178 research outputs found

    Towards a unified sentiment lexicon based on graphics processing units

    Get PDF
    This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times

    Parallel Logic Programs on the HP Mayfly

    Get PDF
    19 pagesThe Mayfly, a parallel processor being built at HP Labs in Palo Alto, has architectural support for several import.ant. aspects of the OM virtual machine for parallel logic programs. Each node has a coprocessor that is able to relieve the main processor of a significant amount oft.he "housekeeping" work of memory management , task switching, and message handling. This paper describes how the coprocessor implements kernel level functions in OM, with particular attention to the operations that support task switching. The paper includes detailed timing data from a program with interleaved parallel threads to show that while the main processor is busy in one thread the coprocessor can effectively build the context for the next thread

    Intelligent cell memory system for real time engineering applications

    Get PDF

    Code Optimization and Scaling of the Astrophysics Software Gadget on Intel Xeon Phi

    Get PDF
    The whitepaper reports our investigation into the porting, optimization and subsequent performance of the astrophysics software package GADGET, on the Intel Xeon Phi. The GADGET code is intended for cosmological N-body/SPH simulations to solve a wide range of astrophysical tasks. The test cases within the project were simulations of galaxy systems. A performance analysis of the code was carried out and porting, tuning and scaling of the GADGET code were completed. As a result, the hybrid MPI/OpenMP parallelization of the code has been enabled and scalability tests on the Intel Xeon Phi processors, on the PRACE EURORA system are reported

    A virtualisation framework for embedded systems

    Get PDF

    CORDIC algorithm and it’s applications in DSP

    Get PDF
    OBJECTIVE: The digital signal processing landscape has long been dominated by the microprocessors with enhancements such as single cycle multiply-accumulate instructions and special addressing modes. While these processors are low cost and offer extreme flexibility, they are often not fast enough for truly demanding DSP tasks. The advent of reconfigurable logic computers permits the higher speeds of dedicated hardware solutions at costs that are competitive with the traditional software approach. Unfortunately algorithms optimized for these microprocessors based systems do not map well into hardware. While hardware efficient solutions often exist, the dominance of the software systems has kept these solutions out of the spotlight. Among these hardware- efficient algorithms is a class of iterative solutions for trigonometric and other transcendental functions that use only shifts and adds to perform. The trigonometric functions are based on vector rotations, while other functions such as square root are implemented using an incremental expression of the desired function. The trigonometric algorithm is called CORDIC an acronym for Coordinate Rotation Digital Computer. The incremental functions are performed with a very simple extension to the hardware architecture and while not CORDIC in the strict sense, are often included because of the close similarity. The CORDIC algorithms generally produce one additional bit of accuracy for each iteration. DESCRIPTION: A detailed study on various modes of CORDIC algorithm is done. First of all a study is made how the CORDIC algorithm is derived from the general vector equation. Then a study is done regarding the various modes of the CORDIC algorithm and how it can be used to find the sine, cosine, tan and logarithm functions, its use in conversion of coordinate systems. An attempt is made to carry out a rigorous study of its use in DSP oriented applications AND how it has revolutionized the DSP scenario. Finally simulations are carried out using MATLAB to support the purpose of our study. RESULTS The results clearly bring out the advantage of using CORDIC algorithm. First of all the sine and cosine of any angle could be found out easily. Similar is the case of logarithm and hyperbolic functions. The simulation results prove the fact that the hardware complexity gets reduced by using the CORDIC algorithm. A large no of plots were obtained for different 7 functions. Finally the implementation in DCT was carried out and the results obtained were in line with those of the theoretical values. CONCLUSION The CORDIC algorithms presented in this paper are well known in the research and super computing circles. Here the basic CORDIC algorithm and a partial list of potential applications of potential applications of a CORDIC based processor array to digital signal processing is presented. The CORDIC based DCT architecture for low power design has been proposed. The proposed multiplierless CORDIC based DCT architecture produces high throughput and is easy to implementing VLSI. The proposed architecture reduced the input data range for the CORDIC processor by split and the no of compensation iterations in CORDIC based DCT computation by utilizing that most images have similar neighboring pixels. The project also shows that a tool is available for use in FPGA based computing machines, which are the likely basis for the next generation DSP systems
    corecore