
APPLICATIONS OF MACHINE
LEARNING TO AUTOMATED

REASONING

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

Michael Rawson

Department of Computer Science



Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 13
1.1 Theorem Proving meets Machine Learning . . . . . . . . . . . . . . 14

1.2 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Objective Functions and System Performance . . . . . . . . . 15

1.2.2 Representing and Processing Syntactic Data . . . . . . . . . . 16

1.2.3 Deceleration of Inference Rate . . . . . . . . . . . . . . . . . 16

1.2.4 Proving Power versus System Suitability . . . . . . . . . . . 17

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Pertinent Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background Material 21
2.1 Automated Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Classical First-Order Logic . . . . . . . . . . . . . . . . . . . 22

2.1.2 Automatic Theorem Proving for First-Order Logic . . . . . . 22

2.1.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Superposition and Saturation . . . . . . . . . . . . . . . . . . 23

2.1.5 Tableau and Connection Methods . . . . . . . . . . . . . . . 24

2.1.6 System Behaviour and Folklore . . . . . . . . . . . . . . . . 25

2



2.1.7 Modern Systems . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Graph Convolutional Networks . . . . . . . . . . . . . . . . 27

2.3 Heuristic Search, Planning and Reinforcement . . . . . . . . . . . . . 27

2.3.1 Bandits, UCT and MCTS . . . . . . . . . . . . . . . . . . . . 28

2.4 Machine Learning for Automated Reasoning . . . . . . . . . . . . . . 29

2.4.1 Features and Representations . . . . . . . . . . . . . . . . . . 29

2.4.2 Indirect Guidance . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Direct Guidance . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Dynamic Strategy Priority 32
3.1 A Brief Introduction to Vampire . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Input and Preprocessing . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Saturation Algorithms . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Strategies in Vampire . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Feature Engineering and Collection . . . . . . . . . . . . . . . . . . 37

3.3 Predicting Successful Strategies . . . . . . . . . . . . . . . . . . . . 38

3.4 Intelligent Scheduling for Vampire . . . . . . . . . . . . . . . . . . . 40

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Guided Preprocessing 46
4.1 Neural Networks for Formulae . . . . . . . . . . . . . . . . . . . . . 47

4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Proof Search . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Architecture and Prototype . . . . . . . . . . . . . . . . . . . 50

4.3 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Refutation Tableaux . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Complete Inferences . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Weakening . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Oracle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



4.5 Learned Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Translation to Graphs . . . . . . . . . . . . . . . . . . . . . . 54
4.5.3 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.4 Neural Architecture . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.6 Network Evaluation . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7.1 Proof Search . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.2 Prover Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.3 Oracle System . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7.4 Machine-Learned Heuristic . . . . . . . . . . . . . . . . . . 61

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Directed Graph Networks 63
5.1 Propositional Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Input Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Bi-directional Graph Convolutions . . . . . . . . . . . . . . . 67
5.4.2 DenseNet-style blocks . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Graph Convolution Operators and Pooling . . . . . . . . . . . 69
5.4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . 70
5.5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.2 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.3 Training and Results . . . . . . . . . . . . . . . . . . . . . . 73
5.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4



6 Reinforced Theorem Proving 75
6.1 Reinforcement Learning and Theorem Proving . . . . . . . . . . . . 76
6.2 Motivation and Learning Task . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Necessity of Reinforcement Learning . . . . . . . . . . . . . 77
6.2.2 Rules of Play . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.3 Black-Box: Vampire . . . . . . . . . . . . . . . . . . . . . . 79
6.2.4 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.6 Environment Properties . . . . . . . . . . . . . . . . . . . . . 82

6.3 Solving the Reinforcement Task . . . . . . . . . . . . . . . . . . . . 83
6.3.1 Online, Model-Free Learning . . . . . . . . . . . . . . . . . 83
6.3.2 Offline Learning . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.3 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.4 State Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.5 Network Architecture . . . . . . . . . . . . . . . . . . . . . . 86
6.3.6 Application of Learned Policy to ATP Systems . . . . . . . . 86

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2 Pilot: GRP001-1 . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.3 Small Domain: Synthesising Church Numerals . . . . . . . . 89
6.4.4 Large Domain: Group Theory . . . . . . . . . . . . . . . . . 90

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Asynchronous Policy Evaluation 93
7.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Performance Penalties in Existing Solvers . . . . . . . . . . . . . . . 94
7.3 Unguided System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Connection Tableau Procedures . . . . . . . . . . . . . . . . 96
7.3.2 Lazy Paramodulation . . . . . . . . . . . . . . . . . . . . . . 96
7.3.3 Calculus Refinements . . . . . . . . . . . . . . . . . . . . . 97

7.4 Proof Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1 Policy-Guided Search . . . . . . . . . . . . . . . . . . . . . 98
7.4.2 Asynchronous Policy Evaluation . . . . . . . . . . . . . . . . 99

7.5 Learned Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5.1 Representing Tableaux with Actions . . . . . . . . . . . . . . 100
7.5.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . 100

5



7.5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.4 Integration and Optimisation . . . . . . . . . . . . . . . . . . 103

7.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6.1 Inference Rates . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6.2 Effect of Guidance . . . . . . . . . . . . . . . . . . . . . . . 103

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Concluding Remarks 106
8.1 Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 109

6



List of Tables

3.1 Trace classification accuracy for neural-network models . . . . . . . . 38
3.2 Results for 3 variations of Vampire’s portfolio on TPTP . . . . . . . . 41
3.3 Speedup or slowdown compared to baseline Vampire . . . . . . . . . 42

4.1 Accuracy metrics for learned subgoal classifier . . . . . . . . . . . . 59
4.2 Total problems solved by contribution and other systems . . . . . . . 59

5.1 Encoding statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Network and training hyperparameters . . . . . . . . . . . . . . . . . 70
5.3 Propositional entailment accuracy . . . . . . . . . . . . . . . . . . . 71

6.1 Tunable parameters for reinforcement learning . . . . . . . . . . . . . 87
6.2 Result for 4 Vampire configurations . . . . . . . . . . . . . . . . . . 91

7.1 Network and training hyper-parameters. . . . . . . . . . . . . . . . . 102
7.2 Results from iterative training of lazyCoP’s policy on M2k. . . . . . . 104

7



List of Figures

3.1 Strategy scheduling schemes and effect on proof search . . . . . . . . 33
3.2 Feature trace evolving during strategy execution . . . . . . . . . . . . 37
3.3 Multi-layer perceptron for identifying successful strategies . . . . . . 39
3.4 Problems solved against time for 3 variations of Vampire’s portfolio . 42

4.1 Proof search with shared sub-goals . . . . . . . . . . . . . . . . . . . 49
4.2 Information flow between subsystems. . . . . . . . . . . . . . . . . . 50
4.3 A complete inference system . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Example refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Simplification rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Translating formulae to graphs . . . . . . . . . . . . . . . . . . . . . 55
4.7 Graph neural network architecture with localised pooling . . . . . . . 57
4.8 Intermediate activations in neural network . . . . . . . . . . . . . . . 58

5.1 DAG representation of formulae . . . . . . . . . . . . . . . . . . . . 65
5.2 Information flow in formula DAG . . . . . . . . . . . . . . . . . . . 67
5.3 First-order DAG with argument order and bound variables . . . . . . 74

