
A New Multicommodity Flow Model for the Job
Sequencing and Tool Switching Problem

Tiago Tiburcio da Silva
Antônio Augusto Chaves
Horacio Hideki Yanasse

Univ. Fed. de São Paulo∗, São José dos Campos, SP, Brazil

Abstract

In this paper a new multicommodity flow mathematical model for the
Job Sequencing and Tool Switching Problem (SSP) is presented. The
proposed model has a LP relaxation lower bound equal to the number
of tools minus the tool machine’s capacity. Computational tests were
performed comparing the new model with the models of the literature.
The proposed model performed better, both in execution time and in the
number of instances solved to optimality.

combinatorial optimization; job sequencing and tool switching; multicom-
modity flow; integer programming; linear programming relaxation.

1 Introduction
Flexible Manufacturing Systems (FMS) are automated production systems, ca-
pable of producing a wide variety of products. These systems are designed to
adapt and react to changes in industrial processes, including failures (Gamila
and Motavalli (2003); Zeballos (2010)). FMS has to satisfy requirements of effi-
ciency and flexibility. Therefore the problems of production planning are more
difficult compared to those found in other production systems.

According to Stecke and Solberg (1981) there are five possible classifications
for production planning problems in a FMS: Part type selection problems, Ma-
chine grouping problems, Product ratio problems, Resource allocation problems,
and Loading problems. The Job Sequencing and Tool Switching problem (SSP)
is classified as a Loading problem. The SSP consists in determining a sequenc-
ing of jobs, so the total number of tool switches is minimized. A tool switch
is computed when we have the removal of a tool from the magazine and the
insertion of another tool in its place. The magazine can accommodate any tools

∗MeMO-2020

1

needed to process any job, but its capacity is limited. All the tools required
cannot be all together in the magazine; therefore, tool switches are required.

The SSP arises in settings where unnecessary tool switches result in under-
utilization of the machine, an unacceptable level of machine downtime, and
more time spent on tool switches than any other setup time (Agapiou (1991);
Van Hop and Nagarur (2004); Melnyk, Ghosh, and Ragatz (1989); Zhang and
Hinduja (1995)).

In this paper, we consider that (Widmer (1991); Zhou, Xi, and Cao (2005)):

• There are a set of jobs to be processed and each job requires a fixed set
of specific tools;

• No job requires a set of tools that exceeds the capacity of the machine;

• All tools are always available;

• A single machine is available to process all jobs;

• It is an offline version of the problem;

• Once the machine has started processing a job, it must be finished com-
pletely;

• Only one tool switch is held at time;

• Each tool fits in any slot of the magazine and occupies only a single slot;

• The time associated with the removal and insertion of a tool (a switch) is
independent and constant;

• No breaks, no wear and no maintenance of the tools are considered.

The SSP is a NP-hard problem (Crama et al. (1994); Tang and Denardo
(1988a)). Tang and Denardo (1988a) showed that the SSP and the Traveling
Salesman Problem (TSP, Dantzig, Fulkerson, and Johnson (1954)) are related.
They viewed the SSP as a composition of two inter-related subproblems:

1. The Sequencing problem (SP) that consists in determining an optimum
sequence of processing the jobs;

2. The Tooling problem (TP) that consists in determining the tools that must
be in the machine during the processing of each job in order to minimize
the tool switches given a fixed sequence of processing the jobs.

For the solution of the Tooling problem, there is an optimal policy proposed
by Tang and Denardo (1988a). This policy called KTNS (Keep Tool Needed
Sooner) defines that whenever a new tool is inserted and a tool from the maga-
zine must be removed, the tools that should be kept are those that will be used
soonest.

2

Table 1: An example of an instance of the SSP with 6 jobs, 9 tools and capacity
equal to 4 (Catanzaro, Gouveia, and Labbé (2015)).

Jobs 1 2 3 4 5 6
Tools 1 1 2 1 3 1

4 3 6 5 5 2
8 5 7 7 8 4
9 8 9

Table 2: An optimal solution of the instance of the SSP shown in Table 1.

Jobs 4 2 5 3 6 1
Tools 1 1 8 8 8 8

5 5 5 6 1 1
7 7 7 7 4 4
9 3 3 2 2 9

Number of Tool Switches 0 1 1 2 2 1

In Table 1 we show an example of an instance of the SSP. In the first row in
this table the jobs that will be sequenced are identified with numbers. In each
column, the set of tools necessary to produce the corresponding job is presented.
The same information given in Table 1 can be provided using a binary job-tool
matrix where each row corresponds to a tool and each column corresponds to a
job. In this matrix, a 1 in row i and column j indicates that to process job j,
we need tool i and, a 0 indicates otherwise.

In Table 2 we show an optimal solution of the instance presented in Table
1. In the first row, we have the order that the jobs are processed. An optimum
processing sequence is 4− 2− 5− 3− 6− 1. The tools in bold are unnecessary
to process the specific job, but maintaining them in the magazine result in the
minimum number of tool switches induced by the specific sequence of the jobs.
This solution results in a total number of tool switches equal to 7: 1 switch
between jobs 4 and 2; 1 switch between jobs 2 and 5; 2 switches between jobs 5
and 3; 2 switches between jobs 3 and 6; and 1 switch between jobs 6 and 1. The
underscored tools in Table 2 are the tools that were inserted into the machine
in place of the others that were withdrawn from the magazine.

In this article we propose a new multicommodity flow model for the SSP,
which has improved Linear Programming (LP) relaxation compared to the ex-
isting models of the literature. The main achievements obtained are:

• The lower bound for the objective function value given by the new model
is at least the difference between the number of different tools and the
capacity of the tool magazine in the machine;

• The lower bound provided by the new model is, in general, better than

3

the lower bounds given by other models of the literature;

• A constraint is proposed that eliminates half of the possible symmetric
solutions for the problem;

• The CPLEX solver using the new model was able to solve 17.01% more
instances of the literature compared to other previous known models.

The remainder of the paper is organized as follows. In Section 2 we present
a literature review of the SSP. In Section 3 we present the new multicommodity
flow based formulation for the SSP. Computational results for the proposed
model are presented and analyzed in Section 4 followed by some conclusions in
Section 5.

2 Related works
Several solution approaches and some mathematical models have been proposed
for the SSP. The SSP is a NP-hard problem Crama et al. (1994); Tang and
Denardo (1988a); hence, particular attention has been given to heuristics and
metaheuristics strategies to solve it. The number of exact solution approaches
proposed in the literature to solve the SSP is quite limited.

One of the earliest and impactful studies on the SSP was produced by Tang
and Denardo (1988a). In this work, they showed that the problem is NP-hard
(as in Crama et al. (1994)) through a reduction to the Traveling Salesman prob-
lem. The authors presented an integer linear programming model with binary
variables for the problem that was solved using the IBM MPSX/MIP and PIPX
codes in an IBM 370. The authors proposed a Greedy Perturbation (GP) heuris-
tic based on three steps. First, it determines a sequence of jobs. Second, using
the KTNS policy, the minimum number of tool switches corresponding to this
sequence is determined. Finally, the sequence is perturbed in order to determine
a sequence that produces the least number of tool switches. The conclusion was
that the GP procedure is efficient for small instances but inefficient for large
instances.

Bard (1988) proposed an integer nonlinear programming model with binary
variables for the SSP. The objective function was linearized and several codes
were used to solve the linearized model, among them the IBM MPSX/MIP code
in an IBM 3081. The codes, however, did not obtain good results in practical
acceptable times for one instance tested by the authors with N = 10 jobs,
M = 9 tools and C = 4 slots. By dualizing machine capacity constraints and
the tool demand constraints using Lagrange multipliers, two subproblems were
created, one solved by the Hungarian Algorithm and the other by Dynamic
Programming. Tests were performed with instances with a maximum of 25
jobs and the results obtained were compared with an (incomplete) enumerative
procedure, reporting in some cases the same values. Bard’s linearized model is
the same model proposed by Tang and Denardo (1988a). The author mentions
two applications of the SSP in industries, and he discusses an extension of the

4

problem to multiple machines where the sequence of jobs remains fixed and the
same in all machines.

