* A size constraint imposed upon the subtrees formed by removing the
root node of any (sub)tree. More generally, each node might have an
associated weight, and we might wish to restrict the total node weight
of any subtree.

* Bounds (maximum and/or minimum) imposed upon the number of
subtrees in the packing subtrees of a tree problem.

* A flow requirement imposed upon the (sub)trees, together with capac-
ity constraints imposed upon the total throughput of any edge or node;
and/or

* The availability of multiple types of edges and root nodes, with restric-
tions imposed upon the types of facilities (edges and nodes) used. For
example, each type of edge or node might have an associated cost or
capacity and we might seek a minimum cost solution that loads the
network with certain required capacity. Or, we might impose multi-
layered requirements, for example, certain primary nodes be connected

8



by high capacity (or reliability) edges and secondary nodes by any type
of facility (high or low capacity).

These constraints arise for a variety of reasons. In several applications,
root nodes represent service facilities, for example, plants or warehouses in
a production system, hospitals in an urban network, centralized computers
in a computer network, or multiplexers in a communication network. A size
constraint on each subtree might model capacity limitations on the service
facility and a cardinality constraint on the number of subtrees might model
limited availability of service facilities or a managerial or engineering decision
to limit the number of facilities. In some applications, the edges adjacent
to the root node represent a physical entity such as a loading dock in a
warehouse or a communication port in a centralized computer. In these
settings, a degree constraint on the root node might represent a physical
limit on the availability of these facilities. In addition, nodes in the subtrees
formed by removing the edges adjacent to the root node might represent
the customers served by each entity (port) at the root node. For reliability
reasons, or to model capacities, we might wish to limit the size (number of
nodes) in each subtree.

We could, of course, add even further wrinkles on these various problem
types. For example, rather than viewing just the root nodes as "special" and
imposing various restrictions on them or on the subtrees formed by removing
them from the solution, we could consider layered problems with root nodes,
first-level nodes (those adjacent to the root nodes), second-level nodes, and
so forth, and impose restrictions on the nodes at each level. Models with
constraints imposed upon the root node appear to capture many of the issues
encountered in practice and studied by researchers in the past, so we focus
on these versions of the problems.

Certain special versions of these problems are either standard topics in the
literature or arise frequently as subproblems in more general combinatorial
optimization applications.

* Minimum spanning tree problem. In this basic "tree in a network
model", we wish to find a tree that spans (contains) all the nodes of a
graph G and that minimizes the overall weight of the edges in the tree.
Note that in this case, we impose no topological or capacity restrictions
on the tree.

9
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* Rooted subtree problem. Given a tree and a root node r, we wish to
find a subtree rooted at (containing) this node and that minimizes the
overall weight of the nodes (and/or arcs) in the subtree. This problem
is a core model for the class of subtrees of a tree problems, much like
the minimum spanning tree is a core model for the class of optimal tree
problems.

* Steiner tree problem. Let G = (V, E) be a given graph with a weight
(cost) defined on each edge e E E. Given a set T of terminal nodes
that need to be connected to each other, we wish to find a tree of G
that contains these nodes and whose total edge weight is as small as
possible. Note that the optimal tree might contain nodes, called Steiner
nodes, other than the terminal nodes T.

* K-median problem. Find K or fewer node disjoint subtrees of a net-
work, each with a root, that minimizes the total edge weight of the
edges in the subtrees. The K-median problem on a tree is the version
of this problem defined on a tree.

* C-capacitated tree problem. In this version of the rooted subtrees of
a network problem, each subtree is limited to containing at most C
nodes. The C-capacitated problem on a tree is the version of this
problem defined on a tree.

In order to make this problem taxonomy more concrete, we next briefly
consider a few important application contexts.

Designing Telecommunications and Electric Power Networks. Sup-
pose that we wish to design a network that connects customers in a telecom-
munications or electrical power network. The links are very expensive (in
part, because we might need to dig trenches to house them) and the rout-
ing costs are negligible: once we have installed the line facilities (edges), the
routing cost is very small. Therefore, we want to connect the customers using
the least expensive tree. If all the nodes of the network are customers, the
problem is the classical minimum spanning tree problem. If we need to con-
nect only some of the nodes, and-can use other nodes as intermediate nodes,
the problem become the classical Steiner tree problem. In a multi-layered
version of this class of problems, we wish to connect certain "key" users using

10

__ _X � ·�I����C U_ I·__ � �-·1�11111�1114- I*·III�--�Y�LI^·..�-(I I--I�1LI-·--�-l-�



highly reliable communication lines or high voltage transmission lines. We
can use less reliable lines or low voltage lines at a lower cost to connect the
other users of the system.

Similar types of applications arise in other settings as well. For example,
in constructing a highway infrastructure in a developing country, our first
objective might be to solve a minimum spanning tree problem or Steiner tree
problem to connect all the major cities as cheaply as possible. Or, we might
wish to solve a multi-layered problem, ensuring that we connect all the major
cities by highways and all the cities, whether major or not, through the use
of any combination of highways or secondary access roads.

Facility Location. In a distribution system of geographically dispersed cus-
tomers on a network, we wish to establish warehouses (distribution centers)
to fulfill customer orders. Suppose that for administrative reasons (simplic-
ity of paperwork or ease in monitoring and controlling the system), we wish
to service each customer from a single warehouse. Moreover, suppose we
wish to satisfy a contiguity property: if a warehouse at location r services
customer i along a path that passes though the location of customer j then
warehouse i must also service customer j. Then each feasible solution is set
of subtrees, each with a root node which is the location of the warehouse
serving the customers in that subtree.

This basic facility location problem arises in many alternate forms and
in many guises. For example, we might impose capacities (for example, a
limit on the number of customers served) on each service facility or we might
restrict the total number of service facilities. These versions of the problem
would be C-capacity subtree and K-median problems.

Figure 3 illustrates another application context that arises in telecommu-
nications. Most current telecommunications systems use a tree (typically of
copper cable) to connect subscribers to physical devices called local switches
that route calls between the subscribers. Each subscriber is connected to a
switching center in the "local access" tree by a dedicated circuit (telephone
line). Each edge of the tree has a capacity (the number of physical telephone
lines installed on that edge) and as the demand for services increases, the
network might have insufficient capacity. In this example the nodes 3, 6, and
7 require a total of 300 circuits and the edge { 1, 3} between these nodes and
the switch has a capacity of only 200 circuits. Two other edges in the tree

11
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have insufficient capacity: (a) nodes 5, 8, and 9 require 250 circuits, and the
edge {2, 5} has a capacity of only 200 circuits; and (b) nodes 2, 4, 5, 8, and
9 require 400 circuits, and the edge {1, 2} has a capacity of only 140 circuits

Arcs with
insufficient ca,

0

%%%' Subscribers

Ir

DEMAND = No. of circuits required from node to Switching Center
CAPACITY = No. of cables in each section

Figure 3: Local Access Telcommunication Network

One way to meet the excess demand is to add additional capacity (copper
cable) on edges with insufficient capacity. Another option is to add sophis-
ticated equipment known as concentrators (or alternative equipment known
as multiplexers, or remote switches) that compress messages so that they
require less circuit capacity (that is, so that calls can share lines). Figure 4b
shows one possible solution for fulfilling the demand of all the nodes in Fig-
ure 3. In this case, we have added 100 extra lines on edge {1, 3} and added
a concentrator at node 5 that serves the subscribers of nodes 2, 4, 5, 8, and

12
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9. This concentrator uses a compression ratio of 10 to 1 so the 400 circuits
assigned to it use only 40 circuits on the downstream path 5-2-1-0 connect-
ing node 5 to the switching center. Consequently, this path has sufficient
capacity for all the subscribers that use it.

Flows

50 60

Expansion plan

· Install 10 to 1 compression concentrator at node 5 with capacity
400 circuits. Nodes 2, 4, 5, 8, and 9 home on this concentrator.

* Expand cable capacity between nodes 1 and 3 by 100 circuits.

Figure 4: Local Access Expansion Strategy as Subtree Packing

Note two properties of the solution shown in Figure 4. First, the solution
assigns all of the demand at each node either directly to the switching center
(the nodes 1, 3, 6, and 7) or to the concentrator at node 5 (the nodes 2, 4, 5, 8,
and 9). In addition, the solution satisfies a contiguity property: if the solution
assigns node u to the switching center (or to the concentrator) and node v
lies on the path connecting node u to the switching center (concentrator)
then it also assigns node v to the switching center (concentrator). These two
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assumptions imply that the solution decomposes the tree into a set of rooted
subtrees; one contains the switching center and each other one contains a
single concentrator. Therefore, the problem is an application of packing
rooted subtrees in a tree.

Routing Problems. Figure 5 shows a solution to an illustrative vehicle
routing problem. In this application context, we are given a fleet of vehicles
domiciled at a depot, node 0, and wish to find a set of tours (cycles that
are node disjoint except at the depot) that contain all the customer nodes
1, 2,. .. , n. We incur a cost for traversing any edge and wish to find the
minimum cost routing plan. Note that if we are given any set of tours
and eliminate all of the edges incident to the depot, the resulting graphical
structure is a set of node disjoint paths that contain all the nodes 1, 2, ... , n.
Therefore, the solution is a very special type of tree packing problem, one in
which each tree must be a path. Since we wish to include every node in the
solution, we might refer to this problem as a path partitioning problem since
we are partitioning the non-depot nodes into paths.

In the simplest version of this problem, the customers are identical and
each vehicle has sufficient capacity to serve all of the customers, so any path
partitioning of the nodes 1, 2,..., n will be feasible. If we impose additional
restrictions on the solution, then the problem becomes a special version (be-
cause the trees must be paths) of one of the alternative tree problems we
have introduced previously.

For example, if we have K available vehicles, the problem becomes a K-
median version of the path partitioning problem since we wish to use at most
K paths to cover the nodes 1, 2, ... , n. In particular, if K = 1, the vehicle
routing problem becomes the renowned traveling salesman problem; in this
case, any feasible solution to the associated path partitioning problem is a
Hamiltonian path (that is, a single path containing all the nodes).

If the customers are identical, that is, have the same demands, which by
scaling we can assume are all one unit, and each vehicle has a capacity of
C units, then each tour, and so each path in the path partitioning problem,
can contain at most C customer points. Therefore, the problem becomes a
C-capacitated subtree version of the path partitioning problem.

In practice, applications often have other important problem features; for
example, (a) the demands typically vary across the customers, or (b) each
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Depot

Figure 5: Vehicle Routing as Packing Paths in a Network
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edge might have an associated travel time and we might have a limit on
the overall travel time of every route (and so each path in the associated
path partitioning problem) or we might have specified time windows on the
delivery (pick-up) time of each customer. In these instances, the Hamiltonian
paths in any feasible solution will have other constraints imposed upon them,
for example, restrictions on the total length (travel time) of each path.

We might note that the "vehicle routing" problem, and so its associ-
ated tree problems, arise in other application contexts-for example, ma-
chine scheduling. In this setting, we associate each vehicle with a machine
and the customers are jobs that we wish to perform on the machines. Each
"vehicle tour" becomes a sequence of jobs that each machine will process.
That is, the machine "visits" the jobs. When we have K identical machines,
the problem becomes a K-median version of the problem. When we impose
capacities on the machines and processing times of the jobs (which corre-
spond to demands), we obtain other versions of the vehicle routing problem
and, therefore, of tree packing problems.

Clustering. In cluster analysis, we wish to partition (cluster) a set of data so
that data in the same partition (cluster) are "similar" to each other. Suppose
that we can represent the data in an n-dimensional space (the dimensions
might, for example, represent different symptoms in a medical diagnosis).
Suppose we view two points as close to each other if they are close to each
other in Euclidean distance, and measure similarity of a set of points as the
length of the (Euclidean) minimum spanning tree that connects these points.
Then if we want to find the best k clusters of the points, we need to find
the best set of k disjoint trees that contain all the points; we connect the
points in any one of these k sets by a minimum spanning tree defined on
these points. In practice, we might solve this problem for all values of k and
then use some secondary criteria (e.g., human judgment) to choose the best
value of k.

VLSI Design. The designers of very large scale integrated (VLSI) chips of-
ten wish to connect a set of modules on the surface of a chip using the least
total length of wire. The physical layout of the chip usually requires that
wires can be routed only along "channels" that are aligned along north/south
or east/west directions of the surface. Thus the wiring distance metric be-
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tween a pair of modules is the rectilinear or manhattan metric. If we represent
each module location as a point (although physically the modules occupy a
nonzero area), this problem is a Steiner tree problem with the set of module
location points as the terminal nodes T; in theory, the Steiner nodes could
be anywhere on the chip's surface (see Figure 6a). Since we are measuring
distances between nodes according to the rectilinear norm, researchers often
refer to this type of problem as the rectilinear Steiner tree problem.

, 0

North 4
0 0 4

.I ,

I -74

a 7_i
l A l

(a) (b)

0 Terminal Node * Steiner Node

Figure 6: (a) Set of Points Representing a Rectilinear Steiner Tree Problem;
(b) Grid Graph Representation of Rectilinear Steiner Tree Example

One popular model for this application models the surface of the chip as
a grid graph (see Figure 6b) with each node chosen as either the location of
a module or the intersection point of some north/south and east/west line
that passes through one of the module locations. Wires can run only along
the edges of the grid graph. In Figure 6.b, nodes 1, 2, 5, 6 and 9 are the
terminal nodes and nodes 3, 4, 7 and 8 are Steiner nodes arising from lines
passing through these nodes. This derived grid graph model is a special case
of the classical Steiner tree problem.

In practice, the design of a chip usually involves many different sets of
modules, each set needing to be connected together. When multiple sets of
modules use any channel in their Steiner tree solution, multiple wires will use
the same edge of the underlying grid graph. In this application setting, each
channel on the chip surface can accommodate only a limited number of wires;
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so this more general problem is a variant of the Steiner tree problem with
several rectilinear Steiner tree problems defined on the same grid graph, but
with a limit on the number of Steiner trees that use any edge of the graph.
That is, the problem becomes a problem of "packing" Steiner trees into the
capacitated edges.

In this discussion, we have considered a rectilinear Steiner tree model for
connecting modules of a computer chip; the same type of model arises in the
design of printed circuit boards.

Production Planning. Suppose we wish to find a production and inventory
plan that will meet the demand dt > 0 of product over each of T time periods
t = 1, 2, .. ., T. If we produce xt units of the product in period t, we incur
a fixed (set-up) plus variable cost: that is, the cost is ft + ctxt. Moreover, if
we carry st units of inventory (stock) from period t to period t + 1, we incur
an inventory cost of htst. We wish to find the production and inventory plan
that minimizes the total production and inventory costs. We refer to this
problem as the single item uncapacitated economic lot-sizing problem. We
can view this problem as defined on the network shown in Figure 7. This
network contains one node for each demand period and one node that is the
source for all production.

On the surface, this problem might not appear to be a tree optimization
model. As shown by the following result, however, the problem has a directed
spanning tree solution, that is, it always has at least one optimal production
plan whose set of flow carrying arcs (that is, those corresponding to xt > 0
and st > 0) is a spanning tree with exactly one arc directed into each demand
node.

Theorem 2.1 The single item uncapacitated economic lot-sizing problem al-
ways has a directed spanning tree solution.

Proof. First note that since the demand dt in each period is positive, at
least one of xt and st-_ is positive in any feasible solution. Consider any
given feasible solution to the problem and suppose that it is not a directed
spanning tree solution. We will show we can construct a directed spanning
tree solution with a cost as small as the cost of the given solution. Suppose
xt > 0, st-1 > 0 and x, is the last period prior to period t with x1 > 0. Let

= min{x, St-l}. Note that if x, < stl, then s,_l > 0.
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Production arcs

d 6 d 7

Figure 7: Production Lot-sizing as Packing (Rooted) Subtrees in Trees
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Consider the two costs ct and ct = c, + h, + h,+l + . . + ht-1. If ct < crt,
we set xt - xt + ,xr x- E and sj - sj- for allj = T,...,t- 1; if

ct > ct, we set xt -- 0, xr - x + xt and sj - sj + xt for all i = ,..., t - 1.
In both cases, we obtain a solution with at least as small a cost as the given
solution and with one less period with xq > 0 and sq-1 > 0. (If = < st-1
and ct ct, then q = ; otherwise, q = t.) By repeating this process
as many times as necessary, we eventually obtain a directed spanning tree
solution with a cost as small as that of the given solution. ·

Note that for a directed spanning tree production plan, we never simulta-
neously produce in any period and carry inventory into that period. There-
fore, whenever we produce, we must produce for an integral number of periods
(from the current period until just before the next production period). This
property permits us to use a simple dynamic programming algorithm to solve
the problem very efficiently. Let vt be the value of a minimum cost solution
of the problem for periods 1, 2,.. ., t assuming st = 0. Set vo = 0. Then

vt = min {v_l + f,+ cjdj}
1<r<t

r<j<t

since in any optimal directed spanning tree solution, we must produce for
the last time in some period r, carry zero inventory into period r, and incur
inventory carrying costs for all periods r, T + 1,..., t - 1.

Finally, we might note that we can view this problem as a subtree op-
timization problem on the line graph containing only the demand nodes
1, 2,.. ., T (see Figure 7). Since whenever we produce, we always produce
for an integral number of consecutive periods, the problem always has an
optimal solution that decomposes the line graph into a collection of interval
subgraphs each containing a consecutive set of nodes: if a subgraph has nodes
t, t + 1,..., q, its root is node t and the weight of any node j in the subgraph
is given by: w = ft + ctdt, and w = ctjdt, for j t. In this model, we choose
the root node of any interval as the leftmost node of the interval since we
do not permit backlogging (that is each st > 0). If we permit backlogging,
then we could choose any node r in the interval as its root (that is, as the
production point) for that interval and the weight wj for any node j to the
left of the root (that is, j < r) would be the cost of supplying the demand
dj by backlogged production from time t.
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Trees and Network Flow Problems

As illustrated by the production planning example we have just consid-
ered, trees can arise as solutions to optimization problems that on the surface
are unrelated to trees; that is, the problem is not defined on a tree nor does
it explicitly seek a tree solution. This example is a special case of a more
general result in the field of linear programming. Consider any optimization
problem of the form min{cx : Nx = b, O < x < u} and suppose that each
column of the n by m matrix N has at most two nonzero entries, which have
the values +1; moreover, if a column has two nonzero entries, one is a +1
and the other a -1. Define a directed graph G with n + 1 nodes, numbered
0 to n, and with m directed edges: G contains one node for each row of N,
plus one additional node (node 0), and one edge for each column of N. We
define the graph as follows: if a column of N has a +1 entry in row i and a
minus one entry in row j, the graph G contains arc (i,j). If a column has a
single nonzero entry and it is +1 in row i, the graph contains the arc (i, 0),
and if its single nonzero entry is -1 in row j, the graph has the arc (0,j).
We can then interpret the variables x as flows on the edges of this graph; the
jth constraint of Nx = b is a mass balance constraint stating that the total
flow out of node j minus the total flow into that node equals the supply bj at
that node. We wish to find a flow that meets these mass balance restrictions,
the bounding constraints 0 < x < u, and that has the smallest possible flow
cost cx.

From the theory of linear programming, we know that this linear program
always has an optimal solution corresponding to a basis B of N. That is,
the solution has the property that we can set each variable xe not in B to
either value 0 or ue, and then solve for the basic variables from the system
Nx = b. But now we observe that any basis corresponds to a spanning tree
of the graph G if we ignore the orientation of the arcs. Recall that each
column of B corresponds to an arc in G. Let A(B) denote the set of arcs
corresponding to the columns of B. If the graph defined by the edges A(B)
contains an undirected cycle C, then as we traverse this cycle we encounter
any arc e = (i,j) either first at node i or first at node j. Let Ye = +1 in the
former case, Ye = -1 in the latter case, and Ye = 0 if arc e does not belong to
the cycle C. Then By = 0 and so B is not a basis matrix of N. Therefore,
the subgraph T of G corresponding to any basis matrix cannot contain any
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cycles. Therefore, it either is a tree or a collection of disjoint subtrees.
The fact that network flow problems always have tree solutions, in the

sense we have just discussed, has far reaching implications. It permits us
to solve these problems very effectively by searching efficiently among tree
solutions (the simplex method has this interpretation) using the underlying
graph to implement the algorithms using graphical methods in place of more
complex matrix operations. Although we will not discuss these methods in
this chapter, we note that the fact that network flow problems have spanning
tree solutions, and are solvable efficently using tree manipulation methods, is
one of the primary reasons why tree optimization problems are so important
in both theory and practice.

The optimal tree property of network flows also has polyhedral implica-
tions. It implies that the extreme points of the system {x : Nx = b, O <
x < u} are integer whenever the vectors b and u are integer. In this case, it
is easy to show that the incidence vector of any basic solution to the linear
program is integer since (i) the flows on all arcs e not corresponding to the
basis are set to value 0 or ue, which are integer; (ii) setting the values xe of
any nonbasic arc e = (i,j) to value Xe = 0 or , = u, has the effect of updat-
ing the vector b by adding the integer Y, to bj and subtracting Y, from bi, so
the updated value b of the vector b, once we have made these assignment of
variables, remains integer; and (iii) solving for the values of the arcs in a tree
for any integer vector b gives integer values for the following reason. Note
that the tree always has at least one node v (actually at least two nodes)
with a single arc e in the tree incident to it (that is, a degree one node in the
tree). Therefore, the value of xe is +b,. If we set xe to this value, we update
the b vector by adding and subtracting the value b, from each of the two
components of b corresponding to the nodes v and q that are incident to arc
e. If we now eliminate node v and arc e from the tree, we obtain a new tree
with one fewer node. The new tree will again have at least one degree one
node so we can find an integer value for one other component of the vector
x. By repeating this process, we determine integer values for all the basic
(tree) variables.

This discussion shows that every basic solution is integer valued, and the
theory of linear programming implies that every extreme point to the system
{x: Nx = b, 0 < x u} is integer valued.
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3 Minimum Spanning Trees

In this section we study the minimum spanning tree problem. We begin by
describing a fundamental solution method, known as the greedy algorithm,
for solving this problem. We establish the validity of this algorithm in two
ways: (i) using a direct combinatorial argument, and (ii) using a mathemat-
ical programming lower bounding argument based upon relaxing part of the
problem constraints. Both of these arguments are representative of meth-
ods used frequently in the field of combinatorial optimization. In order to
highlight the interaction between algorithms and theory, we then use this
algorithm to give a constructive proof of a polyhedral representation of the
spanning tree polytope; namely, we show that the extreme points of a ba-
sic "packing" or "subtour breaking" linear programming formulation of the
problem are the incidence vectors of spanning trees.

We then introduce and study variants of two other "natural" formulations
of the minimum spanning tree problem: a cutset model and a flow model.
We show how to improve the formulation of both of these models, using the
notion of multicuts in the cutset formulation and using multicommodity and
directed versions of the flow formulation. These modeling variations produce
a hierarchy of models for the minimum spanning tree problem. When formu-
lated as integer or mixed integer programs, all these models are equivalent;
some of them give better (more accurate) linear programming relaxations of
the problem and in our discussion, we show the relationship between these
relaxations and the linear programming relaxation of the basic packing for-
mulation.

3.1 The Greedy Algorithm

The greedy algorithm is a simple one-pass procedure for solving the mini-
mum spanning tree problem: the algorithm orders the edges in a given graph
G = (V, E) from smallest to largest weight (breaking ties arbitrarily) and
considers the edges in this order one at a time, at each stage either accepting
or rejecting an edge as a member of the tree it is constructing. The decision
rule for each edge is very simple: if the edge forms a cycle with those al-
ready chosen, the method discards it from further consideration; otherwise,
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the method adds it to the tree it is forming. To illustrate this algorithm,
consider the example shown in Figure 8a, with the edges ordered from small-
est to largest weight as a, b, c, d, e, f, i, j, g, h. The method accepts the edges
a, b, c, d, e, and f since they do not form any cycles. Edge i forms a cycle
with edges a, b and e and edge j forms a cycle with edges c, d, and f, so the
algorithm rejects those arcs. It then accepts edge g and rejects edge h since
it forms a cycle with the edges e, f, and g. Figure 8b shows the tree that the
algorithm produces.

Does the greedy algorithm solve the minimum spanning tree problem? If
so, how might we prove this result? We will answer these questions by consid-
ering two different proof techniques, one combinatorial and one based upon
a mathematical programming bounding argument. In the process, we show
that the greedy algorithm actually solves a more general "componentwise"
optimization tree problem and show the relationship between the greedy al-
gorithm and the proof that a polyhedron is an integer polyhedron.

Combinatorial Argument
In our example, the greedy algorithm chooses the edges of a greedy tree

Tgreedy in the order a, b, c, d, e, f, g. Suppose that T, with edges a, b, g, d, e, f, h,
is any spanning tree. We will show that we can find a sequence of trees
T = To, T1, T 2,
... ,Tk = Tgreedy satisfying the property that for j = 1,2,...,k - 1, each
tree Tj+l has a weight at least as small as its predecessor Tj. Therefore, the
weight of Tgreedy is as small as the weight of T and since T is an arbitrary
spanning tree, Tgreedy is a minimum spanning tree.

We first note that if the tree T does not contain the edge a, adding a
to the tree T creates a unique cycle and removing any edge from this cycle
creates another tree T1. Since the greedy algorithm chooses edge a as a
minimum weight edge in the graph, the weight of the tree T1 is at least as
small as the weight of the tree T. So for any tree T, we can find a tree T1

whose weight is at least as small that of T and that contains the edge a. Now
suppose that after several steps of adding edges from Tgreedy, one at a time,
to the trees To, T 1,... we have obtained a tree T4, say, whose weight is no
more than T and that contains the first five edges a, b, c, d, e of the greedy
tree. Adding edge f to this tree creates a cycle. The steps of the greedy
algorithm imply that this cycle must contain at least one edge q other than
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the edges a, b, c, d, e. Moreover, the greedy algorithm also implies that the
weight of the edge f is as small as the weight of the edge q (otherwise the
algorithm would have added q before adding the edge f). Therefore, we can
replace edge q in T4 by the edge f, creating a new tree T5 with the edges
a, b, c, d, e, f whose weight is as small as T4.

Continuing in this way, we eventually add each of the edges of the greedy
tree and the resulting tree Tk = Tgreedy has a weight as small as T. Therefore,
we have proved that the weight of the greedy tree is as small as the weight
of any other tree T, so Tgreedy is a minimum spanning tree.

We might note that in this argument we have actually proved a stronger
result. Let T 1 and T 2 be any two trees of a graph G and suppose that we
order the weights of the edges in each tree from smallest to largest. That is,
w. < wb < ... < Wg are the weights of the edges a, b, c, d, e, f, g in T1 and
w < wp < ... < w,7 are the weights of the edges a, , , , , v, 77 in T 2 . We
say that T1 is componentwise as small as T2 if wa < w,, w < w...., w g w ,1.

Note that if T1 is componentwise as small as T2, then the total weight of T1 is
at least as small as the total weight of T2. Also note the transitivity property:
if T1 is componentwise as small as T 2 and T 2 is componentwise as small as T3,
then T 1 is componentwise as small as T3. We refer to a tree as componentwise
minimum if it is componentwise as small as any other tree. We might note
that there is no a priori guarantee that a componentwise minimum spanning
tree exists. Indeed, most classes of combinatorial optimization problems do
not contain componentwise optimal solutions.

Consider two subsequent trees Tq and Tq+l in the argument we have just
given for showing that the greedy algorithm produces a minimum spanning
tree. We obtained Tq+1 by replacing one edge of Tq by an edge with a weight
at least as small. Therefore, Tq+l is componentwise as small as Tq. But if
each tree Tq+l in the sequence is componentwise smaller than its predecessor
Tq, then the final tree Tgreedy is componentwise as small as the tree T. Since
T was an arbitrary tree, we have established the following property.

Theorem 3.1 The greedy algorithm produces a componentwise minimum
spanning tree.

We next give an alternative proof that the greedy algorithm generates a
minimum spanning tree, and in doing so illustrate ideas from the field of
mathematical programming that have been proven to have wide applicability
in combinatorial optimization.
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Lower Bounding Argument

Consider the following integer programming formulation of the minimum
spanning tree problem:

min ZeE Wexe (3.1)

subject to

X = n- 1 (3.2)
eEE

E e < SI - 1 for any nonempty set S C Vof nodes (3.3)
eEE(S)

xe > 0 and integer for all edges e. (3.4)

In this formulation, the 0-1 variable Xe indicates whether we select edge e
as part of the chosen spanning tree (note that the second set of constraints
with ISI = 2 implies that each Xe < 1). The constraint (3.2) is a cardinality
constraint implying that we choose exactly n - 1 edges, and the "packing"
constraints (3.3) imply that the set of chosen edges contain no cycles (if the
chosen solution contained a cycle, and S were the set of nodes on this cycle,
then the solution would violate this constraint). Note that as a function
of the number of nodes in the network, this model contains an exponential
number of constraints. Nevertheless, as we will show, we can solve it very
efficiently by applying the greedy algorithm.