6.1 Example training episodes . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Illustrating task difficulty with a uniform random policy . . . . . . . . 82
6.3 Reward received with online learning . . . . . . . . . . . . . . . . . 83
6.4 Encoding states with directed graphs . . . . . . . . . . . . . . . . . . 86
6.5 Distribution of relative instructions required to solve problems . . . . 88

7.1 Contrasting “lazy” and “strict” rules . . . . . . . . . . . . . . . . . . 96
7.2 Residual block used in policy network . . . . . . . . . . . . . . . . . 101
7.3 Policy network schematic . . . . . . . . . . . . . . . . . . . . . . . . 101

8



Abstract

APPLICATIONS OF MACHINE LEARNING TO AUTOMATED

REASONING

Michael Rawson
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2021

Systems that can automate some aspects of logical reasoning are now very strong,
through years of theoretical and practical development. Some progress has been made
to have such systems learn from past experience. One extremely general and theoretically-
favourable approach is to integrate learned guidance inside a system, biasing its inter-
nal search routines to explore promising areas earlier. Unfortunately, the approach has
some barriers to practicality, notably the penalty on raw, inferences-per-second perfor-
mance. We explore a number of approaches around this area designed to circumvent
these barriers while making other trade-offs. The setting considered is automated the-
orem provers for first-order logic, but work is broadly applicable outside this area.

9



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

10



Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

11



Acknowledgements

Many people in the automated reasoning world have helped me along enormously. In
no particular order and with apologies to any omissions: Martin Riener, Ahmed Bhayat
and Edvard Holden, for many interesting conversations; Chad E. Brown, who took the
time to explain some higher-order topics to me and bounce some ideas around; Stephan
Schulz, friendly, encouraging, and a source of good ideas explained well; Michael
Färber for correspondence on topics of interest; Sean Holden, who is someone I en-
counter rarely but somehow always leave with something new; and Geoff Sutcliffe for
“Michael, why haven’t I received any of your systems yet?”. Particular thanks are due
to Martin Suda and the group he belongs to, who graciously provided a comfortable,
interesting stay in their beautiful city, as well as many things to think about.

Giles Reger is an excellent supervisor, handling the difficulties I repeatedly get my-
self into with consummate ease. He patiently provides help and advice on everything I
could possibly need, all without instructing me to do anything, not once. I have greatly
enjoyed three-and-a-bit years of support and intellectual freedom under his supervi-
sion, and I look forward to more as his colleague.

Finally, Michaela. Somehow she still thinks what I do is worthwhile.

12



Chapter 1

Introduction

This work considers automated reasoning systems that learn from past experience to
solve harder problems, in much the same way as human mathematicians. My approach
inhabits a narrow intersection of two much-larger worlds, reasoning and learning, typi-
cally realised in computer science as automated reasoning and machine learning. Both
are united in their ultimate goal of the thinking machine, but differ in many other re-
spects, exist largely independently of each other, and resist combination.

I arrive at this area from interactive theorem proving. For my undergraduate degree,
I made computer-checked arguments about some properties of fiddly mathematical
objects1. The argument was written in Isabelle, a complete software environment for
writing computer-checked formal proofs. As well as many other features, Isabelle
exposes a few forms of automated reasoning to help dispatch easier steps, so that the
user does not have to spell out each proof in minute detail.

There were many repetitive proofs, differing in important details but very similar
in spirit and technique. I was repeatedly surprised by automated reasoning failing to
find proofs for goals very similar to those it had managed to prove before. I was less
surprised that I was unable to “teach” the system to prove statements by writing the
proofs myself — after all, this was not a feature Isabelle advertised — but nonetheless
it seemed that it ought to be possible. In this way I became interested in improving
automated theorem provers, specifically to have fully-automatic systems learn from
past successes and failures.

1nominal binders, for the initiated

13



14 CHAPTER 1. INTRODUCTION

1.1 Theorem Proving meets Machine Learning

Automated theorem proving is one of the oldest problems in computer science. The
challenge is simple to state, but hard to pin down and harder still to solve: given some

precise conjecture, automatically write a proof, or refute the conjecture. After some
early success, logical reasoning, and by extension theorem proving, became a central
pillar of the symbolic approach to artificial intelligence popular from the mid-1950s.
The symbolic approach ultimately struggled to fulfil its promise and floundered, at
least in part due to difficulty of theorem proving and the problems of rapidly-growing
search spaces in general2, but the theorem proving problem and the community around
it survived the ensuing “AI winters” through the following decades. Theorem proving
remains relevant today, with a growing number of successes and applications.

However, the spectre of large search spaces continues to haunt the field. It can be
helpful to delineate two general approaches that aim to make progress towards proofs
despite this fundamental difficulty. The first, which I will call redundancy elimination,
can remove large swathes of search space altogether by identifying equivalent or un-
necessary work. The second, heuristic search, identifies some desirable direction and
explores there by preference, thereby avoiding exploring undesirable space. Inevitably,
things are not as simple: most practical techniques incorporate some amount of both.

Clearly the former is preferable: there is no need for good heuristics to avoid use-
less search if redundancy elimination procedures already removed it, and designing
good heuristics is very difficult in general, to the point where even successful heuris-
tics are almost never a monotonic improvement. Eventually, unfortunately, the free
lunch of redundancy elimination begins to run out, and the computational cost of iden-
tifying redundancies progressively eclipses the benefit of removing them. Somehow
we must obtain good, general-purpose heuristics that point the way intuitively.

Machine learning aims to have computer systems “learn from experience”, typi-
cally with the aim of automatically improving system performance on some task. It
is often characterised as disjoint from symbolic approaches, taking a more numeric,
statistical approach and occasionally shunning the “artificial intelligence” label alto-
gether. The field has recently attracted a lot of attention, often solving problems that

2In the words of the Lighthill report, which de facto defunded artificial intelligence research in the
UK, “[first-order automated theorem proving] is particularly an area where hopes have been disap-
pointed through the power of the combinatorial explosion in rapidly cancelling out any advantages from
increase in computer power” [Lig73].



1.2. KEY CHALLENGES 15

would be very awkward otherwise, e.g. “sort these cat images from those dog im-
ages”. Could a statistical approach plug the gap in automated reasoning? Perhaps
what is missing from existing reasoning systems is the instinctive, fly-by-the-seat-of-
your-pants gut feeling of heading in the right direction, the same feeling that allows
humans to tell cats from dogs and write proofs without exhaustive search.

It is also becoming increasingly apparent that the new statistical approaches have
their own shortcomings, and will need combining with other methods to reach their
full potential. With these new tools, but also a growing awareness of their limitations,
it seems that automated reasoning and machine learning are overdue for a merger.

1.2 Key Challenges

Naturally, it is not straightforward to achieve good results by applying machine learn-
ing to automated theorem proving. A small number of familiar theoretical and practical
issues repeatedly hinder work in this area. Sometimes they can be subtle, manifesting
only in a disappointing result or technical limitation in otherwise-promising work. I
therefore hold the view that at least some, and preferably all, of the following must be
solved before reaching a true “breakthrough moment” for learning-assisted reasoning.

1.2.1 Objective Functions and System Performance

There is an unclear relationship between the training procedure, the objective function
optimised for during training, and performance of the assisted system. It is a difficult
problem to decide how to improve decisions made within a theorem-proving system
by learning, and conventional training procedures cannot always reflect this difficulty.
Sometimes, a learned heuristic that matches the objective function well during training
has little positive or even a negative effect on system performance.

