
Filipe Pereira Pinto da Cunha e Alvelos

Branch-and-Price and Multicommodity Flows

Fevereiro de 2005UM
 |

20
05

Universidade do Minho
Escola de Engenharia

Fi
lip

e
Pe

re
ira

 P
in

to
 d

a
C

un
ha

 e
 A

lv
el

os
B

ra
nc

h-
an

d-
Pr

ic
e

an
d

M
ul

tic
om

m
od

ity
 F

lo
w

s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fevereiro de 2005

Dissertação submetida à Universidade do Minho para a
obtenção do grau de Doutor no Ramo de Engenharia de
Produção e Sistemas, área de Investigação Operacional

Trabalho efectuado sob a orientação de
Professor Doutor José Manuel Vasconcelos Valério de
Carvalho
Departamento de Produção e Sistemas da Escola de Engenharia
da Universidade do Minho

Filipe Pereira Pinto da Cunha e Alvelos

Branch-and-Price and Multicommodity Flows

Universidade do Minho
Escola de Engenharia

 i

To the Memory of my Father.

To my Mother.

To their grandson, Miguel.

ii

Abstract

In this Thesis, we address column generation based methods for linear and integer

programming and apply them to three multicommodity flow problems.

For (mixed) integer programming problems, the approach taken consists in reformulating

an original model, using the Dantzig-Wolfe decomposition principle, and then combining

column generation with branch-and-bound (branch-and-price) in order to obtain optimal

solutions. The main issue when developing a branch-and-price algorithm is the branching

scheme. The approach explored in this work is to branch on the variables of the original model,

keeping the structure of the subproblems of the column generation method unchanged. The

incorporation of cuts (branch-and-price-and-cut), again without changing the structure of the

subproblem, is also explored.

Based on that general methodology, we developed a set of C++ classes (ADDing −

Automatic Dantzig-Wolfe Decomposition for INteger column Generation), which implements a

branch-and-price algorithm. Its main distinctive feature is that it can be used as a “black-box”:

all the user is required to do is to provide the original model. ADDing can also be customised to

meet a specific problem, if the user is willing to provide a subproblem solver and/or specific

branching schemes.

We developed column generation based algorithms for three multicommodity flow

problems. In this type of problems, it is desired to route a set of commodities through a

capacitated network at a minimum cost.

In the linear problem, each unit of each commodity is divisible. By using a model with

variables associated with paths and circuits, we obtained significant improvements on the

solution times over the standard column generation approach, for instances defined in planar

networks (in several instances the relative improvement was greater than 60%).

In the integer problem, each unit of each commodity is indivisible; the flow of a

commodity can be split between different paths, but the flow on each of those paths must be

integer. In general, the proposed branch-and-price algorithm was more efficient than Cplex 6.6

in the sets of instances where each commodity is defined by an origin-destination pair; for some

of the other sets of instances, Cplex 6.6 gave better time results.

In the binary problem, all the flow of each commodity must be routed along a single path.

We developed a branch-and-price algorithm based on a knapsack decomposition and modified

(by using a different branching scheme) a previously described branch-and-price-and-cut

algorithm based on a path decomposition. The outcome of the computational tests was

surprising, given that it is usually assumed that specific methods are more efficient than general

ones. For the instances tested, a state-of-the-art general-purpose (Cplex 8.1) gave, in general,

much better results than both decomposition approaches.

iii

Resumo

Nesta Tese, abordam-se métodos de geração de colunas para programação linear e inteira.

A sua aplicação é feita em três problemas de fluxo multicomodidade.

Para problemas de programação inteira (mista), a abordagem seguida é a de reformular

um modelo original, utilizando o princípio de decomposição de Dantzig-Wolfe, e combinar

geração de colunas com o método de partição e avaliação (partição e geração de colunas) para a

obtenção de soluções óptimas. A questão essencial no desenvolvimento de um algoritmo deste

tipo é a estratégia de partição. A abordagem seguida neste trabalho é a de realizar a partição nas

variáveis do modelo original, mantendo a estrutura do subproblema do método de geração de

colunas. A incorporação de cortes, ainda sem alteração da estrutura do subproblema, é também

explorada.

Com base nesta metodologia geral, foi desenvolvido um conjunto de classes em C++

(ADDing − Automatic Dantzig-Wolfe Decomposition for INteger column Generation), que

implementa um algorithmo de partição e geração de colunas. A sua característica fundamental é

apenas ser requerido ao utilizador a definição de um modelo original. Num modo mais

avançado, o utilizador pode implementar algoritmos para resolver o subproblema e/ou esquemas

de partição.

Foram desenvolvidos algoritmos baseados em geração de colunas para três problemas de

fluxo multicomodidade. Neste tipo de problemas, pretende-se encaminhar um conjunto de

comodidades através de uma rede capacitada, minimizando o custo.

No problema linear, cada unidade de cada comodidade é divisível. Utilizando um modelo

com variáveis associadas a caminhos e a circuitos, obtiveram-se melhorias significativas nos

tempos de resolução em relação ao método de geração de colunas usual, para instâncias

definidas em redes planares (em várias instâncias a melhoria relativa foi superior a 60%).

No problema inteiro, cada unidade de cada comodidade é indivisível; o fluxo de uma

comodidade pode ser dividido por diferentes caminhos, mas o fluxo em cada um deles tem de

ser inteiro. Em geral, o algoritmo de partição e geração de colunas foi mais eficiente do que o

software Cplex 6.6 nos conjuntos de instâncias em que cada comodidade é definida por um par

origem-destino; para alguns dos outros conjuntos de instâncias, o software Cplex 6.6 obteve

melhores resultados.

No problema binário, todo o fluxo de cada comodidade apenas pode utilizar um caminho.

Foi desenvolvido um algoritmo de partição e geração de colunas baseado numa decomposição

de mochila e modificado (através de um esquema de partição diferente) um algoritmo de

partição e geração de colunas com cortes, previamente descrito, baseado numa decomposição

por caminhos. Os resultados dos testes computacionais foram surpreendentes, dado que é

usualmente assumido que métodos específicos são mais eficientes do que métodos gerais. Para

as instâncias testadas, o software Cplex 8.1 obteve, em geral, resultados muito melhores do que

as duas decomposições.

iv

Acknowledgements

I am most grateful to Professor Valério de Carvalho, who introduced me to branch-and-

price algorithms with a contagious enthusiasm. His guidance and support, every time I needed

them, were of inestimable value. I also deeply acknowledge his sharing of experience and

knowledge. I will keep his positive attitude and good practices as examples, and his friendship

as a priceless commodity.

Carina’s companionship and professionalism made these years much more pleasant and

productive. Acácio was a constant presence every time I needed human (and technical...)

support. Vítor’s sense of humour gave me the right perspective whenever I was losing it. Their

friendship and encouragement were great.

Carina Pimentel contributed with programming the random instance generator used in

Chapters 4 and 5 and executing some of the computational tests described in those Chapters.

Professor Antonio Frangioni shared his bundle code (and gave support on running it)

allowing the comparative computational tests that are described in Chapter 5. He also shared

valuable comments that helped improving that Chapter. Furthermore, the email discussions

about his experience on developing code for cutting plane methods for non-differentiable

optimisation were a source of learning, inspiration and motivation.

I thank the “Departamento de Produção e Sistemas”, and, in particular, the “Optimização

e Investigação Operacional” group, for the support given during these years.

I would like to express my gratitude to Carina, Acácio, Vítor, Sérgio, and José António

for the suggestions that helped to improve the text.

My attraction for Operational Research started in the classes of Professor José Soeiro

Ferreira and Professor Jorge Pinho de Sousa, when I was an undergraduate student. I thank them

for being the first responsibles for the fulfilment of my professional life.

Telmo is everything I could expect from a great friend. It is difficult to express my

delight for all the time that we spent together, since we were undergraduate students, in such

different situations: from work sessions to all kind of discussions about almost everything. His

careful reading of this work was a precious contribution.

 The support of my mother-in-law, Isabel, and of my brothers-in-law, Gonçalo and Ilídio,

translated into a warm feeling that made these years brighter.

As it has always happened in my life, I deeply valued the example and felt the love of my

Sister and of my Brother, through these Thesis years.

The example of humanism and strength of my Mother guide my life. Her love is the most

sweet encouragement.

v

Margarida is a dream.

This Thesis was partially supported by Fundação para a Ciência e Tecnologia (Projecto

POSI/1999/SRI/35568) and Centro de Investigação Algoritmi, Universidade do Minho.

vi

Table of Contents

1 General Introduction 1

1.1 Linear and Integer Programming 2

1.2 Branch-and-Price 3

1.3 Multicommodity Flow Problems 4

1.4 Contributions 5

1.5 Outline 6

2 Dantzig-Wolfe Decomposition and Column Generation Based Algorithms 8

2.1 Introduction 9

2.2 Dantzig-Wolfe Decomposition and Column Generation 13

2.2.1 Structured models 13
2.2.2 Dantzig-Wolfe decomposition principle 15
2.2.3 Column generation 21
2.2.4 Linear programming dual and duality gap 23
2.2.5 Columns removal and convergence 25

2.3 Dantzig-Wolfe Decomposition and Lagrangean Relaxation 26

2.3.1 Lagrangean relaxation 26
2.3.2 Equivalence between Lagrangean relaxation and Dantzig-Wolfe decomposition 28
2.3.3 Optimality conditions and primal solutions 29
2.3.4 Methods for solving the Lagrangean dual 31

2.4 Column Generation Variants 36

2.4.1 Head-in, tail-off, and instability 36
2.4.2 Column generation implementation variants 37
2.4.3 Stabilisation 41

2.5 Dantzig-Wolfe Decomposition in Integer Programming 42

2.5.1 Branch-and-price overview 42
2.5.2 Lower bounds given by the Dantzig-Wolfe decomposition 43
2.5.3 Branching rules 45
2.5.4 Branch-and-price-and-cut 48
2.5.5 Multiple Dantzig-Wolfe decomposition 50
2.5.6 Relation with standard branch-and-bound and a related approach 56

2.6 Conclusions 57

vii

3 Integer Multicommodity Flow Problem 58

3.1 Introduction 59

3.2 Formulations and Review of Solution Methods 61

3.2.1 Problem definition and arc formulation 61
3.2.2 Tree formulations 62
3.2.3 Path formulations 63
3.2.4 Review of solution methods 65

3.3 Branch-and-Price for the Integer MFP 67

3.3.1 Solving the linear relaxation 67
3.3.2 Branching rules 68
3.3.3 Dealing with negative cost cycles 70

3.4 Implementation Issues and Computational Results 72

3.4.1 Objectives of the computational tests 72
3.4.2 Test instances 73
3.4.3 Implementation issues and preliminary tests 76
3.4.4 Comparative computational tests 83

3.5 Conclusions 92

4 Binary Multicommodity Flow Problem 93

4.1 Introduction 94

4.2 Problem Definition and Original Formulation 96

4.3 Branch-and-Price-and-Cut for the Path Decomposition 97

4.3.1 Dantzig-Wolfe decomposition 97
4.3.2 Overview of the branch-and-price-and-cut algorithm 99
4.3.3 Branching rules 100
4.3.4 Lifted cover inequalities (LCIs) 105

4.4 Branch-and-Price for the Knapsack Decomposition 107

4.4.1 Dantzig-Wolfe decomposition 107
4.4.2 Solving the root node 108
4.4.3 Branching rules 110
4.4.4 Combination of the two decompositions 112

4.5 Computational Results 112

4.5.1 Computational environment and parameters 112
4.5.2 Test instances 113
4.5.3 LCIs and branching rules for the path decomposition 114
4.5.4 Comparative computational results 119

4.6 Conclusions 126

viii

5 Accelerating Column Generation for Planar Multicommodity Flow Problems 127

5.1 Introduction 128

5.2 Formulations 130

5.2.1 Arc formulation 130
5.2.2 Path formulation 131

5.3 Standard Column Generation 133

5.3.1 Overview 133
5.3.2 Implementation issues 133

5.4 Accelerating Column Generation 134

5.4.1 An extended model with circuits 134
5.4.2 Dealing with negative cost cycles 136
5.4.3 Obtaining the optimal solution of the path formulation 137
5.4.4 Comparison with standard column generation 137
5.4.5 Interpretation in the context of the Dantzig-Wolfe decomposition 139
5.4.6 Example 139

5.5 Planar Networks 140

5.6 Computational Tests 142

5.6.1 Test instances 143
5.6.2 Preliminary tests 144
5.6.3 Computational results 147

5.7 Conclusions 151

6 ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation 152

6.1 Introduction 153

6.2 Using ADDing 155

6.2.1 Models representation 155
6.2.2 “Black-box” use 157
6.2.3 “Tool-box” use 159

6.3 Inside ADDing 160

6.3.1 Overview 160
6.3.2 Main classes 161
6.3.3 Information flow 162

6.4 Conclusions 163

7 General Conclusions 165

References 168

APPENDIX −−−− ADDing Details

 1

1 General Introduction

In this Chapter, we provide a brief introduction to the main topics of the present Thesis.

In Section 1.1, a non-technical and historical perspective on Linear and Integer Programming,

the broader field that encompasses the subjects of this Thesis, is presented. In Section 1.2, a

historical perspective on the branch-and-price method is given and its present relevance is

pointed out. Multicommodity flow models are briefly introduced in Section 1.3, in the broader

context of network modelling. In Section 1.4, we specify the main contributions of this work.

Finally, in Section 1.5, the structure of the present Thesis is described.

Chapter 1: General Introduction

2

1.1 Linear and Integer Programming

For almost six decades now, Linear and Integer Programming have been major research

topics in Operational Research, playing a decisive role in its definition as an applied scientific

area.

Linear Programming, whose first milestone was the Simplex algorithm of G. B. Dantzig,

developed in the late 1940s, deals with the optimisation of systems where different activities

compete for a set of scarce resources, their relations being expressed mathematically by linear

functions. Integer Programming can be considered as an extension of Linear Programming

(usually credited to R. E. Gomory in the late 1950s), allowing the mathematical modelling and

algorithmic treatment of a broader type of decision problems.

Nowadays, Linear and Integer Programming are established disciplines. Their methods

have been successfully applied in a large number of practical problems and there are robust and

efficient software implementations, enabling their use in yet more problems (whose number is

virtually infinite). The “age of optimisation” (announced by G. L. Nemhauser (Nemhauser,

1994)) is already over one decade old.

However, Integer Programming is still a challenging field of research. There are no

known polynomial algorithms to solve (that is, to obtain an optimal solution to) the general

Integer Programming problem (as opposed to the general Linear Programming problem).

Although several important specific problems have been studied for several decades, and very

significant progresses have been made in their resolution, they remain difficult to solve. Some

of them have a combinatorial structure, that is, the set of feasible solutions is a set of objects

that can be explicitly enumerated, but their number is too large for the enumeration to be

efficient in a solution procedure.

In order to tackle this inherent complexity of Integer Programming, several approaches

have been developed in the last decades. R. E. Gomory was the pioneer of cutting plane

methods in the late 1950s. Roughly at the same time, A. H. Land and A. G. Doig developed

branch-and-bound, an implicit enumeration procedure. Those two classical methods can be

taken as the basis for all the subsequent major developments in Integer Programming methods.

Although branch-and-cut has its roots in the work of H. P. Crowder, E. L. Johnson, and

M. W. Padberg in the early 1980s, its potential for solving a large number of problems only

began to be largely explored in the 1990s. In a very general framework, branch-and-cut can be

seen as the combination of cutting planes (generally, stronger than the ones used in the original

work of R. E. Gomory) and branch-and-bound.

Branch-and-price was first developed by J. Desrosiers, F. Soumis, and M. Desrochers in

Chapter 1: General Introduction

3

the middle 1980s. It can also be seen as a combination of two existing methods: branch-and-

bound and column generation. Being the subject of this work, we will refer to branch-and-price,

and related concepts and methods, such as Dantzig-Wolfe decomposition and Lagrangean

relaxation, in more detail later in this Introduction. For the time being, we only would like to

point out that the combination of branch-and-price and branch-and-cut (branch-and-cut-and-

price) has also been a major topic of research in the last decade.

It should be noted that all these methods have Linear Programming as a fundamental

component, and thus every breakthrough in Linear Programming may have a significant

improvement in their efficiency. A comprehensive review of the fundamental concepts of the

above methods is given in (Johnson et al., 2000). Less common exact methods, not based in

Linear Programming, are explored in (Aardal et al., 2002).

All the methods mentioned above were devised to obtain optimal solutions. A different

approach in Integer Programming / Combinatorial Optimisation is to seek good solutions.

Heuristics have been an important field of research since Operational Research techniques

started to be applied in the solution of practical problems. A substantial progress in those

approaches began in the late 1970s with the development of the first meta-heuristics, which are

still the object of intense research by the Operational Research and neighbouring scientific

communities. Approximation methods, which are devised for finding sub-optimal solutions with

a guarantee of their quality, have also been the subject of research among those scientific

communities.

1.2 Branch-and-Price

Branch-and-price amounts to the combination of column generation and branch-and-

bound. Column generation is used to solve the Linear Programming problems that are used as

relaxations within the branch-and-bound method.

The roots of column generation date back to the late 1950s and the early 1960s. L. R.

Ford and D. R. Fulkerson for the first time solved a specific Linear Programming model

(maximal multicommodity flow) not defining explicitly all its variables. That approach served

as inspiration for the decomposition principle of G. B. Dantzig and P. Wolfe, which allows

reformulating a general Linear Programming model in such a way that its structure (that is, its

parts and the relation between them) is made clear and ready to be explored algorithmically

(namely, by column generation). P. C. Gilmore and R. E. Gomory for the first time used column

generation as the fundamental piece for obtaining heuristic solutions in a specific Integer

Programming problem (the cutting stock problem), although not combined with branch-and-

Chapter 1: General Introduction

4

bound. Their combination, which provides optimal solutions, was made about 20 years later by

J. Desrosiers, F. Soumis, and M. Desrochers in a vehicle routing problem.

Meanwhile, a closely related approach, Lagrangean relaxation, whose first use in Integer

Programming is due to M. Held and R. M. Karp, emerged in the early 1970s. The simplicity of

the subgradient method and variants used in Lagrangean relaxation was a main factor to its

subsequent generalisation.

The Dantzig-Wolfe decomposition principle and Lagrangean relaxation are (primal-dual)

equivalent. Correspondingly, column generation and the cutting plane method for non-

differentiable optimisation (from J. E. Kelley in the early 1960s) used for solving the resulting

reformulated problems, are the same, with different (primal-dual) perspectives. We believe that

the main reason for why only in the 1990s their potential started to be exploited and developed

(as opposed to the subgradient method mentioned above) was the lack of efficient and robust

software implementations of Linear Programming algorithms.

As pointed out in several surveys (Barnhart et al., 1998; Hoffman, 2000; Johnson et al.,

2000; Wilhelm, 2001; Lübbecke and Desrosiers, 2002) several issues of branch-and-price

methods deserve further research. In this work, we aim at contributing to the research of some

of those issues, which we will refer to after a brief introduction to the other main topic of this

work: multicommodity flow problems.

1.3 Multicommodity Flow Problems

Network models played an important role in the development of Operational Research

since its origins. The classical transportation problem (one of the first problems solved in a

computer in 1951) is a landmark in the history of Operational Research. The work of L. R. Ford

and D. R. Fulkerson in the late 1950s and early 1960s established network flows as a major field

of application and research in Linear Programming.

Network models are used to deal with a large number of decisions in our society. From

electrical to water systems, from railway to communications systems, networks are everywhere.

In a network flow model, the usual modelling approach is to define decision variables as the

flow on each arc. Flow conservation constraints force the flow entering each node to be equal to

the flow leaving that same node. Additional variables and constraints allow the consideration of

a large number of different problems, arising in several application areas such as transportation/

distribution and production planning.

Multicommodity network flow models deal with problems where several different

commodities share the same network. In the multicommodity flow problems studied in this

work, it is intended to route all the commodities from their origins to their destinations at

Chapter 1: General Introduction

5

minimum cost, in a network with capacitated arcs.

A Linear Programming model for those problems is composed of two sets of constraints:

flow conservation of the commodities and capacities of the arcs. Such a model is a large one: it

has one decision variable for each commodity and arc; one constraint for each commodity and

node; and one constraint for each capacitated arc. The fact that, by neglecting the capacity

constraints, a set of independent problems is obtained (one for each commodity), leads to the

efficiency of decomposition methods for their solution, which has been done since the work of

J. A. Tomlin in the middle 1960s.

In this work, we apply the decomposition approach just outlined combined with branch-

and-bound, to the integer multicommodity flow problem where the units of the commodities

cannot be split; and to the binary multicommodity flow problem where each commodity must

use a single path. We also consider the linear minimum cost multicommodity flow problem

defined in a planar network, for which we discuss a procedure to improve the efficiency of the

column generation algorithm.

1.4 Contributions

In our view, the main contributions of this Thesis are the following.

A general branch-and-price methodology is explored for using Dantzig-Wolfe

decomposition in (mixed) integer problems for which a compact model is known. Its main

feature is the compatibility of branching rules and subproblems, allowing the incorporation of

cuts. The extension of that approach for multiple Dantzig-Wolfe decomposition is proposed. We

implemented that methodology in ADDing − Automatic Dantzig-Wolfe Decomposition for

INteger column Generation, a general branch-and-price algorithm coded in C++.

In its basic use, all the user is required to do is to provide an original (mixed) integer

model. ADDing automatically decomposes the original model and uses branch-and-price to

obtain an (integer) optimal solution. In a more advanced use, the user may provide specific

subproblem solvers and branching rules through a few, hopefully simple, functions.

Typically, the implementation of a branch-and-price algorithm is a time-consuming task.

Two options exist: to develop specific code for the problem at hand or to use existing

frameworks (such as Abacus or COIN/BCP) that require an in-depth knowledge of their internal

structure but less coding effort. With ADDing, we intend to provide a third alternative.

Based on the branch-and-price methodology mentioned above, we propose three branch-

and-price algorithms for two multicommodity flow problems.

For the integer multicommodity flow problem (MFP), the formulation based on flows in

Chapter 1: General Introduction

6

paths is used. To our knowledge, the development of an exact decomposition algorithm for that

problem is made for the first time. The branching scheme proposed is the application of the

general methodology mentioned above. In the case of the integer MFP, an interesting issue

arises: the subproblems in the nodes of the search tree may suggest rays, although, in an optimal

solution, their weight is null. The approach proposed here to deal with that issue might be used

in other network flow problems.

For the binary MFP, we explore two decompositions. The first is the decomposition

based on paths previously applied to that problem by (Barnhart et al., 2000), which also uses

cuts. We use a different branching scheme and present comparative computational results.

The second decomposition is based on defining the subproblem as a binary knapsack

problem for each arc. Although this type of knapsack decomposition has been used in other

problems, to our knowledge, this is the first time it is used for the binary MFP. Its potential

advantage is that the lower bound it provides is, in general, of better quality than the one

provided by the linear relaxation of the original formulation or by the path decomposition.

We present computational tests of the two branch-and-price algorithms and compare them

with a general-purpose solver. Although other specific algorithms have been proposed in the

literature, such a comparison is made for the first time.

In this work, the relation between Dantzig-Wolfe decomposition and Lagrangean

relaxation is explicitly discussed, as is the relation between column generation and methods for

solving the Lagrangean dual. The insight given by those relations is a fundamental issue when

developing stabilising procedures for column generation. An application of the use of extra dual

cuts (Carvalho, 2000) to a planar multicommodity flow problem is made. The approach is based

on the use of a model that includes extra circuit variables, besides the usual path variables,

allowing the implicit consideration of paths that are not generated by the subproblem. We

present comparative computational results on the proposed approach, standard column

generation, and a bundle method implementation.

1.5 Outline

Each Chapter of the present Thesis is essentially self-contained. Although some issues

could be presented in a dependent manner, we choose to present Dantzig-Wolfe decomposition

and column generation based algorithms in a general way (Chapter 2) and dedicate one Chapter

to the general implementation that was carried out (Chapter 6), devoting each of the remaining

Chapters to one different multicommodity flow problem (Chapters 3, 4 and 5).

In more detail the organisation of the present Thesis is as follows.

Chapter 1: General Introduction

7

In Chapter 2, the fundamental theory of the Dantzig-Wolfe decomposition principle and

column generation based methods is reviewed. We aim at providing a comprehensive overview

and contextualisation of those approaches for solving Linear and Integer Programming

problems, by reviewing their fundamental conceptual and algorithmic aspects and by providing

references to applications, related methods and recent developments. The general approach

taken encompasses the exposition of a general branching scheme for branch-and-price,

incorporation of cuts (branch-and-price-and-cut), and the development of multiple Dantzig-

Wolfe decomposition.

Chapters 3, 4 and 5 are devoted to the development and testing of column generation

based algorithms for three different multicommodity flow problems: the (general) integer, the

binary, and the linear defined in a planar network, respectively.

In Chapter 3, a branch-and-price algorithm is developed for the integer multicommodity

flow problem following the general approach presented in Chapter 2. We review solution

methods that have been devised for the linear relaxation of the problem. In the nodes of the

search tree, we propose a formulation that includes cycle variables, in addition to the usual path

variables. Computational tests of the proposed algorithm and of a general-purpose solver are

presented and discussed.

In Chapter 4, we present two branch-and-price algorithms for the binary multicommodity

flow problem. Based on the Dantzig-Wolfe principle, we derive two different decompositions

depending on the subproblem definition. One decomposition captures the network structure of

the problem and the other provides better quality lower bounds. For the decomposition based on

paths, we compare the developed branching rule with one previously presented by (Barnhart et

al., 2000). We present computational results for the two decompositions and compare them with

the ones given by a general-purpose integer programming solver.

In Chapter 5, we propose a way of accelerating a column generation algorithm for the

linear minimum cost multicommodity flow problem. We use a new model that, besides the

usual variables associated with paths, has a polynomial number of extra variables (when the

problem is defined in a planar network), associated with circuits. We present computational

results for the comparison of this new approach with standard column generation, a bundle

method, and a general-purpose solver.

In Chapter 6, we describe ADDing − Automatic Dantzig-Wolfe Decomposition for

INteger column Generation − a general branch-and-price algorithm implementation in C++. We

describe its use and internal structure, presenting further details in the Appendix. Future

development directions are also discussed.

Finally, in Chapter 7 we draw the overall conclusions taken from this work and point out

some directions for further research.

 8

2 Dantzig-Wolfe Decomposition and Column
Generation Based Algorithms

In this Chapter, we address Dantzig-Wolfe decomposition and column generation based

algorithms for linear and integer programming.

We review the main theoretical aspects of Dantzig-Wolfe decomposition and column

generation, as approaches for solving structured models, both in a linear programming

perspective and in a Lagrangean relaxation perspective. Different alternatives for implementing

a column generation algorithm are surveyed.

The use of Dantzig-Wolfe decomposition in integer programming is discussed. We detail

a general branching scheme for combining column generation and branch-and-bound (branch-

and-price). The extension of that combination to allow the incorporation of cuts is also detailed.

We explore multiple Dantzig-Wolfe decomposition / multiple column generation in the

context of the general branching scheme exposed, which, to our best knowledge, is made here

for the first time.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

9

2.1 Introduction

Branch-and-price combines two well-established methods, column generation and

branch-and-bound, to obtain the optimal solution of (mixed) integer problems. Although those

two methods are known since the late 1950s, only in the middle 1980s was developed their first

combination to obtain optimal integer solutions for a routing problem (Desrosiers et al., 1984)

and only in the late 1990s the first revision paper about branch-and-price was published

(Barnhart et al., 1998).

Over the last years, a renewed interest on column generation based algorithms has

appeared, judging from the large number of publications on the subject (see Table 2.1, at the

end of this Section, pages 12 and 13).

We believe there are two main reasons for that. Firstly, the availability of appropriate

computational tools made their implementations easier and more robust, exposing their

advantages over other methods of the same “family” (such as the subgradient method).

Secondly, their successful application on problems with great economical and social impact,

such as the ones faced by the airline and transportation industries.

Several motivations can (co)exist for developing a column generation based algorithm.

First of all, it is a decomposition algorithm. We may have a compact formulation (a

model where is possible to consider all the decision variables and constraints explicitly) but so

large that the possibility of solving it directly, in an efficient way, must be ruled out. Being so, a

decomposition approach, where solutions to parts of the model are obtained by solving smaller

(sub)problems and then combined to form a solution to the overall problem, is attractive. It is

worth noting, as done, for example, in (Williams, 1999) and (Martin, 1999), that the vast

majority of practical problems, for which a compact model can be devised, has some kind of

structure: we can identify submodels within the model. Thus, even if it is feasible to solve the

compact model, for computational memory reasons or for taking advantage of the efficient

algorithms that may exist for those submodels, column generation based algorithms are an

appealing approach.

The decomposition framework described in the previous paragraph can be extended to

problems where the compact formulation is nonlinear. Although column generation is

essentially a linear programming technique, there will be no conceptual changes if the non-

linearity of the model is confined to the subproblems (this is a usual motivation for routing and

scheduling applications, where the nonlinear subproblems are solved by dynamic

programming).

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

10

Another motivation for the use of column generation based algorithms is that a compact

formulation for the problem at hand is not known.

A last motivation is a fundamental one when dealing with integer programming models.

In those models, a major issue when they are attacked by methods based on bounds given by

relaxations (such as branch-and-bound) is their quality. Alternative models with a huge number

of columns, under certain circumstances, give better lower bounds (considering a minimisation

problem). A classical illustration is the pioneer work of Gilmore and Gomory in the cutting

stock problem (Gilmore and Gomory, 1961; Gilmore and Gomory, 1963) where a column

generation algorithm is devised to obtain “good” linear solutions that are then rounded by a

heuristic.

In this work, we focus on the application of branch-and-price algorithms in problems

where a compact formulation is known. The Dantzig-Wolfe Decomposition (DWD) principle

(Dantzig and Wolfe, 1960) is used to reformulate the compact model (called original). Column

generation is then used to deal with the huge number of variables of the reformulated model. In

order to obtain integer solutions, branch-and-bound is used in such a way that the relaxed

problems of the nodes of its search tree are solved by column generation. Using this approach,

there is a guarantee that an optimal solution (with the desired accuracy) will be found. However,

it can also serve as a framework for the development of heuristics. Three examples of such type

of approaches are: (i) to include, in the problems solved in the nodes of the search tree, only the

columns that, in its root, had a reduced cost less than a preset threshold value; (ii) to stop the

search of the tree as soon as a feasible integer solution is found; (iii) to round the fractional

solution obtained in the root node.

It is worth to emphasise that Dantzig-Wolfe reformulation is not the only source of

models where the use of column generation based algorithms is appropriate.

In (Wilhelm, 2001) column generation based algorithms are classified in three types.

Type I algorithms are based on the selection of a subset of promising variables (that is, variables

that hopefully will have positive values in an optimal solution) from the huge set of existing

variables. Then a master problem where only those variables are considered (thus, a restricted

master problem) is solved in order to identify their best combination. Clearly, this column

generation a priori approach does not guarantee optimality.

Type II algorithms are based on the iterative exchange of information between the

(restricted) master problem and the subproblem. In every iteration, the master problem (where

the variables generated by the subproblem in previous iterations are considered) is optimised,

providing guidance for the subproblem to generate promising variables for the next iteration.

Type III algorithms are similar to the ones of type II, but the master problem results from

a DWD. According to this classification, some approaches can be included in both type II and

III, since some of the Dantzig-Wolfe reformulated models have a natural interpretation when

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

11

directly formulated. Furthermore, it has been proved that for each Dantzig-Wolfe reformulated

model there is a compact original formulation (Villeneuve et al., 2003).

In this work we focus on type III column generation and its use on integer programming.

This approach, where a compact model is reformulated using DWD, can be applied in every

problem for which a compact formulation is known. However, decomposable models are

natural candidates for this type of algorithms. Clearly, this does not mean that the application of

column generation based algorithms is limited to a few problems. Besides the fact already

mentioned that most practical models are decomposable, this is confirmed by the large number

of problems where Lagrangean relaxation (in particular the subgradient method for solving the

Lagrangean dual) was successfully applied in the last four decades. For all those problems,

DWD can also be applied. In fact, despite their different origins (nonlinear programming in the

case of Lagrangean relaxation, linear programming in the case of DWD), there is a dual

equivalence between the two approaches. As for solution methods, the cutting plane method of

Kelley (Kelley, 1960) when applied to solve the dual Lagrangean problem is dual equivalent to

column generation applied to solve the DWD reformulated model.

In this primal-dual perspective, we can think of Lagrangean relaxation and DWD as the

same decomposition for which different solution methods exist, being the most well-known:

subgradient (which is frequently (mis)taken as a synonym of Lagrangean relaxation), bundle,

volume and Kelley’s cutting plane / column generation. Two distinctive features characterise

column generation: its understanding can be confined to linear programming (as an extension of

the simplex algorithm) and it has a natural primal interpretation. Although being technically

equivalent to Kelley’s cutting plane method, the column generation primal perspective has some

advantages, in particular when it is the base for the solution of integer problems. Firstly, it

makes the identification and the use of cuts (branch-and-price-and-cut) easier. Secondly, it also

makes the incorporation of (primal) heuristics that may capture specific aspects of the problem

at hand easier. Thirdly, and last, the promising hybridisation of linear/integer programming with

constraint logic programming techniques certainly requires a primal perspective of the problem

(as an example, see (Fahle et al., 2002)). We note that these advantages are only related with the

conceptual framework for the development of decomposition algorithms. Certainly, the insight

given by the dual methods/perspective plays a crucial role on column generation based

algorithms. Two recent publications (Lemaréchal, 2003; Frangioni, 2004) discuss in detail the

relation between DWD and Lagrangean relaxation.

A list of applications, and their references, to column generation based algorithms is

given in Table 2.1. Additional references can be found in (Desrosiers et al., 1995) (a survey on

time constrained routing and scheduling where branch-and-price algorithms for several of those

problems are described), and (Wilhelm, 2001; Lübbecke and Desrosiers, 2002) (surveys of the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

12

use of column generation based algorithms in integer programming).

This Chapter is organised as follows. In the next Section, the use of DWD principle and

the column generation technique are described. In Section 2.3, the close relation of DWD with

Lagrangean relaxation is made explicit and column generation is discussed in the broader

context of methods to solve the Lagrangean dual. In Section 2.4, column generation variants and

stabilisation procedures are discussed. In Section 2.5, the use of the DWD principle is extended

to integer programming problems and the combination of column generation and branch-and-

bound (branch-and-price) is described. In the same Section, we also develop multiple Dantzig-

Wolfe decomposition / multiple column generation. Finally, in Section 2.6, we conclude this

Chapter, by reviewing the main aspects discussed in it.

Application Reference(s) Application Reference(s)

Vehicle routing
with time windows

(Desrosiers et al., 1984;
Desrochers et al., 1992; Kohl et
al., 1999)

Traffic assignment (Ribeiro et al., 1989)

Vehicle scheduling
(Ribeiro and Soumis, 1994;
Desaulniers et al., 1998)

Traffic
equilibrium

(Larsson et al., 2004)

Simultaneous
vehicle and crew
scheduling

(Desaulniers et al., 2001;
Haase et al., 2001; Freling et
al., 2003)

Time slot
assignment in a
satellite system

(Lee and Park, 2001)

Pickup and
delivery

(Savelsbergh and Sol, 1998;
Christiansen and Fagerholt,
2002; Lübbecke and
Zimmermann, 2003)

Spectrum auctions (Günlük et al., 2002)

Multiple tour
maximum
collection

(Butt and Ryan, 1999) Probabilistic logic (Jaumard et al., 1991)

Air network
design

(Barnhart and Schneur, 1996)
Coalition
formation in multi-
agent systems

(Tombus and Bilgiç, 2004)

Fleet assignment (Hane et al., 1995)
Management of
spare parts

(Mehrotra et al., 2001)

Crew scheduling
(Desrochers and Soumis, 1989;
Vance et al., 1997; Yan and
Chang, 2002; Yan et al., 2002)

Delivery planning (Boland and Surendonk, 2001)

Aircrew rostering (Gamache et al., 1999)
Assembly system
design

(Wilhelm, 1999)

Staff scheduling

(Jaumard et al., 1998; Mehrotra
et al., 2000; Sarin and
Aggarwal, 2001; Bard and
Purnomo, 2004; Eveborn and
Rönnqvist, 2004)

Forest
management

(Martins et al., 2003)

Job scheduling
(Akker et al., 1999; Chen and
Powell, 1999; Akker et al.,
2000; Akker et al., 2002)

Course registration (Sankaran, 1995)

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

13

Cutting stock and
bin packing

(Vance et al., 1994; Carvalho,
1999; Vanderbeck, 1999;
Alves and Carvalho, 2003)

Ship routing and
inventory
management

(Christiansen and Nygreen,
1998)

Facility location
(Shaw, 1999; Klose and Drexl,
2002)

Supply chain
management

(Bredström et al., 2004)

P-median
(Ceselli and Righini, 2002;
Lorena and Senne, 2004; Senne
et al., 2005)

Ring network
design

(Henningsson et al., 2002)

Lot sizing
(Vanderbeck, 1998; Kang et
al., 1999; Degraeve and Jans,
2003)

Shipment planning
at oil refineries

(Persson and Göthe-Lundgren,
2005)

Switch-box
routing

(Jørgensen and Meyling, 2002)
Sorting
permutations by
reversals

(Caprara et al., 2001)

Circuit partitioning (Ebem-Chaime et al., 1996)
Beam-on time in
cancer radiation

(Boland et al., 2004)

Placement of
multiplexers

(Sutter et al., 1998)
Steiner tree
packing

(Jeong et al., 2002)

Generalised
assignment

(Savelsbergh, 1997) Graph coloring (Mehrotra and Trick, 1996)

Car assignment to
trains

(Lingaya et al., 2002)
Maximum stable
set

(Bourjolly et al., 1997)

Channel
assignment

(Jaumard et al., 2002) Clustering (Mehrotra and Trick, 1998)

Table 2.1 Applications of column generation based algorithms.

2.2 Dantzig-Wolfe Decomposition and Column Generation

2.2.1 Structured models

Large-scale optimisation problems typically have some kind of structure: it is possible to

identify parts of the problem that are defined in a similar way. We give four brief examples. In a

production planning problem over a temporal horizon, the decision about the quantities to

produce of each product, given a set of common resources, defines a similar problem for each

product. In vehicle routing, the problem of defining the route for each vehicle is similar (in the

case vehicles have the same characteristics, that problem is equal for all vehicles − “which route

should I take?”). In the generalised assignment problem, where the maximum profit assignment

of a set of jobs to a set of agents with limited capacity is desired, the problem that each agent

faces is similar (“which jobs should I make?”). In machine scheduling, where a set of tasks must

be scheduled in a set of machines, the problem of each machine is similar (“which tasks should

I perform?”).

When formulated with linear/integer programming this kind of problems give rise to

structured models. The nonzero coefficient values in the constraints do not appear in random

places, but in blocks, as exemplified in Figure 2.1, where the senses and right-hand-sides of the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

14

constraints are omitted. Assuming that blocks F and E are empty, we obtain the so-called block

angular structure with linking constraints, where these are defined by the D block. Neglecting

those linking constraints, a solution could be obtained by solving the (independent) problems

defined by each A matrix (with a slight abuse of terminology, since the problems are also

defined by the senses and right-hand-sides of the constraints and by an objective function not

represented). Assuming that the F and the D matrices are empty, we obtain the so-called block

angular structure with linking variables. If none of the E, F, and D matrices are empty matrices

a block angular structure with linking constraints and variables is obtained.

Block angular structures with linking variables and with linking variables and constraints

are outside the scope of this work. Here we only point out that methods, such as Benders

decomposition (Benders, 1962) and cross decomposition (as an example, see (Roy, 1986)) were

developed to deal with that kind of structures.

For problems with block angular structure with linking constraints, which are represented

in Figure 2.2 for clarity, we will focus on price decomposition (Dantzig-Wolfe / Lagrangean

relaxation); other decomposition approaches and methods for those models, such as basis

partitioning (Rosen, 1964) and resource directive decompositions (see (Minoux, 1986)) will be

briefly presented in Chapter 3 in the context of multicommodity flow problems.

A possible match of this model representation with the examples given above is given in

Table 2.2.

It is important to note that different perspectives of a given problem, or different

orderings of the variables and constrains of a model, give rise to different structures. This will

be discussed in more detail in Section 2.5.2.

A2

A1

...

Ah

D

E

F

Figure 2.1 Schematic representation of a structured linear/integer programming model.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

15

Figure 2.2 Schematic representation of a block angular with linking constraints model.

Problem D block A blocks

Production
planning

Availability of common resources
required for production (for
example, capacities of the
machines).

One block for each product.
Production requirements of each product
(for example, forced by existant demand).

Vehicle
routing

Constraints imposed on the fleet of
vehicles (for example, it must visit
all the clients).

One for each vehicle.
Requirements of the routes and of each
vehicle (for example, a route must end at a
depot and its capacity cannot be exceeded).

Generalised
assignment

Constraints imposed on the group
of agents (all the tasks must be
performed).

One for each agent, related with its
capacity.

Machine
scheduling

Constraints imposed on the jobs
(for example, all the jobs must be
performed).

One for each machine.
Constraints imposed on each machine (for
example, two tasks cannot be made at the
same time).

Table 2.2 Examples of models resulting from structured problems.

2.2.2 Dantzig-Wolfe decomposition principle

The DWD principle can be applied to any linear programming model. However, its

potential is revealed when considering models with the block angular structure with linking

constraints described in the previous subsection. We will refer to that case whenever we think it

is worth, but, for clearness of notation and exposition, in this Chapter, we will concentrate on

the general linear programming model:

ZLnP = Min c x (LnP)

 subject to:

 D x ≥ d (2.1)

 A x = b (2.2)

 x ≥ 0,

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

16

where x is a column vector of dimension n in which each element, indexed by j, is associated

with a decision variable, xj, j=1,...,n; c is a row vector with the same dimension: c = [c1 ... cn]; d

is a column vector with dimension g; D is a g×n matrix; b is a column vector with dimension m

and A is a m×n matrix.

We refer to (LnP) as the original formulation and to the decision variables of this model

as the original variables. In Section 2.5, we will consider that the decision variables must be

integers.

We define the set SSP = { x : Ax = b, x ≥ 0 } and the problem

ZSP = Min c x (SP)

 subject to:

 x∈ SSP ,

where the dimensions of c are the same as the ones of c.

Every feasible solution of (SP) can be represented as a convex combination of the

extreme points plus a nonnegative combination of the extreme rays of SSP, according to the

Minkowski theorem (see, for example, (Nemhauser and Wolsey, 1999)). We define P and R as

the sets of indices of all extreme points and extreme rays of SSP, respectively; y
p as the p-th

extreme point and ur as the r-th extreme ray of SSP.

Thus, x∈ SSP is equivalent to the existence of nonnegative scalars λp, p∈P, and µr, r∈R,

associated with the extreme points and extreme rays of SSP such that

 x = ∑
∈Pp

y
pλp + ∑

∈Rr

u
rµr (2.3)

 ∑
∈Pp

λp = 1

 λp ≥ 0, ∀p∈P

 µr ≥ 0, ∀r∈R.

Performing an exchange of variables, model (LnP) is equivalent to

ZLDW = Min ∑
∈Pp

(c y
p
) λp + ∑

∈Rr

(c u
r
)µr (LDW)

 subject to:

 ∑
∈Pp

(D y
p
)λp + ∑

∈Rr

(D u
r
)µr ≥ d (2.4)

 ∑
∈Pp

λp = 1 (2.5)

 λp ≥ 0, ∀p∈P (2.6)

 µr ≥ 0, ∀r∈R. (2.7)

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

17

We denote model (LDW) as master model and its decision variables, λp and µr, as weight

variables.

Constraints (2.4) force a feasible solution with respect to the constraints that were not

included in the definition of SSP. Constraints (2.5), (2.6), and (2.7) force a feasible solution of

(LDW) to belong to SSP. Constraints (2.5) are referred to as convexity constraints.

A solution expressed in terms of the original variables can always be obtained from a

feasible solution of (LDW), both with the same value, by using (2.3).

A feasible solution of (LnP) can be mapped into a solution of (LDW), not necessarily in a

unique way, since the representation of a point of a set as a convex combination of the extreme

points plus a nonnegative combination of the extreme rays of the same set is not unique.

If the original problem is unfeasible or unbounded, the reformulated problem will also be

unfeasible or unbounded, respectively.

In general, the master model has a huge number of decision variables: the sum of all

extreme points and extreme rays of SSP. The enumeration of all those variables is out of

question. In fact, only a small number will have a positive value in an optimal solution. On the

other side, constraints (2.2) were replaced by only one constraint. Column generation is a

method to deal with this huge number of variables.

Example 2.1

The data of this example is taken from (Bazaraa and Jarvis, 1977).

We consider the linear programming problem:

 Min − x1−2x2

 subject to:

 − x1− x2 ≥ −12

 x∈SSP,

where

SSP = { x: − x1 + x2 ≤ 2, − x1 + 2x2 ≤ 8, x1 ≥ 0, x2 ≥ 0 }.

In Figure 2.3 a graphical representation of this problem is given; the dotted line

represents the constraint that is kept in the master problem. Note that the set SSP is unbounded.

Its extreme points are [0 0]T, [0 2]T, and [4 6]T. Its extreme rays are [1 0]T and [2 1]T.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

18

Figure 2.3 Graphical representation of the Example 2.1 problem.

The master problem is:

Min [−1− 2] [0 0]Tλ1 + [−1− 2] [0 2]Tλ2 + [−1− 2] [4 6]Tλ3 + [−1− 2] [

1 0]
Tµ1 + [−1− 2] [2 1]Tµ2

subject to:

 [−1− 1] [0 0]Tλ1 + [−1−1] [0 2]Tλ2 + [−1− 1] [4 6]Tλ3 + [−1− 1] [1 0

]
Tµ1 + [−1− 1] [2 1]Tµ2 ≥ −12

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3, µ1, µ2 ≥ 0,

or, equivalently,

Min −4λ2 −16λ3 −µ1 −4µ2

subject to:

−2λ2 −10λ3 −µ1 −3µ2 ≥ −12

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3, µ1, µ2 ≥ 0.

The optimal solution of the master problem is λ3=1, µ2=2/3, λ1=λ2=µ1=0, thus the

optimal solution of the original problem is x1=16/3, x2=20/3 with value −56/3.

♦

Now we consider models with block angular with linking constraints structure. In this

case the A matrix is block diagonal and the constraints can be represented as shown in Figure

2.4.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

19

x
1
 ... x

h

D
1

... D
h ≥ d

A
1

 = b
1

 A
h

= b
h

Figure 2.4 Block angular with linking constraints structure.

The original formulation can be rewritten in the following way:

 Min ∑
∈Kk

c
k
 x

k

 subject to:

 ∑
∈Kk

D
k
 x

k
 ≥ d

 A
k
 x

k
 = b

k
,∀k∈K

 x
k
 ≥ 0, ∀k∈K,

where K is the set of indices of the blocks, K = {1,...,h}.

Defining a set SSP
k for each block, k∈K, and representing its feasible solutions through its

extreme points and rays, the master problem is:

 Min () ()∑ ∑ ∑
∈ ∈ ∈

+

Kk Pp Rr

rk
rkk

pk
pkk

k k

ucyc µλ

 subject to:

 () ()∑ ∑ ∑
∈ ∈ ∈

+

Kk Pp Rr

rk
rkk

pk
pkk

k k

uDyD µλ ≥ d

 ∑
∈ kPp

λpk = 1, ∀k∈K

 λpk ≥ 0, ∀k∈K, ∀p∈P
k

 µrk ≥ 0, ∀k∈K,∀r∈R
k
,

where Pk and Rk
 are the sets of indices of all extreme points and extreme rays of the k-th block,

respectively; ypk is the p-th extreme point and urk is the r-th extreme ray of the k-th block.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

20

Example 2.2

As an example of the application of the DWD principle, we consider a simple production

planning problem. We intend to determine the quantities to produce of a set of products in a set

of time periods where the demands are known, in order to minimise the total cost composed by

holding and production costs. In addition, there is a limit to the quantity of all products that can

be produced in each period.