To develop a bound on the weight of a minimum spanning tree, sup-
pose that we associate a "Lagrange multiplier" liv with constraint (3.2) and
nonnegative Lagrange multipliers s with constraints (3.3), and add the
weighted combination of these constraints to the objective function, creating
the following optimization problem:

min weXe + [tv[ x - (n- 1)] +
eEE eEE

1 is[ EZ Xe - (ISI - 1)] (3.5)
qCSCV eEE(S)

subject to

E e = n-1 (3.6)
eEE

X: e< (ISI - 1) for any nonempty set S C V of nodes(3.7)
eEE(S)
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Xe > 0 and integer for all edges e.

Note that for any feasible solution x to the problem and any value of the
multiplier pv, the term Av[LeeE e - (n - 1)] is zero. Moreover, for any
feasible solution to the problem and any nonnegative choice of the multipliers
/s for S C V, the last term in (3.5) is nonpositive. Therefore, the optimal
value of this modified problem is a lower bound on the weight of any minimum
spanning tree. Moreover, if we remove the constraints from this problem
except for the 0-1 bounds on the variables, the problem's optimal objective
value cannot become any larger, so the optimal objective value of the problem

min wexe + iv[z e - (n 1) +
eEE eEE

.1 s[ Z Xe- (S1- 1)] (3.9)
OCSCV eEE(S)

subject to

0 < xe < 1 for all edges e (3.10)

is also a lower bound on the weight of any minimum spanning tree.
Let us record this result formally as the following property.

Lower Bounding Property If lpv is any scalar (positive, negative, or zero)
and Is for each node nonempty set S C V is any nonnegative scalar, then
the optimal objective value of the problem (3.9)-(3.10) is a lower bound on
the weight of any minimum spanning tree.

In order to use this bounding property, let us collect together the terms
in the objective function (3.9) by defining a "reduced weight" for any edge e
as follows:

We = We + E Ls
E(S) contains edge e

The last term in this expression contains the multiplier /lv associated with
the constraint EeeE Xe = n- 1 (corresponding to S = V). Using the reduced
weight notation, we can write the lower bounding problem (3.9)-(3.10) as
follows:

min z Wxe - liv(n-1)- Z /s(SI- 1) (3.11)
eEE kCSCV
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subject to

0 < ,e < 1 for all edges e. (3.12)

Observe that this problem is easy to solve. If wP < 0, set x, = 1; if
w > 0, set x, = 0; and if wf = 0, set xe to any value between 0 and
1. Since the problems (3.9)-(3.10) and (3.11)-(3.12), which are equivalent,
provide us with a lower bound on the weight of any minimum spanning tree,
if we can find a spanning tree whose weight equals the value of the lower
bound, we can be guaranteed that the tree is a minimum spanning tree. To
show that the greedy algorithm generates a minimum spanning tree, we use
the greedy tree, together with a set of multipliers s, to provide a certificate
of optimality; that is, we use the tree and the multiplier data to ensure that
the tree is a minimum spanning tree without the need to make any further
computations (in particular, we need not explicitly consider the exponential
number of other spanning trees).

Certificate of Optimality: Suppose that the incidence vector y of a span-
ning tree T and the set of multipliers, uiv unconstrained and s > 0 for
all nonempty sets S C V, satisfy the following "complementary slackness"
properties:

(a) s[ Z y - (IS - 1)] = 0 for all nonempty S C V (3.13)
eE E(S)

(b) w = 0 if Ye > 0 (3.14)
(c) w > 0 if Y = 0. (3.15)

Then T is a minimum spanning tree.
Proof. Since y is a feasible spanning tree, ZEeE Y, = (n- 1); when combined
with condition (a), this result implies that the objective function (3.9), or
equivalently (3.11), equals the weight ZECE WeYe of the tree y. Therefore, if
we can show that y solves the lower bounding problem (3.9)-(3.10), then we
know that its weight is as small as the weight of any spanning tree and so it is
a minimum spanning tree. But since the only constraints in problem (3.11)-
(3.12) are the bounding conditions 0 < x, < 1 for all edges e, conditions (b)
and (c) imply that y solves this problem. ·

Example 3.1. As an illustration of this result, consider the tree gener-
ated by the greedy algorithm for our example. Suppose that we define the
multipliers s as shown in Table 1.
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Set S As
{1,2} 1
{3,4} 1
{5,6} 1
{7,8} 1
{1,2,3,4} 4
{5,6,7,8} 4
{1,2,3,4,5,6,7,8} -6

Table 1: Appropriate Lagrange multipliers

We set the multipliers of all other node sets S to value zero. With this
choice of multipliers, the edges have the reduced weights shown in Table 2.

Let us make a few observations about the greedy solution y and the multi-
pliers we have chosen. First, each step in the greedy algorithm introduces an
edge joining two nodes i and j, and therefore forms a connected component
S(i,j) of nodes. For example, when the algorithm added edge f, it formed
a connected component containing the nodes 5, 6, 7, and 8. The number of
edges in this component is S(i,j)l - 1 = 4- 1 = 3, so the set S = S(i,j) of
nodes satisfies the constraint eeE(S) Ye = S- 1. Consequently, the mul-
tipliers and greedy solution y satisfy the first optimality condition (a). The
only multipliers that we have set to nonzero values correspond to these sets
(and to the overall set V). Consequently, since the greedy algorithm adds
exactly n - 1 edges to the spanning tree, at most n - 1 of the multipliers are
nonzero.

Note that in this case, since Ya = Yb = yc = Yd = e = f = Yg = 1,
and Yh = i = y = 0, the reduced weights satisfy the optimality conditions
(b) and (c). Since the the greedy solution y and the multipliers also satisfy
condition (a), we have in hand a certificate showing that the greedy solution
is optimal.

In this case, the reduced weight for any edge not in the greedy tree is the
difference in weight between that edge and the largest weight of any edge in
the cycle formed by adding that edge to the tree. For example, if we add
edge i to the greedy tree, it forms a cycle with the edges a, b, and e; edge e
has the largest weight in this cycle and so the reduced weight for the edge i
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Edge e Reduced weight
W = We + EE(S) contains edge e S-

a 1+1+4-6=0
b 1 + 1 + 4-6=0
c 1+1+4-6=0
d 1+1 + 4-6=0
e 2+4-6=0
f 2+4-6=0
g 6-6=0
h 6-6=0

i 3+4-6=1
j 3+4-6=1.

Table 2: Edge reduced weights

is 3 - 2 = 1. The reason for this is that the edge i is contained in exactly the
same sets E(S) whose defining nodes S have positive multipliers as the edge e
and so the difference in their reduced weights w" = We+ZE(S) contains edge e AuS

is the difference in their original weights.
To conclude this discussion, we might indicate how we chose values for

the multipliers /As so that every edge in the greedy tree has a zero reduced
weight. We set /av = -g, the negative of the weight of the last edge
added to the tree. When the greedy algorithm adds an edge ac = {i,j} at
any step, it combines the previous components of nodes containing nodes i
and j, forming (in our earlier notation) a new connected component S(i,j).
To determine the multiplier s, we consider what the algorithm does at a
later step. At some subsequent step, it adds another another edge /3 =
{p, q} that enlarges the component S(i,j) by connecting it to some other
component. We set s(ij) = wp- w > 0 (the provisions of the greedy
algorithm ensure that edge /3 weighs at least as much as edge a). After
the greedy algorithm has added edge a, at later steps it adds other edges
/3, ?y, ... , 0, v that form increasingly larger sized components containing edge
a. By our choice of the multipliers, these are the only node sets S, with
a E E(S), that receive nonzero multipliers. But our choice of the multipliers
implies that EE(S) contains edge a = (W l - w) + (w v - wO) + ... + (wk -
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wv) + w, = -w. Therefore, the reduced weight of edge a is zero. Since a is
an arbitrary edge in the greedy tree, this choice of multipliers ensures that
every edge in the greedy tree receives a zero reduced weight.

This argument applies in general to the greedy tree produced by any ap-
plication of the the greedy algorithm for any network and, therefore, provides
an alternative proof that the greedy tree is a minimum spanning tree.

3.2 Polyhedral Representations

In the previous section, we showed how to use lower bounding information
about the integer programming model (3.1)-(3.4) to demonstrate that the
greedy algorithm generates a minimum spanning tree. In this section, we
study the linear programming relaxation of this problem obtained by remov-
ing the integrality restrictions imposed on the variables. We also introduce
several other formulations of the minimum spanning tree problem and study
the polyhedra defined by their linear programming relaxations.

The study of integer programming models like (3.1)-(3.4) has become a
fruitful topic within the field of combinatorial optimization; indeed, we will
see its use in many of the following sections of this chapter as we consider
more complex tree optimization problems. In general, because integer pro-
gramming problems are hard to solve, the optimization community frequently
solves some type of more easily solved relaxation of the problem. In the last
subsection we considered one such type of relaxation, known as Lagrangian
relaxation.

Perhaps the most popular type of relaxation is the linear programming
relaxation obtained by eliminating the restriction that the decision variables
x in the model (3.1)-(3.4) need to be integer. In general, since we have
eliminated the integrality restriction from the model, the linear programming
relaxation will have a lower optimal objective value than does the integer
program. As we show next, for the minimum spanning tree problem, this is
not the case. In this setting, the integer program and linear program have
the same optimal objective value since any solution to the integer program
(in particular, the greedy solution) solves the linear programming relaxation.

Although we have not noted this important result before, we have actually
already established it. For suppose that we start with the linear programming
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relaxation of the minimum spanning tree formulations (3.1)-(3.4), obtained
by replacing the constraints "e > 0 and integer for all edges e" by the relaxed
constraints "e > 0 for all edges e", and apply the same lower bounding
arguments that we used for proving that the greedy solution solves the integer
programming model. Then we also see that the the greedy solution solves
the linear programming relaxation. In fact, we might interpret our lower
bounding argument as follows: let zST denote the optimal objective value of
the spanning tree integer program and let z denote the optimal objective
function value of its linear programming relaxation. Suppose that we form
the following linear programming dual of the linear programming relaxation.

max -pv(n - 1) - E: s(ISI - 1) (3.16)
sv

subject to

- E its < we for all edges e (3.17)
EA(S) contains edge (ilj)

/is > 0 for all S V. (3.18)

As before, the expression to the lefthand side of the inequality (3.17) con-
tains the term pv. Since the linear program is a relaxation of the integer
programming model zp zST and by linear programming duality theory
the value of the linear program equals the value of its dual linear program
(3.16)-(3.18). The multiplier values that we defined in the lower bounding
argument satisfy the constraints (3.17) and (3.18) of the linear programming
dual problem. Moreover, note that the way we have defined the multipliers,
if wa is the weight of any edge added to the greedy tree, then w, contributes
to the objective function (3.16) in one or more terms: (i) it contributes -w,
to ps, corresponding to the set S of nodes in a single component that is
formed when we add edge a to the tree; and (ii) it contributes w,a to the
two the multipliers Q and yp of the sets Q and P of nodes that define the
components that are combined when we add edge a to the tree. But since
(ISI - 1) = (IQI - 1) + (IPI - 1) + 1, the overall effect is to add w" to the
objective function. Since this is true for every edge a that we add to the
greedy tree, the objective function of the linear program has the same value

EeETgreedy WeXe as the greedy tree. Therefore, z = zST and so the greedy
tree, which is feasible in the linear program, solves this problem.

Note that this development has not only shown that the optimal value
of the integer programming problem (3.1)-(3.4) and its linear programming
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relaxation are the same, but has also shown that that the linear program-
ming relaxation always has an integer optimal solution (which is an incidence
vector of a spanning tree) for any choice of the objective function weights.
Moreover, we can always choose the weights so that any particular spanning
tree is a solution to the linear program. A standard result in linear program-
ming shows that the incidence vectors of spanning trees must then be the
extreme points of the linear programming relaxation. Therefore, we have
established the following important result.

Theorem 3.2 The extreme points of the polyhedron defined by the linear
programming relaxation of the spanning tree model (3.1)-(3.4) are the 0-1
incidence vectors of spanning trees.

Alternative Formulations

Generally, it is possible to devise many valid formulations of integer pro-
gramming problems, using alternate sets of variables and/or constraints.

One formulation might be preferable to another for some purposes, for ex-
ample, because it is easier to study theoretically or because it is solvable by a
particular solution procedure. The model (3.1)-(3.4) that we have introduced
in this section is a "natural packing" formulation. It is a "natural" formu-
lation because it uses the natural 0-1 decision variables, indicating whether
or not we include the underlying edges in the spanning tree; we refer to it as
a packing formulation because the constraints EeEE(S) Xe < ISI - 1 restrict
the number of edges that we can pack within any set S of nodes. In this dis-
cussion we examine two alternative approaches for formulating the minimum
spanning tree problem, one involving cuts and another involving flows.

Cutset Formulations

Let S denote the set of incidence vectors of spanning trees of a given
graph G = (V, E). In formulating the spanning tree problem as an integer
program, we used the property that a spanning tree on an n node graph is
any subgraph containing n- 1 edges and no cycles. Therefore, at most SI - 1
edges in any tree can connect any set S of nodes, and so S = x E ZIEl 0 <

X < 1, EeE e = n-1, and EeE(S) e < ISI - 1 for any nonempty S C V}.
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As an alternative, we could use another equivalent definition of a spanning
tree: it is a connected subgraph containing n - 1 edges. This definition
leads to a cutset formulation: S = {x E Z E l : 0 < X < 1,eEEe =

n - 1, and Ee,6(s) Xe > 1 for all nonempty node sets S C V}. As we saw in
Theorem 3.2, if we relaxed the integrality restrictions in the packing (subtour)
formulation, then the resulting polyhedron Psub equals conv(S). Let P,,t

denote the polyhedron formed if we remove the integrality restrictions from
the cutset formulation, that is, Pt = {x E RIEI : 0 < x < 1,eeEe =

n - 1, and ZeE6(S) Xe > 1 for all nonempty nodes sets S C V}. As we show
next, the polyhedron Put can be larger than the convex hull of S.

Proposition 3.3 Pcut D Psub. In general, Put has fractional extreme points
and so is larger than Psub

Proof. Note that for any set S of nodes, E = E(S) U b(S) U E(S). If

x E Psub, then EeE(S) X, < ISI - 1 and EeEE() Xe < IS- 1. Therefore, since

EeEE e = n - 1, eE6(S) Xe > 1. Consequently, x E Pcut and so Pct D Psub-
To establish the second part of the proposition, consider Figure 9. Recall

that a polyhedron has integer extreme points if and only if a linear program
defined over it has an integer optimal objective value for all choices of integer
objective coefficients (whenever the optimal value is finite). In Figure 9, if
we define a linear program min {yx : x E P,,t} by setting the objective
coefficients of edges {1, 2}, {1, 3} and {2, 4} to value 1 and the coefficients
of edges {3, 4}, {4, 5}, and {3, 5} to value 0, then the optimal solution is the
fractional solution x shown in the figure with an objective value of 3/2. Note
that x belongs to P,,t but not to.Pub since the edges E(S) in the 3-node set
S = {3, 4, 5} have a weight 5/2. ·

This result shows that the linear programming relaxation of a "simple"
cutset formulation does not define the convex hull of incidence vectors of
spanning trees. We next show that if we replace simple cutsets by "multi-
cuts," then the linear programming relaxation will define conv(S).

Given a k+ 1 node partition of V, that is disjoint nonempty sets Co, C, ....
Ck of nodes whose union is V, we call the set of edges, denoted as 6(Co, C1,. .,
Ck), with one end point in one of these node sets and the other end point
in another, a multicut. Note that a (usual) cut is just a multicut with
k = 1. Since any spanning tree contains at least k edges joining the sets
Co, C1,..., Ck, 16(Co, C1, . . ., Ck)n TI > k. Therefore, any spanning tree lies
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in the multicut polyhedron Pmc,,t = {x E R IEI 0 x < 1, eEE Xe = n - 1,
and Ze6(Co,C1I...ck) Xe > k for all node partitions Co, C1,..., Ck of V}. The
following result gives a strengthening of Proposition 3.3.

Theorem 3.4 P,,,t = conv (S).

Proof. Consider any set S of n - k nodes and node partition with Co = S,
and Cj for j = 1,..., k as singletons each containing one of the nodes of S.

Since E = E(S)+6(Co, C,..., Ck), if O < x < 1 and eEExe = n-1, then
EeEE(S) Xe < SI - 1 if and only if ZeE6(Co,,C.C) Xe > n - 1 - (IS[ - 1) = k.
Consequently, x E Psub if and only if x E Pm,,,t. Therefore, Pm,,,t = Psub and,
by Theorem 3.1, P,,ct = conv(S). m

This proof uses our prior results concerning the relationship between the
greedy algorithm and the polyhedron Psub. The following alternative proof,
based on a lower bounding or duality argument, is also instructive; it shows a
direct relationship between the greedy algorithm and the polyhedron Pm,,t.

Alternative Proof. Consider the following dual to the the linear program
min{wx x E Pm,,t}:

max E klpc ....ck

subject to

E pc,....ck < weforalleEE
eE6(Co,...,Ck)

/Co,...,c. > 0 whenever k < n-2.

In this formulation, cO ,...,Ck is the dual variable corresponding to the con-
straint eE(Co,...,C,) Xe > k, l n),...,n is the dual variable corresponding to
the constraint eEE Xe = n - 1, and the sum in the objective function of this
problem is taken over all multicuts {Co, *, Ck.

Suppose the greedy algorithm chooses edges S1 of weight WS,, S 2 of weight
WS2, and so forth and that WS < W 2s < ... < ws,.. Suppose further that

(C,. . . , C) are the connected components of the graph spanned by the
edges Uj=iSj, and that we set W{}, ...,{n} = ws,, c,...c = wsi+- s for

i = 1,.. ., r - 1, and ic,,0 ...,c, = 0 for any other multicut {Co, ... , Ck}. It

is easy to see that the values for cCO,...,Ck provide an optimal dual solution
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of the same value as the greedy solution, and therefore, as we have argued
before, all the extreme points of the polyhedron Pcut are integral 2. 

Example 3.2.
Consider again the example in Figure 8. In this case:

* ko = 7 and o 0-t{L} ... {n} = 1

* kl = 3 and S = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}. Therefore,
Ll ' l1,2},{3,4},{5,6},{7,8} = 2 - 1 = 1.

* k2 = 1 and S2 = {{1,2, 3, 4}, {5, 6, 7, 8}}. Consequently,
P2 -= {1,2,3, 4 },{5,6,7,8} -- 6 - 2 = 4..

Observe that E kipi = 14 equals the objective value of the greedy solution.

Note that in the first proof of Theorem 3.4, we have actually proved a
slightly stronger version of the theorem. In selecting the multicuts in the
definition of Pmcut, we can choose all but one of them to be a singleton.
Therefore, the multicuts have one large node set S; the remaining node sets
are singletons. To contrast the result in Proposition 3.3 and Theorem 3.4,
once again consider the example in Figure 9. Let Co = {3,4, 5}, C = {1},
and C2 = {2}. Note that ee6(Co,C,C2)xe = 3/2 so this solution does not
satisfy the multicut constraint eea6(Co,l,c2) Xe > 2.

Flow Formulations

Another way to conceive of the minimum spanning tree problem is as
a special version of a network design problem: in this setting, we wish to
send flow between the nodes of the network and view the edge variable x,
as indicating whether not we install the edge e to be available to carry any

2This proof also shows that if we eliminate the cardinality constraint EEE e = n - 1
from the polyhedron (the polyhedron still has the constraint EeE E Xe > n- 1), the result-
ing polyhedron, which we denote as P+cut also has integer extreme points (corresponding
to spanning trees). In this case, if any weight we < 0, then we let xe approach +oo,
showing that the linear program minE eE{weXe : e E Pu,,} has no optimal solution.
If each we > 0, then the argument in the proof shows that this linear program has an
optimal solution with x as the incidence vector of a spanning tree.
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flow. We consider three such flow models: a single commodity model, a
multicommodity model, and a refined multicommodity model. In each of
these models, although the edges are undirected, the flow variables will be
directed. That is, for each edge e = {i,j}, we will have flow in both the
directions i to j and j to i.

In the single commodity model, one of the nodes, say node 1, serves as
a source node; it must send one unit of flow to every other node. Let fij
denote the flow on edge e {i,j} in the direction i to j. The model is:

min wx (3.19)

subject to

E f, - Z fe=n-1 (3.20)
eEl+(l) eE6-(1)

fe - Z, fe 1 for all v 1, v V (3.21)
eE- (v) eEl+ (v)

fij < (n - 1)x, for every edge e = {i,j} (3.22)
fji < (n - 1)x, for every edge e = {i,j} (3.23)

ZXe = n- (3.24)
eEE

f > 0, and 0 < Xe < 1 for all edges e (3.25)
xe integer for all edges e E E. (3.26)

In this model, equations (3.20) and (3.21) model flow balances at the
nodes; the forcing constraints (3.22) and (3.23) are redundant if Xe = 1 and
state that the flow on edge e, in both directions, is zero if Xe = 0. Note
that this model imposes no costs on the flows. The mass balance equations
imply that the network defined by any solution x (that is, those edges with
x, = 1) must be connected. Since the constraint (3.24) states that the
network defined by any solution contains n - 1 edges, every feasible solution
must be a spanning tree. Therefore, when projected into the space of the
x variables, this formulation correctly models the minimum spanning tree
problem.

If we ignore the integrality restrictions on the x variables, the constraints
of this model determine a polyhedron. Let Pflo denote the set of feasible
solutions to this linear program, that is to the system (3.20)-(3.25), in the
x-space. We will use Figure 10 to illustrate the fact that this formulation
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of the minimum spanning tree problem is quite weak in the sense that the
linear program min{'yx : x E Pflo} can be a poor representation of the
weight of a minimum spanning tree as determined by the integer program
min {-yx : x is an incidence vector of a spanning tree}. This is the same
example used in Figure 9; the edge weights Ye all have values zero or one
as shown. The optimal weight of a minimum spanning tree is 2 and, as we
saw before, the optimal weight of the linear programmimng relaxation of the
cut formulation is 3/2. In this case, suppose we choose node 1 as the root
node. It has a supply of 4 units. The optimal solution sends the three units
of demand destined for nodes 2, 4, and 5 on edge {1, 3} and the one unit of
demand destined for node 2 on edge {1, 2}. To do so, it requires a capacity
(n - 1)x, = 3 on edge {1, 3} and a capacity of (n - 1), = 1 on edge {1, 2},
giving a weight x, = 3/4 on edge {1, 3} and a weight of 1/4 on edge {1, 2}.
So in this case, the linear programming relaxation of the flow formulation has
value 1, which is even less than value of the linear programming relaxation
of the cut formulation.

As we will see, even though the differences between the minimum span-
ning tree problem, the cut formulation, and the flow formulation apply in
general, we can considerably strengthen the cut and flow formulations. In-
deed, we will derive tight cut and flow models, that is, formulations whose
underlying polyhedrons equal the convex hull of the incidence vectors of the
spanning trees. We begin by introducing a directed version of Psub.

Note that if we select any node r as a root node for any spanning tree,
then we can direct the edges of the tree so that the path from the root node
to any other node is directed from the root to that node. To develop a model
for this directed version of the problem, we consider a digraph D = (V, A)
formed by replacing each edge {i,j} in E by arcs (i,j) and (j, i) in A. Let
Yij = 1 if the tree contains arc (i, j) when we root it at node r.

The directed model is:

e Ye < SI - 1 for any nonempty set S C Vof nodes (3.27)
eEA(S)

E ye = 1 for all v E V \{r} (3.28)
eE- (v)

Ey e = n- 1 (3.29)
eEA

Ye > 0 for all edges e E A (3.30)
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xe = Yij + Yji for all edges e E E. (3.31)

Note that the constraints (3.28) in this model imply that Zker ZeE6(k) Ye =
n- 1 which, combined with equation (3.29), implies that eE6(r) Ye = 0.
Therefore, Ye = 0 for every arc e directed into the root node.

Let Pd,,b denote the feasible set for this model in x-space. Since every
tree can be directed, S C Pdsub and so conv(S) = Psub C Pdsub. Note that if
x E P, b, then since yij and yji occur together in the constraints (3.27) and
(3.29), x > 0 satisfies constraints (3.2) and (3.3) and so x E Psub implying
that Pdsub C Psub We have therefore established the following result3 .

Proposition 3.5 Psub = Pdsub.

Now consider a directed cut model with some arbitrary node r chosen as a
"root node":

S Ye > 1 for all C with r E C (3.32)
eE6+(C)

Ye = n2-1 (3.33)
eEA

Ye > 0 for all edges e E A (3.34)
xe = Yij + Yji for all edges e E E. (3.35)

Let Pdcut denote the set feasible solutions of this model in x-space. The con-
straint (3.32) in this model states' that every directed cut b(C) that separates
the root node r from any set of nodes C must contain at least one arc.

Before studying the directed cut model, let us make one observation about
its formulation. If we set C = V \ {k} in constraint (3.32), then for each node
k # r, this model contains the constraint Ee¢6-(k) Ye > 1. In contrast, the
directed formulation states these constraints as equalities (3.28). Note that
if we add the inequalities ZeE-(k) Ye > 1 over all nodes k f r, we obtain the
inequality ZeEA(V\{r}) Ye + ZeE6 +(r) Ye > n - 1. If any vector y were to satisfy
any inequality ZeE6-(k) Ye > 1 in (3.32) as a strict inequality, it would also
satisfy the last inequality a strict inequality as well, contradicting equation
(3.33). Therefore, every feasible solution y in the directed model satisfies

3In this proof, we have used the integrality property conv(S) = Psub- In establishing
Theorem 6.4, we give a proof of a more general result without using the integrality property.

42

IIC ___ _ 1_ _-------·11111�-----__-_II �_·_--��



equation (3.28), that is, Ee6-(k) Y = 1 for all k 34 r. (As before, these
equalities imply that the weight Ye = 0 for every arc e directed into the root
node.) These conclusions tells us something about the relationship between
the directed model and the directed cut model. As the next result shows, we
can say even more.

Proposition 3.6 Pdsub = Pdcut.

Proof. Let S be any set of nodes containing node r. Since A = A(S) U
6+(S) UkES 6-(k), we can rewrite equation (3.29) as

E Ye + E Ye + E E Ye--1. (3.36)
eEA(S) eE6+(S) kES eE6-(k)

The constraints (3.28), which as we have just seen are valid in both the
directed model and the directed cut model, and the condition that Ye = 0
for every edge directed into the root node r, imply that the last term on the
left-hand side of this equation equals SJ - 1 and so equation (3.36) becomes

ye + E Ye = n- 1 - (S - 1)= 1S. (3.37)
eEA(S) eE6+(S)

But this inequality implies that (3.27) is valid for S if and only if (3.32) is
valid for S. Therefore, the constraints (3.32) are equivalent to the constraints
(3.27) applied to all sets that do not contain the root node r.

If r is not contained in S, then the last term in equation (3.36) equals
ISI and so the right-hand side of equation (3.37) becomes ISI - 1. But then,
since the second term in this equation is nonnegative, the eqaution implies
that ZeEA() < SI - 1 and so the inequality (3.27) is valid whenever r does
not belong to S as well.

But these two conclusion imply that a vector y is feasible in the directed
model if and only if it is feasible in the directed cut model and, therefore,
Pdsub = Pdcut- ·

The max-flow min-cut theorem immediately provides us with a reformu-
lation, called the directed multicommodity flow model, of the directed cut
formulation. In this model every node k f r defines a commodity: one unit
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of commodity k originates at the. root node r and must be delivered to node
k. Letting f be the flow of commodity k in arc (i,j), we formulate this
model as follows:

fk - k f= -l1 for all k r (3.38)
eel-(r) eE6+(r)

E fk - E fk = 0 for all v r, v y k, and all k (3.39)
eE-(v) eE6+(v)

Z f - Z fek = 1 for all k r E V (3.40)
eE6-(k) eEn+(k)

fk -< yij for every arc (i,j) and all k 7£ r (3.41)

ZYe = n-1 (3.42)
eEA

Yij + yji = xe for every edge e E E (3.43)

f > O, andy, > O forallarcs e E A (3.44)

Ye integer for all arcs e E A. (3.45)

In this model, the variable yij defines a capacity for the flow of each com-
modity k in arc (i,j). The forcing constraint (3.41) implies that we can send
flow of each commodity on arc (i, j) only if that arc is a member of the di-
rected spanning tree defined by the variables y. We let Pdflo denote the set of
feasible solutions of the linear programming relaxation of this model in the
x-space, that is, of the constraints (3.38)-(3.44).