For example, the problem of “premise selection” — selecting relevant facts from a
large database for a certain conjecture — is, at first glance, a simple classification prob-
lem. But how best to emphasise that it is much more important that relevant facts are
retained than irrelevant facts discarded? How best to deal with multiple proofs of the
same conjecture that use different facts? If the learned model can indicate uncertainty
in some way, how best to use this new information in the system?

To make matters worse, the current generation of automated reasoning systems
are not in general good at recovering from bad states; as such, guided systems can



16 CHAPTER 1. INTRODUCTION

inhabit an environment where excellent guidance yields merely good results, but even
slightly-poor guidance is catastrophic.

1.2.2 Representing and Processing Syntactic Data

In order to use machine learning techniques to learn some desired function from inputs
to outputs, at least the inputs (and sometimes also the outputs) must be represented in
a suitable way for processing. The trend in machine learning is to move from hand-
engineered “features” to learning more-or-less-directly from raw data: text, images
and so on. This shift also applies to logical settings, but these new machine learning
techniques have not always applied to, or worked well with, syntactic data. There are
two axes on which representations are often compared: the amount of information that
is lost when translating from one form to another, and the relative difficulty of learning
functions from the representation.

Textual serialisation is an example of a representation which scores well on the
former, but less well on the latter: the original can be read off directly, but it is quite
difficult (informally speaking) to learn anything from a sequence of characters. On
the other hand, feature-based representations score the opposite: we typically have no
idea from a feature vector what the original might have looked like, but the vector is
relatively easy to learn a function from — but only if we chose good features! Finding a
representation technique that scores well on both scales is critical for effective learning.

1.2.3 Deceleration of Inference Rate

Integrating heuristic guidance into the internals of theorem-proving systems, especially
neural networks, incurs a performance penalty. Systems often rely on a high rate of
inference to find proofs within reasonable time. Unfortunately, this can mean that the
performance penalty dominates any performance gained by means of learned guidance.
This is especially pernicious if the system requires sequential execution of inference
steps without backtracking, as a decision must be taken immediately and cannot be
returned to. Recent software libraries typically use a coprocessor such as a commodity
GPU to accelerate evaluation of large learned models, and therefore a distinction must
be drawn between coprocessor latency and the total amount of compute required.



1.3. APPROACH 17

1.2.4 Proving Power versus System Suitability

It seems that some theorem-proving systems are more suitable than others for integra-
tion of learned guidance within the system itself, and unfortunately those that are more
suitable tend to be less powerful unguided systems. It is possible to conceive learning
systems that are agnostic to the system which consumes their output (such as premise
selection), but these are typically limited in their decision-making power.

As mentioned in §1.2.3, performance penalties introduced by learned guidance can
affect some systems more than others, but this is not the only distinction. Some re-
dundancy eliminations and/or heuristics are effectively search decisions that increase
system performance in the aggregate, but in specific cases can be harmful3. Removing
these features allows learned guidance to make the correct decision for a particular
problem, but also significantly decreases the proving power available for data genera-
tion during training, or to make up for deficiencies in learned guidance. Some way of
resolving this conflict may be essential to future work in this area, so that systems can
use learned guidance to make decisions while still exploring a reduced search space.

1.3 Approach

Strategy scheduling is a known area for combining machine learning and automated
reasoning in which a list of system configurations (so-called “strategies”) are selected
and/or prioritised by a machine-learned heuristic based on a set of features. Existing
work typically only used “static” features derived from the problem, not the system’s
response: this led me to investigate “dynamic”, search-time features for this problem,
described in Chapter 3. This approach neatly avoids many pitfalls (although it arguably
falls prey to a particularly-nasty case of the “objectional objective function”, §1.2.1),
but it is limited by the lack of decision-making power common to strategy-based ap-
proaches: if a problem cannot be solved by any configuration in reasonable time, even
perfect learned heuristics cannot help.

This frustration encouraged work on the system described in Chapter 4, in which
a more semantic, intrusive approach is taken to intelligently guide preprocessing of
a problem into sub-goals for dispatch by an existing automated theorem prover. The
setting clearly highlighted all the challenges described in 1.2, and provided a starting
point to address these directly. Representations of formulae used for learning (§1.2.2)

3For intuition’s sake, consider symbol precedence in a saturation context, or the regularity condition
for connection tableau — few would suggest building a new system without these techniques today.



18 CHAPTER 1. INTRODUCTION

appeared promising and were developed further in Chapter 5, validated by empirical
studies on benchmark tasks, and then used in subsequent chapters. Upon closer inspec-
tion, Chapter 4 began to look like a reinforcement-learning problem, where the reward
received correlates directly to system performance (§1.2.1). I explore this idea in Chap-
ter 6, where a theorem-proving reinforcement environment with graduated reward is
constructed, and off-the-shelf algorithms for reinforcement learning are applied.

The practical problem of evaluation latency (§1.2.3) proved to be by far the most
difficult to solve convincingly, but one possible solution is presented in Chapter 7. A
backtracking system is presented which can evaluate learned heuristics asynchronously
without reducing inference rate. Work on simplified ways to bias tree search (§1.2.1)
and improve the performance of backtracking systems (§1.2.4) are also presented here.

1.4 Thesis Structure

Work is laid out in chapters, as follows.

1. Introduction

2. Background Material

3. Dynamic Strategy Priority (prioritising strategies during proof search)

4. Guided Preprocessing (intelligently preprocessing and splitting a problem)

5. Directed Graph Networks (representing and learning from syntactic data)

6. Reinforced Theorem Proving (a black-box reinforcement learning environment)

7. Asynchronous Policy Evaluation (integrated guidance without performance penalty)

8. Concluding Remarks



1.5. PERTINENT CONTRIBUTIONS 19

1.5 Pertinent Contributions

Here I list research contributions relevant to this work. Sometimes, early versions of
the following appeared at events such as the Conference on Artificial Intelligence and

Theorem Proving or the Automated Reasoning Workshop.

• Dynamic Strategy Priority: Empower the strong and abandon the weak [RR18].
Here we introduce the idea of prioritising strategies during proof search based
on run-time features.

• A Neurally-Guided, Parallel Theorem Prover [RR19a], in which we present
ideas and a prototype system addressing many of the issues raised in §1.2.

• Directed Graph Networks for Logical Reasoning [RR20b] provides simple so-
lutions to the problem of representing syntactic data, such as those found in
reasoning systems.

• Reinforced External Guidance for Theorem Provers [RBR20] constructs a rein-
forcement learning task to supply an existing unmodified system with helpful
facts, and investigates solving the task.

• lazyCoP: Lazy Paramodulation meets Neurally Guided Search [RR21]4 in which
we describe a system that uses expensive learned guidance to guide internal
search routines without deceleration of inference rate.

4to appear



20 CHAPTER 1. INTRODUCTION

1.6 Other Contributions

I have made other tangential contributions that are not directly relevant to this work.
Work on “age/weight shapes” in Vampire [RR19b] does not rely on learned guidance,
although it does present encouraging evidence for the impact internal guidance could
have on a state-of-the-art system. The ability to auto-encode sets of problems such
that each problem can be mapped into a fixed-dimensional space is a corollary of the
approach take in Chapter 5 and has some interesting applications [RR20a]. An as-yet-
unpublished collaboration entitled “What can we learn from TSTP proofs?” mined
information from a large set of proofs using both symbolic and statistical methods.