Defining the original variables as the quantity to produce of each product in each time

period, denoted by xjk, where j is the period index and k is the product index, we obtain the

following original model:

 Min ∑ ∑
= =

h

1k

n

1j

(cjk xjk+hjk sjk)

 subject to:

 ∑
=

h

1k

xjk ≤ dj , j=1,...,n

 x1k − s1k = b1k , k=1,...,h

 s(j−1)k + xjk − sjk = bjk , j=2,...,n, k=1,...,h (2.8)

 xjk, sjk ≥ 0, j=1,...,n, k=1,...,h,

where sjk are auxiliary decision variables representing the available stock of product k at the end

of period j, n is the number of periods, h is the number of products, cjk is the unit production cost

of product k in period j, hjk is the unit holding cost of product k in period j, dj is the production

capacity in period j and bjk is the demand of product k in period j.

The original formulation for a three period, two product example is given in Figure 2.5.

If constraints (2.8) are used to define the sets SSP
k in a DWD, they are associated with

production plans (quantities to produce in each period) of product k − defined by the block k

constraints. Those sets are bounded, and so do not have extreme rays, and the reformulated

model is

 Min ()∑ ∑
∈ ∈Kk Pp

pk
pkk

k

yc λ

 subject to:

 ()∑ ∑
∈ ∈Kk Pp

pk
pkk

k

yD λ ≤ d

 ∑
∈ kPp

λpk = 1, ∀k∈K

 λpk ≥ 0, ∀k∈K, ∀p∈P
k
,

where ypk denotes the p-th production plan of k-th product. For the two product, three period

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

21

example, we illustrate in Figure 2.6 the reformulated model with two columns associated with

two production plans of product 1, namely y11=[0 b11 0 b21 0 b3
1
]
T (producing the required

demand in the same period) and y21=[b21

b11+

b21 0 0 0 b31]

T (producing in period 1 satisfying

the demands of periods 1 and 2, and producing in period 3 satisfying its demand).

s11

x11

s21

x21

s31 x31

s12

x12

s22

x22

s32 x32

 1 1 ≤ d1

 1 1 ≤ d2

 1 1 ≤ d3

−1 1 = b11

1 −1 1 = b21

 1 −1 1 = b31

 −1 1 = b11

 1 −1 1 = b21

 1 −1 1 = b31

h11

c11

h21

c21

h31 c31

h12

c12

h22

c22

h32 c32

Figure 2.5 Simple lot sizing original model for a two product, three period example.

Variables λ11
 λ21

 ...

Period 1 1 1 ... ≤ d1

Period 2 1 ... ≤ d2
Linking
constraints

Period 3 1 1 ... ≤ d3

Product 1 1 1 ... = 1

Convexity
constraints Product 2 ... = 1

Objective function c11b11+ c21b21 +c31b31 c11(b11+b21) + h11b21 +c31b31

...

Figure 2.6 Part of the simple lot sizing master model for a two product, three period example,
resulting from a decomposition by product.

♦

2.2.3 Column generation

Column generation is a method used to solve the master problem of the DWD principle.

The main idea of this method is that only the extreme points and rays of SSP that are needed to

define the optimal basis must be considered in the master problem (LDW). Since, of course,

prior to the optimisation the optimal basis is not known, the inclusion of variables is made

iteratively, starting from a restricted solution space.

We define two subsets of P and R, PP ⊆ and RR ⊆ . A restricted master problem

(RMP) is then:

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

22

ZRMP = Min ∑
∈Pp

(c y
p
)λp + ∑

∈Rr

(c u
r
)µr (RMP)

 subject to:

 ∑
∈Pp

(Dy
p
)λp + ∑

∈Rr

(Du
r
)µr ≥ d (2.9)

 ∑
∈Pp

λp = 1 (2.10)

 λp ≥ 0, ∀p∈ P

 µr ≥ 0, ∀r∈ R .

We assume that (RMP) has at least one feasible solution. In Section 2.4.2 we will discuss

the case where finding sets P and R such that this assumption holds is non-trivial.

According to the linear programming theory, the optimal solution of (RMP) is an optimal

solution for (LDW) if there are no variables outside (RMP) with negative reduced cost.

We define the vector w≥0 and the scalar π as the duals associated with constraints (2.9)

and (2.10), respectively. The reduced cost of one variable λp is given by cy
p
 − wDy

p
 − π. The

reduced cost of one variable µr is given by cu
r
 − wDu

r
. At a given dual point,),w(π , the

variable with the most negative reduced cost is the one associated with the optimal solution of

the subproblem:

wSPZ = Min (c − w D) x (SP w)

 subject to:

 x∈ SSP ,

noting that π is a constant.

If (SP w) is unbounded that means an extreme ray can be detected and the associated µ

variable should be inserted in (RMP). Otherwise, an extreme point is found. If wSPZ < π then

the variable associated with the extreme point has a negative reduced cost and should be

inserted in (RMP). If there are no variables with negative reduced cost, which means that the

optimal solution to (RMP) is also an optimal solution to (LDW).

In every iteration of a column generation algorithm, a RMP is solved, providing optimal

dual variables; based on the duals, the subproblem is solved and variables are inserted in the

RMP, accordingly.

Example 2.1 (continued from page 17)

We initialise the RMP with the first extreme point (origin) and the first extreme ray. In

the original space that corresponds to restricting the feasible set associated with the subproblem

constraints to the x1 axis.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

23

The optimal solution of this RMP is λ1=1 and µ1=12. A dual optimal solution is w =1

and π =0. The subproblem is

 Min (− 1+w) x1 + (− 2+w) x2

 subject to:

 − x1 + x2 ≤ 2

 − x1 + 2x2 ≤ 8

 x1, x2 ≥ 0.

For w =1, the subproblem is unbounded along the extreme ray [2 1]T. Variable µ2 is

inserted in the RMP, which is (re)optimised. Its optimal dual solution is w =4/3 and π =0.

For w =4/3, the optimal solution of the subproblem is the extreme point [4 6]T with value

−8/3. Since −8/3<π , λ3 is inserted in the RMP. Its optimal dual solution is w =4/3 and

π =−8/3.

The optimal solution of the subproblem is the same of the previous iteration. Since

π =−8/3 there are no attractive columns and the optimal solution to the RMP is optimal to the

overall problem.

♦

2.2.4 Linear programming dual and duality gap

In every iteration of the column generation algorithm an upper bound to the value of the

optimal solution is obtained by solving the RMP, ZRMP.

The linear programming dual of (LDW) is:

WLDWD = Max wd + π (LDWD)

 subject to:

 π ≤ cyp− wDy
p
, ∀p∈P (2.11)

 0 ≤ cur
 − wDu

r
, ∀r∈R

 w ≥ 0,

where the (nonnegative) w dual variables are associated with constraints (2.4) and (unrestricted

in sign) π variable is associated with constraint (2.5).

Any feasible solution to (LDWD) provides a lower bound to the value of its optimal

solution. However, the optimal dual solution that we have, after solving (RMP), is not

necessarily feasible for (LDWD) since having a primal RMP implies having a relaxed dual

master (RDM) problem:

WRDM = Max wd + π (RDM)

 subject to:

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

24

 π ≤ cyp− wDy
p
 , ∀p∈ P

 0 ≤ cur
 − wDu

r
, ∀r∈ R

 w ≥ 0.

Still, obtaining the value of the dual solution in (LDWD) is possible when solving the

subproblem if there are no attractive extreme rays (in this case, we consider that the lower

bound is −∞). When solving the subproblem at a given point w , if there are no attractive

extreme rays, we are selecting, from all the extreme points, the one that implies the lowest right-

hand side in (2.11), as can be seen by the objective function of (SP w). Since w d is constant,

the minimum value of the right-hand sides will imply the maximum possible value of the

objective function. Thus, the value of the objective function in (LDWD) is given precisely by

w d + wSPZ . By weak duality, that value is a lower bound to WLDWD = ZLDW.

Being so, a duality gap can be easily calculated through

ZRMP − (w d + wSPZ) = w d + π − (w d + wSPZ) = π − wSPZ .

This result allows obtaining optimal solutions with the desired accuracy.

The optimality conditions for linear programming state that a primal-dual pair is optimal

if it is primal feasible, dual feasible and respects the complementary slackness conditions. When

using column generation we seek a primal-dual pair of solutions that verifies those conditions

for the overall problem.

Column generation guarantees the complementary slackness conditions in all iterations

when obtaining an optimal solution to the RMP (assuming an optimal extreme point is found as

in simplex algorithms). Primal feasibility is assured in the RMP.

Now we turn to dual feasibility, which is checked in the subproblem. The dual solution

(w ,π) may be not feasible because of the constraints that are not present in (RDM). Dual

feasibility is achieved by setting 'π = wSPZ , which amounts to obtaining the extreme point p∈P

with the minimum right-hand side in (2.11). If p∈ P then π = 'π and the solution is dual

feasible already, and thus optimal for the overall problem. If p∉ P , a dual feasible solution may

be obtained by setting 'π = wSPZ (which enables the computation of the lower bound

previously presented). In that case, by changing the dual solution (π to 'π), complementary

slackness conditions are no longer verified, that is, the primal-dual solutions are no longer

complementary.

Consider that the dual constraint associated with the first extreme point of the subproblem

has no slack: π = cy
1− wDy

1. By complementary slackness, λ1 > 0 (in the absence of primal

degeneracy). Since we changed the value of π to 'π to gain dual feasibility, this constraint has

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

25

now a positive slack, thus violating ('π − cy1+ wDy
1
)λ1 = 0. A new iteration begins with the

computation of complementary primal-dual solutions that minimise-maximise RMP-RDM, with

the inclusion of a new variable-constraint.

Summarising, in every iteration of the column generation algorithm primal feasibility and

complementary slackness are ensured when solving the RMP. Dual feasibility is checked in the

subproblem. When checking dual feasibility it is possible to find a dual feasible solution that

allows computing a lower bound to ZLDW.

2.2.5 Columns removal and convergence

Column generation can be viewed as an extension of the primal simplex algorithm. In all

iterations, a basic solution is determined by solving the current RMP and the most promising

nonbasic variable is determined by solving the subproblem. However, since the number of

columns of the RMPs can become quite large (given their exponential size), strategies for

columns removal may have a particular importance when implementing a column generation

based algorithm.

Two extreme situations can be considered when defining a strategy for columns removal:

never deleting variables of the RMPs or deleting all nonbasic columns of the current RMP in

every iteration.

In the first situation, finite convergence is guaranteed, as long the simplex

implementation employed to solve the RMPs uses techniques for dealing with cycling (which is

usually the case). Cycling can occur if a (primal) basis is degenerate, meaning that there are

basic variables with zero value (see, for example, (Murty, 1983)). In the presence of a

degenerate basis, if the choice of the leaving (degenerate basic) variable and entering variable

(one with non-positive reduced cost) is arbitrary, a cycle of basis, which does not include the

one that allows the strict improvement of the solution value (or which allows the detection that

the optimal solution was found), can be formed. Note that for a variable to play a part in that

cycle of basis, it must have a negative reduced cost at some iteration, thus, it will be generated

by the subproblem. As long as variables are not deleted, cycle prevention is then a task for the

RMP solver and does not pose any difficulties for the implementation of a column generation

algorithm.

In the second situation, finite convergence is not theoretically guaranteed. When all

nonbasic variables are removed from the RMP, the subproblem may suggest a variable to enter

the basis that will lead to a basis already considered in a previous iteration. Note that, since the

variables outside the RMP are being implicitly considered, it is not simple to apply any

lexicographical rules to select the entering variable, which would be a possibility to deal with

cycling.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

26

Although columns removal may compromise the convergence of column generation, in

practise, implementations where columns removal is performed are frequent. We will discuss

some of those strategies in subsection 2.4.2.

2.3 Dantzig-Wolfe Decomposition and Lagrangean
Relaxation

2.3.1 Lagrangean relaxation

In the previous Section, we took a linear programming perspective over the DWD

principle and column generation. A different perspective can be taken if we consider its relation

with Lagrangean relaxation. Although linear programming duality and Lagrangean relaxation

applied in linear programming can be seen as the same thing, we think this different perspective

is worth, given the own importance of Lagrangean relaxation. Furthermore, this perspective

allows contextualising column generation within the methods for non-differentiable

optimisation.

The use of Lagrange multipliers for obtaining solutions of optimisation problems dates

back to the XVIII century, when Joseph Louis Lagrange (1736-1813) lived. Their use in

nonlinear programming has accompanied that discipline from its origins, in the middle XX

century, to the present.

The term “Lagrangean relaxation” was coined in the middle 1970s by A. M. Geoffrion

(Geoffrion, 1974) in the context of obtaining lower bounds in integer programming. This

application of Lagrangean relaxation became relevant with the work of M. Held and R. M. Karp

on the travelling salesman problem (Held and Karp, 1970; Held and Karp, 1971) in the

beginning of the same decade, where the subgradient method was first used in that context.

Surveys about Lagrangean relaxation can be found in (Shapiro, 1979; Fisher, 1981; Bazaraa et

al., 1993; Beasley, 1995; Bertsekas, 1999).

In Lagrangean relaxation, the minimisation original problem (LnP) (defined in page 15)

is replaced by a closely related maximisation problem:

ZLgP = Max ϕ(w), (LgP)

 subject to:

 w ≥ 0,

where

ϕ(w) = Min c x + w (d − Dx) (LgSP)

 subject to:

 A x = b

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

27

 x ≥ 0.

Problem (LgP) is the Lagrangean dual problem, ϕ(w) the Lagrangean dual function and

(LgSP) the Lagrangean subproblem. The Lagrangean subproblem is obtained by associating a

vector of dimension g of nonnegative dual variables (Lagrange multipliers), w≥0, with

constraints (2.1), which, in this way, are penalised in the objective function if they are not

satisfied.

Reminding that we are assuming that the original problem is a linear programming one,

two fundamental results are:

ZLgP = ZLnP;

ϕ(w) ≤ ZLnP ,∀w≥0.

The evaluation of the Lagrangean dual function at a point w is made by solving (LgSP)

at that point. If the (LgSP) is unbounded that means there exists an extreme ray, ur, such that

cu
r− wDu

r
 < 0 (noting that w d is a constant). In that case, ϕ(w) = −∞, since it was proved that

it is not that point that maximises ϕ(w). Points that may be optimal of (LgP) must satisfy the

constraints cur− wDu
r
 ≥ 0, ∀r∈R.

If, at w , there exists a finite optimal solution, there is at least one extreme point of SSP

that is an optimal solution of (LgSP), thus ϕ(w) =
Pp

Min
∈

 { cy
p
 + w (d − Dy

p
) }, where P denotes

the index set of the extreme points of SSP. Noting that cy
p
 + w (d − Dy

p
), ∀p∈P, are linear

functions, ϕ(w) is a concave piecewise linear function with breakpoints where (LgSP) has

alternative optimal solutions.

Example 2.1 (continued from page 17)

Associating a Lagrange multiplier with the constraint − x1− x2 ≥ −12, we obtain the

Lagrangean dual function showed in Figure 2.7. The two vertical dotted lines are associated

with the extreme rays of (LgSP), points to their left have ϕ(w) = −∞. The other three dotted

lines represent the linear functions associated with the extreme points of (LgSP).

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

28

)w(ϕ

Figure 2.7 Lagrangean dual function of the Example 2.1.

♦

2.3.2 Equivalence between Lagrangean relaxation and Dantzig-Wolfe
decomposition

The equivalence between DWD and Lagrangean relaxation is formally proven in, for

example, (Nemhauser and Wolsey, 1999) and is a consequence of the equivalence of dualisation

and convexification (Magnanti et al., 1976).

The value of the Lagrangean function at a point w , where ϕ(w) is finite, is given by

Pp
Min

∈
 { cy

p
 + w (d − Dy

p
 }. Being so, the Lagrangean dual problem can be solved by linear

programming:

 Max φ (LgLnP)

 subject to:

 φ ≤ cyp+w(d− Dy
p
)

, ∀p∈P (2.12)

 0 ≤ cur− wDu
r
, ∀r∈R (2.13)

 w ≥ 0,

where constraints (2.13) exclude points where ϕ(w) = −∞ and constraints (2.12) force the value

of the Lagrangean dual function to be defined by the optimal value of (LgSP).

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

29

Example 2.1 (continued from page 27)

The Lagrangean dual problem can be solved by the following linear programming

problem.

 Max φ

 subject to:

 φ ≤ [−1 −2] [0 0]T + w (−12−[−1 −1][0 0]T)

 φ ≤ [−1 −2] [0 2]T + w (−12−[−1 −1][0 2]T)

 φ ≤ [−1 −2] [4 6]T + w (−12−[−1 −1][4 6]T)

 0 ≤ [−1 −2] [1 0]T + w [−1 −1][1 0]T

 0 ≤ [−1 −2] [2 1]T + w [−1 −1][2 1]T

 w ≥ 0.

The optimal solution is given by w=4/3 and φ=−56/3.

♦

At a point w , given that w d is a constant, ϕ(w) = w d +
Pp

Min
∈

 { cy
p
 − w Dy

p
 }, thus

problem (LgLnP) is equivalent to (LDWD) (defined in page 23), making φ = π + wd.

Primal-dual equivalence between DWD and Lagrangean relaxation translates into the

primal-dual equivalence between column generation and the Kelley’s cutting plane method

(KCPM). In that cutting plane method, a relaxed master dual is considered and, in each

iteration, the violation of the constraints that are not present in (RDM) is checked by solving the

subproblem at the current point given by the optimal solution of (RDM).

2.3.3 Optimality conditions and primal solutions

A dual feasible point, w*, is an optimal solution to the Lagrangean dual problem if and

only if there is an optimal solution of (LgSP), y*, at w* such that:

 (i) Dy
*≥ d (primal feasibility);

(ii) w
*
(d − Dy

*
) = 0 (complementary slackness).

Furthermore, under these conditions, y* is an optimal solution to the original problem.

It is important to note that it may not be trivial, at an optimal dual point w*, to find a y*

that satisfies (i) and (ii). This difficulty lies in the fact that, if (LgSP) has alternative optimal

solutions at w*, there is no imediate way for the subproblem to select one solution such that

conditions (i) and (ii) are satisfied. An illustration of this is given in Figure 2.8. Points y1, y2, y3,

and y4 are the extreme points of the subproblem. The dotted line represents the dualised

constraint D1x≥d1. Consider that the unique optimal solution of the original problem is y
* and

that w* maximises ϕ(w). By solving the subproblem at w*, all points that form the convex

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

30

combination of y1 and y2 are optimal. Note that y1 does not satisfy the complementary slackness

condition (w*
> 0 is implied by the uniqueness of the optimal solution and D1y

1
> d1) and y

2 is

not primal feasible. The subproblem cannot identify the optimal solution that satisfies (i) and

(ii).

Figure 2.8 Illustration of the difficulty of getting a primal optimal solution based on an optimal
solution of the Lagrangean dual function.

Furthermore, the existence of alternative optimal solutions of the subproblem at an

optimal dual Lagrangean point, w*, can be seen as natural, since that happens in the breakpoints

of the Lagrangean dual function, as illustrated in Figure 2.9, ϕ(w*
) = cy

1
+w

*
(b−Ay1) =

cy
2
+w

*
(b−Ay2).

This discussion leads to the fact that, even assuming that an optimal dual solution is

known, obtaining a primal optimal solution amounts to determining the best primal feasible

convex combination of the extreme points of the subproblem (in order to satisfy optimality

conditions (i) and (ii)). This is precisely what is done when solving the (restricted) master

(primal) problem of column generation method (or, equivalently, the relaxed − since not all

constraints are being considered − master dual problem of the cutting plane method).

2

2

)w(ϕ

)w(*ϕ

Figure 2.9 Illustration of an optimal breakpoint of the dual Lagrangean function.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

31

2.3.4 Methods for solving the Lagrangean dual

General considerations

In this subsection, we refer to methods for solving the Lagrangean dual problem (LgP).

We briefly review and give references on the subgradient, volume, bundle and analytic center

cutting plane methods. These methods deserve particular emphasis for their

generalised/promising practical use and/or relation with KCPM / column generation. A

description of other methods can be found in (Bertsekas, 1999) and (Goffin and Vial, 1999).

Our goal with this subsection is to contextualise the KCPM / column generation method, and

thus we do not provide a formal description of the methods, neither discuss their several

variants.

Although we focus on solving the Lagrangean dual problem, it is relevant noting that all

the methods mentioned here may be applied in any convex/concave programming problem (see

(Hiriart-Urruty and Lemaréchal, 1993a; Hiriart-Urruty and Lemaréchal, 1993b) for a much

deeper presentation in that broader context).

The Lagrangean dual problem, (LgP), amounts to maximising a concave piecewise linear

function, ϕ(w), such as the one represented in Figure 2.10.

As noted earlier, each linear function defining the Lagrangean function is associated with

an extreme point of (LgSP), thus their number is exponential, which precludes the possibility of

explicitly considering all of them. However, by solving (LgSP) at a given point, w , there are

two kinds of useful information that can be obtained: the value of the Lagrangean dual function

at w , ϕ(w), and a subgradient of ϕ(w) at w , that is, a vector s = [s1 ... sm]
T such that ϕ(w) ≤

ϕ(w) + s (w − w), ∀w, given by d − Dy’, where y’ is an optimal solution of (LgSP) at w . That

information is sufficient to describe the linear function associated with the extreme point of

(LgSP) found. (If, at w , (LgSP) does not have a finite solution, then a constraint excluding that

point is obtained).

In the methods discussed here there is no control over the subgradient returned by the

subproblem: in the presence of alternative optimal solutions, the subproblem returns an arbitrary

one. The possibility of obtaining different optimal solutions of the subproblem (in the limit, all

of them, that is, obtaining all the subgradients at the point − the subdifferential) is excluded.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

32

Figure 2.10 Illustration of a Lagrangean dual function.

 A generic iteration of a method for solving the Lagrangean dual is as follows.

1. Obtain a trial point w , based on the information gathered so far.

2. Solve the subproblem (LgSP) at w , obtaining ϕ(w) and a subgradient of the

Lagrangean function at w given by ws = d−Dy
p
 where yp is an optimal solution of (LgSP) at

w .

3. Update the available information.

4. If the trial point is accepted move to w .

5. If the stopping criterion is satisfied, stop. Else go to 1.

Kelley’s cutting plane

In KCPM, the information used to obtain a trial point is a function that approximates the

Lagrangean function, obtained through the points, values, and subgradients of previous

iterations. The trial point is a maximiser of that function, obtained by solving a linear

programming problem − the RDM. The trial point is always accepted. Since the optimal value

of the current RDM gives an upper bound and ϕ(w) gives a lower bound to the optimal value

of the Lagrangean function, the stopping criterion is based on an optimality gap, allowing to

obtain primal solutions with the desired accuracy.

The initialisation of this method may require one artificial upper bound, since the first

RDMs problems can be unbounded.

Subgradient

The KCPM gathers all the information from previous iterations in order to decide the next

point to evaluate. An opposite approach, in the sense that very few past detailed information is

used in the current iteration, is given by the subgradient method (with roots in the works of Shor

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

33

and Poljak in the 1960s, see references in (Held et al., 1974)). The trial point obtained in step 4

is also always accepted, but, in the simpler version of the method, it is only based on the

subgradient of the current iteration and on a step size. Convergence is assured taking into

account that a sufficiently small step given in the direction of a subgradient (that is not

necessarily an ascent direction) results in a point closer to the optimum. In practise, the rules

used for determining the step sizes do not, theoretically, assure convergence (see, for example,

(Minoux, 1986; Bertsekas, 1999; Nemhauser and Wolsey, 1999)). The main advantage of this

method is its simplicity: no special procedure for its initialisation is needed, memory

computational requirements are negligible and its implementation is easy. The drawbacks are

the lack of a primal perspective and the stopping criterion. Theoretically, a necessary and

sufficient condition for the optimality of a point is the existence of a null subgradient at that

point. In practise, since the subgradients of previous iterations are discarded (or, in a more

elaborated version, aggregated with different weights) the verification of that condition relies

exclusively in the subproblem for which, as discussed before, there is no control over the

subgradient it returns (as opposed to the KCPM where the master problem is able to generate a

point where there is a null subgradient). Thus, in practise, the stopping criterion is usually

related with the number of iterations performed or the number of iterations without

improvement in the value of the Lagrangean function.

Volume

The most diffused method to solve the Lagrangean dual is, undoubtedly, the subgradient

method. Besides the fact that it was the first one used in this context, it has, at least, two main

advantages: it is easy to code and has minimal memory requirements. However, since it does

not keep in memory the solutions of the subproblems solved, it does not guarantee anything (not

even feasibility) about the solution of the original problem (the solution of the last subproblem

solved).

The volume method (Barahona and Anbil, 2000) can be seen as an extension of the

subgradient method designed to provide a primal solution, but still keeping its simplicity. A

primal solution, x , obtained by a convex combination of the primal solutions obtained in

previous iterations, is considered in each iteration (the weights are adjusted through the

execution of the algorithm). In each iteration a trial point is obtained, based on a step size and

on the direction defined by d − D x . That trial point can be accepted or not as the current point

for the next iteration. Three types of iterations can occur. In a red iteration the trial point is not

accepted because there has been no improvement. In a green or yellow iteration there is an

improvement of the Lagrangean function value and the trial point is accepted. The difference

between those types of iterations lies in the way a constant in the step size update expression is

modified for the following iteration. In a green iteration the angle between the direction and the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

34

subgradient of the current point is acute, and thus that constant is set to a value larger than the

current one. If the angle is not acute, then a yellow iteration is performed, where the constant of

the step size expression is reduced. Taking into account that primal feasibility can be slightly

violated, but given the existence of a primal solution, the stopping criterion can be based on the

gap.

Convergence properties and their relation with bundle methods are discussed in

(Bahiense et al., 2002).

The advantages of using subgradient and volume methods instead of the KCPM are

clearly application dependent. They are coded more easily and tend to execute faster, but are not

intended to give primal solutions with the same quality as the ones given by KCPM.

Bundle

Bundle methods have their roots in the work of Lemaréchal in the 1970s (for references,

see (Lemaréchal, 1989)). They can be seen as an extension of the KCPM, since, in each

iteration, the same function that approximates the Lagrangean function, based on the points and

subgradients of previous iterations, is considered. However, the trial point is obtained by

solving a quadratic master problem, where points distant from the current one are penalised. In

addition, contrary to the KCPM, the trial point is only accepted (serious step as opposed to a

null step) as the current one for the next iteration if the predicted improvement given by the

approximation is sufficiently close to the real improvement measured when the Lagrangean

function is evaluated at the trial point. In a null step, although the current point remains the

same, the approximation function is enriched.

When related to the subgradient method, in each iteration of a bundle method, a step size

is also adjusted and a direction is also determined. That direction is a convex combination of the

subgradients found in previous iterations, and is obtained through the solution of the quadratic

master problem, where a measure (linearisation error) of the validity of each subgradient in the

current point is taken into account. This allows obtaining a direction where subgradients in

points near the current one tend to have a larger weight than subgradients in points far from the

current one.

As opposed to the KCPM, bundle methods do not need to use an artificial upper bound in

the first iterations since the master problem of the bundle method always has a finite solution. In

addition, convergence properties are better because local information is taken into account when

deciding the trial point at each iteration. The price to pay is having a much more difficult master

problem to solve in each iteration (that is, a nonlinear one), a weaker stopping criterion and

primal solutions that can (slightly) violate the original constraints.

In (Briant et al., 2004) computational tests for comparing the bundle and KCPM

approaches are given for several instances of different problems. For two versions of a cutting

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

35

stock problem (minimising the number of rolls and minimising the total waste) KCPM took less

iterations and less time. For a vertex coloring problem, bundle took considerable less iterations

but the solution times were similar. For a capacitated vehicle routing, bundle again took

considerable less iterations, but much larger solution times. For the travelling salesman

problem, the number of iterations of bundle was again much smaller, but time results were not

presented. Finally, for a multi-item lot sizing problem, KCPM took much less iterations and

solution time.

Bundle requires the use of several parameters that need to be calibrated for the

instance/problem at hand. Although there is some evidence that the method is robust (with

respect to those parameters), in particular compared with the subgradient method (Crainic et al.,

2001), the absence of parameters that need to be calibrated of KCPM may be considered as

another advantage of this latter method.

For an in depth treatment of bundle methods and variants see (Medhi, 1994; Lemaréchal

et al., 1995; Frangioni, 1997; Frangioni, 2002).

Analytic center cutting plane

The analytic center cutting plane method (ACCPM) (Goffin et al., 1992; Goffin et al.,

1993) is closely related to the KCPM. The main conceptual difference is that the current point

of the next iteration is given by the analytic center of the localization set defined by

π ≥ zLB

π ≤ cyp− w(d−Dy
p
) , ∀p∈ P

0 ≤ cur
 − wDu

r
, ∀r∈ R ,

where zLB is the best value of the Lagrangean function found so far, being the remaining

notation as introduced before. Using concepts from interior point methods, the analytic center

(or an approximation of it) can be efficiently computed in every iteration.

The potential advantage of this approach lies in the fact that a central point contains more

information about the Lagrangean function than a maximiser, since it is defined by all the

cutting planes generated so far.

Its similarities with KCPM include the possible requirement of one artificial upper bound,

the stopping criterion, and the possibility of obtaining optimal primal solutions with the desired

accuracy. Still comparing with the KCPM, besides its clear conceptual difference, we must note

that an implementation of ACCPM involves a much harder coding effort, although some tools

have been developed to make it easier (Péton and Vial, 2001). For references and detailed

treatment of the ACCPM see (Goffin and Vial, 1999).

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

36

2.4 Column Generation Variants

2.4.1 Head-in, tail-off, and instability

Theoretically, column generation algorithms have poor convergence properties (Wolfe,

1970; Lemaréchal, 2003). In practise, three phenomena are observed (in some applications),

usually denoted by head-in, tail-off, and instability.

A graphical representation of those behaviours of a column generation algorithm is given

in Figure 2.11.

Iteration

V
al
u
e

Figure 2.11 Illustration of the head-in and tail-off effects in column generation / KCMP.

The head-in effect is a consequence of the poor quality of the primal and dual information

obtained in the first iterations. Particularly when it is not easy to obtain a first RMP that has a

feasible solution to the original problem, we may expect that, in each of those iterations, a large

number of columns are attractive and the selection of the ones to be inserted in the RMP is more

or less arbitrarily, since the dual information that an “artificial” RMP gives is necessarily poor.

In the last iterations, the duality gap may be small, but closing it may be take several

iterations, a phenomenon that is known as the tail-off effect. We may consider two reasons for

this. Firstly, when the RMP is degenerate, there are alternative dual optimal solutions and the

subproblem may have to generate several columns (several iterations) to strictly improve the

RMP primal solution. Secondly, as discussed in subsection 2.3.3, page 29, it is natural that the

subproblem has alternative optimal solutions, and so the one chosen arbitrarily may not be the

one that reduces the gap as intended.

Instability of the column generation refers to the fact that dual variables can take very

head-in tail-off

Upper bound

Lower bound

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

37

different values from one iteration to the next. In Figure 2.12 an illustration is given: the value

of the dual variable in the first iteration is closer to its value in the third iteration than to its

value in the second iteration. This may lead to wasting iterations approximating the Lagrangean

dual function in points far from the optimal, gathering useless cutting planes and lower bounds.

A B

A B

C

A B

C

D

Figure 2.12 Illustration of the instable behaviour of the dual solution in the KCPM.

This oscillatory behaviour of the values of the dual variables in the course of the

algorithm leads to significant differences among the lower bounds obtained in consecutive

iterations, as illustrated before in Figure 2.11.

Bundle and ACCPM methods may be seen as stabilised versions of column generation /

KCPM, dealing with the pernicious behaviours described in the previous paragraphs at the price

of not using directly (in the case of the ACCPM, or at all, in the case of bundle methods)

standard linear programming techniques.

Clearly, much more comparative results (besides the ones pointed out in the previous

subsection) between the several methods must be obtained (and in a larger number of

problems), before having a clear picture of how these issues affect their comparative overall

efficiency.

In the next two subsections, we detail some approaches developed to alleviate the

pernicious behaviours identified above. In the next subsection, we discuss implementation

alternatives for column generation. In the last subsection, we focus on stabilisation procedures

that keep the main distinctive feature of column generation / KCPM, that is, in each iteration a

primal-dual solution that maximises-minimises the current linear programming RMP-RDM is

obtained.

2.4.2 Column generation implementation variants

First RMP

The construction of the first RMP may have an important impact in the head-in effect

mentioned above. A column generation algorithm requires the construction of a first RMP,

w
3
 w

1
 w

2

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

38

which must be feasible so that the algorithm may proceed. Clearly, in general, obtaining a set of

columns that assure feasibility is not an easy task. The use of artificial variables may be

required, implying a phase I, where the objective is to find a feasible solution to the RMP. The

classical artificial variables methods, two phase and big M, can be used for that purpose.

The big M method is based on having the artificial variables with a sufficiently large

coefficient in the objective function, implying a null value for those variables in a feasible

solution for the master problem. A very large value can lead to scaling difficulties of the master

solver. Thus, the value of M should be as small as possible. Setting a small value of M has

another advantage. Columns that will be generated in this phase I will tend to have a better

quality in the sense that their selection has a closer relation with their original cost. If the value

of M is very large, all columns suggested by the subproblem are attractive.

The two-phase method avoids scaling difficulties, since the coefficients of the artificial

variables are small. Its disadvantage is that the selection of columns does not take into account

the original costs.

Artificial variables can be inserted in the linking constraints or in the convexity

constraints (or in both). Their judicious use, along with a judicious choice of how the first

columns are generated may have an important impact on the efficiency of the column

generation algorithm.

Usual approaches for generating that first set of colums are solving exactly the

subproblems with the original costs, or solving them heuristically, taking into account the

linking constraints (examples of different strategies for two multicommodity flow problems are

given in Chapter 3 and Chapter 4).

RMP

In each iteration of the column generation algorithm, a RMP is solved. Taking the dual

perspective, solving the RMP consists in finding a dual solution that is tested for feasibility (in

the overall problem) when solving the subproblem. Column generation algorithms select a dual

solution that maximises the Lagrangean function (in opposition to the methods discussed in

2.3.4).

We propose a different alternative that consists in selecting a feasible dual solution not

necessarily optimal. In practical terms, this alternative amounts to stopping the RMP

optimisation as soon as a dual feasible solution is obtained or a predetermined number of

iterations was made (given that the current dual solution is feasible). In some iterations, the

RMP is solved exactly to assure convergence.

The rationale behind this alternative is that obtaining the dual optimal solution of the

RMP can be too costly and, anyway, that solution can be very far from an optimal solution of

the overall problem. In addition, we may expect to get a feasible dual solution closer to the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

39

previous one, something that may attenuate the instability of the dual solutions mentioned

above.

Furthermore, this approach may be useful when it is not trivial to find a subset of

columns to build a (primal) feasible RMP. In that case, in the first iterations where artificial

variables are being used the time consumed solving the RMP optimally may be used with

advantage in generating a larger set of columns that, probably, will lead to a feasible primal

solution more quickly, alleviating the head-in effect.

Subproblem

In a given iteration, all that is needed to improve the current (RMP) solution is one

column with a negative reduced cost (neglecting degeneracy), and not necessarily the one with

lower reduced cost. This way, the subproblem can generate columns that are not associated with

optimal solutions of the subproblem. In addition, several (attractive) columns of the same

subproblem can be inserted in the same iteration. Those can be generated with heuristics. Of

course, in this case, if no attractive columns are detected heuristically, the subproblem must be

solved exactly to prove (or not) the optimality of the current solution.

Another alternative is to obtain the second best solution of the subproblem, besides the

optimal solution, and so on (in the limit all the attractive extreme points). Clearly, this depends

on the specific subproblem: if the second best solution can be obtained with little computational

effort, this approach may be appealing. The rationale behind this is that a larger portion of the

dual space is cut or a closer approximation of the Lagrangean dual function is obtained.

RMP rows and columns management

In every iteration of the column generation algorithm the number of columns of the RMP

increases, which may successively reduce the ability of the linear programming solver to obtain

an optimal solution efficiently.

Although, theoretically, as noted in subsection 2.2.5, removing columns from the RMP

may affect the finite convergence of the algorithm, in practise, it is quite common to implement

strategies for columns removal (in our experience, even with aggressive strategies, such as

removing all nonbasic columns in every iteration, convergence was always achieved).

A first alternative is to remove colums with reduced cost greater than a given threshold. A

second one is to remove columns with zero value for a predefined number of iterations. There

are two other alternatives: to remove columns with reduced cost greater than the current duality

gap and to remove columns in such a way that the number of columns of the RMP is limited to

a given number. In this last case, the maximum size of a RMP to be optimised by the linear

programming solver can be previously defined. The maximum number of columns must be

greater than the number of rows of the RMP (which ensures that the number of columns of each

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

40

RMP is sufficiently large to form a basis). The selection of the columns to remove may take into

account the ones with a smaller probability to be generated again, by sorting them by decreasing

reduced costs.

We now turn to the dynamic management of rows, meaning that, in order to solve the

RMPs easily, addition and removal of rows may also be performed.

Not taking into account all the rows of the master model means that a relaxed problem is

being considered. Of course, if an optimal solution to a relaxed RMP is obtained, it is necessary

to check if the constraints that are not present in the RMP are being violated, and, if there are

any, to insert them in the RMP.

In the most basic version of dynamic insertion of rows, this procedure can be seen as

composed by two cycles. In the inner cycle, a relaxed problem, in which only some rows are

considered, is solved by column generation. In the outer cycle, violated rows are detected and

the relaxation of the problem is tightened by their insertion in the RMP.

In Figure 2.13, an illustration of the evolution of the upper and lower bounds obtained

during this type of process is given. When violated rows are inserted in the RMP, the upper

bound increases. Column generation is then used to close the duality gap and the procedure is

repeated until there are neither attractive columns nor violated rows.

As a particular example of how this strategy can improve the efficiency of the column

generation approach, we note that the instance used to construct Figure 2.13 is the same as the

one used for Figure 2.11 (instance bs01 of the binary multicommodity flow problem addressed

in Chapter 4). Without dynamic insertion of rows this instance took 270 seconds and 176

iterations (RMP optimisations) to be solved. With dynamic insertion of rows, it took only 3

seconds and 102 iterations.

Rows removal is another alternative to keep the size of RMP as small as possible. A

possible strategy is to remove rows that are inactive for more than a predefined number of

iterations. Of course, that parameter should not be set to a very small value, since removed rows

may be generated again in a subsequent iteration. As it happens with columns, using aggressive

removal strategies allows to keep the RMPs smaller and easier to solve, but it is worth to

emphasise that it also may lead to instability in the column generation procedure.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

41

Iteration

V
al
u
e

Upper bound

Lower bound

Figure 2.13 Illustration of the effect of dynamic management of rows.

2.4.3 Stabilisation

Several procedures have been devised to stabilise the KCPM. One approach is, when

solving the RMP, to penalise the dual solutions far from the current one as in bundle methods,

but using a penalisation scheme that maintains the RMP a linear problem.

The first described approach of this type is the box step method (Marsten et al., 1975),

where lower and upper bounds are associated with each dual variable. Here we denote the RMP

of a given iteration by (P), its dual by (D), and represent them as following:

Min c x (P)

subject to:

A x = b

x ≥ 0,

Max b w (D)

subject to:

w A ≤ c.

Forcing the dual variables to lie inside a box amounts to adding lower and upper bounds

constraints in (D) and variables, represented by the vectors y, in (P):

Min c x − δ−
y

−
 + δ+

y
+
 (P’)

subject to:

A x − y−
 + y

+
 = b

x, y
−
, y

+ ≥ 0,

Max b w (D’)

subject to:

w A ≤ c

δ−≤ w ≤ δ+
,

where δ−
 and δ+are vectors of parameters with appropriate dimensions.

In each iteration the box is “placed” around the current dual solution. If the optimal dual

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

42

solution is strictly inside the box, then it is an optimal solution to the original problem (D).

(Note that, by complementary slackness, the primal variables y are zero). If any dual variable

lies in the boundary of the box (its value equals the lower or the upper bound) the box is

recentred for the next iteration.

Extensions of this basic approach take into account dynamic updating of the size of the

box, possibly depending on the improvement of the lower bound (as in (Kallehauge et al.,

2001)). In (Merle et al., 1999) the penalisation scheme is smoothed by allowing dual solutions

outside the box, with a linear penalisation. In addition, in the same reference, different dynamic

strategies for updating all the parameters involved and different stopping criteria are developed

and empirically tested.

A different stabilisation approach is presented in (Wentges, 1997). The fundamental idea

is to obtain the dual solution by a convex combination of the one given by the RMP-RDM and

the best one found so far (the one that gave the best lower bound), where the weights used are

iteration dependent (the weight of the best solution increases in order to assure convergence, as

proved in the mentioned reference). Computational results for the capacitated facility location

problem confirm the potential of that approach.

Another stabilisation approach is proposed in (Carvalho, 2000). The fundamental idea is

to include a set of extra variables (extra constraints) in the first RMP (RDM) that, combined

with the ordinary variables, lead the RMP to implicitly consider variables (associated with

extreme points of the subproblem) that are not explicitly present in the RMP. In the same

reference that approach is applied in a cutting stock problem, where the extra variables are

associated with replacing a larger item with two smaller ones. As an example, taking a set of

patterns/columns in which a specific large item belongs, those extra columns allow the

representation of all the patterns/columns derived from the above mentioned replacement of

items, avoiding their generation by the subproblem.

Those extra variables are kept in all iterations and, when there are no more attractive

columns, a solution where they all have zero value is recovered by a problem specific

procedure. Another option, in order to obtain an optimal solution expressed exclusively on the

ordinary variables, is to slightly penalise the extra variables (Amor et al., 2003).

2.5 Dantzig-Wolfe Decomposition in Integer Programming

2.5.1 Branch-and-price overview

A fundamental difference when dealing with integer problems (as opposed to linear ones)

is that no general necessary or sufficient optimality conditions are known. Two families of

methods have been employed to exactly solve integer programming problems: branch-and-

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

43

bound methods and cutting plane methods. Both methods use relaxations in order to derive

lower bounds (in a minimisation problem) to the value of an optimal solution. A fundamental

issue is the quality of the lower bounds of the relaxations.

Under certain circumstances, the lower bounds provided by the relaxation of the DWD

(re)formulation are better than the provided by the linear relaxation. This is a main motivation

for the use of column generation based algorithms / DWD in integer programming problems

(but not neglecting the ones mentioned in Section 2.1). This subject is detailed in subsection

2.5.2.

Branch-and-price algorithms combine column generation and branch-and-bound in order

to obtain (optimal) solutions to integer programming problems. Columns that were not

generated in the root node of the branch-and-bound tree may be required in an optimal integer

solution, and thus in every node of the branch-and-bound (branch-and-price) tree it may be

necessary to generate columns, if an optimal solution is desired. This requires compatibility

between the branching rules and the subproblem, which is the subject of subsection 2.5.3.

The perspective taken here is that, in each node of the branch-and-price tree, the original

formulation is implicitly considered, meaning that it is always possible to represent in the

(restricted) master problem a constraint expressed in terms of the original variables. Being so,

cuts expressed in the original variables can be added to the RMP. As long as they are kept in the

RMP, the feasible region of the subproblem is not changed, allowing the easy incorporation of

cuts in the branch-and-price algorithm, thus obtaining a branch-and-price-and-cut algorithm.

This subject is detailed in subsection 2.5.4.

In subsection 2.5.5, the simultaneous definition of different subproblems for the same

original formulation and its implications are considered.

Subsection 2.5.6 is devoted to other relevant issues of branch-and-price and to a brief

discussion of a different perspective that leads to other type of branch-and-price algorithms.

2.5.2 Lower bounds given by the Dantzig-Wolfe decomposition

For clarity of exposition and simplicity of notation, in this Section, except where clearly

stated otherwise, we consider the general pure integer programming model:

 Min c x (PIP)

 subject to:

 D x ≥ d

 A x = b (2.14)

 x ≥ 0 (2.15)

 x integer. (2.16)

The dimensions of the matrices are the same as the ones in (LnP) (introduced in Section

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

44

2.2.2, page 15).

By defining the subproblem through constraints (2.14), (2.15), and (2.16), its feasible

region is defined by SSPI = { x : Ax = b, x ≥ 0, x integer }, the master of a DWD will be:

ZLDWI = Min ∑
∈Pp

(c y
p
) λp + ∑

∈Rr

(c u
r
)µr (LDWI)

 subject to:

 ∑
∈Pp

(D y
p
)λp +∑

∈Rr

 (D u
r
)µr ≥ d

 ∑
∈Pp

λp = 1

 λp ≥ 0, ∀p∈P
I

 µr ≥ 0, ∀r∈R
I
,

where the sets PI and RI are associated with the extreme points and extreme rays of SSPI, where,

by definition, all the original x points have integer values.

As illustrated in Figure 2.14, by considering the integrality constraints in the subproblem,

its feasible region is reduced, which leads to the reduction of the feasible region of the master

problem (since it consists in all possible convex combinations of the extreme points of the

subproblem). The previous statement is valid if the subproblem has non-integer extreme points;

otherwise the subproblem has the integrality property, that is SSP = SSPI. If the subproblem does

not have the integrality property, the application of the DWD leads to a tighter relaxation of the

integer problem and, for some objective functions, the relation ZLDWI > ZLDW = ZLnP may hold. In

general, ZLDWI ≥ ZLDW = ZLnP.

Figure 2.14 Illustration of the (possibly) different lower bounds given by the linear relaxation
and by the DWD (re)formulation. a) Original integer problem. b) Linear relaxation. c) DWD
(re)formulation defining the subproblem through the upper bound and integrality constraints

(represented in the original solution space).

As noted when discussing the use of DWD in linear programming, different subproblems

for the same model can be defined. As an example, in Figure 2.15 the same problem of Figure

a) b) c)

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

45

2.14a) is considered, but with the definition of the subproblem with all the constraints other than

the upper bound constraints.

Figure 2.15 Illustration of a different (from Figure 2.14) choice of the constraints defining the
subproblem.

This is a main issue when defining the decomposition approach to solve a(n) (integer)

problem: which constraints should define the subproblem?

On one hand, since the subproblem is (re)optimised a large number of times, it is

important to have subproblems with some kind of structure for which efficient algorithms are

known. On the other hand, the definition of the subproblem should lead to good quality lower

bounds, thus being “as far as possible” from the integrality property, what, in general, increases

its difficulty. In addition, the difficulty of solving the resulting RMPs can have an important

impact in the practical efficiency of a given decomposition.

Getting the right balance between the aforementioned issues clearly requires a problem

dependent approach. The binary multicommodity flow problem studied in Chapter 4 is an

example of how two different decompositions of the same original model may have totally

different characteristics.

We end this subsection by noting that all the methods developed in the last decades,

particularly those briefly described in subsection 2.3.4, to solve the Lagrangean dual give the

same bound as the DWD principle when used in integer programming. However, with the

exception of subgradient methods (with its inherent disadvantages, already pointed out), their

use in integer programming is confined to a few experiments (see, for example, (Cappanera and

Frangioni, 2000; Elhedhli and Goffin, 2001)).

2.5.3 Branching rules

Solving the problem (LDWI) by column generation gives a lower bound that is not worse

than the one given by the linear relaxation of the original formulation (PIP).

We recall the relation between the original variables, x, and the weight variables of the

master model, λ and µ,

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

46

x = ∑
∈ IPp

y
pλp + ∑

∈ IRr

u
rµr

∑
∈ IPp

λp = 1

λp ≥ 0, ∀p∈P
I

µr ≥ 0, ∀r∈R
I
.

From this relation, it is clear that if all the weight variables have integer values in the

optimal solution of the root of the branch-and-price tree, (LDWI), an optimal solution to the

integer problem has been found, since they are associated with integer extreme points and rays.

A formulation to the integer problem is obtained by adding integrality constraints on the

variables of (LDWI). In order to solve that problem exactly, branching on the weight variables

may be required. In a simple branching scheme, two new problems are constructed by adding a

constraint on a fractional variable (indexed by p) to each one,

 pp λλ ≤ and 1pp +≥ λλ ,

where pλ denotes the current value of the fractional variable.

In general, this branching scheme has a major disadvantage: its implementation without

changing the structure of the subproblem may not be easy. For example, if the (binary) master

amounts to combining paths given by a subproblem that is solved using a shortest path problem,

in one descendant node a given path is excluded and, in the other, the same path is forced to be

included in the solution. Excluding a given path from being the optimal solution of a shortest

path problem is not a trivial problem, and for sure requires substantial modifications on the

algorithm to solve the subproblem, since the extreme point that should be kept out of the

(restricted) master problem may be generated by the subproblem. This issue is usually called

“regeneration”.

A possibility to overcome this problem is to solve the shortest path problem and, if the

path that should be excluded is the optimal one, then to find the second best path. However, in a

node of the search tree where k paths must be excluded, this approach may lead to solve the k-

shortest paths problem, making the subproblem much more difficult to solve than the one of the

root node.