Proposition 3.7 Pdflo = Pdcut.

Proof. From the max-flow min-cut theorem, EeE6+(C) Ye > 1 for all C with
r E C and k ¢ C if and only if the digraph has a feasible flow of 1 unit from
the root to node k with arc capacities Yij, that is, if and only if the system
(3.38)-(3.41) has a feasible solution with fk > 0. This observation implies
the proposition. ·

We obtain a closely related formulation by eliminating the yij variables.
The resulting formulation is (3.38)-(3.42), plus f > 0, plus

Ex = n- 1 (3.46)
eEE

fj + fj'k < Xe for all k, k' and all e E E. (3.47)
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We refer to this model as the extended multicommodity flow formulation
and let Pc,flo denote its set of feasible solutions in x-space. Observe that
since we have eliminated the variables y in constructing the extended mul-
ticommodity flow formulation, this model is defined on the undirected graph
G = (V, E), even though for each commodity k, we permit flows ftk and fjk in
both directions on edge e = {i,j}. The bidirectional flow inequalities (3.46)
in this formulation link the flow of different commodities flowing in different
directions on the edge {i, j}. These constraints model the following fact: in
any feasible spanning tree, if we eliminate edge {i, j}, we divide the nodes
into two components; any commodity whose associated node lies in the same
component as the root node does not flow on edge {i, j}; any two commodi-
ties whose associated nodes both lie in the component without the root both
flow on edge {i, j} in the same direction. So, whenever two commodities k
and k' both flow on edge {i, j}, they both flow in the same direction and so
one of f and fk equals zero.

Note that equalities (3.42) and (3.43) imply (3.46) and the inequalities
(3.41) and equalities (3.43) imply (3.47). Therefore, Pdlo C Pmc,flo. Con-
versely, suppose the vectors x and f are feasible in the extended multicom-
modity flow problem; for each edge e = {i,j}, choose an arc direction (i,j)
arbitrarily, and define yij = maxkr fik and Yji = xe - Yij. Then y and f are
feasible in the directed flow formulation. Therefore, we have established the
following result.

Proposition 3.8 Pdflo = Pceflo.

We obtain one final formulation, which we refer to as the undirected mul-
ticommodity flow model, by replacing the inequalities (3.47) by the weaker
constraints

ft < xe for all k r and e E E.

Let Pnflow denote the set of feasible solutions of this model in the x-space.
As in the proof of Proposition 3.6, the max-flow min-cut theorem implies
that this model is equivalent to a cut formulation in the following sense.

Proposition 3.9 Pmcflow = Pcut.

Let us pause to reflect upon the results we have just established. In this
section we have examined the polyhedra defined by the linear programming
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Figure 11: Relationship Between Underlying Polyhedra

relaxation of nine different formulations of the minimum spanning tree prob-
lem. Figure 11 shows the relationship between these polyhedra. Six of the
polyhedra-the subtour, multicut, extended multicommodity flow, directed
spanning tree, directed cut, and directed flow polyhedra are the same (the
latter three when transformed into the space of x variables); each has inte-
ger extreme points. The cut and multicommodity flow are the same; like the
weaker flow formulation, they can have fractional extreme points and so they
do not define the spanning tree polyhedron.

There are several lessons to be learned from this development. First, for
undirected formulations, multicuts improve upon models formulated with
cuts and the bidirectional flow inequalities (3.47) improve upon the multi-
commodity flow formulation (at the expense of adding considerably more
constraints to the formulation). Second, (extended) multicommodity flow
formulations, which have the disadvantage of introducing many additional
flow variables, improve upon single commodity flow formulations. Third,
even though the polyhedra Psub and Pm,,flo are the same, we obtain Pm,,,fo
by projecting out the flow variables from the multicommodity flow formu-
lation; this formulation, and indeed each of the flow formulations we have
examined, are "compact" in the sense that the number of variables and con-
straints in these models is polynomial in the size of the underlying graph.
The subtour formulation and cut formulations contain fewer variables, but
are "exponential" in the sense that the number of constraints in these models
grows exponentially in the graph's size. We obtain the compact formulations
by introducing "auxiliary" flow variables beyond the natural 0-1 edge vari-
ables. Finally, we have shown that a directed flow model gives a better rep-
resentation of the spanning tree polyhedron than does the undirected flow
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model (unless we add the bidirectional contraints (3.47) to the undirected
model).

These observations provide powerful modeling lessons that extend well
beyond the realm of spanning trees. For example, they apply to several
network design and vehicle routing problems. Later in this chapter, we will
illustrate the use of these ideas again as we study other versions of optimal
tree problems (especially variations of the Steiner tree problem).

Linear Programs, Cutting Planes, and Separation
To conclude this section, we consider an important algorithmic implica-

tion of the formulations we have considered. As we have noted, both the
basic packing formulation (3.1)-(3.4) and the directed multicommodity flow
formulation (3.38)-(3.44) are large optimization models; the number of con-
traints in the packing formulation grows exponentially in the number IVI of
nodes in the underlying graph; the directed cutset formulation has V13 flow
variables and forcing constraints (3.41)-1 million for a problem with 1000
nodes. Fortunately, we need not explicitly solve either model since we can
use the greedy algorithm to solve the minimum spanning tree problem very
efficiently.

What happens, however, when the spanning tree problem is a subprob-
lem in a more general model that cannot be solved using a combinatorial
algorithm like the greedy algorithm? Examples are spanning tree problems
with additional constraints imposed upon the network topology (see Section
8) or the traveling salesman, with its embedded spanning tree structure. In
solving these problems, many algorithms atempt to solve the linear program-
ming relaxation of the problem (and then often use an enumeration procedure
such as branch and bound). If we model spanning tree solutions using the
packing formulation, any feasible point in the linear programming relaxation
of these more general problems must both lie in the set Psub and satisfy any
additional contraints imposed upon the problem variables. Since we cannot
possibly even list all the contraints of the packing formulation for any reason-
ably sized problem, linear programming algorithms often adopt a "cutting
plane" or "constraint generation" procedure that works as follows.

We first formulate and solve a linear programming model ignoring all but
a few of the packing contraints (3.3). If the solution x of this model happens
to satisfy all the packing constraints that we have ignored, then x E Psub.
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To discover if this is the case, we would like to determine if the solution x
violates any packing constraint: that is, if possible, we would like to find a
set of nodes S for which -eEE(S)Xe > SI- 1. If we found such a set, we
would add the constraint EEE(S) Xe < ISI- 1 to the linear programming
model. In polyhedral combinatorics, the problem of finding such a violated
contraint, or cut as it is known, is called the separation problem since we are
finding a violated inequality that separates the vector x from the polyhedron
Psub 

Solving the Separation Problem
How can we solve the separation. problem? The directed cutset formulation
and the development in this section have implicitly provided us with an
answer to this question. As we have seen, Psub = Pdflo. Stated in another
way, E Psub if and only if y, with Y, = Yij + ji for all edges e = {i,j},
together with some flow vector f is feasible in the directed multicommodity
flow formulation (3.38)-(3.44). Suppose we set the capacity of each arc (i,j)
in this model to x,; then x E Psub if and only if the capacitated network has
a flow of one unit from the root node r to every other node k (since we can
always find the maximum flow between two nodes by sending flow only in
one of the arcs (i, j) and (j, i)). Any maximum flow algorithm that finds a
minimum cut as well as a maximum flow will give us this answer: for suppose
for each node k, we find a maximum flow from the root node to node k. If
the maximum flow has value 0 < 1, then by the max-flow min-cut theorem,
some directed cut +(S) has a capacity less than 1, that is, eE65(S)Te =
Ee,6+(S) e < 1. But since EeEE e = IVI - 1, either eesY > SI - 1
or E-e , > IS- 1 and so the minimum cut provides us with a violated
packing inequality. We could then add this inequality to the linear program,
solve it again, and repeat the separation procedure.

Most Violated Constraint
The method we have described is guaranteed to find a violated packing in-
equality, or show that none exists, by solving JVI - 1 maximum flow prob-
lems. It isn't, however, guaranteed to find a most violated packing inequality,
that is, one that maximizes CeEE(s)Ye - (SI - 1) over all node sets S. We
next show that by cleverly defining an ancilliary maximum flow network,

4Readers can skip the next two paragraphs without any loss of continuity.
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we can find a most violated constraint using the same number of maximum
flow computations. To find a most violated inequality we wish to maximize
EeEE(S) e - (ISI - 1), or, equivalently, minimize S I - eEE(S) e over all
nonempty node sets S C V. Since EeE e -IVI - 1, a constant, this mini-
mization is equivalent to minimizing ISI + EeE(S) e- We will show how to
minimize this quantity. If its minimum has a value of at least IVI, then the
solution Y satisfies all the packing constraints.

As before, we solve IVI - 1 maximum flow (minimum cut) problems, each
defined on a directed version G* = (V, A) of the network G = (V, E). In
the kth such problem, we find a cut that separates the root node r from
node k. For every edge e = {i,j} in E, G* contains the arcs (i,j) and
(j, i); we set the capacity of any directed arc (p, q) obtained from edge e to
(1/2)Te + (1/2) EeE6(q) Yx. For each node v E V, we also include an arc (v, k),
which might be a parallel arc, with a capacity of one unit. Note that if S is
any node set with r E S and k E S, then the unit capacity arcs we just added
contribute a capacity of ISI to the cut b+(S). Moreover, the other arcs in b(S)
have a capacity EeVE(S) Xe since our definition of capacities double counts x,
for each edge e = {p, q} with both of its endpoints in S-this accounts for the
factor of 1/2 in the definition of the arc capacities. Therefore, the minimum
capacity cut in the kth maximum flow problem minimizes ISI + e E(S) e

over all cuts 6(S) separating the root node r from node k. Consequently, by
solving IVI - 1 maximum flow problems, one for each node k t r, we solve
the linear programming separation problem.

3.3 A Linear Programming Bound

In Section 3.2, we saw that Pmcu, = Pub (as well as several other equivalent
polyhedra) are the convex hull of incidence vectors of spanning trees. We also
saw, through an example, that Pct might be a larger polyhedron. Therefore,
for any vector w = (we) of objective coefficients, the optimal value of the
linear program zP =- minEpc,t wx will generally be less than the optimal
value of of the linear program ZLPt = minEpmcut wx. That is, zLP LPcut
r > 1. How large can the ratio r become? In our example in Figure 9,
r = 2/1.5 = 4/3.

Recall that Pcut = {x E RIEI : eEEXe = n - 1, and eE6(S)Ze > 1
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for all nonempty node sets S C V) and that P,,,t = (x E RIEIl 0 < x <
1, eEE e = n- 1, and EaE(Co,c,...,ck) x > k for all node partitions Co, C 1,
.. , Ck of V}. Throughout this analysis, we assume w > 0.

To obtain a bound on zcutLPzLut let us first consider the polyhedra P,,,ut
and P¢ut without the cardinality constraint EEE = n - 1 and the upper
bound constraints X < 1 imposed upon the edges e. Let P,+ut and P+ut
denote these polyhedra. Note that any integer point in either of these poly-
hedra corresponds to a "supertree", that is, a graph that contains a spanning
tree (i.e., a spanning tree plus additional edges which can, if any Xe > 1, du-
plicate some some edges). Let zLP+ =minand z minx+ wx be
the optimal objective values of the linear programs with objective function
coefficients w over these polyhedra. We wish to establish a bound on the
value of these linear programs.

Let be any point in P+t and let 6(Co, C1,..., Ck) be any multicut.
Suppose we add the constraints ZeES(cq,v\cq) Xe > 1 for all q = 0, 1,..., k. In
doing so, we include each edge in b(Co, C 1, ... , Ck) twice, and so the resulting
inequality is

2 > k + 1.
ee6(Co,C 1 ...,Ck)

or, equivalently, 2k EeZ6(Co,C,...,Ck) e k.
Note that since k + 1 < IVi, 1 - 1/IVI > 1 - 1/(k + 1) = k/(k + 1).

Consequently, the point x also satisfies the following inequality

2(1 -1/IVI) x > k.
eES(CoC1,---,Ck)

Therefore, the point = 2(1- 1/IVJ)x belongs to PCut Note that this
point has an objective value of w[2(1 - 1/IVl)] = w2. Thus, for any point
x E Pc+.t, the point z = 2(1- 1/IVI)x with objective value wz belongs to
P+,Jt, that is, [2(1- 1/V[l)wx = wz > Lut+. Since this inequality is valid
for all points x E PC+Ut, including any optimal point, it implies the following
bound:

Proposition 3.10 ZLPt+ lzL't+ < 2(1 - 1/1VI).

This result shows that, in general, the objective value for any linear pro-
gram defined over Pcut is no more than twice the objective value of a linear
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program with the same objective function defined over the polyhedron P,+.
If the underlying graph is a cycle with IVI edges, and if all the edge costs
We = +1, then the optimal solution to min{wx : e E Pt+} sets x = 1 for
all but one edge and the optimal solution to min{wx : e E Pct+} sets xe =
1/2 for all edges. Therefore, zLP+/ZLP (V - 1)/(IVI/2) 2(1-1/V)
achieves the bound in this proposition.

Now consider the problems z LPt= minXEPmct = min wx and = m wx.Zmcutcut

We first make the following observations:
(1) In the multicut polyhedron Pmcut, for any edge e, the upper bound

constraints x < 1 are redundant since the constraint EEE xE n - 1 and
the multicut constraint ,ee , > n - 2 (here Co contains just the end nodes
of edge e and all the other Ck are singletons) imply that xe < 1.

(2) If we > 0, then the cardinality constraint eEExe = n - 1 is re-
dundant in the linear program z$L minp in the sense that the

problem without the cardinality constraint always has a solution satisfy-
ing this constraint. This result follows from the second proof of Theorem
3.4 which shows that since we > 0 for all e E E, the dual linear pro-
gram has an optimal solution in which the dual variable on the constraint
EeEE e = 6({l},...,{n}) e = n - 1 is nonnegative.

We can now establish the following result.

Proposition 3.11 z LP/,L/P < 2(1 - 1/ll).

Proof. Since the polyhedron Put contains one more constraint than
the polyhedron Pc+t, z LP > zLP and as we have just seen, since w > 0,

utLPt LP Therefore, Proposition 3.10 shows that
mcu t -- Zmcut+P

[2(1- 1/ VI)1Z LP [2(1- 1/I VI)IzLP ZLP LP
Zcut cut+ - Mc+ mcut

Observe that since the polyhedron Pmcut is integral, zLP = Z, the opti-
mal value of the spanning tree problem. Therefore, Proposition 3.11 bounds
the ratio of the optimal integer programming value to the optimal objective
value of the linear programming relaxation of the cut formulation. In Section
6.3, we consider a generalization of this bound. Using a deeper result than
we have used in this analysis (known as the parsimonious property), we are
able to show that the bound of 2(1 - 1/IVI) applies to Steiner trees as well
as spanning trees.
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4 Rooted Subtrees of a Tree

In Section 2, we considered the core tree problem defined on a general net-
work. We now consider the core problem encountered in packing trees within
a tree: the rooted subtree problem. Given a tree T with a root node r and a
weight w, on each node v of T, we wish to find a subtree T* of T containing
the root that has the largest possible total weight EjeT' W,. We permit T* to
be the empty tree (with zero weight). In Section 4.2 we consider an extension
of this model by introducing capacity restrictions of the tree T*.

4.1 Basic Model

We begin by setting some notation. Let p(v), the predecessor of v, be the
first node u v on the unique path in T connecting node v and the root
r, and let S(v) be the immediate successors of node v; that is, all nodes u
with p(u) = v. For any node v of T, let T(v) denote the subtree of T rooted
at node v; that is T(v) is the tree formed if we cut T by removing the edge
{p(v),v} just above node v.

Dynamic Programming Solution

The solution to this problem illustrates the type of dynamic programming
procedure that solves many problems defined on a tree. For any node v
of T, let H(v) denote the optimal solution of the rooted subtree problem
defined on the tree T(v) with node v as the root. If v is a leaf node of
T, H(v) = max{O, w,} since the only two rooted subtrees of T(v) are the
single node {v} and the empty tree. The dynamic programming algorithm
moves "up the tree" from the leaf nodes to the root. Suppose that we have
computed H(u) for all successors of node v; then we can determine H(v)
using the following recursion:

H(v) = max{O, w, + Z H(u)}. (4.1)
uES(v)

This recursion accounts for two cases: the optimal subtree of T(v) rooted at
node v is either (a) empty, or (b) contains node v. In the latter case, the tree
also contains (the possibly empty) optimal rooted subtree of each node u in
S(v). Note that since each node u, except the root, is contained in exactly
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one subset S(v), this recursion is' very efficient: it requires one addition and
one comparison for each node of T. After moving up the tree to its root and
finding H(r), the optimal value of subtree problem defined over the entire
tree T, we can determine an optimal rooted subtree T* by deleting from T
all subtrees T(u) with H(u) = 0.

Example 4.1. For the example problem shown in Figure 12 with root
r = 1, we start by computing H(4) = 4,H(6) = 0,H(7) = 2,H(8) =
4, H(10) = 0, and H(11) = 3 for the leaf nodes of the tree. We then find
that H(9) = max{0,-5+0+ 3} = 0, H(5) = max{0,-1+4+0} = 3, H(2) =
max{0, -5 + 4 + 3} = 2, H(3) = max{0, -1 + 0 + 2} = 1, and finally H(1) =
max{0, 2 + 2 + 1} = 5. Since H(9) = H(6) = 0, as shown in Figure 12(b),
the optimal rooted tree does not contain the subtrees rooted at these nodes.

+2

(a) (b)

Figure 12: (a) Given Tree with Node Weights we; (b) Optimal Rooted Sub-
tree (Shaded Nodes)

Variants and enhancements of this recursion apply to many other prob-
lems defined on trees. We will examine one such example in Section 4.2
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where we consider the addition of capacity constraints to the subtree of a
tree problem. In later sections, we consider several other similar dynamic
programming algorithms.

Polyhedral Description

Let xv be a zero-one variable indicating whether (xv = 1) or not (x, = 0)
we include node v in a rooted subtree of T, and let X denote the set of the
incidence vectors x = (x,) of subtrees rooted at node r (more precisely, X is
the incidence vectors of nodes in a subtree rooted at node r-for convenience
we will refer to this set as the set of subtrees rooted at node r). Note that
points in X satisfy the following inequalities

O< xr < 1,0 < x, < xp() for all nodes v r of T. (4.2)

Since every point in X satisfies these inequalities, so does the convex hull,
conv(X), of X, that is, {x: 0 < Xr < 1,0 < Xv < Xp(v) for all nodes
v r of T} D conv(X). We will show that the inequalities in (4.2) actually
completely describe r-rooted subtrees of T in the sense that the convex hull of
X equals the set of solutions to (4.2). That is, we will establish the following
result:

Theorem 4.1 The set of solutions to the linear inequality system (4.2) is
the convex hull of the 0-1 incidence vectors of subtrees of T rooted at node r.

This theorem shows that the extreme points of the polyhedron P = {x E
RIv l : 0 < xr < 1,0 < x < p(v) for all nodes v r of T} are the 0-1
incidence vectors of subtrees of T rooted at node r. Notice that X = PnZIv l,
that is, every integer point in P is the incidence vector of a subtree rooted at
node r and so we will establish the theorem if we show that every extreme
point of the polyhedron P is integer valued.

We will prove Theorem 4.1 using three different arguments that underlie
many results in the fields of combinatorial optimization and polyhedral com-
binatorics: a network flow argument, a dynamic programming argument, and
an argument based upon the nature of optimal solutions to the optimization
problem min {wx : x E X} as we vary the weights w. All three of these
arguments rely on basic results from linear programming.
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Approach 1 (Network Flow Argument)

Consider the (primal) linear programming problem max{wx : 0 < Xr <
1,0 < xv < p() for all nodes v r of T} for any choice w of integer
node weights. Since this problem has one inequality (in addition to the
nonnegativity restriction) for each node v of T, its linear programming dual
problem min{yr : y - EuES(V) Yu > wv and Yv > 0 for all nodes v of T} has
one dual variable yv for each node of v. Note that the dual problem is a
network flow problem since each variable yq for q r appears in exactly two
constraints: in constraint v = q with a coefficient of +1 and in the constraint
v = p(q) with a coefficient of -1. Since node r has no predecessor, it appears
in only the constraint v = r with a coefficient of +1. The theory of network
flows shows that whenever the cost data of any network flow problem are
integral, its dual linear program always has an integer optimal solution (see
the discussion at the end of Section 1). In this case, since the network
flow problem min{yr : Yv - ,,es(V) Yu > wV and Yv > 0} has integer objective
function coefficients (zeros and the single + 1 coefficient for Yr), for any choice
of integer weights w, the dual problem max{wx : 0 < Xr < 1, 0 < X, < Xp()

for all nodes v r of T} = max{wx : x E P} has an integer optimal solution.
But then the theory of linear programming theory shows that every extreme
point of P is integer valued, and so by our previous observation, the extreme
points are the incidence vectors of subtrees rooted at node r.

Approach 2 (Dynamic Programming Argument)

This argument is similar to the linear programming duality argument
that we gave in the last section when we studied the minimum spanning tree
problem, though it uses information provided by the dynamic programming
solution procedure instead of the greedy procedure to set values for the lin-
ear programming dual variables. Consider the (primal) linear programming
problem max{wx : 0 < x, 1,0 < XV < Xp(,) for all nodes v r of T}.
As we noted in the last subsection, its linear programming dual problem is
min{yr: yv - Ees(V) Yu > wV and Yv > 0 for all nodes v of T}.

Let T* be the optimal rooted subtree of T determined by the dynamic
programming recursion (4.1) and let xv = 1 if node v belongs to T* and
let xv = 0 otherwise. This solution is feasible in the primal linear program
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and its objective value is H(r), the optimal objective value determined by
the dynamic programming recursion. Since the values of H(v), for v in
T, satisfy the recursion (4.1), H(v) > w, + EU,,s(,) H(u). Therefore, the
choice y, = H(v), for all v E V, of the variables in the dual linear program
is feasible. Moreover, since the dual objective value is Yr = H(r), we have
shown that for every choice of objective function coefficients w for the primal
problem, this problem has an integer optimal solution (since its objective
value equals the objective value of some dual feasible solution). But then
linear programming theory implies that the extreme points of the polyhedron
P = {x: 0 < xr < 1,0 < X, < Xp(,) for all nodes v :· r of T} are the 0-1
incidence vectors of subtrees of T rooted at node r.

Approach 3 (Optimal Inequality Argument)

This proof uses an argument from the field of polyhedral combinatorics.
Let w be any n-vector of weight coefficients and consider the optimization
problem max {wy : y Y} for any finite set Y. Let Q = {ajx < bj for
j = 1, 2, ... , m} be any bounded polyhedron that contains Y. Suppose that
we can show that for any choice of w 4 0, the set of optimal solutions to
the problem max {wy : y E Y} all lie on the same inequality ajy < bj of the
polyhedron Q. We refer to any such inequality (for a given choice of w) as
an optimal inequality. Note that for a particular choice of w, the polyhedron
P might contain more than one optimal inequality and as we vary w, we will
find different optimal inequalities. We might distinguish between two types
of inequalities: an inequality ajy < bj is binding if it is satisfied as an equality
by all points in Y and is nonbinding otherwise.

Nonbinding optimal inequalities are useful for the following reason: sup-
pose w defines a facet of the convex hull conv(Y) of Y in the sense that
for some constant wo, Y C {y : wy < wo} and the set of solutions of the
system {y : y E Y and wy = wo} has dimension one less than the dimension
of conv(Y). Then the set of optimal solutions to the optimization problem
max {wy : y E Y} are just the points of Y on the facet. In this case, any
optimal inequality ajy < bj contains all the points on the facet. This result
implies that if the polyhedron Q contains a nonbinding optimal inequality for
every choice of the weight vector w $ 0, then the polyhedron is the convex
hull of Y.
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To utilize this proof technique, we set Y = X and Q = P, with X and P
as defined previously. Note that in this case every inequality xv <_ xp() in the
definition of P is nonbinding since we can choose a rooted feasible tree with
x = 0 and Xp(v) = 1. The inequality xr < 1 is nonbinding because the zero
vector is a feasible rooted tree and the inequalities 0 < x, are nonbinding
since the tree with each x, = 1 is feasible. Since each defining inequality of P
is nonbinding, to use the optimal inequality argument, we wish to show that
for every choice of w 4 0, the polyhedron P contains an optimal inequality.

Let z = max{wx: x E X} with w $ 0. Since the zero vector is feasible,
z > 0. If z > 0, then all optimal solutions satisfy the condition xr = 1 and
so xr < 1 is an optimal inequality. So suppose that z = 0. Note that since
we are assuming that the weight vector w $ 0, some component of w must
be negative. Otherwise, setting x, = 1 for all v gives a solution with z > 0.
So we suppose w, < 0 for some node v of T.

If x, = 0 in every optimal solution to the problem, then xv, > 0 is an opti-
mal inequality. So suppose that T* is an optimal subtree solution containing
node v. If the weight of the subtree T(v) n T* rooted at node v is negative,
then by eliminating T(v) n T* from T*, we would obtain a rooted tree with a
weight that exceeds 0, contrary to our assumption that z = 0 (this situation
corresponds to the fact that H(v) > 0 in the dynamic programming solution
to the problem). Therefore, since w, < 0, at least one successor u of node
v must satisfy the property that the total weight of the subtree T(u) n T*
rooted at node u is positive (that is H(u) > 0 in the dynamic program).
We claim that xu < x, is an optimal inequality. If xv, = 0 in any optimal
solution, then x, = xv = 0. So suppose we have a optimal tree with x, = 1.
If xu = 0, we could add T(u) n T* to this optimal tree and obtain a feasible
solution with z > 0, again contrary to our assumption that z = 0. Therefore,
xz = 1 and so x, < x, is an optimal inequality.

These arguments show that for any choice of w ~4 0, one of the inequal-
ities in the system (4.2) is a nonbinding optimal inequality to the problem
max {wx: x E X}, which implies the conclusion of the theorem. ·

4.2 Constrained Subtrees

In some application contexts we are not free to choose every rooted subtree as
a possible solution to the rooted subtree of a tree problem. For example, the
root node might correspond to a concentrator in a telecommunication system
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that is serving demands d, at the nodes v of the tree. If the concentrator has
a limited throughput capacity C, then the node incidence vector x = (xv) of
any feasible rooted tree must satisfy the following capacity constraint:

E dx,z < C. (4.3)
vEV(T)

Recall that V(T) denotes the, set of nodes in the tree T.
We assume that each demand d, is a positive integer that does not exceed

the capacity C. We refer to this problem as the capacitated (rooted) subtree
of a tree problem.

As an important special case, each node v has a demand d, = 1 and so
the capacity constraint becomes a cardinality constraint

E x < K (4.4)
vEV(T)

stating that the chosen tree can contain at most K = C nodes. We refer to
this version of the problem as the cardinality constrained rooted subtree of
a tree problem.

A Solution Procedure
To find an optimal capacitated subtree of a tree, we can once again use a

dynamic programming algorithm. Let H(u, q) denote the optimal objective
value of an optimal subtree for the constrained subtree of a tree problem
defined by the tree T(u) with node u as the root and with the integer q < C as
the capacity. H(r, C) is the optimal objective value for the original problem.

We can solve the original problem by again working from the leaf nodes
toward the root using a dynamic programming recursion:

H(v, q) = max{O, w + max E H(u,q,)). (4.5)
{qu:ES(v) qu<q-dv} ueS(v)

We initiate the recursion by setting H(u, q) = max{wu, 0) for any leaf
node with du < q and H(u, q) = 0 for any leaf node with d > q.
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This recursion says that the optimal solution on the tree T(v) either does
not use node v and so has value zero or uses node v, consuming dv units of
the capacity and leaving q - d, units of capacity to be shared by the subtrees
rooted on the successor nodes S(v) of node v.

Note that for the cardinality version of the problem, this recursion is
particularly simple since its says that if we include node v in the optimal
subtree of T(u), then at most q - 1 nodes are available for distribution to
the subtrees on node u's successor nodes.