I am the author of lazyCoP, a connection-tableau system for first-order logic with
equality, the first practical implementation of the calculus LPCT, and the research ve-
hicle for Chapter 7. I also maintain a high-performance parser library for the TPTP
problem format5, with active users in the research community.

5https://github.com/MichaelRawson/tptp



Chapter 2

Background Material

Voluminous background literature could be presented as relevant to this work. This is
due in part to the cross-disciplinary nature of the topic, and in part because of the long
and successful history of both automated reasoning and machine learning as distinct
fields. The chapter is left intentionally brief, and each subsequent chapter introduces
specific literature as required. Each area of study is presented in isolation, then existing
steps to apply machine learning to automated reasoning are discussed.

Another challenge to concise presentation of background material is recent pop-
ular and scientific interest in “artificial intelligence”, particularly in the area of deep
neural networks and their applications. As well as pure volume, research material is
frequently not peer-reviewed, reproduced or even plausible; material presented in this
chapter is either published or widely relied upon by others in the community.

In general, research progress in this area comprises combinations of existing well-
known ideas from both fields to solve concrete problems, or viewing a known idea
through the lens of the other field; rarely are completely-new approaches required or
developed. This is encouraging for future work: each field is well-developed alone,
but the combination is relatively unexplored.

2.1 Automated Reasoning

Automated reasoning is a broad area of study within artificial intelligence (see e.g.
the Handbook of Automated Reasoning [RV01]), but what follows is framed in terms
of automatic theorem proving in the symbolic tradition, specifically for classical first-
order logic. Other automated reasoning settings (e.g. interactive theorem proving,
counterexample finding, question-answering or program synthesis) are not considered,

21



22 CHAPTER 2. BACKGROUND MATERIAL

nor is automatic theorem proving for logics differing significantly from first-order logic
(e.g. description, modal, intuitionistic, or higher-order logics) or special-purpose rea-
soning, such as methods for automatic reasoning in planar geometry. However, work
presented in following chapters is somewhat generic over logic and problem setting.

2.1.1 Classical First-Order Logic

First-order logic (see e.g. First-Order Logic [Smu95]) provides syntax and semantics
for statements about individuals, functions and predicates over individuals, proposi-
tional connectives and quantifiers ∀,∃ over individuals. A binary equality predicate
s = t between terms can be included directly or axiomatised within the logic itself.
Classical first-order logic admits the so-called “law of the excluded middle” asserting
that a proposition must be either true or false.

Classical first-order logic is a popular logic for a variety of applications: it is suf-
ficiently expressive for “ordinary mathematics”, but not so expressive as to be com-
pletely intractable; it compactly encodes facts from a variety of domains [SSY94];
some other logics can be embedded in, or translated to, first-order logic; “theories”
such as integer arithmetic can be included somewhat orthogonally [KV13]. This logic
in particular also has a variety of theoretical niceties which aid both automation and ex-
pressivity: it is syntactically consistent, semantically complete, closed under negation,
and admits powerful normal forms and cut-elimination. Lindström’s theorem shows
roughly that this is the strongest logic that retains some pleasant properties [Lin69].

2.1.2 Automatic Theorem Proving for First-Order Logic

Assuming a complete inference system, proofs of true statements in first-order logic
system are known to exist and be of finite length. This property suggests automatic

theorem provers (ATPs): software systems that explore a search space induced by an
inference system to find a proof of some proposition. Unfortunately, proof search in
first-order logic is known to be semidecidable in theory and computationally difficult
in practice — but this has not stymied the efforts of authors of such systems!

Automatic reasoning in this setting has a long history [Dav01], with a number of
success stories. A focus of research throughout this time has been to achieve reasoning
up to redundancy: normal forms for formulae [BEL01] avoid duplicative reasoning up
to isomorphism in the normal form; the resolution method [Rob65] avoids generating



2.1. AUTOMATED REASONING 23

elements of the Herbrand universe unless required; the paramodulation and later super-
position calculi [NR01] reduce the space of possible equality reasoning steps, to name
a few. These techniques can reduce the size of the search space that must be explored
and therefore accelerate finding proofs, bringing more difficult problems within reach.

Of course, other topics of interest are numerous: developing efficient proof calculi
and search algorithms based on these techniques (such as the saturation and tableau
families, below); reasoning over large axiom sets (e.g. [HV11]); the (partial) transla-
tion of problems expressed in other systems to first-order logic (e.g. [MP08, Urb06]);
the integration of external reasoning tools such as SAT/SMT solvers (e.g. [Vor14]);
efficient implementation techniques such as term indexing; decidable classes and in-
complete algorithms; and meta-techniques such as strategy scheduling [WL99].

2.1.3 Benchmarks

Benchmark problem sets and competitions are a surprisingly-powerful force in driving
research on automated theorem provers. Thousands of Problems for Theorem Provers
(TPTP) [SSY94] is a curated set of problems from a variety of domains, expressed
in a variety of logics and styles, which drives the annual CASC competition [Sut16].
MPTP [Urb06], on the other hand, is a translation of theorems from the Mizar Math-
ematical Library [GKN10] into first-order logic with equality. We sometimes use the
M40k and M2k sets for evaluation, as in [KUMO18]. There are many other such bench-
marks for different purposes, such as the SMT-LIB library [BST+10] of Satisfiability
Modulo Theories problems.

2.1.4 Superposition and Saturation

Many of the most high-profile modern systems are (partially) based on the superposi-
tion calculus, inferences from which are explored via saturation proof search. While
the two are not inextricably linked, it is certainly a natural and popular pairing. Satura-
tion algorithms aim to produce a saturated set of formulae: a set such that all inferences
from the set up to redundancy are contained within the set [BG01a].

A number of different algorithms achieve saturation: given-clause algorithms are
a popular clause-level approach in which a “given clause” is selected in some way and
added to an initially-empty “processed” set by performing all necessary generating

inferences with the existing members of the processed set [KV13]. There are various
ways of further categorising not-yet-processed clauses; here it suffices to mention that



24 CHAPTER 2. BACKGROUND MATERIAL

this group of clauses grows rapidly as the processed set grows. Simplifying and deleting

inferences may also simplify/delete available clauses at any point during search.

This framework encourages powerful redundancy elimination techniques such as
subsumption, as well as inherent advantages compared to other methods: never explor-
ing any part of the search space twice, for one. In exchange, memory use of saturation
systems can be significant, although when combined with redundancy eliminations and
modern hardware this is less of a problem than previously. Further, typical realisations
of saturation such as given-clause algorithms enforce a temporal linearisation of infer-
ences. This linearisation is restrictive for some developments, such as parallelisation
at proof search level or learned heuristic guidance.

2.1.5 Tableau and Connection Methods

Tableau-style systems [Häh01] for first-order logic are often framed as distinct from or
even in opposition to saturation/superposition systems, although nothing in principle
prevents a tableau system from employing superposition1- or saturation- style reason-
ing [DV98, Gie06]. These systems aim to build closed tableaux, a kind of rooted tree
presenting an argument by contradiction. Branches represent case distinction, and a
branch is closed if a contradiction is obtained with respect to facts obtained earlier on
the branch or its ancestors.