Crama et al. (1994) and Oerlemans (1992) presented a proof that the SSP
is NP-hard whenever the machine capacity is greater than or equal to 2. They
also presented an integer formulation with binary variables, based on maximum
0-block subsets, i.e. a maximal subset of consecutive zeros delimited by 1′s in a
row of a job-tool matrix for the Tooling problem when a job sequence is fixed.
They proved that this formulation can be solved in polynomial time and pro-
vided a new proof for the validity of the KTNS policy developed by Tang and
Denardo (1988a). The authors also established links between the SSP and other
combinatorial optimization problems: the matrix permutation problem (Gate
Matrix Layout, Möhring (1990)), optimization with greedy constraint matri-
ces (Hoffman, Kolen, and Sakarovitch (1985)), the block minimization problem
(Kou (1977)), and recognition of interval matrices (Fulkerson and Gross (1965)).
As the Tooling problem is well solved by the KTNS policy, the authors focused
on the Sequencing problem and proposed eleven heuristics divided into two
classes, construction heuristics and refinement heuristics. Among the construc-
tion heuristics are four heuristics based on the TSP, where each node represents
a job and the edge cost is the cost of sequencing two successive jobs.

Hertz et al. (1998) modeled the Sequencing problem as a TSP and used
the KTNS policy to solve the Tooling problem. They presented nine heuristics
to solve the resultant TSP. The authors used several metrics to estimate the
cost of an edge on the TSP graph, including one that takes into account the
overall vision of the entire solution, in addition to the interactions between two
jobs at a time. To test the effect of the metrics on the heuristics, extensive
computational tests were performed, using instances generated in a similar way
as Crama et al. (1994). The authors concluded that the GENI and GENIUS
heuristics generated better solution values than those presented by Crama et al.
(1994). The GENI heuristic is a construction heuristic for solving the TSP
proposed by Gendreau, Hertz, and Laporte (1992) and, the GENIUS heuristic
is the GENI heuristic combined with a post optimization phase.

Privault and Finke (1995, 2000) modeled the SSP as a K-Server Problem
with Bulk Request, where the slots on the machine represent the servers and tool
sets required by a job corresponding to a bulk request. The authors proposed
a heuristic adapted from the partitioning algorithm of McGeogh and Sleator
(1991) for the K-Server Problem and concluded that their modified heuristic
provided better upper bounds when compared to job grouping heuristics Algo1
and Algo2. These grouping heuristics iteratively group jobs that use common
tools, creating news fictitious jobs that require a total number of tools that
do not exceed the capacity of the tool magazine. The new jobs are scheduled
according to the Shortest Edge heuristic (Algo1) or the Farthest Insertion heuris-
tic (Algo2) and afterwards, a 2-opt heuristic is applied to modify the sequence
obtained to improve the objective function (Bentley (1992)).

Djellab, Djellab, and Gourgand (2000) reformulated the SSP using a par-
ticular representation of hypergraphs. Based on this formulation, the authors
proposed an iterative best insertion heuristic (IBI). The authors concluded that

5

their results improved the results of Crama et al. (1994), in terms of both com-
putational execution time and solution quality. Moreover, the performance of
IBI heuristic did not vary with the sparsity of the job-tool matrix.

Shirazi and Frizelle (2001) developed an empirical study of the SSP in seven
industries that use high technology and manufacturing processes. The main
objective of the study was to compare the behavior and solutions obtained by
the heuristics of the literature against the methods used in the industries. The
authors used six heuristics of the literature that produced significantly better
results than existing industry methods, getting an average tool switch saving of
21.1%.

Yanasse and Pinto (2002) proposed a network-based model for the SSP,
and developed preprocessing operations to decrease the size of the problem. In
Yanasse and Lamosa (2005, 2006), the authors modeled the SSP as a Generalized
Traveling Salesman Problem (GTSP) and proposed a solution method to solve
it, but they did not perform any computational studies.

To overcome the limitations of Tang and Denardo’s model (Tang and Denardo
(1988a)), Laporte, Salazar-Gonzáles, and Semet (2004) formulated an inte-
ger programming model based on the TSP, inserting a dummy job, indicating
the start and the end of the processing of the jobs, and modeling the subtour
elimination constraints as in Dantzig, Fulkerson, and Johnson (1954). The au-
thors showed that their new formulation outperformed the one proposed by
Tang and Denardo (1988a), regarding the values of their linear programming
relaxations, after showing that the linear programming relaxation of Tang and
Denardo’s model is equal to zero. The authors proposed several valid inequal-
ities to strengthen their model and two exact enumeration algorithms to solve
the SSP. The first one was a Branch-and-cut algorithm, where, in the root node,
the authors used the GENIUS heuristic with the KTNS policy to construct a
feasible solution. Subtour elimination constraints of their model were not con-
sidered in the beginning. They were introduced as needed. At each node of the
search tree, the most violated subtour elimination constraints were introduced.
When no violated inequality could be identified, broad branching was carried
out; i.e. given a sequence of fixed jobs, new nodes, corresponding to the jobs
that are not in this sequence, are created. Computational tests showed that
this branch-and-cut algorithm was able to solve to optimality some instances
with 9 jobs. In addition, the lower bounds obtained by their model were better
than the ones provided by Tang and Denardo’s model, but they were still weak.
The second algorithm was a Branch-and-Bound that enumerated all possible
sequences of the jobs. An upper bound for the SSP was obtained by a greedy
heuristic. The authors proposed two values for the lower bounds: a simple lower
bound, based on the partial sequence of the jobs sequenced and, the result of
the Minimum Spanning Tree Problem for the jobs not yet sequenced. The
branching rule uses the order in which the jobs appear in the greedy algorithm.
Computational tests showed that this branch-and-bound algorithm was able to
solve to optimality a few instances with 25 jobs.

Ghiani, Grieco, and Guerriero (2007) demonstrated that the SSP has the fol-
lowing symmetry property: a sequence of jobs and its reverse order sequence pro-

6

duces the same minimum number of tool switches. The authors used this prop-
erty in the Branch-and-bound method proposed by Laporte, Salazar-Gonzáles,
and Semet (2004), modifying the branching rule so that the algorithm consid-
ered a job sequence only once. An advantage of their method was indicated in
the case where the instances were close to the instances of the TSP (i.e., the
higher the percentage of tool magazine slots occupied by jobs was, on average,
the closer to the TSP the SSP instance was).

Yanasse (2009) proposed a new lower bound to the SSP based on the simi-
larity of this problem with the Minimization of Open Stacks Problem (MOSP,
Becceneri, Yanasse, and Soma (2004)). The new lower bound was not outper-
formed by previous lower bounds in the literature.

Yanasse, Rodrigues and Senne (2009) proposed an enumerative scheme based
on partial ordering of the jobs to determine the optimal solution of the SSP. The
authors proposed the determination of lower bounds using subsets of the original
set of jobs. The proposed method defined an initial partial subset of jobs, and
successively added jobs neatly to this set in such a way that the number of tool
switches remained the same or increased by a small amount. The method was
tested in randomly generated instances and was able to solve 1233 instances,
against the 1136 instances solved in Crama et al. (1994).

Ghiani, Grieco, and Guerriero (2010) formulated the SSP as a minimal cost
Hamiltonian cycle problem with a nonlinear objective function, and subtour
elimination constraints modeled by Dantzig, Fulkerson, and Johnson (1954).
The authors used the symmetry property of the SSP (Ghiani, Grieco, and Guer-
riero (2007)) in the proposed branch-and-cut algorithm, establishing rules of
dominance and using separation techniques to detect violated subtour elimina-
tion constraints in its formulation. The proposed method was able to solve a
few instances with 45 job and 35 tools.

Al-Fawzan and Al-Sultan (2002) proposed 5 different versions of a Tabu
Search heuristic to solve the SSP. The authors used short- and long-term mem-
ory structures combined with probabilistic and deterministic oscillations to
guide the heuristic. All the proposed versions were promising, but the long-
term memory structure had a more significant effect on the performance of the
Tabu Search.

Zhou, Xi, and Cao (2005) developed a Beam Search algorithm and data
preprocessing for the SSP. This algorithm used heuristic to estimate some best
paths on the search tree of a branch-and-bound algorithm to be explored. The
algorithm improved the results of Bard (1988) both in computational execution
time and solution quality.

Salonen, Raduly-Baka, and Nevalainen (2006) proposed a multistart heuris-
tic, combining a job grouping technique, the GENIUS algorithm, and the KTNS
policy. The authors tested their method with instances of the SSP provided by
Crama et al. (1994) and Smed et al. (1999), and concluded that it performed
well, considering the tradeoff between solution quality and execution time.

Amaya, Cotta, and Fernández (2008) proposed a local search algorithm, a
permutative genetic algorithm, and a memetic algorithm that combined the
two previous methods. The computational results showed that the memetic

7

algorithm outperformed the other two algorithms, and also the Beam Search
method proposed by Zhou, Xi, and Cao (2005).