Another disadvantage of this branching scheme is that it may lead to unbalanced search

trees. Taking again a binary problem as an example, branching is performed in a single variable

and the problem (in general) has a very large number of variables, thus it is more likely that the

optimal solution is in the branch 0p =λ then in the other one, 1p =λ . Examples of these type

of branching schemes are the ones of (Ribeiro et al., 1989) and (Park et al., 1996).

Branching schemes, based on the original variables, usually overcome these difficulties.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

47

After obtaining the optimal solution of a node, it is always possible to express it in the

original variables through

∑∑
∈∈

+=
II Rr

r
r

Pp

p
p uyx µλ ,

where IP and IR denote the set of indices of the extreme points and rays, respectively,

associated with the columns of the current RMP.

Branching on a fractional original variable, the element jx of the vector x , can be done

creating two descendant problems constructed by adding, respectively, the following constraints

 j
Rr

r
jr

Pp

p
jp xuy

II

≤+ ∑∑
∈∈

µλ and 1xuy j
Rr

r
jr

Pp

p
jp

II

+≥+ ∑∑
∈∈

µλ ,

where the index j refers to the position j of the vectors defining the extreme points and rays.

If the branching constraints are kept in the master problem, the modifications implied in

the subproblem are confined to its objective function, as it is clear by noting that in a node of a

branch-and-bound tree, we have the following problem in the original variables:

 Min c x

 subject to:

 D x ≥ d

 G x ≥ g (2.17)

 A x = b (2.18)

 x ≥ 0 (2.19)

 x integer, (2.20)

where the matrix G and the vector g represent the coefficients of the branching constraints

(2.17).

Thus, defining the subproblem as previously (by constraints (2.18), (2.19), and (2.20)):

 Min (c − w D− w G) x

 subject to:

 x∈ SSPI .

This branching scheme is general. We considered a pure integer problem for easiness of

notation and exposition, but the extension to mixed integer problems (that may have

simultaneously linear, binary and integer variables) is done easily.

For binary problems, it is possible to use a different branching scheme, also based on the

original variables, that consists in forcing the branching decisions in the subproblems,

performing minor amendments in the RMP.

In this case the subproblem in a node of a branch-and-price tree is

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

48

 Min (c − w D) x

 x∈ SSPI

 xj = 0, ∀j∈L

 xj = 1, ∀j∈U,

where L and U are the sets of indices of variables for which a branching constraint (forcing the

variable to 0 or 1, respectively) exists.

In the RMP, forcing an original variable to take value 0 implies removing all columns

associated with the extreme points and rays in which that original variable has value 1. In the

same manner, forcing an original variable to take value 1 implies removing all columns

associated with the extreme points and rays in which that original variable has value 0. In both

cases, the subproblem assures that none of those columns, nor the columns with the same

characteristics, will be generated.

As an example, consider a master problem that amounts to combining binary knapsack

solutions. Each column is associated with a solution to the binary knapsack (sub)problem.

Forcing an item out of the knapsack is done by removing all columns where it is included in the

knapsack and by solving the subproblem without the item. Forcing an item in the knapsack is

done by removing all columns where it is not included in the knapsack and by solving the

subproblem considering that the item is in the knapsack. In both cases the subproblem structure

does not change due to the branching. With this branching scheme, that is not always the case.

Taking again the example of a (binary) master problem that amounts to combining paths,

excluding an arc from the (shortest path) subproblem does not involve major changes in its

structure. However, forcing an arc to be included in a path changes the structure of the

subproblem, which becomes a set of shortest path problems. This issue can be overcome by

using branching rules specific to the problem in question, thus without the generality of the

previous approach, where branching constraints are kept in the master.

We end this subsection by noting that the master model of an important set of problems

where branch-and-price algorithms have been successful applied corresponds to set partition

problems (Desrochers and Soumis, 1989; Desrochers et al., 1992; Vance et al., 1997;

Savelsbergh and Sol, 1998) for which specific branching rules were devised, such as the Ryan

and Foster (described, for example, in (Wolsey, 1998)).

2.5.4 Branch-and-price-and-cut

The fundamental idea of cutting plane methods is to tighten the linear relaxation of an

integer problem through the introduction of valid inequalities (cuts). Those valid inequalities

may be (i) constraints that are intentionally left out of the original formulation because their

number is exponential (for example, the subtour elimination constraints for the travelling

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

49

salesman problem), (ii) general valid inequalities (for example, Gomory cuts) and (iii) specific

valid inequalities (for example, the ones pointed out in (Wolsey, 2002) for several lot sizing

problems).

Since, in general, a class(es) of cuts that define the integer convex hull is not known (or

solving the separation problem repeatedly for identifying cuts that exclude the current fractional

solution may be too costly), branch-and-cut algorithms are based on performing branching as

soon as no violated cuts can be (at all, or efficiently) identified, thus combining cutting planes

with branch-and-bound. Branch-and-cut algorithms have their roots in (Crowder et al., 1983)

and (Padberg and Rinaldi, 1991). A recent survey is (Marchand et al., 2002).

Cutting plane methods can also be combined with branch-and-price, giving rise to

branch-and-price-and-cut algorithms.

As detailed in the previous subsection, additional constraints (there branching constraints,

here cuts) expressed in the original variables can be easily expressed in weight variables and

added to the RMP, only changing the coefficients in the objective function of the subproblem.

The problem of a node of a branch-and-price-and-cut tree expressed in the original

variables is

 Min c x

 subject to:

 D x ≥ d (2.21)

 G x ≥ g

 H x ≥ h (2.22)

 A x = b (2.23)

 x ≥ 0 (2.24)

 x integer, (2.25)

where the matrix H and the vector h represent the coefficients of the cuts (2.22).

Thus, defining the subproblem as previously (by constraints (2.23), (2.24), and (2.25)):

 Min (c − w D− w G− w H) x

 subject to:

 x∈ SSPI .

Solving a node of the branch-and-price-and-cut tree consists in the following sequence of

steps.

1. Apply column generation to obtain a solution in the weight variables.

2. Express the obtained solution in the original variables.

3. Solve a separation problem for the solution expressed in the original variables.

4. If a cut is found, add it to the RMP and go to 1. Else, stop.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

50

We end this subsection by pointing out that the convex hull of the integer polyhedron

defined by the subproblem constraints is already described, and thus only classes of cuts for

defining the convex hull of the polyhedron defined by the integer intersection of the linking

constraints (2.21) with the subproblem constraints, (2.23), (2.24), and (2.25), are of interest for a

branch-and-price-and-cut method.

2.5.5 Multiple Dantzig-Wolfe decomposition

To our best knowledge, the idea of using several Dantzig-Wolfe decompositions

simultaneously has appeared recently (Aragão and Uchoa, 2003; Park et al., 2003).

In the first reference, the authors develop a formulation for the binary multicommodity

flow problem that leads to two types of variables in the master problem according to two

different subproblems. That formulation is directly derived for the specific problem (not turning

explicit the original model and the decompositions being used) and the paper is not concerned

on how to extend that kind of approach to a general problem. For the specific problem treated in

that reference, the possible advantages of this approach are clear: one subproblem has the

integrality property, being easier to solve, and captures the network structure of the original

problem, while the other does not have the integrality property, but leads to better quality lower

bounds.

In the second reference, the authors develop what they call a robust branch-and-price

methodology. The main difference between this approach and the one described before in this

Chapter is that the relation between the original variables and the weight variables is explicitly

defined in the master problem by a set of equality constraints. Being so, the (extended) master

problem is

 Min c x

 subject to:

 x = ∑
∈Pp

λp x
p
 + ∑

∈Rr

µr u
r
 (2.26)

∑
∈Pp

λp = 1 (2.27)

 A x ≥ b

 x ≥ 0

 λp ≥ 0, ∀p∈P

 µr ≥ 0, ∀r∈R.

As discussed in the two previous subsections, the absence of the original variables in the

master problem does not affect the ability to perform branch and/or cut in their space, as long as

the constraints are represented in the space of the weight variables. The approach taken here has

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

51

the clear advantage of dealing with smaller (restricted master) problems and is also general

(robust in the terminology used by the authors), given the relation between original and weight

variables.

In the same reference, based on the extended formulation given above, the authors outline

multiple column generation. It amounts to defining more than one subproblem, having more

than one type of columns in the master formulation. Since the original variables, at the expense

of having a larger problem, are present in that formulation, it is easy to state that the convex

combination of the extreme points (in the bounded case) of each subproblem must be equal to

the original variables, by reproducing constraints (2.26) and (2.27) for each subproblem.

Our contribution is to develop multiple column generation without explicitly having the

original variables in the master.

We consider the problem

ZMPIP = Min c x (MPIP)

 subject to:

 D x = d (2.28)

 A x = b (2.29)

 x ≥ 0

 x integer.

For simplicity of notation, we consider only two subproblems with feasible regions

defined by:

SMSP1 = { x : Dx = d, x ≥ 0, x integer} and

SMSP2 = { x : Ax = b, x ≥ 0, x integer}.

Clearly, problem (MPIP) is equivalent to

 Min c x
1

 subject to:

 x
1
 ∈ SMSP1

 x
2
 ∈ SMSP2

 x
1
 = x

2

 x
1
 integer.

A solution in the space of the original model (MPIP) can be expressed as a convex

combination of the extreme points plus a nonnegative combination of the extreme rays of SMSP1,

as well as a convex combination of the extreme points plus a nonnegative combination of the

extreme rays of SMSP2:

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

52

SP1

x
1
 = ∑

∈ 1P1p

λp1 y
p1
 + ∑

∈ 1R1r

µr1 u
r1

∑
∈ 1P1p

λp1 = 1

λp1 ≥ 0, ∀p∈P
1

µr1 ≥ 0, ∀r∈R
1
,

SP2

x
2
 = ∑

∈ 2P2p

λp2 y
p2
 + ∑

∈ 2R2r

µr2 u
r2

∑
∈ 2P2p

λp2 = 1

λp2 ≥ 0, ∀p∈P
2

µr2 ≥ 0, ∀r∈R
2
.

The master problem (neglecting integrality constraints imposed by branching on the

original variables) will be:

 Min ∑
∈ 1P1p

(c y
p1
) λp1 + ∑

∈ 1R1r

(c u
r1
)µr1

 subject to:

 ∑
∈ 1P1p

λp1 = 1 (2.30)

 ∑
∈ 2P2p

λp2 = 1 (2.31)

 ∑
∈ 1P1p

λp1 y
p1
 + ∑

∈ 1R1r

µr1 u
r1
 = ∑

∈ 2P2p

λp2 y
p2
 + ∑

∈ 2R2r

µr2 u
r2

(2.32)

 λp1 ≥ 0, ∀p1∈P
1

 λp2 ≥ 0, ∀p2∈P
2

 µr1 ≥ 0, ∀r1∈R
1

 µr2 ≥ 0, ∀r2∈R
2
.

Constraints (2.30) and (2.31) assure feasibility of the original constraints (2.28) and

(2.29), respectively. Constraints (2.32) assure that the same original point is being considered in

both subproblems.

The subproblems are:

SP1

Min (c − w) x − π1

subject to:

x∈ SMSP1 ,

SP2

Min w x − π2

subject to:

x∈ SMSP2 ,

where w are the duals of constraints (2.32), and π1
 and π2

 are the duals of constraints (2.30) and

(2.31), respectively.

Branching and/or cutting can still be performed as previously described by taking the

original variables. Taking branching as example, branching on a fractional original variable, the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

53

element jx
of the vector x , can be done creating two descendant problems constructed by

adding, respectively, the following constraints

 j
R1r

1r
1j1r

P1p

1p
1j1p xuy

11

≤+ ∑∑
∈∈

µλ and

 1xuy j
R1r

1r
1j1r

P1p

1p
1j1p

11

+≥+ ∑∑
∈∈

µλ ,

where the indices j1, p1, and r1, denote that the branching is being performed on the

representation given by the subproblem 1 of the original variables.

This approach is the dual of Lagrangean decomposition, introduced in (Guignard and

Kim, 1987). In that reference the emphasis is on obtaining good quality lower bounds, which

may be better than the ones given by standard Lagrangean relaxation if more than one

subproblem does not have the integrality property.

We end this subsection giving a small numerical example of multiple DWD / column

generation.

Example 2.3

For illustration of multiple DWD and the column generation procedure to solve it, we

give a very simple example based on the original problem:

 Min −2x1 −x2

 subject to:

 x1 + x2 ≤ 3

 x1 ≤ 2

 x2 ≤ 2

 x1, x2 ≥ 0.

In Figure 2.16, the feasible region is depicted.

We define SP1 through the first constraint and SP2 through the other two. We consider a

first RMP where the only one extreme point − the origin − of each subproblem is present. All

the dual variables have zero value in the optimal solution, thus we solve the subproblems:

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

54

SP1

Min −2x1 −x2

subject to:

x1 + x2 ≤ 3

x1, x2 ≥ 0,

SP2

Min 0

subject to:

x1 ≤ 2

x2 ≤ 2

x1, x2 ≥ 0.

Optimal solutions are x1=3, x2=0, and x1=2, x2=2, for subproblems 1 and 2, respectively.

Thus, the RMP becomes

 Min −6λ21

 subject to:

 λ11 + λ21 = 1

 λ12 + λ22 = 1

 3λ21 − 2λ22 = 0

 − 2λ22 = 0

 λ11, λ12, λ21, λ22 ≥ 0,

with optimal value 0 and duals π1
=0, π2

=0, w1=−2, and w2=2.

The only primal solution that is feasible to the RMP remains x1=x2=0, as can be seen in

Figure 2.17, where the solutions of each subproblem that are being considered in the RMP are

depicted. The subproblems are now

SP1

Min −3x2

subject to:

x1 + x2 ≤ 3

x1, x2 ≥ 0,

SP2

Min −2x1 + 2x2

subject to:

x1 ≤ 2

x2 ≤ 2

x1, x2 ≥ 0.

Their optimal solutions are x1=0, x2=3, and x1=2, x2=0, respectively. The RMP becomes

 Min −6λ21 −3λ31

 subject to:

 λ11 + λ21 + λ31 = 1

 λ12 + λ22 + λ32= 1

 3λ21 − 2λ22 − 2λ32 = 0

 − 2λ22 + 3λ31 = 0

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

55

 λ11, λ12, λ21, λ22, λ31, λ32 ≥ 0,

with optimal value 0 and duals π1
=−3, π2

=−2, w1=−1, and w2=0. The subproblems are now

SP1

Min −x1 − x2 + 3

subject to:

x1 + x2 ≤ 3

x1, x2 ≥ 0,

SP2

Min −x1 + 2

subject to:

x1 ≤ 2

x2 ≤ 2

x1, x2 ≥ 0.

Both optimal objective values are zero, thus the current optimal solution of the RMP is

optimal to the overall problem: λ21=2/3, λ22=0.5, λ31=1/3, λ32=0.5 with value −5, or, in the

original variables x1 = (2/3).3 + (1/3).0 = (0.5).2 + (0.5).2 = 2 and x2 = (2/3).0 + (1/3).3 =

(0.5).2 + (0.5).1 = 1.

The feasible region of the last RMP (in the original space) is depicted in Figure 2.18.

Figure 2.16 Feasible region of the problem of Example 2.3.

Figure 2.17 Feasible region of the second RMP of Example 2.3.

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

56

Figure 2.18 Feasible region of the last RMP of Example 2.3.

♦

2.5.6 Relation with standard branch-and-bound and a related approach

Taking a conceptual perspective, by defining branching rules and cuts on the original

variables, by expressing them in the weight variables afterwards, and by inserting them in the

RMP, branch-and-price(-and-cut) is nothing more than branch-and-bound (with cuts) where

each node is solved by column generation.

This perspective can be further explored to include preprocessing and variable fixing. For

example, after optimising a RMP, if the reduced cost of a nonbasic binary variable plus the

optimal value of the RMP is larger than the incumbent, the variable can be fixed at zero.

Preprocessing and variable fixing in branch-and-price is discussed in (Vanderbeck, 2005).

When solving a node of the branch-and-price(-and-cut) tree, the lower bound given in

subsection 2.2.4 (page 23) is available in each iteration of column generation. If that lower

bound is larger than the incumbent value, then the node can be pruned, since the best integer

solution found in it and in its descendants (if any) will have a larger value than the incumbent.

Primal heuristics can also be incorporated in branch-and-price. Since the original

formulation is known, it can be used to provide upper bounds, or even feasible primal integer

solutions as columns in the RMP.

In this Section, we took the convexification approach on branch-and-price. That is, the

Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms

57

master problem was obtained by representing solutions as combinations of the extreme points

and rays of the convexified subproblem. This approach allows solving each node of the branch-

and-price tree in the same manner as the root node: there is no change on the subproblem

structure (except that the calculation of the coefficients of its variables must take into account

the duals of the branching and cut constraints) by keeping the branching and cut constraints in

the master.

We would like to point out a different approach that relies in the discretisation of the

subproblem (Vanderbeck and Wolsey, 1996; Vanderbeck, 2000). In that case, the master

solutions are represented as a combination of a finite set of integer points (not necessarily

extreme) and a finite set of integer rays of the subproblem. For binary problems both

approaches are equivalent (since the subproblem does not have interior integer solutions) but for

general integer problems this second approach may give better lower bounds and provide more

elaborate branching rules, namely for dealing with symmetry (that is, ineffective branching due

to the fact that the current solution is excluded but a similar one with the same value and

meaning is not). Those issues are discussed in the references above given.

2.6 Conclusions

In this Chapter, Dantzig-Wolfe decomposition and column generation based algorithms

for linear and integer programming problems were surveyed.

Motivations for using decomposition approaches, references to applications in several

areas and the fundamental theory and algorithmic aspects were given.

The close relation between Dantzig-Wolfe decomposition and Lagrangean relaxation, and

the relation between column generation (and variants) and methods for solving the Lagrangean

dual were made explicit.

The application of column generation based algorithms in integer programming was also

reviewed, with a focus on general branching schemes and the inclusion of cuts (branch-and-

price-and-cut).

Multiple Dantzig-Wolfe decomposition and multiple column generation was introduced

in a general way, compatible with a general branching scheme and with the use of cuts.

Several recent references were given (some for detailed treatment of topics not covered

here), proving, after more than forty years of the publication of the Dantzig-Wolfe

decomposition principle and of development of the first column generation based algorithms,

their actual relevance (and not fully explored potential) for dealing with optimisation problems.

 58

3 Integer Multicommodity Flow Problem

In this Chapter, we develop a branch-and-price algorithm for the integer minimum cost

multicommodity flow problem.

This problem is defined over a directed network in which several commodities share the

capacity of the arcs, in order to be shipped from the nodes in which they are supplied to the

nodes in which they are demanded. Commodities may have several origin and destination

nodes.

Although several approaches have been described for its linear version, the same does not

happen for the integer problem considered here. The extension of those approaches is not trivial,

particularly when using path based formulations, which may be the only feasible approach, due

to computational memory limits, given the generally much larger size of arc based formulations.

We develop a branching rule that preserves the structure of the subproblem in the nodes

of the branch-and-price tree by considering cycle variables, not needed when solving the linear

relaxation. The same type of approach can be used in related network flow problems.

We present computational results for the proposed algorithm and for a general purpose

solver.

Chapter 3: Integer Multicommodity Flow Problem

59

3.1 Introduction

The subject of this Chapter is the minimum cost integer multicommodity flow problem

(MFP), for which a branch-and-price algorithm is presented. This problem is defined over a

directed network in which several commodities share the capacity of the arcs, in order to be

shipped from their origin to their destination nodes. Associated with each arc of the network and

with each commodity there is a unit flow cost. The minimum cost integer MFP amounts to

finding the minimum cost routing of all the commodities, taking into account that each unit of

each commodity cannot be split.

The linear version of this problem (where units can be split) has deserved the interest of

the Operational Research and close scientific communities for more than forty years, since the

pioneering work of Ford and Fulkerson on network flows (Ford and Fulkerson, 1962). This

interest has been continuous: at least one survey has been published in each of the last five

decades (Hu, 1963; Assad, 1978; Kennington, 1978; Kennington and Helgason, 1980; Ahuja et

al., 1993; Chardaire and Lisser, 2002a).

This interest can be justified by the practical and theoretical importance of

multicommodity flow models. From the practical side, their relevance is based on their many

applications, such as communications systems (for an excellent annotated bibliography, see

(Yuan, 2001)), production planning (for example, (Evans, 1977; Zahorik et al., 1984)) and

distribution/transportation (for example, (Desrosiers et al., 1995)). Other applications of the

linear minimum cost MFP can be found in the surveys already mentioned.

From the theoretical side, multicommodity flow models are representative of large linear

programs with block-angular structure with linking constraints, being a source of inspiration and

testing for new decomposition methods, from the Dantzig-Wolfe decomposition (DWD)

principle (Dantzig and Wolfe, 1960) (which was inspired by the work of Ford and Fulkerson on

the maximal multicommodity flow problem (Ford and Fulkerson, 1958), as mentioned in

(Dantzig, 1963)) to specialised interior-point methods (Schultz and Meyer, 1991).

As already mentioned, this Chapter is devoted to the minimum cost integer MFP. This

problem has received considerably less attention than its linear version, although in several

applications it may be an important issue to consider that the units of the commodities being

routed are unsplittable. We note that this problem is different from the binary MFP, in which a

commodity must be routed along a single path (and thus, each commodity has only one origin

and one destination). In Chapter 4, the same approach presented in this Chapter will be used to

tackle that particular binary problem.

Chapter 3: Integer Multicommodity Flow Problem

60

Our approach is based on using column generation on a formulation based on flows in

paths combined with branch-and-bound (resulting in a branch-and-price method). Column

generation allows solving the linear relaxation of the integer MFP in a very efficient way, so its

combination with branch-and-bound is a promising approach to solve the integer MFP.

Although column generation and branch-and-bound are known for about four decades,

the potential of their combination for obtaining optimal integer solutions became clear only in

recent years. Branch-and-price methods were reviewed in Chapter 2; other surveys can be found

in (Barnhart et al., 1998; Wilhelm, 2001; Lübbecke and Desrosiers, 2002).

A major motivation for the development of a branch-and-price algorithm is the quality of

the lower bounds given by the underlying Dantzig-Wolfe reformulation. However, that

motivation is irrelevant in the present work, since the subproblem (a set of independent shortest

path problems) has the integrality property. Our main motivation is the potential efficiency of a

branch-and-price algorithm for the integer MFP, justified by the use of a decomposition that

captures the (network) structure of the problem.

The literature on branch-and-price algorithms for general integer variables is still scarce,

as opposed to the one with binary variables. Exceptions are (Vanderbeck and Wolsey, 1996;

Carvalho, 1998; Vance, 1998; Carvalho, 1999; Vanderbeck, 1999; Vanderbeck, 2000), with

experiments in the cutting stock problem.

Besides providing an algorithm for integer MFP (that can be extended to other

multicommodity flow problems), we aim at exploring the branch-and-price method for

problems with a network structure. In particular, by developing a branching scheme that may be

considered in other types of problems. The innovative aspect of this approach is that it

overcomes the possible generation of negative cycles in the shortest path (sub)problems.

Although this issue has a clear interpretation in the DWD context, to our best knowledge, it has

never been treated before.

We now give examples where the approach presented here can be used for solving related

problems, also noting that in some of the applications, it may be worth considering that the units

of the commodities being routed are unsplittable.

Here we consider that the arcs of the network are oriented. In the non-oriented version of

the problem, the capacity of each arc limits the flow in both directions, and thus a different

formulation must be considered. The method presented here can easily be extended to that

closely related problem.

In the maximum multicommodity flow, the arcs of the network and their capacities are

known and a maximum flow of all commodities (from their origins to their destinations) is

desired (Ford and Fulkerson, 1958; Kennington, 1978; Kapoor and Vaidya, 1996). The

Chapter 3: Integer Multicommodity Flow Problem

61

approach presented here can be easily used in obtaining optimal solutions to that problem.

As an example of a problem where the linear multicommodity flow can be used as a

subproblem, we present the simple network design problem, where a selection of the arcs, each

one associated with a fixed cost, must be performed with the objective of minimising the total

cost (fixed cost plus routing cost on the selected arcs) (Magnanti and Wong, 1984; Minoux,

1989; Gendron et al., 1999). For a fixed configuration of the network, the routing problem is a

MFP.

Taking into account the congestion of the arcs, which typically is modelled by concave

functions, a nonlinear minimum cost multicommodity flow problem is obtained (Ouorou et al.,

2000). The algorithm presented here can be seen as a combination of branch-and-bound with a

cutting plane method that can be applied to this concave problem by changing the RMP solver.

We now outline the contents of this Chapter. In Section 3.2, we present a formal

definition of the integer MFP and introduce three formulations for that problem. A review of

solution methods to the linear relaxation of the integer MFP is also given in that Section. In

Section 3.3, the proposed branch-and-price algorithm is presented. Two different branching

rules and their consequences in the structure of the subproblem are discussed. The need for the

cycle variables in the nodes of the branch-and-price tree is clarified. In Section 3.4, we describe

some implementation issues and compare the computational performance of different versions

of the algorithm for some instances. We also compare, for several publicly available sets of

instances, the performance of our branch-and-price program with a program that uses Cplex

callable library 6.6 (ILOG, 1999) to solve the arc formulation. In Section 3.5, we present the

main conclusions of this work.

3.2 Formulations and Review of Solution Methods

3.2.1 Problem definition and arc formulation

We consider a network defined by a set of n nodes, denoted by N, and a set of m directed

arcs, denoted by A. We also consider a set of h commodities, denoted by K. Associated with

each arc ij∈A, there is an origin node i and a destination node j. Associated with each node i and

with each commodity k, there is a parameter bi
k. If bi

k
> 0, node i is an origin to commodity k,

with supply of bi
k
 units. If bi

k
< 0, node i is a destination to commodity k, with demand of –bi

k

units. If bi
k
= 0, the node is a transhipment node to commodity k.

Associated with each arc ij and with each commodity k there is a parameter cij
k that

corresponds to the unit flow cost of that commodity in that arc. The usual assumption, cij
k ≥ 0,

∀ij∈A, ∀k∈K, is made.

Chapter 3: Integer Multicommodity Flow Problem

62

Each arc ij has a capacity uij, which is the limit to the total flow in the arc. Supplies,

demands and arc capacities are expressed in the same units. Each unit of flow crossing an arc

consumes one unit of its capacity.

A formulation for the integer MFP can be obtained using decision variables that represent

the flows in all arcs for all commodities, xij
k, ∀ij∈A, ∀k∈K. The arc formulation is as follows:

Min ∑ ∑
∈ ∈Kk Aij

 cij
k
xij

k
 (AFI)

subject to:

∑
∈Aij:j

xij
k
 – ∑

∈Aji:j

xji
k
 = bi

k
 , ∀i∈N, ∀k∈K (3.1)

∑
∈Kk

xij
k
 ≤ uij , ∀ij∈A (3.2)

xij
k
 ≥ 0 and integer, ∀ij∈A, ∀k∈K.

Constraints (3.1) are flow conservation constraints. They state that, for each commodity,

the difference between the flow that enters a node and the flow that leaves that node is equal to

the supply/demand of that node. Constraints (3.2) are capacity constraints. They state that the

total flow on each arc must be less than or equal to its capacity.

The integer MFP can be seen as an extension of the minimum cost flow problem: if we

neglect the capacities of the arcs, we obtain a set of independent minimum cost flow problems,

one for each commodity. However, the optimal solution of the linear relaxation of the integer

MFP is not necessarily integer. That marks a clear difference between the two problems. There

are several polynomial algorithms available to obtain an integer optimal solution to the

minimum cost flow problem, but the integer MFP is NP-hard (Garey and Johnson, 1979).

3.2.2 Tree formulations

Taking the arc formulation, (AFI), as the original formulation in a DWD, and defining the

subproblem with the flow conservation constraints (3.1), we obtain a minimum cost flow

subproblem for each commodity. By denoting the set of extreme points of the subproblem of

commodity k by Tk and the flow on the arc ij in the t-th solution of subproblem k by zij
tk, the

master problem is

Min tktk
ij

Kk Tt Aij

k
ij)zc(

k

λ∑ ∑ ∑
∈ ∈ ∈

 (TFI)

subject to:

∑ ∑
∈ ∈Kk Tt k

 zij
tk
 λtk

 ≤ uij ,∀ij∈A

∑
∈ kTt

λtk
 = 1, ∀k∈K

Chapter 3: Integer Multicommodity Flow Problem

63

∑
∈ kTt

 zij
tkλtk

 integer, ∀k∈K, ∀ij∈A (3.3)

λtk
 ≥ 0, ∀k∈K, ∀t∈T

k
,

where the decision variables λtk are the weights of the t-th (minimum cost flow) solution of

subproblem k. The relation between the original and weight variables can be seen through

constraints (3.3) that state that the original variables xij
k
, ∀ij ∈ A, ∀k ∈ K, must take integer

values.

When there is only one origin and several destinations for each commodity, or only one

destination and several origins for each commodity, the subproblems are shortest path tree

problems. When there is only one origin and one destination for each commodity, the

subproblems are shortest path problems. In the latter case, the formulation is the same as the

path formulation presented next.

Note that every solution of a minimum cost multicommodity flow can be expressed as a

set of flows on paths and cycles (for example, (Ahuja et al., 1993)) and that, in an optimal

solution, since we assumed cij
k≥0, ∀ij∈A, ∀k∈K, all the flows on cycles will have zero value.

Furthermore, all paths with positive flow have their origin in one supply node and their

destination in one demand node.

Being so, model (TFI) can be further decomposed by considering the subproblem of each

commodity as a set of shortest path problems, one for each origin-destination pair of that

commodity. Following this approach, we obtain what we call a path formulation.

3.2.3 Path formulations

We now introduce some new notation. We denote the set of all simple paths between all

origin-destination pairs of commodity k by Pk, and the set of all origins and destinations of

commodity k by Qk. If arc ij belongs to path p of commodity k, then yij
pk equals 1, and 0,

otherwise. If node i is an origin of path p of commodity k, then δi
pk equals 1; if i is a destination,

then δi
pk equals –1; otherwise, δi

pk equals 0. The unit flow cost of path p of commodity k, is

represented as cpk = ∑
∈Aij

yij
pk
 cij

k, ∀p∈P
k
, ∀k∈K.

The path formulation for the integer MFP is

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

 (PFI)

subject to:

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k
 (3.4)

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 ≤ uij , ∀ij∈A (3.5)

Chapter 3: Integer Multicommodity Flow Problem

64

∑
∈ kPp

 yij
pkλpk

 integer, ∀k∈K, ∀ij∈A (3.6)

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k
,

where the decision variables λpk are the flows on each simple path p of commodity k.

Constraints (3.4) force all the units of all commodities to leave the origins and reach the

destinations. The other flow conservation constraints are implicitly considered in the decision

variables: only paths linking origin-destination pairs are considered. Constraints (3.5) are the

capacity constraints.

The integrality of all the flows is forced by constraints (3.6), since

xij
k
 = ∑

∈ kPp

 yij
pkλpk

, ∀k∈K, ∀ij∈A.

The integrality constraints could also be imposed directly on the decision variables,

λpk
 integer, ∀k∈K, ∀p∈P

k
.

This issue will be discussed in more detail in subsection 3.3.2.

When compared with the arc formulation, path formulations have, in general, a smaller

number of constraints (∑
∈Kk

q
k
+m opposed to hn+m, where qk is the number of origins plus the

number of destinations of commodity k) and a much larger number (exponential with respect to

the dimension of the network) number of variables. However, in a basic solution of the path

formulation, at most, ∑
∈Kk

q
k
+m variables have a positive value. The advantage of using a

decomposition approach is clear: as long as an efficient subproblem solver is available (as is the

case in the path formulations) we may expect to have much smaller problems to solve, which

may be relevant for efficiency. Furthermore, less computational memory is required.

Besides their potential efficiency, another advantage of path formulations can be relevant:

modelling a MFP on paths allows the easy consideration of issues that may have an important

practical meaning. We give two examples. In telecommunication routing models, a commodity

is associated with the traffic between a given origin and destination, and the ability to model

delay or survivability constraints is relevant. Those issues may be taken into account in a path

formulation by using only paths with a limited number of nodes/arcs. The implication in terms

of the column generation method amounts to slightly modifying the subproblem, to generate

only paths with the desired characteristics (Holmberg and Yuan, 2001). Another example, taken

from a stochastic MFP treated in (Soroush and Mirchandani, 1990), is the situation where the

(expected) costs are associated with paths and not with arcs.

When compared to tree formulations, as first noted in (Jones et al., 1993), path

formulations tend to be more efficient.

Chapter 3: Integer Multicommodity Flow Problem

65

We note that when all commodities have only one origin and one destination, tree and

path formulations are equivalent.

3.2.4 Review of solution methods

In this subsection we review some of the major approaches that have been proposed to

solve the linear MFP and variants.

Specialised simplex methods (for example, (Kennington and Helgason, 1980)) work on

the arc formulation, and partitioning the basis in network and non-network parts. This partition

allows performing simplex iterations in a specialised way, using a working basis much smaller

than the (original full) basis. Recent work on this approach is presented in (Castro and Nabona,

1996; Chardaire and Lisser, 2002b; Detlefsen and Wallace, 2002). Specialised interior point

methods, also based on the arc formulation, have also been developed (Castro, 2000; Chardaire

and Lisser, 2002b).

In a resource decomposition method, the node arc formulation is decomposed splitting

the available capacities among the commodities. A master problem is responsible for specifying

the available capacity for each arc and for each commodity, and a set of subproblems (minimum

cost flow subproblems with upper bounds corresponding to the available capacities on the arcs),

one for each commodity, is considered. This approach amounts to minimising a piecewise linear

function whose value is defined by the subproblem. Methods for solving that type of problems

(such as subgradient or cutting planes) in the context of this decomposition approach for the

linear MFP are described in (Kennington and Shalaby, 1977; Assad, 1978; Kennington, 1978;

Ahuja et al., 1993).

The tree and path formulations can be obtained by applying Lagrangean relaxation (and

dualising) (Held and Karp, 1970; Held and Karp, 1971; Lemaréchal, 2003) or DWD to the arc

formulation. After the reformulation, a (restricted) master problem is responsible for setting the

prices of the capacities and there is a set of subproblems (minimum cost flow problems with the

costs modified by the prices of the capacities), one for each commodity. Several methods to

implement this general approach to the linear MFP, usually referred to as price decomposition

methods, have been described in the literature: subgradient (for example, (Saviozzi, 1986)),

column generation (for example, (Tomlin, 1966; Jones et al., 1993)), bundle (Frangioni and

Gallo, 1999) and analytic center cutting plane (Goffin et al., 1996). A related price

decomposition approach, which uses quadratic penalisations in a Lagrangean relaxation context,

is given in (Larsson and Yuan, 2004).

A dual ascent heuristic (in a price decomposition context − path formulation) (Barnhart,

1993), a primal-dual heuristic (arc formulation) (Barnhart and Sheffi, 1993) and a scaling

algorithm (Schneur and Orlin, 1998) have also been devised for the linear MFP.

Chapter 3: Integer Multicommodity Flow Problem

66

Combinations of (some of) the above methods have also been described. In (Farvolden et

al., 1993) a simplex specialisation is applied in the path formulation. In (Barnhart et al., 1995) a

different formulation (based on representing the flow of each commodity on a key path and

cycles) is also used to combine a simplex specialisation with a price directive approach. In both

cases, the master problem is not reoptimised but a simplex iteration on a partitioned basis is

performed. In (Mamer and McBride, 2000; McBride and Mamer, 2001) a simplex specialisation

in the arc formulation is used and the pricing of the non-basic variables is performed by solving

path subproblems.

In (McBride and Mamer, 1997; McBride, 1998) a simplex specialisation and a resource

directive decomposition heuristic are combined.

Parallel implementations of some of the solution methods mentioned above have also

been described, as in (Shetty and Muthukrishnan, 1990) (resource directive), (Pinar and Zenios,

1994) (price directive based on a linear-quadratic penalisations), (Cappanera and Frangioni,

2003) (bundle), and (Castro and Frangioni, 2000) (specialised interior-point).

Examples of approximation algorithms can be found in (Goldberg et al., 1998; Fleischer,

2000).

We now refer to some comparisons of the different implementations described in the

literature.

In (Ali et al., 1980), price decomposition (column generation), specialised simplex and

resource decomposition (solved by the subgradient method) are compared. The first two

approaches spend comparable computational times in obtaining optimal solutions. The third one

is faster, but shows (for some instances) convergence difficulties.

A more recent computational comparison is given in (Frangioni and Gallo, 1999): a

bundle method is compared with a primal partitioning code (PPRN 1.0 (Castro and Nabona,

1994)) and two general purpose solvers (Cplex 3.0 and LOQO 2.21). The bundle code proved to

be the most efficient for several sets of instances, the difference being very meaningful for

instances with a large number of commodities.

In (Larsson and Yuan, 2004) some of those methods (namely, bundle, PPRN 1.0, and

Cplex 5.0) are compared with a column generation implementation and with the augmented

Lagrangean described in the paper. This last method resulted, by far, in the best computational

times, obtaining approximate solutions of very good quality (relative duality gap frequently less

than 0.1%). From the other methods, column generation provided the best computational times,

solving all the instances in reasonable times.

In (Chardaire and Lisser, 2002b), computational tests also showed that the column

generation method is more efficient, when compared to Cplex 4.0, specialised simplex and

interior point methods presented in the paper, as well as an analytic center cutting plane method.

So far, in this subsection, we only provided references to the linear MFP. References to

Chapter 3: Integer Multicommodity Flow Problem

67

the integer MFP are rare. The heuristic procedure based on a resource decomposition and

parametric analysis given in (Aggarwal et al., 1995) is an exception.

3.3 Branch-and-Price for the Integer MFP

3.3.1 Solving the linear relaxation

The application of column generation for the linear relaxation of the integer MFP where

each commodity only has one origin and one destination is described in detail, for example, in

(Ahuja et al., 1993). The case where commodities have one origin (destination) and several

destinations (origins) can be easily transformed into the previous case by disaggregating the

commodities in the model (as shown in (Jones et al., 1993)). Our column generation procedure,

also based on a path formulation, is for the general case: each commodity may have several

origins and several destinations. The formulation that we use is the path formulation given in

subsection 3.2.3 (page 63).

The column generation methodology is based on implicitly considering a large number of

variables. In each iteration, a restricted master problem (RMP) and a subproblem are solved.

The RMP is initialised with a restricted number of variables. After its optimisation, the values of

the dual variables are transferred to the subproblem, which allows pricing the variables that are

not present in the RMP. If there are attractive variables, one, or more, columns are inserted in

the RMP, this problem is reoptimised, and the iterative process goes on. Otherwise, the optimal

solution to the RMP is a provable optimal solution to the original problem.

Some practical questions arise when implementing a column generation scheme, such as

how to construct the first RMP and what to do with the columns that are nonbasic after the RMP

optimisation. We did some computational tests in an attempt to answer these questions, and will

discuss them later.

In the resolution of the linear relaxation of the integer MFP using column generation, the

RMP is initialised with a reduced number of paths. After optimising the RMP, we evaluate the

attractiveness of the paths that are not present in the RMP by solving a subproblem that uses the

values of the dual variables. The subproblem consists in determining the shortest path between

all the origin-destination pairs of all the commodities in a network with modified costs, as

follows.

Representing the (nonnegative) dual variable associated with the capacity constraint of

the arc ij as wij, and the (unrestricted in sign) dual variable associated with the flow conservation

constraint of node i for commodity k as πi
k, the reduced cost of a path is given by

pkc = ∑
∈Aij

yij
pk
(wij + cij

k
) – πo

k
 + πd

k
, (3.7)

Chapter 3: Integer Multicommodity Flow Problem

68

where the indices o and d represent the origin and destination nodes, respectively, of path p. All

paths that belong to the RMP have nonnegative reduced costs, as follows from the linear

programming optimality conditions. The optimal solution of the RMP will not be the optimal

solution for the linear relaxation of the integer MFP, if there is a path not present in the RMP

with negative reduced cost. In equation (3.7), for a given commodity k, the quantity − πo
k
 + πd

k

is a constant for all the paths that have the same origin and the same destination. Each one of the

remaining terms is associated with an arc, being constant for all the paths of a given commodity

that include the arc.

For a commodity k, the path with the smallest reduced cost between an origin o and a

destination d is the shortest path between o and d in a network where the costs of the arcs are

given by wij + cij
k
, ∀ij∈A.

This path − denoted as p − is attractive if

∑
∈Aij

yij
pk
(wij + cij

k
) < πo

k
 – πd

k
.

Otherwise, it is guaranteed that there are no attractive paths for commodity k for the

origin-destination pair o-d. Determining the most attractive path for each commodity

corresponds to solving a shortest path problem for each origin-destination pair. We note that the

network may have cycles, but since cij
k ≥ 0 and wij ≥ 0, ∀ij∈A, their cost is always nonnegative,

and thus each shortest path problem has a finite solution and may be solved by Dijkstra’s

algorithm (for example, (Gallo and Pallottino, 1988)).

3.3.2 Branching rules

In order to obtain an optimal solution to the integral MFP, we combine column

generation with branch-and-bound. The main issue is the branching scheme. Below, we first

discuss a branching rule based on the path variables, and then we propose one that is based on

the arc variables.

As noted in subsection 3.2.3 (page 63), the relation between arc flows and path flows is

given by

xij
k
 = ∑

∈ kPp

 yij
pkλpk

, ∀k∈K, ∀ij∈A; (3.8)

thus, forcing the integrality of the flows in arcs is the same as forcing the integrality of the flows

in paths. Being so, integrality constraints may be imposed directly on the path variables,

λpk
 integer, ∀k∈K, ∀p∈P

k
,

which leads to branching constraints of the type

Chapter 3: Integer Multicommodity Flow Problem

69

 pkpk λλ ≤ and 1pkpk +≥ λλ ,

where pkλ denotes the current (fractional) flow of the path p of commodity k.

With these branching constraints in the RMP of a node of the search tree, the subproblem

must take into account their dual variables. The issue here is that the dual variables of the

branching constraints are associated with path variables, and the decision variables of the

shortest path (sub)problem are related with flows on arcs. A way of overcoming this difficulty is

to neglect the duals of the branching constraints and, if a path that is already being considered in

the RMP is (re)generated by the subproblem, then the second best path is sought. In a node of

the search tree with k branching constraints, this approach may lead to the k-shortest paths

problem, making the subproblem much more difficult to solve than the one of the root node.

Branching in the arc variables does not pose the regeneration difficulty. Given the

relation between the arc and the path variables, expressed in (3.8), it is always possible to obtain

the flow in an arc based on the flows in paths.

Branching constraints of the type

 kij
Pp

pkpk
ij xy

k

≤∑
∈

λ and 1xy k
ij

Pp

pkpk
ij

k

+≥∑
∈

λ ,

where k
ijx denotes the current (fractional) flow of commodity k in the arc ij, overcome the

regeneration difficulties in the subproblem. Since these constraints are associated with flows in

arcs, their duals are considered as the duals of the capacity constraints in the coefficients of the

objective function.

 Using this branching rule and representing Us as the set of branching constraints of type

“≤”, indexed by u, and Ls as the set of branching constraints of type “≥”, indexed by l, the RMP

of a node s of the search tree is

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

subject to:

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 ≤ uij , ∀ij∈A

∑
∈ kPp

 yij
pk
 λpk

 ≤ xij
ku, ∀u∈U

s
(3.9)

∑
∈ kPp

 yij
pk
 λpk

 ≥ xij
kl, ∀l∈L

s
(3.10)

λpk
 ≥ 0, ∀k∈K, ∀p∈ kP ,

Chapter 3: Integer Multicommodity Flow Problem

70

where kP is the set of paths of commodity k that belong to the RMP, kk PP ⊆ , ∀k∈K.

The reduced cost of a path p, with origin o and destination d, of a commodity k is now:

pkc = ∑
∈Aij

yij
pk
 (wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
) – πo

k
 + πd

k
,

where wij
ku and wij

kl are the dual variables associated with the branching constraints (3.9) and

(3.10), respectively. Note that these variables are associated with arcs, and thus they can be

included in the modified costs of the subproblem.

Therefore, the subproblem continues to be a shortest path problem between all the origin-

destination pairs of each commodity in a network with modified costs. The modified cost of an

arc ij, for a commodity k, is given by:

wij + ∑
∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
.

In the linear relaxation, there was the guarantee that all costs in the shortest path

(sub)problems were positive. With the inclusion of branching constraints of type “≥” that

guarantee does not hold anymore. This implies that the solution of the shortest path

(sub)problem may be unbounded: a cycle with a negative cost may exist in its network. This

issue could be overcome by considering only elementary paths. However, that approach is not

promising, given that the shortest elementary path problem in a network with negative cost

cycles is a NP-hard problem (Garey and Johnson, 1979).

In the following subsection we manage to overcome this issue by explicitly considering

cycle variables in the path formulation.

3.3.3 Dealing with negative cost cycles

The existence of a negative cost cycle in the subproblem of a commodity k is due the

presence of branching constraints of type “≥” in the RMP. These constraints may force the

existence of a positive flow in a cycle, as illustrated in Figure 3.1, where branching constraints

of type “≥” on variables x12
k, x23

k and x31
k, for some commodity k, were imposed. When solving

the subproblem of commodity k, the network may have negative cost cycles, because the sum of

the modified cost of the arcs 12, 23 and 31 may be negative.

Chapter 3: Integer Multicommodity Flow Problem

71

1

2

3

Figure 3.1 Illustration of a cycle with positive flow forced by branching constraints.

Our approach consists in considering a formulation with variables associated with flows

in cycles. The problem to solve on a node of the search tree is now

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

+ ∑ ∑
∈ ∈Kk Cc k

c
ckµck

subject to:

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 + ∑ ∑
∈ ∈Kk Cc k

 yij
ck
 µck

 ≤ uij , ∀ij∈A

∑
∈ kPp

 yij
pk
 λpk

 + ∑
∈ kPp

 yij
ck
 µck

 ≤ xij
ku, ∀u∈U

s

∑
∈ kPp

 yij
pk
 λpk

 + ∑
∈ kPp

 yij
ck
 µck

 ≥ xij
kl, ∀l∈L

s

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k

µck
 ≥ 0, ∀k∈K, ∀c∈C

k
,

where the set of all cycles of commodity k is denoted as Ck, indexed by c; if arc ij belongs to

cycle c of commodity k, then yij
ck equals 1, and 0, otherwise; the unit flow cost of cycle c of

commodity k, is represented as cck = ∑
∈Aij

yij
ck
cij

k, ∀c∈C
k
, ∀k∈K; the µck

 variables are associated

with the flow in each cycle of each commodity. Note that the variables associated with the

cycles do not appear in the flow conservation constraints, but do appear in the capacity and

branching constraints.

The reduced cost of a variable associated with a cycle c of a commodity k is

ckc = ∑
∈Aij

yij
ck
 (wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
).

Chapter 3: Integer Multicommodity Flow Problem

72

The reduced cost of a cycle is equal to the sum of the modified costs of the arcs that form

that cycle. The existence of a negative cost cycle in the subproblem corresponds to the existence

of an attractive cycle.

In the nodes of the search tree, other than the root, the subproblems must be solved using

an algorithm that identifies negative cost cycles, such as the labelling correcting algorithms (for

example, (Gallo and Pallottino, 1988)). Each subproblem of a node of the search tree can return

to the RMP a column that corresponds either to a cycle, if one is detected, or to a path, if no

negative cycles are detected.

It is relevant to note that, in an optimal integer solution, the variables associated with

cycles have, necessarily, a null value.

The branch-and-price algorithm presented here for the integer MFP has finite

convergence, since the number of paths and cycles of a network is finite (although exponentially

large with respect to the size of the network). The same can be said about the number of

branching constraints (each branch is defined by one arc and one commodity, and thus its

number is finite). So, there is the guarantee that the method obtains an optimal solution in a

finite number of steps, which, in the worst case, may be exponential (as in general branch-and-

bound algorithms).

3.4 Implementation Issues and Computational Results

3.4.1 Objectives of the computational tests

We implemented the proposed method and did some computational experiments with the

following objectives:

− to evaluate comparatively different alternatives for the branch-and-price algorithm,

namely the method to obtain the first RMP, the criterion to remove columns and the algorithm

to solve the RMPs;

− to test experimentally the sensitivity of the method to the type of subproblem instances;

− to compare the efficiency of the proposed method with that of a general-purpose linear

and integer programming solver (Cplex 6.6 (ILOG, 1999)).