If we order the successors of each node, it is easy to implement the ba-
sic dynamic programming recursion using O(nC) computations (that is, the
number of computations is a polynomial with a constant times nC as the
leading term). For the special cardinality version of the problem, this im-
plementation requires O(n2) computations. Let ul,...ur be the successors of
node v. We will find the optimal value of H(v, q) by building up the solu-
tion from the optimal solution over the subtree T(ui), then T(ul) and T(u 2),
then T(ul), T(u2), and T(u3), and so forth until we consider all the successors.
To do so, we let Gj(v, t) denote the objective value of an optimal forest con-
taining rooted subtrees from the trees T(ul), T(u 2), ... , T(uj), given that the
nodes in the solution contain a total demand of at most t. For each index j =
1, 2,..., r, let Gj(v, O) = 0. Then for all t = 1, 2,...,C, Gi(v, t) = H(ul, t)
and for each j = 2,3,..., r, Gj(v, t) = maxo<s<t{Gl(v, s) + H(uj, t - s)}.
Finally, we find H(v, q) = max{O, w, + Gr(v, q - d)}.

Polyhedral Considerations
Let Xc and XK denote the set of feasible solutions to the capacitated

rooted subtree of a tree problem, that is, the rooted subtree of a tree problem
with the additional constraints (4.3) or (4.4). Let pC D XC denote the
polyhedra defined by the constraints (4.2) and (4.3) and let pK D XK denote
the polyhedra defined by the constraints (4.2) and (4.4).

As shown by the following example, unlike the (uncapacitated) subtree
of a tree problem, in general the polyhedra pC and pK are not integral.

Example 4.2. Consider the cardinality constrained problem with K = 4
for the example shown in Figure 12. In this case the optimal tree T* contains
nodes 1, 3, and 7 and has a weight 3. The fractional solution i 1 = 1, :2 =

X3 = 4 = 5 = 7 = 8 = 1/2, and i 6 = x = 1xo = xll = 0 satisfies
all the constraints of the system (4.3) as well as the inequality (4.4) and
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so lies in pK. The point is the unique solution to the linear program
max{EvEV(T) wvxv : x= (xv) E pK} and so by linear programming theory
it is a fractional extreme point of the polyhedra pK. ·

In order to obtain a polyhedral description of conv(XC) or of conv(XK),
we need to add additional valid inequalities to pC and pK. Finding enough
valid inequalities to completely describe these convex hulls appears to be
quite difficult. To illustrate how complicated the convex hulls are, we will
illustrate two sets of valid inequalities.

Let us call a subtree T' of T rooted at node r a cover if E-V(T') d, exceeds
C. Note that for the cardinality constrained problem, a tree cover is just a
subtree rooted at node r with at least K + 1 nodes. The cover condition
implies that we cannot include all the nodes of T' in any feasible rooted
subtree of T.

To eliminate this possibility, we can use the following tree cover inequality:

Z (Xp(v) - Xv) > Xr.
vET'

Proposition 4.2 Feasible points in Xc satisfy every tree cover inequality.

Proof. Consider any tree cover inequality. The null tree - 0 clearly sat-
isfies it. For any other feasible solution x, r, = 1. Note that the constraints
xv < xp(v) in the system (4,2) imply that every term on the left-hand side
of the cover inequality is nonnegative. Therefore, if the solution x to the
problem violates this inequality, then xp() -xv = 0 for all v E V(T'). But
then since Yr = 1, = 1 for all the nodes v E V(T'), contradicting the fact
that T' is a cover. ·

To illustrate the tree cover inequalities, consider the cardinality con-
strained tree problem of Example 4.2 once again (with K = 4). In this
case, let T' contain the five nodes 1, 2, 4, 5, and 8. The tree cover inequality
for T' is:

(X5 - X8 ) + (X 2 - X4 ) + (X 2 - X5 ) + (Xl - X2 ) > X1

or

X2 > X4 + X8.

Since x2 = 4 = i8 = 1/2, the fractional solution i from Example 4.2 does
not satisfy this inequality. Therefore, by adding the tree cover inequalities
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to the polyhedron pK, we obtain a better representation of the cardinality
constrained polyhedron conv(PK).

We obtain the second set of inequalities by considering another special
class of subtrees rooted at node r. Given a subtree T' containing the root
node, let L(T') denote its leaf nodes, and for any node set S C V(T), let
Cl(S), the closure of S, be the tree determined by the union of the paths
from each node v E S to the root.

Proposition 4.3 Let T' be a subtree of T rooted at node r. If for some
positive integer q, the closure Cl(S) is a tree cover of the tree T for all node
sets S C L(T') with ISI = q, then any feasible solution of Xc satisfies the
following leaf cover inequality:

Z xu < (q-1 )xr.
UeL(T')

Proof. This inequality is clearly valid for x = 0. If UEL(T')xu > qYx
and = 1, then the subtree of T' defined by the nodes u with Yu = 1 would
contain a tree cover and so be infeasible. So every feasible solution satisfies
every leaf inequality. ·

Example 4.3. Consider the cardinality constrained subtree problem
with K = 5 on the tree T shown in Figure 13. In this case, we can obtain
four tree covers by deleting any single leaf node from T. The tree cover
inequalities for these subtrees (once we have collected terms) are:

Xl + X2 X4 + X5 + X6

x 1 + 2 > x 4 + x +X7

x + 3 > X3 + X6 + x 7

1X +X3 > X4 +X6 + X7

Let T' = T and q = 3. Then the tree T' satisfies the conditions of the leaf
inequality and so the following leaf inequality is valid:

X4 + X5 + X6 + X7 < 2x l .

The fractional solution shown in Figure 13 satisfies all four tree cover
inequalities as well as the inequalities in the system (4.2). However, it violates
this leaf inequality. ·
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Let PTC and PTC,L denote the polyhedra defined by adding the tree cover
inequalities and both the tree cover and leaf inequalities to pK. This example
and Example 4.2 show that in general,

conv(XK) C PTC,L C cTC 

That is, in general, as in this case, by adding the tree cover inequalities
and then the leaf inequalities to pK, we obtain better polyhedral approxi-
mations to conv(XK).

10(17 10/17 10/17 10117

Figure 13: Fractional Values xv, Violating a Leaf Inequality

As this discussion has shown, the addition of a single inequality, even a
very simple cardinality constraint, can add considerably to the complexity of
an integer polyhedron.
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5 Polynomially Solvable Extensions/Variations

In the last two sections, we considered two core tree optimization problems-
the minimum spanning tree problem and the rooted subtree of a tree problem.
For each of these problems, we were able to develop an algorithm (the greedy
algorithm and a dynamic programming algorithm) that solves the problem
using a number of computations that is polynomial in the problem's size
(as measured by the number of nodes and edges in the underlying graph).
In this section, we consider two other polynomially-solvable versions of tree
problems; both are variations of the minimum spanning tree problem. In
one problem, the degree-constrained spanning tree problem, we impose a
degree constraint on one of the nodes and in the other problem, defined over
a directed graph, we seek a directed version of a minimum spanning tree, a
so-called optimal branching or optimal arborescence. We not only describe
polynomial algorithms for these problems, but also show that we can describe
the convex hull of incidence vectors of feasible solutions of these problems
by using minor variants of the formulations we have already studied for the
minimum spanning tree problem.

5.1 Degree-Constrained Spanning Trees

Suppose we wish to find a minimum spanning tree in a graph G, but re-
quire that the tree satisfies the property that the degree of a particular node
r, which we will call the root node, is fixed at value k. That is, the root
node must have k incident edges. We call any such tree a degree-oonstrained
minimum spanning tree. In this section, we show how to solve this prob-
lem efficiently for all values of k and, for any fixed k, we give a polyhedral
description of the incidence vectors of degree-constrained spanning trees.

To solve the degree-constrained minimum spanning tree, we consider a
parametric minimum spanning tree problem with edge weights chosen as
follows: the weight of every edge e = r,j} incident to the root node is
we + for some scalar parameter 0, and the weight of any edge e not incident
to the root node is the constant w,. Note that if 0 is sufficiently large,
the solution to the unconstrained minimum spanning tree problem will be a
spanning tree To in G containing the fewest possible number kmin of edges
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incident to node r. (Why?) As we decrease 0, the edges incident to the root
node become more attractive. For each edge e = {r,j} not in T °, let Pj
denote the path in T o that connects node j to the root node. As we decrease
0, for the first time at some point 0 = 0j (that is, Oj minus any positive
amount), the edge e {r,j} has a weight smaller than one of the edges on
the path Pj. Among all choices of node j, we choose one with a maximum
value of 0j and add edge e = {r, j} to To, dropping the edge from Pj whose
weight is larger than we + 0. Note that since we add the same amount 0 to
the cost of every edge incident to the root node, the edge we drop will not
be incident to the root. Therefore, this operation gives us a new tree T1 with
k,i, + 1 edges incident to the root node. We then repeat this step using T1
in place of To (and so with new paths Pj). By continuing in this way, for
each i = 1, 2,..., we obtain a spanning tree Ti with kmi, + i edges until the
tree Ti contains every edge {r,j} in G emanating from the root node. In
Theorem 5, we show that each intermediate tree Ti is a minimum spanning
tree for the value of 0 at which we converted the tree Ti_- into the tree Ti.

Suppose we maintain and update two labels for each node: (i) a prece-
dence label that indicates for each node j the next node q on the unique
path in the tree Ti connecting node j to the root node, and (ii) a second
label I that denotes the maximum weight of the edges on Pj, not including
the edge incident to the root. With these labels, determining the next edge
e = {r, j} to add to the tree at each step and finding the edge on the path Pj
to drop from the tree requires at most n operations. Since updating the node
labels when we add edge e to Ti requires at most n operations as well (the
node labels change only for the nodes on Pj), this algorithm requires O(n2 )
operations 5 plus the amount of work needed to find the initial spanning tree
To.

We note that as a byproduct, the algorithm we have just described pro-
vides a polyhedral characterization of degree-constrained minimal spanning
trees. Let Q = {x > : E eeXI = n- 1, and EeEE(S)Xe < S I- 1 for
all S $ V} be the polyhedron whose extreme points are incidence vectors of
spanning trees (see Section 3).

Theorem 5.1 Suppose that node r in a given graph has k or more incident
arcs. Then the incidence vectors. of spanning trees with degree k at the root

5That is, a number of computations that is no more than some polynomial with a lead
term of cn2 for some scalar c.
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node r are the extreme points of the polyhedron P = Q n {x : eE6(r) Xe = k}.

Proof. From the theory of linear programming this result is true if the
optimization problem min{wx : x P has an integer solution for every
choice of the weight vector w. As we have argued in Section 3, for any value
of 0, the optimal objective value of the problem min{wx + O(ZeE 6(r) xe - k):
x E Q} is a lower bound on the optimal objective value of this problem . At
some point in the course of the algorithm we have just described at a value
0 = 0*, the solution x* to the problem min{wx + 0*(eeb(r) Xe - k): x E Q}
is a spanning tree with k nodes incident to node r. But then since the lower
bound WX* + 0*(Zee(r) x' - k) equals the cost cx* of the vector x* and x* is
feasible to the problem min{wx : x E P}, x* solves this problem. Therefore,
this problem has an integer solution for every choice of the cost vector c and
so P has integer extreme points. ·

Note that for every value of k the polyhedron P = Qn {x : Eee(r) Xe k}
is a slice through the polyhedron Q along the hyperplane {x: eE6(r) Xe = k}.
The last theorem shows that every such slice has integer extreme points.

5.2 Optimal Branchings

Let D = (V, A) be a directed graph with a designated root node r. A
branching is a directed subgraph (V, B) that satisfies two properties: (i) it is
a tree if we ignore arc orientations, and (ii) it contains a directed path from
the root to each node v r. It is easy to see that we obtain an equivalent
definition if we replace (ii) by the following condition: (ii') the network has
exactly one arc directed into each node v r. Given a weight we on each
arc e of D, we would like to solve the optimal branching problem of finding
a branching with the smallest possible total arc weight.

For convenience, we usually refer to a branching by its arc set B.

Branching Models
In Section 3.2, we introduced the following integer programming packing

model of the optimal branching problem. For e E A, we let y, = 1 if e is in
the branching, and y, = 0 otherwise.
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min eEA WeYe

subject to

E Ye < ISI - 1 for all nonempty sets S c V
eEA(S)

Ye = 1 for all v E V \ (r})
e6- (v)

Ye = 0
eEs-(r)

y > 0 and integer.

Notice that the equality constraints in this formulation remain the same
if we replace the constraint ,ee6-(r) Ye = 0 by ZeEA Ye = n- 1. For simplicity
in the following discussion, we assume that we have eliminated all the arcs
directed into the root node r and so we can delete the constraint ZeE6-(r) Ye
0.

Let P be the polyhedron defined by this system if we ignore the integrality
restrictions on the variables y. The results in Section 3 imply that if the
digraph is symmetric in the sense that (j, i) E A whenever (i,j) E A and
wij = wji, then the linear programming relaxation of this problem always has
an integer optimal solution. We also showed that the greedy algorithm for the
(undirected) minimum spanning tree problem solves this special case. In this
section, we establish a more general polyhedral result: the extreme points
of P are the incidence vectors of branchings and so the linear programming
relaxation of the problem always has an integer optimal solution, even for
the asymmetric case. We also develop an algorithm for finding an optimal
branching.

Rather than work with the polyhedron P directly, we will consider an
equivalent cutset formulation. Let Q = {y E RIAI : y > O, ee6-(v) Ye
1 for all v E V \ ({r}), and Zee,+(S) Ye > 1 for all nonempty sets S with r E
S C V}. Our discussion of directed models of the minimum spanning tree
problem in Section 3 shows that, as formalized by the following proposition,
we can formulate the branching model in an equivalent cutset form.

Proposition 5.2 P = Q.
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In the following discussion, we consider a related class of subgraphs (V, B')
of D, called superbranchings, that contain one or more paths directed from
the root node to every other node (and so contains one or more arcs directed
into each node v # r). Since any superbranching B' contains a directed path
to any node v r, it contains a directed arc across every cutset, that is,
the superbranching and every set S C V of nodes containing the root node
r satisfy the cutset condition 6+(S) n B'[ > 1.

Note that if B' is a superbranching and B C B' is a branching on a subset
V of the nodes V, then if V C V we can extend B to a branching on a larger
subset of nodes by adding any arc from 6+(V) n B' to B. This observation
implies that every superbranching contains a branching.

Finding an Optimal Branching
As we have already noted, any branching rooted at node r satisfies three

properties: (i) node r has no incoming arc, (ii) every node v r has exactly
one incoming arc, and (iii) every directed cutset -(V(C)), with r C,
contains at least one arc (or, equivalently, since P = Q, if we ignore the
orientation of arcs, the branching contains no cycles)6. As the first step of an
algorithm for solving the branching problem, we will ignore the last condition.
The resulting problem is very easy to solve: for each node v f r, we simply
choose a minimum weight arc that is directed into that node. We refer to
this solution as a node greedy solution. If the node greedy solution NG
contains no cycles, then it solves the optimal branching problem; otherwise,
this solution contains one or more cycles C with r , C. Note that, since
every node has exactly one incoming arc, the cycle will be directed.

Our next result tells us even though the node greedy solution (typically)
does not solve the branching problem, it contains considerable information
about an optimal solution-enough to permit us to devise an efficient algo-
rithm for finding an optimal branching.

To simplify our notation, we first transform the weights so that the min-
imum weight arc e directed into each node v r has weight zero. Suppose
we subtract any constant q, from the weight of all the arcs directed into any
node v. Since any branching has exactly one arc directed into each node, the
transformed and original problems have exactly the same optimal solutions,
since any feasible solution to the transformed problem costs q, less than that

6 Recall that V(C) denotes the set of nodes in the cycle C.
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of the same solution in the original problem. If we choose q, as the minimum
weight of the arcs in 6-(v), then the minimum weight arc directed into node
v in the transformed digraph has weight zero.

Proposition 5.3 Suppose that a node greedy solution NG contains a di-
rected cycle C not containing the root node r. Then the optimal branching
problem always has an optimal solution with exactly ICI - 1 arcs from the
cycle C (and so exactly one arc in the directed cutset b-(V(C))).

Proof. Note that by our transformation of arc weights, every arc in C
has weight zero.

Let B be any optimal branching. Since B is a branching, the arc set
B-(C) 6 5-(V(C)) n B satisfies the cutset condition IB-(C)l > 1. If
]B-(C)l 1, B satisfies the conclusion of the proposition; so, assume
IB-(C)I > 1. We will use an induction argument on the size of IB-(C)l. Sup-
pose B-(C) = k and the induction hypothesis (that is, the conclusion of the
proposition) is true for all cycles C satisfying the condition B-(C)I < k- 1.

Since B-(C)l > 1, B contains at least two arcs (i,j) and (p, q) directed
into the cycle C, that is, with i, p 0 V(C) and j, q E V(C). By definition, the
graph B contains a (unique) directed path from the root node to every other
node; therefore, it must contain a path from the root node to node j or node
q, say node j, that does not pass through the other node. Let Pj denote this
path. Let B' = C U (B \ (p, q)). Note that B' contains a path from the root
node r to node q: the path Pj plus the arcs on the path from node j to node
q in the cycle C. Therefore, B' contains a path to every node v r and so it
is a superbranching. Consequently, it contains a branching B. Since the arcs
in C that we added to the branching B in this construction have zero weight,
the weight w(B) of B is no more than the weight w(B) of B and so B is also
an optimal branching. But since in constructing B', we eliminated the arc
(p, q) from B and added the arcs in C, B-(C) - I-(V(C)) n BI < k - 1.
Therefore, the induction hypothesis implies that the problem has an optimal
branching B* containing exactly Cl- 1 arcs from IC1. ·

Figure 14 gives an example of a branching problem. In this case, the node
greedy solution contains a cycle C1 on the nodes 4, 5, 6, and 7 and so Propo-
sition 5.3 implies that we can find an optimal branching B1 containing three
arcs in this cycle C1 and exactly one arc directed into this cycle. Moreover,
since we have transformed the costs so that each arc in this cycle has zero
weight, we are indifferent as to the set of arcs that we choose from the cycle.
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The node greedy solution in Figure 14 also contains a cycle C2 on the
nodes 8 and 9. Since C2 contains two nodes, Proposition 5.3 implies that the
problem has an optimal branching B 2 containing exactly one arc in the cycle
C2 and exactly one arc directed into this cycle as well.

Note that if we use the construction in the proof of Proposition 5.3 as
applied to the cycle C2 and the optimal branching B 1, which contains ClI -1
arcs from C1, we produce an optimal branching B2 by adding C 21 - 1 arcs
from C 2 to B 1 and deleting some arcs from the set 5-(V(C 2 )). But since the
cycles C 1 and C 2 are node disjoint, -(V(C 2)) n Cl = X and so the branching
B 2 continues to contain C1I - 1 arcs from the cycle C 1. Therefore, we obtain
an optimal branching containing CI - 1 arcs from the cycle Cl and IC21 - 1
arcs from the cycle C 2. Therefore, we can simultaneously obtain an optimal
branching that satisfies the conclusion of Proposition 5.3 for both the cycles
C 1 and C 2. This argument applies to any set of disjoint cycles and so permits
us to establish the following strengthening of Proposition 5.3.

Proposition 5.4 Suppose that a node greedy solution NG contains node
disjoint directed cycles C 1, C 2, .. . , Cj, none containing the root node r. Then
the optimal branching problem always has an optimal branching containing
exactly ICjl - 1 arcs from each cycle Cj, f orj = 1, 2,... J (and so exactly one
arc in each directed cutset -(V(Cj))).

These observations imply that if we contract all the nodes of each cycle
from a node greedy solution into a pseudo node, then in the resulting reduced
digraph we once again need to find an optimal branching. Any optimal
branching in the reduced digraph has exactly one directed arc (i, j) into any
cycle C in the node greedy solution. Let (k, j) E C be the arc directed into
node j in the node greedy solution. The proof of Propositions 5.3 and 5.4
imply that we obtain an optimal solution of the original branching problem
by "expanding" every pseudo node; that is, adding the arcs C \ {(k,j)} into
the optimal branching of the reduced problem.

The discussion shows that we can solve the optimal branching problem
using the following algorithm:

(i) Transform costs. By subtracting a node-dependent constant %y from
the weight of the arcs directed into every node v /4 r, transform the weights
so that the minimum weight arc directed into each node has weight zero.

(ii) Solve a Relaxed Problem. Find a node greedy solution NG on the
transformed digraph. If the node greedy solution contains no cycles, stop.
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Arcs and their costs
(arcs in bold have
zero cost)
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Figure 14: Determining an Optimal Branching
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The node greedy solution is optimal and the optimal branching has a weight
E, iv %. If the node greedy solution contains any cycle, then contract the
digraph D into a reduced digraph D1 by replacing every such cycle C by a
single (pseudo) node. Any arc incident into or out of a node in any cycle C
becomes an arc, with the same weight, incident into or out of the pseudo node
corresponding to that arc. (Note that the reduced digraph might contain
parallel arcs; we can eliminate all but the least weight arc of any parallel
arcs).

(iii) Solve the Reduced Problem. Find an optimal branching BR on the
reduced digraph and use it to create an optimal branching in the original
digraph by expanding every pseudo node. ·

This algorithm reduces the optimal branching problem to solving an opti-
mal branching problem on the smaller digraph. To solve the reduced problem,
we would once again apply the algorithm starting with step (i). Eventually,
the node greedy solution will contain no cycles (in the limit, it would have
only a single edge). At that point, the algorithm will terminate

Proposition 5.4 and a simple induction argument show that the algorithm
finds an optimal branching.

Example 5.1. To illustrate the algorithm, consider the example in Figure
14. As we have noted before, the bold-faced arcs in Figure 14(a) are the
arcs in the node greedy solution. This solution contains two cycles; contract-
ing them gives the digraph D 1 shown in Figure 14(b). Note that we have
eliminated the parallel arcs created by the arcs (3, 7), (5, 9), and (8, 6).

We next reapply the algorithm on the reduced digraph. First, we subtract
74,5,6,7 = 2 from the weights of arcs directed into the pseudo node {4, 5, 6, 7}
and Y8,9 = 4 from the arcs directed into the pseudo node {8, 9}. The bold
arcs in Figure 14(b) define the node greedy solution on the reduced digraph.
Since this solution contains a cycle (on the two pseudo nodes), we contract
it, giving the reduced digraph in Figure 14(c). We decrease the weights of
the arcs directed into the pseudo node {4, 5, 6, 7, 8, 9} by Y4,5,6,7,8,9 = 1. Since
the node greedy solution (the bold arcs) on the digraph D 2 shown in Figure
14(c) contains no cycle, we stop. ·

To recover the solution to the original problem, we need to retrace our
steps by expanding pseudo nodes, beginning with the optimal branching on
the final reduced digraph D2 (see Figure 15). Since the arc (3, {4, 5, 6, 7, 8, 9})
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Figure 15: Expanding Pseudo Nodes
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directed into the pseudo node {4, 5, 6, 7, 8, 9} corresponds to arc (3, {4, 5, 6, 7})
in the digraph D1 (see Figure 14(b)), we delete arc ({8, 9}), {4, 5, 6, 7}) from
the cycle in the node greedy solution shown in Figure 14(b). Figure 15(b)
gives the resulting solution.

We next expand the two pseudo nodes {4,5,6,7}) and {8,9}. As we
expand these pseudo nodes, we eliminate the arcs (7,4) and (8, 9) from the
cycles that defined them in Figure 14(a). Figure 15(c) shows the resulting
solution. Note that its weight equals Y4,5,6,7 + Y8,9 + Y4,5,6,7,8,9 = 2 + 4 + 1.

Polyhedral Implications
Using a combinatorial argument (the development in the proof of Propo-

sitions 5.3 and 5.4), we have shown that the branching algorithm produces
an optimal branching. We now give an alternative linear programming-based
proof.

It is easy to see by inspection that the branching shown in Figure 15(c)
is optimal. Any branching must contain at least one arc directed into the
node set {4, 5, 6, 7} and at least one arc directed into the node set {8, 9}.
Since the minimum weight arc in -({4,5,6,7}) is arc (8,7) with weight 2
and in 6-({8, 9}) is arc (6, 9) with weight 4, and the sets 5-({4, 5, 6, 7}) and
6-({8, 9}) are disjoint, any feasible branching must have a weight of at least
6. Note that we achieve a weight of 6 only if we choose both the arc (8, 7)
from 6-({4, 5, 6, 7}) and (6, 9) from 6-({8, 9}). Otherwise, the weight of the
chosen arcs is at least 7. But if we choose the arcs (8, 7) and (6, 9), then the
cutset 6-({4, 5, 6, 7, 8, 9}) must contain at least one other arc and so the total
weight of the branching will exceed 7. Therefore, in every case, the weight
of any branching must be at least 7. But since the solution in Figure 15(c)
achieves this lower bound, it must be optimal.

This argument is reminiscent of the lower bounding argument we have
used in Section 3 for proving that the greedy algorithm solves the (undirected)
minimum spanning tree problem. We will use a version of this argument to
not only provide another proof that the branching algorithm produces an
optimal branching, but also to give a constructive proof of the following
integrality theorem.

Theorem 5.5 The polyhedron P = Q is the convex hull of incidence vectors
of branchings.
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Proof. Let us first set some notation. Let S denote the set of nonempty
subsets of V \ r and let S C S denote the set of all node sets that define
some pseudo node. That is, if S E Sp then S is exactly the set of nodes from
the original graph in one of the pseudo nodes.

We will establish the result using the cutset representation Q = {y E
RIAI : y > 0, ZeE-()ye = 1 for all v E V \ ({r}), and Ee6-(S) Ye >

1 for all S 6 S).
Consider the linear program:

min weye :y E Q), (5.1)
e

and its linear programming dual:

max E as (5.2)
SEs

subject to

E Z as > we for all arcs e E A (5.3)
SES 6-(S)3e

as > 'O for all S E S with ISI > 2. (5.4)

When S = {v} and v $~ r, the dual variable as corresponds to the
constraint Eet6-(v) Ye = 1 in Q. For any set of nodes S E S with S I > 2, as
is the dual variable corresponding to the constraint Ee-(S) Ye > 1.

Let y, for v E V \ {r} and -ys for S E Sp be the node-dependent constants
used in the weight transformation steps in the branching algorithm. These
constants correspond to the nodes v of the original digraph D at the first
step of the algorithm and to pseudo nodes (whose node sets are S) at later
steps. For any node v 4 r, suppose that we set a} = yv and for any set
S E Sp corresponding to a pseudo node, suppose that we set as = Ys > 0.
Define as = 0 otherwise.

The steps of the branching algorithm imply that final weights We for each
arc e are nonnegative. The branching algorithm also implies that if edge e is
directed into node v+(e), then we = We - {SESp with 6-(S)3e} S - v(e). The
last term includes the node weight y, of the node that the edge e is directed
into. Therefore, the variables -y, and -ys are feasible in the linear programming
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dual. As we have already seen, the branching found by the algorithm has
a cost Ev -r + Eses,, s. Therefore, the algorithm constructs an integer
feasible solution to the linear program (5.1) and its weight equals the weight
of a feasible dual solution. As a result, linear programming theory implies
that (i) the branching solution solves the linear program (5.1); therefore, the
linear program has an integer solution (the incidence vector of a branching)
for every choice of objective function, and, consequently, (ii) the incidence
vector of branchings are the extreme points of the underlying polyhedron
Q= P. ·
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6 The Steiner Tree Problem.

As we noted in Section 2, the (undirected) Steiner tree (ST) problem is
defined by a graph G = (V, E), with edge weights we on the edges e E E,
and with a subset of the nodes T called terminal nodes. The objective is
to find a minimum weight subtree of G that spans all the nodes in T. The
subtree might or might not include some of the the other (optional) nodes
S = V \ T, which we refer to as Steiner nodes.

Two special versions of the Steiner tree problem are easy to solve. When
ITI = 2 and we 0 for e E E, the problem reduces to the shortest path
problem, and when T = V, it is the spanning tree problem that we examined
in Section 3. In general, the problem is difficult to solve (in the parlance of
computational complexity theory, it is NP-complete), and so we will not be
able to solve it using combinatorial or dynamic programming algorithms of
the type we have considered in the earlier sections. For more complicated
models like this, an important step is often to find a "good" linear program-
ming representation of the problem. Starting with an initial integer or mixed
integer programming formulation, the goal is to add new valid constraints
or new variables to the model so that the resulting linear program provides
a tight bound on the value of the optimal solution- in some cases even an
integral and, hence, optimal solution.

This section is divided into three parts. We begin by examining different
integer programming formulations of a slight generalization of (ST), called
the node weighted Steiner tree problem (NWST), and showing that the
values of the linear programming relaxations of all these formulations are the
same. This discussion generalizes our development in Section 3 of alternate
formulations of the minimum spanning tree problem. We then briefly discuss
computational studies based on these formulations. Finally, we consider the
strength of a linear programing relaxation for the Steiner problem and present
results on the worst case behavior of simple heuristics for (ST) and (NWST).