Amaya, Cotta, and Fernández-Leiva (2010) developed four cooperative mod-
els, performed empirical tests, and concluded that one of the cooperative models
had superior performance compared to the Beam Search Algorithm of Zhou, Xi,
and Cao (2005) and the Tabu Search Algorithm of Al-Fawzan and Al-Sultan
(2002). Later on, Amaya, Cotta, and Fernández-Leiva (2011) considered 36
memetic cooperative models, that differed among themselves in the particular
combination of metaheuristics assigned to agents and their connection topology.
Fully memetic models, i.e. cooperative models in which each agent is endowed
with a (possibly different) memetic algorithm, were the ones that provided the
best results, improving the results of the algorithm proposed in Amaya, Cotta,
and Fernández (2008).

In Amaya, Cotta, and Fernández-Leiva (2012), three different local search
techniques (Hill Climbing, Tabu Search, and Simulated Annealing) were embed-
ded in evolutionary algorithms. Computational tests showed that the memetic
algorithm embedded with the Hill Climbing search yielded the best results, per-
forming better than its stand-alone constituents, including the Beam Search
heuristic defined in Zhou, Xi, and Cao (2005).

Amaya, Cotta, and Fernández-Leiva (2013) developed a memetic algorithm
based on the Cross Entropy technique, which is a Monte Carlo approach to
optimization (Rubinstein (1999)), which evolves a population based on a proba-
bility mass function, which is then updated in each generation. Computational
tests showed an improved performance of this new algorithm compared to the
algorithms presented in Amaya, Cotta, and Fernández-Leiva (2011). Amaya
et al. (2019) proposed a deep meta-cooperation model to solve SSP, and com-
putational results showed better performance in relation to the results achieved
by Amaya, Cotta, and Fernández-Leiva (2013).

Senne and Yanasse (2009) developed three Beam Search metaheuristics based
on an enumeration scheme that considered the partial ordering of jobs. All
variations used the depth search for branching the enumeration tree. The au-
thors generated 1,350 instances according to the parameters in Laporte, Salazar-
Gonzáles, and Semet (2004), and they concluded that the algorithm that main-
tained only the 3 best branches at each node of the enumeration tree, and ran-
domly chose the next node to be branched, presented the best results among
the proposed methods.

Chaves, Senne, and Yanasse (2012) proposed a two-phase heuristic method.
In the first phase, a solution was constructed from a SSP graph. In the second
refinement phase, the solution generated in the first phase was improved by ap-
plying an Iterative Local Search metaheuristic (Stützle (1999)). A SSP graph is
a graph where the vertices are the tools and an edge exists if, and only if, the two
tools that are incident to this edge are used together in the processing of some
job. This graph is also known as a MOSP graph (Yanasse (1997)). The solu-
tion found was then used as the initial upper bound in the enumerative method
proposed in Yanasse, Rodrigues and Senne (2009). The heuristic method found
the optimal solution for the great majority of the instances tested.

8

Burger et al. (2015) modeled the color print scheduling problem (CPSP) as
a SSP, where each job was packaging, and each tool was an ink cartridge. They
proposed and implemented a heuristic method based on Salonen et al. (2006).
Random problem instances were created and solved with the proposed heuris-
tic. The instances were also solved using CPLEX 11.0 with Tang and Denardo
(1988a) and Laporte, Salazar-Gonzáles, and Semet (2004) formulations. The
heuristic proposed produced relatively good results, especially in cases where
the number of tools required for processing a job was close to the tool magazine
capacity. The authors also applied the proposed heuristic to a real case study
of a printing company located in the South African Western Cape, obtaining an
improvement, on average, of 61.6% on the number of ink cartridge switches.

Laporte, Salazar-Gonzáles, and Semet (2004) showed that the linear relax-
ation of their formulation outperformed the linear relaxation of the formulation
proposed by Tang and Denardo (1988a). According to Catanzaro, Gouveia, and
Labbé (2015), the reason that few authors have attempted exact methods for
the SSP, is due to the fact that the lower bounds obtained by the formulations
proposed in the literature are weak. Hence, Catanzaro, Gouveia, and Labbé
(2015) developed three integer linear programming formulations for the SSP to
strengthen the lower bounds of existing formulations in the literature. They
showed that the lower bounds obtained by the linear relaxations of their formu-
lations were at least equal to those obtained by Laporte, Salazar-Gonzáles, and
Semet (2004). The best formulation among the proposals consisted of a flow
formulation in arcs based in structural properties of the Tooling subproblem
and 0-blocks.

Chaves et al. (2016) developed a hybrid method, combining Clustering Search
and a Biased Random-Key Genetic Algorithm (BRKGA). This method detected
promising regions in the search space, i.e. regions that could contain good solu-
tions, and applied a local search only those regions. The local search heuristic
used was the Variable Neighborhood Descent. The authors used 1,510 instances
(Senne and Yanasse (2009), Crama et al. (1994)) to test the proposed method,
and found an optimal solution in 1,360 of the instances. For the remaining 150
instances, the method found better solutions compared to those of the literature.

Beezao (2016) studied the SSP as a Generalized Traveling Salesman Prob-
lem (Yanasse and Lamosa (2005, 2006)) and proposed four versions of a domain
reduction algorithm that were: greedy, reverse, approximation of isolated nodes
and path relinking strategies. The author concluded that her method was com-
petitive when applied to small and medium size instances.

Paiva and Carvalho (2017) introduced a new graph-based representation to
the SSP called the Tool Graph, in which the set of nodes represented the tools,
an edge represented a pair of tools required by the same job, and the weight
of each edge was the number of jobs that required both tools. The authors
proposed an Iterated Local Search metaheuristic, where the initial solution was
given by a Tool Graph search-based heuristic that analyzed the relationship
between the tools, and proposed a local search method based on a 1-block
grouping, i.e. a maximal subset of consecutive 1′s delimited by zeros in a row of
a job-tool matrix for the Tooling problem, when a job sequence was fixed. The

9

authors evaluated the proposed metaheuristic, applying it to 1,670 instances of
the literature (Crama et al. (1994), Yanasse, Rodrigues and Senne (2009) and
Catanzaro, Gouveia, and Labbé (2015)), and they concluded that the perfor-
mance of their metaheuristic was superior to the one proposed by Chaves et al.
(2016).

Ahmadi et al. (2018) modeled the Sequencing problem by a second-order
TSP (Jäger and Molitor (2008)) called 2-JSeP, and showed that this induced
version of problem SSP is NP-hard. In a second-order TSP, the costs do
not depend on arcs, but on each sequence of three consecutive vertices in the
tour. The authors used the obtained solution by 2-JSeP to seed a genetic al-
gorithm combined with machine learning (Dynamic Q-learning-based Genetic
Algorithm) and compared their results with the ones in Paiva and Carvalho
(2017). The proposed algorithm had an improved performance, both in execu-
tion time and quality of the solutions, compared to the algorithm of Paiva and
Carvalho (2017).

In his Master’s dissertation, Dehaybe (2018) addressed the SSP and pro-
posed a metaheuristic, hybridizing an Ant Colony algorithm with a new local
search method named 2.75-opt, that combined 2-opt, two simple 3-opt moves
and job swap (Bentley (1992)). The proposed metaheuristic outperformed the
metaheuristics of Ahmadi et al. (2018) and Paiva and Carvalho (2017) in most of
the datasets, determining better solutions compared to the ones of the literature
for almost every non-trivial dataset.

There are many variations of the SSP. Among them, we can mention those
that consider parallel machines (Fathi and Barnette (2002), Ghrayeb, Phojana-
mongkolkij, and Finch (2003), Gökgür, Hnich, and Özpeynirci (2018)), machines
with modular feeders (Raduly-Baka et al. (2018)), tool switching instants (Tang
and Denardo (1988b)), capacity constraint variations (Rupe and Kuo (1997)),
job shop scheduling (Gao and Moon (2019)), non-uniform tool sizes (Matzli-
ach and Tzur (1998)), tool transporter movements (Song and Hwang (2002),
Karzan and Azizoglu (2008)), tool indexing time (Baykasoğlu and Ozsoydan
(2016)), tool wear (Dadashi, Moslemi, and Mirzazadeh (2016)), tool duplica-
tions (Baykasoğlu and Ozsoydan (2017)), dynamic job arrival and tool duplica-
tions (Baykasoğlu and Ozsoydan (2018)). A comprehensive literature review of
SSP and its many variations is provided in Calmels (2018).

In the next section, we introduce a new model formulation for the SSP.