In the comparison of our branch-and-price algorithm with the software package for

solving general integer programs, we remark the considerable evolution, in recent years, of

mathematical programming software, which has incorporated both sophisticated software

implementation techniques and linear/integer programming theoretical concepts, such as the use

of heuristics, strong branching, node pre-solve and cutting planes in the nodes of the branch-

and-bound tree (Bixby et al., 2000).

Chapter 3: Integer Multicommodity Flow Problem

73

We performed two types of tests. In the preliminary tests, we ran the BP program (the

implementation of our algorithm) as well as the Cplex 6.6 (each with different alternatives) to

solve the linear relaxation of the integer MFP for a small set of instances. In the comparative

tests, we solved all the instances with the alternatives that provided better results in the first

group of tests.

3.4.2 Test instances

We performed computational experiments with five sets of instances, four of them taken

from (Frangioni, 2005) and the fifth generated by the random generator Mnetgen available at the

same site. We used the C++ service class graph, also available at the same site, for easiness of

conversion between different formats. We now briefly describe the instances tested (for a more

detailed description, as well as for their origin, we refer the reader to the reference mentioned

above).

One instance of a MFP can be characterised by the problems of each commodity when

relaxing the capacity constraints: in problems in which each commodity is associated with an

origin-destination pair, if we relax the capacity constraints, we will get a shortest path problem

for each commodity. In the same way, we can get shortest path tree subproblems (one origin

and several destinations, or one destination and several origins) or minimum cost flow

subproblems (several origins and several destinations). When describing the types of instances,

we refer to those subproblems, noting that the characterisation used bears no relation to the

solution method, but rather to the type of instance.

Aertranspo

For each of the eight instances of this set, each commodity has just one origin and several

destination nodes (so the subproblem is a shortest path tree). The numbers of nodes, arcs and

commodities for each instance are given in the Table 3.1.

Instance jl23 jl049 jl141 jl147 jl158 jl188 jl207 jl209

n 23 49 141 147 158 188 207 209

m 71 137 449 520 477 673 726 765

h 18 40 132 140 138 166 189 194

Table 3.1 Dimensions of the Aertranspo instances.

Canad

The Canad set of instances consists in three subsets: Bipart, Mulgen I and Mulgen II.

The Bipart instances are defined over a bipartite network and the subproblems are

Chapter 3: Integer Multicommodity Flow Problem

74

minimum cost flow problems without upper bounds for each commodity (more precisely

transportation problems, since the network is bipartite).

The Mulgen I instances have shortest path subproblems and the Mulgen II instances have

minimum cost flow subproblems (over generic networks).

The sizes of all the Canad instances are given in Table 3.2, Table 3.3, and Table 3.4.

Instance p01-p04 p05-p08 p09-p12 p13-p16 p17-p20 p21-p24 p25-p28 p29-p32

n 50 50 50 50 100 100 100 100

m 400 400 625 625 1600 1600 2500 2500

h 10 100 10 100 10 100 10 100

Table 3.2 Dimensions of the Canad instances (subset Bipart).

Instance p33-p36 p37-p40 p41-p44 p45-p48 p49-p52 p53-p56 p57-p60 p61-p64

n 20 20 20 20 30 30 30 30

m 230 229 289 287 517 519 669 688

h 40 200 40 200 100 400 100 400

Table 3.3 Dimensions of the Canad instances (subset Mulgen I).

Instance p65-p68 p69-p72 p73-p76 p77-p80 p81-p84 p85-p88 p89-p92 p93-p96

n 20 20 20 20 30 30 30 30

m 230 229 289 287 517 519 669 688

h 40 200 40 200 100 400 100 400

Table 3.4 Dimensions of the Canad instances (subset Mulgen II).

We note that these instances come from a fixed charge multicommodity flow problem,

and that the only difference between the instances that form each consecutive pair is the fixed

charge cost. As we do not consider the fixed cost, we only tested half of the original instances.

We also neglected the individual upper bounds on commodities that these instances

originally had.

Mnetgen

We generated three sets of instances with the generator Mnetgen. For the first one we

generated instances in which the subproblem is a minimum cost flow problem for each

commodity (with an equal number of origins and destinations). For the second one the

subproblem is a shortest path tree for each commodity (in which half of the nodes are

Chapter 3: Integer Multicommodity Flow Problem

75

transhipment nodes). For the third one the subproblem is a shortest path for each commodity.

All the instances have 256 nodes. For the first set we generated four subsets of 12

instances (4, 8, 16, and 32 commodities) and for the second and third sets we generated seven

subsets of 12 instances with 4, 8, 16, 32, 64, 128, and 256 commodities.

In Table 3.5 we present some of the input parameters for each of the subsets.

Instances 1,2,3 4,5,6 7,8,9 10,11,12

Density low low high high

Capacitated arcs (%) 40 80 40 80

Arcs with maximum cost (%) 10 30 10 30

Table 3.5 Most relevant input parameters for the Mnetgen instances.

We neglected the individual upper bounds on commodities that the Mnetgen generator

specifies.

The 1st, 2nd, 3rd, 6th, 7th, and 8th instances of each subset are expected to be easier to

solve, given that they have a lower number of capacitated arcs and a higher number of arcs with

maximum cost. Besides the internet site where this instance generator was obtained, the reader

can find a related explanation in (Klingman et al., 1974), where the Netgen generator (a single

commodity instance generator that is the base of Mnetgen) is presented.

To identify each instance, the number of commodities precedes its number. If the name of

the instance does not contain a letter it refers to an instance of the first set (minimum cost flow

subproblems); if it contains an ‘o’ it is an instance of the second set (shortest path tree

subproblems); and if it contains a ‘c’ it is an instance of the third set (shortest path

subproblems).

PDS

This is probably the most exhaustively tested group of instances of MFPs. It has been

used by several researchers to test specialised approaches for linear MFPs and also as a typical

large linear program (as in (Carolan et al., 1990) and (Bixby et al., 2000)).

We tested the PDS instances given on Table 3.6 and Table 3.7. Each commodity is

associated with an origin-destination pair, so the subproblem is a shortest path. Each instance

has 11 commodities.

Chapter 3: Integer Multicommodity Flow Problem

76

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n 126 252 390 541 686 835 971 1104 1253 1399 1541 1692 1837 1981

m 339 685 1117 1654 2149 2605 2989 3348 3880 4433 4945 5527 6095 6636

Table 3.6 Dimensions of the first 14 PDS instances.

Instance 15 18 20 21 24 27 30 33 36 40 80

n 2125 2558 2857 2996 3419 3823 4223 4643 5081 5652 10989

m 7202 8925 1115 10630 12199 13662 15125 16721 18449 20697 40258

Table 3.7 Dimensions of the 11 bigger PDS instances that were tested.

We neglected the individual upper bounds on commodities that these instances originally

had.

Planar

The planar instances are defined over a planar graph. The subproblem is a shortest path

problem for each commodity. For each arc, all the commodities have the same cost. We tested

the instances given on Table 3.8.

Instance planar30 planar50 planar80 planar100 planar150

n 30 50 80 100 150

m 150 250 440 532 850

h 92 267 543 1085 2239

Table 3.8 Dimensions of the Planar instances.

3.4.3 Implementation issues and preliminary tests

We implemented the proposed method in C++ using the development environment

Microsoft Visual Studio 6.0. We used Cplex 6.6 callable library to solve linear programs and

LEDA 4.1 (Mehlhorn and Näher, 1999) to keep the network topology and data, and to solve

shortest path problems. We refer to this computer program as BP.

The obvious advantage of using a library of classes, as LEDA, is that it becomes easier to

code an algorithm. Also, we can expect some algorithms (as the shortest path ones) to run more

quickly. The main disadvantage is that the usage of memory becomes much higher, since we

have to keep two heavy (and partially duplicated) data structures: the network data (in LEDA)

and the linear programming data (in Cplex). All in all, since LEDA makes it possible to extend

our code to implement other ideas regarding the same problem, or to extend the present

Chapter 3: Integer Multicommodity Flow Problem

77

approach to other MFPs easily, we decided to sacrifice the computational tests on larger

instances.

We also implemented a program based on Cplex 6.6 callable library to solve the arc

formulation of the integer MFP.

The reported results were obtained on a personal computer equipped with a Pentium III,

733 MHz processor, 256 Mb of RAM, running Windows ME. All the times are expressed in

seconds and exclude input and output operations. In the tables, the best execution times are

presented in bold.

For the preliminary computational tests we selected one instance of each set. The chosen

instances were: jl209 (Aertranspo), p31 (Canad − Bipart), p63 (Canad − Mulgen I), p95 (Canad

− Mulgen II), all the 12th Mnetgen instances, PDS20, and Planar100.

Method to obtain the first RMP

We compared three different ways of generating the set of paths to be included in the first

RMP. The common aspect of the three alternatives is that we solve a minimum cost flow

problem for each commodity and then convert the arc flows to path flows (with the algorithm

presented in (Ahuja et al., 1993)). This set of paths corresponds to the columns of the first RMP.

For the first alternative, the minimum cost flow problem (of each commodity) has upper

bounds equal to the capacities of the arcs. An artificial variable, associated to the arcs, is

included in the RMP to guarantee a feasible solution. In this way an optimal solution to the first

RMP can violate the capacity constraints but never the flow conservation constraints. We refer

to this alternative as capacity relaxation.

For the second and third alternatives, we start by setting the upper bounds equal to the

capacities of the arcs, but as we solve minimum cost flow problems, we reduce the capacities

available, that is, the upper bounds, for the next commodities by the amount of flow that already

exists on the arcs.

For the second alternative, if the problem of a commodity is unfeasible, we solve it again

with the upper bounds equal to the capacities. As in the first alternative, an artificial variable is

inserted in the RMP, and an optimal solution to the first RMP can violate the capacity

constraints but never the flow conservation constraints. We refer to this alternative as capacity

relaxation with upper bounds.

For the third alternative, we add a super-origin and a super-destination to each minimum

cost flow problem. A solution can be divided in two types of flow: the one that enters the

original network passing through some origin and arriving at the some destination, and the one

that cannot traverse the original network because of tight upper bound constraints, thus

traversing the arc that links the super-origin to the super-destination. When the conversion

procedure of arc flows to path flows is applied, the existence of this second type of flow will be

Chapter 3: Integer Multicommodity Flow Problem

78

reflected in the fact that some of the origins (destinations) cannot send (receive) their supply

(demand). An artificial variable is then associated with each of the flow conservation constraints

of those origins (destinations). In this alternative, an optimal solution to the first RMP can

violate the flow conservation constraints but never the capacity constraints. We refer to this

alternative as flow conservation relaxation.

In these preliminary tests, columns with a positive reduced cost were removed at every

iteration and the primal simplex algorithm was used to optimise the RMPs.

In Table 3.9 results are given for the methods to obtain the first RMP.

We note that the second and third methods can obtain the same solution if a feasible

solution is obtained.

Besides the (obvious) suggestion that a better (less unfeasible in this case) initial solution

is preferable, these tests also suggest that the effect of inserting poor quality columns (in the

sense that they will not be positive in an optimal solution) can be very significant. It is better to

have an initial solution with part of the supply not being delivered rather than having it

delivered by a set of paths that exceed the capacity. It is not worth inserting columns based on

dual values that are possibly far away from an optimal value.

These results can also be explained in the context of Lagrangean duality. Column

generation can be viewed as a method to, iteratively, approximate a piecewise linear function

(the Lagrangean dual). Roughly speaking, when that approximation around the optimal solution

is good enough, the optimisation of the approximated function has the same result as the

optimisation of the original function, in the sense that both functions have the same optimal

solution. It seems clear that obtaining a greater accuracy in the approximation for regions far

away from the optimal solution is just time-consuming.

For the following tests, the first RMP was obtained by relaxing the flow conservation

constraints.

Removal of columns

In Table 3.10, we show the results of three strategies related to the removal of columns.

The three different alternatives are “never remove columns” (column Never), “remove all

columns with strictly positive reduced-cost at every iteration” (column PRC) and “remove all

nonbasic columns at every iteration” (column NBC). We used the primal algorithm to optimise

RMPs.

We note that the results are different for the last two alternatives because of the

degeneracy of the RMP (we defined that a reduced cost is positive if it is greater than 10-6).

Maintaining only the basic columns in the RMP is clearly worse than the other two

alternatives. The comparison of the result of the instance 256-12o, when columns are not

removed, with the one of the 128-12o instance is surprising, is that an instance with twice the

Chapter 3: Integer Multicommodity Flow Problem

79

number of commodities has a smaller solving time, especially when the percentage of saturated

arcs in an optimal solution is approximately the same (7.3 vs. 7.2). It would be necessary to

study in more depth the structure of those instances to explain this result.

Instance Capacity relaxation
Capacity relaxation

with upper bounds

Flow conservation

relaxation

jl209 220.0 227.1 120.6

p31 22.2 4.4 4.4

p63 3.9 1.1 1.1

p95 40.6 11.7 11.7

4-12 57.5 8.0 8.0

8-12 246.0 73.1 73.1

16-12 454.2 150.5 150.5

32-12 823.6 710.7 404.4

4-12o 7.6 0.8 0.8

8-12o 15.6 1.9 1.9

16-12o 28.5 9.5 9.5

32-12o 90.1 12.4 12.4

64-12o 345.0 43.2 43.2

128-12o 1179.9 69.0 69.0

256-12o 4958.8 180.0 180.0

4-12c 1.9 0.2 0.2

8-12c 1.0 0.5 0.5

16-12c 3.1 1.2 1.2

32-12c 4.0 1.6 1.6

64-12c 18.8 3.1 3.1

128-12c 43.7 9.6 9.6

256-12c 197.7 26.9 26.9

pds20 875.9 70.8 70.8

planar100 403.9 79.0 56.3

Table 3.9 Comparative results of the methods to obtain the first RMP.

 In general, on the smaller instances, it is preferable to maintain all the columns in the

RMP. As the size of the instances grows larger it is more efficient to remove the columns with

positive reduced cost. We can conclude that, while the linear programming solver can

efficiently optimise the RMPs, it is preferable not to remove columns. In the view of the

discussion of the previous subsection, it is always better to have the best possible approximation

Chapter 3: Integer Multicommodity Flow Problem

80

to the dual Lagrangean function that we are optimising. When removing columns we are losing

quality in the approximation. Of course, if the linear programming solver cannot manage the

size of the RMPs, it is better to have a worse approximation but still optimising it.

We decided to never remove columns in all sets of instances, except Aertranspo.

Theoretically, even though it is a remote possibility, removing columns can lead to

cycling (see Chapter 2, subsection 2.2.5, page 25). In practice, we never observed that in our

algorithm.

Algorithm to solve the RMPs

The Cplex algorithms used to solve the RMPs that we tested were: primal (P), dual (D),

hybrid primal with preprocessing (HPP), hybrid dual with preprocessing (HDP), hybrid primal

without preprocessing (HP) and hybrid dual without preprocessing (HD). The hybrid algorithms

use an advanced basis obtained by solving the network type part of the problem. Preprocessing

can destroy the network structure, so it is not clear if it should be used with hybrid algorithms.

Table 3.11 presents the results obtained.

The primal algorithm is the best alternative for almost all instances. The hybrid

approaches are significantly worse. In the remaining tests we used the primal algorithm to solve

the RMPs.

Cplex

We tested the four basic available alternatives for the optimisation algorithm of the nodes

(including the root) of the branch-and-bound(-and-cut) tree when solving the instances with

Cplex 6.6. Table 3.12 shows the results obtained. The Network column refers to the network

algorithm followed by a dual one.

We chose the best algorithm for each set of instances: Network for instances Aertranspo

and Canad, Primal for PDS and Dual for the Planar instances. For the Mnetgen instances the

best algorithm is not always the same. We chose the dual algorithm for its robustness.

Chapter 3: Integer Multicommodity Flow Problem

81

Instance Never PRC NBC

jl209 420.0 120.6 185.4

p31 4.4 4.8 4.8

p63 1.0 1.1 1.2

p95 10.9 11.7 40.0

4-12 5.4 8.0 9.3

8-12 67.6 73.1 93.1

16-12 136.7 150.5 176.3

32-12 398.3 404.4 520.5

4-12o 0.3 0.8 1.5

8-12o 0.9 1.9 3.2

16-12o 9.0 9.5 17.5

32-12o 12.2 12.4 98.3

64-12o 44.0 43.2 253.6

128-12o 105.7 69.0 586.9

256-12o 99.0 180.0 729.4

4-12c 0.1 0.2 0.2

8-12c 0.3 0.5 0.3

16-12c 0.7 1.2 1.2

32-12c 0.7 1.6 1.7

64-12c 1.8 3.1 3.1

128-12c 4.7 9.6 10.4

256-12c 9.1 26.9 27.1

pds20 51.1 70.8 79.4

planar100 39.3 56.3 12.5

Table 3.10 Comparative results for the removal of columns.

Chapter 3: Integer Multicommodity Flow Problem

82

Instance P D HPP HDP HP HD

jl209 120.6 523.9 72.2 741.4 706.7 728.1

p31 4.4 4.3 21.1 23.4 22.5 34.6

p63 1.0 1.2 1.5 1.3 1.6 1.3

p95 10.9 17.6 23.2 29.1 21.1 24.8

4-12 5.4 7.7 28.0 11.0 23.9 9.1

8-12 67.6 115.1 613.3 147.3 651.2 159.9

16-12 136.7 31.5 1160.1 1191.9 1562.5 600.9

32-12 398.3 997.6 2863.3 1414.0 4191.4 1630.2

4-12o 0.3 0.6 2.8 1.0 2.8 1.0

8-12o 0.9 2.2 8.6 5.8 11.2 5.7

16-12o 9.0 20.3 35.3 69.3 43.5 67.8

32-12o 12.2 28.9 81.7 160.7 75.1 142.5

64-12o 44.0 88.0 992.0 650.0 995.1 643.6

128-12o 105.7 275.8 1783.7 1745.8 1778.4 445.7

256-12o 99.0 345.5 6251.3 12888.4 11131.8 12956.6

4-12c 0.1 0.2 0.5 0.2 0.5 0.2

8-12c 0.3 0.4 1.1 0.5 1.1 0.5

16-12c 0.7 1.0 2.8 1.3 2.6 1.2

32-12c 0.7 1.1 1.9 1.1 1.8 1.2

64-12c 1.8 2.7 3.2 2.8 3.4 4.3

128-12c 4.7 6.5 10.4 7.8 10.9 10.8

256-12c 9.1 15.3 43.4 29.7 43.7 30.5

pds20 51.1 79.0 545.5 185.9 415.6 185.9

planar100 39.3 57.7 113.6 87.3 105.6 74.0

Table 3.11 Alternatives for the algorithm to optimise RMPs.

Chapter 3: Integer Multicommodity Flow Problem

83

Instance Primal Dual Network Barrier

jl209 1114.7 556.4 289.6 546.7

p31 54.0 99.4 17.1 1739.5

p63 150.4 18.8 15.2 860.5

p95 2638.5 32.8 28.3 912.8

4-12 23.6 11.3 15.3 32.3

8-12 211.5 116.8 198.0 779.0

16-12 541.1 53.8 75.1 559.9

32-12 494.0 87.6 23.9 313.5

4-12o 1.2 1.0 1.1 8.7

8-12o 3.7 2.3 1.8 43.3

16-12o 17.1 8.0 6.0 190.9

32-12o 24.0 13.2 8.6 141.6

64-12o 98.4 27.3 22.1 157.4

128-12o 55.5 47.2 48.6 225.0

256-12o 2082.5 285.7 275.2 1345.2

4-12c 0.8 0.4 0.4 7.9

8-12c 2.6 0.9 1.1 41.9

16-12c 8.7 2.9 3.5 215.1

32-12c 41.9 23.0 44.0 362.3

64-12c 21.4 15.5 22.3 211.6

128-12c 83.1 89.2 110.3 188.3

256-12c 74.7 93.8 124.4 145.1

pds20 33.7 82.8 49.9 924.5

planar100 9129.7 1462.1 7582.6 7810.5

Table 3.12 Alternatives for the Cplex algorithm.

3.4.4 Comparative computational tests

For testing all instances we used the alternatives fixed in the previous subsection. For

traversing the branch-and-price tree we used a depth first strategy. The branching rule defined is

to branch on the first fractional arc variable found. More precisely, the flow of each arc for each

commodity is determined until a fractional value is obtained, and then branching is performed

as proposed in subsection 3.3.2 (page 68).

In all the tables the first column is the number of saturated arcs in an optimal solution to

the linear relaxation, which, in general, is a measure of the difficulty of the instance. The

column “gap” gives the absolute value of the integrality gap, which is the optimal integer value

Chapter 3: Integer Multicommodity Flow Problem

84

minus the optimal value of the linear relaxation. The columns Time and Nodes present,

respectively, the time spent in obtaining the optimal solution and the number of nodes

(including the root one) that were optimised with BP and Cplex 6.6.

Aertranspo

In Table 3.13 the results for the Aertranpo instances are given.

For all the instances the BP program was more efficient than Cplex 6.6. On average, BP

is about three times faster than Cplex 6.6. That can be explained by the smaller number of

constraints in the master problem of the BP approach, since these instances have several

transhipment nodes.

Canad – Bipart

In Table 3.14 the results for the Canad – Bipart instances are given.

The BP program is always faster than Cplex 6.6.

For the instances with more than 10% of saturated arcs (p2, p11, and p15) the BP is

considerably faster. The same is true for the two fractional instances (p11 and p27) even when

the difference in the number of optimised nodes is very significant (p11).

Canad – Mulgen I

In Table 3.15 the results for the Canad − Mulgen I instances are given.

None of the instances of this set is fractional. The BP program is consistently about three

times faster than Cplex 6.6. This is due to the smaller number of constraints of the master

problem of the BP approach, since the subproblems are shortest path problems.

Canad – Mulgen II

In Table 3.16 the results for the Canad − Mulgen II instances are given.

For almost all instances, the BP program is slightly faster than Cplex 6.6. For these

instances there are no transhipment nodes. We note the reduced proportion of saturated arcs in

an optimal solution. In that case, in general, it is easier to obtain a good first set of columns and

the column generation procedure converges rapidly.

Mnetgen 1

The results for the Mnetgen 1 instances are given in Table 3.17. The results presented in

each row are relative to the average value of the three instances generated with the same input

parameters.

The results of the Cplex 6.6 program are clearly better than those of BP for all instances.

We note that the instances of this group do not have any transhipment nodes. The high

Chapter 3: Integer Multicommodity Flow Problem

85

proportion of saturated arcs suggests that the BP algorithm starts from a solution far from the

optimal, which is confirmed when observing that several initial solutions are not feasible (in

particular for the more difficult instances, that is, the groups 4, 5, 6, and 10, 11, 12). We can

also note that for the 10-th, 11-th and 12-th instances with 8, 16 and 32 commodities the average

number of nodes is very high when compared with Cplex 6.6.

Mnetgen 2

The results for the Mnetgen 2 instances are given in Table 3.18. The results presented in

each row are relative to the average value of the three instances generated with the same input

parameters.

In this set of instances the BP results are better for the easy instances (1, 2, 3, and 7, 8, 9)

and worse for the difficult instances (4, 5, 6, and 10, 11, 12).

Mnetgen 3

The results for the Mnetgen 3 instances are given in Table 3.19. Again the results

presented in each row are relative to the average value of the three instances generated with the

same input parameters.

The results of the BP program are clearly better than the results of Cplex 6.6 for all

instances.

PDS

In Table 3.20 the results for the PDS instances are given.

These results are perplexing: for some instances BP is much better and for some others it

is much worse. To analyse this in depth, it would be necessary to gain some insight into the

structure of these instances. We note that these instances have a small number of commodities

and a large number of transhipment nodes (in fact the subproblems are shortest path problems).

Planar

In Table 3.21 the results for the Planar instances are given.

For these instances the BP program was clearly more efficient. Due to memory limits, it

was not possible to solve the planar150 instance with Cplex 6.6. We note that the arc

formulation for that instance has 335 850 rows and 1 903 150 columns, while the path

formulation has only 3 089 rows and the RMP that gave the fractional optimal solution had

14 944 columns. However, we could not find a feasible integer solution, after optimising 600

nodes of the search tree.

Chapter 3: Integer Multicommodity Flow Problem

86

Conclusions of the comparative computational tests

The linear relaxation of almost all instances chosen to test our branch-and-price algorithm

had an integral optimal solution, which does not allow drawing definitive conclusions about the

efficiency of the proposed approach. However, noting that in some large instances the arc

formulation requires prohibitive amounts of memory, we can conclude that, at least for those

instances, our approach is clearly adequate for the integer MFP.

For the instances Aertranspo, Canad, Mnetgen 3, and Planar, the branch-and-price

algorithm performed better than Cplex 6.6. That is due to the structure of some of those

instances (which include several transhipment nodes and/or shortest path subproblems) and to

the quality of the initial solution, which was the case for instances with a small percent of

saturated arcs in an optimal solution. For the Mnetgen 1 instances the BP program was clearly

inefficient: the tightness of the capacity constraints and the inexistence of transhipment nodes

made these instances very difficult for the BP program to solve. For the Mnetgen 2 and PDS

instances the results were balanced.

Time Nodes
Instance

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

jl23 22.5 0.00 0.1 0.2 1 1

jl049 23.4 0.00 0.3 0.7 1 1

jl141 15.8 0.00 7.0 28.5 1 1

jl147 21.5 0.00 17.6 91.2 1 1

jl158 13.6 0.00 8.0 32.2 1 1

jl188 3.3 0.00 5.7 35.8 1 1

jl207 29.3 0.00 169.7 265.1 1 1

jl209 30.1 0.00 126.8 289.6 2 1

Table 3.13 Results for the Aertranspo instances.

Chapter 3: Integer Multicommodity Flow Problem

87

Time Nodes
Instance

Saturated
arcs (%)

Gap
BP CPLEX BP CPLEX

p01 4.0 0.00 0.2 0.3 1 1

p03 20.5 0.00 0.4 2.7 1 3

p05 0.5 0.00 2.4 2.5 1 1

p07 5.0 0.00 2.6 3.6 1 1

p09 0.6 0.00 0.3 0.4 1 1

p11 15.2 1.20 4.3 9.9 27 4

p13 1.8 0.00 3.6 3.7 1 1

p15 10.4 0.00 8.8 43.7 6 1

p17 1.8 0.00 1.0 4.1 1 1

p19 6.6 0.00 1.2 1.8 1 1

p21 0.1 0.00 9.1 10.9 1 1

p23 0.2 0.00 9.5 11.7 1 1

p25 0.0 0.00 1.6 2.0 1 1

p27 4.0 0.50 3.0 11.4 2 3

p29 0.2 0.00 13.9 17.7 1 1

p31 0.6 0.00 14.9 17.1 1 1

Table 3.14 Results for the Canad − Bipart instances.

Time Nodes
Instance

Saturated
arcs (%)

Gap
BP CPLEX BP CPLEX

p33 0.4 0.00 0.2 0.9 1 1

p35 3.5 0.00 0.2 0.4 1 1

p37 0.4 0.00 0.9 2.5 1 1

p39 2.6 0.00 0.9 3.1 1 1

p41 0.3 0.00 0.2 0.6 1 1

p43 3.5 0.00 0.2 0.6 1 1

p45 2.8 0.00 1.1 3.1 1 1

p47 3.8 0.00 1.1 3.2 1 1

p49 1.0 0.00 1.0 2.8 1 1

p51 3.7 0.00 0.9 2.8 1 1

p53 0.8 0.00 4.0 11.5 1 1

p55 2.3 0.00 4.0 12.3 1 1

p57 0.1 0.00 1.0 3.5 1 1

p59 0.9 0.00 1.1 3.5 1 1

p61 0.3 0.00 4.7 17.2 1 1

p63 1.5 0.00 4.7 15.2 1 1

Table 3.15 Results for the Canad − Mulgen I instances.

Chapter 3: Integer Multicommodity Flow Problem

88

Time Nodes
Instance

Saturated
arcs (%)

Gap
BP CPLEX BP CPLEX

p65 2.2 0.00 0.3 0.4 1 1

p67 3.0 0.50 0.7 1.2 2 1

p69 3.1 0.00 2.9 2.8 1 1

p71 5.2 0.00 3.0 3.1 1 1

p73 0.7 0.00 0.4 0.6 1 1

p75 1.7 0.00 0.6 0.6 1 1

p77 0.0 0.00 2.3 3.0 1 1

p79 3.8 0.00 2.9 3.3 1 1

p81 2.5 0.00 3.2 3.0 1 1

p83 4.1 0.00 2.8 3.5 1 1

p85 1.0 0.00 11.9 12.0 1 1

p87 4.8 0.00 15.2 18.0 1 1

p89 0.9 0.00 2.9 3.8 1 1

p91 4.3 0.00 3.3 4.1 1 1

p93 1.5 0.00 12.3 20.9 1 1

p95 4.9 0.00 16.0 28.3 1 1

Table 3.16 Results for the Canad − Mulgen II instances.

Time Nodes
Instances

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

4-1,2,3 6.7 0.00 4.3 0.4 1.0 1.0

4-4,5,6 13.9 0.08 10.3 1.8 6.3 1.7

4-7,8,9 3.9 0.00 3.5 1.0 1.0 1.0

4-10,11,12 8.5 0.07 11.5 6.6 4.0 2.3

8-1,2,3 7.0 0.00 11.2 2.5 2.7 2.0

8-4,5,6 14.2 0.08 37.5 4.2 5.7 2.3

8-7,8,9 6.4 0.00 11.9 2.0 1.0 1.0

8-10,11,12 13.9 0.47 554.2 67.7 70.7 12.7

16-1,2,3 6.8 0.00 24.3 4.8 1.0 1.7

16-4,5,6 17.1 0.38 225.6 27.6 9.0 2.7

16-7,8,9 6.4 0.33 35.1 14.0 1.7 2.0

16-10,11,12 14.6 0.49 1686.7 135.3 128.3 7.3

32-1,2,3 9.0 0.00 121.9 21.1 1.7 2.3

32-4,5,6 17.5 0.28 1189.9 48.8 4.0 4.3

32-7,8,9 4.3 0.00 70.6 10.5 1.0 1.0

32-10,11,12 12.8 0.44 2238.5 223.8 65.0 19.0

Table 3.17 Average results for the Mnetgen 1 instances.

Chapter 3: Integer Multicommodity Flow Problem

89

Time Nodes
Instances

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

4-1,2,3o 1.0 0.00 0.4 0.6 1.0 1.0

4-4,5,6o 2.4 0.00 0.5 0.7 1.0 1.0

4-7,8,9o 0.9 0.00 0.5 0.9 1.0 1.0

4-10,11,12o 1.3 0.00 0.6 1.1 1.0 1.0

8-1,2,3o 1.7 0.00 0.9 2.0 1.0 1.0

8-4,5,6o 5.1 0.00 4.5 3.4 1.0 1.0

8-7,8,9o 1.0 0.00 0.9 1.9 1.0 1.0

8-10,11,12o 2.7 0.00 2.1 2.3 1.0 1.0

16-1,2,3o 2.3 0.00 1.9 4.4 1.0 1.0

16-4,5,6o 8.8 0.44 32.1 28.4 4.0 2.0

16-7,8,9o 1.0 0.00 1.7 4.5 1.0 1.0

16-10,11,12o 3.0 0.00 9.0 8.2 1.3 1.0

32-1,2,3o 5.3 0.00 11.1 10.7 1.0 1.0

32-4,5,6o 7.9 0.00 41.3 12.9 1.0 1.0

32-7,8,9o 0.7 0.00 2.6 7.9 1.0 1.0

32-10,11,12o 4.4 0.00 69.4 18.0 1.3 1.0

64-1,2,3o 2.4 0.00 13.0 15.0 1.0 1.0

64-4,5,6o 8.4 0.00 200.9 26.3 1.0 1.0

64-7,8,9o 1.7 0.00 8.5 16.1 1.0 1.0

64-10,11,12o 6.8 0.00 51.3 38.4 1.0 1.0

128-1,2,3o 3.4 0.00 27.3 36.7 1.0 1.0

128-4,5,6o 8.8 0.00 664.8 86.3 1.0 1.0

128-7,8,9o 4.2 0.00 18.1 48.0 1.0 1.0

128-10,11,12o 8.9 0.00 827.2 56.6 1.0 1.0

256-1,2,3o 4.2 0.00 81.9 87.2 1.0 1.0

256-4,5,6o 8.7 0.00 940.5 166.9 1.0 1.0

256-7,8,9o 5.0 0.00 48.1 149.1 1.0 1.0

256-10,11,12o 8.0 0.00 194.2 240.5 1.0 1.0

Table 3.18 Average results for the Mnetgen 2 instances.

Chapter 3: Integer Multicommodity Flow Problem

90

Time Nodes
Instances

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

4-1,2,3c 0.9 0.00 0.2 0.3 1.0 1.0

4-4,5,6c 2.4 0.00 0.3 0.3 1.0 1.0

4-7,8,9c 0.7 0.00 0.2 0.3 1.0 1.0

4-10,11,12c 2.2 0.00 0.4 0.4 1.0 1.0

8-1,2,3c 1.5 0.00 0.3 0.6 1.0 1.0

8-4,5,6c 4.6 0.11 0.5 2.3 1.3 1.3

8-7,8,9c 1.1 0.00 0.4 0.7 1.0 1.0

8-10,11,12c 2.7 0.00 0.6 1.0 1.0 1.0

16-1,2,3c 1.8 0.00 0.7 1.4 1.0 1.0

16-4,5,6c 3.5 0.00 0.9 1.9 1.0 1.0

16-7,8,9c 0.9 0.00 0.6 1.4 1.0 1.0

16-10,11,12c 3.6 0.67 1.3 6.1 2.3 1.3

32-1,2,3c 5.3 0.00 1.5 4.3 1.0 1.0

32-4,5,6c 11.5 0.17 4.2 15.7 6.7 1.3

32-7,8,9c 2.0 0.00 1.2 4.3 1.0 1.0

32-10,11,12c 4.4 3.44 2.0 16.8 2.3 2.7

64-1,2,3c 1.9 0.00 2.0 9.2 1.0 1.0

64-4,5,6c 10.7 0.00 4.6 26.1 1.0 1.0

64-7,8,9c 2.1 0.00 1.9 10.6 1.0 1.0

64-10,11,12c 6.5 0.00 2.8 16.9 1.0 1.0

128-1,2,3c 2.9 0.00 3.8 32.1 1.0 1.0

128-4,5,6c 15.6 0.11 18.2 155.3 7.7 1.3

128-7,8,9c 3.0 0.00 4.1 30.4 1.0 1.0

128-10,11,12c 4.6 0.00 4.0 50.7 1.0 1.0

256-1,2,3c 5.0 0.00 7.5 79.6 1.0 1.0

256-4,5,6c 7.8 0.00 9.6 111.2 1.0 1.0

256-7,8,9c 2.4 0.00 6.5 102.2 1.0 1.0

256-10,11,12c 13.2 0.00 13.3 201.6 1.0 1.0

Table 3.19 Average results for the Mnetgen 3 instances.

Chapter 3: Integer Multicommodity Flow Problem

91

Time Nodes
Instance

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

pds1 9.1 0.00 0.2 0.3 1 1

pds2 7.2 0.00 0.3 0.8 1 1

pds3 6.2 0.00 0.8 3.2 1 1

pds4 5.3 0.00 1.3 2.9 1 1

pds5 4.8 0.00 2.0 3.8 1 1

pds6 4.6 0.00 2.9 5.2 1 1

pds7 4.7 0.00 4.4 5.9 1 1

pds8 4.6 0.00 4.8 6.8 1 1

pds9 4.5 0.00 6.1 8.7 1 1

pds10 4.3 0.00 8.0 9.3 1 1

pds11 4.3 0.00 10.4 10.7 1 1

pds12 4.3 0.00 11.3 13.4 1 1

pds13 4.3 0.00 20.8 7.5 1 1

pds14 4.2 0.00 22.9 10.9 1 1

pds15 4.1 0.00 24.9 11.3 1 1

pds18 4.0 0.00 37.7 18.3 1 1

pds20 3.9 0.00 54.9 30.6 1 1

pds21 3.8 0.00 62.9 24.8 1 1

pds24 3.8 0.00 80.3 53.8 1 1

pds27 3.7 0.00 108.7 206.9 1 1

pds30 3.7 0.00 151.3 852.9 1 1

pds33 3.7 0.00 183.3 248.3 1 1

pds36 3.6 0.00 252.3 816.4 1 1

pds40 3.6 0.00 513.6 899.1 1 1

pds80 3.0 0.00 1017.1 399.4 4 1

Table 3.20 Results for the PDS instances.

Chapter 3: Integer Multicommodity Flow Problem

92

Time Nodes
Instance

Saturated

arcs (%)
Gap

BP CPLEX BP CPLEX

planar30 10.7 0.00 0.3 1.1 1 1

planar50 12.4 0.00 2.1 21.6 1 1

planar80 24.3 0.00 23.7 323.8 4 1

planar100 16.4 0.00 48.5 1501.9 2 1

planar150 27.8 * 1484.2* ** * **

Table 3.21 Results for the Planar instances.
* An integer solution was not found after optimising 600 nodes of the BP tree.

** A fractional optimal solution was not obtained due to excessive memory requirements.

3.5 Conclusions

In this Chapter we presented a branch-and-price approach to the minimum cost integer

multicommodity flow problem. The developed algorithm is based on a path formulation derived

for general instances (where commodities can have multiple origins and destinations) of the

problem.

The proposed approach is based on branching on the arc variables, taking into account

that, in the nodes of the branch-and-price tree, other than the root, the subproblems (shortest

path problems) may have negative cost cycles. Our algorithm deals efficiently with that

possibility by explicitly introducing those cycles in the (restricted) master problem. This

approach can be also used in other multicommodity flow problems (such as non-oriented

problems, multicommodity maximal flow problems or multicommodity flow problems with

extra constraints on paths − of which hop constraints are an example).

Computational tests allowed us to compare different versions of the algorithm and to

compare their results with a general purpose solver (Cplex 6.6) optimising the arc formulation.

Conclusions of the computational tests were not so expressive as we expected, since the linear

relaxation of almost all the instances tested had an integral optimal solution. Anyhow, the

proposed algorithm provided better time results in several instances, and, for the larger ones, it

can be concluded that it is the only feasible approach to be followed, given the huge memory

requirements of the formulation that are needed by a general-purpose solver.

Improvements can still be made, such as a more judicious choice of the branching

variable and a more sophisticated search strategy. Also, more effective branching rules can be

devised. With our approach, as long as branching rules are derived in the arc variables, they are

compatible with the subproblem in all nodes of the branch-and-price tree. This allows their

extension to branching rules based on several (arc) variables.

 93

4 Binary Multicommodity Flow Problem

In this Chapter, we address branch-and-price algorithms for the binary multicommodity

flow problem. This problem is defined over a capacitated network in which we intend to route a

set of commodities, each one with a given origin, destination and demand, at minimal cost,

without exceeding the arc capacities. Furthermore, the flow of each commodity must be routed

using a single path.

Formulating this problem with decision variables representing flows on each arc for each

commodity gives rise to a large linear (binary) program with two types of constraints: flow

conservation constraints and capacity constraints. Based on the Dantzig-Wolfe decomposition

principle we obtain two different decompositions (path and knapsack) depending on which type

of constraints define the subproblem. In order to solve the binary problem, we combine column

generation and branch-and-bound, developing branching rules that preserve the structure of the

subproblem in the branch-and-bound tree for both decompositions.

The linear relaxation of the path decomposition provides the same lower bound as the

original formulation, and its potential advantage lies in capturing the “network with additional

constraints” structure of the problem. The knapsack decomposition, in general, provides better

lower bounds but does not explore the aforementioned structure of the problem.

For the path decomposition, we compare the developed branching rule with one

previously presented in (Barnhart et al., 2000). We present computational results for the two

decompositions, and compare them with the ones given by a general-purpose integer

programming solver.

Chapter 4: Binary Multicommodity Flow Problem

94

4.1 Introduction

The binary minimum cost multicommodity flow problem (MFP) is defined over a

directed network in which several commodities share the capacity of the arcs in order to be

shipped from the origin to the destination nodes. There is a unit cost flow associated with each

arc of the network and with each commodity. The minimum cost binary MFP amounts to

finding the minimum cost routing of all the commodities, taking into account that the flow of

each commodity cannot be split.

Other designations for this problem are common, such as non-bifurcated routing problem,

traffic placement problem, single path routing problem, path selection problem or multiple

source unsplittable MFP. Most of those designations refer to communication problems. In those

applications, the routing of a set of traffic demands between different users is to be decided,

taking into account the capacity of the network arcs and the fact that the traffic between each

pair of users cannot be split. In (Parker and Ryan, 1994) an example of routing video data is

described, and in (Ouaja and Richards, 2004) the binary MFP is described in the context of

traffic engineering.

Other applications, such as production planning and distribution/transportation (an

example of express package delivery is given in (Barnhart et al., 2000)), may also be

considered, whenever a multicommodity flow model is used and the commodities cannot be

split.

Most of the work on MFPs is about its linear version, where the demand of a commodity

can be split along different paths. References to surveys, applications and solution methods to

the linear MFP were given in Chapter 4, where the integer MFP was considered. In that

problem, the demand of each commodity can be split but not each unit.

Different approaches for the binary MFP have been proposed: approximation algorithms

(for example, (Kolliopoulos and Stein, 1999)), heuristics ((Wang and Wang, 1999; Costa et al.,

2002)) and exact methods.

In our present work, we develop two exact methods based on Dantzig-Wolfe

decomposition (DWD) (Dantzig and Wolfe, 1960). The binary MFP is formulated by defining

the decision variables as the flows in the arcs and with two types of constraints: flow

conservation and capacity. In a path decomposition, the subproblem is defined by the flow

conservation constraints; in a knapsack decomposition, the subproblem is defined by the

capacity constraints. In both cases, we combine column generation and branch-and-bound

(branch-and-price) to obtain optimal solutions to the binary MFP. Branch-and-price methods

Chapter 4: Binary Multicommodity Flow Problem

95

were reviewed in Chapter 2; other surveys can be found in (Barnhart et al., 1998; Wilhelm,

2001; Lübbecke and Desrosiers, 2002).

For the path decomposition, the approach presented here follows the one introduced in

(Barnhart et al., 2000), where cuts are also incorporated in the solution procedure (branch-and-

price-and-cut). We make a slight extension by using general lifted cover inequalities (instead of

simple lifted cover inequalities), but our main contribution is the development of a different

branching scheme, which may be seen as the fundamental issue when combining column

generation and branch-and-bound. The main potential advantage of the path decomposition is

that the size of the linear programs solved in a column generation scheme is, in general,

considerably smaller than the size of the original linear program. In addition, the network

structure of the problem is explored: the binary MFP can be seen as a set of shortest path

problems (defined by the ‘easy constraints’, using a usual decomposition terminology), one for

each commodity, and additional constraints that relate them (the ‘hard constraints’).

A branch-and-price algorithm based on the knapsack decomposition is here developed

and tested, to our best knowledge, for the first time. Similar approaches were used before to

obtain lower bounds to network design problems (Holmberg and Yuan, 2000; Crainic et al.,

2001), but with different solution approaches from the one introduced here. The main potential

advantage of this decomposition is that its lower bound is, in general, tighter than the given by

the linear relaxation of the original formulation or by the path decomposition.

Other exact methods have been described in the literature, some of them developed at the

same time of ours (Alvelos and Carvalho, 2003). In (Belaidouni and Ben-Ameur, 2003) super

additive cuts are used to strengthen the formulation based on flows in arcs; in (Park et al., 2003)

a column generation formulation with two types of columns is combined with branch-and-

bound; in (Ouaja and Richards, 2003; Ouaja and Richards, 2004) a subgradient algorithm (for

the Lagrangean relaxation of the capacity constraints or, equivalently, the path decomposition)

is combined with constraint logic programming. In (Parker and Ryan, 1994) and (Park et al.,

1996), a related problem is treated. We will discuss with more detail some of those approaches

when describing our work. In none of those references, the methods developed were compared

with a state-of-the-art general-purpose solver, as they are in the present work.

This Chapter is organised as follows. In the next Section, we formally describe the binary

MFP and a formulation based on flows in arcs. That formulation is the base for the

decompositions that will be introduced in the following two Sections. Section 4.3 is devoted to

the path decomposition with a particular emphasis on branching rules and the use of lifted cover

inequalities. In Section 4.4, the knapsack decomposition is introduced, the branch-and-price

algorithm is described, and some variants are discussed in order to improve its computational

Chapter 4: Binary Multicommodity Flow Problem

96

efficiency. In Section 4.5, computational results of both decompositions and of a general-

purpose solver (Cplex 8.1 (ILOG, 2002)) are given. Finally, in Section 4.6, we present the main

conclusions of this work.

4.2 Problem Definition and Original Formulation

We consider a network formed by a set of n nodes, represented by N, and a set of m arcs,

represented by A. We use an index i={1,...,n} to represent a node and a pair of indices ij to

represent an arc which has origin in node i and destination in node j. We define a set K of h

commodities, indexed by k. Each commodity k is characterised by an origin, ok, a destination,

d
k, and an integer demand, rk, which is the number of units that are supplied at its origin and that

are required at its destination. We also define an integer capacity uij associated with each arc of

the network and a unit cost, cij
k, associated with the flow of commodity k on arc ij. We make the

usual assumption, cij
k
 ≥ 0, ∀ij∈A, ∀k∈K.

The binary MFP consists in finding the minimum cost routing of all the demand of all the

commodities taking into account that the demand of each commodity cannot be split.

The original formulation is obtained using decision variables that represent the proportion

of the demand of each commodity that flows in each arc. Forcing those variables to be binary is

the same as forcing every flow of every commodity to be routed along a single path.

The decision variables are represented as xij
k. The original formulation is as follows.

Min ∑ ∑
∈ ∈Kk Aij

cij
k
 r
k
 xij

k
 (OB)

subject to:

Kk,Ni,

di,oi if ,0

di if ,1

oi if ,1

xx
kk

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀

≠≠

=−

=

=− ∑∑
∈∈

 (4.1)

∑
∈Kk

r
k
 xij

k
 ≤ uij, ∀ij∈A (4.2)

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A. (4.3)

Constraints (4.1) are flow conservation constraints. They state that, for each commodity,

the difference between the flow that enters and the flow that leaves each node is equal to the

supply/demand of that same node. Constraints (4.2) are capacity constraints. They state that the

total flow on each arc must be less than or equal to its capacity.

In this work, we apply two decompositions to the formulation (OB) and solve them by a

column generation based algorithm. We now present a slightly different formulation that,

potentially, is more adequate to be solved by column generation.

Chapter 4: Binary Multicommodity Flow Problem

97

Column generation algorithms can also be viewed as cutting planes methods in the dual

space (as detailed in Chapter 2). Primal degeneracy leads to the slower convergence of the

column generation method (as in simplex methods) and corresponds to the presence of multiple

dual optimal solutions. That can be done by excluding redundant primal constraints and turning

primal equality constraints into inequalities, of course, as long the obtained model produces an

optimal solution that may be used to retrieve an optimal solution to the original problem

(Carvalho, 2000).

The original formulation (OB) can be modified by removing the flow conservation

constraint of each destination node (of all commodities) and by setting the sense of the other

flow conservation constraints to “≥”. In this way, the following modified original model is

obtained.

Min ∑ ∑
∈ ∈Kk Aij

cij
k
 r
k
 xij

k
 (MOB)

subject to:

Kk,Ni,
oi if ,0

oi if ,1
xx

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀

≠

=
≥− ∑∑

∈∈

∑
∈Kk

r
k
 xij

k
 ≤ uij, ∀ij∈A

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A.

Applying the path and knapsack decompositions to the (OB) formulation does not involve

substantial differences from their application to the (MOB) formulation.

4.3 Branch-and-Price-and-Cut for the Path Decomposition

4.3.1 Dantzig-Wolfe decomposition

We apply the DWD principle to the original formulation (OB) presented in the previous

Section, defining the subproblem with constraints (4.1) and (4.3). In this way, the subproblem is

a set of h shortest path problems, one for each commodity, and thus its feasible region has no

extreme rays, and each extreme point of the feasible region of subproblem k is associated with a

path from ok to dk. We denote the set of indices p of all the extreme points of the subproblem of

commodity k by Pk. We represent a given extreme point, with index p and associated with the

subproblem of a commodity k, by ypk. The entry in that vector corresponding to the original

variable xij
k is denoted by yij

pk, which takes the value 1 if arc ij belongs to the path p of

commodity k, and 0 otherwise. The cost of one extreme point, cpk, is given by

Chapter 4: Binary Multicommodity Flow Problem

98

∑
∈

=
Aij

k
ij

pk
ij

pk cyc .