Many variants and refinements of tableau calculi exist. Connection tableau [LS01]
are a particularly strong refinement: these add the constraint that extensions to a tableau
must be directly connected to the current branch’s leaf literal, rather than allowing
the addition of axioms unrestricted. This allows an idiosyncratic goal-directed proof
search, starting at the (negated) conjecture and working back toward axioms which re-
fute it. Tableau with the connection refinement is not a proof-confluent system, but this
is not a fatal problem as search in connection-tableau systems is typically backtracking
in nature, such as by iterative deepening.

The current generation of (connection) tableau systems are typically less strong
than current superposition/saturation systems, at least as measured by performance
on large benchmark datasets such as TPTP. Explanations for this performance gap
might include the difficulty of global search refinements such as subsumption, the

1although it should be noted that there are some problems with equality reasoning and tableaux,
notably undecidability of rigid E-unification [DV96] and incompleteness of the obvious formulation of
paramodulation with respect to the connection refinement [Pas08]



2.2. MACHINE LEARNING 25

lack of specialised equality handling, the lack of proof confluence, or simple under-
development relative to state-of-the-art systems. However, such systems have some
compelling advantages which suggest unrealised potential, at least in combination with
other systems. Proof search is goal-directed, adapts to at least modal and intuitionistic
logics naturally [Waa01], and does not require sequential inference.

2.1.6 System Behaviour and Folklore

Significant “folklore” knowledge has accumulated about the design, implementation,
behaviour and evaluation of first-order theorem provers, especially those of the satura-
tion flavour. Some are “obvious”, such as the idea that saturation systems typically find
a proof quickly, or not at all — this follows from the quickly-growing sets of clauses
present in saturation systems. Others are evaluated experimentally in literature, such
as in experiments on clause selection [SM16, RR19b], although given the artificial na-
ture of such experiments it is unclear how conclusive they can be. In following work
folklore knowledge is acknowledged where used as such.

2.1.7 Modern Systems

There are a large number of systems capable of some amount of first-order reasoning
currently available, all with different aims and advantages. We refer to, and occa-
sionally use, a number of systems throughout what follows, either as motivation or as
part of an experiment. In no particular order, and omitting many interesting and pow-
erful systems, we mention here the classical superposition/saturation systems Vam-
pire [KV13] and E [Sch02], the instantiation-based iProver [Kor08], the SMT solvers
Z3 [DMB08] and CVC4 [DRK+14], the model-elimination system SETHEO [LSBB92]
and the “lean” connection-tableau system leanCoP [OB03].

2.2 Machine Learning

Machine learning is another branch of artificial intelligence which aims to have al-
gorithms “learn from experience”. This work uses techniques and results from the
statistical tradition (see e.g. [Bis06, Mur12]) of machine learning, although other ap-
proaches exist. Traditionally the field is split into supervised learning, unsupervised
learning, and reinforcement learning, although this distinction is not clear and there is
considerable overlap between these areas.



26 CHAPTER 2. BACKGROUND MATERIAL

Many different statistical techniques solve different problems with differing lev-
els of complexity. Neural network models (see e.g. [GBC16]) in particular are the
tool used in this work, and there are good reasons for this: neural networks are suffi-
ciently general-purpose that they form a lowest common denominator; adapted models
can process many different types of data; software libraries and hardware acceleration
(e.g. [PGM+19, ABC+16, NBGS08]) exist to reduce development and training time;
and implementing the forward pass of a network manually for integration into other
systems is usually trivial.

However, neural models are by no means uniformly better than other techniques
(and the current research focus on “deep learning” has its critics [Mar18]), so the de-
cision to focus on applications of neural networks for theorem proving rather than
exploring the large body of material on alternative statistical models is a source of
some regret. Approximate Bayesian inference methods [BKM17] which allow the ex-
pression of uncertainty are of particular future interest.

2.2.1 Deep Neural Networks

An area of development within neural-network models concerns “deep learning”: con-
structing neural networks from many processing layers, so that it is possible to learn
hierarchical “features” [LBH15]. As input data passes through the network, features
identified in lower levels are combined a new set of features for processing later.
An interesting aspect of deep learning is the use of non-traditional layers and dy-
namic network topologies: examples include convolutional, recurrent and recursive
networks [GBC16], and attention methods [VSP+17].

Training such networks can require some artifice to avoid undesirable outcomes
such as divergence, slow training, or overfitting. Many techniques have been devel-
oped which may help with training in one way or another, but it is not clear how best to
categorise the resulting “box of tricks” according to how or what they achieve. Typical
practical approaches may include some of the following non-exhaustive list: various
non-linearities used between layers (including the popular rectified linear unit [NH10]);
initialisation schemes (e.g. [GB10]); “regularisation” techniques such as norm penal-
ties, parameter sharing (particularly as in convolutional and recurrent networks), data
augmentation, label smoothing, early stopping, or dropout; stochastic gradient descent;
purported improvements to the standard gradient descent algorithm such as gradient
clipping, (Nesterov) momentum, adaptive learning rates (e.g. [DHS11, KB14]), learn-
ing rate schedules, or cyclic learning rates [Smi17, ST19]; batch normalisation [IS15]



2.3. HEURISTIC SEARCH, PLANNING AND REINFORCEMENT 27

and related methods; performance optimisation methods which change behaviour such
as integer quantisation or HOGWILD! [RRWN11]; a variety of possible loss functions
or combinations thereof; and meta-techniques such as ensemble methods or transfer
learning.

Changing the neural network’s overall architecture is a recent successful trend,
particularly to train deeper networks. Architectural styles such as Inception [SLJ+15]
(smaller sub-networks inside a larger network), Highway Networks [SGS15] (gated
information flow), residual networks [HZRS16] (addition of inputs to outputs) and
densely-connected networks [HLMW17] (all previous outputs available as inputs) tend
toward “shortcut” connections for faster training of very deep networks.

Given the huge number of possible architectures and techniques, practitioners tend
not to exhaustively attempt all combinations of these, instead relying on accumulated
experience on similar learning tasks. The same is true of the many hyperparameters
accumulated during the design of the training program. Some research aims to also
automate these manual/grid-search tasks [BB12, EMH18].

2.2.2 Graph Convolutional Networks

Processing graphs in a neural context is of interest for this work. Graph convolutional
networks have become a popular technique in this area, although there has been previ-
ous work on learning with graphs [ZTXM19]. Non-graphical convolutional networks
are well-known for e.g. image processing tasks, but the graphical analogue is a more
recent development. The original Graph Convolutional Network’s learned convolution
operator could be loosely described as “take the mean of the current node and its neigh-
bours, transform the result by some learned weight matrix and activate” [KW16a].

Later developments have included more-powerful operators capable of better dis-
tinguishing certain graph structures (e.g. [XHLJ18]), novel graph network architec-
tures (e.g. [KW16b, GJ19]) and improved techniques for localised pooling (e.g. [Die19]).

2.3 Heuristic Search, Planning and Reinforcement

These areas are grouped together here because all three consider the problem of explor-
ing state spaces, albeit with different perspectives and varying amounts of information
and freedom. The following work only uses a few results and techniques from these
areas, but they are indispensable and disproportionately effective for theorem proving.