3 The new multicommodity flow formulation for
the SSP

Next, we introduce the notation that will be used in the new proposed model.
The total number of jobs to be processed is N and the total number of different
tools available to process the jobs is M . Consider that the machine has the
capacity to accommodate up to C tools. Let J = {1, . . . , N} be the set of N
jobs to be sequenced, T = {1, . . . , M} the set of M tools necessary to process

10

the jobs in J , and Ti, the set of tools necessary to process the job i, i ∈ J .
Consider a graph G(V,A), where the set V is composed by N + 3 nodes,

numbered 0 to N + 2, so that, V = {0, 1, . . . , N + 2}. We define node 0 as the
origin (or supply) node, node N +2 as an auxiliary node, and node N +1 as the
destination (or sink) node. Set A is composed by arcs of the form (i, i + 1), for
i = 0, 1, . . . , N ; (i, N +2) for i = 0, 1, . . . , N−2; (N +2, i) for i = 1, 2, . . . , N−1,
and (i, N + 1) for i = 1, 2, . . . , N − 1. The capacity on arc (i, i + 1), for i =
0, 1, . . . , N − 1 is C, and the other arcs have unlimited capacity. The unit cost
of transporting any commodity in arc (i, N + 1) for i = 1, . . . , N − 1 and, in arc
(i, N + 2), for i = 1, . . . , N − 2 is 1; the costs on all other arcs are 0.

An illustration of graph G(V,A) is presented in Figure 1.

Figure 1: Capacitated graph G(V,A).

Consider a multicommodity flow problem in G(V,A), where at the origin
(node 0) there are M types of commodities to be transported, one unit of each
commodity type. These commodities must be sent to the destination node N +1
at a minimum cost. We are interested in solutions where each commodity uses a
single path to transport 1 unit from node 0 to node N +1; therefore, the flow of
each commodity in any arc cannot be fractional values. Let us associate a tool of
the SSP to each commodity. Thus, we can associate a feasible multicommodity
flow solution passing through the arcs (i, i + 1), for i = 0, 1, . . . , N − 1 of this
graph, with tools in the magazine of a SSP at instants i = 1, . . . , N , respectively.

In a SSP, we can always find an optimal solution where the tool magazine
is always full (complete) with C tools, when processing any of the N jobs in
sequence. Hence, we assume, without loss of generality, that the tool magazine
is always full with C tools. This means that the minimum flow on arcs (i, i+1),
for i = 0, 1, . . . , N is C and this condition is imposed on the flow model.

A solution to the SSP problem can be obtained by determining a multicom-
modity flow through the arcs of this graph G(V,A), such that for any job J in
the SSP, in at least one arc (i, i + 1), i = 0, 1, . . . , N − 1, we have a unit of the
commodity corresponding to each one of the tools that are required to process

11

job J flowing all together, simultaneously. A unit flow of a commodity on an
arc (i, N + 2), for i = 1, . . . , N − 2 indicates a tool taken out of the magazine
but still needed to process some job J later on. A unit flow of a commodity
on arc (N + 2, i) for i = 1, 2, . . . , N − 1 indicates a tool that is being inserted
in the magazine, a unit flow of a commodity on arc (i, N + 1), i = 1, 2, . . . , N
indicates a tool taken out of the magazine and not required anymore to process
any job not yet processed, and a unit flow of a commodity on arc (0, N + 2)
indicates a tool that was left out of the magazine when the processing of the
jobs are initiated in the machine to be inserted later on. Since M is greater or
equal to C and the flow on arc (0, 1) is C, then the flow on arc (0, N + 2) is
equal to M − C.

We next formulate the SSP as a multicommodity network flow problem
considering the previous explanation. We denote this model by SSPMF (Job
Sequencing and Tool Switching Problem modeled as a Multicommodity Flow
Problem). Let xik be a binary decision variable equal to one, if job i is the k-th
job to be processed, i, k = 1, 2, . . . , N . Let yikt be a binary decision variable
equal to one, if there is a flow of the commodity t in arc (i, k), (i, k) ∈ A,
t = 1, 2, . . . , M . The formulation SSPMF is given by (1)-(16).

Min ZM =
M∑

t=1

N−1∑
i=1

yi(N+1)t +
M∑

t=1

N−2∑
i=1

yi(N+2)t (1)

subject to:

N∑
k=1

xik = 1, i ∈ J, (2)

N∑
i=1

xik = 1, k ∈ J, (3)

y01t + y0(N+2)t = 1, t ∈ T, (4)
y(i−1)it + y(N+2)it − yi(N+1)t − yi(i+1)t − yi(N+2)t = 0, t ∈ T,

i = 1, . . . , N − 2, (5)
y(N−2)(N−1)t + y(N+2)(N−1)t − y(N−1)Nt − y(N−1)(N+1)t = 0, t ∈ T, (6)
y(N−1)Nt − yN(N+1)t = 0, t ∈ T, (7)

N∑
i=1

yi(N+1)t = 1, t ∈ T, (8)

N−2∑
i=0

yi(N+2)t −
N−1∑
i=1

y(N+2)it = 0, t ∈ T, (9)

xik ≤ y(k−1)kt, i, k ∈ J, t ∈ Ti,
(10)

12

M∑
t=1

y(k−1)kt = C, k ∈ J, (11)

xik ∈ {0, 1}, i, k ∈ J, (12)
yi(i+1)t ∈ {0, 1}, i = 0, . . . , N, t ∈ T, (13)
yi(N+1)t ∈ {0, 1}, i = 1, . . . , N − 1, t ∈ T, (14)
yi(N+2)t ∈ {0, 1}, i = 0, . . . , N − 2, t ∈ T, (15)
y(N+2)it ∈ {0, 1}, i = 1, . . . , N − 1, t ∈ T. (16)

The objective function (1) minimizes the cost of the flow on arcs (i, N +
2), i = 0, 1, . . . , N − 2, and (i, N + 1), i = 1, 2, . . . , N − 1. In any feasible
solution, the unit flows in these arcs correspond to tools that are taken out of
the tool magazine, that is, the tools that had to leave the magazine to make
space for other tools inserted in the magazine. Therefore, the flows in these
arcs correspond to tool switches. Constraints in (2), (3) and (12) require that
all N jobs will be sequenced in some order. Constraints in (4)-(9) are the
flow conservation constraints in nodes 0, 1, . . . , N − 2, N − 1, N , N + 1, and
N + 2, respectively. Constraints in (10) require that, if job i is the k-th job
to be processed, then the flow on arc (k − 1, k) must include a unit flow of the
commodities corresponding to tools required to process job i. Constraints in (11)
require that the flow in arc (i, i + 1), i = 0, 1, . . . , N is C, or, in other terms, the
total number of tools in the magazine is always C. Constraints in (12)-(16) are
the integrality conditions on all the decision variables. The number of variables
in this model is N2 + 4MN − 2M , whereas the number of the constraints is

N(
N∑

i=1
|Ti|+ M + 3) + 3M .

In the following theorem, a lower bound for the linear programming relax-
ation of model SSPMF is established.

Theorem 3.1. The objective function value of the linear programming relax-
ation of Model SSPMF is at least M − C.

Proof. By adding up the constraints (8) for t = 1, . . . , M , we obtain the equality
(17).

M∑
t=1

N∑
i=1

yi(N+1)t = M. (17)

Equality (17) can be rewritten as

M∑
t=1

N−1∑
i=1

yi(N+1)t +
M∑

t=1
yN(N+1)t = M. (18)

13

By Constraints (7) and considering k = N in Constraints (11), we get

M∑
t=1

N−1∑
i=1

yi(N+1)t = M − C. (19)

Since all flows in the arcs are non-negative, the result follows.

M −C is a trivial lower bound for SSP. There is a total of M tools that are all
needed for processing the jobs. C is the capacity of the tool magazine; therefore,
at most, this number of tools can be in the machine in the beginning and at least
M−C tools will be left out. Since all the tools that are left out in the beginning
must enter the machine at some moment later on, at least M − C tools will be
switched. To the best of our knowledge, all the previous models proposed in
the literature provide, in the great majority of the cases, a LP relaxation lower
bound smaller than M − C.

We observe that a feasible solution to the linear relaxation of model SSPMF
can be easily constructed whose optimal value is M − C.

4 Computational experiments
Computational experiments were carried out, comparing model SSPMF with
models TD, LSS and CGL, suggested in Tang and Denardo (1988a), Laporte,
Salazar-Gonzáles, and Semet (2004) and Catanzaro, Gouveia, and Labbé (2015),
respectively. Bard’s (Bard (1988)) model was not considered in our tests, since
its linearized model is exactly TD. We considered the datasets described in
Yanasse, Rodrigues and Senne (2009) and Catanzaro, Gouveia, and Labbé
(2015). We changed the subtour elimination constraints used in models LSS
and CGL (Dantzig, Fulkerson, and Johnson (1954)) by the subtour elimination
constraints proposed by Desrochers and Laporte (1991), that are polynomially
sized.