Finally, we define the weight variable associated with each extreme point, ypk, as λpk.

According to the DWD principle and relaxing the binary requirements, we get the following

master problem.

Min ∑ ∑
∈ ∈Kk Pp k

c
pk
 r

k
 λpk

 (PB)

subject to:

∑
∈ kPp

λpk
 = 1, ∀k∈K (4.4)

∑ ∑
∈ ∈Kk Pp k

yij
pk
 r

k
 λpk

 ≤ uij, ∀ij∈A (4.5)

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k
.

A decision variable of (PB), λpk, can be seen as the proportion of the demand of the

commodity k that is routed in path p. Constraints (4.4) are convexity constraints, forcing the

demand of each commodity to be routed. Constraints (4.5) are the capacity constraints after the

redefinition of variables subjacent to the DWD principle (when there are no extreme rays): a

solution to (PB) can be represented as a convex combination of the extreme points of the

subproblem. Given a solution of (PB), we can recover a solution of (OB) by using

xij
k
 = ∑

∈ kPp

yij
pk
 λpk

, ∀ij∈A, ∀k∈K. (4.6)

The linear relaxation of the path decomposition just presented gives a lower bound that is

equal to the one given by the original formulation, since the subproblem has the integrality

property (Geoffrion, 1974) (that is, all extreme points are integer). However, the efficiency of

the solution methods of the linear relaxation can be very different. The dimension of the basis in

the original formulation is n.h+m, while, in the path decomposition, it is h+m. Since the basis

dimension is a major factor to simplex methods efficiency, we can expect the path

decomposition to be more efficient in larger instances, given that we use a column generation

scheme to deal with the exponential number of columns.

The integrality of the decision variables can be forced in different ways, as we will

discuss in subsection 4.3.3.

We note that this formulation could be obtained directly by defining the variables λpk.

However, turning explicit that this formulation can be obtained by a DWD provides additional

insight.

Chapter 4: Binary Multicommodity Flow Problem

99

4.3.2 Overview of the branch-and-price-and-cut algorithm

As usual when dealing with path formulations of MFPs, in the resolution of the problem

(PB) we use column generation and, in order to obtain binary optimal solutions, we combine

column generation, branch-and-bound and cuts.

In this subsection, we give an overview of the branch-and-price-and-cut algorithm, first

introduced in (Barnhart et al., 2000). The differences of our approach are treated in the next

subsections.

The flowchart of the solution method for a node of the branch-and-price-and-cut tree is

given in Figure 4.1.

Setting the RMP amounts to considering the branching constraints that define the node. In

the root node, the RMP must be initialised by including artificial variables (to avoid

infeasibility). In the other nodes of the tree, the RMP can include cuts generated while solving

other nodes (since global cuts are used as will be detailed in subsection 4.3.4).

In the root node, the subproblem of a commodity k is

z
k
 = Min ∑

∈Aij

(cij
k
 + wij) r

k
 xij

k
 – πk

,

subject to:

Kk,Ni,

di,oi if ,0

di if ,1

oi if ,1

xx
kk

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀

≠≠

=−

=

=− ∑∑
∈∈

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A.

where wij is the (nonnegative) dual variable associated with the capacity constraint (4.5) of arc ij

and πk is the (unrestricted in sign) dual variable associated with the convexity constraint of

commodity k. Thus, the subproblem of a commodity k consists in determining the shortest path

between its origin and its destination in a network with modified costs. If the optimal solution

has a negative value, the path is attractive, and its associated column inserted in the RMP.

We note that ∑
∈Kk

z
k
 is a lower bound to the optimal value of the root node (see 2.2.4,

page 23), and thus it is possible to compute a gap in each iteration of the column generation

procedure easily. This gap can be useful for three purposes. Firstly, as a stopping criterion in

order to obtain optimal solutions within the desired accuracy. Secondly, columns of the RMP

with a reduced cost greater than the gap can be removed from it, with the guarantee that they

will never be generated again. Thirdly, if the lower bound of a given iteration of the column

generation algorithm in any node of tree is greater than or equal to the incumbent value, the

node can be pruned. We note that in the computation of the lower bound in nodes other than the

root, branching and cutting constraints must be taken into account. The computation of the

Chapter 4: Binary Multicommodity Flow Problem

100

lower bound is not straightforward in the branching schemes we will review in the next section,

but it is straightforward with the proposed branching rule that we present at the end of that

Section.

Figure 4.1 Flowchart of the solution method of a node of the search tree.

4.3.3 Branching rules

The fundamental issue in a branch-and-price algorithm is the definition of branching rules

that allow the exploration of the solution space without compromising the efficiency of the

column generation approach to solve the nodes of the tree.

We first review branching rules described in the literature and then propose a new one.

Chapter 4: Binary Multicommodity Flow Problem

101

We consider that the flow of a given path p of a given commodity k is fractional, which

means that more than one path is being used to route the demand of k. Thus, in general, a branch

must force path ypk to route all the demand (λpk
= 1) and the other must force that path ypk not to

be used (λpk
= 0).

In (Parker and Ryan, 1994) and (Park et al., 1996) a different problem is considered, but

the branching rules presented there could also be used in the binary MFP. Forcing λpk
 = 1 is

trivial. It is sufficient to delete all columns of the RMP that are not associated with path p and

not to solve the subproblem of commodity k. Forcing λpk
 = 0 implies that path p of commodity k

must be excluded from the solution space, which cannot be done in a direct way. Imposing the

constraint in the RMP (by deleting its column) does not assure that that path is not (re)generated

again by the subproblem.

In (Parker and Ryan, 1994) this issue is overcome by considering several branches. Given

b as the number of arcs of path p of commodity k, b+1 branches are generated. In one branch,

λpk is forced to 1. In each of the others, one of the l arcs of the path is excluded from the shortest

path (sub)problem of commodity k (and columns associated with paths with the same

characteristic are deleted from the RMP), assuring that, taking them together, the only path

excluded is path p. Note that it is trivial to exclude a set of arcs from a shortest path problem,

but it is not trivial to force the inclusion of a set of arcs. An illustration of this branching rule is

given in Figure 4.2.

Figure 4.2 Illustration of the (Parker and Ryan, 1994) branching rule.

As noted by the authors of the paper, branching in the arc flow variables has the

advantage of taking into account several paths in the same branch, but, on the other hand, the

number of nodes to be explored is considerable larger than in a standard branching scheme,

where only two branches are created.

In (Park et al., 1996) the regeneration issue is overcome at the expense of turning the

subproblem capable of obtaining the second best shortest path (in the case the shortest path is

the one to be excluded). The disadvantage of this approach is that in a node of the search tree

Chapter 4: Binary Multicommodity Flow Problem

102

where there are l paths to be excluded, it may be necessary to determine the l-th shortest path. In

addition, branching on a single path can lead to unbalanced search trees.

In (Barnhart et al., 2000) another branching rule is proposed. The main idea is based on

identifying a node where the flow of a commodity is first split into different paths, and then on

branching by forbidding the flow on subsets of arcs that leave that node (avoiding regeneration).

This branching rule also avoids the difficulty in solving the shortest path (sub)problem in which

some arcs are forced to belong to the solution; the amendment in the subproblem is simply

forbidding a set of arcs, which only requires their exclusion from the network.

An illustration of this branching rule is given in Figure 4.3. It is assumed that a

commodity has two paths with a flow of 0.5 and all arcs until node 1 are common to those paths

(thus the flow in each of those arcs is 1). In node 1 the flow is split between arcs 12 and 15.

Thus, two branches are created: in one of them, arcs 12 and 13 are excluded, and, in the other,

arcs 14 and 15 are excluded. Note that different subsets of arcs could be considered, as long as

arcs 12 and 15 were in different subsets.

0.5

Figure 4.3 Illustration of the (Barnhart et al., 2000) branching rule.

A disadvantage of this branching rule is that a feasible solution may belong to the

solution spaces of different nodes of the tree. In the example depicted in Figure 4.3, if the set of

paths that carry the flow in the optimal solution does not include any of the arcs that leave node

1, the branch is irrelevant, since that solution is considered in the solution spaces of both

descendant nodes.

The main idea of the branching rule that we propose is to include branching constraints in

RMP explicitly and to modify the subproblem accordingly.

Branching constraints are defined in the original variables, given that their values can be

easily calculated through (4.6) (page 98). Thus, in a branching scheme using only a fractional

Chapter 4: Binary Multicommodity Flow Problem

103

variable xij
k, the branches are

xij
k
 ≤ 0 and xij

k
 ≥ 1,

or, in the path decomposition variables,

∑
∈ kPp

yij
pkλij

pk
 ≤ 0 (4.7)

and

∑
∈ kPp

 yij
pkλij

pk
 ≥ 1. (4.8)

The dual variables of these new constraints are then used to modify the costs of the arcs

when solving the shortest path subproblems. The modified cost of an arc ij for a commodity k is

now given by

r
k
wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + r

k
cij

k
,

where wij
ku e wij

kl are the dual variables associated with the branching constraints of type (4.7)

and (4.8), indexed by u and l, respectively, and Us and Ls are the set of the indices of the

branching constraints that include arc ij of commodity k.

This branching rule, based on a single fractional original variable, can be extended to

branching on several original variables, as exemplified in Figure 4.4.

Any branching rule defined on the original variables can be easily used in this branch-

and-price approach.

The disadvantage of this branching rule is that in a node of the branch-and-price tree the

modified cost of an arc can be negative, which may imply the existence of a negative cost cycle

in the subproblem (of course, if the network has cycles, which may not happen in the instances

of some applications).

If a negative cost cycle is identified for some commodity a variable associated with it is

inserted in the RMP in the same way as in branch-and-price algorithm for the integer MFP

(Chapter 3, subsection 3.3.3, page 70).

In terms of algorithmic modifications, the subproblems in nodes other than the root must

be solved by an algorithm that identifies negative cost cycles, such as the labelling correcting

ones (for example, (Gallo and Pallottino, 1988)). In the root node, a more efficient labelling

setting algorithm can be used.

It is interesting to note that if a cycle variable has a positive value in the optimal solution

of a node of the search tree that does not mean that the node can be pruned, something that

might be concluded from a first look at this issue, since in an optimal solution all the cycle

variables must have zero value. We now give an example that justifies this last observation.

Chapter 4: Binary Multicommodity Flow Problem

104

0.5

Figure 4.4 Illustration of the proposed branching rule.

Example 4.1

Consider Figure 4.5, where a given commodity must be routed from node 1 to node 3.

Consider that in the optimal solution of the problem of a node of the branch-and-bound tree,

path 1-2-3 has flow 0.75 and path 1-4-3 has flow 0.25.

Figure 4.5 Illustration for Example 4.1.

Now consider the branch x12=1. One possible optimal solution, for the commodity in

question, is the same as before plus a flow of 0.25 on the circuit 1-2-1. That will happen if the

circuit cost is lower than the path 1-4-3 cost.

In terms of flows on arcs, that solution respects the branching constraint. Note also that

the branch was effective in the sense that the previous solution (that had x12=0.75) was removed

from the solution space.

An optimal solution does not have positive flows on cycles. However, the node in

question cannot be pruned because the optimal solution for the overall problem can be, for

example, routing the commodity through path 1-2-3. In that case it would be necessary a branch

x14=0 or x43=0 to force the routing exclusively through 1-2-3.

♦

x12 + x13 = 1

or
x12 + x13 = 0

Chapter 4: Binary Multicommodity Flow Problem

105

4.3.4 Lifted cover inequalities (LCIs)

Lifted cover inequalities (LCIs) are cuts that may be used to obtain stronger models. Each

capacity constraint (4.2) of the original model is a knapsack constraint. (Barnhart et al., 2000)

incorporated LCIs derived for the knapsack problem in the reformulated model, thus obtaining a

branch-and-price-and-cut algorithm.

Here we extend the type of LCIs used in (Barnhart et al., 2000), which are simple LCIs,

to the use of general LCIs. A detailed exposition and comparison on different ways of

generating LCIs is given in (Gu et al., 1998); here we will concentrate in their application to the

binary MFP.

Consider a fractional optimal solution of one node of the search tree, and the capacity

constraint of one arbitrary arc ij (for simplicity of notation, we omit the arc index)

∑
∈Ck

r
k
 x

k*
 ≤ u,

where xk* is calculated through (4.6), and C stands for the indices of the commodities that have a

positive flow on arc ij.

The set of commodities C is a minimal cover if and only if (iff) ∑
∈Ck

r
k
 > u (it is a cover)

and for each k′∈C, ∑
∈Ck

r
k
 − rk′

 ≤ u (it is minimal). Minimal covers do not necessarily define

facets of the associated knapsack polytope. In order to obtain a facet of the knapsack polytope it

may be necessary to lift the cover inequality.

Starting from a minimal cover C, we define two disjoint sets C1 and C2, where C1≠0. The

following inequality is a facet of the knapsack polytope

∑
∈ 1Ck

x
k
 + ∑

∈ C\Kk

αk
x
k
 + ∑

∈ 2Ck

γk
 x

k
 ≤ |C1| − 1 + ∑

∈ 2Ck

γk
,

where αk is obtained by up lifting and γk by down lifting (procedures to perform lifting can be

found in (Nemhauser and Wolsey, 1999)).

In our implementation we used the heuristic proposed in (Gu et al., 1998) to try to detect

a violated LCI for each saturated arc. Thus, for each saturated arc, we first considered three sets:

L = {k∈K:x
k
=0}, U = {k∈K:x

k
=1} and F = K\(L∪U). Then a minimal cover is constructed

based on all the U elements and the elements of F that have the highest values. We define C2 =

U and C1 = C\C2. The initial cover inequality is defined by the C1 elements. The sequence in

which the variables are lifted is as follows: firstly, variables that are not in the cover but have a

fractional value are up lifted; secondly, variables belonging to C2 are down lifted; thirdly,

variables that are not in the cover and have a zero value are up lifted. The lifting sequence starts

from the fractional variables (the more important ones in the sense that they are the cause of the

Chapter 4: Binary Multicommodity Flow Problem

106

non integrality of the solution), goes to the variables with value equal to one (that are serious

candidates for becoming fractional in a subsequent node) and finishes in the variables with

value equal to zero (most of them, in general, will have always that value).

The main difference of this way of generating LCIs, when compared to the one used in

(Barnhart et al., 2000), is that our set C2 is not necessarily empty. That seems a good feature

because, this way, we can construct LCIs in the basis that some variables have, necessarily, the

value one.

We note that this procedure does not guarantee that the lifted cover inequality found is

violated by the current solution, but finding the most violated LCI is a NP-hard problem (Gu et

al., 1999). We also note that, even if we generate all the possible LCIs, the optimal solution of

the node could stay fractional, since with LCIs we are just trying to approximate the polytope of

the capacity constraints, not considering the other constraints of the problem. In fact, the idea of

applying the knapsack decomposition (next subsection) emerged from using an exact

description of that polytope (given by the subproblem in the knapsack decomposition), and that

decomposition, although giving a better bound, does not exclude the need to perform branching.

We now discuss the implications of the presence of LCIs in the branch-and-price

algorithm. After a node is optimised through column generation, we try to detect violated LCIs

associated with all the saturated arcs. For each violated LCI found, a new constraint is inserted

in the RMP, which is reoptimised using column generation. The procedure is repeated until no

more violated LCIs are detected. Then, according to the branch-and-bound method, a decision is

taken (for instance, branching if the optimal solution is fractional and the node cannot be

pruned).

A crucial issue is how to integrate the cuts added to the RMP in the column generation

procedure. Firstly, the cuts are expressed in terms of the original variables (which are flows on

arcs). That issue can be easily dealt with. Consider that one LCI associated with arc ij is inserted

in the RMP, and that the coefficient of the xij
k in the LCI is β. Then the LCI constraint in the

RMP must have the coefficient β for all paths that are associated with commodity k and include

arc ij. Secondly, since the RMP has additional constraints, the subproblem must still be capable

of correctly pricing the variables.

We represent the dual variable associated with the l-th branching constraint of type “less

than or equal to” (corresponding to branch on the arc ij and on the commodity k) by wij
kl.

Similarly, we define wij
ku for the u-th branching constraint of type “greater than or equal to”. In

a node s of the branch-and-price tree, we represent the two sets of branching constraints by Ls

and Us. We define the dual variable associated with the g-th LCI constraint by wij
g. In a node s

of the branch-and-price tree, we represent the set of LCI constraints by Gs. We also define βij
gk

as the coefficient in the LCI with index g (associated with arc ij) of the commodity k. One path p

of one commodity k is attractive iff

Chapter 4: Binary Multicommodity Flow Problem

107

∑
∈Aij

r
k
yij

pk
 (wij + cij

k
) + ∑

∈ sUu

yij
pk
 wij

ku
 – ∑

∈ sLl

yij
pk
 wij

kl
 + ∑

∈ sGg

yij
pk
 βij

gkλij
g
 < πk

.

In this way, the subproblem remains a shortest path for each commodity, and the presence

of LCIs constraints does not destroy its structure.

Given their senses, the LCIs constraints have a positive contribution to the modified costs

of the arcs, and thus they do not contribute to the existence of negative cost cycles.

Any type of valid inequalities could be used, as long as they were defined in terms of the

original variables and inserted in the RMP in the same manner as the LCIs with the same type

of modifications in the subproblem.

A last issue about the branch-and-price-and-cut algorithm is that the cuts inserted in one

of nodes of the tree are feasible for all nodes of the tree (global cuts). That is achieved in the

construction of each of the LCIs. In an arbitrary node of the tree, we start from a minimal cover

(that is a valid inequality for all the nodes), then all the variables that have value one are down

lifted (assuring the validity for all the nodes of the tree) and the remaining variables are up lifted

(strengthening the constraint).

4.4 Branch-and-Price for the Knapsack Decomposition

4.4.1 Dantzig-Wolfe decomposition

In the knapsack decomposition, we apply the DWD principle to the original formulation,

defining the subproblem with constraints (4.2) and (4.3). In this way, the subproblem is a set of

m binary knapsack problems, one for each arc, and thus it has no extreme rays, and each

extreme point of subproblem of arc ij is associated with a set of commodities that, together, can

use arc ij without exceeding its capacity.

We denote the set of indices q of all the extreme points of the subproblem of arc ij by Qij.

We represent a given extreme point, with index q and associated with the subproblem of an arc

ij, by yqij. The entry in that vector corresponding to the original variable xij
k is denoted by yk

qij.

Thus, the cost of one extreme point, yqij, is given by

c
qij
 = ∑

∈Kk

 yk
qij
r
k
cij

k
.

Finally, we define the weight variable associated with each extreme point, yqij, as λqij.

According to the DWD principle and relaxing the binary requirements, we get the following

master problem:

Min ∑ ∑
∈ ∈Aij Qq ij

c
qijλqij

 (KB)

subject to:

Chapter 4: Binary Multicommodity Flow Problem

108

∑
∈ ijQq

λqij
 ≤ 1, ∀ij∈A (4.9)

∑ ∑
∈ ∈Aij:j Qq ij

yk
qij
 λqij

 − ∑ ∑
∈ ∈Aji:j Qq ji

yk
qji
 λqji

 = Kk,Ni,

di,oi if 0

di if 1

oi if 1

kk

k

k

∈∀∈∀

≠≠

=−

=

 (4.10)

λqij
 ≥ 0, ∀ij∈A, ∀q∈Q

ij.

The decision variables of this (re)formulation, λqij, are associated with the selection of the

set of commodities that use each arc, being the alternatives the possible combinations of

commodities, defined by yqij. Constraints (4.9) are convexity constraints: at most one set of

commodities will use each arc. We note that the origin is an extreme point for each subproblem

(associated with not using the arc at all), which justifies the sense of the convexity constraints.

Constraints (4.10) are the flow conservation constraints after the redefinition of variables

subjacent to the DWD principle.

Given a solution of (KB), we can recover a solution of (OB) by using

xij
k
 = ∑

∈ ijQq

yk
qij

 λ
qij
, ∀ij∈A, ∀k∈K. (4.11)

The number of constraints of this (re)formulation is the same as the number of constraints

of the original formulation. The number of decision variables is much larger (one decision

variable for each arc and for each possible combination of commodities that use the arc).

Being so, in general, this decomposition approach does not reduce the size of the

problems to be solved. However, the lower bounds it gives are, in general, tighter than the ones

given by the original formulation or by the path decomposition, since the subproblems are

binary knapsack problems that do not have the integrality property. The original formulation or

the path decomposition consider that the flow on each arc may be fractional, and thus each

capacity constraint can be seen as a continuous knapsack constraint. In this decomposition, all

solutions that are feasible to the continuous knapsack constraint, but are not feasible considering

binary variables are excluded. These solutions are the same that we exclude when using lifted

cover inequalities in the path decomposition. In that case, the LCIs define facets of the polytope

defined by the binary knapsack constraints. In this case, those facets are implicitly defined by

taking convex combinations of the binary extreme points of the same polytope.

4.4.2 Solving the root node

We assume that a set of subproblems’ solutions, associated with a set of indices, ⊆ijQ

Q
ij, ∀ij∈A, which allows building a feasible solution to the following restricted master problem

(RMP), is known.

Chapter 4: Binary Multicommodity Flow Problem

109

Min ∑ ∑
∈ ∈Aij Qq ij

c
qij
 λqij

 (KRMP)

subject to:

∑
∈ ijQq

λqij
 ≤ 1, ∀ij∈A (4.12)

∑ ∑
∈ ∈Aij:j Qq ij

yk
qij
 λqij

 − ∑ ∑
∈ ∈Aji:j Qq ji

yk
qji
 λqji

 = Kk,Ni,

di,oi if 0

di if 1

oi if 1

kk

k

k

∈∀∈∀

≠≠

=−

=

 (4.13)

λqij
 ≥ 0, ∀ij∈A, ∀q∈ ijQ .

We define πij as the (nonnegative) dual variables of constraints (4.12) and wi
k as the

(unrestricted in sign) dual variables of constraints (4.13).

For arc ij the subproblem is

z
ij
 = Min ∑

∈Kk

(cij
k
 r
k
 − wi

k
 + wj

k
) xij

k
 − πij

 (KSP)

subject to:

∑
∈Kk

r
k
 xij

k
 ≤ uij

xij
k
 ∈ {0,1}, ∀k∈K.

As in the case of the path decomposition (subsection 4.3.2), or in the general application

of DWD principle (subsection 2.2.4), the value given by ∑
∈Aij

z
ij
 is a lower bound to the optimal

value of the root node, and thus it is possible to compute a gap in each iteration of the column

generation procedure easily. As described for the path decomposition (subsection 4.3.2), this

gap can be useful for obtaining optimal solutions within the desired accuracy, for fixing

variables (which can be useful when removing columns) or for fathoming nodes as soon as, in a

given column generation iteration, the lower bound is larger than the incumbent value in a node

of the tree.

We note that in the computation of the lower bound in nodes other than the root,

branching must be taken into account, an issue that will be discussed in the next subsection.

As will be shown in the Section 4.5, this decomposition turned out to be difficult to deal

with. The columns of the RMP are dense columns (in the worst case, if all commodities use the

same arc, one column may have 2h+1 non zeros) and the network structure of the original

problem is lost. We used three strategies to try to overcome that issue that we now briefly

describe.

Firstly, the first RMP only includes the origin flow conservation constraints. Whenever

no columns are generated by the subproblems, violated rows not present in the RMP are

Chapter 4: Binary Multicommodity Flow Problem

110

inserted and the same procedure goes on until neither attractive columns nor violated rows are

detected. An analogy with branch-and-price-and-cut is direct: the constraints play the role of the

cuts and the separation problem consists in passing through all that are not present in the RMP,

finding the ones that are currently being violated. The flowchart of Figure 4.1 (page 100), with

minor terminology modifications, describes the algorithm.

Secondly, in order to try to keep the size of the RMPs manageable by the LP solver, in

some iterations, we perform columns removal in such a way that the number of columns of the

RMP is kept approximately equal to 3r, where r is the total number of rows. The selection of

columns to be removed is made by sorting them by decreasing reduced costs, reducing the

probability that a removed column will be generated again in a subsequent iteration.

Thirdly, we used an inexact RMP solver. For the column generation algorithm to proceed

it only needs the RMP to provide a feasible dual point. In particular, in early iterations, it may

not be worth solving the RMP exactly, since the columns generated in an optimal dual point

may have poor “quality” anyway (in the sense that they have a small probability of being

present in an optimal solution). Thus, the time spent in solving the RMP exactly can be spent in

generating more columns that allow reaching a “good” solution (or a feasible one, in a difficult

instance) earlier.

4.4.3 Branching rules

Branching rules can be defined on the original variables or on the weight variables. We

first discuss a branching rule based on the weight variables, noting that if a binary solution is

obtained on the weight variables then it corresponds to a binary solution on the original

variables. That is not the case in problems with general integer variables.

We branch by creating two nodes: in one of them, one weight variable is set to one and,

in the other, the same variable is set to zero.

In the branch where the fractional variable is set to one, all columns associated with

different variables of the same arc must be deleted from the RMP. The convexity constraint of

the arc must be set to equality. The subproblem of the arc does not need to be solved: there is

already one extreme point in the RMP for that arc that has value one.

In the other branch, where the variable is set to zero, we set the cost of the corresponding

column to a big value, forcing it to have zero value in the RMP. When solving the subproblem

associated with its arc, if the optimal solution is not attractive, or if the column associated with

it is attractive but is not yet in the RMP, then there are no changes, when compared with the

standard procedure for solving the subproblem. However, if the column is attractive and the

corresponding column is already in the RMP, we must find the second best solution. That can

be done by using a general procedure for finding the second best solution in a general binary

Chapter 4: Binary Multicommodity Flow Problem

111

problem, which consists in adding the following constraint to the problem

∑
∈ 1Kk

x
k
 − ∑

∈ 1K\Kk

 x
k
 ≤ |K1

|−1,

where K1 is the set of commodities that have value one in the current solution.

This procedure is repeated until we can conclude whether or not the best column not

present in RMP is attractive.

One disadvantage of this approach is that the knapsack structure of the subproblem is

lost, and thus we cannot use a specialised algorithm to solve it. Branching in the weight

variables is not frequently used because, as exemplified here, it leads to major changes in the

subproblem. We now turn to branching rules based on the original variables.

The branching rules based on the original variables described for the path decomposition

(subsection 4.3.3, page 100) can be used in the knapsack decomposition. The difference is, of

course, the calculation of the values of the original variables (through (4.11)) and the

modifications implied by forcing an arc to have flow of a commodity or not.

If xij
k has a fractional value, we can derive two branches: xij

k
 = 0 and xij

k
 = 1. In both

cases, we have to remove some columns related with commodity k and arc ij prior to optimising

the resulting node.

In the branch xij
k
 = 0 we remove the columns associated with arc ij that include

commodity k and we also exclude commodity k from the subproblem associated with that arc.

This way we guarantee that the optimal solution of the node will have xij
k
 = 0.

In the branch xij
k
 = 1 we remove the columns associated with arc ij that do not include

commodity k and we force the solution of the subproblem of arc ij to include commodity k. That

is not enough to guarantee that the total demand of commodity k will flow through arc ij. We

also have to modify the sense of the convexity constraint of arc ij to an equality. Note that, as

opposed to the path decomposition, setting an original variable to one, can be dealt with easily.

The extension to forcing a set of original variables to zero, or to forcing a set of variables

to one (which is required by some of the branching rules introduced for the path decomposition)

can be easily performed.

The new branching rule introduced in subsection 4.3.3 for the path decomposition can

also be used in the knapsack decomposition (in fact, in any branch-and-price algorithm for

which an original formulation is known, as detailed in Chapter 2).

By explicitly introducing branching constraints in the master (based on the original

variables but, of course, translated into the weight variables) and by taking into account their

duals in the objective function of the subproblems, the column generation procedure to solve the

problem of each node of the tree suffers minor modifications. The subproblems remain binary

knapsack problems. In our implementation of the branch-and-price algorithm, we used this last

Chapter 4: Binary Multicommodity Flow Problem

112

branching scheme.

4.4.4 Combination of the two decompositions

In (Park et al., 2003) a way of combining the two decomposition approaches presented

here is proposed. The main idea is to have a master problem where there are two types of

columns: the ones associated with paths and the ones associated with binary knapsack solutions.

Being so, there are also two types of subproblems: shortest paths and binary knapsacks. In the

RMP, the weight variables associated with each type of subproblems are related by stating that a

path of a commodity can only use a given arc if it belongs to the binary knapsack solution of

that arc. As described by the authors, the branching rules previously described can easily be

applied in that approach, which has the clear advantage of taking the best part of the two

decompositions: capturing the network structure (path decomposition) and obtaining good

quality lower bounds (knapsack decomposition). The authors describe computational tests that

confirm the potential of their approach. A computational comparison of the two decompositions

presented here and the approach of (Park et al., 2003) is a natural extension of the

computational tests that we made, and will describe in the next Section.

Although in (Park et al., 2003) the contextualisation of the approach in a DWD

framework was not treated, the proposed algorithm can be seen as an application of multiple

DWD (subsection 2.5.5, page 50).

4.5 Computational Results

4.5.1 Computational environment and parameters

We performed a set of computational tests for different variants of the branch-and-price

algorithms for the path and the knapsack decompositions and compared them with the results

obtained by solving the original formulation with a general-purpose solver (Cplex 8.1 (ILOG,

2002)).

The branch-and-price algorithms were implemented using ADDing − Automatic Dantzig-

Wolfe Decomposition for INteger column Generation, a set of C++ classes that implements a

generic branch-and-price algorithm. In its basic use, the user is only required to provide an

original formulation and the decomposition to be used (that is, which constraints define the

subproblem(s)), along with some parameters. ADDing implements, in a transparent way to the

user, a branch-and-price algorithm based on the defined decomposition, returning an optimal

solution in the original variables (if there is one, and any stopping criteria specified by the user

− for example, maximum number of nodes of the tree − is not achieved). In a more advanced

mode, the user may customise parts of ADDing, such as the subproblem solver, the use of

Chapter 4: Binary Multicommodity Flow Problem

113

subproblem heuristics, and/or the branching rules, as we did.

ADDing was implemented using the development environment Microsoft Visual Studio

6.0 and uses Cplex 8.1 for solving the RMPs, and will be presented in Chapter 6.

All the reported results were obtained on a personal computer with a Pentium 4, 2.80

GHz processor, 1 GB of RAM, running Windows XP Professional Edition. All the time values

exclude the file input and output and are expressed in seconds. In the case of the Cplex tests,

they also exclude the construction of the model.

For the linear relaxations, when solved by Cplex or by ADDing, we set the optimality

tolerance to 1e−5. For the integer problems, when solved by Cplex or by ADDing, we set the

absolute integer gap tolerance to 1e−5. We used the same tolerance for the integrality of values,

that is, a variable is integer if its absolute value differs from an integer by at most 1e−5. Since,

currently, ADDing does not have a stopping criterion based on the relative tolerance, we set the

Cplex relative tolerance to a very small value (1e−12).

4.5.2 Test instances

For computational test purposes, we used as test instances the Carbin instances (Alvelos,

2005). These instances were generated by a random instance generator based on the LEDA class

library (Mehlhorn and Näher, 1999). The input of the generator is a set of parameters that

restrains the characteristics of the instance that will be created, as the number of nodes, arcs,

commodities, the minimum and maximum values of the demands, capacities, and costs (which,

for each arc, may vary by commodity or not). Some of these values are only indicative values.

One feature of the generator is that it always creates a feasible instance (when considering the

linear relaxation of the original formulation). Thus, the number of arcs given by the user may be

slightly increased, and some capacities may be larger than the maximum value specified. In

order to obtain potentially difficult instances, some of the arcs (in particular, those created for

feasibility) have a higher probability of getting the maximum cost.

There are 48 Carbin instances that can be classified according to five characteristics: the

ratio mean capacity of the arcs / mean demand of the commodities, the number of commodities,

the density of the network, type of costs (for a given arc, being equal for all commodities or not)

and variance of costs. All the instances have 32 nodes. They can be divided in two main classes

of 24 instances each: for instances with an s in their name the ratio mean capacity / mean

demand is 1.5; for the instances with an l, that ratio is 10. In Table 4.1 and in Table 4.2, the

characteristics of these 48 instances are presented (replacing x by s or l).

We also tested two Planar instances. These instances come from (Larsson and Yuan,

2004) and were obtained in (Frangioni, 2005). Their number of nodes, arcs and commodities are

given in Table 4.3.

Chapter 4: Binary Multicommodity Flow Problem

114

In the computational tests, we divided the instances in two sets: one of smaller instances

(bs01 to bs08, bl01 to bl08, and planar30) and another of larger instances.

Instance n m h m/n h/n

bx01-bx04 32 96 48 3 1.5

bx05-bx08 32 320 48 10 1.5

bx09-bx12 32 96 192 3 6

bx13-bx16 32 320 192 10 6

bx17-bx20 32 96 320 3 10

bx21-bx24 32 320 320 10 10

Table 4.1 Characteristics of the Carbin instances.

Position in the group Maximum cost Arc cost depends on the commodity?

First 1000 No

Second 1000 Yes

Third 10 No

Fourth 10 Yes

Table 4.2 Characteristics of each group of four consecutive Carbin instances

Instance planar30 planar50

n 30 50

m 150 250

h 92 267

Table 4.3 Dimensions of the tested Planar instances.

4.5.3 LCIs and branching rules for the path decomposition

Implementation issues

For the path decomposition we implemented the L−2queue algorithm (Gallo and

Pallottino, 1988) to solve the shortest path (sub)problems, and used the COIN implementation

of the Horowitz-Sahni algorithm (Horowitz and Sahni, 1974) to solve the knapsack problems

when constructing LCIs. We used the Cplex 8.1 dual simplex algorithm to solve the RMPs.

When constructing the first RMP we generated columns by two different procedures:

solving the subproblems with the original costs, and using a heuristic that sequentially solves

the shortest path subproblem of each commodity, deleting the arcs that do not have enough

Chapter 4: Binary Multicommodity Flow Problem

115

capacity for the current commodity (of course, updating the capacities according to the paths

found previously).

Those procedures do not guarantee that the first RMP has a feasible solution, and thus we

add one artificial variable for each convexity constraint.

LCIs

The first set of computational tests was meant to compare the use of simple and general

LCIs. In Table 4.4 and in Table 4.5, results for the root node of the comparison between no use

of LCIs (N columns), simple LCIs (S columns) and general LCIs (G columns), are given for the

smaller and larger instances, respectively. The use of simple LCIs translated into an average

relative improvement of the lower bound of 3.3%, when compared to not using LCIs.

As expected, on average, using general LCIs is more time-consuming than using simple

LCIs. However, for 29 of the 50 instances, it produces a strictly better lower bound (in six

instances the lower bound obtained by the use of two types of LCIs is the same). The average

relative improvement in the lower bound is 0.02% and the average relative increase of the

optimisation time is 25.6%.

In the subsequent computational tests, we used general LCIs in all nodes of the tree.

Branching rules

The actual version of ADDing has some default branching rules based on the original

variables, also allowing the customisation of branching rules according to the problem at hand.

Branching is performed by dualising the branching constraints (that is, keeping them in the

RMP, taking into account their duals when solving the subproblem). That approach can be used

in any integer problem (pure binary, pure integer or mixed integer problems). Although the

original implementation of the branching rule of (Barnhart et al., 2000) is made by including the

branching constraints in the subproblem (changing the RMP accordingly), branching by

dualising the branching constraints leads (theoretically) to the same branch-and-price tree. The

only difference is how each node is solved, but the solution space is equal in both cases.

We compared a default branching rule (branching in the variable with the fractional part

closest to 0.5) with three others, for the smaller instances. The number of optimised nodes, for

each branching strategy, is given in Table 4.6. The search strategy used (default of ADDing)

consists in using a depth first search when the node generates descendants and best bound

search otherwise.

Column DD refers to the default branching rule with down branching first. Column DU

refers to the default branching rule with up branching first. Columns AD (down branching first)

and AU (up branching first) refer to the branching variable being the one associated with the arc

with more commodities with fractional flow and, among them, the one with greater demand.

Chapter 4: Binary Multicommodity Flow Problem

116

Column B refers to the branching rule of (Barnhart et al., 2000). Columns CD (down branching

first) and CU (up branching first) refer to the branching rule proposed in subsection 4.3.3

(considering one commodity and a set of arcs leaving the same node).

The first four branching strategies gave a clearly worst result in the last instance

(planar30).

Comparing CD and CU, CD gave better results in six instances and worse in three

instances. Comparing CD and B, CD gave better results in six instances (including the two

where more nodes were optimised: bs07 and planar30) and worse in two instances.

Time Value
Value

Improvement (%) Instance

N S G N S G S/N G/S

bl01 0.0 0.4 0.4 1549772.0 1608223.6 1608868.0 3.77 0.04

bl02 0.0 0.5 0.5 1641924.0 1793115.5 1792955.6 9.21 −0.01

bl03 0.1 0.6 0.5 15963.0 17246.7 17261.7 8.04 0.09

bl04 0.0 1.0 1.0 17875.0 19019.8 19059.6 6.40 0.21

bl05 0.0 0.1 0.1 469918.0 474782.0 474782.0 1.04 0.00

bl06 0.0 0.1 0.1 407297.0 411480.0 411480.0 1.03 0.00

bl07 0.0 0.1 0.1 5719.0 5751.0 5751.0 0.56 0.00

bl08 0.0 0.0 0.0 5658.0 5688.0 5688.0 0.53 0.00

bs01 0.0 0.5 0.5 1538239.0 1639862.0 1639637.4 6.61 −0.01

bs02 0.0 0.6 0.7 1556653.5 1694567.8 1693413.5 8.86 −0.07

bs03 0.0 0.1 0.2 16593.0 16828.0 16828.0 1.42 0.00

bs04 0.1 0.6 0.6 18462.0 19605.4 19501.9 6.19 −0.53

bs05 0.0 0.5 0.6 459174.0 498933.4 499341.9 8.66 0.08

bs06 0.1 0.3 0.2 467310.5 500183.9 498365.1 7.03 −0.36

bs07 0.0 0.6 0.5 6536.0 7145.8 7143.7 9.33 −0.03

bs08 0.0 0.3 0.3 6133.0 6454.0 6427.1 5.23 −0.42

planar30 0.0 0.2 0.3 44350624.0 44453752.5 44451958.5 0.23 0.00

Table 4.4 Path decomposition computational results: use of LCIs in the root node.
N − No LCIs; S − Simple LCIs; G − General LCIs.

Chapter 4: Binary Multicommodity Flow Problem

117

Time Value
Value

Improvement (%) Instance

N S G N S G S/N G/S

bl09 0.1 1.9 3.0 6108239.0 6183542.6 6192318.2 1.23 0.14

bl10 0.1 1.6 1.9 6192262.0 6243977.6 6245926.7 0.84 0.03

bl11 0.0 0.8 0.7 68302.0 68971.0 68967.0 0.98 −0.01

bl12 0.1 1.1 1.4 64807.2 65647.7 65644.8 1.30 0.00

bl13 0.1 6.1 7.0 3010940.0 3118060.2 3123924.2 3.56 0.19

bl14 0.1 1.9 2.0 2324767.0 2425133.1 2422987.3 4.32 −0.09

bl15 0.1 2.6 3.0 33297.0 34182.5 34215.9 2.66 0.10

bl16 0.1 1.9 2.1 26844.0 28012.9 28013.1 4.35 0.00

bl17 0.1 3.2 6.5 13086437.0 13149043.0 13154923.4 0.48 0.04

bl18 0.1 2.9 6.2 10401389.0 10460082.0 10467268.8 0.56 0.07

bl19 0.1 3.7 8.2 108049.0 108544.9 108602.6 0.46 0.05

bl20 0.2 3.5 4.5 109612.3 110667.9 110635.4 0.96 −0.03

bl21 0.2 11.2 17.3 5612118.1 5759495.7 5770619.3 2.63 0.19

bl22 0.2 7.9 9.5 4058714.3 4194404.6 4197869.3 3.34 0.08

bl23 0.1 10.6 11.6 55084.5 56468.0 56527.6 2.51 0.11

bl24 0.1 5.5 6.6 46053.0 47843.8 47860.9 3.89 0.04

bs09 0.1 1.3 2.6 6189414.0 6237946.0 6248836.4 0.78 0.17

bs10 0.1 2.0 2.0 6888128.0 7017450.8 7006625.6 1.88 −0.15

bs11 0.1 4.2 6.1 63413.3 64108.4 64167.3 1.10 0.09

bs12 0.1 1.5 2.0 69525.5 70597.5 70707.2 1.54 0.16

bs13 0.1 7.6 7.9 3404629.0 3577103.3 3579101.7 5.07 0.06

bs14 0.3 9.6 9.2 2618327.9 2826044.0 2821923.4 7.93 −0.15

bs15 0.1 2.4 2.4 37110.0 38403.7 38392.1 3.49 −0.03

bs16 0.2 3.7 3.9 29347.0 31010.5 31014.1 5.67 0.01

bs17 0.1 1.8 2.9 11336035.0 11367896.9 11373239.5 0.28 0.05

bs18 0.2 2.5 5.5 10382306.5 10448178.6 10457064.6 0.63 0.09

bs19 0.1 2.7 4.9 105449.5 105867.7 105918.2 0.40 0.05

bs20 0.1 2.8 4.8 106072.0 107179.7 107197.3 1.04 0.02

bs21 0.3 21.3 37.6 5307803.7 5515064.2 5526243.9 3.90 0.20

bs22 0.8 20.6 27.3 4180407.3 4418340.0 4423735.2 5.69 0.12

bs23 0.2 14.5 22.7 55368.0 57237.8 57328.8 3.38 0.16

bs24 0.2 10.3 12.1 48674.0 50761.2 50815.9 4.29 0.11

planar50 0.1 0.8 1.0 122199689.0 122218805.0 122218805.0 0.02 0.00

Table 4.5 Path decomposition computational results: use of LCIs in the root node.
N − No LCIs; S − Simple LCIs; G − General LCIs.

Chapter 4: Binary Multicommodity Flow Problem

118

Instance DD DU AD AU B CD CU

bl01 41 40 16 28 27 25 48

bl02 19 32 26 23 17 18 46

bl03 81 19 46 23 25 19 17

bl04 ** ** ** ** ** ** **

bl05 1 1 1 1 1 1 1

bl06 1 1 1 1 1 1 1

bl07 1 1 1 1 1 1 1

bl08 1 1 1 1 1 1 1

bs01 3 4 3 3 3 3 3

bs02 11 9 9 5 11 5 7

bs03 1 1 1 1 1 1 1

bs04 289 125 202 159 102 120 191

bs05 13 20 31 18 14 14 19

bs06 42 40 24 32 34 28 33

bs07 135 111 107 73 199 142 125

bs08 8 12 20 17 23 23 23

planar30 * * 2258 1305 353 216 214

Table 4.6 Path decomposition computational results: number of optimised nodes for different
branching rules.

* Integer optimal solution not found within ten minutes.
** Feasible integer solution not found within ten minutes.

Branching rules with RMP heuristic

In the following tests, we introduced the use of a heuristic at the end of the optimisation

of the root node. The heuristic consists in solving the RMP (with Cplex MIP Solver) of the root

node, considering that all the variables must be binary. The results obtained for some of the

smaller instances (the ones where the number of nodes was larger than 5 for all the branching

strategies of Table 4.6) are given in Table 4.7 (columns with an H are the ones where the

heuristic was used).

The improvement of the number of optimised nodes is significant for both branching

rules. The proposed branching rule with heuristic gave better results concerning the number of

nodes in seven instances (including the three more difficult ones) and worst in two, when

compared with BH.

For instance bl04, none of the branching rules strategies, with or without heuristic, gave a

feasible integer solution. For that instance, we tested two other search strategies: depth search

and best search. Depth first was the only one to find an incumbent solution.

Chapter 4: Binary Multicommodity Flow Problem

119

B CD BH CDH
Instance

Time Nodes Time Nodes Time Nodes Time Nodes

bl01 0.7 27 0.8 25 0.7 17 0.7 20

bl02 10.8 17 11.1 18 1.7 11 1.7 8

bl03 6.3 25 4.8 19 8.9 20 8.0 19

bl04 ** ** ** ** ** ** ** **

bs02 1.7 11 1.0 5 2.3 12 1.6 6

bs04 65.2 102 85.3 120 71.1 75 53.8 73

bs05 1.3 14 1.3 14 1.6 14 1.5 14

bs06 1.2 34 0.9 28 1.4 23 1.6 25

bs07 10.3 199 7.5 142 5.8 98 4.6 78

bs08 0.6 23 0.6 23 0.8 24 0.8 23

planar30 34.7 353 17.4 216 10.5 144 6.8 73

Table 4.7 Path decomposition computational results for branching rules with the RMP heuristic.
** Feasible integer solution not found within one hour.

 For the larger instances, we used depth search and the RMP heuristic. In addition, we

removed columns with reduced cost greater than the gap, in every five iterations. The results for

these instances are given in Table 4.8 for the (Barnhart et al., 2000) branching rule and the one

proposed. The results were similar in almost all instances. The time results were significantly

different in three instances (bl11, bl14, and bl15), with the proposed branching rule giving better

results in all of those. The quality of the incumbent solutions was different in two instances

(bl12 and bl22), in favour of the (Barnhart et al., 2000) branching rule in one instance and in

favour of the proposed branching rule in the other.

4.5.4 Comparative computational results

Implementation issues for the knapsack decomposition

For the knapsack decomposition we used the COIN implementation of the Horowitz-

Sahni algorithm (Horowitz and Sahni, 1974) to solve the knapsack (sub)problems. We used the

Cplex 8.1 dual simplex algorithm to solve the RMPs. The branching rule proposed in subsection

4.3.3 (considering one commodity and a set of arcs leaving the same node) with down

branching first was used. We kept the default search strategy of ADDing: using a depth first

search when the node generates descendants and best bound search otherwise.

Chapter 4: Binary Multicommodity Flow Problem

120

BH CDH
Instance

Time Value Time Value

bl09 ** ** ** **

bl10 ** ** ** **

bl11 725.0 69018 470.8 69018

bl12 * 66022 * 66019

bl13 * 3155673 * 3155673

bl14 371.7 2433011 303.6 2433011

bl15 359.1 34274 318.5 34274

bl16 38.6 28074 39.1 28074

bl17 * 13324233 * 13324233

bl18 ** ** ** **

bl19 ** ** ** **

bl20 ** ** ** **

bl21 * 5837994 * 5837994

bl22 * 4216651 * 4217172

bl23 * 56970 * 56970

bl24 * 51081 * 51081

bs09 * 6308373 * 6308373

bs10 ** ** ** **

bs11 ** ** ** **

bs12 ** ** ** **

bs13 * 3615375 * 3615375

bs14 * 3181860 * 3181860

bs15 115.2 38533 120.7 38533

bs16 344.0 31124 337.8 31124

bs17 ** ** ** **

bs18 ** ** ** **

bs19 * 106369 * 106369

bs20 ** ** ** **

bs21 ** ** ** **

bs22 * 4796079 * 4796079

bs23 * 57821 * 57821

bs24 * 51045 * 51045

planar50 * 123226335 * 123226335

Table 4.8 Path decomposition computational results: two branching rules in the larger instances.
* Integer optimal solution not found within one hour.
** Feasible integer solution not found within one hour.

Chapter 4: Binary Multicommodity Flow Problem

121

The first RMP is constructed based on the original variables. Each original variable

corresponds to one arc ij and one commodity k. If the demand of commodity k is lower than or

equal to the capacity of arc ij, then this variable is used on the RMP, since it corresponds to the

extreme point of the subproblem in which commodity k is the only one with value equal to one,

that is, the commodity k is the only one to traverse arc ij. In the first RMP only the flow

conservation constraints related with the origin constraints are present. When that relaxation is

solved (that is, the subproblem does not generate any attractive column), constraints that are not

present in the RMP are checked and, in the case they are violated by the current solution,

associated columns are inserted in the RMP. We denote this strategy by dynamic row

management.

For the smaller instances the usual model was used, that is, all flow conservation

constraints are equalities.

For the larger instances we used the decomposition based on the model with inequality

constraints (MOB) presented in Section 4.2 (page 96), the inexact RMP strategy and removal of

columns in some iterations, both described in subsection 4.4.2 (page 108).