6.1 The node weighted Steiner tree problem (NWST)

Given a graph G = (V, E) with edge weights we for e E E, we designate
one node r as a root node. Node r will be the only terminal node (that is,
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T = {r}). For all the other nodes j E V \ {r}, we incur a profit dj if the
Steiner tree contains node j.

To formulate the node weighted Steiner tree problem (NWST), we let
zj = 1 if node j is in the Steiner tree, and zj = 0 otherwise; xe = 1 if edge e is
in the tree and xe = 0 otherwise. The first formulation we present, called the
subtour formulation, is a natural generalization of the subtour formulation
of the spanning tree problem, namely:

min E w exe - E dizi (6.1)
eEE iEV

subject to

E Xe _ < ziforallU C V and for allkE U (6.2)
eE E(U) ieU\{k

ES Xe 5E Zi (6.3)
eEE iEV\({r

Zr = 1 (6.4)

0 < Xe < 1,0 < Zi 1 (6.5)

x, z integer. (6.6)

Note that the first set of constraints (6.2), called generalized subtour elimi-
nation constraints, imply that the solution contains no cycles on the subgraph
of G determined by the selected nodes (those with zi = 1). The second set
of constraints (6.3) ensures that the solution spans the set of selected nodes,
and so defines a Steiner tree. We let Psub denote the set of feasible solutions
to (6.2)-(6.5) in the (x, z)-space.

Before proceeding, let us make one observation about this formulation.
Note that if r E U and k $ r E U, then

A Zi = A Zi + Zk- Zr Zi
iEU\{r iEU\{k} iEu\{k}

since Zr = 1 and Zk < 1. Therefore, when r E U, all the constraints (6.2)
with k r E U are redundant.

It is instructive to view the node weighted Steiner tree problem in another
way: as a spanning tree problem with additional constraints. To develop
this interpretation, suppose that we let 2r = Zr and complement the node
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variables zi for i y r in the previous model; that is, let zi = 1 - zi and replace
zi with 1 - zi, creating the following alternative formulation:

min E WeXe + E diii- di (6.7)
eEE iEV iEV

subject to

x, + E zi < IUI -1 for all U c V and for all k E U (6.8)
eEE(U) ieU\{(k

E + E Zi = IVI- 1 (6.9)
eEE iEV\{r}

2z = 1 (6.10)
0 < x < 1,0 < zi < 1 (6.11)

x, integer. (6.12)

To interpret this problem as a variant of the minimum spanning tree
problem, suppose that we add a supernode 0 to the underlying graph G with
an edge {0,i} between this node and every node i in G. Let G denote the
resulting graph. Then the zero-one variable i for r r indicates whether or
not we include edge {0, i} in the minimum spanning tree on G (observe that
we include edge {0, i} in the tree, that is, i = 1, when we exclude node i in
the previous formulation, that is, zi = 0). We always include edge {0, r}.

The constraint (6.8) with U = {i,j} for any two nodes i f r and j r
implies that xe + i < 1 for all e E 6(i). That is, if the chosen tree contains
edge {0, i}, then it contains no edge from G incident to that node. In the
formulation (6.1)-(6.8), this statement says that if we exclude node i from
the tree, then the tree cannot contain any edge incident to that node. The
inequalities xe + i < 1 and the fact that any solution to the model (6.7)-
(6.12) contains edge {0, r} implies that any spanning tree solution to the
formulation (6.7)-(6.12) has the following form: if we remove node 0 and its
incident edges, the resulting forest is a subtree containing the node r as well
as a set of isolated nodes j (those with 2j 1).

Next consider the subtour constraint (6.8) in this model for any set U
that does not contain the root node r. In the spanning tree formulation, we
would have written this constraint without the Zi variables as EeEE(U) Xe <

IUI - 1. The inequality (6.8) is a strengthening of that inequality: if 2i = 0
for all nodes i E U, then the set E(U) can contain as many as IUI- 1
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edges; every time we add an edge {0, i} to the tree for any node i E U,
node i become isolated, so the effective size of jIU decreases by one and the
tree can contain one fewer edge from E(U). If the set U contains node r,
then as we saw previously, the constraints (6.8) with k r are redundant,
so the only effective inequality in the complimented model (6.7)-(6.12) is

eEE(U) Xe + EiEU\{r} 2i < UI - 1. Note that these constraint are exactly
the usual subtour breaking constraints on the node set U U {0}, given that
the solution contains the edge {0, r}.

Our next model, the so-called multicut formulation, is a generalization of
the multicut formulation of the minimum spanning tree problem. Let P,,,ut
be the set of solutions in the (x, z) variables to the constraints (6.3)-(6.5) as
well as the additional inequalities

E o E Zij (6.13)
eE6(o,..,c 8 ) j=1

over all node partitions (C0 , C1,... , C,) of V with r E Co. In this expression,
as in our earlier discussion, b(C, Cl,..., C8 ) is the multicut defined by the
node partition (i.e., the set of edges having endpoints in different subsets
Ci, Cj), and ij E Cj for j = 1,..., s. These constraints say that if k of the
sets (C 1, ... , C,) contain nodes of the Steiner tree, and Co contains the root
node, then the multicut must contain at least k edges of the Steiner tree.

Proposition 6.1 Psub = Pmcut.

Proof. Summing the inequalities (6.2) for the sets U = Co, C1,.. ., C, with
k = ij gives

E E 5 Xe Zi,
t=O eEE(Ct) t=O iE(Ct\{it})

Taking io = r and subtracting from (6.3) gives (6.13). Thus, Psub C Pmcut.
Conversely, suppose first that' r E U. Consider the inequality (6.13) with

Co = U, and with C 1,.. ., Ck as singletons whose union is V \ U. Subtracting
from (6.3) gives ,eee(U) Xe < ieU\{r.} Zi. As we have noted previously, this
inequality implies (6.3) for all nodes k E U.

If r ¢ U, take Co = {r}, C, = U and C2, .. ., Ck as singletons whose union
is V \ (U U {r}). Subtracting (6.13) from (6.3) gives EeEE(U) Xe < EiGU\{ii} Zi

for i E U. Thus, Pmcut C Psub. ·
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The next formulation again uses the observation that we can orient any
Steiner tree to obtain a directed Steiner tree with node r as its root. In this
formulation, the vector y represents an edge incidence vector of this directed
Steiner tree. The directed subtour formulation is given by the constraints
(6.2)-(6.5) and the the dicut inequality

Z Yij = zj forj V\r (6.14)
(i,j)E6-(j)

Yij + Yji x= e for e = {i,j} E E (6.15)

Yij, yji 0 for e = i,j) E E. (6.16)

Constraints (6.14) say that if node j is in the Steiner tree, one arc of the
directed Steiner tree enters this node. We let Pdsub denote the set of feasible
solutions in the (x, z) space.

Similarly the directed cut formulation is given by the constraints (6.3)-
(6.5),(6.15),(6.16) and

E yij > Zk for all k E V, and all C with r E C C V \ k. (6.17)
(i,j)E+ (C)

These constraints say that if k is in the Steiner tree, any directed cut sep-
arating nodes r and k must contain at least one arc of the directed Steiner
tree. We let Pdcut denote the set of feasible solutions in the (x, z) space.

Proposition 6.2 Pdsub = Pdcut

Proof. The proof mimics the proof of Proposition 3.6. In this case, when r E
S the right-hand side of equation (3.36) becomes EkEV\{r Zk instead of n - 1
and by equation (6.14) the last term on the left-hand side of equation (3.36)
equals EkE Zk. Therefore, the right-hand side of equation (3.37) becomes
ZkEV\{r} Zk - Ekes Zk = Eies Zi. So this equation becomes

E Ye + E ye- E z i -
eEA(S) ee6+(S) ieS

This equality implies that y satisfies inequality (6.2) for S if and only if it
satisfies the inequality (6.17) for S.
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If r E S, then the arguments used in the proof of Proposition 3.6 show
that the right-hand side of the last displayed equation is EiES\{r} Zi, and
since the last term on the left-hand side of this equation is nonnegative, the
equation implies (6.2) for k = r, which as we have seen implies (6.2) for all
k ES.

These arguments show that y E Pdsub if and only if y E Pdcut. ·
The four formulations we have described so far all have an exponential

number of constraints. The next formulation we consider has only a poly-
nomial number of constraints, but an additional 0(n 3 ) variables. We obtain
this directed flow formulation by remodelling the cut inequalities (6.17). More
specifically, viewing the values of the variables yij as capacities, (6.16) and
(6.17) say that every cut separating nodes r and k has capacity at least Zk.

By the max-flow min-cut theorem, these inequalities are valid if and only if
the network has a feasible flow of Zk units from node r to node k. Letting
fk. denote the flow destined for node k in arc (i,j), we obtain Pdflo which is
the set of feasible solutions in the (x, z)-space of the constraints (6.3)-(6.5),
(6.15), (6.16) and the equations describing such a flow:

Z fi- E f = Oforall j r,j k, k r (6.18)
iEs+(j) iEs-(j)

E fki- fi = -Zk for all k r (6.19)
ieb+(k) ieb-(k)

0 <f _ Yijfor all (i,j) eA,k r (6.20)

As was the case for the minimum spanning tree problem, the directed
flow and directed cut formulations are equivalent in the following sense.

Proposition 6.3 Pdcut = Pdf lo

The directed formulation is as strong as the undirected formulation (e.g.,
Pdsub C Psub) since it contains additional constraints. Are the directed for-
mulations Pdsub (respectively Pdcut, Pdflo) stronger than the undirected formu-
lations Psub (respectively Pmcut)? As for the case of trees, it turns out that
these polyhedra are identical even though, in general, they are no longer
integral.

Theorem 6.4 Psub = Pdsub-
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Proof. As we have just noted, Pdsub C Psub. To show the converse, we need
to show that for every (x', z') E Psub, there exists a y with (x', z', y) E Pdsub-
In other words, we need to verify that the system

Z Yir = 
iE6-(r)

Yij = z for j V\{r}
i-(j)

Yij + Yji = x' for e = i,j) E

Yij, Yji > O for e = i,j E E

has a feasible solution. This is a feasibility transportation problem with a
supply 0 for node j = r and a supply z for each node j E V \ {r and
demand x' for each edge e E E. Equation (6.3) implies that the sum of
supplies equals the sum of the demands. To determine if this system has
a feasible solution, we can formulate a maximum flow problem with a node
for each node v E V, a node for each edge e E E, and a directed arc (v, e)
of infinite capacity whenever v is incident to edge e. We also introduce a
source node s and terminal node t and directed arcs (s, v) with capacity z'
(with z = 0) for each v E V and directed arcs (e, t) with capacity x' for
each e E E. The transportation problem has a feasible flow if and only if the
maximum flow problem has a flow of value eEE xfrom node s to node t,
which by the max-flow min-cut theorem is true if and only if the capacity of
every cutset is at least EeEE X.

Let S C V and F C E be the supplies and demands on the t side of a
cut. The cut has infinite capacity if it has an edge between V \ S and F.
Thus, the cut capacity is finite only if F C E(S). For given sets S and F,
the capacity is EiEs\{r} Zi + EeEE\F X' which is minimized when F = E(S)
giving FieS\{r} Zi + EeEE\E(S) X'. This sum is at least ZeEE XZ if and only if

EeEE(S) Xle < iES\{r} z'. But (6.2) implies that this inequality is valid for all
(x', z'), implying the claim. ·

Example 6.1. Figure 16 shows a fractional solution in the (x, z) variables
satisfying constraints (6.3)-(6.5), and a compatible directed (x, z, y) solution
satisfying constraints (6.14)-(6.16) as well. Observe that the fractional so-
lution violates the subtour inequality with C = {2,3,4} and k = 3, the
multicut inequality with C0 = {1}, C = {2,3,4},C 2 = {5},C3 = {6} and
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"" Terminal node

O Steiner node

112
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Figure 16: Fractional Solution that Violates the Subtour, Multicut, and
Dicut Formulations: (a) Undirected version; (b) Directed version
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il = 3, and the dicut inequality with C = {1, 5,6} and k = 3, each by 1/4
unit.

The final directed branchings formulation is also of polynomial size, but
based on the separation problem for the generalized subtour inequalities (6.2).
It is described by the constraints (6.3)-(6.5) and the constraints:

E yij < zj for j E V \ {k}, and allk (6.21)
iE6-(j)

S Yk < 0 for allk (6.22)
iE6-(k)

ykj + Yji = xe for e = (i,j) E E, and all k (6.23)

ykj, yji > O for e = (i, j) E E, and all k (6.24)

Let Pdbran denote the set of (x, z) solutions to this model.
Note that once the Steiner tree is fixed, then for each node k in the tree,

we can orient the edges to construct a directed Steiner tree rooted at node
k. Suppose we define y = 1 if the arc (i, j) belongs to this branching and
yk = 0 otherwise. If k is not in the tree, we can choose r as the root.
Consequently, this formulation is valid.

Proposition 6.5 Pdbran = Psub.

Proof. Summing the inequalities (6.21) over C \ {k} and adding (6.22) gives

E k + S Yk < E Zi.
eEA(C) (i,j)E6-(C) iEC\{k}

Thus Pdbran C Pb-

Conversely, note that (x, z) satisfies the generalized subtour inequality
(6.2) for all node sets C containing node k if and only if

7k = max{ xe,vij j- zjvj: k= 1} =0.
VE{O,1} e=(i,j)EE j/k

In this expression, vi=1 if i C and vi = 0 otherwise. This problem can be
solved as a linear program, namely:

ekE jfreEE j7ck
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subject to

aee- vi < 0 for all i E V and all e E 6 +(i)
, - vj < O for all j E V and all e E S-(j)

vi > '0 forall jE V.

Since the constraints in this system are homogeneous, vk equals either 0 or
+oo. Because the constraint matrix for this model is totally unimodular, its
extreme rays have 0 - 1 coefficients. Thus the solution (x, z) satisfies the
subtour inequality if and only if 77k = 0, which by linear programming theory
is true if and only if the following dual problem is feasible

- yPj > -zj for alljE V\{k}
iE-(j)

y Yjk > O
iE6-(k)

Yk. > 0.j 

The conclusion establishes the claim. *.

We close this discussion with three observations.
(1) As we noted before, the'formulation Pdflo contains O(n3 ) variables

(n = IVj), which leads to impractically large linear programs. However, this
formulation indicates how to carry out separation for the formulations Pdcut

and Psub. Just as the directed flow formulation provided us with a separation
procedure for the subtour inequalities of the spanning tree polyhedron, Pdflo

provides a separation procedure, via a series of maximum flow computations
for the inequalities (6.17) or (6.2).

(2) To obtain a formulation of the minimum spanning tree problem from
each of the formulations we have considered in this section, we would add
the constraints z, = 1 for all nodes v r to each of these models. Since, as
we have shown, the node weighted Steiner tree polyhedra for each of these
formulations are the same, their intersection with the constraints z, = 1 will
be the same as well. Therefore, the results in this section generalize those in
Section 3. Moreover, the formulation Pdbran with the additional stipulation
that zv = 1 for all v y$ r provides us with yet another integer formulation of
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the spanning tree polyhedron that is equivalent to the six integer formulations
we examined in Section 3.

(3) In addition to the models we have considered in this discussion, we
could formulate straightforward extensions of the single commodity flow and
cut formulations of the spanning tree problem for the node-weighted Steiner
tree problem. These formulations will, once again, be weak, in the sense that
their linear programming relaxations will provide poor approximations for
the underlying integer polyhedra. We could also state a multicommodity flow
formulation with bidirectional forcing constraints as in (3.47). The arguments
given in Section 3 show that this formulation is equivalent to the directed
formulation.

6.2 The Steiner Problem

What happens when we specialize the node weighted formulations for the
Steiner problem by taking zi = 1 for all i E T and setting dj = 0 for all
j E V \ T? The first obvious alternative is to work with the six extended
formulations we have just examined.

A second approach is to find a formulation without the node variables
z. Note that formulation Pdcut easily provides one such formulation. We
simply eliminate the cardinality constraint (6.3) and the dicut constraints
(6.17) whenever k 4 T. The resulting formulation is (6.15), (6.16) and

E Yij 1 for allCwith r E CCVand(V\C)fn T q (6.25)
(i,j)E6+(C)

The integer solutions of this formulation are Steiner trees and their supersets.
Eliminating constraints in a similar fashion for the formulation Pmc,t, gives

E X, > s (6.26)
eE6(Co,---,C.)

over all node partitions (CO, C,..., C,) of V with r E Co and Ci n T ~ X for
i = 1,..., s. Note, however, that the resulting directed cut and multicut for-
mulations no longer are equivalent. The fractional solution shown in Figure
16 satisfies all the multicut inequalities (6.26), but is infeasible for the dicut
polyhedron (6.15), (6.16) and (6.25).
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For the other four formulations, there is no obvious way to eliminate
constraints to obtain a formulation of this type.

A third approach would be to find an explicit description of Qsub =

projz(Psub) and, ideally, of QST = conv(Q8 .b n {x x integer}).
Researchers have obtained various classes of facet-defining inequalities

for QST. (Facet-defining inequalities are inequalities that are necessary for
describing a region defined by linear inequalities. All the others are implied
by the facet-defining inequalities and are thus theoretically less important.
However, in designing practical algorithms, facets might be hard to find or
identify, and so we often need to use inequalities that are not facet-defining).

Proposition 6.6 (Steiner Partition Inequalities) Let C1,..., Cs be a parti-
tion of V with T n Ci 4 0 for i = 1, ... , s, then the multicut inequality:

EC xe > s-1
eE6(C...,C.8)

defines a facet of QST if
i) the graph defined by shrinking each node set Ci into a single node is two-
connected, and
ii) for i = 1, ... , s, the subgraph induced by each Ci is connected.

Another class of facet-defining inequalities are the "odd holes". Con-
sider a graph Gt = (V,E) on 2t nodes, with t odd, V composed of ter-
minal nodes T = {ul, ... , ut} and Steiner nodes V \ T = vl,.. ., vt} and
E D Et = {(ui, vi), (vi, vi+l)=l, (vi, ui+l)i= 1 }. In this expression, vt+l = 1

and ut+l u= l.

Proposition 6.7 The inequality

E Xe + 2 Z Xe > 2(t- 1)
eEEt eEE\Et

is a facet defining inequality for Gt.

In the odd hole (V, Et), each terminal node ui is at least two edges away
from any other terminal node uj, so using only the edges in Et to connect
the terminal nodes requires at least 2(t - 1) edges. Every edge in E \ Et that
we add to the Steiner tree can replace two such edges. This fact accounts for
the factor of 2 on the edges in E.\ Et.
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Example 6.1. The graph shown in Figure 16 is itself an odd hole with
t = 3. Note that the fractional edges values in this figure belong to QSub and
satisfy all the multicut inequalities. This solution does, however, violate the
following odd hole inequality:

X1 2 + X1 6 + X2 6 + X2 4 + X2 3 + X3 4 + X4 6 + X4 5 + X5 6 > 2(3 - 1) = 4.

Another known extensive class are the so called combinatorial design
facets. All three classes are valid for Qsub and thus would be generated im-
plicitly by any vector that satisfies all violated generalized subtour inequal-
ities for Psub. However, surprisingly, the separation problem for the Steiner
Partition inequalities is NP-complete.

Now consider the algorithmic question of how to solve the Steiner prob-
lem. The latest and perhaps most successful work has been based on the
formulations we have examined.. Three recent computational studies with
branch and cut algorithms have used the formulations Psub and Pdcut with the
edge variables xe eliminated by substitution. Two other recent approaches
have been dual. One involves using dual ascent heuristics to approximately
solve the Pdcut formulation. Another has been to use Lagrangian relaxation
by dualizing the constraints xe + zi for all edges e E 6(i) in the model (6.7)-
(6.12). If we further relax (drop) the variables zi from the constraints (6.8),
the resulting subproblem is a minimum spanning tree problem.

6.3 Linear Programming and Heuristic Bounds for
the Steiner Problem.

Considerable practical experience over the last two decades has shown that a
formulation of an integer program is effective computationally only when the
optimal objective value of the linear programming relaxation is close to the
optimal value of the integer program (within a few percent). Moreover solu-
tion methods often rely on good bounds on the optimal solution value. These
considerations partly explain our efforts to understand different formulations.

Just how good a lower bound does the linear programming relaxation P,ub
provide for the optimal value of the Steiner problem? Unfortunately, nothing
appears to be known about this question. However a bound is available for
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the weaker cut formulation introduced at the end of Section 3, and which
extends naturally to (SP), namely

Z = min wexe
eEE

subject to

E x > 1 for S c Vwith S n T f l , T \ S T\
eE6(S)

Xe E {O,1} for e E E.

Note that this formulation is a special case of the Survivable Network
Problem formulation:

Z =. min E WeXe
e/inE

subject to

E Xe > ruforUCV
eE6(U)

xe >_ O,x integralforeEE

treated in greater detail in Chapter qq. Here we just note that we obtain the
Steiner problem by taking r = 1 whenever b C U C V, UnT L 0q, T\U # ,
and ru = 0 otherwise.

Consider a restriction of the problem obtained by replacing the inequali-
ties by equalities for the singleton sets U = (i} for i E D C V. The resulting
problem is:

Z(D) = min Ew xe
e

subject to

Z Xe > ru for U C V
eE6(U)

E Xe = ri} for i E D
eE6({i})

xe > 0, xe integral for all e E E.
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Thus Z = Z(q). We let ZLP(D) denote the value of the corresponding
linear programming relaxation and let ZLP = ZLP(,q) be the value of the ba-
sic linear programming relaxation. The following surprising result concerning
this linear program is known as the "Parsimonious Property".

Theorem 6.8 If the distances We satisfy the triangle inequality, then ZLP =
ZLP(D) for all D C V.

We obtain a particularly interesting case by choosing D to be the set of
Steiner nodes, i.e., D = V \ T. Since EeE({i}) Xe = 0 for i 4 T, the problem
reduces to:

Z(V \T) = min wexe

subject to

E x, > for5CUCT
ee6(U)

Xe > O, e integral for e E E(T),

namely, the spanning tree problem on the graph induced by the terminal
nodes T. Applying Theorem 6.8 to the graph G' = (T, E(T)) shows that

ZLP(V \ T) = min E wex,
e

subject to

XE x > 1forUCT
eE6(U)

E x, = 1 foriET
eEs({i})

Xe > O for e E E(T).

If we multiply the right hand side of the constraints by two, the resulting
model is a well-known formulation for the traveling salesman problem (two
edges, one "entering" and one "leaving", are incident to each node and ev-
ery cutset contains at least two edges) on the graph G' = (T, E(T)). The
corresponding linear programming relaxation is known as the Held and Karp
relaxation; we let ZHK(T) denote its value. We have established the following
result.
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Proposition 6.9 If the distances we satisfy the triangle inequality, then
zLP (1/2)ZHK (T).

This result permits us to obtain worst case bounds both for the value
of the linear programming relaxation ZLP and of a simple heuristic for the
Steiner tree problem.

To apply this result, we either need to assume that the distances satisfy
the triangle inequality or we can first triangularize the problem using the
following procedure: replace the weight We on each edge e = (i, j) by the
shortest path distance de between nodes i and j. (To use this result, we need
to assume that the shortest path distances exist: that is, the graph contains
no negative cost cycles. We will, in fact, assume that we > 0 for all edges e).

Proposition 6.10 The Steiner tree problem with the distances we > 0 and
the Steiner tree problem with the shortest path distances de have the same
solutions and same optimal objective values.

Proof. Since de < we for every edge e, the optimal value of the triangularized
problem cannot exceed the optimal value of the problem with the distances
de. Let ST be an optimal Steiner tree for the problem with distances we. If
de = we for every edge e E ST, then ST also solves the triangularized Steiner
problem and we will have completed the proof. Suppose d < we for some
edge E ST. Then we delete edge e from ST and add the edges not already
in ST that lie on the shortest path joining the end nodes of edge . The
resulting graph G* might not be a tree, but we can eliminate edges (which
have costs we > 0) until the graph G* becomes a tree. The new Steiner tree
has a cost less than the cost of ST; this contradiction shows that de = we for
every edge e E ST and thus completes the proof.7 ·

The Tree Heuristic for the Steiner tree problem. If the distances we
satisfy the triangle inequality, construct a minimum cost spanning tree on

7This same argument applies, without removing the edges at the end, to any network
survivability problem, even when some of the costs are negative (as long as the graph
does not contain any negative cost cycles, so that shortest paths exist). If we permit the
solution to the Steiner tree problem to be any graph that contains a Steiner tree, that is,
a Steiner tree plus additional edges, then the result applies to this problem as well when
some of the costs are negative.
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the graph induced by the terminal nodes T. If the distances we do not satisfy
the triangle inequality,

Step 1. Compute the shortest path lengths {de}.

Step 2. Compute the minimum spanning tree with lengths {de} on the complete
graph induced by T.

Step 3. Construct a subnetwork of.G by replacing each edge in the tree by a
corresponding shortest path.

Step 4. Determine a minimum spanning tree in this subnetwork.

Step 5. Delete all Steiner nodes of degree 1 from this tree.

Let zH be the cost of the heuristic solution and let ZHK(T) and ZLP
denote the Held and Karp value for the graph G' = (T, E(T)) and the optimal
linear programming value when we use the distances de in place of we.

Theorem 6.11 If We > 0 for all edges e, then Z < zH < (2 - 2/T)ZLP.

Proof. Since by Proposition 6.10, the optimal value of the Steiner tree
problem is the same with the costs we and de, and zH is the value of a
feasible solution for the triangularized problem, Z < zH .

Let x* be an optimal solution of the Held and Karp relaxation with the
shortest path distances de. It is easy to show that x* also satisfies the con-
ditions EeEE(S) < IS I - 1 for all S C T, and ZeEE(T)x * = ITt. Now x =

(1- 1/IT)x* satisfies eEE(S) e < ISI -1 for all S C T, EeeE(T) Xe = IT -1,
and x > 0, so x lies in the spanning tree polytope (see Section 3) and thus
w± > z H . However Proposition 6.9 shows that ZHK(T) = wx* - 2Z P.

Thus zH < w = w(1 - 1/ITI)x* = 2(1- 1/lTI)Z"P . But since w > d,
ZLxP < ZLP, implying the conclusion of the theorem ·

In Theorem 6.11, we have shown that Z < zH < (2 - 2/ITI)ZHK -
(2 - 2/ITI)ZLP. We could obtain the conclusion of the theorem, without
the intermediate use of ZHK, by noting that the linear programming value
ZLP(V \ T) is the same as the value of the linear programming relaxation of
the cutset formulation, without the cardinality constraint eEE Xe - - 1,
of the minimum spanning tree problem on the graph G' = (T, E(T)). As
we have shown in Section 3.3, the optimal objective value of this problem,
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which equals, ZH is no more than (2 - 2/ITI)ZLP(V \ T), the value of the
linear program on the graph G' = (T, E(T)). Therefore, Z < zH < (2 -
2/ITI)ZLP(V \ T). But by the parsimonious property, ZLP = ZLP(V \ T)
and so Z < zH < (2 - 2/1TI)ZLP.

A Linear Programming/Tree Heuristic for the Node Weighted Steiner
Tree Problem.

Various heuristics based upon minimum spanning tree computations also
apply to the node weighted Steiner tree problem. We consider the model
(6.1)-(6.6) with the objective function

NWST = min E weXe + E 7ri(1- i).
eEE iEV

We assume that We > 0 for all e E E. In this model, ri > 0 is a penalty
incurred if node i is not in the Steiner tree T. Note that we can impose i E T
(or zi = 1) by setting ri to be very large. As before, we assume that r is a
node that must necessarily be in any feasible solution-that is, z, = 1.

Linear Programming/7ee Heuristic for the Node Weighted Steiner Tree Prob-
lem.

Step 1. Solve the linear programming relaxation of the cut formulation (the
analog of Pct in Section 3).

min E weX, + 7ri(1-zi)
eEE iEV

subject to

1 x, > zi for all i and S with r S,i E S
eE6(S)

0 < zi < 1 for all i E V

e > 0 for all e E E.

Let (x*, z*) be an optimal solution to this problem.

Step 2. Let U = {i: , > 2/3}.
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Step 3. Apply the tree heuristic for the Steiner tree problem with the terminal
nodes U, producing a heuristic solution (, i) with value zH.

Theorem 6.12 Let ZNWST denote the optimal objective value for the node
weighted Steiner tree problem and let zH denote the objective value of the
linear programming/tree heuristic solution when applied to the problem. Then
zH/zNwsT < 3.

Proof. First observe that if Q = {i: zi = 1} is the set of nodes in the
heuristic solution, then Q D U and so

iEV iEV\Q

< Z ri
iEV\U

< 3 E i-z)

iEV

The second inequality uses the definition of U, and the third inequality
the nonnegativity of r.