These instances can be found at (https://sites.google.com/site/antoniochaves/
publications/data). Each dataset contains i random instances with the same
number of jobs, tools and machine capacity. The values of i are presented in
Tables 6 and 7.

We implemented all the models in the syntax of AMPL (Fourer, Gay, and
Kernighan (2002)), and the solver CPLEX 12.6.3 (ILOG CPLEX (2016)) was
used to solve them on an Intel Core i7 3.6 GHz processor with 16GB of RAM
in a Windows 10 environment. We performed tests with later versions of the
CPLEX, but in all of them we observed a poorer performance. The instances
were solved by the “branch-and-cut” method with the default setting of CPLEX,
considering the parameter branch = 1 (i.e., the up branch direction, restricted
to higher value, should be taken first at each node).

Additional constraints can be added to model SSPMF to reduce the search
space, thereby guaranteeing that the solution obtained is optimal. Based on the

14

https://sites.google.com/site/antoniochaves/publications/data
https://sites.google.com/site/antoniochaves/publications/data

symmetry property (Ghiani, Grieco, and Guerriero (2007); Yanasse, Rodrigues
and Senne (2009)) of the SSP, we have the following result:

Proposition 4.1. Given any job p, there is an optimal solution in which p is
processed in one of the first dN/2e positions.

Proposition 4.1 is valid for any job p. Constraint (20) imposes that this job
p has to be processed in one of the first dN/2e positions. In our computational
tests, we choose p such that p = arg max

j∈J
|Tj |.

dN/2e∑
k=1

xpk = 1. (20)

The following equality imposes that a tool t can permanently leave the mag-
azine only after it is used at least the amount of times it is required, i.e. |Jt|
times.

yk(N+1)t = 0, t = 1, 2, . . . , M, k = 1, . . . , |Jt| − 1. (21)

In Tables 3, 4, and 5 we present the number of jobs (N), the number of tools
(M), the machine capacity (C), and the number of instances (i) in each one of
groups (Group) of the instances used in the tests. For each one of the models, we
present the average objective value of the associated linear programming (LP)
relaxation. We consider that all insertion of a tool in a tool magazine is a switch,
as in Catanzaro, Gouveia, and Labbé (2015), and, at the start of operations in
the machine, there will be C tools in the machine. Therefore, we add the
value of C in the linear relaxation programming values of the models TD, LSS,
and SSPMF. We considered subtracting the value C in the linear relaxation
programming values of the model CGL; but, in some cases, the resulting value
would have been negative, like in instance B4 − 1 of Catanzaro, Gouveia, and
Labbé (2015), whose LP value is 5 and the C value is 12.

In Tables 6 and 7, we present the number of jobs (N), the number of tools
(M), the machine capacity (C), and the number of instances (i) in each one of
the groups (Group) of instances used in the tests. For each one of the models,
we present the number of instances solved to optimality within the time limit
set, 3600 seconds (O), and the average time of the instances solved to optimality
(T).

Yanasse, Rodrigues and Senne (2009) proposed 1,350 instances divided into
5 groups (A, B, C, D and E) according to the configurations of N , M , and C.
In Tables 3, 4 and 6, we summarize the results obtained for this set of instances.
Catanzaro, Gouveia, and Labbé (2015) proposed 160 instances divided into 4
groups (A, B, C and D) according to the configurations of N , M , and C. In
Tables 5 and 7 we summarize the results obtained for this set of instances.

15

4.1 Linear programming relaxation
In Tables 3, 4, and 5 we present the lower bounds given by the linear pro-
gramming relaxation of models SSPMF, TD, LSS and CGL, for the instances
introduced in Yanasse, Rodrigues and Senne (2009) and Catanzaro, Gouveia,
and Labbé (2015), respectively.

The results of the tests indicate that the greater the machine capacity, the
more the linear relaxation programming value of model LSS approximates the
linear relaxation programming value of model TD, becoming equal in some
instances and, when the machine’s capacity is tightened, the linear relaxation
programming value of model LSS is stronger.

The CGL model is based on model LSS hence, it presents the same behav-
ior; when the machine capacity is tight, the linear relaxation value is stronger.
However, when machine capacity increases, the linear relaxation programming
values are poor, worse than the linear relaxation programming values obtained
by model TD in 23 (Table 3, 4) and 6 (Table 5) instance sets. The sign “-” used
in the tables indicates that the CPLEX was not able to solve the LP relaxation
model within the 1-hour time limit set.

In general, model SSPMF provided the best lower bounds in 62 out of the
66 instance sets.

4.2 Performance of the models
In Tables 6 and 7 we present the results for models SSPMF, TD, LSS, and
CGL, for the instances introduced by Yanasse, Rodrigues and Senne (2009) and
Catanzaro, Gouveia, and Labbé (2015), respectively.

Groups A and B provided by Yanasse, Rodrigues and Senne (2009) are
trivial and CPLEX solved all the instances for all four models, except using
model CGL that did not solve one instance of Group B. Of the total of 19
sets of instances of these two groups, model SSPMF presented better average
running time in 11 sets, and in the other sets, the average running time was
close to the other models that obtained better average running time.

In Table 6 we can see that, out of 340 instances, CPLEX was able to solve 242
instances at optimality for Group C using model SSPMF, while using models
TD, LSS and CGL, it was able to solve 168, 3, and 25 instances at optimality,
respectively. In class (N = 15, M = 25, C = 5) model CGL had more instances
solved than model SSPMF, since model CGL had better lower bounds for the
instances of this class (according to Table 3). Considering Group D, the set that
contains the largest instances provided by Yanasse, Rodrigues and Senne (2009),
CPLEX was able to solve 79, 13, 0, and 1 instances at optimality using models
SSPMF, TD, LSS, and CGL, respectively. For Group E of 80 instances, CPLEX
was able to solve 73 instances at optimality using model SSPMF, while using
models TD, LSS and CGL, it was only able to solve 60, 41, and 33 instances at
optimality, respectively.

The sets provided by Catanzaro, Gouveia, and Labbé (2015) produced sim-
ilar outcomes to those provided by Yanasse, Rodrigues and Senne (2009), as

16

Table 3: Results of linear relaxation programming values for Groups A, B, and
C provided by Yanasse, Rodrigues and Senne (2009).

Group N M C i
SSPMF TD LSS CGL

LP LP LP LP

A

8 15 5 10 15.00 5.00 6.59 13.74
8 15 10 30 15.00 10.00 10.20 9.89
8 20 5 10 20.00 5.00 7.16 19.02
8 20 10 30 20.00 10.00 10.71 16.42
8 20 15 60 20.00 15.00 15.25 12.22
8 25 5 10 25.00 5.00 7.21 23.03
8 25 10 30 25.00 10.00 11.10 22.02
8 25 15 60 25.00 15.00 15.42 17.83
8 25 20 100 25.00 20.00 20.06 14.03

B

9 15 5 10 15.00 5.00 6.19 12.95
9 15 10 30 15.00 10.00 10.45 9.69
9 20 5 10 20.00 5.00 7.09 19.03
9 20 10 30 20.00 10.00 10.91 16.25
9 20 15 60 20.00 15.00 15.24 11.96
9 25 5 10 25.00 5.00 6.99 22.42
9 25 10 30 25.00 10.00 10.88 21.59
9 25 15 50 25.00 15.00 15.60 18.84
9 25 20 100 25.00 20.00 20.10 13.56

C

15 15 5 10 15.00 5.00 6.43 14.88
15 15 10 30 15.00 10.00 10.66 8.63
15 20 5 10 20.00 5.00 6.45 18.19
15 20 10 30 20.00 10.00 11.01 15.00
15 20 15 60 20.00 15.00 15.40 10.82
15 25 5 10 25.00 5.00 7.30 27.00
15 25 10 30 25.00 10.00 11.01 20.80
15 25 15 60 25.00 15.00 15.59 15.64
15 25 20 100 25.00 20.00 20.25 11.17

shown in Tables 6 and 7. Of 40 instances in Group A, CPLEX was able to solve
40 instances at optimality using model SSPMF, while using models TD, LSS,
and CGL, it was able to solve 40, 40, and 32 instances at optimality, respectively.
However, in Group B, of 40 instances, CPLEX was able to solve 38 instances at
optimality using model SSPMF, while using the models TD, LSS, and CGL, it
was only able to solve 25, 0, and 2 instances at optimality, respectively.

CPLEX was not able to solve at optimality any instance of Groups C and
D provided by Catanzaro, Gouveia, and Labbé (2015) within the time limit set,
for any of the models.