28 CHAPTER 2. BACKGROUND MATERIAL

Heuristic search [ES11] is a cornerstone of “good old-fashioned AI” (e.g. [RN02]),
providing a variety of techniques for exploring state space in various settings, such
as A* search for informed search or minimax and variations for gameplay. Plan-

ning [LaV06], on the other hand, focusses on producing a plan — that is, actions
leading from a start state to a goal state — for an agent. These first two are particularly
difficult to disentangle [BG01b].

Reinforcement learning provides algorithms for maximising long-term reward re-
ceived by an agent interacting with an environment (e.g. [SB18]). Many reinforcement
algorithms call for some kind of function approximator, which in the modern age is
typically a (deep) neural network. Some surprising results can be achieved via such
“deep reinforcement learning” (e.g. [MKS+15]), but the sub-field has suffered from
some initial problems [Irp18]. There are several ways to classify work in reinforce-
ment learning, to highlight a few: algorithms may assume the existence of a (learned)
model of the environment (“model-based”), or not (“model-free”) [AS97]; environ-
ments may have discrete or continuous state/action spaces; agent learning may be car-
ried out during interaction with the environment (“online”) or on logged interactions
(“offline”) [ASN19]; and environments may be deterministic or stochastic. Theorem
proving recast as a reinforcement learning environment usually inhabits a discrete, de-
terministic environment with access to an obvious model, namely inference.

2.3.1 Bandits, UCT and MCTS

A fruitful line of questioning concerns so-called “bandit problems” [SB18]. The multi-

armed bandit is a fixed number of machines, each of which has one lever (the “one-
armed bandit”). Pulling a lever dispenses a reward, which is usually assumed to be an
independent and identically-distributed sample from an unknown distribution, different
between levers. Only pulling one lever at a time, how best to proceed?

It is possible ([ACBF02], based on earlier work [Agr95]) to achieve only logarith-
mic “regret” with a simple-to-compute algorithm UCB1: pull the lever i that maximises

x̄i +

√
2lnn

ni

where x̄i is the mean reward from lever i so far, ni is the number of times i has been
pulled, and n is the total number of lever pulls. Perhaps surprisingly, this technique
can be adapted to search trees [KS06], which forms the basis for Monte-Carlo Tree

Search [CBSS08], famously combined with neural networks to play Go [SHM+16].



2.4. MACHINE LEARNING FOR AUTOMATED REASONING 29

2.4 Machine Learning for Automated Reasoning

Integrating machine learning techniques is a natural research direction for automated
reasoning: there has been much research on reducing redundancy in proof search,
but comparatively little about choosing a good “direction” for proof search. Some
manual developments could be viewed as symbolic approaches toward this goal: goal-
directed methods such as SInE [HV11]; directed rewrite approaches such as ordered
paramodulation; or heuristics such as clause weight; but as with all fixed heuristics
their power and flexibility, while significant, are limited to what has been programmed.

Learned heuristics have no such limits, although their practical applications are
only just emerging — the most popular guidance methods are still the manual, sym-
bolic variety. As learning techniques increase in both power and capabilities, learned
approaches may augment or even replace manual heuristics in existing systems [Goe20].
Unfortunately, some recurring issues have have historically kept the area little-known
compared to its two enormous parents, as discussed in §1.2.

Nevertheless, intrepid research has achieved steady progress, with occasional high-
profile success on large projects. Work published in 2014 combined classical theorem
proving systems with learned premise-selection systems to prove 39% of theorems
from the Flyspeck project [Hal06] completely automatically [KU14]. This was later
improved to 47% by 2015 [KU15b]. More recent work saw the large-scale develop-
ment of deep neural networks for premise selection [ISA+16] and to guide existing
systems [LISK17].

Systems continue to improve into the present. In the most recent CADE ATP Sys-
tem Competition (CASC) [Sut16], a competition for automatic theorem proving sys-
tems including various logics and divisions, systems making use of machine learning
were in contention. The MaLARea system [Urb07], a meta-system again combining
classical theorem proving techniques and learning techniques, took first place in the
“Large Theory Batch” [Sut08] division. Meanwhile, ENIGMA [CJSU19], a learned
guidance package for the mature, saturation-based E theorem prover [Sch02], outper-
formed the unguided host system in the “First-Order Formulae” division.

2.4.1 Features and Representations

Representing formulae for processing by machine-learning algorithms has been a re-
search area for some time. The majority of classical algorithms take aim at fixed-
size, typically real-valued vectors, and so effort has been made to both engineer good



30 CHAPTER 2. BACKGROUND MATERIAL

features (e.g. [BHP14]), or to embed formulae algorithmically into a feature vector
(e.g. [JU17, TUGH11, GJU19]). The symbols that occur in a given input can be used
in various ways to generate these vectors, but this can result in very high-dimensional
feature vectors when many symbols are present in a problem set. This problem can be
tackled using a distributed representation of features [KK18]. An interesting approach
to augmenting feature engineering is the “abstract nonsense” of MaSh [KBKU13],
which uses both manual features and the working hypothesis that “facts with similar
features are likely to have similar proofs”. The above techniques tend towards syntactic

features, but semantic features are also possible [KUV15, USPV08]

Feature engineering in this way is very successful, but requires manual effort and
necessarily discards at least some information from input data. End-to-end approaches
(see [ATCF20] for an overview and experiments) have included character- or token-
level approaches in which structured data is rendered to a textual representation (e.g.
[ISA+16, PUBK19]), recursively-evaluated syntax-tree structures (e.g. [Chv18, Gau20]),
recurrent methods [PU20], attention-based approaches [UJ20] and — recently and with
apparent success — graphical approaches in which formulae are treated as directed
syntax graphs, possibly sharing terms (e.g. [WTWD17, OKU19, PLR+20]).

2.4.2 Indirect Guidance

Learning approaches which do not modify the proof search procedure directly have
several advantages: no performance penalties during proof search, no modification of
complex search systems required, and often more clear-cut development and evaluation
as a result of treating the underlying system as a black-box. A possible limitation
of such approaches could be that no matter the performance of such systems, if the
underlying system cannot prove the result it is of no use. However, empirically indirect
guidance is very successful and there is limited data to support the idea that there are
such problems which cannot be solved without learned intervention [RS19].

Premise selection (see e.g. [KLT+12] for an overview) is particularly prevalent,
aiming to select only relevant facts and thereby reduce the search space. Strategy
selection (e.g. [BHP14, HK19]) aims to select good options for a concrete system for
a given problem, a technique known to be surprisingly effective from work on strategy
scheduling. It is possible to conceive many different such problem settings, such as
learning symbol precedences for term orderings [BS20] or conjecturing intermediate
lemmas [UJ20].



2.4. MACHINE LEARNING FOR AUTOMATED REASONING 31

2.4.3 Direct Guidance

The other major approach is the opposite: do not modify factors external to proof
search, but instead guide search internally through algorithms parameterised by learn-
ing systems. An argument could be made that this approach subsumes indirect guid-
ance: premise selection can be achieved simply by avoiding those premises, strategy
selection is not required if the system is the strategy, conjecturing can be achieved
directly by searching for intermediate lemmas, and so on. In any case, the direct guid-
ance problem is very hard, and in practice the two approaches may be complementary.

This approach is not new: early work in this area includes perceptron guidance [ESS89,
SE90] for branches in SETHEO [LSBB92]. Tableau-style systems have remained
popular in such research, including naı̈ve-Bayes guidance [UVŠ11, KU15a] for lean-

CoP [OB03] and later developments with reinforcement learning [KUMO18, ZCM+19].
Saturation-style provers initially resisted learned guidance, exhibiting performance
problems [LISK17], but some work has gone into remedying this problem [CJSU19].