Now let = 3x*. Observe that if i E U \ {r} and S 3 i, then

3 3z e = z > -z* 1,2 e > >
eE6(S) eE6(S)

so x is a feasible solution of the cut formulation

zLP(U) = min E wex
eEE

subject to

E Xe > 1 for all i and S with r S, i E U n S
eE6(S)

X > 0

and thus zLP(U) < w. Also, by Theorem 6.11 w < 2LP(U) and so
wi < 2w± = 3wx*. Thus, zH = + Ev 7ri(l- i) = wX + EieV\Q lri <
3wx* + 3 ev ir(1 - z*) < 3z N W S T .
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7 Packing Subtrees of a Tree

In Section 2 we saw how to view several problems-lot-sizing, facility loca-
tion, and vehicle routing- as packing subtrees of a graph. The special case
when the underlying graph is itself a tree is of particular interest; we treat
this problem in this section. Our discussion builds upon our investigation in
Section 4 of the subproblem of finding a best (single) optimal subtree of a
tree.

Our principal results will be threefold: (i) to show how to use the type of
dynamic programming algorithm we developed in Section 4 to solve the more
general problem of packing subtrees of a tree, (ii) to discuss several algorithms
for solving problems of packing trees in a tree, and (iii) to understand if
and when we can obtain integral polyhedra, or tight linear programming
formulations. In the next section we develop extensions of the algorithms
introduced in this section to tackle harder problems on general graphs.

7.1 Simple Optimal Subtree Packing Problem

We start by examining the simplest problem. Given a tree G = (V, E), sup-
pose we are given a finite set F', . .. , F q of subtrees, F i C V, with associated
values cl,..., cq. The simple optimal subtree packing problem (SOSP) is to
find a set of node disjoint subtrees of maximum value. Suppose that A is the
node-subtree incidence matrix, i.e., aij = 1 if node i is in subtree Fi, and
aij = 0 otherwise. Figure 17 shows an example of such a matrix. Letting
Aj = 1 if we choose subtree F', and Aj = 0 otherwise, and letting A be the
vector (Aj), we can formulate problem (SOSP) as the following optimization
model:

max{t cjAj: AA < 1, A E {0, 1 }q}.

To describe a dynamic programming algorithm, we first introduce some
notation. Given the tree G, we arbitrarily choose a root node r and thereby
obtain a partial ordering (V, <) on the nodes, by defining u < v if and only
if node u lies on the path (r, v). We define the predecessor p(u) of node u as
the last node before u on the path (r, u), S(u) = {w : p(w) = u} as the set
of successors of node u, and S(F') as the set of successors of subtree F j , i.e.,
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A tree graph G=(V,E)

Nodes

J· 12345678 - Subtrees

1 10000011
2 11100111
3 10000110
4 11110100
5 01010000
6 00100000
7 01011000

cvalues - 4 5 33 1 2 3 2

A node-subtree incidence matrix

Figure 17: Optimal Subtree Packing Problem
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S(F j ) = {w : p(w) E F j , w C F}. We also define the root r(F j ) of F j to be
the unique node in F j satisfying the condition that r(F j ) u for all u E F j .

For the example shown in Figure 17, with node 1 as the root, p(l) =
q, p(2) = 1, p(3) = 2,, and so forth; the set of successors of node 2 is S(2) =
{3,4}. The set of successors of the subtree F2 on the nodes 2, 4, 5, 7, is
S(F2 ) = {3, 6} and the root of this tree is r(F2 ) = 2.

Algorithm for the SOSP Problem

The algorithm is based on the following recursion:

H(u) = max{ E H(w), max [cj + E H(w)]}.
wES(u) )=S(Fj)

In this expression, H(u) is the value of an optimal packing of the subtree
induced by the node set V u = {v : u v} and the set of subtrees {Fj} with
F j C VU. The recursion follows from the observation that in an optimal
solution of value H(u),
i) if node u is not in any subtree, the solution is composed of optimal so-
lutions for each subgraph induced by V w with w E S(u). Thus H(u) =

EwEs(u) H(w); or
ii) if node u is in one of the subtrees Fj C V", then necessarily r(F j ) = u, and
the optimal solution must be composed of F j and optimal solutions for each
subtree induced by V' with w E S(F). Thus H(u) = max{j:r(Fi)=u}[cj +

Ewes(FJ) H(w)I}

Starting from the leaves and working in towards the root, the dynamic
programming algorithm recursively calculates the values H(v) for all v E V.
H(r) is the value of the optimal solution. To obtain the subtrees in an
optimal solution, we iterate back from the root r to see how the algorithm
obtained the value H(r).

Example 7.1.
We consider the (SOSP) problem instance shown in Figure 17 with node

1 chosen as the root. Working in towards the root, the algorithm gives:

H(7) = max{0,c)5 } 1

H(6) 0 
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H(5) = 

H(3) = 

H(4) = max{H(5) + H(6) + H(7), c4 + H(6) = 3

H(2) = max{H(3) + H(4), c 2 + H(3) + H(6),c3 + H(3) + H(5) + H(7),

c6 + H(5) + H(6) + H(7)} = 5
H(1) = max{H(2), cl + H(5) + H(6) + H(7), c7 + H(4),

C8 + H(3) + H(4)} = 6.

Thus the optimal solution value is 6. To obtain the corresponding solution,
we observe that H(1) = c7 + H(4), H(4) = c4 + H(6), H(6) = 0, so subtrees
7 and 4 give an optimal packing of value 6.

The linear program max{Ej cjAj : A < 1, A > 0} has a primal solution
with A4 = A7 = 1, and Aj = 0 otherwise. Observe that if we calculate the
values r, = H(u)-w,,s(u) H(w) for u E V, i.e., rl = H(1)-H(2) = 6-5 =
1, etc., r = (1, 2, 0, 2, 0, 0, 1) is a dual feasible solution to this linear program
and its objective value Ejev 7rj equals H(r) = 6. a

It is easy to see that this observation concerning the dual variables r, =
H(u)- wes(U) H(w) holds in general. The recursion for H(u) implies
that ru > 0. For a tree F j with r(Fj) = u,EVEFj7r = E1EFj(H(V)-

ZEus(v) H(w) = H(u) - wS(Fi) H(w), and the recursion implies that the
last term is greater than or equal to cj. This observation permits us to verify
that the algorithm is correct, and the primal-dual argument used in Sections
3 and 4 immediately leads to a proof of an integrality result.

Theorem 7.1 Given a family of subtrees of a tree, if A is the corresponding
node-subtree incidence matrix, then the polyhedron {x : Ax < 1,x > 0} is
integral.

7.2 More General Models

In Section 2, we described three problems of packing subtrees of a tree,
namely the lot-sizing problem, the facility location problem with the conti-
guity property, and the telecommunications application shown in Figure 2.3.
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In each of these application contexts, we are not given the subtrees and their
values explicitly; instead, typically the problem is defined by an exponen-
tial family of subtrees, each whose value or cost we can calculate. We now
consider how to model and solve such problems.

The Optimal Subtree Packing Problem.
The Optimal Subtree Packing Problem (OSP) is defined by a tree G =

(V, E), families .Fk of subtrees associated with each node k E V, and a value
function ck(F) for F E Fk. Each nonempty tree of Fk contains node k. We
wish to choose a set of node disjoint subtrees of maximum value, selecting
at most one tree from each family.

(OSP) differs from (SOSP) in that neither the subtrees in each family
-k nor their costs ck(F) need be given explicitly. We now consider how to
model the three problems mentioned previously as OSP problems. For the
first two problems, the objective is a linear function, that is a function of the
form ck(F) = ZjeF Cj.

Uncapacitated Lot-Sizing (ULS).
Given a finite number of periods, demands {dt}'=l, production costs

bPt}tl, storage costs {ht}'=l (which can be transformed by substitution to
be zero without any loss of generality), and set-up (or fixed) costs {ft}T=l (if
production is positive in the period), find a minimum cost production plan
that satisfies the demands. From Theorem 2.1 (see Figure 7), we know that
this problem always has a directed spanning tree solution. Taking the tree
graph to be a path from node 1 to node T = V, the family of subpaths
Fk associated with node k are of the form (k, k + 1, ... , t) for t = k, ... , T
corresponding to a decision to produce the demand for periods k up to t in
period k. The costs are c = fk + Pkdk, Cj = pkdj for j > k and c = oo for
j< k.

Facility Location on a Tree.
Given a tree graph, edge weights a, for e E E, a distance function dij =

EeEPath(i,j) ae and weights fj for j E V, locate a set of depots U C V
and assign each node to the nearest depot to minimize the sum of travel
distances and node weights: minucv{ 3 jEU f; + EiEv(minjEu dij)}. Here we
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take c = fk and Cj = dkj for j k.

Each of the previous two applications is a special case of an (OSP) prob-
lem with linear costs that we can formulate as the following integer program:

max{ E k E. X Ex < 1 forj E V,k E X k for k E V}.
kEVjEV V kEV

In this model, Xk is the set of node incidence vectors of all subtrees
rooted at node k plus the vector 0 corresponding to the empty tree. We can
interprete the coefficient ck in this model as the cost of assigning node j to
a subtree rooted at node k. In practice, frequently node k will contain a
"service" facility: ck will be the fixed cost of establishing a service facility at
node k and Cjk will be the cost of servicing node j from node k.

In Section 4 we showed that if p(j, k) denotes the predecessor of node j on
the path from node j to node k, then conv(Xk) = {xk E R: xk < 1, xk <

Xp(k) for j t k}. Thus, we obtain the formulation

max C ckxk (7.1)
kEV

subject to

X1k < lfor jEV (7.2)
kEV

k < ;pX(jk) for j $ k,k E V (7.3)

x, > 0 forj, kE V (7.4)

xjk integer for j, k E V. (7.5)

Later in this section, we consider the effectiveness of this formulation, par-
ticularly the strength of its linear programming relaxation.

A More Complex Model
The telecommunications example requires a more intricate modeling ap-

proach since the objective function ck(F) is nonlinear with respect to the
nodes in the subtree F. In addition as we have seen in Section 4.2, in many
models it is natural to consider situations in which some of the subtrees
rooted at node k are infeasible. We now describe a formulation that allows
us to handle both these generalizations.
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This formulation contains a set Xk of incidence vectors of the subtrees in
yrk. We let xk be a an incidence vector of a particular subtree rooted at node
k. The formulation also contains a set of auxiliary variables wk that model
other aspects of the problem. For example, for the telecommunications prob-
lem, the variables wk correspond to the flow and capacity expansion variables
associated with a subtree F E k defined by xk. In Section 8 we consider
other applications: for example, in a multi-item production planning prob-
lem, the variables xk indicate when we produce product k and the variables
w k model the amount of product k that we produce and hold in inventory to
meet customer demand. In this more general problem setting, we are given
a set Wk that models the feasible combinations of the xk and wk variables.
We obtain the underlying trees from Wk by projecting out the wk variables,
that is, projxk(W k ) = Xk

For any particular choice xk of the x variables, let ck(xk) = max{ekxk +

fkwk : (Xk, Wk) E Wk} denote the optimal value of the tree defined by xk

obtained by optimizing over the auxiliary variables w. Once again, we assume
that 0 E Xk and Ck(0) = 0. We are interested in solving the following optimal
constrained subtree packing problem (OCSP):

max E ekx k + EfkWk (7.6)
k k

subject to

EZxk < 1for j E V (7.7)
kEV

(xk, , w k) E Wk for k E V. (7.8)

This modeling framework permits us to consider applications without
auxiliary variables as well. In this case, Wk = Xk can model constraints
imposed upon the x variables and so only a subset of the subtrees rooted
at k will be feasible. In Section 4.2 we considered one such application, a
capacitated model with knapsack constraints of the form: Ejev djxk < C.
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7.3 Algorithmic Approaches

We briefly outline four algorithmic strategies for solving OCSP.

Algorithm A. Primal Column Generation Algorithm using Subtree Optimiza-
tion.

We know from Theorem 7.1 that if we could explicitly write out all fea-
sible subtrees and calculate their values for each k E V, the resulting linear
program

A = max{ Ck Ak: AkAk < 1, k > 0 for k E V}, (7.9)
k k

called the Master Problem, or its corresponding integer program with Ak

integer, would solve OCSP. In this model, Ak is the node-tree incidence
vector for all feasible subtrees rooted at node k and Xk = (Ak) is vector that,
when integer, tells which tree we choose (i.e., if Ak = 1 we choose the tree
with incidence vector At). ck (cj) is a vector of tree costs; that is, ck is
the cost of the tree with the incidence vector A. When the problem has
auxiliary variables w, c = c (Ak) = max{ekA + fkw : (Ak, wk) E Wle is
the optimal cost of the tree rooted at node k with the incidence vector Ak.

Typically, this linear program is impractical to formulate explicitly be-
cause of the enormous number of subtrees and/or the difficulty of evaluating
their values. Therefore, we might attempt to solve it using the idea of a
column generation algorithm; that is, work with just a subset of the columns
(subtrees), and generate missing ones if and when we need them.

At iteration t, we have a Restricted Master Problem:

max E ck'tXk,' t

kEV

subject to

E A' ' t < 1
kEV

Akt > o.

In this model each Ak,t is the incidence matrix of some of the feasible
subtrees rooted at node k with an associated cost ck't, and so Akt is a sub-
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matrix of Ak. Ak't denotes the corresponding subvector of the vector A. Let
irt be optimal dual variables for Restricted Master linear program. Since the
Restricted Master Problem contains only a subset of the feasible trees, we
would like to know whether we need to consider other subtrees or not.

Let xk denote the incidence vector of a generic column of Ak corresponding
to a feasible subtree rooted at node k. The subproblem for each k is:

A = max{ekx k + fkwk _ tXk, (Xk Wk) E Wk}.

If li < 0 for all k E V, linear programming theory tells us that we have an
optimal solution of the Master Problem.

However, if 1 > 0 for some k, then we add one or more subtrees to the
Restricted Master Problem, update the matrices giving Ak, t + l , ck t + l , and
pass to iteration t + 1. ·

Because of Theorem 7.1, we observe that

i) the Restricted Master Problem produces an integer feasible solution at
each iteration (that is, each Akt is a 0-1 vector).

ii) the Restricted Master Problem is an (SOSP) problem, so we can solve
it using the dynamic programming algorithm presented at the beginning of
this section, rather than using the Simplex algorithm.

Since, as we have already noted, Theorem 7.1 implies that the Master
Problem (as a linear program) is equivalent to OCSP (an integer program),
we have the following result:

iii) the algorithm terminates with an optimal solution of OCSP.

Algorithm B. Lagrangian Relaxation.

As we have seen in Section 3, Lagrangian relaxation is an algorithmic
approach for finding a good upper bound (a lower bound in that discussion
since we were minimizing) for a maximization problem by introducing some
of the problem constraints into the objective function with associated prices
(also called dual variables or Lagrange multipliers). Specifically, we start
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with the formulation (7.6)-(7.8) of OCSP. Dualizing the packing constraints
(7.7) leads to the so-called Lagrangian subproblem:

L(7r) =max (ekxk + fkwk _ rxk) + rj

kEV jEV

subject to (xk, wk) E Wk for all k.

Observe that the Lagrangian subproblem separates into independent sub-
problems for each k, namely,

/k = max{ek k + fkWk _ 7rx k , (xk, wk) E Wk}.

Thus,
L(7) = E 7rj + E k

jeV k

To obtain a "best" upper bound, we solve the Lagrangian dual problem:

B = min L(r).
ir>O

We can find an optimal value for 7r by using standard algorithms from the
theory of Lagrangian relaxation (e.g., subgradient optimization) that gener-
ate values rt for rT at each iteration. ·

What can be said about this algorithm? To resolve this question, we first
observe that we can rewrite the Master Problem (7.9) as

zA = max{ ckAk AkAk 1,Ak = for k E V,A k > 0 for k E V}.
k k

This model contains additional constraints 1Ak = 1 for k E V. Since 0 E Xk
with cost 0, and since every nonempty tree x k E Xk contains node k, the kth
constraint of k AkAXk < 1 implies that lAk = 1 for k E V is redundant. More
precisely, the row of the node-subtree incidence matrix Ak corresponding to
node k has +1 for each subtree in X k and so the row corresponding to this
constraint implies that Ej AkkJ < 1. Note that 1- Ej Akj is the weight placed
on the null tree in Xk.

Linear programming theory shows that the optimal value of the linear
programming relaxation of this modified Master Problem, equals the value
of its linear program dual, that is,
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z A = min{E 7ri + EPk : Ak + kl > ck for all k, 7r > 0}

= min { ri + E k PIk > C(xk) - rxk for all xk E Xk}

= mrinL(r).

The final equality is due to the fact that for a given value of 7r, the optimal
choice of each k is given by k = maxzkexk{c(xk) - 7Z k } = max{ekxk +

fkwk - rxk : (xk, wk) E Wk} and so the objective function >iev ri + Ek lk
is equal to L(7r).

This discussion shows that zA = zB, and so

i) the optimal value of the Lagrangian dual gives the optimal value of the
OCSP problem, and

ii) the optimal solution r of the Lagrangian dual is an optimal dual solution
for the Master Problem (7.9).

Algorithm C. Dual Cutting Plane Algorithm using Subtree Separation.

The goal in this approach is to implicitly solve the linear program

zc =max ekxk + Z fkwk (7.10)
k k

subject to

x k < 1 (7.11)
k

(xk, wk) E conv(Wk) for all k (7.12)

by a cutting plane algorithm.
Let {(xk, k) : Gkx k + H k Wk < bk , 0 < X < 1, W > 0 for all kj E V} be

a representation of conv(Wk) by a system of linear inequalities. Since it is
impractical to write out all the constraints explicitly, we work with a subset
of them, and generate missing ones if and when needed.

At iteration t, we therefore have a relaxed linear program:
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max E (ekxk + fkwk)
kEV

subject to
Ex k < 1
keV

Gk,txk + Hk,twk < bkt for k E V

0 < < 1,wk > Ofork,jEV

After finding a solution (xkt, wk 't) to the linear programming relaxation,
we then solve the separation problem for each k, i.e., we check to see if
(xkt, wkt) conv(Wk) or not.. If (xk 't,wk.t) E conv(Wk) for all k, the
algorithm terminates. If not, we obtain one or several violated inequali-
ties that we add to the formulation. We then update the matrices giving
Gk t + l , Hk t+ l bk t +l , and pass to iteration t + 1. ·

Note that if we always generate a violated facet-defining inequality of
conv(Wk), the cutting plane algorithm will terminate in a finite number of
iterations having satisfied all the constraints in Gkxk + Hkwk < bk, even
though we have not written all the constraints explicitly.

How does the optimal objective function for this approach compare with
the values we obtain from the column generation and Lagrangian relaxation
procedures? Linear programming duality (results on "partial duality") im-
plies that

z c = min{Zy 7ri + S max{ekxk + fkwk _- 1rZk (k, wk) E conv(Wk)}}
> i k x"k'wk

But since optimal solutions of linear programs occur at extreme points, this
optimization problem has the same value as:

min{ 7ri + E max ekxk + fkwk - rx k : (Xk, Wk) E Wk}}
i k 'W

which is just the Lagrangian dual problem.
Thus, we have shown that z A = B = zC . Stated differently, we have

shown that for any objective function coefficients (e l , f, . . ., e n, fn), the lin-
ear programming value z of (7.10)-(7.12) equals the optimal value of the
corresponding (OCSP) integer program (7.6)-(7.8). This implies that
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i) the polyhedron (7.11)-(7.12) is integral (i.e. in all its extreme points
(xk, wk) E Wk), and thus

ii) Algorithm C terminates with such an extreme point, and thus it gives an
optimal solution to (OCSP).

In summary, this discussion shows that if we (i) solve the linear program-
ming relaxation of the column generation model, (ii) solve the Lagrangian
dual problem, or (iii) use the cutting algorithm until we have a point lying in
conv(Wk) for all k, then we obtain the same optimal objective function val-
ues: zA = zB = ZC. Algorithms A and C terminate with an optimal solution
to (OCSP) since they work in the space of x and w variables. Lagrangian re-
laxation provides us with an optimal set of dual prices r, which we can then
use to find an optimal solution x and w by solving a linear programming
feasibility problem (we will not provide the details.)

Example 7.2. We solve an instance of the OCSP problem for the graph

Figure 18: Tree for the OCSP problem instance

6 2 3 4 1
9 2 7 6 0

shown in Figure 18. The initial profit matrix is 8 2 1 4 9 The entry
2 1 3 4 4
1 6 2 9 1.

ck in row k and column j is the value if node j is in a subtree rooted at node
k. All subgraphs are feasible.

We use the column generation algorithm starting with an initial set of
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five single node subtrees. Thus, the initial Master Problem is of the form:

max6Al+ 2A2 + 1A 4A4 + 1A5

subject to

A1+ A 2+ OA 3+OA 4 I+ A5 < 1

lXA+ 1o2 + oA3 + o04 + oAx <1

OAI+ A2 + 13+1 OA4 + OA5 <1

OA'+ OA OA3 + 1Al + OA < 1OAI± OA+0A±a +l+ < 1
O OAl +0 OAl + 3 +OA + 1A5 < 

A >0.

Solving the Restricted Master by linear programming (or the d:
gramming algorithm for (SOSP), we obtain

H(5) = 1, 11(4) - 4, H(3) = 6, H(2) = 2, H(1) = 14,

and dual variables 7r = (6, 2, 1, 4, 1).

ynamic pro-

0 0 2 0 0
3 0 6 2 -1

The subproblem profit matrix l = (c-r) is now 2 0 0 0 8 Thus,
-4 -1 2 0 3
-5 4 1 5 0.

we have modified the original values cj by a cost rj if node j appears in the
subtree. For instance c3 = C43 -1r 3 = 3- 1 = 2. Solving the k = 1,..., 5 sub-
problems, we obtain L = 2,z2 = 11,/ a' = 10,/41 = 5, and /i = 6. Introduc-

ing the column with the greatest reduced price of 11, namely F 2 = {1, 2, 3, 4}
rooted at 2 of value 24, we update the Restricted Master problem, obtaining

max 6A+ 2A2 + lA + 4A4 + 15 + 24A2

subject to

1+ OA2 + 0 A3+ 0A4+ 0A5 + 1A 22 <
X1 + 1 + + 4 +0A + 1A2 < 1

01o+ 0 2+ OA1 + ol + oA5 +1A2 <1X' 1 1 ' "\3 ' "\4 1 1 5+1X2 1
ox+ ox + o0 X + iA + o,4 +1 2 < 1I I+ 1 1A 1>0.
oA1+ OX2 + 3 + + IA5 + oAX2 <T1 1>O.2<

X > 0.
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For this problem,

H = (25, 2,6,4, 1) and 7r2 = (17, 2, 1,4, 1).

Returning to the subproblems, ~p2 = 12 is the maximum violation, so we next
introduce the subtree F5 = {3, 4, 5} with value 12.

On the third iteration, the Restricted Master gives

H = (25, 2, 12, 4, 1) and r3 = (11,2, 7, 4, 1).

-5 0 -9 0 0
-2 0 -5 2 -1

The subproblem cost matrix c3 = (ck - ir) is now -3 0 -11 0 8 All
-9 -1 -9 0 3

-10 4 -10 5 0.
the subproblems have an optimal value of 0, so the corresponding primal
solution {1,2,3,4} rooted at 2 and {5} rooted at 5 with value H(1) = 25 is
optimal. "

Algorithm D. Dynamic Programming.
Dynamic programming provides another algorithmic approach for solving

(OSP) with linear costs (that is, the model (7.1)-(7.3)). The algorithm is a
more complicated version of the dynamic program for solving (SOSP) in that
it implicitly treats an exponential number of subtrees. To develop one such
algorithm, let u be any node of the given tree T and let T(u) be the subtree
of T rooted at node u. Any feasible solution to (OSP) contains (i) subtrees
that are disjoint from T(u), (ii) subtrees contained in T(u), and (iii) at most
one subtree Tk, rooted as some node k, that has nodes both in and out of
T(u). Note that in case (iii), T(u) n Tk is a subtree of T(u) that contains
node u. Let C(u) denote the assignment values of the nodes in the subtree
T(u), that is, C(u) = ET(u) k(). In this expression, k(j) denotes the node
to which the solution assigns node j. If the solution does not assign node
j to any node, we set k(j) = O. In this case, c = 0. Among all feasible
solutions to the problem, let H(u, k) denote maximum value of C(u), given
that the solution assigns node u to node k (note that node k might or might
not belong to T(u)).

Let H(u) denote the value of the maximum packing of the tree T(u), that
is, the value of (OSP) restricted to the subtree T(u). Let r be a root node
of the given tree T. We wish to find H(r).
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As before, S(u) denotes the successors of node u in T. We can find
H(u, k) for all nodes u and k by working towards the root from the leaves of
T using the following recursion:

H(u, k) = c + > max{H(w, k), H(w)} if k = u or k T(u)
wES(u)

H(u, k) = ck + H(, k) + max{H(w, k), H(w)}
wES(u),w#

if k E T(Cw) and wD E S(u)

H(u, k) = A H(w) if k = 0 (that is, node u belongs to no subtree)
wES(u)

H(u) = min (H(u, k)}.
kET(u)

Note that this recursion uses the fact that if node w is any successor of
node u and a solution assigns node u to itself (k = u), to no node, or to a
node k not in T(w), then the solution must assign node w to node k, to no
node, or to a node in T(w). H(w, k) gives the optimal cost of the first case
and H(w) gives the optimal cost of the last two cases. If the solution assigns
node u to a node k in T(iD) for one of is successor nodes barw, then it must
assign node wD to node k as well.

Note that since this recursion compares H(w, k) to H(w) for any two
nodes w and k of T once, for a tree with n nodes, it requires O(n2 ) compu-
tations.

When each node v has an associated demand d(v) and each subtree is
restricted to contain nodes with a total demand of at most C for some positive
integer capacity C, we can use an extension of the dynamic programming
argument that we introduced in Section 4 for the rooted subtree of a tree
problem. In this case, we let H(u, k, t) be the maximum value C(u) of a
packing on the subtree T(u), given a capacity of t for the packing, and
given that the solution assigns node u to node k. If we use the dynamic
programming approach suggested in Section 4, the overall algorithm will
require O(n2 C) computations. In the special case in which each demand d(v)
is one, and so C is a restriction on the number of nodes in any subtree, the
algorithm requires O(n3 ) computations. The well-known p-median problem
is a variant of this problem; recall that in this case, the solution can contain
at most p subtrees. The dynamic programming algorithm for this case is
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similar to those for these other cases, using, for example, a recursion with
the definition of H(u, k, q) as the maximum value C(u) of the subtree T(u),
given that the solution assigns node u to node k and that the packing of T(u)
contains (or intersects) at most q subtrees. The resulting algorithm requires
O(n2p) computations.

7.4 Polyhedral Results

Our discussion of algorithms in the previous subsection has shown that when
the costs are linear, the linear programming relaxation of this integer program
solves (OSP) with linear costs.

Theorem 7.2 If Xk is the set of all subtrees rooted at node k, and X =
{(l', ... ,xn) k E k _E 1, k E Xk for all k E V}, then conv(X) is described
by the constraints (7.2)-(7.4).

This is an apparently surprising result because it is very unusual that, when
a set of integral polyhedra (the conv(Xk)) are combined with a set of ad-
ditional constraints (in this case, the packing constraints EkEV Xj < 1), the
resulting polyhedron is integral. As we have seen in our discussion of the col-
umn generation algorithm, even though we are dealing with an exponential
number of subtrees, the essential reason is again Theorem 7.1.

Our discussion has also established the following more general result.

Theorem 7.3 If

W = ((x 1, wl, ... x ,w n): (k,wk) E Wk for all kE V, E Xk < 1 for all j E V},
kEV

then

conv(W) = (x, wl,.. , Wn") (k, wk) E conv(Wk) for all k E V,

k < 1 for all j E V}
kEV

This generalization of Theorem 7.2 tells us that except for the packing in-
equalities, the polyhedron describing the convex hull of solutions to (OCSP)
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has no facet-defining inequalities that link the subtrees associated with dif-
ferent nodes k. Thus, it suffices to study each set Wk independently.

Finally, we obtain the important Corollary to Theorem 7.3.

Corollary There is a polynomial algorithm to optimize over W if and only
if there is a polynomial algorithm to optimize over Wk for each k.