We used the dynamic management of rows (also described in subsection 4.4.2, page 108)

for all the instances, since we soon realised that it is a crucial factor for the efficiency of this

decomposition. For example, the root node of instance bl01 took 873.5 seconds to be solved

without dynamic management of rows, as opposed to the 8.4 seconds to be showed in Table 4.9.

Smaller instances

Table 4.9 presents the results for the three approaches (columns P for path

decomposition, columns K for the knapsack decomposition and column O for the original

formulation solved with Cplex) for the smaller instances.

The “Root / LR gap” column refers to the relative percentage gap between the optimal

integer value and the value of the root node for the two decompositions (including the use of

LCIs in the case of the path decomposition), and between the optimal integer value and the

value of the linear relaxation in the case of original formulation solved by Cplex.

The “Nodes” and “Time” columns refer to the number of optimised nodes for the three

approaches and the total optimisation time, respectively.

The quality of the lower bound of the root node given by the knapsack decomposition is

significantly better than the one provided by the linear relaxation of original formulation or even

by the root node of the path decomposition with the use of LCIs. With two exceptions, it is

always less than 0.5%. For instance bl04 it is larger than 0.5%, but significantly smaller than

any one of the other approaches. The quality of the lower bounds provided by the knapsack

decomposition justifies the smaller number of nodes that were optimised for all instances, when

Chapter 4: Binary Multicommodity Flow Problem

122

compared with the path decomposition (for five instances, the optimal solution was found in the

root node). When the number of nodes is compared with Cplex, we must note that the linear

relaxation value of that approach is not the same as its root value. Cplex uses several different

families of cuts, namely in the root node, when solving an integer problem. That may explain

the fact that the number of optimised nodes of Cplex is, for some instances, smaller than the one

of the knapsack decomposition.

Root / LR gap Nodes Time
Instance IP Value

P K O P K O P K O

bl01 1615947 0.4 0.2 4.1 20 13 1 0.7 8.3 0.6

bl02 1816947 1.3 0.0 9.6 8 1 1 1.7 13.1 1.5

bl03 17340 0.5 0.0 7.9 19 1 32 8.0 4.8 4.6

bl04 21370 10.8 6.3 16.4 ** 112 567 ** 1286.8 54.6

bl05 474782 0.0 0.0 1.0 1 1 1 0.1 7.6 0.3

bl06 411480 0.0 0.0 1.0 1 1 1 0.0 1.7 0.3

bl07 5751 0.0 0.0 0.6 1 1 1 0.0 3.1 0.3

bl08 5688 0.0 0.0 0.5 1 1 1 0.0 1.3 0.3

bs01 1639862 0.0 0.0 6.2 3 1 1 0.3 1.4 0.1

bs02 1702368 0.5 0.0 8.6 6 1 5 1.6 6.0 1.9

bs03 16828 0.0 0.0 1.4 1 1 1 0.1 2.8 0.1

bs04 20213 3.5 0.2 8.7 73 5 3 53.8 49.7 2.0

bs05 500870 0.3 0.0 8.3 14 5 1 1.5 2.7 2.4

bs06 502151 0.8 0.4 6.9 25 18 3 1.6 4.9 3.7

bs07 7223 1.1 0.5 9.5 78 50 75 4.6 9.1 8.1

bs08 6471 0.7 0.0 5.2 23 1 1 0.8 1.8 0.8

planar30 44471934 0.0 *** 0.3 73 *** 8 6.8 *** 2.0

Table 4.9 Computational results: smaller instances.
** Feasible integer solution not found within one hour.

*** Root node not solved within one hour.

In general, the quality of the lower bounds of the knapsack decomposition does not

translate into a competitive solution time, when compared with the other two approaches (with

some exceptions when compared with the path decomposition, as, for example, in the instance

with greater gap, bl04, in which the path decomposition did not obtain an optimal solution in

one hour, and the knapsack decomposition obtained it in 20 minutes, approximately). The

knapsack decomposition could not solve the root node of the planar30 instance in one hour,

while the path decomposition and Cplex obtained an optimal binary solution in a few seconds.

Chapter 4: Binary Multicommodity Flow Problem

123

The path decomposition gave better time results than Cplex for the instances with a larger

number of arcs (bl05 to bl08 and bs05 to bs08). For the other instances, it gave worst time

results, in particular for instance bl04, where an optimal solution was not obtained within one

hour.

Table 4.10 gives detailed results for the instances bl04 and bs04 for both decompositions.

A significant difference between the two is the time spent on solving the root node. For the path

decomposition, that time is negligible, while for the knapsack decomposition the same does not

happen (which is a major issue in the large instances to be analysed next). Solving the RMPs is

the main time-consuming task for both decompositions. For the knapsack decomposition,

although the binary knapsack subproblems are not solvable in polynomial time, the time spent

on them represents a very small percentage of the overall time. The same happens with the

generation of LCIs for the path decomposition.

Larger instances

In Table 4.11, results are presented for the larger instances. Columns “RQ” give the

relative increase of the IP solution obtained by the two decompositions when compared with the

one from the original formulation (an equal sign means that the optimal solution was obtained).

The results are surprising. The general-purpose solver Cplex 8.1 obtained an optimal

solution in 23 out the 33 instances, while the path decomposition achieved it in only 6 instances.

For the others, although the root node was solved in a small amount of time, the search of the

tree was ineffective. Only on the instances with a large number of arcs and a medium number of

commodities (bl13 to bl16 and bs13 to bs16) the path decomposition gave time results that

approximate the ones of Cplex.

Knapsack decomposition gave an optimal solution in only 4 instances and could not solve

the root node in 24. For the 7 instances where the root node was solved, the comparative quality

of lower bound given by this decomposition was confirmed.

To our best knowledge, a computational study comparing a general-purpose solver with a

specific method for the binary MFP was never done before. Quoting (Barnhart et al., 2000),

“Without decomposition, these LP relaxations [original formulation linear relaxation and linear

relaxation of the (full) master of the path formulation] may require excessive memory and/or

run times to solve.”

The computational results here presented suggest precisely the opposite. Even improving

the (Barnhart et al., 2000) approach (with general LCIs, a RMP heuristic and a slightly better

branching rule, judging from the smaller instances results), Cplex 8.1 clearly outperforms the

branch-and-price-and-cut specific method.

The coding efficiency of Cplex 8.1 can be easily confirmed by the large number of nodes

it searches, compared with the much smaller number of the decompositions (for example, in

Chapter 4: Binary Multicommodity Flow Problem

124

instance bl17 Cplex searched 8807 nodes of the tree, while the path decomposition only 321 in

same amount of time).

Furthermore, Cplex uses several different families of cuts (for example, clique, cover,

flow cover, disjunctive, Gomory, ...), heuristics in the nodes of the tree, strong branching,

preprocessing, just to name a few of the issues involved in that state-of-the-art implementation

of branch-and-cut.

A point worth noting is that the same approach used in the proposed branching rule can

be used with all types of constraints that are based on the original variables, namely with the

families of cuts Cplex uses. The proposed branching rule demonstrates how both formulations

can be used together: all the constraints (cuts or branches) that are derived based on the original

variables can be used in the path decomposition in the same manner as the proposed branching

rule and the LCIs were used, that is, by keeping them in the RMP. Although this approach is

nothing more than dualising the constraints that do not define the subproblems in all of the

problems of the nodes of the tree, it allows a generalisation that is not usually explored in

branch-and-price-and-cut algorithms, where the branching is forced in the subproblem and cuts

must be dealt with some specific procedure.

Instance bl04 bs04

 P K P K

Total Time 605.8 1286.8 53.8 49.7

Time 0.3 25.1 0.1 27.5

Iterations 71 333 53 427

RMP time (%) 73.3 90.4 43.6 91.1

SP time (%) 13.2 2.6 0.0 2.2 R
o
o
t
n
o
d
e

LCIs time (%) 36.7 − 31.6 −

Time 601.5 1259.4 52.2 22.2

Nodes 65 113 73 5

Time/Node 9.3 11.1 0.7 4.4

Iterations 829 2692 574 253

RMP time (%) 96.4 97.5 93.1 92.5

SP time (%) 0.9 1.1 1.6 2.1

O
th
er
 n
o
d
e
s

LCIs time (%) 0.5 − 1.6 −

Table 4.10 Detailed computational results for two instances for the decompositions.
− Does not apply.

Chapter 4: Binary Multicommodity Flow Problem

125

Root / LR gap RQ Nodes Time
Instance IP value

P K O P K P K O P K O

bl09 6261671.0 1.1 *** 2.5 ** *** ** *** 4155 ** *** 1087.2

bl10 ** ** *** ** ** *** ** *** ** ** *** **

bl11 69018.0 0.1 *** 1.0 = *** 774 *** 234 470.8 *** 17.5

bl12 65902.0 0.4 *** 1.7 0.2 *** * *** 614 * *** 182.1

bl13 3132695.0 0.3 0.0 3.9 0.7 = * 16 276 * 1766.6 176.5

bl14 2433011.0 0.4 0.1 4.4 = 0.2 835 * 108 303.6 * 117.9

bl15 34274.0 0.2 0.0 2.9 = 0.0 283 * 289 318.5 * 96.3

bl16 28074.0 0.2 0.1 4.4 = = 117 31 62 39.1 1359.4 57.1

bl17 13190922.0 0.3 *** 0.8 1.0 *** * *** 8807 * *** 2881.7

bl18 10496120.0 0.3 *** 0.9 ** *** ** *** 3928 ** *** 1448.4

bl19 * 109556.0 0.9 *** 1.4 ** *** ** *** * ** *** *

bl20 * 111604.0 0.9 *** 1.8 ** *** ** *** * ** *** *

bl21 * 5800149.0 0.5 *** 3.2 0.7 *** * *** * * *** *

bl22 4209266.0 0.3 *** 3.6 0.2 *** * *** 144 * *** 389.1

bl23 56856.0 0.6 *** 3.1 0.2 *** * *** 2176 * *** 2250.2

bl24 47964.0 0.2 *** 4.0 6.5 *** * *** 234 * *** 250.8

bs09 6287195.0 0.6 *** 1.6 0.3 *** * *** 3238 * *** 665.3

bs10 7072735.0 0.9 *** 2.6 ** *** ** *** 3363 ** *** 643.2

bs11 * 65168.0 1.5 *** 2.7 ** *** ** *** * ** *** *

bs12 71483.0 1.1 *** 2.7 ** *** ** *** 4811 ** *** 2235.8

bs13 3605397.0 0.7 0.3 5.6 0.3 1.6 * * 579 * * 532.2

bs14 * 2872664.0 1.8 1.0 8.9 10.8 ** * ** 2206 * ** *

bs15 38533.0 0.4 0.1 3.7 = = 131 37 133 120.7 290.2 99.0

bs16 31124.0 0.4 0.0 5.7 = = 259 1 45 337.8 630.0 95.3

bs17 * 11447995.0 0.7 *** 1.0 ** *** ** *** * ** *** *

bs18 10486796.0 0.3 *** 1.0 ** *** ** *** 1719 ** *** 746.2

bs19 106142.0 0.2 *** 0.7 0.2 *** * *** 7218 * *** 913.0

bs20 107712.0 0.5 *** 1.5 ** *** ** *** 2142 ** *** 896.1

bs21 * 5562469.0 0.7 *** 4.6 ** *** ** *** * ** *** *

bs22 * 4487045.0 1.4 *** 6.8 6.9 *** * *** * * *** *

bs23 57548.0 0.4 0.1 3.8 0.5 ** * ** 2547 * ** 3301.3

bs24 50980.0 0.3 *** 4.5 0.1 *** * *** 1555 * *** 2919.6

planar50 * 122272951.0 0.0 *** 0.1 0.8 *** * *** * * *** *

Table 4.11 Computational results: larger instances.
* Integer optimal solution not found within one hour.The IP value is the value of the incumbent

solution given by Cplex.
** Feasible integer solution not found within one hour.

*** Root node not solved within one hour.
= Optimal solution.

Chapter 4: Binary Multicommodity Flow Problem

126

4.6 Conclusions

In this Chapter, we presented two decompositions, and developed two branch-and-price

algorithms in order to solve exactly the binary multicommodity flow problem. The branch-and-

price-and-cut algorithm for the path decomposition follows the approach presented in (Barnhart

et al., 2000). We extend the approach given in that reference by using general LCIs instead of

simple LCIs and a new RMP heuristic. Our main contribution, with respect to that

decomposition, was the development of a new branching rule that gave slightly better results for

the smaller instances tested than the one proposed in that reference. In addition, the new

branching rule suggests how other families of cuts can be used in a more effective branch-and-

price-and-cut algorithm.

The second branch-and-price algorithm is based on a knapsack decomposition, which

allows obtaining better lower bounds in the nodes of the branch-and-price tree. The quality of

the lower bounds was proved empirically by the computational tests performed. However, it

turned out that, in particular for the larger instances tested, this decomposition is particularly

difficult to deal with. Even with dynamic management of rows and columns, and with an

inexact RMP strategy to speed up its solution time, the larger instances could not be solved in a

reasonable amount of time. Column generation stabilisation, analytic center cutting plane or

bundle methods are natural candidates for the improvement of the efficiency of this

decomposition approach.

Solving the original formulation with Cplex 8.1 clearly outperformed the two

decomposition approaches presented here. The exception was a set of few instances with a large

number of arcs, where the path decomposition gave similar results. To our best knowledge, the

comparison between decomposition approaches and a general-purpose solver for the binary

MFP was made here for the first time. Given the fact that, in the literature, that approach is

taken as non promising, this result came as a surprise.

 127

5 Accelerating Column Generation for Planar
Multicommodity Flow Problems

In this Chapter, we present a way of accelerating a column generation algorithm for the

linear minimum cost multicommodity flow problem. We use a new model that, besides the

usual variables corresponding to flows on paths, has a polynomial number of extra variables

(when the problem is defined in a planar network), corresponding to flows on circuits. Those

extra variables are explicitly considered in the restricted master problem, from the beginning of

the column generation process. The subproblem remains a set of shortest path problems, one for

each commodity.

We present computational results for the comparison of this new approach with standard

column generation, a bundle method, and a general-purpose solver. For the tested instances,

there is an effective improvement in computational time of the column generation method when

the model with extra variables is used.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

128

5.1 Introduction

In this Chapter we present an approach for accelerating column generation for the linear

minimum cost multicommodity flow problem (MFP).

Column generation is a technique to solve linear programs with a large (possibly

exponential) number of variables. One important group of these large linear programs is the one

resulting from applying a Dantzig-Wolfe decomposition (DWD).

Although column generation has been known for several decades (its roots lie in the work

of Ford and Fulkerson (Ford and Fulkerson, 1958), Dantzig and Wolfe (Dantzig and Wolfe,

1960), and Gilmore and Gomory (Gilmore and Gomory, 1961; Gilmore and Gomory, 1963)), a

renewed interest about this subject can be noted in the last few years. Reasons for that may be

found in the evolution of the hardware that made possible to solve large practical problems and

in the availability of robust and efficient commercial software to solve linear programs (Bixby

et al., 2000). In this way, memory requirements and coding complexity, which could be thought

as major disadvantages when implementing a column generation algorithm (when compared

with a subgradient algorithm to solve its dual, for example), became less problematic.

Another reason for the renewed interest in column generation comes from the better

understanding of its potential to solve integer problems. Branch-and-price algorithms

(combining column generation and branch-and-bound) have been also a major topic of research

in the last few years, having its root in the work of Desrosiers, Soumis and Desrochers

(Desrosiers et al., 1984). Surveys on the column generation / branch-and-price methods can be

found in (Soumis, 1997; Barnhart et al., 1998; Wilhelm, 2001; Lübbecke and Desrosiers, 2002).

One major disadvantage of column generation is the well-known tail-off effect that,

usually, implies a slow convergence of the method. To deal with that issue several methods

have been devised (see (Lübbecke and Desrosiers, 2002) for a more detailed description and

additional references), usually taking a dual perspective, given that column generation can be

seen as a cutting plane algorithm applied to the dual problem.

Marsten et al. (Marsten et al., 1975) developed the boxstep method, in which the dual

variables, in each iteration, are confined to lie inside or in the boundary of a box centred in the

previous solution; Wentges (Wentges, 1997) suggested the use of a convex combination

between the best dual variables found so far and the optimal dual variables of the current

iteration; du Merle et al. (Merle et al., 1999), introduced a stabilisation method that amounts to

penalising solutions that lie outside a predetermined box, which may be adjusted as the

algorihtm proceeds, and includes a right-hand side perturbation; Kallehauge, Larsen, and

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

129

Madsen (Kallehauge et al., 2001) proposed a trust region method to try to avoid the oscillation

of the dual variables by restricting them to a box with an automatically adjusted size; finally, in

bundle methods (Frangioni, 2002), a penalisation is added to points that are distant from the

current one, which implies a quadratic term in the objective function of the model, leading to a

nonlinear master problem − for a clear explanation of the relation between bundle methods and

column generation / cutting plane methods, see (Frangioni, 1997).

Our present work is based on the method proposed by Valério de Carvalho (Carvalho,

2000). The author presented a way of reducing the tail-off effect by including a polynomial

number of extra dual optimal cuts (extra primal variables) in the restricted master problem prior

to the beginning of the optimisation process. The motivation is the following: the use of a

tighter dual space restriction from the start may help in finding the optimal solution faster.

Under certain conditions, the primal space is not relaxed, and it is possible to recover an optimal

solution to the original problem from the optimal solution to the extended model. In this work

we apply a similar idea to the linear minimum cost MFP defined over planar graphs.

The minimum cost MFP is defined over a network in which we want to route, with

minimal cost, a set of commodities from their origins to their destinations without exceeding the

capacities of the arcs.

This problem, as well as related multicommodity flow problems, has been the subject of

interest of the research community for its applications (namely in transportation/distribution

systems, telecommunications networks and production planning) and for its role as a typical

model with the so-called block-angular structure, thus being a representative problem (maybe

the most used one) for which several decomposition methods can be applied and tested.

A description of several applications can be found in the surveys presented in (Assad,

1978; Kennington, 1978; Ahuja et al., 1993). In the same surveys, classical methods (since they

were first developed in the 1960s and 1970s) are described (which can be grouped in price

directive decompositions, basis partitioning methods, and resource-directive decompositions).

More recently, several approaches have been developed. Among them, we refer to specialised

interior point methods (Schultz and Meyer, 1991; Castro, 2000) and bundle methods (Frangioni

and Gallo, 1999). A more detailed review on solution methods for the linear MFP was given in

Chapter 3, subsection 3.2.4 (page 65).

Our present work deals with the origin-destination MFP, that is, problems where a

commodity is defined by the node in which it is supplied and by the node in which it is required.

However, it can be easily extended to problems with multiple origins and destinations, using the

more general framework presented in Chapter 3 in the context of the integer MFP.

We consider that, for each arc, the costs of all commodities are the same. This happens in

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

130

some applications of the multicommodity flow models, as, for example, in computer networks,

where the commodities are usually associated with streams of traffic between different pairs of

users.

As we said before, our present work is based on the approach first presented in (Carvalho,

2000). The basic idea is that by adding extra variables (extra dual cuts), prior to the beginning of

the column generation process, we can speed up the column generation algorithm and improve

its practical convergence properties. The results reported in (Carvalho, 2000) for the cutting

stock problem show that, for some classes of instances, the speed up factor is close to five.

The extra variables added to the model must be tailored to the specific problem at hand.

In the case of the MFP, we use variables associated with flows on circuits. An important issue is

that the number of extra variables must be tractable for the master problem. Given that the

number of circuits of a general network is exponential with respect to its size, we restrict our

present work to the MFP defined on planar graphs, where it is possible to select a polynomial

number of elementary circuits, based on which all circuits of the network can be implicitly

considered.

This Chapter is organised as follows. In Section 5.2, we resume the original formulation

and the formulation that results from applying DWD, giving origin to the path decomposition

formulation. In Section 5.3, we briefly describe the standard column generation procedure for

the problem in study. In Section 5.4, we present and discuss our approach to accelerate column

generation when applied to the MFP. In Section 5.5, we prove that the number of extra variables

used is polynomial with respect to the dimension of the network. In Section 5.6, we describe

and discuss the results of the computational tests performed. In Section 5.7, we present our main

conclusions and future work directions.

5.2 Formulations

5.2.1 Arc formulation

We consider a network formed by a set of n nodes, represented by N, and a set of m arcs,

represented by A. We use an index i={1,...,n} to represent a node and a pair of indices ij to

represent an arc which has origin in node i and destination in node j. We define a set K of h

commodities, indexed by k. Each commodity k is characterised by an origin, ok, a destination,

d
k, and an integer demand, rk, which is the number of units that are supplied at its origin and that

are required at its destination. We also define a capacity, uij, and a linear unit cost, cij, both

associated with each arc of the network. We make the usual assumption cij
 ≥ 0, ∀ij∈A.

The arc formulation of the minimum cost MFP is obtained using decision variables that

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

131

represent the flows in all arcs for all commodities. Those decision variables are represented as

xij
k. The formulation is as follows:

Min ∑ ∑
∈ ∈Aij Kk

cij

xij

k

subject to:

∑
∈Aij:j

xij
k
 – ∑

∈Aji:j

xji
k
 = bi

k
 , ∀i∈N, ∀k∈K (5.1)

∑
∈Kk

xij
k
 ≤ uij , ∀ij∈A (5.2)

xij
k
 ≥ 0, ∀ij∈A, ∀k∈K,

where

=−

=

=

otherwise. 0

di if r

oi if r

b k
k

k
k

k
i

Constraints (5.1) are flow conservation constraints. They state that, for each commodity,

the difference between the flow that enters a node and the flow that leaves that node is equal to

the supply/demand of that node.

Constraints (5.2) are capacity constraints. They state that the total flow on each arc must

be less than or equal to its capacity. Without these constraints, an optimal solution to the

problem could be found by solving independent shortest path problems (one for each

commodity).

5.2.2 Path formulation

We represent the set of all simple paths between the origin and the destination of

commodity k by Pk. If the arc ij belongs to path p of commodity k, then yij
pk equals 1; otherwise,

yij
pk
 equals 0. The unit flow cost of path p of commodity k, is cpk = ∑

∈Aij

yij
pk
 cij, ∀p∈P

k
, ∀k∈K.

When we refer to a path of a commodity, we mean a simple path that begins at the origin of a

commodity and ends at its destination.

The path formulation is obtained by defining the decision variables, λpk, as the flow on

each path of all commodities.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

132

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

subject to:

 ∑
∈ kPp

 λpk
 = r

k
 , ∀k∈K (5.3)

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 ≤ uij , ∀ij∈A (5.4)

λpk
 ≥ 0, ∀k ∈K, ∀p∈P

k
.

This formulation can be obtained directly by defining decision variables, λpk, that

represent the flow on path p of commodity k.

Constraints (5.3) ensure that the demand is routed from the origin to the destination, for

all commodities, and constraints (5.4) are the capacity constraints.

As proved in (Tomlin, 1966), the path formulation can be obtained by applying a DWD

on the arc formulation. In fact, the roots of DWD can be found in the approach of Ford and

Fulkerson (Ford and Fulkerson, 1958) to the maximal multicommodity flow problem as stated

in (Dantzig, 1963).

Although being equivalent, the practical behaviour of the two just presented formulations

can be very different. The arc formulation has m.h variables and n.h+m constraints, while the

path formulation has only h+m constraints and an exponential number of variables (with respect

to the size of the network). However, h+m is an upper bound for the number of variables with a

positive value in a basic solution.

Since the size of the basis is one major factor to simplex methods’ efficiency, we can

expect the path formulation to be more efficient in larger instances, given that we use a column

generation scheme to deal with the huge number of columns (even for moderate size instances).

We note that it is always possible to find a feasible solution to a model from a feasible

solution to the other model with the same cost. The ways of performing those transformations

and their proofs can be found in (Ahuja et al., 1993).

We finish this Section by noting that there are other possible decompositions leading to

different problems, namely by the aggregation of commodities by origin or destination.

However, computational experiments (and the fact that it seems easier for the master problem to

combine “smaller pieces”) point to the one used here as being the most efficient (Jones et al.,

1993).

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

133

5.3 Standard Column Generation

5.3.1 Overview

In the resolution of the path formulation using column generation, a restricted master

problem (RMP), that is a problem where not all paths are considered, is optimised first. After

optimising the RMP, the attractiveness of the paths that are not present in the RMP is evaluated

by solving a subproblem that uses the values of the dual variables. That subproblem consists in

determining the shortest path between their origin and their destination for all commodities in a

network with modified costs. After inserting the attractive paths in the RMP, the procedure is

repeated until no more attractive paths are returned by the subproblem. A detailed exposition of

this procedure is presented in (Ahuja et al., 1993). Here we just note that a path p of a

commodity k is attractive if

∑
∈Aij

yij
pk
(wij + cij) < πk

(5.5)

where wij≥ 0, ∀ij∈A, is the dual variable associated with the constraints (5.4) and πk
, k∈K, is the

dual variable (unrestricted in sign) associated with constraints (5.3). Inequality (5.5) justifies the

fact that the subproblem of each commodity can be solved by a shortest path subproblem in a

network with modified costs.

5.3.2 Implementation issues

One critical issue must be decided when implementing a column generation algorithm,

namely the way of obtaining the first RMP. The first RMP must be feasible and, in general, it is

not clear how to select a set of columns that ensures that. Furthermore, the set of columns that is

chosen to be part of the first RMP, even when they do not guarantee a feasible solution (thus

used in conjunction with artificial variables), may be decisive in the efficiency of the method.

We used an algorithm that is based on solving shortest path problems of each commodity (its

associated columns being inserted in the first RMP), successively reducing the available

capacity of the arcs. When it is not possible to send the flow (or part of it) of a commodity from

its origin to its destination, an artificial variable is inserted in order to satisfy the flow

conservation constraint associated with it. Comparative computational tests with other strategies

can be found in Chapter 3.4.3 (page 76).

Another important issue is the column management. Our previous experience is that

when the number of variables is manageable by the LP solver, it is better to keep all the

columns generated always in the RMP.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

134

5.4 Accelerating Column Generation

5.4.1 An extended model with circuits

The main idea behind our procedure to accelerate the column generation method to solve

the linear MFP is to add variables corresponding to circuits to the path formulation, thus

obtaining a new model. In this subsection we present that extended model. In subsection 5.4.3

we will show its equivalence with the original one. In subsection 5.4.6 a small example is given.

The circuits that we consider have no arc repetitions, are oriented and formed by, at least,

three arcs. One of the arcs of the circuit is traversed in the opposite direction of its orientation

(backward arc) and all the remaining arcs are traversed in the same direction as their orientation

(forward arcs).

We consider the set D formed by all the circuits such as the ones defined above, to be

indexed by s=1,...,|D|. From now on, when referring to circuits, we mean circuits belonging to

D, except when explicitly stated otherwise.

We define a parameter γij
s
, ∀ij∈A, ∀s∈D, that is equal to 1, if arc ij is a forward arc of

circuit s; equal to −1 if arc ij is the backward arc of circuit s; equal to 0, if arc ij does not belong

to circuit s. We associate with each circuit s, s∈D, a variable ds≥0, which corresponds to the

flow in circuit s. The unit flow cost of circuit s is cs = ∑
∈Aij

γij
s
 cij, ∀s∈D.

By using the circuits defined above, it may be possible to represent one solution of the

path model by a set of paths and circuits with flow, since some paths with flow can be

represented as the sum of other paths and circuits. We note that the definition of the unitary

costs of the paths and of the circuits implies that the cost of the solution is the same in both

representations.

Example 5.1

Consider a (partial) solution in which there is a flow of commodity k in the two paths

represented in Figure 5.1.

p1 p2

Figure 5.1 One solution represented with two paths.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

135

For easiness of explanation, suppose that λp1k
 ≥ λ

p2k. The same (partial) solution can be

represented as showed in Figure 5.2, where the flow on path p1, λp1
k*, is now λp1

k*
 = λp1

k
 + λp2

k

and ds
 = λp2k, since p1 + s = p2.

sp1

Figure 5.2 One solution represented as one path and one circuit.

♦

We now present an extended model that, besides the path variables, also includes circuit

variables.

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

 + ∑
∈Ds

c
s
 d

s

subject to:

 ∑
∈ kPp

 λpk
 = r

k
 , ∀k∈K (5.6)

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 + ∑
∈Ds

γij
s
 d

s
 ≥ 0 , ∀ij∈A (5.7)

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 + ∑
∈Ds

γij
s
 d

s
 ≤ uij , ∀ij∈A (5.8)

λpk
 ≥ 0, ∀k ∈K, ∀p∈P

k

d
s
 ≥ 0, ∀s∈D.

We can see this model as giving an optimal solution on paths (to satisfy constraints (5.6))

and then, through the circuits, redirecting their flow to other paths (that, in the case of a RMP,

may not be explicitly present in the model).

Circuit variables are not present in constraints (5.6), since they respect the flow

conservation of all nodes.

We do not associate commodities with the circuit variables because they all have the

same cost and the circuits only have one backward arc. Thus, the choice of the commodity for

which its flow (or part of it) is redirected is irrelevant. In this way, we keep the number of new

variables and constraints small. Furthermore, (5.7) and (5.8) can be joined to form a ranged

constraint.

The new set of constraints (5.7) states that it is only possible to redirect flow through a

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

136

circuit if that flow exists. If we had not constrained the total flow of the arcs to be nonnegative

we could get an unbounded solution (since some circuits may have a negative cost), or a

solution that was impossible to transform into a feasible solution to the path formulation (since

it had a smaller value). In other words, the set of constraints (5.7) assures that the original space

is not relaxed: only positive flows are still allowed.

With this methodology, we are adding more variables and turning a set of constraints into

a set of ranged constraints. In turn, with the same set of paths in the RMP and with the circuits,

we are considering implicitly a much larger number of extreme points of the subproblems,

since, besides the paths that are present in the RMP, we are considering all the paths that can be

obtained by adding circuits to them. We note that the same circuit, when combined with

different paths, may allow the implicit consideration of several paths.

5.4.2 Dealing with negative cost cycles

The dual variables of constraints (5.7) contribute with a negative value to the modified

cost of the arcs in the subproblem objective function, leading to arcs with a negative modified

cost, and even to negative cost cycles. Note that this never happens in the column generation

procedure for the path formulation, because it does not have any “greater than or equal to”

constraints.

Formally, we define the nonnegative dual variable associated with constraint (5.7) of arc

ij as vij. A path p of a commodity k is now attractive if

∑
∈Aij

yij
pk
(wij − vij + cij) < πk

.

The subproblem of a commodity k still is a shortest path problem but now in a network

that can have negative cycles (all arcs traversed in the direction of their orientation), which is

NP-hard. In order to avoid solving a NP-hard problem, we can overcome this issue by solving a

shortest path problem with a label correcting algorithm, and, when a negative cycle is detected,

we add the associated variable to the RMP. After reoptimising the RMP, the negative cost cycle

previously detected will never be generated again.

In this way subproblems may suggest paths or cycles to the RMP. This issue was

previously discussed in the context of a branch-and-price algorithm for the integer MFP in

Chapter 3, subsection 3.3.3 (page 70).

Note that these cycle variables are not related with the extra circuit variables that are

present from the very beginning in the RMP. All the arcs of the cycles are forward arcs. Since

the arc costs are nonnegative, there is an optimal solution where all the cycle variables have a

null value.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

137

5.4.3 Obtaining the optimal solution of the path formulation

We now present a procedure to perform the conversion of one optimal solution of the

extended model to one optimal solution of the path model, with the same cost. The main idea is

to redirect all the flow on circuits to paths.

(a) Select a circuit s with positive flow (ds > 0) and its backward arc ij. If there are no

such circuit then stop: the actual solution is optimal to the path model.

(b) While ds > 0 and there exists a path p of a commodity k, which includes the arc ij,

with positive flow (λpk
> 0), then do the following: if λpk

> ds then transfer ds units of flow to the

path (commodity k) obtained by adding p (commodity k) and s, let λpk
 = λpk− ds and ds = 0; else

transfer λpk
 units of flow to the path (commodity k) obtained by adding p (commodity k) and s,

let λpk
 = 0 and ds = ds− λ

pk.

(c) If ds > 0 select a circuit t and an arc ab such that γij
s
= 1, γab

t
= −1 and dt > 0. Let ij =

ab and s = t and go to step (b).

(d) Go to step (a).

If there are no circuit variables with positive values then the actual solution is optimal to

the path model. Otherwise, the algorithm starts by selecting a circuit variable with positive flow.

By definition of the circuits, one of the arcs of that circuit is a backward arc. By the constraint

(5.7) of that arc, there must be a positive flow on paths or in other circuits. If there are positive

flows on paths, we transfer the flow of the circuit to other paths. We note that the order in which

the paths are considered is irrelevant, since we always get a solution that has the same value and

maintains the feasibility with respect to all constraints. If the flow of the circuit is still positive

after transferring the flows of the paths, then constraint (5.7) of arc ij only has circuit variables

with positive values. In that case, since circuit s has a positive flow and a coefficient −1 in that

constraint, there must be, at least, one circuit t with coefficient +1 in that constraint, such that

the constraint is not violated. Thus, the circuit t of step (c) always exists. By definition of

circuits, circuit t has one backward arc, which is different from arc ij (if it were the same its

coefficient in the constraint (5.7) of arc ij would not be +1).

In each outer loop (steps (a) to (d)) the flow of, at least, one circuit is reduced down to

zero. Thus, at the end, we will get an optimal solution with flows exclusively on paths.

5.4.4 Comparison with standard column generation

There are two main additional steps in our procedure when compared to the standard

column generation algorithm that was briefly described in subsection 5.3.1. The first one is that

in the construction of the first RMP, we add all the circuit variables to it. The second one is that

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

138

after obtaining an optimal solution to the extended model, we need to recover a solution for the

path model with flows only on paths.

Besides those algorithmic differences, the master problem and the subproblem also

present some modifications, described above, that we now summarise in terms of advantages

and disadvantages of our method when compared with standard column generation.

The disadvantages are: the extended RMP has ranged constraints; the subproblem can

have arcs with negative costs (the algorithm used to solve it becomes less efficient) and also

negative cycles (it may be necessary to insert cycles in the RMP). The main advantage is that

we are implicitly considering a much larger number of extreme points in all the RMPs that we

have to solve, thus we can expect to solve the problem in less iterations (that is, solve a smaller

number of RMPs).

Our computational results, which will be presented later, clearly support that the

advantage overcomes the disadvantages. Furthermore, they show that, in spite of the ranged

constraints and of the larger number of variables (at least in the first iterations), the average time

spent on solving the RMPs is smaller in the accelerated column generation algorithm when

compared with the standard one. The extra variables seem to make the RMPs easier to solve.

Besides that, we note that our test program uses a linear programming general solver (ILOG,

1999) to optimise the RMPs. Taking into account the level of efficiency and robustness that this

kind of software has achieved in recent years (Bixby et al., 2000), the disadvantages may be

regarded as more theoretical than practical.

So far, we neglected the fact that the number of circuit variables can be very large. In

fact, in a general network, it is exponential with respect to the dimension of the network. A

strategy to deal with that issue is to choose a subset of circuits, heuristically or by defining some

preprocessing rules. An alternative is to allow deletion and insertion of circuit variables during

the optimisation process.

Here we just present results for instances defined in planar graphs. In this case, we can

identify a polynomial number of simple circuits such that all the graph circuits can be

represented as their nonnegative combinations. Based on those circuits, we can define a

polynomial number of circuit variables. Those circuit variables may be seen as elementary, in

the sense that by their nonnegative combinations we can obtain other circuit variables. In fact, in

our column generation algorithm for planar networks, we add a tractable number of circuit

variables (the elementary ones) to the first RMP, and maintain them during all the column

generation procedure, allowing the RMP to perform those nonnegative combinations,

considering implicitly a much larger number of circuit variables.

In Section 5.5, we will demonstrate that the number of elementary circuit variables is

polynomial.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

139

5.4.5 Interpretation in the context of the Dantzig-Wolfe decomposition

The path formulation can be seen as the result of applying a DWD to the arc formulation,

defining the subproblem with the flow conservation constraints. In this way, each path of a

commodity is one extreme point of the subproblem of that commodity. In the master, the flow

conservation constraints may be seen as convexity constraints.

In the column generation procedure, when optimising the RMP, we are selecting the best

feasible (in the sense that the constraints that were kept in the master must be satisfied) solution

that is obtainable by the convex combination of the extreme points of the subproblems

generated so far.

In this context, the circuits that we add to the RMP can be seen as vectors vectors which,

when added to some extreme points, allow us to reach feasible points that may be not reachable

only with the extreme points present in the RMP. Also, those vectors can be added to extreme

points of different subproblems. The set of constraints (5.7) is there to force the resulting

point(s) to be feasible.

5.4.6 Example

We consider an instance of the MFP with two commodities defined over the network of

Figure 5.3. The first commodity has demand 5, origin 1 and destination 4; the second

commodity has demand 4, origin 1 and destination 3. Next to each pair of arcs, their cost (cij =

cji) and their capacity (uij = uji) are given by this order.

1

3

2

4

(1,5)

(3,4)

(5,6)

(7,4)

(9,5)

Figure 5.3 Some data of one instance of the multicommodity flow problem.

All circuits belonging to D are represented in Table 5.1.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

140

arc/circuit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

12 −1 1 1 1 1 1 −1

21 1 1 −1 −1 1 1 1

13 1 1 −1 −1 1 1 1

31 −1 1 1 1 1 1 −1

23 −1 1 1 1 1 −1

32 1 1 −1 −1 1 1

24 −1 1 1 1 1 1 −1

42 1 1 −1 −1 1 1 1

34 1 1 −1 −1 1 1 1

43 −1 1 1 1 1 1 −1

Table 5.1 Circuits of the network of the example belonging to D.

We form the first RMP by considering all the circuits, the paths 1-3-4 and 1-2-4 for

commodity 1 and the path 1-3 for commodity 2. The optimal solution of the RMP, which is also

the optimal solution to the master problem, is λ11
=1, λ21

=4, λ12
=4, and d5

=1. This optimal

solution can be converted to λ11
=1, λ21

=4, λ12
=3, and λ22

=1 (the second path of commodity

being 2 the path 1-2-3) or to λ21
=4, λ12

=4, and λ31
=1 (the third path of commodity 1 being the

path 1-2-3-4). We note that if the circuits were not used, the RMP would be unfeasible, being

necessary to add artificial variables or more paths to it and to (re)optimise it.

5.5 Planar Networks

Our objective in the current Section is to show how an elementary set of circuit variables

can be found and that their number is polynomial, when the MFP instance is defined on a planar

graph.

 We give a brief, informal, introduction to some concepts related to planar graphs. A

formal and deeper treatment of this subject can be found, for instance, in (Behzad et al., 1979).

Roughly speaking, a graph G is said to be planar if it can be drawn on a plane without any

intersection of its edges (except in the vertices). If we consider such a drawing of G, we define a

region of G as a maximal portion of the plane for which any two points can be joined by a curve

that does not cross any edge or vertex. Any planar graph has an unbounded region, which is

called exterior region.

Any connected planar graph with p vertices and q edges has 2−p+q regions (Euler’s

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

141

formula). Also, if p≥3, then q≤3p−6. So far, we considered a drawing of the graph (more

formally, a geometric embedding of the graph into the plane). It is also possible to represent a

planar graph by a combinatorial embedding (the adjacency lists of the vertices are sorted

according to a fixed geometric embedding) that can be obtained in polynomial time (Hopcroft

and Tarjan, 1974). In the development of our method, we only need such a representation of the

graph. A survey of the subject of planarising graphs can be founded in (Liebers, 2001).

In order to derive the elementary circuit variables introduced previously and to prove that,

for planar networks, their number is polynomial, we consider all regions of the graph on which

is based the MFP. Associated with each region there is a set of edges that form its boundary.

Since our network is directed, the number of arcs m is limited by 2(3n−6) where n is the number

of nodes. We associate a set of circuits with the boundary of each region. Since we are dealing

with a directed graph, we replace each edge by two arcs (one in each direction). Furthermore, by

definition of the circuit variables, the boundary of a region can originate more than one circuit

variable. For instance, the network represented in Figure 5.4 has two regions. Considering one

of them (in this case their boundary is the same), we will get six circuit variables: 21-23-31, 12-

32-31, 12-23-13, 12-13-32, 21-31-32, and 21-13-23.

1

2

3

Figure 5.4 An example of generating circuits from a region.

Given that 2−n+m, m, and 2m are upper bounds for, respectively, the number of regions

that may be used in deriving circuit variables, the number of arcs of a region, and the number of

different circuit variables based on the same region, an upper bound for the total number of

circuit variables is

(2−n+m).2m.

Replacing m with its upper bound given by 2(3n−6), we get

(5n−10).(12n−24),

which is a polynomial.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

142

5.6 Computational Tests

We implemented the proposed method for accelerating column generation and did some

computational experiments with two objectives. The main objective was to test if there is a

practical improvement of the proposed method over the standard column generation procedure.

The second objective was to evaluate column generation efficiency when compared with other

specialised code for MFPs based on a bundle method (Frangioni and Gallo, 1999) and with a

general-purpose linear programming solver, namely Cplex 6.6 (ILOG, 1999).

Our code was developed in C++ using the development environment Microsoft Visual

Studio 6.0. We used the class library LEDA 4.1 (Mehlhorn and Näher, 1999) for identifying the

circuits and also to solve the shortest path subproblems. We used Cplex 6.6 to solve the RMPs.

The Bundle code was provided to us by Professor Antonio Frangioni. We note that this

code can be used with more general instances (namely instances with multiple origins and

destinations). We also note that the adjustment of its parameters was, by no means, exhaustive

and not done by an experienced user.

In spite of the theoretical closeness of the two methods (column generation and bundle),

the implementations tested have a major difference: the column generation uses a disaggregated

approach and the bundle an aggregated one. Both methods, taking a dual perspective of the

column generation method, aim at maximising the dual Lagrangean function (obtained by

relaxing the capacity constraints). That function is decomposable by commodity, thus, in each

iteration, the subproblem can return (to the master) subgradients associated with the

commodities (disaggregated version) or return one subgradient associated with the whole

function (aggregated version). In the column generation algorithm implemented, the

subproblem returns one extreme point per commodity (or dually, one subgradient associated

with the component of one commodity of the decomposable dual Lagrangean function). In the

case of the bundle implementation used in these tests, the subproblem returns one subgradient of

the whole dual Lagrangean function.

It is worth noting that a disaggregated bundle algorithm could also be implemented,

which might significantly improve its solution times.

We refer to the different programs described above as: CG (column generation), CGA

(column generation with acceleration), Cplex (the problem, formulated with flows on arcs, by

using only Cplex 6.6) and Bundle.

All the reported results were obtained on a personal computer equipped with a Pentium 4,

2 GHz processor, and 1 GB of RAM, running Windows XP Professional Edition. All the time

values presented are expressed in seconds.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

143

5.6.1 Test instances

In order to test the empirical efficiency of the developed methodology, we performed

some computational tests on three groups of instances. Two of them, which we refer to as A and

B, were generated with a random generator for MFPs in planar graphs, implemented in C++

using the development environment Microsoft Visual Studio 6.0 and the class library LEDA 4.1

(Mehlhorn and Näher, 1999). The other one comes from (Larsson and Yuan, 2004) and was

obtained in (Frangioni, 2005). We refer to this last set of instances as the Planar instances, in

order to keep their original designation, while noting that all the instances in all sets are planar.

For the two first groups of instances (A and B), the underlying graph is constructed by

using the LEDA functions random_planar_map and random_planar_graph, which we now

briefly describe. First, n random points in the unit square are generated and their triangulation is

computed. Then m arcs are kept. Instances A are generated considering undirected arcs that are

replaced by two directed arcs between the same pair of nodes. Thus, for this group of instances,

if an arc ij exists then the arc ji also exists and both have the same cost and capacity. Instances B

are generated in a similar way. The difference is that the undirected arcs are replaced with just

one directed arc, thus if an arc ij exists then the arc ji does not exist. For both groups of

instances the cost of each arc is the Euclidean distance between its origin and destination nodes.

Each commodity is defined by its origin-destination pair, in a random way (without repetitions).

Their demands are randomly chosen up to a maximum value given as input. In order to generate

only feasible instances, some capacities are calculated as the total flow of arcs given by the

shortest path solution of each commodity. The others are randomly assigned with values

between two input parameters.

For each group, we generated two sets of instances, one with 100 nodes and the other

with 600 nodes. For each of these sets we generated four subsets with different densities and

different numbers of commodities. For each subset, we generated three instances, for which we

present average results. The number of arcs and commodities for each subset are given in Table

5.2 and Table 5.3. The name of the instance has the following meaning: group, number of

nodes, density (s − sparse, d − dense) and a qualitative measure of the number of commodities

(s − small, l − large). A dense graph has a number of arcs close to its maximum in a planar

graph, that is, 2(3n−6) for instances of group A and 3n−6 for instances of group B.

The number of nodes, arcs, and commodities of the planar instances are given in Table

5.4.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

144

Instances A100dl A100ds A100sl A100ss A600dl A600ds A600sl A600ss

m 569 572 400 400 3562 3557 2400 2400

h 600 300 600 300 3600 1800 3600 1800

Table 5.2 Average number of arcs and number of commodities of group A instances.

Instances B100dl B100ds B100sl B100ss B600dl B600ds B600sl B600ss

m 285 286 200 200 1771 1778 1200 1200

h 600 300 600 300 3600 1800 3600 1800

Table 5.3 Average number of arcs and number of commodities of group B instances.

Instance planar30 planar50 planar80 planar100 planar150

n 30 50 80 100 150

m 150 250 440 532 850

h 92 267 543 1085 2239

Table 5.4 Number of nodes, arcs and commodities of the planar instances.

5.6.2 Preliminary tests

The general-purpose linear programming solver Cplex 6.6 can use different algorithms to

optimise a linear programming problem, namely simplex primal (referred to in this text as P)

and dual (D), hybrid primal (HP) and hybrid dual (HD), and a barrier algorithm (B). Hybrid

algorithms use an advanced basis obtained by solving the network type part of the problem and

then simplex primal or dual. We ran preliminary tests to determine which of these alternatives

results in a smaller computational time in obtaining the optimal solution for our code (that uses

Cplex 6.6 callable library in order to solve the RMPs) and for solving the problem, formulated

with flows on arcs, by only using Cplex 6.6.

We now present the results from the preliminary tests for each of the methods.

Cplex

We tested the five algorithms with a few instances in order to select one algorithm to use

in the tests of all instances. We kept all the parameters of Cplex in their default values. In

particular, the Cplex optimality tolerance was not changed, thus being equal to 1e−6.

The instances that we tested were: A100dl1, B100dl1 (larger instances with 100 nodes),

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

145

A100ss1, B100ss1 (smaller instances with 100 nodes) and the planar instances. For instances

with 600 nodes, Cplex could not solve the problem due to the huge size of the models. The

same happened with the larger planar instance (planar150). For almost all the other planar

instances, the dual algorithm resulted in the best computational times. The exception was the

planar50 instance, for which the best result was obtained when using the primal algorithm.

The results for the tested instances with 100 nodes are given in Table 5.5.

Algorithm
Instance

P D HP HD B

A100dl1 4467.3 188.5 2479.9 481.4 267.3

A100ss1 294.1 24.4 181.4 54.0 91.3

B100dl1 87.9 250.8 83.3 149.7 17.1

B100ss1 1.8 1.5 1.3 1.5 1.9

Table 5.5 Cplex results of the preliminary tests.

After those tests, we decided to test each subset of instances with the best algorithm,

since the preliminary tests with one of the smaller and one of the larger instances indicated

different algorithms. Thus, we carried out also a preliminary test with one instance from the

subset B100ds and one other from B100sl. For the instance from the subset B100ds Barrier was

the best algorithm (5.3 seconds against the 16.1 of the second best that was Hybrid Primal) and

for the instance from the subset B100sl Hybrid Primal performed better than all the others (3.0

seconds against 3.4 of the second best that was the Primal).

Bundle

We calibrated a few parameters of the Bundle in one instance of each subset of A100 and

B100. We set at 1e−5 the relative tolerance desired and we accepted (dual) solutions for which

the final norm of the direction was smaller than 1e−3 (controlled through the t* parameter − for

a description of the parameters of the used implementation of the bundle method, we refer the

interested reader to the reference (Crainic et al., 2001)). We tried, with a few runs, to adjust the

initial t, choose between m1=0.1 and m1=0 and also select the most efficient shortest path

algorithm for the solution of the subproblems. The other parameters of the algorithm were set to

their default values (chosen by the developer of the code).

Being a dual method, the obtainable primal solution may be slightly unfeasible. With the

parameter setting just described, that solution is 1e−5-optimal and, the violation of the

constraints is, at most, 1e−3.