Chapter 3

Dynamic Strategy Priority

Material from the following chapter appeared in Practical Aspects of Automated Rea-

soning 2018 under the title “Dynamic Strategy Priority: empower the strong and aban-
don the weak” [RR18]. The paper introduced a new method for guiding portfolio ATP
systems by inspecting run-time portfolio information and demonstrated improved per-
formance on a concrete ATP system, Vampire.

Automated theorem provers are often used in other tools as black-boxes for discharg-

ing proof obligations. One example where this has enjoyed a lot of success is within

interactive theorem proving. A key usability factor in such settings is the time taken for

automatic systems to complete. Automated theorem provers typically run lists of proof

strategies sequentially, which can cause proofs to be found more slowly than necessary

if the ordering is sub-optimal. We show that it is possible to predict strategies likely

to succeed while they are running using an artificial neural network. We implement

a run-time strategy scheduler in the Vampire system which exploits the trained neu-

ral network to improve average proof search time, and hence increases usability as a

black-box prover.

Many modern automated theorem provers (e.g. E [Sch02], iProver [Kor08], Vam-
pire [KV13], CVC4 [DRK+14], leanCoP [OB03]) for first-order logic rely on portfolio

modes [RSV14], which use tens to hundreds of distinct strategies. Of these strategies,
only a few might solve a hard problem, often rapidly. Typically, a portfolio of strategies
has a predefined execution order: the prover will execute strategies in this order, run-
ning each for a bounded length of time until a strategy succeeds or the system exhausts
time or strategies.

32



3.1. A BRIEF INTRODUCTION TO VAMPIRE 33

allocated proof search time

(a) 1 7 2 7 3 7 4 3 . . .

(b) 1 2 3 4 . . . 1 2 3 3 . . .

(c) 1 2 3 4 3 . . .

Figure 3.1: Different strategy scheduling schemes and their effects on proof search:
(a) Failing strategies might block a successful strategy.
(b) Round-robin scheduling can help mitigate this problem.
(c) This approach is improved if promising strategies run for longer.

Portfolio modes are important as, in practice, there is no best strategy. Furthermore
it is uncommon that two hard problems are efficiently solved by the same strategy.
However, portfolio execution is not without problems: deciding the optimal ordering
and time allocation is hard in general [RS17], and produces overly-rigid, brittle engi-
neering when applied to specific domains, such as those found in the TPTP problem
set. Moreover, for any particular problem, some lengthy strategies that are successful
on other problems are doomed to failure from the outset — illustrated in Figure 3.1 —
but are left to run unchecked, wasting time that could be spent on other strategies.

This chapter makes two contributions. We first demonstrate correlation between
trends in dynamic properties of proof search, and the pending success or failure of a
strategy (§3.2,§3.3). We then use this to implement strategy scheduling, prioritising
those strategies most likely to succeed (§3.4). This approach differs from previous
work [Sch02, MW97, KSU13] which attempts to predict successful strategies a priori

from static features of the input problem; instead we tip running strategies for success
based on dynamic, run-time features and use this information to make decisions at
runtime. Our experiments (§3.5) show that guiding scheduling in this way can signifi-
cantly speed up portfolio-based approaches.

3.1 A Brief Introduction to Vampire

Vampire is a saturation-based first-order automatic theorem prover. This section re-
views its basic structure and components relevant to the rest of this chapter. We will



34 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

use the word strategy to refer to a set of configuration parameter values that control
proof search, and proof attempt to refer to a run of the system using such a strategy.

3.1.1 Input and Preprocessing

Vampire accepts problems in classical first-order logic with equality and a predefined
set of first-order theories: arithmetic, arrays, datatypes and so forth. Problems are
parsed and transformed into a set of input clauses before proof search begins, referred
to as preprocessing.

This process converts the problem to clause normal form, and may also apply a
number of other possible preprocessing techniques. Preprocessing can alter certain
properties of the problem such as its size and distribution across the signature of the
problem. For example, the E.T. system [KSUV15] implements a preprocessing step
for E which selects small sets of axioms from a larger set, for reasoning in large the-
ories. This suggests that any prediction method that relies solely on characteristics of
the input problem, rather than search-level characteristics such as post-preprocessing
properties, will find it harder to predict the success or failure of strategies.

3.1.2 Saturation Algorithms

Saturation systems such as Vampire use saturation algorithms with redundancy elimi-

nation (§2.1.4). They work with a search space consisting of a set of clauses and use
a collection of generating, simplifying and deleting inferences to explore this space.
Generating inferences, such as superposition, extend this search space by adding new
clauses obtained by applying inferences to existing clauses. Simplifying inferences,
such as demodulation, replace a clause by a simpler one. Deleting inferences, such as
subsumption, delete a clause, typically when it becomes redundant [BG01a]. Simpli-
fying and deleting inferences must be well-behaved to preserve completeness.

The goal of saturation algorithms is to saturate the clause set with respect to the
inference system. If the empty clause is derived then the input clauses are unsatisfi-
able. If no empty clause is derived and the search space is saturated then the input
clauses are guaranteed to be satisfiable, but only if a complete strategy is used. A
strategy is complete if it is guaranteed that all inferences between non-deleted clauses
in the search space will be applied. Nevertheless, Vampire includes many incomplete
strategies, as they can be more efficient at detecting unsatisfiability.

All saturation algorithms implemented in Vampire belong to the family of given



3.1. A BRIEF INTRODUCTION TO VAMPIRE 35

clause algorithms, which can achieve completeness via a fair clause selection pro-
cess that prevents the indefinite skipping of old clauses. These algorithms typically
divide clauses into three sets: unprocessed, passive and active. Clauses are considered
processed if they are contained within passive or active. Algorithms follow a simple
saturation loop:

1. Add non-redundant unprocessed clauses to passive. Redundancy is checked by
attempting to forward simplify the new clause using processed clauses.

2. Remove processed clauses made redundant by newly processed clauses, i.e.
backward simplify existing clauses using these clauses.

3. Select a given clause from passive, move it to active and perform all generating
inferences between the given clause and all other active clauses, adding gener-
ated clauses to unprocessed.

Later we will show how iterations of this saturation loop from different proof attempts
can be interleaved. Vampire implements three saturation algorithms:

1. Otter uses both passive and active clauses for simplifications.

2. Limited Resource Strategy (LRS) [RV03] extends Otter with a heuristic that dis-
cards clauses that are unlikely to be used with the current resources, i.e. time
and memory. This strategy is incomplete but also generally the most effective at
proving unsatisfiability.

3. DISCOUNT uses only active clauses for simplifications.

A recent development in Vampire is AVATAR [Vor14, RSV15] which integrates with
the saturation loop to perform clause splitting. The general idea is to use a SAT solver
to select a subproblem by naming each clause sub-component by a propositional vari-
able, running a SAT solver on these abstracted clauses, and using the subsequent propo-
sitional model to select components to include in proof search. At the end of each iter-
ation of the loop we check whether the underlying subproblem has changed. AVATAR
can occasionally make loops run a little longer, but no more than other steps such as
backward subsumption. Otherwise, the notion of saturation loop remains the same
when using AVATAR.