In this section we have shown how the structure of the problem of pack-
ing subtrees of a tree leads not only to surprising integrality results, but
also allows us to successfully adapt three of the most popular algorithmic
strategies from integer programming for solving OCSP. Theorem 7.1 implies
that we need not make any distinction between the linear programming and
integer programming formulations the tree packing problem when the under-
lying graph is itself a tree, since the feasible region of the linear program is
an integer polyhedron. In the Section 8 we examine the more complicated
problem of packing subtrees or subgraphs into a general graph. In this more
general setting, the linear programming relaxation of the analogous integer
programming model does not have integer extreme points, and so we need
to develop extensions of the algorithms presented in this section.
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8 Packing Subtrees of a General Graph

In this section we show how to model several of the problems mentioned
in Section 2 as problems of packing (or partitioning) subtrees, forests, or
subgraphs of an arbitrary graph. Our purpose in this discussion is not to
be comprehensive. Rather, we wish to (i) show that packing problems on
general graphs arise in a number of important problem settings, (ii) show
how to use the models and solution approaches we have considered in the
previous sections to begin to address these problems, and (iii) suggest some
of the results researchers have obtained for these problems. One lesson will
become apparent: the polyhedral representations of these problems can be
quite complex.

We again use the basic optimal capacitated subtree formulation

zPSG = max ekk + fkwk : Xk < l,(xk, wk) E Wk for all k}.
k k k

We refer to this formulation as the Packing Subtrees in a Graph (PSG) model
since the underlying graph need not be a tree. In this model, xk again
represents the incidence vector of nodes of the kth subgraph (usually a tree
or a forest), and wk typically represents edge or flow variables associated with
this subgraph (k no longer necessarily represents a node v). As we show next,
several generic application contexts are special cases of this model.

8.1 Applications

1. Multi-Item Lot-Sizing. Suppose we are given demands dk for items
k = 1,..., K over a time horizon t = 1,..., T. All items must be produced
on a single machine, and the machine can produce only one item in each
period. Given production, storage and set-up costs for each item in each
period, we wish to find a minimum cost production plan. Figure 19 shows
the graph for a 13 period problem, as well as the subgraphs of production
periods for 3 items (we could choose item K as a dummy item: when the
machine is "processing" this item, it is idle). The graph G we consider for
this application is a path with K nodes, one for each time period. Each
item defines a set of subgraphs on G; each is a set of paths from G. Figure
19 shows the graph and a possible set of subgraphs for a 13 period, 3 item
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problem. The production plan corresponding to this solution produces item
1 in periods 1, 2, 9, 12, and 13, item 2 in periods 3, 7, and 8, and item 3 in
periods 4-6, 10, and 11. This solution indicates, for example, that in period 2
we produce the demand of item 1 for periods 2 through 8 and carry forward
inventory of this item in periods 2 - 7.

Graph G is a path with 13 nodes

Time

Subgraph 1 (item 1)

Subgraph 2 (item 2)

Subgraph 3 (item 3)

0-0 0 0-0
O

0-0-0
OO

0-0
Figure 19: Multi-Item Lot-Sizing as Packing Forests (Paths)

2. Clustering Given a graph G = (V,E), edge costs ce for e c E, node
weights di for i E V, positive integers K and C, we wish to find K clusters
satisfying the property that the sum of the node weights in each cluster
does not exceed C, in a way that minimizes the sum of the weights of edges
between clusters (maximizes the sum of weights of edges within clusters).
Figure 20 shows a feasible solution with 3 clusters and a capacity of 10.

=10
.ights next to nodes

Figure 20: Clustering Solution with Three Clusters
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3. The C-capacitated tree problem. Given a graph G (V, E), a root
node 0, edge costs ce for e c E, find a minimum cost spanning tree in which
each subtree on the nodes V \ {0} contains at most C nodes. That is, if we
delete the root node and all its incident edges, the spanning tree decomposes
into a forest on the nodes V \ {0}. Each tree in this forest can contain at
most C nodes.

4. Capacitated Trees. Given a graph G = (V, E), a root node 0, edge costs
ce for every e c E, positive demands di for i E V \ {0} and a positive integer
C, we wish to find a minimum cost spanning tree satisfying the property that
the total demand in each subtree on the nodes V \ {0} does not exceed C.

5. Capacitated Vehicle Routing. Given a graph G = (V, E), a depot
node 0, edge costs ce for each e c E, K vehicles of capacity C and client
orders di for i E V\ {0}, we wish to find a set of tours (cycles) for each vehicle
that (i) each contain the depot, (ii) collectively contain all the nodes, (iii)
are disjoint on the node set V \ {0}, and (iv) satisfy the property that the
total demand on each cycle (that is, total amount delivered by each vehicle)
does not exceed C.

6. VLSI Design. The global routing problem in VLSI design can be viewed
as a problem of packing Steiner trees (or nets) with packing constraints
imposed upon the edges. The problem, defined by a graph G (V, E), a
collection of n terminal sets Tk C V for k = 1, 2,..., n, and edge (channel)
capacities u, is to find a set of Steiner trees {Sk}=l1 so that (i) Sk contains
the terminal nodes Tk, and (ii) the number Steiner trees containing edge e
does not exceed u,.

Models 1, 3, and 4 fit into the framework of the general model (PSG), and
model 2 fits if we allow general subgraphs. If we remove the depot, model
5 requires the packing of trees (paths) on G \ {0}. Model 6 is somewhat
different in that the packing is over the edges rather than the nodes.

8.2 Algorithmic Strategies

How have researchers tackled each of these problems? Before attempting to
answer this question, we first briefly discuss three general solution methods
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for solving (PSG), each extending the algorithms we considered in the last
section.

Algorithm A. Column Generation Algorithm . To correctly model (PSG) we
write the Master Problem with the additional "convexity" constraints

zA max{ ckk AkAk < 1, lk = 1,Ak > 0 for k E V}.
k k

If we associate dual variables (ir, a) with the packing and convexity con-
straints, the kth subproblem becomes

W(r, a) = max{ekxk + fkwk - 7rtz k - Uk, (k, Wk) E Wk}. (8.1)

In this model, Ak is the node-subtree incidence matrix of all feasible
edge incidence vectors xk satisfying the conditions (xk, wk) Wk for some
w k , and ck = ck(xk) = maxk{ekx + k + fkk : (Xk,Wk) E Wk}. When the
column generation algorithm terminates, the vector (A 1,... , A') might not
be integer, and so we might need to use an additional branching phase to
solve the problem.

To implement a branching phase, we might wish to form two new prob-
lems (branch) by setting some fractional variable Ak to 0 in one problem and
to 1 in the other. Typically, however, in doing so we encounter a difficulty:
when we set A) = 0 and then solve the subproblem (8.1) at some subsequent
iteration, we might once again generate the subgraph Si E Wk associated
with the variable Ak. To avoid this difficulty, we can add a constraint to Wk
when solving the subproblem, chosen so that the subtree Si will not be fea-
sible and so the subproblem will no longer be able generate it. The following
inequality will suffice:

Xj- Xj < sil- 
jESi j si

since the solution with xj = 1 for all nodes j c Si and xj = 0 for all nodes
j ' Si does not satisfy the inequality.

Unfortunately, this scheme leads to a highly unbalanced enumeration tree
(setting the Ak to zero eliminates very few feasible solutions). A better
strategy is to choose two subgraphs Si and Sj whose associated variables
Ak and A' are fractional. Consider any pair of nodes u, v satisfying the
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conditions u, v Si, u Sj, but v X Sj. In an optimal solution either (i)
u and v lie in the same subgraph, or (ii) they do not. In the first case,
for each subproblem k we can impose the condition x, = x,; this condition
implies that any subgraph S contains either both or neither of u and v.
Since v Sj, this constraint will eliminate the variable Ak' corresponding
to the set Sj from the formulation. In the second case (ii), all subgraphs
satisfy the condition xu + x, < 1; since Si contains both nodes u and v, this
constraint will eliminate the variable Ak corresponding to the set Si from the
formulation. So, imposing the constraints x = xv or xu + x, < 1 on each
subproblem permits us to branch as shown in Figure 21.

XU= xV xU+ Xv< 1

Figure 21: A Branching Scheme

A third, related approach is to branch directly on the original problem
variables, i.e., node or edge variables xk or wk.

Algorithm B. Lagrangian Relaxation of the Packing Constraints.
As we saw in Section 7, if we attach a Lagrange multiplier j to each

packing constraint EkXj < 1, and bring these constraints into the objec-
tive function, we obtain a Lagrangian subproblem that decomposes into a
separate problem for each k (since the packing constraint was the only con-
straint coupling the sets Wk). The resulting Lagrangian subproblem becomes
L(r) = EkZk(r) + -i 7ri, and Uk(Xr) = {max(ek - )xk + fkwk: (xk, Wk) E

As before, for each value of the Lagrange multipliers ir, the optimal ob-
jective value L(7r) of the Lagrangian subproblem is an upper bound an the
optimal objective value of (PSG). To find the multiplier value providing the
sharpest upper bound on the optimal objective value, we would solve the
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conditions u,v Si,u E Sj, but v Sj. In an optimal solution either (i)
u and v lie in the same subgraph, or (ii) they do not. In the first case,
for each subproblem k we can impose the condition xu = x,; this condition
implies that any subgraph S contains either both or neither of u and v.
Since v S, this constraint will eliminate the variable A' corresponding
to the set Sj from the formulation. In the second case (ii), all subgraphs
satisfy the condition x, + xt < 1; since Si contains both nodes u and v, this
constraint will eliminate the variable Ak corresponding to the set Si from the
formulation. So, imposing the constraints x, = xv or xu + xv < 1 on each
subproblem permits us to branch as shown in Figure 21.

XU= XV Xu+ Xv 1

Figure 21: A Branching Scheme

A third, related approach is to branch directly on the original problem
variables, i.e., node or edge variables xk or wk.

Algorithm B. Lagrangian Relaxation of the Packing Constraints.
As we saw in Section 7, if we attach a Lagrange multiplier 7rj to each

packing constraint ZkXk < 1, and bring these constraints into the objec-
tive function, we obtain a Lagrangian subproblem that decomposes into a
separate problem for each k (since the packing constraint was the only con-
straint coupling the sets Wk). The resulting Lagrangian subproblem becomes
L(T) Ek k(7r) + Ei 7ri, and uk(r) = {max(ek- _ r)xk + fkwk : (xk, wk) E
Wk}.

As before, for each value of the Lagrange multipliers 7r, the optimal ob-
jective value L(Tr) of the Lagrangian subproblem is an upper bound an the
optimal objective value of (PSG). To find the multiplier value providing the
sharpest upper bound on the optimal objective value, we would solve the
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Lagrangian Dual problem stated earlier:

z B = min L(T).
7r>O

To implement this approach we need an exact optimization algorithm
for solving a linear optimization problem over Wk. We would use standard
procedures to solve the Lagrangian dual problem and to continue from its
solution using branch and bound.

Algorithm C. A Cutting Plane Algorithm plus Branch and Bound.
One way to approach this problem could be to apply the cutting plane

algorithm from the previous section, that is, start with a partial polyhedral
representation of each polyhedral set Wk, and solve the linear programming
relaxation of the problem. We then check to see if the solution to this problem
satisfies all of the constraints defining each set Wk. If not, we determine a
violated constraint for some Wk (i.e., solve the separation problem) and add
a new constraint to the partial polyhedral representation of Wk.

Assuming the availability of an exact separation algorithm for Wk, the
cutting plane algorithm C described in the last section will terminate with
value:

mC _a ekk + Z fwk k < 1, (xk wk) E conv(Wk) for all k}
k k kEV

However, in contrast to the earlier case, the final solution (xk, wk) might not
be integer, and a further branch and bound, or branch and cut, phase might
be necessary. To implement this approach, we could branch on the variables
(xk, wk), and add other global cuts in standard fashion. (We describe several
such cuts later in this section.)

As we have shown in Section 7, each of these three algorithms provides
the same upper bound at the initial node of a branch and bound tree.

Theorem 8.1 For problem (PSG), the bounds satisfy zPSG < zA = B 
C

In practice, the effectiveness of these algorithms depends in part on how
good an approximation

{(, w) : E Xj < 1, ( k wk) C onv(Wk) for all k}
kEV
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provides to conv(W). Put somewhat differently, if ZA is a tight upper bound
on zPSG, the branch and bound tree might permit us to rapidly find an
optimal solution and prove its optimality. To tackle the more difficult prob-
lems, it is usually necessary to find "strong" valid inequalities (e.g., facets)
for conv(W), linking together the different sets Wk. We would also need to
integrate these inequalities into the Lagrangian or cutting plane approaches,
thereby also improving the branching phase of these algorithms.

We now discuss some approaches that researchers have used for solving
the six example problems we introduced at the outset of this section, and
comment on the usefulness of the model (PSG).

1. Multi-Item Lot-Sizing. In this context, the graph G is a path from
1,.. ., n. For each item k, we need to find a set of intervals (or subpaths) in
which item k is produced. The sets Wk assume the form:

Wk = {(xk, sk, vk): Stk_ + Vk -- dtk + s for all t

vk < Mxtk for all t

sk , k > , x j E {0, 1} for all j and k}

with xtk = 1 if item k is produced in period t; wk = (sk, vk) are the unit stock
and production variables, and

Ck(xk) = min{Z(p vtk + hkstk + ftkx) : (sk, vk, xk) E Wk}.
S,V 

t

For this problem, both optimization and separation over Wk are well under-
stood and can be implemented rapidly. In particular, in the last section we
obtained an extended formulation for the uncapacitated lot-sizing problem
(ULS). Researchers have successfully used both cutting plane and Lagrangian
relaxation based algorithms, as well as some heuristic algorithms based on
column generation, in addressing these problems. Little or nothing is known
about facet-defining inequalities linking the items (and so the sets Wk).

2. Clustering. For this problem class, each subgraph in the partitioning is
totally unstructured. The set Wk is of the form:

Wk = (k, yk) : dixk < C
iEV
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Yk < k for e = (i,j) E E

yk < xk for e = (i,j) E E

X, yk 0, 1) for allj, e, andk.

The variables xk and yk indicate whether node i or edge e belongs to the kth
cluster. The constraints impose a common capacity C on each cluster, and
state that any edge e can belong to a cluster only if both its endpoints do.
One approach for solving this problem has been to use column generation
(Algorithm A), using branch and cut with valid inequalities for Wk to solve
the subproblem to optimality. We will describe one family of valid inequalities
that can be used to improve the linear programmimg approximation of W in
the subproblem. It is important to note that for the model we are considering
(with an unlimited number of clusters), it is necessary to solve only one
subproblem (they are all the same).

Proposition 8.2 Let T = (V', E') be a subtree of G whose node set V' forms
a minimal cover, i.e., ZiEv, di > C and no subset of V' satisfies this property.
Let deg(i) be the degree of node i in T. Then the inequality:

Ye < E (deg(i) - l)x 
eEE' iEV'

is valid for Wk.

Because V' forms a cover, some node r E V' must satisfy the condition x rk
0. Suppose we root the tree arbitrarily at node r, and sum the inequalities
yk < xk over all edges e c E' with i as the endpoint of edge e closest to node
r: we obtain ZeEE' ok < ZiEv(deg(i) - )Xk + Xk. (Note that if we collectr·e~' we o btin- ' li~ -,gi-
terms, the coefficient of node r is deg(r).) Since xk = 0, the inequality is
valid. But since the inequality is independent of the node r satisfying the
condition xk 0, all feasible solutions satisfy it.

Limited computational experience has shown that the addition of these
inequalities to the linear programming relaxation of the subproblem can be
effective in practice. One study, modeling a problem in compiler design,
found that on 7 out of 10 problems, the final Restricted Master linear pro-
gram in the column generation approach gave an integer solution; for the
other three problems, the column generation approach found a good feasible
solution with a small amount of branching.
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Some models use a specialized objective function: they wish to minimize a
weighted sum of the edges between the clusters. For these problems, we might
use an alternative approach, using the node variables xk and edge variables
we (= 1 - k ye). That is, we no longer keep track of which cluster each
edge belongs to, but simply keep track of the edges in the cutsets between
the clusters. The model would be similar to the one we have given. One
advantage of this approach is that it would permit us to create branch and
cut algorithms by drawing upon the extensive work conducted on facets of
cut polytopes.

The next three problems are all closely related. The C-Capacitated tree
problem is the special case of the general capacitated tree problem with
di = 1 for all i E V \ {0}. The vehicle routing problem is the restriction of
the general capacitated tree problem in which each subtree must essentially
be a path (whose endpoints are joined to the depot node 0 to form a tour).

The most successful approaches to date for these problems have all avoided
an explicit representation using distinct vehicle variables xk. Researchers
have used column generation and dynamic programming to treat vehicle rout-
ing problems with tightly constrained schedules (see Chapter xxx). Other
researchers have worked entirely in the space of the edge variables ye for
e E. This approach implicitly treats the weights and capacities using
"generalized subtour inequalities" of the form:

E Y < y ISI - f(S).
eCE(S)

In this expression, f(S) is the minimum number of trees, or vehicles, needed
to satisfy the demand of all nodes in S. Thus f(S) = I for the tree problem
of Section 3, and f(S) = FEies di/C for the capacitated tree problems and
vehicle routing problems since in any feasible solution must allocate at least
f(S) vehicles (subtrees for the capacitated tree problem) to the node in S,
implying that the edges in E(S) must contain at least f(S) components.
Researchers have obtained even sharper inequalities (that is, with smaller
values for f(S)) by solving the NP-hard bin-packing problem of finding the
minimum number of bins of capacity C needed to contain the set of weights
{di}ies.

121



3. The C-capacitated tree problem. The starting formulation is:

minm CeYe

eEE

subject to

y < ISl- FISI/C1 for all Sc V \{O}
eEE(S)

E ye < S -lforallScVwith O E S
eEE(S)

EYe = n-1
eEE

Ye {O,1} forall e E.

We refer to the convex hull of the (integer solutions) of this problem as the
capacitated tree polyhedron.

Researchers have tackled this problem using a set of facet-defining in-
equalities as cutting planes. The inequalities are numerous and fairly com-
plex, so we simply illustrate a few of them with examples. Each of the
inequalities is determined by relationships between edges in particular sub-
graphs (so called supporting subgraphs) of the underlying network. This is
an approach we have used before; for example, in studying the minimum
spanning tree problem, we considered subtour inequalities. In this case, the
subgraphs all edges E(S) with both endpoints in any node set S and the
inequality stated that no feasible solution could use more than ISI - 1 of
these edges.

Figure 22 shows an example of the C-capacitated tree problem with 7
nodes and with C = 3. The supporting multistar graph divides the nodes
into two classes: a set of nucleus nodes N all connected to each other and
a set of satellite nodes S, each connected to every node in the nucleus. If
O V N and 0 S, the only feasible solutions are those shown in Figure 22(b),
22(c), and 22(d) as well as subsets of these solutions. Note that if we let
E(N, S) denote the set of edges with one endpoint in N and the other in S,
then every feasible solution satisfies the multistar inequality

3 E Ye+ Ye < 6.
eEE(N) eEE(N,S)
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The general version of this inequality is

K y,e+ ye < (C-1)INI.
eEE(N) eEE(N,S)

The constant K in this inequality is required to be less than C and its
value depends upon specific problem data (for our example, K = C). The
fractional solution shown in Figure 22(e) satisfies all the constraints of the
starting formulation, but not the multistar inequality.

(a) Support graph (b) Feasible solution (c) Feasible solution

*_.. . .I
... . .. ....

,: .-"'.-'"..,i::.::.L "'....

~:..... . -....... !-Of:' *:1b~~

Weight 1/2

Weight 1

(d) Feasible solution (e) Fractional solution cut away

Figure 22: Multistar with C = 3

Figure 23 shows a second example: in this case C = 5 and the supporting
clique cluster graph has three cliques (complete graphs) C 1, C2, and C3, all
sharing exactly one common node and none containing node 0. The figure
shows feasible solutions that satisfy and a fractional solution that does not
satisfy the valid clique cluster inequality

Z Ye + Z Ye + i Ye < 6.
eEC 1 eEC2 eEC3

The general inequality for t cliques is

E i ye < constant.
l<j<t eECj
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(a) Support graph (b) Feasible solution

V J-- \7Pv 7 CrWeight 1/4

v,> ~ Weight 1

(c) Feasible solution (d) Fractional solution cut away

Figure 23: Clique Cluster with C = 5

The constant is determined by the structure of the clique cluster and the
value of C.

Figure 24 shows a third example: in this case C = 3 and the supporting
ladybug graph has a set B of body nodes all connected to each other, a set
H of head nodes and a set A of antenna nodes. The head and antenna nodes
form a multistar and each body node is connected to each head node. We
assume that the ladybug graph does not contain node 0. The figure shows
several feasible solutions and a fractional solution that satisfies all the other
constraints we have considered but not the valid ladybug inequality which is

2 i, Ye+ 2 Ye + 3
E Ye + i Ye<6.

eEE(B) eEE(B,H) eEE(H) eEE(H,A)

The ladybug inequality in general is similar: the edges in E(H) have a
weight of C, the edges in E(H, A) have a weight of 1. The edges E(B) and
E(B, H) have the same weight d. The value of d and the right-hand side of
the inequality all depend upon the values of C, BI, and HI.

All three classes of these inequalities define facets of the C-capacitated
tree polyhedron, assuming mild restrictions on C and the sizes of the support
graphs. Because these conditions are complicated, we will not present them
in this discussion.

Computational experience has shown that multistar and certain partial
mulitstar extensions of them are useful in a cutting plane approach for solving
the C-capacitated tree problem.
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(a) Support graph

(c) Feasible solution

(e) Feasible solution

:: .;>¥.::i...., . .s (b) Feasible solution

*. S

0-Oi

(d) Feasible solution

i 9

(f) Fractional solution cut away

Figure 24: Ladybug with C = 3
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4. The Capacitated tree problem.The starting formulation is:

min E ceye
eEE

subject to

E Ye
eEE(S)

E Ye
eEE(S)

E Ye(i)
eE4(i)

< S -f(S) for allSc V \ {O}

< S -1 forallScVwithOeS

> 1

y, E {O, 1} for all e E E.

The function f(S) can be any of the functions we introduced before, for ex-
ample, f(S) = EiEs di/C1. In this model 6(i) denotes the edges with one
endpoint at node i. We can view one approach for solving this problem as
a combination of a cutting plane algorithm and Lagrangian relaxation. The
first difficulty is the exponential number of constraints. Unlike the tree prob-
lem, no polynomial separation algorithm is known for the generalized subtour
inequalities, so researchers have used heuristics to find violated inequalities.
Suppose we have added constraints corresponding to the set S1,... , St to the
formulation. One solution approach would be to remove these constraints by
incorporating them into the objective function with Lagrange multipliers
giving, as a Lagrangian subproblem, a branching problem:

min E ce e
r

- [ y-(1S' - f(S'))]At
t=l eEE(Sr)

subject to

E Ye > lforiE V \ O}
eE6(i)

Y, ye = n-1
eEE

Ye E {O,1}foreEE

which we could then solve using the algorithm we presented in Section 5.
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5. Capacitated Vehicle Routing. The starting formulation is very similar
to that of the previous model, and that of the travelling salesman problem.
Let 0 be the depot and Vo = V \ {0}. With a fixed number K of vehicles,
we have:

min Z ceYe (8.2)
eEE

subject to

XE Xe = 2K (8.3)
eE6(0)

ZE xe = 2for i EVo (8.4)
eE6(i)

xe > 2a(S) for SCVo, S (8.5)
eE6(S)

Xe E {0, 1} for e E E(Vo),x, E {0, 1,2} for e E (0). (8.6)

In this model a(S) E {[ iesdi/C1,r(S), R(S)} with i~esdi/C1 < r(S) <
R(S). The first term in this expression for a(S) is the basic capacity bound;
r(S) is the bin packing bound, i.e., the minimum number of bins needed to
pack the set of demands di}ies; and R(S) is the same bound taking into
account the requirement that we must pack all the demands into K bins
(this bound accounts for the demand {di}igs). Note that for the travelling
salesman problem, C = oo, and then (8.5) becomes E6(S) Xe > 2, the basic
cut (or, equivalently, subtour elimination) constraint.

A generalization of the so-called comb inequalities from the TSP problem
applies to this problem. The support graph for these inequalities contains a
handle H and a set {Tjj}=1 of teeth satisfying the conditions:

Ti n Tj = 
Tj n H 
Tj,H C Vo

Edi < C.
iETj

See Figure 25.
Let 2P(H) be the minimum number of times any set of subpaths must

intersect H in order for any solution to satisfy all the demands in H given
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a=10
)(H)=5
umbers are demands

Figure 25: A Feasible Solution and a Comb

that the demands in each tooth Tj are consecutive on one of the subpaths,
see Figure 25.

Proposition 8.3 The generalized comb inequality

AI xI>2P(H)-E( Z -2)
eES(H) j=1 eES(Tj)

is valid for CVRP.

Note that if a vehicle visits the clients in a tooth one after the other, ZeE(Tj) Xe

= 2 for each j, and the inequality is valid by definition of P(H). If one or
more vehicles visits the tooth Tj more than once, then EeE6(T,) Xe = 2 + kj
for some integer kj > 1. It is then necessary to verify that this solution never
reduces the intersections with the boundary of H by more than j= 1 2kj.

Observe that for the TSP, when Tj \ H / q for j = 1,...,s and s is
odd, then 2P(H) = s + 1, and so this inequality becomes the usual comb
inequality.

6. Packing Steiner Trees.
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Packing Steiner trees is important in VLSI design, and recently researchers
have solved some previously unsolved problems to optimality using a poly-
hedral approach. Suppose that the edge capacities Ce all equal 1, so we are
seeking a minimum cost packing of edge disjoint Steiner trees. We present
two results concerning valid inequalities that have proven to be useful in
recent compuational sucesses.

Proposition 8.4 Every nontrivial facet-defining inequality of the Steiner
tree polyhedron yields a facet-defining inequality of the Steiner tree packing
polyhedron.

This result implies in particular that the Steiner partition inequalities (Propo-
sition 6.3) provide facets for this problem.

The next class of inequalities involve more than a single Steiner tree.
Consider two terminal disjoint sets T and T 2. We refer to a cycle F C E
as an alternating cycle with respect to T and T2 if F C E(T1, T 2). We refer
to an edge (u, v) as a diagonal edge if u, v E V(F), but (u, v) , F. We let
yk = 1 if edge e is in Steiner tree k.

Proposition 8.5 Let F be an alternating cycle with respect to T1 and T 2,
and F1 C E(T2 ), F2 C E(T1 ) be two sets of diagonal edges. Then

SZ Y + E > IV(F)1/2-1
eEE\(FUFl) eeE\(FUF2)

is a valid inequality for the Steiner tree packing polyhedron.

Figure 26 shows an alternating cycle F of length 6, as well as two tight
feasible solutions in which S1 and S2 are the Steiner trees spanning T1 and
T 2.
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Figure 26: Alternating Cycle for Packing Steiner Trees
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9 Trees-on-trees

Each of the models we have examined so far uses a single type of facility
(edge) to construct a tree, or a packing of trees, in a given graph. Some ap-
plications need to distinguish between different types of edges. For example,
electrical power systems often must connect major users with high voltage
(or highly reliable) transmission lines, but can use cheaper, low voltage (or
less reliable) lines to connect other users. Roadway systems often need to
use highways to connect major cities, but can use secondary roads to connect
smaller cities.

These applications give rise to a set of hierarchical models that are gen-
eralizations of the models we have considered earlier in this chapter. To
illustrate the analysis of this class of models, we will consider a particular
type of hierarchical problem.

9.1 Tree-on-tree Model

Suppose we are given an undirected graph G = (V, E) with two types of
nodes, primary P and secondary S: P U S = V and P n S = a. We wish to
find a minimum cost spanning tree in G. The problem differs from the usual
spanning tree problem, however, because we need to designate any edge in
the spanning tree either as a primary (high capacity, more reliable) edge or
as a secondary (low capacity, less reliable) edge. Designating edge {i, j} as a
primary edge costs aij > 0 and as a secondary edge costs bj > 0; we assume
bij < aij. The spanning tree we choose must satisfy the property that the
unique path joining every pair of primary nodes contains only primary edges.

As shown in Figure 12, we can interpret the solution to this "tree-on-
tree" problem as a Steiner tree with primary edges superimposed on top of a
spanning tree. The Steiner tree must contain all the primary nodes (as well,
perhaps, as some secondary nodes).

Note that if the costs of the secondary edges are zero, then the problem
essentially reduces to a Steiner tree problem with edge costs aj (the optimal
solution to the tree-on-tree problem will be a Steiner tree connected to the
other nodes of the network with zero-cost secondary edges). Therefore, the
tree-on-tree problem is at least as hard as the Steiner tree problem and so
we can expect that solving it will be difficult (at least from a complexity
perspective) and that its polyhedral structure will be complicated. If the
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Figure 27: Steiner tree on a spanning tree

costs a and b are the same, the problem reduces to a minimum spanning tree
problem. Therefore, the tree-on-tree problem encompasses, as special cases,
two of the problems we have consider previously in this chapter.