In all sets of instances, our model produced better results when the machine
capacity increased, both in the number of instances solved at optimality and
in average running time. In general, of the 1,510 instances tested, CPLEX was
able to resolve 1,142 (75.63%), 976 (64.64%), 754 (49.93%), and 762 (50.46%)
instances at optimality considering the models SSPMF, TD, LSS, and CGL,
respectively.

17

Table 4: Results of linear relaxation programming values for Groups D and E
provided by Yanasse, Rodrigues and Senne (2009).

Group N M C i
SSPMF TD LSS CGL

LP LP LP LP

D

20 15 5 10 15.00 5.00 6.65 17.15
20 15 10 20 15.00 10.00 10.08 3.49
20 20 5 10 20.00 5.00 6.43 19.44
20 20 10 10 20.00 10.00 10.00 3.55
20 20 15 30 20.00 15.00 15.00 3.93
20 25 5 10 25.00 5.00 6.65 25.09
20 25 10 10 25.00 10.00 10.00 6.30
20 25 15 40 25.00 15.00 15.96 16.36
20 25 20 40 25.00 20.00 20.00 4.96
25 15 10 10 15.00 10.00 10.00 2.10
25 20 10 10 20.00 10.00 10.00 2.45
25 20 15 10 20.00 15.00 15.00 2.55
25 25 10 10 25.00 10.00 10.00 4.45
25 25 15 10 25.00 15.00 15.00 3.25
25 25 20 30 25.00 20.00 20.00 3.98

E

10 10 4 10 10.00 4.00 5.58 11.41
10 10 5 10 10.00 5.00 5.00 5.46
10 10 6 10 10.00 6.00 6.00 2.95
10 10 7 10 10.00 7.00 7.00 2.58
15 20 6 10 20.00 6.00 7.46 18.34
15 20 8 10 20.00 8.00 8.00 6.64
15 20 10 10 20.00 10.00 10.00 5.23
15 20 12 10 20.00 12.00 12.00 4.70

Table 5: Results of linear relaxation programming values for the instances in-
troduced by Catanzaro, Gouveia, and Labbé (2015).

Group N M C i
SSPMF TD LSS CGL

LP LP LP LP

A

10 10 4 10 10.00 4.00 4.89 9.02
10 10 5 10 10.00 5.00 5.00 4.32
10 10 6 10 10.00 6.00 6.00 2.92
10 10 7 10 10.00 7.00 7.00 2.88

B

15 20 6 10 20.00 6.00 7.28 17.65
15 20 8 10 20.00 8.00 8.00 5.37
15 20 10 10 20.00 10.00 10.00 3.75
15 20 12 10 19.20 12.00 12.00 3.75

C

30 40 15 10 40.00 15.00 17.10 -
30 40 17 10 40.00 17.00 17.00 -
30 40 20 10 40.00 20.00 20.00 -
30 40 25 10 40.00 25.00 25.00 -

D

40 60 20 10 60.00 20.00 23.36 -
40 60 22 10 60.00 22.00 22.00 -
40 60 25 10 60.00 25.00 25.00 -
40 60 30 10 60.00 30.00 30.00 -

18

Table 6: Results for Groups A, B, C, D, and E provided by Yanasse, Rodrigues
and Senne (2009).

Group N M C i
SSPMF TD LSS CGL

O T O T O T O T

A

8 15 5 10 10 0.99 10 1.16 10 2.74 10 0.99
8 15 10 30 30 0.82 30 0.84 30 6.70 30 15.71
8 20 5 10 10 1.48 10 1.91 10 4.09 10 0.35
8 20 10 30 30 1.74 30 1.26 30 10.80 30 11.91
8 20 15 60 60 1.02 60 2.03 60 8.85 60 46.17
8 25 5 10 10 0.54 10 2.85 10 5.32 10 0.25
8 25 10 30 30 3.01 30 2.18 30 15.31 30 6.31
8 25 15 60 60 2.55 60 2.46 60 15.23 60 50.93
8 25 20 100 100 1.21 100 3.22 100 11.41 100 86.27

B

9 15 5 10 10 3.11 10 2.14 10 12.15 10 4.47
9 15 10 30 30 1.82 30 3.04 30 43.55 30 198.17
9 20 5 10 10 2.69 10 2.95 10 15.48 10 1.47
9 20 10 30 30 4.31 30 7.74 30 73.53 30 145.69
9 20 15 60 60 2.47 60 8.75 60 63.42 60 532.38
9 25 5 10 10 1.22 10 5.16 10 31.11 10 1.68
9 25 10 30 30 5.57 30 6.73 30 115.65 30 62.43
9 25 15 50 50 5.78 50 18.80 50 113.12 50 412.17
9 25 20 100 100 2.50 100 11.20 100 90.03 99 1087.51

C

15 15 5 10 9 697.26 8 1225.59 1 960.24 2 491.55
15 15 10 30 28 380.14 28 840.36 0 - 1 573.47
15 20 5 10 9 1092.87 7 1363.13 0 - 4 1882.45
15 20 10 30 20 735.65 12 1383.68 0 - 2 2101.17
15 20 15 60 48 754.72 35 1275.42 0 - 4 1779.36
15 25 5 10 3 1258.49 1 794.52 1 182.76 8 657.53
15 25 10 30 15 620.30 8 699.41 1 2379.97 2 1376.73
15 25 15 60 30 977.98 19 1637.43 0 - 2 1952.06
15 25 20 100 80 565.50 50 1212.19 0 - 0 -

D

20 15 5 10 0 - 0 - 0 - 1 185.74
20 15 10 20 3 1.65 3 1686.84 0 - 0 -
20 20 5 10 0 - 0 - 0 - 0 -
20 20 10 10 0 - 0 - 0 - 0 -
20 20 15 30 10 0.35 0 - 0 - 0 -
20 25 5 10 0 - 0 - 0 - 0 -
20 25 10 10 0 - 3 512.74 0 - 0 -
20 25 15 40 9 1.27 0 - 0 - 0 -
20 25 20 40 17 2070.18 3 1300.58 0 - 0 -
25 15 10 10 7 1089.98 2 36.89 0 - 0 -
25 20 10 10 1 33.91 0 - 0 - 0 -
25 20 15 10 0 - 0 - 0 - 0 -
25 25 10 10 1 55.02 1 426.92 0 - 0 -
25 25 15 10 10 25.86 0 - 0 - 0 -
25 25 20 30 21 38.08 1 3217.48 0 - 0 -

E

10 10 4 10 10 3.34 10 4.44 10 6.62 10 2.43
10 10 5 10 10 1.79 10 3.07 10 69.31 10 263.78
10 10 6 10 10 0.38 10 1.99 10 156.11 8 2328.55
10 10 7 10 10 0.07 10 1.06 10 271.27 2 3037.55
15 20 6 10 8 901.99 6 1154.33 1 43.42 3 1779.86
15 20 8 10 7 768.90 4 838.22 0 - 0 -
15 20 10 10 9 363.83 6 154.15 0 - 0 -
15 20 12 10 9 180.81 4 1134.79 0 - 0 -

5 Conclusion
In this paper we proposed a new integer linear programming formulation for
the Job Sequencing and Tool Switching Problem, using a multicommodity flow

19

Table 7: Results for Groups A and B provided by Catanzaro, Gouveia, and
Labbé (2015).

Group N M C i
SSPMF TD LSS CGL

O T O T O T O T

A

10 10 4 10 10 2.15 10 3.41 10 19.23 10 15.15
10 10 5 10 10 0.95 10 2.64 10 75.57 10 390.34
10 10 6 10 10 0.21 10 1.39 10 152.39 10 2207.79
10 10 7 10 10 0.07 10 1.12 10 233.29 2 2881.08

B

15 20 6 10 9 1454.27 6 1376.85 0 - 2 1073.07
15 20 8 10 9 1049.72 8 1665.75 0 - 0 -
15 20 10 10 10 557.97 6 698.36 0 - 0 -
15 20 12 10 10 4.25 5 793.61 0 - 0 -

model. We demonstrated that the lower bound provided by our model coin-
cides with the natural lower bound for this problem, consisting of the difference
between the number of tools and the machine capacity.

One of the difficulties in solving the SSP is the symmetry property of its
solutions. In the proposed multicommodity flow model, it was easy to propose
a constraint that eliminates half of the possible solutions of the problem by
requiring that some given job be processed in the first half of the production
sequence.

For the computational experiments, we considered 1,510 instances from
Yanasse, Rodrigues and Senne (2009) and Catanzaro, Gouveia, and Labbé
(2015). We compared our results with the models proposed by Tang and
Denardo (1988a), Laporte, Salazar-Gonzáles, and Semet (2004), and Catan-
zaro, Gouveia, and Labbé (2015).