We did not perform tests with the Bundle for instances with 600 nodes, given that for one

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

146

of the smaller instances with that number of nodes (B600ss1) the algorithm reached the

maximum number of iterations set by us (10000), taking more than 1500 seconds.

We did not test the planar instances, since previous computational results with standard

column generation and bundle methods were reported in (Larsson and Yuan, 2004).

Standard column generation

In both column generation algorithms (standard and accelerated), we used the same

stopping criterion: the algorithm stops when there are no attractive columns within a tolerance

of 1e-5. This means that, in the worst case, the solution obtained is h.(1-e5)-optimal (we

remember that h is the number of commodities/subproblems), since the sum of the reduced costs

given by the most attractive columns of each of the subproblems is precisely a duality gap (as

can be proved through the equivalence of Lagrangean relaxation and DWD).

In Table 5.6 we present the results of the preliminary tests for standard column

generation. For the A100, B100, and B600 instances, we decided to run the primal algorithm.

For the A600 instances, we decided to run both primal and dual on the four subsets of instances

and to choose the best result for each. For the instance B600dl1, the number of columns needed

to obtain an optimal solution was significantly larger than for the other instances, so we also

tested (for that instance, with the best algorithm, that is the primal) the removal of columns with

a positive reduced cost in every iteration. That test is signalled with ‘*’ in Table 5.6. Its result

shows that the alternative in question is not efficient. The primal algorithm resulted in the best

computational time for all the planar instances.

Accelerated column generation

In Table 5.7 we present the results of the preliminary tests for CGA. For all the instances,

the primal algorithm was the most efficient. Again, for the instance B600dl1, the number of

columns needed to obtain an optimal solution was significantly larger than for the other

instances, so we also tested the removal of columns with a positive reduced cost in every

iteration. That test is signalled with ‘*’ in Table 5.7. Its result shows that performing the

removal of columns (all that have positive reduced cost except the ones corresponding to

circuits) is clearly preferable. The primal algorithm resulted in the best computational time for

all the planar instances.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

147

Algorithm
Instance

P D HP HD B

A100dl1 1.5 1.6 6.6 2.2 9.9

A100ss1 0.5 0.6 1.9 0.7 3.0

A600dl1 168.8 188.5 2252.4 339.3 >2000

A600ss1 258.0 174.4 >2000 339.2 1573.5

B100dl1 2.3 5.3 7.4 7.1 9.0

B100ss1 0.2 0.3 0.7 0.4 1.6

B600dl1 1326.6 3090.7 11936.7 1837.6 1326.6

B600dl1 9523.5*

B600ss1 74.3 120.2 634.4 602.1 341.3

Table 5.6 Standard column generation results of the preliminary tests.
* Removal of columns with positive reduced cost in every iteration.

Algorithm
Instance

P D HP HD B

A100dl1 1.5 1.5 10.7 2.4 10.6

A100ss1 0.5 0.5 4.0 0.8 5.4

A600dl1 59.0 105.7 1003.0 122.2 >2000

A600ss1 103.1 137.5 1452.8 196.4 1131.9

B100dl1 1.3 1.6 7.5 4.9 4.9

B100ss1 0.2 0.2 0.6 0.3 0.9

B600dl1 252.1 461.7 1962.4 719.4 252.1

B600dl1 161.8*

B600ss1 24.4 31.2 222.7 64.5 95.4

Table 5.7 Accelerated column generation results of the preliminary tests.
* Removal of columns with positive reduced cost in every iteration.

5.6.3 Computational results

We now present the computational results for all instances. The results reported are the

average of each subset of three instances, except for planar instances.

Instances A

In Table 5.8 and Table 5.9 we report the results for instances A. The last column in Table

5.8 is the relative variation (in percentage) of CGA with respect to CG (their values are

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

148

calculated with more precision than the absolute times presented).

Instance Cplex Bundle CG CGA %∆

A100dl 195.2 18.2 1.2 1.1 −10.2

A100ds 29.7 9.4 0.6 0.7 31.9

A100sl 77.1 5 0.8 0.8 −4.1

A100ss 23.8 2.9 0.5 0.5 5.3

A600dl − − 154.4 52.8 −65.8

A600ds − − 82.7 30.9 −62.6

A600sl − − 173.5 98.4 −43.3

A600ss − − 54.9 34.4 −37.4

Table 5.8 Time results for A instances.
− Not tested.

Number of iterations Number of columns Mean time RMPs
Instance

Bundle CG CGA CG CGA CG CGA

A100dl 601* 8.0 7.3 2228 2782 0.08 0.09

A100ds 422* 8.7 7.7 1155 2087 0.02 0.06

A100sl 428* 8.0 7.7 2046 2831 0.05 0.05

A100ss 239* 8.7 7.7 1143 1815 0.03 0.04

A600dl − 12.3 8.7 18551 19262 10.0 3.7

A600ds − 11.0 8.7 10867 13761 6.0 2.2

A600sl − 11.3 10.3 18863 20593 13.4 7.9

A600ss − 11.0 11.0 9295 14180 3.9 2.2

Table 5.9 Detailed results for A instances.
Values marked with * are for the first instance of the corresponding set.

− Not tested.

Instances B

In Table 5.10 and Table 5.11 we report the results for the B instances.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

149

Instance Cplex Bundle CG CGA %∆

B100dl 20.1 38.3 2.1 1.2 −44.9

B100ds 7.2 5.3 0.7 0.5 −31.1

B100sl 3.5 10.6 0.6 0.4 −38.2

B100ss 1.5 2.2 0.3 0.2 −1.3

B600dl − − 1470.9 175.1 −88.1

B600ds − − 685.3 166 −75.8

B600sl − − 255.1 78.9 −69.1

B600ss − − 75.9 26.9 −64.6

Table 5.10 Time results for B instances.
− Not tested.

Instance Number of iterations Number of columns Mean time RMPs

 Bundle CG CGA CG CGA CG CGA

B100dl* 1462* 8.3 5.7 3272 2257 0.22 0.13

B100ds* 295* 10.0 7.0 1779 1394 0.05 0.04

B100sl* 962* 6.7 5.3 2593 1612 0.06 0.03

B100ss* 340* 6.3 6.0 1173 868 0.02 0.01

B600dl − 13.3 48.3** 39636 8880** 109.1 3.1

B600ds − 16.3 10.3 24791 15357 41.3 15.3

B600sl − 11.3 6.3 27958 17465 21.5 10.4

B600ss − 12.0 7.3 13057 8673 5.5 2.7

Table 5.11 Detailed results for the B instances.
 * First instance of the corresponding set.

** We recall that, in all iterations, removal of columns is performed.
− Not tested.

Planar instances

In Table 5.12 and Table 5.13 we report the results for the planar instances.

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

150

Instance Cplex CG CGA %∆

planar30 0.2 0.1 0.1 −14.3

planar50 3.9 0.2 0.2 11.8

planar80 73.0 1.3 0.8 −38.4

planar100 291.2 3.1 2.0 −35.5

planar150 − 88.6 43.6 −50.7

Table 5.12 Time results for the planar instances.

Number of iterations Number of columns Mean time RMPs
Instance

CG CGA CG CGA CG CGA

planar30 4 4 223 500 0.01 0.01

planar50 9 8 806 1290 0.00 0.01

planar80 9 7 2410 2632 0.10 0.07

planar100 9 7 4256 4372 0.23 0.18

planar150 14 11 14900 12746 6.0 3.7

Table 5.13 Detailed results for the planar instances.

We now summarise the conclusions that can be drawn from the computational tests just

presented.

When compared with Cplex, standard column generation is a very efficient method to

solve the tested type of instances. In the smaller instances, it was always faster (at least five

times but frequently much more). For the larger instances, which Cplex could not solve with the

available memory, standard column generation could do it in reasonable amounts of time.

When compared with the bundle method, standard column generation is also more

efficient for the instances tested. We note that the fact that the bundle code used is an

aggregated implementation of the method may be a significant reason for its poor results, as the

number of iterations is extremely large when compared with column generation.

The computational tests clearly show the effectiveness of the method proposed in this

work to accelerate column generation. In fact, for all groups of instances that took more than

two seconds to be solved by standard column generation, the relative improvement is always

greater than 35% and frequently greater than 60%.

The best relative improvements were achieved in the larger instances, and, in particular,

in the instances with a large number of commodities defined in dense networks.

We expected a smaller number of iterations (that is the number of RMPs solved) for the

proposed method, when compared to standard column generation. For almost all sets of

Chapter 5: Accelerating Column Generation for Planar Multicommodity Flow Problems

151

instances, that was the case, but the difference was not as significant as expected. As for the

number of columns, the results show that the insertion of extra variables does not change

significantly the size of the RMPs; in fact, sometimes the final number of columns is inferior in

the accelerated column generation case. We expected the time spent in solving the RMPs to

increase in the case of the extended model, due to the presence of extra constraints (in fact,

ranged constraints). However, that did not happen: the presence of the extra variables made the

solution of the RMPs easier, as can be seen in the average time spent on the RMPs.

5.7 Conclusions

In this Chapter, we presented a way of accelerating column generation for the linear MFP

in planar graphs. The method used is based on a new model, which includes a polynomial

number of extra variables corresponding to flows on circuits. After an optimal solution to the

model with extra variables is obtained, we recover an optimal solution to the original model by

a procedure that forces all the extra variables to have a null value by redirecting its flow to the

original variables, which are flows on paths.

Computational tests were made for three sets of randomly generated instances: two of

them, generated by us, with 24 instances (several groups of three instances with similar

characteristics) and the third, not generated by us, with five instances. The results of these tests

empirically showed that our method to accelerate column generation is effective. In almost all

instances, our procedure reduced the computational time by significant amounts. In particular,

for all groups of instances that took more than two seconds to be solved by standard column

generation, the relative improvement was always greater than 35% and frequently greater than

60%.

The presented approach poses no theoretical difficulties when applied to other

multicommodity flow problems. In particular, the extension to instances with multiple origins

and destinations is trivial.

A natural development of the current work is to apply the same approach on

multicommodity problems defined in general networks. The main question that arises is how to

control the (exponential) number of extra variables, or, in other words, how to select an

effective subset of extra variables such that they do not render the master problem too large.

 152

6 ADDing: Automatic Dantzig-Wolfe Decomposition
for Integer Column Generation

In this Chapter, we describe ADDing, an implementation of a general branch-and-price

algorithm in C++.

The main distinctive feature of ADDing is that it can be used as a “black-box”: all the

user is required to do is to provide an original (mixed) integer model. ADDing automatically

decomposes the original model and combines column generation and branch-and-bound

(branch-and-price) to obtain an (integer) optimal solution. All the (non-trivial) implementation

details of such type of algorithms (such as interaction between the restricted master problem and

the subproblem(s), combination of column generation and branch-and-bound, rows and columns

management, management of the search tree, data structures, ...) are transparent to the user,

although controllable by a set of input parameters.

ADDing can also be customised to meet a specific problem, if the user is willing to

provide a subproblem solver and/or specific branching rules. Those can be implemented with a

few functions.

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

153

6.1 Introduction

ADDing, Automatic Dantzig-Wolfe Decomposition for INteger column Generation, is an

implementation of a general branch-and-price algorithm in C++. The main objective of its

development was to provide an easy and fast way to implement (different) decomposition

approaches for (mixed) integer problems.

Branch-and-price combines two well-established methods, column generation and

branch-and-bound, to obtain the optimal solution of (mixed) integer problems. Although those

two methods are known since the late 1950s, only in the middle 1980s their first combination

was developed to obtain optimal integer solutions for a routing problem (Desrosiers et al., 1984)

and only in the late 1990s the first revision paper about branch-and-price was published

(Barnhart et al., 1998). Branch-and-price methods were reviewed in Chapter 2; other surveys,

besides the one already mentioned, can be found in (Wilhelm, 2001; Lübbecke and Desrosiers,

2002).

In its more simple use, the main feature of ADDing, is that its user only needs to specify

an original formulation for the (mixed) integer problem (MIP) he/she wants to solve, along with

the decomposition to be used (that is, which constraints define the subproblem(s)). All the (non-

trivial) implementation details of such type of algorithms (such as interaction between the

restricted master problem (RMP) and the subproblem(s), combination of column generation and

branch-and-bound, rows and columns management, management of the search tree, data

structures, ...) are hidden and the user does not need to worry about them. Being so, ADDing can

be used as a “black-box” where the input is a MIP model and the specification of a

decomposition and the output is an optimal solution obtained by branch-and-price (of course, if

the problem has one, and a time limit or other stopping conditions specified by the user through

parameters were not met).

ADDing can also be customised for a specific problem by letting its user implement two

major pieces of branch-and-price algorithms: the subproblem solver and branching rules. This

allows the full exploration of the structure of the problem at hand. In this type of use, one exact

subproblem solver must be provided. An unlimited number of subproblem heuristics may also

be provided; these may be used in constructing the first RMP and in solving the subproblems

heuristically. Specific branching rules play a fundamental role in an efficient search of the tree,

and can also be provided by the user. Being so, besides the “black-box” use, ADDing can also

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

154

be used as a “tool-box”, where the user only implements small blocks of code related with the

specific problem he/she wants to solve.

The two types of use described in the two previous paragraphs are, by no means,

exclusive. In a first approach to a structured MIP, ADDing can be used as a “black-box” in order

to test different decompositions and, roughly, the efficiency of the branch-and-price method.

That is done with a very small coding effort. The use of ADDing as a “tool-box” afterwards

allows the improvement of the algorithm’s efficiency.

The generality of ADDing relies on the exchange of information between the original

formulation (provided by the user) and the master model (derived internally). The branching

scheme consists in deriving branching constraints in the original variables and including them in

the master problem, modifying the objective function of the subproblem(s) accordingly (as

opposed to branching by subproblem and master modifications, as is common in branch-and-

price algorithms for binary problems).

The current version of ADDing is 1.0. It has been used as a “tool-box” for two different

decompositions for the binary multicommodity flow problem (see Chapter 4) and, as a “black-

box”, for two different decompositions for a MIP (multi-item lot sizing with setup times)

(Pimentel et al., 2004).

Several frameworks have been developed to make the implementation of branch-and-

price algorithms (in fact, branch-and-cut-and-price algorithms) easier, such as Abacus (Thienel,

1995; Jünger and Thienel, 2000), COIN/BCP (Ralphs and Ladányi, 2001) and Symphony

(Ralphs and Ladányi, 2003). A distinctive feature of ADDing is the “black-box” use. At least in

a preliminary phase, for example when testing different decomposition approaches, it may serve

as a guide to the subsequent full exploration of a branch-and-price algorithm.

The current version of ADDing by no means attains the power and flexibility of those

frameworks (for example, it does not include the use of cuts), neither implements several

components that certainly would improve branch-and-price efficiency (such as preprocessing

and reduced cost fixing), some of which are detailed in (Vanderbeck, 2005). However, we

believe its simplicity of use and future improvements related with issues not implemented in

those frameworks (such as stabilisation techniques and multiple Dantzig-Wolfe decomposition,

addressed in Chapter 2, subsection 2.5.5, page 50) justify its further development.

This Chapter is written with two purposes: to introduce to the use of ADDing and to

describe briefly its internal structure. We do not detail the theoretical foundations behind it,

which were presented in Chapter 2. Section 6.2 (along with the Appendix) can be taken as a

brief users’ manual for using ADDing as a “black-box” and as a “tool-box”. In Section 6.3, the

general structure and the main classes of ADDing are described. In Section 6.4, conclusions

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

155

from this work are drawn and future developments are discussed.

6.2 Using ADDing

In this Section we provide an overview of ADDing from a user perspective.

ADDing was programmed in C++ in the development environment Microsoft Visual

Studio 6.0 and uses Cplex (ILOG, 2002) for solving the RMPs and the subproblem(s) (when the

user does not provide an exact subproblem solver).

The main purpose of ADDing is to provide an automatic way of solving a MIP problem

by decomposing it (using Dantzig-Wolfe decomposition) and combining column generation and

branch-and-bound (branch-and-price).

6.2.1 Models representation

It is assumed that the user has one model, denoted as the original model, which can be

schematically depicted as in Figure 6.1. We omit the size of vectors and matrices for simplicity

of notation. Rows SP refer to the constraints that define the subproblems.

 e x
1

... x
h

SP 1 A
1

 {≤,=,≥} b
1

...

SP h A
h

{≤,=,≥} b
h

Linking

constraints
E D

1
... D

h
SenseLink RhsLink

Objective

coefficients
EObj DObj

1
... DObj

h

Figure 6.1 Schematic representation of an original model for ADDing.

We now point out some issues related with the original model and its schematic

representation.

• The original model has a block angular with linking constraints structure. However,

considering only one (A) block, that is h=1, a general MIP may be considered. If the

only block has a block diagonal structure, we obtain an aggregated decomposition.

• A different ordering of the variables gives another representation that leads to a

different decomposition.

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

156

• The x variables can be linear and/or integer and/or binary. In the current version of

ADDing the e variables, denoted as extra variables, must be linear.

• The e variables, may be used as stabilisation variables (a model that uses this type of

variables was presented in Chapter 5).

Based on the original model, ADDing builds an internal master problem, as depicted in

Figure 6.2 (in fact, it does not use that representation explicitly, since, of course, columns are

dynamically generated − and, depending on some input parameters, removed; the same happens

with rows − however, the user does not have to worry about these internal details).

Columns Art and e are associated with artificial and extra variables, respectively. The e

variables were already defined in the original model, and since they do not belong to any

subproblem, their translation to the master problem is straightforward. As for the artificial

variables, we decided to let the user specify their number and coefficients in the master model,

possibly taking advantage of his knowledge of the problem. However, ADDing has a hidden

artificial variable, allowing the user not to include artificial variables explicitly in the master

model. Again the user is allowed to incorporate his/her knowledge in the master model by

defining the sense of convexity constraints (for example, when the feasible region of the

subproblem includes the origin, the user may prefer to define “less than or equal to” convexity

constraints, as opposed to the usual equalities). Letting the user specify the right-hand side

(RHS) of convexity constraints extends the possible use of ADDing. For example, in the path

decomposition for the integer multicommodity flow problem (addressed in Chapter 3) those

constraints have a RHS different from one.

In Figure 6.2 two columns (λk1 and µk1
) related with one extreme point (y

k1
) and one

extreme ray (uk1
) of a subproblem k (1≤ k≤ h) are represented. We note that, as shown in the

same Figure, all the coefficients of these columns can be computed given the original model.

We also note that if the subproblem(s) do(es) not have extreme points, but only extreme rays,

there are no convexity constraints in the master model.

Summing up, the user of ADDing must provide all the decomposition information, which

includes the one depicted with colours in Figure 6.1 and Figure 6.2 (including the dimensions of

the matrices and vectors). Along with that information, the user may specify which constraints

are present in the first RMP. That issue is related with the dynamic management of rows, which

is controlled through a set of parameters. In some models, the D matrices are all equal, that is

D=D
1
=...=D

h. For those models, the user may define only one D matrix.

In a “black-box” use, the subproblems (represented in yellow in Figure 6.1) only need to

be specified, that is, the user must provide no solver. In a “tool-box” use, the subproblems are

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

157

totally managed by the user: he/she must implement some functions in order to return solutions

to them.

Variables Art e λk1
 µk1

 ...

...

Convexity

constraint

of SP k

 1 0 ... SenseConv[k] RhsConv[k]

...

Linking

Constraints

E’

E D
k
y
k1

 D
k
u
k1
 ... SenseLink RhsLink

Objective ArtCost EObj DObj
k
 y

k1
DObj

k
u
k1
 ...

Figure 6.2 Schematic representation of the master model.

6.2.2 “Black-box” use

In Figure 6.3, we illustrate the use of ADDing. In a “black-box” use, all the user must do

is to:

• Create one object of the class Decomposition Model.

• Use the public member functions of Decomposition Model to specify the

decomposition (these are detailed in the Appendix, page A2).

• Create an object of the class Branch and Price, whose constructor has three

arguments: one decomposition model object, one string with the name of the file with

the parameters (detailed in the Appendix, page A5) and one string with the name of

the file where the results will be written (detailed in the Appendix, page A13).

• Call the Optimise(...) public member function of Branch and Price that returns the

final status of the optimisation (the possible values are given in Figure 6.4).

The public member functions of the Decomposition Model class allow the specification of

the decomposition model to be used. Two examples of such functions, SetDimensions(...) and

SetTypeVars(...), are given in Figure 6.3. All the member functions the user must be aware of

are detailed in the Appendix, page A2. Almost all of them have to do with the definition of the

matrices and vectors represented with colours in Figure 6.1 and in Figure 6.2. All the user must

do is to represent them in a compressed (column oriented) format (as the one used, for example,

in COIN and Cplex). An issue worth pointing out is that the user may decide which rows will be

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

158

generated only if needed (that is, if they are violated in an optimal solution). This type of

dynamic management of rows, which can be further controlled by some parameters, can

significantly improve the solution time of the algorithm.

// Decomposition model

decmodel *DM=new decmodel;

// Construct the decomposition model

DM->SetDimensions(10,20,30,30);

DM->SetTypeVars(0,10,0);

// ...

// Branch-and-price solver

branchprice *BP=new

 branchprice(DM,"parameters_file.txt","results_file.txt");

int status = BP->Optimise();

cout << endl << status << endl;

delete DM;

delete BP;

Figure 6.3 Using ADDing as a “black-box”: code required to the user (not including the
specification of the decomposition model).

0: An optimal solution was found.

1: Time limit achieved in the root node.

2: Time limit achieved not in the root node.

3: The root node is unfeasible.

4: There are no integer feasible solutions.

5: A solution could not be obtained (numerical difficulties in

solving the RMP).

6: Problem is unbounded.

7: Maximum number of optimised nodes achieved.

Figure 6.4 Return values for branchprice->optimise().

 The use of user-defined parameters allows controlling several features of the branch-and-

price algorithm. Their use and meaning are detailed in the Appendix, page A5. Here we point

out some of the main features the user may control using parameters (additional features, related

with the user customisation of ADDing are listed in the next subsection):

• The use of a heuristic at the root node. The heuristic consists in solving with Cplex the

MIP associated with the (“optimal”) RMP obtained in the root.

• The inexact solution of the RMP in some iterations.

• The dynamic management of columns and rows.

• The search strategy of the tree (depth, breadth, best, depth until an incumbent is found

and then best, depth when branching occurs, best in the other situations).

• The branching variable (fractional variable with fractional part closest to 0.5, first

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

159

fractional variable found, fractional variable with fractional part closest to 1, fractional

variable with fractional part closest to 0). When customising ADDing (see next

subsection) the user may specify other branching types, namely by generating

branching constraints with more than one variable (branching on hyperplanes).

• The specification of tolerances.

The output of ADDing is a file with the results (name given as the third argument to

branchprice::optimise() and extension “rst”) and another file (same name, extension “sol”). The

results file has various information on the optimisation process, including the times spent in

different parts of the algorithm, the value of the solutions, the number of optimised nodes in the

tree and the number and largest dimensions of the RMPs solved. An example of such a file is

given in the Appendix, page A13).

6.2.3 “Tool-box” use

When using ADDing as a “tool-box”, it is up to the user to provide a subproblem solver

and/or one branching scheme. For that purpose, a user class must be derived from the base class

Subproblem (which does not have pure virtual member functions in order to allow the “black-

box” use described before) (re)defining a set of virtual member functions. We denote that

derived class by MySubproblem. We now briefly describe the fundamental issues related with

its implementation; details are given in the Appendix, page A14.

When implementing a subproblem solver, there are two functions that have to be

necessarily redefined by MySubproblem: SetSP(...) and Optimise(...). The first one is conceived

to receive the modified costs of the current iteration of the column generation algorithm. Those

will be used in Optimise(...), which must implement an exact subproblem solver, returning an

optimal extreme point or a ray.

Other member functions of Subproblem may be redefined by MySubproblem (in fact,

defined, since they are virtual dummy functions, the base class does not have a default

implementation). Those are related with subproblem heuristics, second best solutions, and

explicitly defined sets of feasible solutions of the subproblem.

Subproblem heuristics can be used for three purposes: constructing the first RMP, solving

the subproblem heuristically (which can be useful if the subproblem is a “difficult” one − in that

case, when the heuristics do not generate attractive columns, the exact solver is used to ensure

optimality) or inserting additional attractive columns in some iterations of the column

generation algorithm.

Two types of heuristics can be implemented: aggregated and disaggregated. In an

aggregated heuristic the solution of one subproblem influences the solution of the others. In a

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

160

disaggregated heuristic each subproblem is solved independently. We note that the extreme

points will always be inserted in the RMP in a disaggregated manner. Currently ADDing does

not support aggregated columns (that is, the possibility of one column being related with more

than one subproblem).

The MySubproblem class may also implement a function (OptimiseNext(...)) to provide

the second best, third best, and so on, solutions. This function is useful for generating additional

columns of good quality in some iterations of the column generation algorithm.

The first RMP may have a set of points, or rays, explicitly given by the MySubproblem

class, which is achieved by implementing the function GetSetExtreme(...).

When implementing specific branching rules, the only function that has necessarily to be

redefined by MySubproblem is GetBranches(...). The MySubproblem class can access the

current (fractional) solution values (by using a public member function of the class Original

Solution). Based on that solution it must construct a set of branching constraints (one for each

new node), based on the original variables, through the use of the public member functions of

class Constraint (an array of objects of the class Constraint are passed by reference in this

function).

A set of parameters controls the use of all the features described in this subsection. All

the details about the functions mentioned here and those parameters are given in the Appendix.

6.3 Inside ADDing

6.3.1 Overview

The main two pre-requisites we considered for the development of ADDing were: (i) it

should be simple to use, either as a “black-box” or as a “tool-box” and (ii) its design should

allow an easy incorporation of new features, compromising as little as possible its overall

structure.

The concepts of inheritance and polyphormism of object-oriented programming clearly

seemed to allow the accomplishment of the first pre-requisite. In addition, the modular approach

of object-oriented modelling seemed to make easier the accomplishment of the second pre-

requisite, allowing changes to the implementation of part of the overall algorithm without

involving modifications in the other parts, making the maintenance and extension easier.

The programming language C++, given its widespread use in the Optimisation

community, was the one chosen for coding ADDing.

In this first full cycle (from the analysis phase to the test phase) of the development of

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

161

ADDing, we concentrated on the accomplishment of the first pre-requisite, while always having

in mind the second one.

6.3.2 Main classes

In Figure 6.5, a simplified UML (Unified Modelling Language) class diagram of ADDing

is depicted. After commenting on that simplified diagram, we will point out some classes and

relations that were excluded. We designate classes with a capital letter and the objects that

instantiate them in lower case.

The classes Decomposition Model and Parameters can be seen as inputs for the Branch

and Price class that coordinates the branch-and-price algorithm, sending the output to the

Results class. These one-to-one associations between those classes are denoted by the lines

without arrows.

The class Branch and Price is composed (black diamond) of Node Solver and Tree. The

Node Solver class is responsible for solving a node of the search tree. For that purpose, it is

composed by a Column Generation class that has an association with Subproblem. This last

class, as detailed in the previous Section, is the base class of an inheritance relation with

MySubproblem.

An object of the class Tree is composed by several objects of the class Node (each

associated with a node of the search tree). In addition, the class Tree has an association with the

class Subproblem in order to generate branches.

The Subproblem class is associated with two very different classes. We chose that design

option, for a practical reason: it allows the “tool-box” user to deal with only one class (apart

from, of course, the Decomposition Model class).

The implementation of ADDing has a major difference in relation to the class diagram of

Figure 6.5. In fact, the Decomposition Model class is composed by one Subproblem class. The

same practical reason justifies that design option: in this way, a “black-box” user deals with

only the class Decomposition Model.

One important class is not depicted in Figure 6.5: the one which represents an Original

Solution. This class has associations with almost all the others. Along with a Node object

(whose entire set of associatios are also not depicted in the simplified UML class diagram), it is

responsible for the main flow of information between the classes.

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

162

Figure 6.5 UML class diagram of ADDing.

6.3.3 Information flow

Two objects are responsible for the main flow of information, allowing the interaction of

the other objects in order to implement the branch-and-price algorithm. Those two objects,

namely original solution and actual node (class Node) are passed between public member

functions of the classes that require them and modified through their own public member

functions.

We now briefly describe their “journey” following a normal execution of a branch-and-

price algorithm, giving some details on how the other classes deal with them.

The actual node object essentially contains the branching constraints of the node to be

optimised, the lower bound given by its father, and (after being optimised) its own lower bound.

The original solution object contains the information about the solution associated with the

Decomposition
Model

Parameters

MySubproblem

Branch and
Price

Results

Tree

Column
Generation

Node Solver

Subproblem

Node
1..*

1 1

1 1

1

1

1

1 1

1

1

1

1

1 1

1 1

Columns
generation

Branches
generation

Input

Input Output

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

163

node. Its flow is similar to the one of actual node.

It is up to the tree object to set the node to be optimised, returning it to branch and price

when its function GetNode() is called. Then branch and price passes it down to node solver,

which in turn passes the information relevant for the column generation algorithm (that is, the

branching constraints) to column generation. This last object returns the result of the

optimisation of the node and, if a feasible solution is obtained, updates original solution.

About the Column Generation class it is worth noting that the master model depicted in

Figure 6.2 is not explicitly considered. All constraints (convexity, linking, and branching) are

represented in the original variables in an object of a class Constraint (which distinguishes its

type by an integer code) and has a pointer to the index of the corresponding row in the LP solver

(currently only Cplex can be used). A similar representation is done for columns.

After the optimisation of the node, actual node and original solution make the inverse

path, up to the branch and price object, which sends them along with the result of the

optimisation (an integer) to the tree object. The tree private data structures are updated

(generation of new nodes, modifying the incumbent value, ...) and the overall process is

repeated until the tree states to branch and price that there are no more nodes to optimise.

In the current version of ADDing, the Node Solver class may seem redundant. It is

included to allow the possible extension of ADDing in two directions: (i) by adding cuts and (ii)

by allowing to solve a node by different solution methods.

In fact, a Cut Generation class (for lifted cover inequalities) at the same level as Column

Generation in the UML class diagram was already implemented and tested in a specific

problem. However, in order to belong to ADDing, more generality and simplicity of use (our

main purposes) must be achieved with that class.

6.4 Conclusions

In this Chapter we presented ADDing (Automatic Dantzig-Wolfe Decomposition for

INteger column Generation), a set of C++ classes that implements a branch-and-price

algorithm, based on decomposing a (mixed) integer programming model.

Our main goal when developing ADDing was to provide its users with a simple and fast

way to implement decomposition approaches for solving (mixed) integer problems. That goal

was clearly obtained. When using ADDing as a “black-box”, an original user-provided model is

the only input required for ADDing to perform a decomposition and to obtain an optimal

(integer) solution using branch-and-price. A main feature of ADDing is that the user can

dynamically manage rows (in a transparent way), which may considerably improve the

Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation

164

efficiency of branch-and-price / column generation.

ADDing can also be used as a “tool-box”. In that case, the user may implement specific

subproblem solvers (including heuristic ones) and specific branching rules. That kind of

utilisation involves a deeper knowledge of C++, but the few functions that have to be

implemented in the derived class are expected to be easy to understand.

The internal structure of ADDing is based on the exchange of information between the

original model and the master model. Keeping the branching constraints, derived in the original

variables, in the model made the general − but simple − use that we intended easier.

At this time, the first cycle of the development of ADDing is finished. It has been used as

a “tool-box” for two different decompositions for the binary multicommodity flow. All the

features of ADDing here described were tested. It has also been used as a “black-box” for two

different decompositions for a multi-item lot sizing with setup times problem.

We plan to improve ADDing further, in a near future, with two features already at an

experimental phase: the incorporation of lifted cover inequalities and the combination of

column generation and subgradient optimisation. In addition, there are two issues that can

improve significantly the usability of ADDing: allowing the use of different LP solvers (which

can be done by interfacing ADDing with COIN) and exploring the possibility of specifying the

original model with a high-level / modelling language.

We definitely plan to explore other ideas. Firstly, multiple Dantzig-Wolfe decomposition.

Secondly, hybridisation of branch-and-price and heuristics.

Having in mind that we must keep what we believe to be the main characteristic of

ADDing − its simplicity of use −, those are challenging tasks.

 165

7 General Conclusions

In the present Thesis, we presented column generation based algorithms for the linear,

general integer, and binary minimum cost multicommodity flow problems.

Our general approach for (mixed) integer problems is based on using the Dantzig-Wolfe

decomposition in a compact (original) formulation, combining column generation and branch-

and-bound by defining the branching constraints on the original variables and keeping them in

the (restricted) master model.

This approach was applied in the integer and in the binary multicommodity flow

problems using a path decomposition. For the binary multicommodity flow problem, we also

presented a decomposition based on defining the subproblem as a set of independent binary

knapsack problems, which gives better quality lower bounds.

For the linear multicommodity flow problem defined in a planar network, we proposed a

new model that allows the column generation approach to be significantly accelerated.

We detailed how to deal with negative cost cycles when using column generation for

solving the path based decompositions of the three different multicommodity flow problems. In

the case of the integer and the binary problems that is an important issue, because of the

branching constraints of the type “greater than or equal to”. In the case of the approach

presented for accelerating column generation for the linear multicommodity flow problem in

planar networks, negative cost cycles may appear because of the extra constraints used in the

extended model.

Comparative computational results with a general-purpose solver were given for all the

developed algorithms.

For the integer multicommodity flow problem, we used a set of instances publicly

available that have been tested before by several other authors using methods for the linear

multicommodity flow problem. The conclusions from those computational tests were not as

expressive as we expected, since the linear relaxation of almost all the instances tested had an

integral optimal solution. Anyway, the proposed algorithm provided better time results in

several instances, and, for the larger ones, it can be concluded that it is the only feasible

Chapter 7: General Conclusions

166

direction to be followed, given the huge memory requirements of the formulation that must be

used by a general-purpose solver (the one used in this work was Cplex 6.6).

For the binary multicommodity flow problem, our branch-and-price algorithm for the

path decomposition provided slightly better results than the one previously developed in

(Barnhart et al., 2000) (the main difference between the two algorithms is the branching

strategy). Even with the use of general lifted cover inequalities in that algorithm (branch-and-

price-and-cut) the results obtained were not competitive with the ones of the general-purpose

solver Cplex 8.1, except for a few instances. The same happened with the branch-and-price

algorithm based on the knapsack decomposition. Although giving better lower bounds, this

decomposition proved to be particularly difficult to solve. Even using dynamic insertion and

removal of rows, the majority of the larger instances tested could not be solved in one hour. To

our best knowledge, the comparison between decomposition approaches and a general-purpose

solver for the binary multicommodity flow problem was made for the first time. Given the fact

that, in the literature, that approach is always taken as non-promising, this result came as a

surprise.

For the linear multicommodity flow problem defined in a planar network, the proposed

method for accelerating column generation was significantly faster than standard column

generation in the randomly generated instances (some of them generated by other authors). For

all instances that took more than two seconds to be solved by standard column generation, the

relative improvement was always greater than 35% and frequently greater than 60%.

ADDing (Automatic Dantzig-Wolfe Decomposition for INteger column Generation), a set

of C++ classes, was developed. Its main purpose is to provide a simple and fast way to

implement decomposition approaches for solving integer programming models by branch-and-

price. The main distinctive feature of ADDing, when compared with the existing frameworks, is

that it can be used as a “black-box”: all that the user is required to do is to provide an original

(mixed) integer model. It includes several features, in a transparent way to the user, that are

time-consuming (and non-trivial) tasks when programming column generation based

algorithms, such as the dynamic management of rows.

ADDing was used only to implement the decompositions and branch-and-price

algorithms for the binary multicommodity flow problem, since its development was undertaken

after the implementation of the algorithms for the other two problems.

Several issues were left open in this work.

We presented multiple Dantzig-Wolfe decomposition but did not implement it. In

addition, we described how general cuts can be incorporated in branch-and-price, as long as

they are based on the original variables, but only implemented lifted cover inequalities for a

Chapter 7: General Conclusions

167

specific decomposition. We plan to work on those issues in a near future.

The general-purpose solver we used (Cplex) was extremely efficient in solving a large

number of instances of the problems we treated. However, decomposition approaches have clear

advantages (at least, allowing the derivation of better lower bounds). We used a heuristic that

consisted in solving a restricted master problem with Cplex at the end of the optimisation of the

root node. We intend to explore further that kind of combination of column generation and a

general-purpose integer programming solver.

The generality of the branch-and-price methodology presented here allows its extension

to any (mixed) integer problem. Its implementation for other problems may further contribute to

clarify the practical advantages and disadvantages of decomposition approaches when compared

with state-of-the-art general-purpose solvers. ADDing may play an important role in that kind of

comparison.

We intend to further explore column generation stabilisation methods, in particular for the

knapsack decomposition of the binary multicommodity flow problem and by extending the

stabilisation approach that was successfully used for the planar multicommodity flow problem

to other network flow problems.

 168

References

Aardal, K., Weismantel, R. and Wolsey, L. A. (2002), Non-standard approaches to integer

programming, Discrete Applied Mathematics, 123, 5-74.

Aggarwal, A. K., Oblak, M. and Vemuganti, R. R. (1995), A heuristic solution procedure for
multicommodity integer flows, Computers and Operations Research, 22, 1075-1087.

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993) Network Flows, Prentice Hall, Englewood
Cliffs, NJ.

Akker, J. M., Hurkens, C. A. J. and Savelsbergh, M. W. P. (2000), Time-indexed formulations

for single-machine scheduling problems: column generation, INFORMS Journal on
Computing, 12, 111-124.

Akker, J. M. v. d., Hoogeveen, J. A. and Velde, S. L. v. d. (1999), Parallel machine scheduling

by column generation, Operations Research, 47, 862-872.

Akker, M. v. d., Hoogeveen, H. and Velde, S. v. d. (2002), Combining column generation and

lagrangean relaxation to solve a single machine common due date problem, INFORMS
Journal on Computing, 14, 37-51.

Ali, A., Helgason, R., Kennington, J. and Lall, H. (1980), Computational comparison among

three multicommodity network flow algorithms, Operations Research, 28, 995-1000.

Alvelos, F. (2005), Multicommodity flows, webpage:
http://www.dps.uminho.pt/pessoais/falvelos/research/index.html (available on 26
January 2005).

Alvelos, F. and Carvalho, J. M. V. d. (2003), Comparing branch-and-price algorithms for the

unsplittable multicommodity flow problem, In proceedings of the INOC - International
Network Optimization Conference, Ed. Ben-Ameur, W. and Petrowski, A., Evry/Paris,
October 2003, pp. 7-12.

Alves, C. and Carvalho, J. M. V. d. (2003), A stabilized branch-and-price algorithm for integer

variable sized bin-packing problems, Universidade do Minho, Cadernos do DPS 14/2003.

Amor, H. B., Desrosiers, J. and Carvalho, J. M. V. d. (2003), Dual-optimal inequalities for

stabilized column generation, GERAD, Les Cahiers du GERAD G-2003-20.

Aragão, M. P. d. and Uchoa, E. (2003), Integer program reformulation for robust branch-and-

cut-and-price algorithms, working paper available at http://www.inf.puc-

rio.br/~uchoa/doc/cvpub.html on 26 January 2005.

Assad, A. A. (1978), Multicommodity network flows - A survey, Networks, 8, 37-91.

Bahiense, L., Maculan, N. and Sagastizábal, C. (2002), The volume algorithm revisited: relation

with bundle methods, Mathematical Programming, 94, 41-69.

Barahona, F. and Anbil, R. (2000), The volume algorithm: producing primal solutions with a

subgradient method, Mathematical Programming, 87, 385-399.

References

169

Bard, J. F. and Purnomo, H. W. (2004), Preference scheduling for nurses using column

generation, European Journal of Operational Research, 164, 510-534.

Barnhart, C. (1993), Dual-ascent methods for large-scale multicommodity flow problems, Naval
Research Logistics, 40, 305-324.

Barnhart, C., Hane, C. A., Johnson, E. L. and Sigismondi, G. (1995), A column generation and

partitioning approach for multicommodity flow problems, Telecommunications Systems,
3, 239-258.

Barnhart, C., Hane, C. A. and Vance, P. H. (2000), Using branch-and-price-and-cut to solve

origin-destination integer multicommodity flow problems, Operations Research, 48, 318-
326.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H. (1998),
Branch-and-price: column generation for solving huge integer programs, Operations
Research, 46, 316-329.

Barnhart, C. and Schneur, R. R. (1996), Air network design for express shipment service,
Operations Research, 44, 852-863.

Barnhart, C. and Sheffi, Y. (1993), A network-based primal-dual heuristic for the solution of

multicommodity network flow problems, Transportation Science, 27, 102-117.

Bazaraa, M. S. and Jarvis, J. J. (1977) Linear Programming and Network Flows, John Wiley
and Sons.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993) Nonlinear Programming - Theory and

Algorithms, John Wiley and Sons.

Beasley, J. E. (1995), Lagrangean relaxation, In Modern Heuristic Techniques for

Combinatorial Problems, Ed. Reeves, C., McGraw Hill.

Behzad, M., Chartrand, G. and Lesniak-Foster, L. (1979) Graphs & Digraphs, Wadsworth.

Belaidouni, M. and Ben-Ameur, W. (2003), A superadditive approach to solve the minimum

cost single path routing problem: preliminary results, In proceedings of the INOC -
International Network Optimization Conference, Ed. Ben-Ameur, W. and Petrowski, A.,
Evry/Paris, October 2003, pp. 67-71.

Benders, J. F. (1962), Partitioning procedures for solving mixed-variables programming

problems, Numerische Mathematik, 4, 238-252.

Bertsekas, D. (1999) Nonlinear programming, Athena Scientific, Belmont, Massachusetts.

Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E. and Wunderling, R. (2000), MIP: theory and

practice - closing the gap, In System Modelling and Optimization Methods, Theory and

Applications, Ed. Powell, M. J. D. and Scholtes, S., Kluwer, pp. 19-49.

Boland, N., Hamacher, H. W. and Lenzen, F. (2004), Minimizing beam-on time in cancer

radiation treatment using multileaf collimators, Networks, 43, 226-240.

Boland, N. and Surendonk, T. (2001), A Column Generation Approach to Delivery Planning

over Time with Inhomogeneous Service Providers and Service Interval Constraints,
Annals of Operations Research, 108, 143-156.

References

170

Bourjolly, J.-M., Laporte, G. and Mercure, H. (1997), A combinatorial column generation

algorithm for the maximum stable set problem, Operations Research Letters, 20, 21-29.

Bredström, D., Lundgren, J. T., Rönnqvist, M., Carlsson, D. and Mason, A. (2004), Supply
chain optimization in the pulp mill industry - IP models, column generation and novel

constraint branches, European Journal of Operational Research, 156, 2-22.

Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N. and Vanderbeck, F. (2004),
Comparison of bundle and classical column generation, INRIA, research report,
available at http://www.inria.fr/rrrt/rr-5453.html on 26 January 2005.

Butt, S. E. and Ryan, D. M. (1999), An optimal solution procedure for the multiple tour

maximum collection problem using column generation, Computers & Operations
Research, 26, 427-441.

Cappanera, P. and Frangioni, A. (2000), Embedding a bundle method in a branch and bound

framework: an application-oriented development, Università di Pisa, Dipartimento di
Informatica, TR-00-09.

Cappanera, P. and Frangioni, A. (2003), Symmetric and asymmetric parallelization of a cost-

decomposition algorithm for multi-commodity flow problems, INFORMS Journal on
Computing, 15, 369 -384.

Caprara, A., Lancia, G. and Ng, S.-K. (2001), Sorting permutations by reversals through

branch-and-price, INFORMS Journal on Computing, 13, 224-244.

Carolan, W. J., Hill, J. E., Kennington, J. K., Niemi, S. and Wichmann, S. J. (1990), An
empirical evaluation of the KORBX algorithms for military airlift applications,
Operations Research, 38, 240-248.

Carvalho, J. M. V. d. (1998), Exact solution of one-dimensional cutting stock problems using

column generation and branch-and-bound, International Transactions in Operational
Research, 5, 35-44.

Carvalho, J. M. V. d. (1999), Exact solution of bin-packing problems using column generation

and branch-and-bound, Annals of Operations Research, 86, 629-659.

Carvalho, J. M. V. d. (2000), Using extra dual cuts to accelerate column generation, to appear
in INFORMS Journal on Computing.

Castro, J. (2000), A specialized interior-point algorithm for multicommodity network flows,
SIAM Journal on Optimization, 10, 852-877.

Castro, J. and Frangioni, A. (2000), A paralell implementation of an interior-point algorithm for

multicommodity network flows, Universitat Politècnica de Catalunya, DR2000-06.

Castro, J. and Nabona, N. (1994), PPRN 1.0, User's Guide, available at http://www-

eio.upc.es/~jcastro on 26 January 2005.

Castro, J. and Nabona, N. (1996), An implementation of linear and nonlinear multicommodity

network flows, European Journal of Operational Research, 92, 37-53.

Ceselli, A. and Righini, G. (2002), A branch and price algorithm for the capacitated p-median

problem, to appear in Networks.

References

171

Chardaire, P. and Lisser, A. (2002a), Minimum-cost multicommodity flows, In Handbook of

Applied Optimization, Ed. Pardalos, P. M. and Resende, M. G. C., Oxford University
Press, pp. 404-422.

Chardaire, P. and Lisser, A. (2002b), Simplex and interior point specialized algorithms for

solving nonoriented multicommodity flow problems, Operations Research, 50, 260-276.

Chen, Z.-L. and Powell, W. B. (1999), A column generation based decomposition algorithm for

a parallel machine just-in-time scheduling problem, European Journal of Operational
Research, 116, 220-232.

Christiansen, M. and Fagerholt, J. (2002), Robust ship scheduling with multiple time windows,
Naval Research Logistics, 49, 611-625.

Christiansen, M. and Nygreen, B. (1998), Modelling path flows for a combined ship routing and

inventory management problem, Annals of Operations Research, 82, 391-412.

Costa, M.-C., Hertz, A. and Mittaz, M. (2002), Bounds and heuristics for the shortest
capacitated paths problem, Journal of Heuristics, 8, 449-465.

Crainic, T. G., Frangioni, A. and Gendron, B. (2001), Bundle-based relaxation methods for

multicommodity capacitated fixed charge network design, Discrete Applied Mathematics,
112, 73-99.

Crowder, H. P., Johnson, E. L. and Padberg, M. W. (1983), Solving large scale 0-1 linear
programming problems, Operations Research, 31, 803-834.

Dantzig, G. B. (1963) Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey.

Dantzig, G. B. and Wolfe, P. (1960), Decomposition principle for linear programs, Operations
Research, 8, 101-111.

Degraeve, Z. and Jans, R. (2003), Improved lower bounds for the capacitated lot sizing problem

with set up times, Erasmus Research Institute of Management, ERS-2003-026-LIS.

Desaulniers, G., Desrosiers, J. and Solomon, M. M. (2001), Accelerating strategies in column

generation methods for vehicle routing and crew scheduling problems, In Essays and
surveys in metaheuristics, Ed. Ribeiro, C. C. and Hansen, P., Kluwer, pp. 309-324.

Desaulniers, G., Lavigne, J. and Soumis, F. (1998), Multi-depot vehicle scheduling problems

with time windows and waiting costs, European Journal of Operational Research, 111,
479-494.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992), A new optimization algorithm for the

vehicle routing problem with time windows, Operations Research, 40, 342-354.

Desrochers, M. and Soumis, F. (1989), A column generation approach to the urban transit crew

scheduling problem, Transportation Science, 23, 1-13.

Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F. (1995), Time constrained routing

and scheduling, In Network Routing, Ed. al., M. O. B. e., Elsevier Science, Amsterdam,
pp. 35-139.

Desrosiers, J., Soumis, F. and Desrochers, M. (1984), Routing with time windows by column

generation, Networks, 14, 545-565.

References

172

Detlefsen, N. K. and Wallace, S. W. (2002), The simplex algorithm for multicommodity

networks, Networks, 39, 15-28.

Ebem-Chaime, M., Tovey, C. A. and Ammons, J. C. (1996), Circuit partitioning via set
partitioning and column generation, Operations Research, 44, 65-76.

Elhedhli, S. and Goffin, J.-L. (2001), The integration of an interior-point cutting-plane method

within a branch-and-price algorithm, GERAD, Les Cahiers du GERAD G-2001-19.

Evans, J. R. (1977), Some network flow models and heuristics for multiproduct production and

inventory planning, AIIE Transactions, 75-81.