In this section, we develop and analyze a heuristic procedure for solving
this tree-on-tree problem; we also analyze a linear programming representa-
tion of the problem. In the context of this development, we show how to use
some of the results developed earlier in this chapter to analyze more complex
models.

To model the tree-on-tree problem, we let xij and yij be 0-1 variables
indicating whether or not we designate edge {i, j) as a primary or secondary
edge in our chosen spanning tree; both these variables will be zero if the
spanning tree does not include edge {i, j. Let S denote the set of incidence
vectors of spanning trees on the given graph and let ST denote the set of
incidence vectors of feasible Steiner trees on the graph (with primary nodes
as terminal nodes and secondary nodes as Steiner nodes). Let x = (xij) and
Y = (Yij) denote the vectors of decision variables. In addition, let cij = aij-bij
denote the incremental cost of upgrading a secondary edge to a primary
edge. With this notation, we can formulate the tree-on-tree problem as the
following integer program:
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z p = mincx +by

subject to

x < y

x E ST

y E S.

The forcing constraint xij < Yij states that if the chosen Steiner tree
contains edge {ij}, that is, xij = 1, then the chosen spanning tree must
also contain this edge. Thus, if edge {ij} belongs to the Steiner tree, then
xij = yij = 1 and so, as required, edge {i, j} contributes aij = cj + bij to the
solution's cost.

9.2 Heuristic Analysis

In an attempt to solve the tree-on-tree problem, we consider a heuristic that
chooses the better solution obtained from two other heuristics:

Spanning tree heuristic: Solve a minimum spanning tree problem with
respect to the costs aij and designate each edge in the minimum spanning
tree as a primary edge.

Steiner tree completion heuristic: Solve a Steiner tree problem (optimally
or approximately) with the primary nodes P as the terminal (required) nodes
and designate every edge on this tree T as a primary edge; using the costs
bij, find a least cost spanning tree T' that contains T; designate each edge in
T \ T' as a secondary edge.

Composite heuristic: Choose the smaller cost solution found by the span-
ning tree and Steiner tree completion heuristics.

A few comments are in order concerning these heuristics. After using
the spanning tree heuristic, we might try to improve upon the solution by
downgrading some primary edges into secondary edges: we can downgrade
every edge not on a path joining any two primary nodes. Even though we
would use this procedure in practice, examples show that this improvement
does not affect the worst-case analysis we will be considering, and so we use
a simpler procedure without this downgrading phase. Second, to complete

133



the Steiner tree into a minimum spanning tree in the Steiner tree completion
heuristic, we can use a version of the spanning tree greedy algorithm: starting
with the edges in the Steiner tree as members of the spanning tree, add
cheapest cost secondary edges one at a time that do not create cycles with
the edges already chosen.

We might consider two versions of the problem, an unrelated cost model
in which the costs a and b are arbitrary, and a proportional cost model in
which the costs aij the costs of primary to secondary edge are proportional
to each other; that is, for some constant r, aij = rbij for all edges {i,j}.
First, let us consider the proportional cost model.

Let z, zST, zCH be the objective values of the solutions produced by the
spanning tree, the Steiner tree completion, and the composite heuristics.
To streamline our notation, assume by scaling that z = r. Since z S = r
is the cost of a minimum spanning tree containing primary edges, the cost
of a minimum spanning tree with secondary edges is 1. We also let s, an
unknown, denote the cost of an optimal Steiner tree connecting the primary
nodes with secondary edges.

In terms of this notation, if we solve the Steiner tree to optimality, we
have,

zs = r

zST < rs + 1.

The specified upper bound on ZST is valid because the incremental cost of
completing an optimal Steiner tree T at least cost using secondary edges can
be no more than the cost of a minimum spanning tree with secondary edges.
(To establish this result, note that if we set the cost of every edge {i, j} in T
from bij > 0 to zero, the greedy algorithm on the entire graph could generate
the tree produced by the completion procedure as a minimum spanning tree.
The assertion is true since reducing some edge costs from bij to 0 cannot
increase the length of a minumim spanning tree.)

If we eliminate the forcing constraints x < y from the integer program-
ming formulation of the tree-on-tree problem, the problem decomposes into
a minimum spanning tree problem with secondary costs b and a Steiner tree
problem with incremental costs c. Since we are considering the proportional
cost model, c = a - b = rb - b = b(r - 1). Therefore, the cost of an optimal
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Steiner tree with respect the incremental costs c is (r - 1)s. Since removing
constraints cannot increase the optimal costs, we obtain a lower bound on
ip:

z .

Zi > 1 + (r- 1)s.

We next use the previous upper and lowerbounds to analyze the composite
heuristic.

Theorem 9.1 For the tree-on-tree problem with proportional costs, if we
solve the Steiner tree problem in the Steiner tree completion heuristic to op-
timality, then

z C H

< 4/3.
Zip

Proof. Combining the upper bounds on zS and zST and the lower bound on
zip shows that

ZCH min{r, rs + 1}

z ip - + (r- 1)s

For a given value of r, the first term on the right-hand side of this ex-
pression decreases with s and the second term increases with s. Therefore,
we maximize the right-hand side of this expression by setting r = rs + 1 or
s = (r - 1)/r. With this choice of s, the bound on zCH/ZiP becomes

ZCH 2
< r - r

Z
i p 1+(r-l)s r + (r - 1)2

To maximize the right-hand side over r, we set the derivative of the right-
hand side to zero, giving r = 2 and so zCH/zip < 4/3.

Note that when IP = 2, the Steiner tree problem becomes a shortest path
problem and so we can solve it to optimality. We can also solve the Steiner
tree problem to optimality for specialized classes of network, in particular
so-called series-parallel networks. Therefore, the 4/3 bound applies to these
situations.

In general, we won't be able to solve the Steiner tree problem to optimal-
ity, but will instead use an approximation procedure to solve the problem.
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Let us suppose that for the problem class that we wish to investigate, we
can obtain a heuristic solution to the Steiner tree problem with a guaranteed
performance bound of p; that is, the cost of the solution we generate is never
more than p > 1 times the cost of an optimal solution. For example, as
we have seen in Section 6, for problems satisfying the triangle inequality, we
can use an heuristic with a performance guarantee of p = 2. For Euclidean
graphs p = 2 and, as we have noted already, for series-parallel graphs, p = 1.

In this case, we obtain the following upper bound on the cost z S T of the
Steiner tree completion heuristic:

ST < prs + 1.

An analysis similar to the one we used to analyze the situation when we
could solve the Steiner tree problem optimally permits us to establish the
following result.

Theorem 9.2 For the tree-on-tree problem with proportional costs, if we
solve the Steiner tree problem in the Steiner tree completion heuristic using
a heuristic with a performance guarantee of p, then

CH

< 4- if p< 2
zip - 4 -p

and
zCH

zip <pif p> 2
Zip

For the unrelated cost model, a similar analysis permits us to obtain the
following result.

Theorem 9.3 For the tree-on-tree problem with unrelated costs, if we solve
the Steiner tree problem in the Steiner tree completion heuristic using a
heuristic with a performance guarantee of p, then

zCH

< p+ 1
z'p -

Although we will not establish this -fact in this discussion, examples show
that the bound in Theorems 9.1, 9.2, and 9.3 are tight-that is, some exam-
ples achieve the worst-case bounds.
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9.3 Linear Programming Bounds

Let PST and Ps be any polyhedral approximations to the spanning tree and
Steiner tree polytopes in the sense that ST C PST and S C Ps. For example,
these polyhedra can be any of the possibilities we have considered in Sections
3 and 6. With respect to these polyhedra, we can consider the following linear
programming relaxation of the tree-on-tree problem:

zip = mincx+by

subject to

x < y

x E PST

y E Ps.

Note that the polyhedra PST and Ps contain the constraints 0 < xij 
1, and 0 < yij < 1 for all edges {ij}.

To see how well this linear program represents the tree-on-tree problem,
we would like to bound ziP/z'P. The bound we will obtain depends upon
how well the polyhedra PST and Ps represent ST and S. As we have seen
in Section 3, we can choose several equivalent polyhedra so that Ps is the
convex hull of S. Suppose we choose one of these polyhedra. Moreover,
suppose that our choice PST permits us to obtain a performance guarantee
of 0 > 1 whenever we optimize any linear function over PST, that is for all
choices y of objective functions coefficients,

min r{yx x E ST} < min {yx x E PST}

Note that if we eliminate the forcing constraints from the linear program-
ming relaxation, then the problem separates into two independent linear
programming subproblems, one defined over Ps with cost coefficients b and
one defined over PST with cost coefficients c. Since Ps equals the convex
hull of spanning tree solutions, the first linear program has an optimal objec-
tive value equal to 1, the value of a minimum spanning tree using secondary
edges. Our performance guarantee implies that the optimal objective value
equal of the second linear program is no less than (r - 1)s/0. (Recall that
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(r - 1)s is the cost of an optimal Steiner tree connecting the primary nodes
using incremental costs c.)

As before, eliminating the forcing constraints x < y cannot increase the
optimal objective value, so we obtain the following lower bound on the ob-
jective value of the linear programming relaxation:

zip > 1 + [(r - 1)s/0.

As we have noted before, if we solve the Steiner tree problem to optimality,
z ip < ZST < rs + 1; moreover, z ip < r, the cost of a minimum spanning tree
with primary edges. Combining these results gives us the bound

ZipZ < min{r,rs+l}
Zip - +(r-1)s

Using an analysis similar to that used in the development of Theorems
9.1 and 9.2 permits us to establish the following result.

Theorem 9.4 Suppose that for any vector y, the optimal value of the linear
program min {yy : y E PST} defined over the polyhedron PST is at least 0
times the cost of an optimal Steiner tree with edge costs y. Then for the
tree-on-tree problem with proportional costs,

zip 4
- < if < 2

z lp - 4 - 0

and

zip
< 0 if 0 > 2.

zlp -

Similarly, we can obtain the following result for the unrelated cost model.

Theorem 9.5 Suppose that for any vector y, the optimal value of the linear
program min (yy : y E PST} defined over the polyhedron PST is at least 0
times the cost of an optimal Steiner tree with edge costs -y. Then for the
tree-on-tree problem with unrelated costs,

zip
- < 0+ 1.
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In Section 6, we analyzed one formulation of the Steiner tree problem with
= 2. Theorems 9.4 and 9.5 show that by using this same formulation for the

tree-on-tree problem, we obtain the same worst-case bound 4/(4 - 2) = 2 for
the proportional cost tree-on-tree problem and a bound of 3 for the unrelated
cost model.

Using flow models to represent PST and Ps and a dual ascent procedure
to approximately solve the resulting linear programming relaxation of the
tree-on-tree problem combined with an associated linear programming-based
heuristic, researchers have been able to solve large-scale problems (with up
to 500 nodes and 5000 arcs) to near optimality (guaranteed within 2% of
optimality). This computational experience is comparable (in problem size,
performance guarantee, and algorithm execution time) to the computational
experience for solving the Steiner tree subproblem itself.
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10 Summary

In this chapter, we have considered a variety of tree optimization prob-
lems. Stimulated by applications in telecommunications, production plan-
ning, routing, and VLSI design introduced in Section 2, we set out to examine
a variety of issues in modeling and algorithm design. Rather than attempting
to summarize all the results we have presented, in these concluding remarks,
we will focus on a few lessons to be learned from our discussion-about trees,
about modeling, or about algorithm design.

The algorithms we have considered either directly exploit a problem's un-
derlying combinatorial structure and/or build upon insights derived from the
problem's representation(s) as mathematical programs. For example, typi-
cally, when a problem is defined on a tree, a dynamic program will provide
an efficient solution procedure. Algorithms in this category include dynamic
programs for the optimal rooted subtree problem (Section 4.1) and for pack-
ing subtrees in a tree (Section 7). Greedy algorithms traditionally exploit
a problem's underlying combinatorial structure: for example, the fact that
whenever we add an edge to a spanning tree, we create a new tree by deleting
any edge in the cycle that this edge produces. The basic greedy algorithm
for the minimum spanning tree problem (Section 3) exploits this property
and the modified greedy algorithm (with node shrinking) for the optimal
branching problem (Section 5.2) exploits the combinatorial property that if
the node greedy solution contains a cycle C, then the problem has an optimal
solution containing Cl - 1 arcs from C.

Often in combinatorial optimization, whenever we can solve a problem
efficiently (using a number of computations that are polynomial in the prob-
lems size-e.g., the number of nodes and edges of the associated graph), we
are able to completely describe the underlying integer polyhedron, for exam-
ple, by showing that the algorithm that generates an integer solution solves
a linear programming formulation of the problem. This is the case for each
of the problems mentioned in the last paragraph.

For other problems, such as the capacitated version of the optimal rooted
subtree of a tree problem (Section 4.2), dynamic programming algorithms
might require more than a polynomial number of computations. The num-
ber of computations required for the dynamic programming algorithm for the
capacitated rooted subtree of a tree problem we have given grows as a poly-
nomial in the capacity C, which is exponential in log(C), the number of bits
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necessary to store the capacity (and therefore, in the sense of computational
complexity theory, the dynamic program is not a polynomial algorithm). As
a general rule, in these situations, the underlying integer polyhedra will be
quite complex; our discussion of several valid inequalities for this capacitated
rooted subtree problem illustrates this point.

Our analysis of the core minimum spanning tree problem in Section 3
provides useful lessons concerning the use of a mathematical programming
model to analyze an algorithm even when the mathematical program itself
is not required for creating or even stating an algorithm. In particular, the
use of linear programming lower. bounds (assuming a minimization form of
the problem) and linear programming dual variables has permitted us to
show that the algorithm finds an optimal solution. The same type of linear
programming bounding argument applies to many other problem situations,
as illustrated, for example, by our discussion of the rooted subtree of a tree
problem.

For more complex models such as those we considered in Sections 6, 8,
and 9, the underlying integer polyhedra are generally quite complicated. The
problems are also generally difficult to solve, at least in the theoretical sense of
computational complexity worst-case analysis. One major stream of research
for addressing such situations has been to develop "good" linear programming
representations of these problems, typically by adding new valid inequalities
to "natural" starting formulations. As we have noted, often by developing
good linear programming representations, empirically we are able to obtain
optimal or near optimal solutions fairly efficiently.

For two classes of models, Steiner tree models (with costs satisfying the
triangle inequality) and tree-on-tree models, we have been able to establish
worst-case bounds on the ratio between the objective values of the under-
lying integer program and its linear programming relaxation and between
the optimal objective value of the problem and the optimal objective value
of certain heuristic solution methods. In each case, we were able to do so
by using a common technique in combinatorial optimization: relating the
optimal objective value of the problem to some convenient and more easily
analyzed (linear programming or Lagrangian) relaxation of it.

Our development has frequently introduced and compared alternate mod-
eling and algorithmic approaches. In the context of packing subtrees on a
tree, we showed the equivalence between three popular general modeling
approaches-column generation, Lagrangian relaxation, and cutting planes.
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As we have seen, these three approaches all are capable of solving this class
of problems: they all find the optimal objective value. When applied to the
more general problem of packing subtrees on general graphs, the tree solu-
tion methods also provide identical initial bounds on the optimal objective
function value of problem. In this broader context, we typically need to
embed the starting solution into an enumeration procedure or in a branch
and cut method that adds valid inequalities to improve the initial bounds.
Lagrangian relaxation and column generation are attractive solution meth-
ods whenever we can identify an easily solvable subproblem (for example,
if the subproblems are any of the polynomially solvable problems we have
mentioned above). Column generation, like cutting plane methods, has the
advantage of working directly in the space of decision variables, whereas La-
grangian relaxation works in a dual space of Lagrange multipliers. Column
generation has the further advantage of possibly providing a feasible solu-
tion to the problem before optimality is attained. Lagrangian relaxation, on
the other hand, has the advantage of not having to solve a complex mas-
ter problem, but rather typically uses simple multiplier adjustment methods
(subgradient optimization, simple heuristic methods) to find the optimal La-
grange multipliers. Cutting planes require the solution of comparatively ex-
pensive linear programs at each stage (reoptimization from stage to stage is,
however, much easier than solving the linear program form scratch); cutting
planes have the advantage of being rather universal, however, (not requir-
ing easily solvable subproblems) as a long as we can solve the separation
problem of finding a violated inequality at each iteration, either optimally or
heuristically.

As this discussion shows, having different solution procedures at our dis-
posal offers us the flexibility of exploiting various characteristics of the prob-
lem we are solving.

Alternate models can be valuable for several reasons. First, as we have
just seen, some models (those that better identify special underlying sub-
structure) are better suited for use with different algorithms. Second, alter-
nate models can offer different theoretical or applied insight; for example, the
fact that the number of variables and constraints in the multicommodity flow
formulation of the minimum spanning tree is polynomial in the number of
nodes and edges of the associated graph immediately implies, from the the-
ory of linear programming, that the problem is solvable in polynomial time
without any insight into the problem's combinatorial structure. In addition,
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alternate, but equivalent models, often can work in concert with each other.
For example, as we saw in our discussion of the minimum spanning tree prob-
lem, the multicommodity flow formulation permits us to efficiently solve the
separation problem that arises when we apply a cutting plane algorithm to
the subtour formulation.

Our development has also highlighted one other fact; we have seen that
tree optimization problems provide a concrete problem setting for introduc-
ing a number of important methodologies and proof (and solution) tech-
niques from combinatorial optimization that are applicable more widely. We
have seen, for example, how to use dynamic programming or combinatorial
methods (the greedy algorithm) to define dual variables for underlying linear
programming representations of integer programs. We have introduced the
optimal inequality argument from the field of polyhedral combinatorics. We
have used linear programming and Lagrangian relaxation lower bounds to
show that certain polyhedra are integer. In our study of the Steiner prob-
lem, we have seen how to develop worst-case bounds by relaxing some of the
constraints of a linear programming model and we have seen how to use the
"parsimonious propert" to establish worst-case bounds. For the tree-on-tree
problem, we have seen how to combine two heuristics to develop a composite
heuristic with attractive worst-case error bounds.

Tree optimization problems and their variants are conceptually simple.
As we have seen, simple yet elegant solution methods are able to solve some
versions of this general problem class and very good mathematical (linear pro-
gramming) representations are available for many of these problems. In this
sense, many tree optimization problems are well solved. And yet, new insights
about tree optimization problems continue to surface; moreover, this decep-
tively simple problem setting also poses significant algorithmic and modeling
challenges that have the potential, as in the past, to not only draw upon
a wealth of knowledge from the general field of combinatorial optimization,
but to also stimulate new results and new methods of analysis.
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11 Notes and References

Section 1. No previous source has dealt with the range of topics we have
considered in this paper. Many books in the fields of network flows, graph
theory, and combinatorial optimization, as well as several survey articles that
we cite below, treat a number of particular topics though.

Section 2. For general background on the application domains we have
considered in this discussion, see the following sources: clustering (Hartigan
(1975)), computer and communications networks (Bertsekas and Gallager
(1992), Schwartz (1977), and Tanenbaum (1985)), facility location (Francis,
McGinnis and White (1992) and Mirchandani and Francis (1990)), produc-
tion planning (Graves et al. (1993)), routing (Bodin et al. 1983 and Lawler et
al. (1985)), VLSI design (Leighton (1983), Hu and Kuh (1985), and Lengauer
(1990)). Wagner and Whitin (1958) proposed the dynamic programming re-
cursion for the production planning problem. For a recent account of network
flows, see Ahuja, Magnanti and Orlin (1993).

Section 3. The greedy algorithm and the combinatorial proof for the span-
ning tree problem are due to Kruskal (1956). This result can also be found
earlier in the Russian literature (Boruvka (1926) and Jarnick (1930)). Prim
(1957) and Sollin (see Berge and Ghouila-Houri (1962)) have developed other
efficient algorithms for the spanning tree problem (see Ahuja et al. (1993) for
a discussion of these methods). Edmonds (1971) has described the matroid
polytope of which the tree polytope is a special case, and used the primal-
dual proof to prove integrality of the tree polyhedron. His idea of a certificate
of optimality has been of crucial importance in combinatorial optimization
that predates the development of NP-completeness (Cook (1971) and Karp
(1972)).

Wong (1980) first spurred interest in alternative formulations for the tree
polyhedron. In the context of the travelling salesman problem, he showed the
equivalence of the subtour model and the multicommodity flow model. In
Section 6 in our investigation of formulations for the Steiner tree problem, we
consider generalizations of this work. The study of alternative formulations
has become an important topic in combinatorial optimization; see Martin
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(1987) and Nemhauser and Wolsey (1988).
The mimimum spanning tree is just one of many problems defined on

trees; for example, we could choose a "bottleneck" objective function of max-
imizing the minimum edge weight in the chosen tree. Camerini, Galbiati and
Maffioli (1984) have provided a survey of the computational status of many
such alternative tree optimization problems

Section 4. In our discussion, we have introduced the core tree problem as a
prototype for a nonserial (non shortest path) dynamic program. Groeflin and
Liebling (1981) have presented a more general model and used the network
flow argument to prove integrality. The dynamic programming argument is
again of the primal-dual type due to Edmonds that we cited above. Lovdsz
(1979) first used the so-called optimal inequality argument which other re-
searchers have recently rediscovered and used extensively.

Section 5. The degree constrained spanning tree problem and the opti-
mal branching problem are special cases of the matroid intersection problem
and are thus covered in Edmonds (1969). The algorithm for the degree con-
strained spanning tree problem is due to Volgenant (1989). Edmonds (1967)
first treated optimal branchings. The branching algorithm, though not our
analysis of it, is based on a presentation in Lawler (1976). The proof of
integrality we have given uses ideas of an optimal inequality proof due to
Goemans (1992).

Section 6. The Steiner problem has received considerable attention in recent
years; Maculan (1987) and Winter (1987) have presented surveys on exact
and heuristic algorithms, respectively. See also, Hwang and Richards (1992)
and Hwang et al. (1992). Very recently several researchers-Goemans (1994),
Myung and Goemans (1993), Lucena and Beasley (1992) and Margot et al.
(1991)-have modeled and analyzed the node weighted Steiner tree problem.
The first two of these papers shows the equivalence of a large number of
formulations.

The polyhedral structure of the Steiner problem is treated in Chopra and
Rao (1988a, 1988b) who developed various families of facet-defining inequal-

145



ities, including both Steiner Partition and odd hole inequalities. Goemans
(1994) introduced combinatorial design facets.

As was suggested in Section 4, most optimization problems on trees turn
out to be easy, so it is natural to ask whether there is a larger class of graphs
on which problems that are NP-hard on general graphs remain polynomially
solvable. Series-parallel graphs (also known as two-trees) and more generally
k-trees often have this property: see, for example, Takamizawa et al. (1982),
Arnborg et al. (1991). The critical point in analyzing these problems is the
fact that by eliminating a k-clique in a k-tree it is possible to decompose the
graph, and thereby derive a recursive algorithm. Given that there are effi-
cient algorithms on such graphs, we might also expect polyhedral results. For
instance, Goemans (1994) and Margot et al. (1994) show that the formula-
tion Psub is integral for the node-weighted Steiner problem on series parallel
graphs. Prodon et al. (1985), Goemans (to appear), and Schaffers (1991)
contain related polyhedral results on such graphs.

Lucena and Beasley (1992) and Chopra and Gorres (1990) have conducted
computational studies based on the formulation Psub, Chopra, Gorres and
Rao (1992) have used formulation Pdt and Balakrishnan et al. (1992) have
used a directed flow formulation. Wong (1984) earlier developed a dual ascent
algorithm for the directed Steiner problem using Pdcut, and Beasley(1989)
developed a Lagrangian approach with spanning tree subproblems. Beasley
has solved random generated sparse problems with up to 2500 nodes and
62500 edges, Chopra et al. have handled graphs with up to 300 nodes and
average degrees of 2,5 and 10, as well as complete Euclidean graphs with
between 100 and 500 nodes, and Balakrishnan et al. have solved problems
with up to 500 nodes and 5000 edges.

Much work has been done on heuristics for the Steiner problem. One
motivation comes from VLSI design and the routing of nets, see Korte et
al. (1990). The worst case bound of 2 for the tree heuristic has been known
for years. The parsimonious property and our proof of the bound is due to
Goemans and Bertsimas (1990). The Held and Karp relaxation for the TSP
first appeared in Held and Karp (1971). Recently, researchers have developed
improved worst case heuristics for the Steiner problem. Zelikovsky (1993)
derives a bound of 11/6, and Berman and Ramaiyer (1992) show how to
reduce it to about 1.75.

Theorem 6.12 is due to Bienstock et al. (1993). Geomans and Williamson
(1992) have developed a heuristic with a worst-case bound of 2. When we
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must pay to include a node in the Steiner tree,i.e., the objective function is of
the form EeEE We + EiEV 7rizi with each 7r > 0, there is little hope of finding
a heuristic with a constant worst-case bound. Klein and Ravi (1993) have
presented a heuristic for which zH/zNWsT < 2 log ITI.

Section 7. The dynamic programming algorithm for the OSP and the poly-
hedral proofs of Theorems 1 and 2 appear in Barany et al. (1986). The re-
lationship between subtree of tree incidence matrices and clique matrices of
chordal graphs appears in Golumbic (1980). Since chordal graphs are perfect,
this analysis provides an alternative proof of Theorem 1. For the extensive
literature on facility location on trees, see Mirchandani and Francis (1990).
Results for the Constrained Subtree Packing problem OCSP are based on
Aghezzaf et al. (1992). Balakrishnan et al. (1991) report on computational
experience, using Lagrangian relaxation, with the telecommunications model
cited in Section 1.

Section 8. The equality of the objective values of the three algorithms can
be derived by consulting standard texts. The important question of how to
continue when the column generation approach gives a fractional solution has
received some attention in Vance et al. (1992) and in Hansen et al. (1992).

During the last decade, researchers have intensively studied the multi-
item lotsizing problem. Work on the polyhedral structure of the single-item
problem can be found in Brdny et al. (1984), Van Hoesel et al. (1991),
and Leung et al. (1989). Thizy and Van Wassenhove (1986) have used the
Lagrangian relaxation approach for a closely related multi-item problem.
Cattryse et al. (1990) have examined heuristics based on a column generation
approach, and Pochet and Wolsey (1991) have reported computational results
with the cutting plane approach.

Wagner and Whiten (1958) proposed a dynamic programming algorithm
for solving the single-item dynamic lotsizing problem. Aggarwal and Park
(1993), Federgrun and Tsur (1991), Wagelmans et al. (1992) have proposed
very efficient algorithms for this problem. Their analysis shows how to exploit
special structure to develop algorithms that are more efficient than those that
apply to general trees.

The valid inequalities and the column generation approach described for
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the clustering problem can be found in Johnson et al. (1991). The literature
on the polyhedral structure of cut polytopes is extensive. Work closely related
to the clustering problem includes Chopra and Rao (1993), Groetschel and
Wakayabashi (1989), and de Souza et al. (1993).

Araque et al. (1990) have studied the polyhedral structure of the capac-
itated tree problem and the unit demand vehicle routing problem including
the inequalities we have presented. Araque (1989) has studied the use of
these inequalities for solving unit demand capacitated vehicle routing prob-
lems, but little or nothing has been reported for non-unit demands. However,
several papers contain results on the polyhedral structure of the VRP poly-
hedron with constant capacity but arbitrary demands, including Cornuejols
and Harche (1993). Our presentation of the comb inequalities is taken from
Pochet (1992). Gavish (1983,1984) has designed several algorithms for the
capacitated tree problem including the approach we described.

Work on the Steiner tree packing polyhedron is due to Groetschel at
al.(1992a, 1992b). These authors have developing a branch and cut approach
based on valid inequalities and separation heuristics including both Steiner
tree inequalities and the cycle inequalities we have presented; they solve seven
unsolved problems from the literature all to within 0.7% of optimality (four
to optimality).

Section 9. The results in this section are drawn from Balakrishnan et al.
(1992a, 1992b, 1993) who treat not only the tree-on-tree problem, but also
more general problem of "overlaying" solutions to one problem on top of
another other. Previously, Iwainsky (1985) and Current et al. (1986) had
introduced and treated the tree-on tree problem and a more specialized path
on tree problem. Duin and Volgenant (1989) have shown how to convert the
tree-on-tree problem into an equivalent Steiner tree problem. Therefore, in
principle, any Steiner tree algorithm is capable of solving these problems.
The computational experience we have cited in Section 9 (see Balakrishnan
et al. (1993)) uses a specialized dual-ascent approach directly on the tree-on-
tree formulation.

Acknowledgments. We are grateful to Michel Goemans, Leslie Hall, Prakash
Mirchandani, and S. Raghavan for constructive feedback on an earlier version
of this paper.
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