Our model outperformed the others in number of instances solved at opti-
mality, quality of lower bound, and running time. However, CPLEX was not
able to solve large instances for our model, or for the other models.

The higher the capacity of the machine, the better the performance of the
proposed model compared to the other models of the literature. The use of our
model is therefore recommended particularly for larger values of C.

Future studies could be to develop other valid inequalities and exact methods
to solve the proposed formulation, that eliminate or reduce symmetric solutions,
thus reducing the search space.

This formulation has an advantage that can be exploited in exact methods
and/or matheuristics, since by fixing some variables as integers, others variables
automatically become integers. Hence, a relax-and-fix method seems to be a
promising approach to pursue. Another alternative is to design some enumer-
ative branch-and-bound method aiming to reduce symmetries of the solutions
space searched. For instance, considering ordered subsets of combinations of
machine tools that leave the magazine during processing, or, use a similar idea
in relation to subset of jobs.

Lagrangean relaxation could also be explored, since by relaxing the linking
constraint (10), the problem is decomposed into two subproblems: an assign-
ment problem and a network flow problem. Extensions of the multicommodity

20

flow model to other variations of the SSP can also be studied, for instance,
considering parallel machines, non-uniform size of tools, tool sharing between
machines. Studies are being conducted in this sense.

Acknowledgment
We are grateful to Dr. Daniele Catanzaro for sending us the code and instances
for model CGL from Catanzaro, Gouveia, and Labbé (2015), and we thank
the three anonymous reviewers for valuable comments and suggestions that
improved the quality of the presentation of this paper.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, FAPESP
(grants 2018/15417-8 and 2016/01860-1), and CNPq (grants 423694/2018-9,
303736/2018-6, and 303144/2014-9).

Disclosure statement
No potential conflict of interest was reported by the authors.

References

Ahmadi, E., Goldengorin, B., Suer, G.A., Mosadegh, H. 2018. “A hybrid
method of 2-TSP and novel learning-based GA for job sequencing and tool
switching problem.” Applied Soft Computing 65, 214–229.
Agapiou, J. S. 1991. “Sequence of operations optimization in single-stage mul-
tifunctional systems.” Journal of Manufacturing Systems 10(3), 194-208.
Al-Fawzan, M.A., Al-Sultan, K.S. 2002. “A tabu search based algorithm for
minimizing the number of tool switches on a flexible machine.” Computers &
Industrial Engineering 44, 35–47.
Amaya, J.E., Cotta, C., Fernández, A.J. 2008. “A Memetic Algorithm for the
Tool Switching Problem.” In: Blesa M.J. et al. (eds) Hybrid Metaheuristics HM
2008. Lecture Notes in Computer Science, 5296. Springer, Berlin, Heidelberg.
Amaya, J.E., Cotta, C., Fernández-Leiva, A.J. 2010. “Hybrid Cooperation Mod-
els for the Tool Switching Problem.” In: González J.R., Pelta D.A., Cruz C.,
Terrazas G., Krasnogor N. (eds) Nature Inspired Cooperative Strategies for Op-
timization (NICSO 2010). Studies in Computational Intelligence, 284. Springer,
Berlin, Heidelberg.
Amaya, J.E., Cotta, C., Fernández-Leiva, A.J. 2011. “Memetic cooperative
models for the tool switching problem.” Memetic Computing 3(3), 199–216.
Amaya, J.E., Cotta, C., Fernández-Leiva, A.J. 2012. “Solving the tool switch-
ing problem with memetic algorithms.” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 26, 221–235.

21

Amaya, J.E., Cotta, C., Fernández-Leiva, A.J. 2013. “Cross entropy-based
memetic algorithms: An application study over the tool switching problem.”
International Journal of Computational Intelligence Systems 6(3), 559–584.
Amaya, J.E., Cotta, C., Fernández-Leiva, A.J., Garćıa-Sánchez, P. 2019. “Deep
memetic models for combinatorial optimization problems: application to the
tool switching problem.” Memetic Computing 1–20.
Bard, J.F. 1988. “A heuristic for minimizing the number of tool switches on a
flexible machine.” IIE Transactions 20:4, 382–391.
Baykasoğlu, A., Ozsoydan, F.B. 2016. “An improved approach for determina-
tion of index positions on CNC magazines with cutting tool duplications by
integrating shortest path algorithm.” International Journal of Production Re-
search 54:3, 742–760.
Baykasoğlu, A., Ozsoydan, F.B. 2017. “Minimizing tool switching and indexing
times with tool duplications in automatic machines.” The International Journal
of Advanced Manufacturing Technology 89, 1775-–1789.
Baykasoğlu, A., Ozsoydan, F.B. 2018. “Minimisation of non-machining times
in operating automatic tool changers of machine tools under dynamic operating
conditions.” International Journal of Production Research 56:4, 1548–1564.
Becceneri, J.C., Yanasse, H.H., Soma, N.Y. 2004. “A method for solving the
minimization of the maximum number of open stacks problem within a cutting
process.” Computers & Operations Research 31(14), 2315–2332.
Beezao, A.C. 2016. “O problema de minimização de troca de ferramentas.” Phd
Thesis, University of São Paulo.
Bentley, J. J. 1992. “Fast Algorithms for Geometric Traveling Salesman Prob-
lems.” ORSA Journal on Computing 4(4), 387-411.
Burger, A.P., Jacobs, C.G., van Vuuren, J.H., Visagie, S.E. 2015. “Schedul-
ing multi-colour print jobs with sequence-dependent setup times.” Journal of
Scheduling 18(2), 131–145.
Calmels, D. 2018 “The job sequencing and tool switching problem: state-of-
the-art literature review, classification, and trends.” International Journal of
Production Research 57:15–16, 5005–5025.
Catanzaro, D., Gouveia, L., Labbé, M. 2015. “Improved integer linear program-
ming formulations for the job sequencing and tool switching problem.” European
Journal of Operational Research 244, 766–777.
Chaves, A.A., Senne, E.L.F., Yanasse, H.H. 2012. “Uma nova heuŕıstica para o
problema de minimização de trocas de ferramentas.” Gestão & Produção 19(1),
17–30.
Chaves, A. A., Lorena, L. A. N., Senne, E. L. F., Resende, M. G. C. 2016.
“Hybrid method with CS and BRKGA applied to the minimization of tool
switches problem.” Computers & Operations Research 67, 174–183.

22

Crama, Y., Kolen, A. W., Oerlemans, A. G., Spiesksma, F. C. R. 1994. “Min-
imizing the number of tool switches on a flexible machine.” The International
Journal of Flexible Manufacturing System 6, 33–54.
Dadashi, H., Moslemi, S., Mirzazadeh, A. 2016 “Optimization of a New Tool
Switching Problem in Flexible Manufacturing Systems with a Tool Life by a
Genetic Algorithm.” International Journal of Industrial and Manufacturing
Systems Engineering 1(3), 52–58.
Dantzig, G.B., Fulkerson, D.R., Johnson, S.M. 1954. “Solution of a large-scale
traveling salesman problem.” Operations Research 2, 393–410.
Dehaybe, H. 2018. “An Ant Colony System for solving the Job Sequencing
and Tool Switching Problem”. Dissertation, Louvain School of Management.
Université catholique de Louvain.
Desrochers. M., Laporte. G. 1991. “Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints.” Operations Research Letters 10,
27–36.
Djellab, H., Djellab, K., Gourgand, M. 2000. “A new heuristic based on a hy-
pergraph representation for the tool switching problem.” International Journal
of Production Economics 64, 165–176.
Fathi, Y., Barnette, K.W. 2002 “Heuristic procedures for the parallel machine
problem with tool switches.” International Journal of Production Research
40(1), 151–164.
Fourer, R., Gay, D. M.,Kernighan, B. W. 2002. “AMPL - A Modeling Language
for Mathematical Programming.” Second Edition, Cengage Learning.
Fulkerson, D.R., Gross, D.A. 1965. “Incidence Matrices and Interval Graphs.”
Pacific Journal of Mathematics 15(3), 835 - 855.
Gamila, M.A., Motavalli, S. 2003. “A modeling technique for loading and
scheduling problems in FMS.” Robotics and Computer Integrated Manufacturing
19, 45–54.
Gao, N., Moon, S.K. 2019 “An Integrated Two-Stage Optimization Method for
Job-Shop Bottleneck Planning and Scheduling.” IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM) Macao, 855–
859.
Gendreau, M., Hertz, A., e Laporte, G. 1992. “New insertion and postoptimiza-
tion procedures for the traveling salesman problem.” Operations Research 40,
1086–1094.
Ghiani, G., Grieco, A., Guerriero, E. 2007. “An exact solution to the TLP
problem in an NC machine.” Robotics and Computer-Integrated Manufacturing
23, 645–649.
Ghiani, G., Grieco, A., Guerriero, E. 2010. “Solving the job sequencing and
tool switching problem as a nonlinear least cost hamiltonian cycle problem.”
Networks 55 (4), 379–385.