Eveborn, P. and Rönnqvist, M. (2004), Scheduler - a system for staff planning, Annals of
Operations Research, 128, 21-45.

Fahle, T., Junker, U., Karisch, S. E., Kohl, N., Sellmann, M. and Vaaben, B. (2002), Constraint

Programming Based Column Generation for Crew Assignment., Journal of Heuristics, 8,
59-81.

Farvolden, J. M., Powell, W. B. and Lustig, I. J. (1993), A primal partitioning solution for the

arc-chain formulation of a multicommodity network flow problem, Operations Research,
41, 669-693.

Fisher, M. L. (1981), The lagrangian relaxation method for solving integer programming

problems, Management Science, 27, 1-18.

Fleischer, L. K. (2000), Approximating Fractional Multicommodity Flow Independent of the

Number of Commodities, SIAM Journal on Discrete Mathematics, 13, 505-520.

Ford, L. R. and Fulkerson, D. R. (1958), A suggested computation for maximal multicommodity

network flows, Management Science, 5, 97-101.

Ford, L. R. and Fulkerson, D. R. (1962) Flows in Networks, Princeton University Press.

Frangioni, A. (1997), Dual-Ascent Methods and Multicommodity Flow Problems, Ph. D. Thesis,
Dipartimento di Informatica, Università di Pisa-Genova-Udine.

Frangioni, A. (2002), Generalized Bundle Methods, SIAM Journal on Optimization, 13, 117-
156.

Frangioni, A. (2004), About lagrangian methods in integer optimization, to appear in Annals of
Operations Research.

Frangioni, A. (2005), Multicommodity flow problems, webpage:
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html (available on 26
January 2005).

Frangioni, A. and Gallo, G. (1999), A bundle type dual-ascent approach to linear
multicommodity min cost flow problems, INFORMS Journal on Computing, 11, 370-393.

Freling, R., Huisman, D. and Wagelmans, A. P. M. (2003), Models and algorithms for

integration of vehicle and crew scheduling, Journal of Scheduling, 6, 63-85.

Gallo, G. and Pallottino, S. (1988), Shortest path algorithms, Annals of Operations Research,
13, 3-79.

References

173

Gamache, M., Soumis, F., Marquis, G. and Desrosiers, J. (1999), A column generation

approach for large-scale aircrew rostering problems, Operations Research, 47, 247-263.

Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability, A Guide to the Theory of

NP-Completeness, W. H. Freeman and Company.

Gendron, B., Crainic, T. G. and Frangioni, A. (1999), Multicommodity capacitated network

design, In Telecommunications Network Planning, Ed. Soriano, P. and Sansòn, B.,
Kluwer Academic Publisher, pp. 1-19.

Geoffrion, A. M. (1974), Lagrangean relaxation for integer programming, Mathematical
Programming Study, 2, 82-114.

Gilmore, P. C. and Gomory, R. E. (1961), A linear programming approach to the cutting stock

problem, Operations Research, 9, 849-859.

Gilmore, P. C. and Gomory, R. E. (1963), A linear programming approach to the cutting stock

problem - part II, Operations Research, 11, 863-888.

Goffin, J. L., Gondzio, J., Sarkissian, R. and Vial, J. P. (1996), Solving nonlinear
multicommodity flow problems by the analytic center cutting plane method, Mathematical
Programming, 76, 131-154.

Goffin, J. L., Haurie, A. and Vial, J. P. (1992), Decomposition and nondifferentiable

optimization with the projective algorithm, Management Science, 38, 284-302.

Goffin, J.-L., Haurie, A., Vial, J.-P. and Zhu, D. L. (1993), Using central prices in

decomposition of linear programs, European Journal of Operational Research, 64, 393-
409.

Goffin, J.-L. and Vial, J.-P. (1999), Convex nondifferentiable optimization: a survey focussed on

the analytic center cutting plane method, HEC/Logilab, Technical Report 99.02.

Goldberg, A. V., Oldham, J. D., Plotkin, S. and Stein, C. (1998), An implementation of a

combinatorial approximation algorithm for minimum-cost multicommodity flow, In
proceedings of the 6th International IPCO Conference, Ed. Bixby, R. E., Boyd, E. A. and
Ríos-Mercado, R. Z., Houston, Texas, June 1998, pp. 338-352.

Gu, Z., Nemhauser, G. L. and Savelsbergh, M. W. P. (1998), Lifted cover inequalities for 0-1
integer programs: computation, INFORMS Journal on Computing, 10, 427-437.

Gu, Z., Nemhauser, G. L. and Savelsbergh, M. W. P. (1999), Lifted cover inequalities for 0-1
integer programs: complexity, INFORMS Journal on Computing, 11, 117-123.

Guignard, M. and Kim, S. (1987), Lagrangean decomposition: a model yielding stronger

lagrangean bounds, Mathematical Programming, 39, 215-228.

Günlük, O., Ladanyi, L. and Vries, S. d. (2002), A branch-and-price algorithm and new test

problems for spectrum auctions, IBM, research report RC22530.

Haase, K., Desaulniers, G. and Desrosiers, D. (2001), Simultaneous vehicle and crew

scheduling in urban mass transit systems, Transportation Science, 35, 286-303.

Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L. and Sigismondi, G.
(1995), The fleet assignment problem: solving a large-scale integer program,
Mathematical Programming, 70, 211-232.

References

174

Held, M. and Karp, R. M. (1970), The traveling-salesman problem and minimum spanning

trees, Operations Research, 18, 1138-1167.

Held, M. and Karp, R. M. (1971), The traveling-salesman problem and minimum spanning

trees: Part II, Mathematical Programming, 1, 6-25.

Held, M., Wolfe, P. and Crowder, H. P. (1974), Validation of subgradient optimization,
Mathematical Programming, 6, 62-88.

Henningsson, M., Holmberg, K., Rönnqvist, M. and Värbrand, P. (2002), Ring network design

by lagrangean based column generation, Telecommunications Systems, 21, 301-318.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993a) Convex analysis and minimisation algorithms

I, Springer-Verlag.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993b) Convex analysis and minimisation algorithms

II, Springer-Verlag.

Hoffman, K. L. (2000), Combinatorial optimization: Current successes and directions for the

future, Journal of Computational and Applied Mathematics, 124, 341-360.

Holmberg, K. and Yuan, D. (2000), A Lagrangean heuristic based branch-and-bound approach
for the capacitated network design problem, Operations Research, 48, 461-481.

Holmberg, K. and Yuan, D. (2001), A multicommodity network flow problem with side

constraints on paths solved by column generation, Department of Mathematics,
Linköpings Universitet, in Linköping Studies in Science and Technologie, Dissertations
No. 682.

Hopcroft, J. and Tarjan, R. (1974), Efficient planarity testing, Journal of the ACM, 21, 549-568.

Horowitz, E. and Sahni, S. (1974), Computing partitions with applications to the knapsack

problem, Journal of the ACM, 21, 277-292.

Hu, T. C. (1963), Multicommodity network flows, Operations Research, 11, 344-360.

ILOG (1999) CPLEX 6.5, User's Manual.

ILOG (2002) CPLEX 8.0, User's Manual.

Jaumard, B., Hansen, P. and Aragão, M. P. d. (1991), Column generation methods for

probabilistic logic, ORSA Journal on Computing, 3, 135-148.

Jaumard, B., Marcotte, O., Meyer, C. and Vovor, T. (2002), Erratum to “Comparison of column

generation models for channel assignment in cellular networks”, Discrete Applied
Mathematics, 118, 299-322.

Jaumard, B., Semet, F. and Vovor, T. (1998), A generalized linear programming model for

nurse scheduling, European Journal of Operational Research, 107, 1-18.

Jeong, G., Lee, K., Park, S. and Park, K. (2002), A branch-and-price algorithm for the Steiner

tree packing problem, Computers and Operations Research, 29, 221-241.

Johnson, E. L., Nemhauser, G. L. and Savelsbergh, M. W. P. (2000), Progress in linear
programming based branch-and-bound algorithms: an exposition, INFORMS Journal on
Computing, 12, 2-23.

References

175

Jones, K. L., Lustig, I. J., Farvolden, J. M. and Powell, W. B. (1993), Multicommodity network

flows: The impact of formulation on decomposition, Mathematical Programming, 62, 95-
117.

Jørgensen, D. G. and Meyling, M. (2002), A branch-and-price algorithm for switch-box routing,
Networks, 40, 13-26.

Jünger, M. and Thienel, S. (2000), The ABACUS system for branch-and-cut-and-price

algorithms in integer programming and combinatorial optimization, Software - Practice
& Experience, 30.

Kallehauge, B., Larsen, J. and Madsen, O. B. G. (2001), Lagrangean duality applied on vehicle
routing with time windows, Technical University of Denmark, IMM-TR-2001-9.

Kang, S., Malik, K. and Thomas, L. J. (1999), Lotsizing and scheduling on parallel machines

with sequence-dependent setup costs, Management Science, 45, 272-289.

Kapoor, S. and Vaidya, P. M. (1996), Speeding up Karmarkar's algorithm for multicommodity

flows, Mathematical Programming, 73, 111-127.

Kelley, J. E. (1960), The cutting-plane method for solving convex programs, Journal of the
SIAM, 8, 703-712.

Kennington, J. and Shalaby, M. (1977), An effective subgradient procedure for minimal cost

multicommodity flow problems, Management Science, 23, 994-1004.

Kennington, J. L. (1978), Survey of linear cost multicommodity network flows, Operations
Research, 26, 209-236.

Kennington, J. L. and Helgason, R. V. (1980) Algorithms for network programming, Wiley,
New York.

Klingman, D., Napiers, A. and Stutz, J. (1974), NETGEN: A program for generating large scale

capacitated assignment, tranportation, and minimum cost flow network problems,
Management Science, 20, 814-821.

Klose, A. and Drexl, A. (2002), A partitioning and column generation approach for the

capacitated facility location problem, University of St. Gallen, working paper available at
http://www.wiwi.uni-wuppertal.de/Publikatio.626.0.html on 26 January 2005.

Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M. and Soumis, F. (1999), 2-path cuts
for the vehicle routing problem with time windows, Transportation Science, 33, 101-116.

Kolliopoulos, S. G. and Stein, C. (1999), Experimental evaluation of approximation algorithms

for single-source unsplittable flow, In proceedings of the 7th International Integer
Programming and Combinatorial Optimization Conference, Ed. Cornuéjols, G., Burkard,
R. E. and Woeginger, G. J., Graz, Austria, pp. 328-344.

Larsson, T., Patriksson, M. and Rydergren, C. (2004), A column generation procedure for the

side constrained traffic equilibrium problem, Transportation Research Part B, 38, 17-38.

Larsson, T. and Yuan, D. (2004), An augmented lagrangian algorithm for large scale

multicommodity routing, Computational Optimization and Applications, 27, 187-215.

Lee, T. and Park, S. (2001), An integer programming approach to the time slot assignment

problem in SS/TDMA systems with intersatellite links, European Journal of Operational

References

176

Research, 135, 57-66.

Lemaréchal, C. (1989), Nondifferentiable optimization, In Optimization, Ed. Nemhauser, G. L.,
Kan, A. H. G. R. and Todd, M. J., Elsevier Science, Amsterdam.

Lemaréchal, C. (2003), The omnipresence of Lagrange, 4OR Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1, 7-25.

Lemaréchal, C., Nemirovskii, A. and Nesterov, Y. (1995), New variants of bundle methods,
Mathematical Programming, 69, 111-147.

Liebers, A. (2001), Planarizing Graphs - A Survey and Annotated Bibliography, Journal of
Graphs Algorithms and Applications, 5, 1-74.

Lingaya, N., Cordeau, J.-F., Desaulniers, G., Desrosiers, J. and Soumis, F. (2002), Operational

car assignment at VIA Rail Canada, Transportation Research Part B, 36, 755-778.

Lorena, L. A. N. and Senne, E. L. F. (2004), A column generation approach to capacitated p-

median problems, Computers and Operations Research, 31, 863-876.

Lübbecke, M. E. and Desrosiers, J. (2002), Selected topics in column generation, GERAD, Les
Cahiers de GERAD G-2002-64.

Lübbecke, M. E. and Zimmermann, U. T. (2003), Engine routing and scheduling at industrial
in-plant railroads, to appear in Transportation Science, to appear.

Magnanti, T. L., Shapiro, J. F. and Wagner, M. H. (1976), Generalized linear programming

solves the dual, Management Science, 22, 1195-1203.

Magnanti, T. L. and Wong, R. T. (1984), Network design and transportation planning: Models

and algorithms, Transportation Science, 18, 1-55.

Mamer, J. W. and McBride, R. D. (2000), A decomposition-based pricing procedure for large-

scale linear programs: an apllication to the linear multicommodity flow problem,
Management Science, 46, 693-709.

Marchand, H., Martin, A., Weismantel, R. and Wolsey, L. (2002), Cutting planes in integer and

mixed integer programming, Discrete Applied Mathematics, 123, 397-446.

Marsten, R. E., Hogan, W. W. and Blankenship, J. W. (1975), The boxstep method for large-

scale optimization, Operations Research, 23, 389-405.

Martin, R. K. (1999) Large Scale Linear and Integer Optimization, A Unified Approach,

Kluwer Academic Publishers.

Martins, I., Constantino, M. and Borges, J. G. (2003), A column generation approach for

solving a non-temporal forest harvest model with spatial structure constraints, to appear
in European Journal of Operational Research.

McBride, R. D. (1998), Progress made in solving the multicommodity flow problem, SIAM
Journal on Optimization, 8, 947-955.

McBride, R. D. and Mamer, J. W. (1997), Solving multicommodity flow problems with a primal

embedded network simplex algorithm, INFORMS Journal on Computing, 9, 154-163.

McBride, R. D. and Mamer, J. W. (2001), Solving the undirected multicommodity flow problem

References

177

using a shortest path-based pricing algorithm, Networks, 38, 181-188.

Medhi, D. (1994), Bundle-based decomposition for large-scale convex optimization: Error

estimate and application to block-angular linear programs, Mathematical Programming,
66, 79-101.

Mehlhorn, K. and Näher, S. (1999) LEDA - A Platform for Combinatorial and Geometric

Computing, Cambridge University Press, Cambridge.

Mehrotra, A., Murphy, K. E. and Trick, M. A. (2000), Optimal shift scheduling: a branch-and-

price approach, Naval Research Logistics, 47, 185-200.

Mehrotra, A., Natraj, N. R. and Trick, M. A. (2001), Consolidating maintenance spares,
Computational Optimization and Applications, 18, 251-272.

Mehrotra, A. and Trick, M. A. (1996), A column generation approach for graph coloring,
INFORMS Journal on Computing, 8, 344-354.

Mehrotra, A. and Trick, M. A. (1998), Cliques and clustering: A combinatorial approach,
Operations Research Letters, 22, 1-12.

Merle, O. d., Villeneuve, D., Desrosiers, J. and Hansen, P. (1999), Stabilized column

generation, Discrete Mathematics, 194, 229-237.

Minoux, M. (1986) Mathematical Programming Theory and Algorithms, John Wiley and Sons.

Minoux, M. (1989), Network synthesis and optimum network design problems: Models, solution

methods and applications, Networks, 19, 313-360.

Murty, K. G. (1983) Linear Programming, John Wiley and Sons.

Nemhauser, G. L. (1994), The age of optimization: solving large-scale real-world problems,
Operations Research, 42, 5-13.

Nemhauser, G. L. and Wolsey, L. A. (1999) Integer and Combinatorial Optimization, John
Wiley and Sons.

Ouaja, W. and Richards, B. (2003), A hybrid solver for optimal routing of bandwidth-

guaranteed traffic, In proceedings of the International Network Optimization Conference,
Ed. Ben-Ameur, W. and Petrowski, A., Evry - Paris, pp. 441-447.

Ouaja, W. and Richards, B. (2004), A hybrid multicommodity routing algorithm for traffic

engineering, Networks, 43, 125-140.

Ouorou, A., Mahey, P. and Vial, J. P. (2000), A survey of algorithms for convex multicommodity

flow problems, Management Science, 46, 126-147.

Padberg, M. W. and Rinaldi, G. (1991), A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems, SIAM Review, 33, 60-100.

Park, K., Kang, S. and Park, S. (1996), An integer programming approach to the bandwidth

packing problem, Management Science, 42, 1277-1291.

Park, S., Kim, D. and Lee, K. (2003), An integer programming approach to the path selection

problems, In proceedings of the International Network Optimization Conference, Ed.
Ben-Ameur, W. and Petrowski, A., Evry - Paris, pp. 448-453.

References

178

Parker, M. and Ryan, J. (1994), A column generation algorithm for bandwidth packing,
Telecommunications Systems, 2, 185-195.

Persson, J. A. and Göthe-Lundgren, M. (2005), Shipment planning at oil refineries using

column generation and valid inequalities, European Journal of Operational Research,
163, 631-652.

Péton, O. and Vial, J.-P. (2001), A tutorial on ACCPM: user’s guide for version 2.01,
University of Geneva, HEC/Logilab.

Pimentel, C., Alvelos, F. and Carvalho, J. M. V. d. (2004), A branch-and-price algorithm for

the multi-item capacitated lot-sizing problem with setup times, presented in Optimization
2004, Lisbon, July 2004.

Pinar, M. C. and Zenios, S. A. (1994), A data-level parallel linear-quadratic penalty algorithm

for multicommodity network flows, ACM Transactions on Mathematical Software, 20,
531-552.

Ralphs, T. K. and Ladányi, L. (2001), COIN/BCP User's Manual, available at
http://www.coin-or.org/ on 26 January 2005.

Ralphs, T. K. and Ladányi, L. (2003), SYMPHONY 4.0 User’s Manual, available at
http://www.branchandcut.org/SYMPHONY/ on 26 January 2005.

Ribeiro, C. C., Minoux, M. and Penna, M. C. (1989), An optimal column-generation-with-

ranking algorithm for very large scale set partitioning problems in traffic assignment,
European Journal of Operational Research, 41, 232-239.

Ribeiro, C. C. and Soumis, F. (1994), A column generation approach to the multiple-depot

vehicle scheduling problem, Operations Research, 42, 41-52.

Rosen, J. B. (1964), Primal partitioning programming for block diagonal matrices, Numerische
Mathematik, 6, 250-260.

Roy, T. J. v. (1986), A cross decomposition algorithm for capacitated facility location,
Operations Research, 34, 145-163.

Sankaran, J. K. (1995), Column generation applied to linear programs in course registration,
European Journal of Operational Research, 87, 328-342.

Sarin, S. C. and Aggarwal, S. (2001), Modeling and algorithmic development of a staff

scheduling problem, European Journal of Operational Research, 128, 558-569.

Savelsbergh, M. (1997), A branch-and-price algorithm for the generalized assignment problem,
Operations Research, 45, 831-841.

Savelsbergh, M. and Sol, M. (1998), DRIVE: Dynamic routing of independent vehicles,
Operations Research, 46, 474-490.

Saviozzi, G. (1986), Advanced start for multicommodity network flow problem, Mathematical
Programming Study, 26, 221-224.

Schneur, R. R. and Orlin, J. B. (1998), A scaling algorithm for the multicommodity flow

problems, Operations Research, 46, 231-246.

Schultz, G. L. and Meyer, R. R. (1991), An interior point method for block angular

References

179

optimization, SIAM Journal on Optimization, 1, 583-602.

Senne, E. L. F., Lorena, L. A. N. and Pereira, M. A. (2005), A branch-and-price approach to p-
median location problems, Computers and Operations Research, 32, 1655-1664.

Shapiro, F. (1979), A survey of lagrangean techniques for discrete optimization, Annals of
Discrete Mathematics, 5, 113-138.

Shaw, D. X. (1999), A unified limited column generation approach for facility location

problems on trees, Annals of Operations Research, 87, 363-382.

Shetty, B. and Muthukrishnan, R. (1990), A parallel projection for the multicommodity network

model, Journal of the Operational Research Society, 41, 837-842.

Soroush, H. and Mirchandani, P. B. (1990), The stochastic multicommodity flow problem,
Networks, 20, 121-155.

Soumis, F. (1997), Decomposition and column generation, In Annotated Bibliographies in
Combinatorial Optimization, Ed. Dell'Amico, M., Maffioli, F. and Martello, S., John
Wiley and Sons.

Sutter, A., Vanderbeck, F. and Wolsey, L. (1998), Optimal placement of add/drop multiplexers:

heuristic and exact algorithms, Operations Research, 46, 719-728.

Thienel, S. (1995), ABACUS - A Branch-And-CUt System, Ph. D. Thesis, University of
Cologne.

Tombus, Ö. and Bilgiç, T. (2004), A column generation approach to the coalition formation

problem in multi-agent systems, Computers and Operations Research, 31, 1635-1653.

Tomlin, J. A. (1966), Minimum-cost multicommodity network flows, Operations Research, 14,
45-51.

Vance, P. H. (1998), Branch-and-price algorithms for the one-dimensional cutting stock

problem, Computational Optimization and Applications, 9, 211-228.

Vance, P. H., Barnhart, C., Johnson, E. L. and Nemhauser, G. L. (1994), Solving binary cutting
stock problems by column generation and branch-and-bound, Computational
Optimization and Applications, 3, 111-130.

Vance, P. H., Barnhart, C., Johnson, E. L. and Nemhauser, G. L. (1997), Airline crew

scheduling: A new formulation and decomposition algorithm, Operations Research, 45,
188-200.

Vanderbeck, F. (1998), Lot-sizing with start-up times, Management Science, 44, 1409-1425.

Vanderbeck, F. (1999), Computational study of a column generation algorithm for bin packing

and cutting stock problems, Mathematical Programming, 86, 565-594.

Vanderbeck, F. (2000), On Dantzig-Wolde decomposition in integer programming and ways to

perform branching in a branch-and-price algorithm, Operations Research, 48, 111-128.

Vanderbeck, F. (2005), Implementing mixed integer column generation, In Column Generation,
Ed. Desaulniers, G., Desrosiers, J. and Solomon, M. M., Kluwer, to appear.

Vanderbeck, F. and Wolsey, L. A. (1996), An exact algorithm for IP column generation,

References

180

Operations Research Letters, 19, 151-159.

Villeneuve, D., Desrosiers, J., Lübbecke, M. E. and Soumis, F. (2003), On compact

formulations for integer programs solved by column generation, Technische Universitat
Berlin, Institut für Mathematik, 2003/25.

Wang, Y. and Wang, Z. (1999), Explicit routing algorithms for internet traffic engineering, In
proceedings of the International Conference on Computer Communication Networks, Ed.
Boston, USA, pp. 582-588.

Wentges, P. (1997), Weighted Dantzig-Wolfe decomposition for linear mixed-integer

programming, International Transactions in Operational Research, 4, 151-162.

Wilhelm, W. E. (1999), A column-generation approach for the assembly system design problem

with tool changes, The International Journal of Flexible Manufacturing Systems, 11, 177-
205.

Wilhelm, W. E. (2001), A technical review of column generation in integer programming,
Optimization and Engineering, 2, 159-200.

Williams, H. P. (1999) Model Building in Mathematical Programming, John Wiley and Sons.

Wolfe, P. (1970), Convergence theory in nonlinear programming, In Integer and Nonlinear

Programming, Ed. Abadie, J., North-Holland.

Wolsey, L. (2002), Soving multi-item lot-sizing problems with a MIP solver using classification

and reformulation, Management Science, 48, 1587-1602.

Wolsey, L. A. (1998) Integer Programming, John Wiley and Sons.

Yan, S. and Chang, J.-C. (2002), Airline cockpit crew scheduling, European Journal of
Operational Research, 136.

Yan, S., Tung, T.-T. and Tu, Y.-P. (2002), Optimal construction of airline individual crew

pairings, Computers and Operations Research, 29, 341-363.

Yuan, D. (2001), An annotated bibliography in communication network design and routing,
Department of Mathematics, Linköpings Universitet, in Linköping Studies in Science and
Technologie, Dissertations No. 682.

Zahorik, A., Thomas, L. J. and Trigeiro, W. W. (1984), Network programming models for

production scheduling in multi-stage, multi-item capacitated systems, Management
Science, 30, 308-325.

 A1

Appendix −−−− ADDing Details

decmodel functions 2

Dimensions and information about variables 2

Linking constraints 2

Extra variables 3

Convextity constraints 3

Subproblem definition 4

Parameters 5

General 6

Tree 7

First restricted master problem (RMP) 8

RMP optimisation 8

Columns management 9

Convexity rows management 9

Linking rows management 10

Subproblem 10

Lifted cover inequalities (LCIs) 11

Tolerances 12

Results 13

Deriving the MySubproblem class 14

Member data to be used by the derived class 14

Member virtual functions related with implementing a specific subproblem solver 14

Member virtual functions related with specific branching rules 15

APPENDIX − ADDing Details

A2

decmodel functions

Dimensions and information about variables

void SetDimensions (int NumSPs, int NumVars, int NumArts, int NumExtraVars)

Sets the number of subproblems, the number of variables of each subproblem, the number

of artificial variables to be used and the number of extra variables. Extra variables are linear

variables that do not appear in the subproblem. Artificial variables can appear in the convexity

and/or the original constraints of the master problem. The number of extra variables includes the

number of artificials. Artificial variables are in the first NumArts positions of NumExtraVars. In

the example of Figure 6.3, page 158 of the main text, the original model has 10 subproblems,

each with 20 variables. The number of artificial variables to be used is 30. There are no extra

variables.

void SetTypeVars (int NumLinVars, int NumBinVars, int NumIntVars)

Sets the number of linear variables, binary variables and general integer variables. The

order is important: first NumLinVars are linear, the next NumBinVars are binary and the next

NumIntVars are general integer ones. Note that NumLinVars + NumBinVars + NumIntVars must

be equal to aNumVars defined in the previous method. In the example of Figure 6.3, page 158

of the main text, the original model has 10 binary variables.

void SetObjVars (double ** ObjVars)

Sets the coefficients of the variables in the objective function, ObjVars[k][j] contains the

coefficient of the (j+1)-th variable of the (k+1)-th subproblem.

Linking constraints

void SetLink (int NumLink, char * SenseLink, int * RhsLink, bool * PresentLink)

Sets the number, sense, and right-hand side of linking constraints. The sense of each

constraint may be 'L', 'E' or 'G'. The last argument is used to tell which linking constraints will

be kept in all (restricted) master problems. If PresentLink[i]==true then the (i+1)-th linking

constraint will be present in the first (restricted) master problem (RMP) and never deleted. If

PresentLink[i]==false then the (i+1)-th linking will not be present in the first RMP and may be

deleted. This last option can be overriden by the input parameter ParDynLink.

void SetDEqual (bool DEqual)

If DEqual==true then D1
=...=D

h
=D.

APPENDIX − ADDing Details

A3

If this function is not called it is assumed that all D matrices are different. After setting

DEqual to true, function SetD(...) (and not SetDk(...)) must be called.

void SetD (int *DBeg, int *DInd, double *DVal, int DNnz)

Defines the matrix D in the case D=D
1
=...=D

h. Must be called after a call to

SetDEqual(true).

DBeg is an array of length NumVars where DBeg[j] contains the first index in DInd and

DVal related with the (j+1)-th variable. DInd and DVal must contain the indices and values,

respectively, in the original rows (excluding constraints related with subproblem − original

model −, or convexity constrains − master model). DNnz is the length of the arrays DInd and

DVal.

void SetDk (int ** DkBeg, int ** DkInd, double ** DkVal, int * DkNnz)

Same as SetD(...) but for the case where the D matrices are not all equal. For each

subproblem k, the meaning of the arguments is equivalent to the one explained in SetD(...).

Extra variables

void SetE (int * EBeg, int * EInd, double * EVal, int ENnz)

Sets the E matrices. EBeg is an array of length NumExtraVars where EBeg[j] contains the

first index in EInd and EVal related with the (j+1)th extra variable. EInd and EVal must contain

the indices and values, respectively, in the rows of the master (including convexity constraints,

which allows using artificial variables in those constraints). ENnz is the length of the arrays

EInd and EVal.

void SetObjExtraVars (double * ObjExtraVars)

Sets the coefficients of the extra variables in the objective function. ObjExtraVars[j]

contains the coefficient of the (j+1)-th extra variable.

void SetArtCost (double aArtCost)

Sets the artificial cost value. An artificial cost is needed for keeping feasibility of the

master in all nodes of the tree, since a hidden artificial variable is used there.

Convexity constraints

void SetConv (int NumConv, char * SenseConv = NULL, int * RhsConv = NULL,

bool * PresentConv = NULL)

Sets the number, sense, and right-hand side of convexity constraints. The sense of each

may be 'L', 'E' or 'G'. The last argument is used to define which convexity constraints will be

kept in all (restricted) master problems. If PresentConv[i]==true then the (i+1)-th convexity

constraint will be present in the first (restricted) master problem (RMP) and never deleted. If

APPENDIX − ADDing Details

A4

PresentConv[i]==false then the (i+1)-th linking will not be present in the first RMP and may

be deleted. This last option can be overriden by the input parameter ParDynConv (defined in the

next section).

Subproblem definition

void SetSubproblem (int * NumConstraintsk, char ** Sensek, double ** Rhsk, int

** AkBeg, int ** AkInd, double ** AkVal, int * AkNnz)

Defines the default subproblem(s). That is, the yellow blocks in Figure 6.1, page 155 of

the main text.

void SetSubproblem (subproblem *MySubproblem)

If a specific subproblem solver or specific branching rules are to be used, an object of a

class derived from the base class subproblem is passed by calling this function. In this case, it is

up to the MySubproblem object to know about the model he will be asked to solve.

APPENDIX − ADDing Details

A5

Parameters

In order to use ADDing a parameters input file must be given. Each line of that file may

be:

• Empty.

• Start with * (comment line).

• Of the format \t* (comment line).

• Of the format Value \tParameter.

The Value field gives the value for the parameter specified by the field Parameter. Any

missing parameter will take its default value. An example of a parameter file is given in Figure

A.1.

 * General *

 ParMaxTime

false ParOnlyRoot

 ParWriteSolution

 * TREE *

 ParMaxOptimisedNodes

 ParTypeSearch

 ParUpBranchFirst

-1 ParTypeBranch

 ParRestartIterCount

 ParRootHeur

 * FIRST RMP *

true ParExtraSetFirstRMP

false ParSPFirstRMP

10 ParHeurFirstRMP

 * RMP OPTIMISATION *

 ParRMPSolver

20 ParIterExactRMP

.001 ParMaxIterRMP

 * COLS MANAGEMENT *

2 ParColsRemove

APPENDIX − ADDing Details

A6

10 ParIterColsRemove

 ParColsMaxInactivity

 * CONV ROWS MANAGEMENT *

false ParDynConv

 ParConvRemove

 ParIterConvRemove

 ParConvMaxInactivity

 ParIterConvInsert

 * LINK ROWS MANAGEMENT *

true ParDynLink

 ParLinkRemove

 ParIterLinkRemove

 ParLinkMaxInactivity

10000 ParIterLinkInsert

 * SUBPROBLEM *

 ParSolveSPHeur

 ParExtraHeurSols

 ParIterExtraHeurSols

 ParNumSPSolsAsked

 * LCI CUTS *

 ParTypeLCICuts

 ParDepthLCICuts

 ParFirstLCICuts

 ParFreqLCICuts

 * TOLERANCES *

 ParTolVar

 ParTolObj

Figure A.1 Example of a parameters file.

We now describe the meaning of each parameter.

General

int ParMaxTime

Maximum time, expressed in seconds, allowed to solve the problem.

A negative value means no time limit is set. Possible values: any positive integer.

Default: 3600.

APPENDIX − ADDing Details

A7

bool ParOnlyRoot

Specifies wether only the root is to be solved or not.

Possible values: “true”, only the root node is solved; “false”, the integer problem is

solved. Default: “false”.

bool ParWriteSolution

Defines if the obtained solution should be written to a file.

Possible values: “true”, the obtained solution (in the original space) is written in a text file

with the same name as the results file, with the extension 'sol'; “false”, the obtained solution is

not written. Default: “false”.

int ParMaxOptimisedNodes

Limit to the number of optimised nodes of the search tree. A non-positive value means no

limit is imposed. Default: 0.

Tree

int ParTypeSearch

Search tree strategy. Possible values: 1, depth first; 2, breadth first; 3, best first; 4, depth

until an incumbent is found and then best; 5, depth when branching occurs, best in the other

situations. Default: 5.

int ParTypeBranch

Branching rule. For every default branching rule, binary variables have priority over

general integer ones. Specific branching rules can be implemented in the class MySubproblem.

Those should be assigned with negative integer values. Possible values: 1, fractional variable

with fractional part closest to 0.5; 2, first fractional variable found; 3, fractional variable with

fractional part closest to 1; 4, fractional variable with fractional part closest to 0. Default: 1.

bool ParUpBranchFirst

Specifies if priority should be given to up branches (last branching constraint of type “≥”)

or down branches (“≤”). Possible values: “true”, first up branch is chosen before the down

branch; “false”, first down branch is chosen before the up branch. Default: “false”.

bool ParRestartIterCount

Defines how the iteration count is performed in the nodes of the tree, other than the root.

If this parameter takes value “true” then the iteration counter of column generation is reset in

every node of the tree. That means that, for example, if the columns removal is performed every

10th iteration and all the nodes of the tree are solved in less than 10 iterations then no columns

removal is performed in the tree. The same applies to all parameters that depend on the iteration

count. Possible values: “true” and “false”. Default: “false”.

APPENDIX − ADDing Details

A8

bool ParRootHeur

Defines wether a RMP heuristic is used at the root or not. The RMP heuristic consists in

solving with Cplex the MIP associated with the last RMP obtained. Currently, the time spent in

Cplex is limited to 60 seconds (more elaborated alternatives will be explored in a near future).

Possible values: “true” and “false”. Default: “false”.

First restricted master problem (RMP)

bool ParExtraSetFirstRMP

Controls if an extra set of extreme points and/or rays are asked to the subproblem in the

construction of the first RMP. The availability of those additional columns are of the

responsibility of the class MySubproblem. Possible values: “true” and “false”. Default: “false”.

bool ParSPFirstRMP

Controls if the first RMP includes columns associated with the optimal solutions of the

subproblems solved with the original costs. Possible values: “true” and “false”. Default: “false”.

char* ParHeurFirstRMP

Heuristics must be implemented in the MySubproblem class. This parameter specifies

which ones will be used in constructing the first RMP. Possible values: "-", do not use

heuristics; any binary string, for instance “01010” means that the second and fourth heuristics

will be used in constructing the first RMP (in this example, if MySubproblem only provides e. g.

two heuristics, of course the fourth will not be used). Default: "1".

RMP optimisation

char* ParRMPSolver

Solver of the RMPs. Possible values: “Cplex_P”, Cplex primal; “Cplex_D”, Cplex dual;

“Cplex_N”, Cplex network followed by dual; “Cplex_B”, Cplex barrier. Default: “Cplex_D”.

int ParIterExactRMP

ADDing implements a non-standard procedure to deal with decompositions where the

RMPs are particularly difficult to solve. The procedure consists in not solving the RMP exactly,

but only performing a given number of simplex iterations (or finding a feasible dual solution if

that number of iterations was not sufficient to find one), in some column generation iterations.

Currently, ParIterExactRMP gives the initial frequency for solving exactly the RMP. Every 10

iterations that frequency is decreased by one, until the RMP is solved exactly in all iterations.

This strategy is particularly devised for generating quickly a large number of columns in the

first iterations in order to obtain feasible solutions. Other strategies will be explored in a near

future. This parameter will have effect only if the parameter ParRMPSolver is set to

“Cplex_D”. Possible values: any positive integer. Default: 1.

APPENDIX − ADDing Details

A9

double ParMaxIterRMP

Sets the maximum number of (dual) simplex iterations when solving the RMP inexactly.

If a feasible dual solution is not found in that number of iterations, the optimisation proceeds

until that occurs. This parameter is irrelevant if ParExactRMP is set to 1 or ParRMPSolver is

not “Cplex_D”. The unit measure of this parameter is equal to the number of convexity

constraints plus the number of linking constraints. Possible values: any positive fractional.

Default: 0.5.

Columns management

int ParColsRemove

Parameter that controls the removal of columns. Possible values: 0, no columns removal

is performed; 1, remove all columns inactive for more than ParColsMaxInactivity (see below)

iterations; 2, remove columns if their number exceed three times the number of linking

constraints plus the number of convexity constraints (starting with the ones with larger reduced

cost); 3, remove all columns with reduced cost greater than the gap. Default: 0.

int ParIterColsRemove

Parameter that controls the frequency of columns removal (see ParColsRemove). Possible

values: any positive integer. Default: 5.

int ParColsMaxInactivity

A column is inactive in one iteration if its reduced cost is greater than 1. If that happens

for more than ParColsMaxInactivity consecutive iterations, that column is removed (if

ParColsRemove is set to 2). Possible values: any positive integer. Default: 10.

Convexity rows management

bool ParDynConv

If this parameter is set to “true”, convexity rows can be managed dynamically (that is,

inserted and/or removed in some iterations) according to other parameters (see below). In that

case, it is up to the decomposition model to specify which convexity rows cannot be removed.

Setting this parameter to “false” overrides any intention of the decomposition model. Possible

values: “true” and “false”. Default: “false”.

int ParConvRemove

Parameter that controls the removal of convexity rows. It only has effect if ParDynConv

is set to “true”. Possible values: 0, no convexity rows removal is performed; 1, all rows that

were inactive for the last ParConvMaxInactivity (see below) iterations. Possible values: any

non-negative integer. Default: 0.

int ParIterConvRemove

APPENDIX − ADDing Details

A10

Parameter that controls the frequency of convexity rows removal. Only has effect if

ParDynConv is set to “true” and ParConvRemove > 0. Possible values: any nonnegative

integer. Default: 5.

int ParConvMaxInactivity

A row is inactive if it has slack or is of the form “0=0”. If that happens for more than

ParConvMaxInactivity consecutive iterations, that row is removed (if ParConvRemove is set to

1). Possible values: any positive integer. Default: 10.

int ParIterConvInsert

Frequency of violated convexity rows test. Only has effect if ParDynConv is set to “true”.

Possible values: any positive integer. Default: 1.

Linking rows management

bool ParDynLink

Same as ParDynConv (see above) but for linking constraints. Possible values: “true” and

“false”. Default: “false”.

int ParLinkRemove

Same as ParConvRemove (see above) but for linking constraints. Possible values: 0, no

linking rows removal is performed; 1, all linking rows that were inactive for the last

ParLinkMaxInactivity (see below) iterations. Possible values: any nonnegative integer. Default:

0.

int ParIterLinkRemove

Same as ParIterConvRemove (see above) but for linking constraints. Possible values: any

positive integer. Default: 5.

int ParLinkMaxInactivity

Same as ParConvMaxInactivity (see above) but for linking constraints. Possible values:

any positive integer. Default: 10.

int ParIterLinkInsert

Same as ParIterConvInsert (see above) but for linking constraints. Possible values: any

positive integer. Default: 1000.

Subproblem

int ParSolveSPHeur

The subproblem can be solved heuristically in all iterations. Whenever no attractive

columns are generated, then an exact solver is used to check for optimality. This parameter tells

which heuristic should be used in order to solve the subproblem heuristically. Possible values:

APPENDIX − ADDing Details

A11

−1, do not solve the subproblem heuristically; n, use the n-th heuristic. Default: −1.

char* ParExtraHeurSols

In some iterations (see below, ParITerExtraHeurSols), heuristics for the subproblem can

be used to obtain extra columns. This parameter defines which heuristics should be used.

Possible values: "-", do not use heuristics; any binary string (for example, “01010” means that

the second and fourth heuristics will be used to heuristically generate extra columns). Default:

"01".

int ParIterExtraHeurSols

Frequency of extra columns generation through heuristics. It may be irrelevant depending

on ParExtraHeurSols. Possible values: any integer (a negative value means extra heuristic

columns will not be generated). Default: −1.

int ParNumSPSolsAsked

The subproblem class (in fact, currently only a derived class, MySubproblem) may be

able to generate the second best, the third best, and so on, subproblem optimal solutions. This

parameter controls the number of times the subproblem is asked to provide those sub-optimal

solutions, as long as their columns are attractive. Possible values: any integer ≥0. Default: 0.

Lifted cover inequalities (LCIs)

The next parameters should not be used. The inclusion of LCIs cuts is still at an

experimental phase.

int ParTypeLCICuts

Type of LCI cuts to be used. Possible values: −1, do not use LCIs; 0, generate general

LCIs as described in Gu, Nemhauser and Savelsbergh (1998); generate simple LCIs as

described in Gu, Nemhauser and Savelsbergh (1998). Default: −1.

The LCI cuts will be used in the nodes of the search tree according to the next three

parameters, which are cummulative.

int ParDepthLCICuts

Possible values: −1, do not use this parameter; 0, only in the root; n (positive integer): in

nodes with depth ≤n. Default: −1.

int ParFirstLCICuts

Possible values: −1, do not use this parameter; n (positive integer): first n optimised

nodes. Default: −1.

int ParFreqLCICuts

Possible values: −1, do not use this parameter; n (positive integer): every n-th optimised

APPENDIX − ADDing Details

A12

node. Default: −1.

double ParCutTail

If the percentage improvement is not higher than this parameter, no more cuts are

generated in the iteration. Possible values: any nonnegative fractional. Default: 0.001.

Tolerances

double ParTolVar

Used for checking infeasibily (if the total value of artificial variables in an optimal RMP

exceeds ParTolVar, then the node is unfeasible) and the integrality of the variables (a variable

with a value with a fractional part smaller than ParTolVar or larger than 1−ParTolVar is

considered as integer). Default: 1e−5.

double ParTolObj

Tolerance for the attractiveness of a column. Default: 1e−5.

APPENDIX − ADDing Details

A13

Results

The output of ADDing includes a file with results. In Figure A.2 an example of such a file

is given.

 Model info

320 NumSPs

192 NumVars

192 NumArts

0 NumExtraVars

0 NumLinVars

192 NumBinVars

0 NumIntVars

320 NumConv

6144 NumOrig

 General

2797.75 TimeBPC

2797.531 TimeBPCOpt

0 StatusBPC

 Tree

0.079 TimeTree

15 NumOpt

3 NumPrunedAfterOpt

3 NumIncumbentUpdates

4 NumPrunedWithoutOpt

9 NumParents

0 NumPrunedDuringOpt

0 NumUnfeasible

4 NodeFirstIncumbent

3134980 FirstIncumbentValue

6 MaxQueueSize

3132695 ValueIncumbent

 Column generation

0.156 TimeCGRMPFirst

2229.047 TimeCGOptRoot

2025.23 TimeCGRMPOptRoot

40.364 TimeCGSPOptRoot

567.656 TimeCGOptNode

461.212 TimeCGRMPOptNode

28.371 TimeCGSPOptNode

2527 NumIterRoot

1227 NumIterNode

808640 NumCGSPsSolvedRoot

27175 NumCGSPsPointRayRoot

392640 NumCGSPsSolvedNode

3135 NumCGSPsPointRayNode

81631 NumCGRMPLargestColsRoot

3286 NumCGRMPLargestRowsRoot

84766 NumCGRMPLargestColsNode

3437 NumCGRMPLargestRowsNode

0 NumExtremeRays

619325 ValueCGRMPFirst

 Node solver

0 LCICutGenRoot

0 LCICutGenNode

0 NumIterCutRoot

0 NumIterCutNode

0 NumLCICutRoot

0 NumLCICutNode

3132002.5 ValueRoot

Figure A.2 Example of a results file.

APPENDIX − ADDing Details

A14

Deriving the MySubproblem class

Member data to be used by the derived class

double** ModCosts

Double array of modified costs: ModCosts[k][j] contains the objective function

coefficient of the (j+1)-th variable of the (k+1)-th subproblem. The user does not need to worry

about memory allocations and deallocations.

int NumHeurs

In the constructor of MySubproblem, NumHeurs should be set to the number of heuristics

the class implements.

bool *IsAggregated

In the constructor of MySubproblem, this array should be allocated with size NumHeurs.

The entry with index j should be true if the (j+1)-th heuristic is an aggregated one, and false,

otherwise. In an aggregated heuristic the solution of one subproblem influences the others. In an

disaggregated heuristic each subproblem is solved independently. We note that the extreme

points will always be inserted in the RMP in a disaggregated manner. Currently ADDing does

not support aggregated columns (that is, one column being related with more than one

subproblem).

ParTypeBranch

This copy of the input parameter allows the user to define more than one branching rule.

Member virtual functions related with implementing a specific subproblem solver

Only the two first member functions (SetSP(...) and Optimise(...)) must be implemented

in order to have a specific subproblem solver. All the others are optional.

virtual void SetSP (int k, double *Costs)

Prepare the (k+1)-th subproblem to be solved by setting the modified costs of all its

variables. Those values should be written in ModCosts.

virtual int Optimise(int k, pointray *PointRay, double &Value)

Optimises the (k+1)-th subproblem.

Return values: 0, no relevant solution was found; 1, the optimal extreme point, or an

extreme ray, was found, has value Value and is given in PointRay; 2, no feasible solution was

APPENDIX − ADDing Details

A15

found.

All the user must set inside this function related with the class pointray are the following

two member functions:

void pointray::SetType(int Type)

Type should be 1 if it is an extreme point and 2 if it is an extreme ray;

void pointray::AddVar(int IdxSP, int IdxVar, double ValVar)

Adds a variable of the subproblem IdxSP with index IdxVar and value ValVar to the

description of the extreme point or extreme ray.

virtual int OptimiseNext(int k, pointray *PointRay, double &Value)

This function is similar to Optimise(...). Its purpose is to return the second best solution,

third best solution, and so on. If the input parameter ParNumSPSolsAsked is greater than zero,

this function will be called after a call to Optimise(...) in order to include additional

(sub)optimal extreme points (or extreme rays) in the RMP.

virtual int SolveHeurDis (int k, pointray *PointRay, double &Value, int Heuristic)

This member function is meant to solve the subproblem k with the (Heuristic+1)-th

heuristic (which is a disaggregated one; for the difference regarding an aggregated one, see the

member data IsAggregated, above). The meaning of the other arguments is the same as in

Optimise(...).

Return values: 0, no extreme point or ray was found; 1, one extreme point or ray was

found.

virtual int SolveHeurAgg (pointray **PointRay, double *Values, int Heuristic)

Similar to SolveHeurDis(...) but for an aggregated heuristic: a set of extreme or rays may

be obtained.

Return value: number of extreme points and rays found. The double array PointRay

should have one extreme point or ray in each entry.

virtual int GetUpperNumExtreme ()

Returns an upper bound to the number of additional extreme points to be inserted in the

first RMP.

virtual int GetSetExtreme (pointray **PointRay)

The argument should be fed with a set of points/rays to be inserted in the first RMP (an

upper bound to their number given by the return value of GetUpperNumExtreme()). The return

value is the effective number of extreme points and rays generated by the function. This

implementation of GetUpperNumExtreme() and GetSetExtreme(...) avoids the need for memory

allocations and deallocations by the user.

Member virtual functions related with specific branching rules

APPENDIX − ADDing Details

A16

virtual int GetNumBranches()

Returns the number of branches that MySubproblem::GetBranches(...) generates. The

base class implementation returns the value 2.

virtual void GetBranches(constraint **BranchConstraint)

This member function creates the branching constraints. Using ParTypeBranch, more

than one branching rule can be implemented in it.

The argument is an array of objects (in fact, pointers to objects) of class Constraint filled

with the constraints. The relevant member functions of constraint are

void SetSense (char Sense);

void SetRhs (int Rhs);

void AddVar(int IdxSP, int IdxVar, double Coef).

As an example, if two branching constraints are created based on a single binary the

instructions given in Figure A.3 should be included, where BranchSP is the index of the

subproblem of the variable given by index BranchVar and that variable has coefficient 1 in both

constraints. Branching on several variables can be done by several calls to AddVar(...).

...

rBranchConstraint[0]->AddVar(BranchSP,BranchVar,1);

rBranchConstraint[0]->SetSense('L');

rBranchConstraint[0]->SetRhs(0);

rBranchConstraint[1]->AddVar(BranchSP,BranchVar,1);

rBranchConstraint[1]->SetSense('G');

rBranchConstraint[1]->SetRhs(1);

...

Figure A.3 Example of instructions to create two branching constraints.

In order to specify the branching rule, the subproblem class has a pointer to an object

representing the current (fractional) solution. The only member function of that class the user

must be aware of is double originalsolution::GetVarValue(int k, int j), which returns the value

of the variable indexed by j of the subproblem indexed by k. The base class already has a

pointer to the object where the current solution is kept, with name OriginalSolution.