23

Ghrayeb, O.A., Phojanamongkolkij, N., Finch, P.R. (2003) “A mathematical
model and heuristic procedure to schedule printed circuit packs on sequencers.”
International Journal of Production Research 41(16), 3849–3860.
Gökgür, B., Hnich, B., Özpeynirci, S. (2018) “Parallel Machine Scheduling with
Tool Loading: A Constraint Programming Approach.” International Journal of
Production Research 54, 1–17.
Hertz, A., Laporte, G., Mittaz, M., Stecke, K. E. 1998. “Heuristics for min-
imizing tool switches when scheduling part types on a flexible machine.” IIE
Transactions 30(8), 689–694.
Hoffman, A.J., Kolen, A.W.J., Sakarovitch, M. 1985. “Totally Balanced and
Greedy Matrices.” SIAM Journal on Algebraic and Discrete Methods 6(4), 721
- 730.
IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual, Copyright,
ILOG, 2016.
Jäger, G., Molitor, P. 2008. “Algorithms and Experimental Study for the Trav-
eling Salesman Problem of Second Order.” In: Yang B., Du DZ., Wang C.A.
(eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture
Notes in Computer Science, 5165. Springer, Berlin, Heidelberg.
Karzan, F.K., Azizoglu, M. 2008 “The tool transporter movements problem in
flexible manufacturing systems.” International Journal of Production Research
46(11), 3059–3084.
Kou, L.T. 1977. “Polynomial Complete Consecutive Information Retrieval
Problems.” SIAM Journal on Computing 6, 67 - 75.
Laporte, G., Salazar-Gonzáles, J. J., Semet, F. 2004. “Exact algorithms for the
job sequencing and tool switching problem.” IIE Transactions 36, 37–45.
Matzliach, B., Tzur, M. 1998 “The online tool switching problem with non-
uniform tool size.” International Journal of Production Research 36(12), 3407–
3420.
McGeogh, L., Sleator, D. 1991. “A strongly competitive randomized paging
algorithm.” Algorithmica 6, 816–825.
Melnyk, S. A., Ghosh , S., Ragatz , G. L. 1989. “Tooling constraints and shop
floor scheduling: a simulation study.” Journal of Operations Management 8,
69–89.
Möhring, R.H. 1990. “Graph Problems Related to Gate Matrix Layout and
PLA Folding.” In: Tinhofer G., Mayr E., Noltemeier H., Syslo M.M. (eds)
Computational Graph Theory. Computing Supplementum, vol 7. Springer,
Vienna.
Oerlemans, A. 1992. “Production planning for flexible manufacturing systems.”
PhD Thesis, University of Limburg, Maastricht, Limburg, Netherlands.
Paiva, G.S., Carvalho, M.A.M. 2017. “Improved Heuristic Algorithms for the
Job Sequencing and Tool Switching Problem.” Computers & Operations Re-
search 88, 208–219.

24

Privault, C., Finke, G. 1995. “Modelling a tool switching problem on a single
NC-machine.” Journal of Intelligent Manufacturing 6, 87–94.
Privault, C., Finke, G. 2000. “k-server problems with bulk requests: an appli-
cation to tool switching in manufacturing.” Annals of Operations Research 96,
255–269.
Raduly-Baka, C., Mäkilä, J., Johnsson, M., Nevalainen, O.S. 2018 “Efficient tool
loading heuristic for machines with modular feeders.” Procedia Manufacturing
17, 968–975.
Rubinstein, R. 1999. “The cross-entropy method for combinatorial and con-
tinuous optimization.” Methodology and Computing in Applied Probability 1,
127–190.
Rupe, J., Kuo, W. 1997 “Solutions to a modified tool loading problem for a
single FMM.” International Journal of Production Research 35(8), 2253–2268.
Salonen, K., Raduly-Baka, C., Nevalainen, O.S. 2006. “A note on the tool
switching problem of a flexible machine.” Computers & Industrial Engineering
50, 458–465.
Salonen, K., Smed, J., Johnsson, M., Nevalainen, O. 2006. “Grouping and
sequencing PCB assembly jobs with minimum feeder setups.” Robotics and
Computer Integrated Manufacturing 22, 297–305.
Senne, E.L.F., Yanasse, H.H. 2009. “Beam Search Algorithms for Minimizing
Tool Switches on a Flexible Manufacturing System.” Proceedings of the XI
WSEAS International Conference on Mathematical and Computational Meth-
ods in Science and Engineering. 1, 68–72, Baltimore, USA. WSEAS Press.
Shirazi, R., Frizelle, G. D. M. 2001. “Minimizing the number of tool switches
on a fexible machine: an empirical study.” International Journal of Production
Research 39:15, 3547–3560.
Smed, J., Johnsson, M., Puranen, M., Leipãlã, T., Nevalainen, O. 1999. “Job
grouping in surface mounted component printing.” Robotics and Computer-
Integrated Manufacturing 15(1), 39–49.
Song, C.Y., Hwang, H. 2002 “Optimal tooling policy for a tool switching problem
of a flexible machine with automatic tool transporter.” International Journal of
Production Research 40(4), 873–883.
Stecke, K.E., Solberg, J.J. 1981. “Loading and control policies for a flexible
manufacturing system.” International Journal of Production Research 19(5),
481–190.
Stützle, T. 1999. “Iterated local search for the quadratic assignment problem.”
Phd Thesis, TU Darmstadt.
Tang, C. S., Denardo, E. V. 1988. “Models arising from a flexible manufacturing
machine, Part I: Minimization of the number of tool switches.” Operational
Research 36(5), 767–777.

25

Tang, C.S., Denardo, E.V. 1988. “Models Arising from a Flexible Manufac-
turing Machine, Part II: Minimization of the Number of Switching Instants.”
Operations Research 36(5), 778–784.
Van Hop, N., Nagarur, N.N. 2004. “The scheduling problem of PCBs for multi-
ple non-identical parallel machines.” European Journal of Operational Research
158, 577–594.
Widmer, M. 1991. “Job Shop Scheduling with Tooling Constraints: A Tabu
Search Approach.” The Journal of the Operational Research Society 42(1), 75–
82.
Wolsey, L. A. 1998. “Integer Programming.” John Wiley & Sons.
Yanasse, H.H., Lamosa, M. 2005. “An application of the generalized travelling
salesman problem: the minimization of tool switches problem.” In: Interna-
tional Annual Scientific Conference of the German Operations Research Society,
Bremen, Germany, 90–100.
Yanasse, H., Lamosa, M. 2006. “On solving the minimization of tool switches
problem using graphs.” XII ICIEOM - Fortaleza, CE, Brazil, 1–9.
Yanasse, H. H., Pinto, M. J. 2002. “The minimization of tool switches problem
as a network flow problem with side constraints.” Annals of XXXIV Simpósio
Brasileiro de Pesquisa Operacional, Rio de Janeiro, Brasil.
Yanasse, H. H. 2009. “Um novo limitante inferior para o problema de min-
imização de trocas de ferramentas.” Annals of XLI Simpósio Brasileiro de
Pesquisa Operacional, 2841–2848, Porto Seguro, Brasil.
Yanasse, H. H. 1997. “A transformation for solving a pattern sequencing prob-
lem in the wood cut industry.” Pesquisa Operacional 17(1), 57–70.
Yanasse, H. H., Rodrigues, R. d. C. M., Senne, E. L. F. 2009. “Um algoritmo
enumerativo baseado em ordenamento parcial para resolução do problema de
minimização de trocas de ferramentas.” Gestão & Produção 16 (3), 370–381.
Zeballos, L. 2010. “A constraint programming approach to tool allocation
and production scheduling in flexible manufacturing systems.” Robotics and
Computer-Integrated Manufacturing 26 (6), 725–743.
Zhang, J. H., Hinduja , S. 1995. “Determination of the optimum tool set for a
given batch of turned components.” Annals of the CIRP 44 (1), 445–450.
Zhou, B.H., Xi, L.F., Cao, Y.S. 2005. “A beam-search-based algorithm for the
tool switching problem on a flexible machine.” Int J Adv Manuf Technol 25,
876–882.

26

	Introduction
	Related works
	The new multicommodity flow formulation for the SSP
	Computational experiments
	Linear programming relaxation
	Performance of the models

	Conclusion