There are also other proof strategies that fit into the above loop format and can be
interleaved with the core superposition-based proof attempts. For example, instance



36 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

generation [GK03] saturates the set of clauses with respect to the instance generation
rule and finite model finding [RSV16] iteratively checks larger model sizes. These
loops tend to be much longer than those from other algorithms.

3.1.3 Strategies in Vampire

Vampire includes more than 50 parameters. By only varying parameters and values
used by Vampire at the last CASC competition, we obtain over 500 million strategies.
These parameters control aspects of proof search such as

• Preprocessing steps (24 different parameters)

• Choice of saturation algorithm and related behaviour, such as clause selection

• Inferences available (16 different kinds with variations)

• Splitting via AVATAR

Even restricting these parameters to a single saturation algorithm and straightforward
preprocessing steps, the number of possible strategies is vast. For this reason, Vam-
pire implements a portfolio CASC mode [KV13] that categorises problems based on
syntactic features and attempts a sequence of approximately 50 strategies over a five
minute period (this number can vary significantly). These strategies are the result of
extensive benchmarking and have been shown experimentally to work well on unseen
problems, i.e. those not used for training.

The syntactic features used by the current portfolio mode are coarse-grained and
include the rough size of the problem (bucketed into tiny, small, medium, large, huge),
the presence of features such as equality or certain theories, and whether the problem
is effectively propositional [PdMB08] or Horn [Hor51]. Not all combinations of these
are considered. Portfolio mode is created by considering a set of training data over a
list of strategies and attempting to greedily cover as much of it as possible by splitting
the set of problems into smaller groups based on these features until all solutions fit
into a given time limit. This process places the strategy that solves the most problems
during training, then the next best strategy after removing the problems solved by the
first, and so on.



3.2. FEATURE ENGINEERING AND COLLECTION 37

0 50 100 150 200 250 300 350
feature #

0

5

bu
ck

et
s

Figure 3.2: A trace displayed as a colourmap, after preprocessing. The vertical
axis represents (normalised) inferences, horizontal axis features in no particular or-
der. While most features remain almost the same over the lifetime of this trace, some
can be seen to change on the left-hand side of the map.

3.2 Feature Engineering and Collection

This section discusses features extracted from Vampire for prediction and how they are
extracted. Modifying Vampire to log execution data (general metrics such as memory
usage, or prover-specific metrics such as the number of generated clauses) for different
strategies obtained from its primary portfolio mode is straightforward, but some data-
collection decisions were made:

• Only numerical data immediately available in the prover are collected, but there
is scope here for both non-numeric and derivative data sources, which may pro-
vide greater insight into the proof state in future work. Suppose that quantities A

and B are measured directly, but are more often discussed in terms of categories
C that all A,B pairs fall into. Data could then include a suitable embedding of C

as well as, or instead of, A and B.

• Data are collected at intervals of a fixed number of internal saturation steps (in
experiments presented in this chapter, this value is 10). This may not necessarily
correspond to fixed time intervals, as each step may be more or less expensive,
depending on the strategy and the problem.

• All available data are collected, even if it appeared to be constant or unhelp-
ful. This allows an agnostic approach to learning in which the neural network
training procedure selected relevant features.

In all, 376 features are recorded, including the number of active clauses, passive
clauses, and subsumptions, for instance. All appropriate TPTP problems are used



38 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

model mean accuracy (%) standard deviation (%)

MLP 81.5 2.0
1D CNN 82.4 3.1
GRU 83.9 1.9

Table 3.1: k-fold cross-validation classification accuracy on a balanced dataset of
around 10,000 total successful/failed execution traces. k = 5.

with the modified Vampire to generate execution traces. The execution traces pro-
duced are difficult to work with, however: some are short or non-existent, others are
extremely lengthy. Mean execution trace length is 536 (standard deviation: 1208), with
the longest trace 9971 recorded steps long. Some features also exhibit high variance.

To deal with these problems, preprocessing is applied. Each feature is scaled to
zero mean and unit variance. Data that are too short (fewer than 10 steps) are discarded,
as the strategy likely did not take very long in any case. The remaining traces are sliced
in the time domain into 10 evenly-sized “buckets”, then a mean over each bucket is
taken to produce 10 values for every trace. This results in fixed data dimensions,
normalised over trace length and normalised feature values.

However, even now these data are not representative of the classification problem
desired: these traces show completed runs of Vampire, whereas the classifier will be
used to predict the success or otherwise of runs of Vampire that are still in progress.
Hence, we take “snapshots” at various stages (in these experiments, at every quarter)
of the trace, discarding the rest of the data, then preprocess the remaining trace as de-
scribed above. Conveniently, this also provides 4 times the original number of training
examples. Figure 3.2 shows a processed trace.

3.3 Predicting Successful Strategies

Predicting which proof search attempts will succeed in time and which will fail may
seem unlikely, especially when predictions are based solely on information in the ex-
ecution trace. However, it is known that the “slowly-growing search space” maxim
is an effective heuristic for finding good strategies in saturation-based theorem prov-
ing [RS17]. The maxim states that strategies which minimise the number of derived
clauses over time are more likely to succeed.

Since the data we use includes the number of derived clauses, among many other



3.3. PREDICTING SUCCESSFUL STRATEGIES 39

Input 1

Input 2

Input 3

Classification

Input Layer Hidden Layer Output Layer

Figure 3.3: A multi-layer perceptron with an input layer, a single densely-connected
hidden layer, and a single binary output neuron. A version of this model with a greater
number of input and hidden neurons is used to predict strategy success at runtime.

features, it appears plausible that this approach might work at least as well as the slow-
growth heuristic alone. Engineering a prediction algorithm that attempts to partition
traces into “succeeding” and “failing” classes is possible with the use of machine-
learning techniques (§2.2). Conveniently, some of these methods do not produce a
binary output, but instead some real-valued output f (X) ∈ [0,1] which we use as the
“level of confidence” in success of the trace, X. This success score can be used to apply
an ordering to executing strategies, allowing “smart” dynamic scheduling of strategies.

Three neural-network models are trained and evaluated: a simple fixed model and
two models with an inductive bias for series data.

1. A simple multi-layer perceptron (MLP) with one input for each (bucket, feature)
pair in the trace and a single hidden layer.

2. A convolutional network performing a 1-dimensional convolution pass along the
inference axis per-feature, before the hidden layer.

3. A recurrent network, feeding feature series along the inference axis into a gated
recurrent unit [CGCB15] before a hidden layer.

Results for this classification task are shown in Table 3.1. The consistent level of
accuracy achieved is encouraging. Both of the more-advanced classifiers performed
better than the simple neural network. However, the simple MLP model was chosen
for integration into Vampire for implementation simplicity and for performance — it
is “good enough” while also suitably fast (§1.2.3).



40 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

3.4 Intelligent Scheduling for Vampire

We show that this abstract predictor can be used in a concrete implementation for
the Vampire prover. In the modified prover, it is used to run several strategies from
Vampire’s portfolio in a modified scheduler: strategies self-report their own execution
data to the supervisor process and pause for re-evaluation at regular intervals. When a
strategy halts, the scheduler then decides whether to re-schedule the strategy for some
more time, or to swap it out for a different strategy.

An interesting problem is how to choose between starting new strategies and con-
tinuing to run older strategies. Additionally, if too many strategies are started (but not
necessarily running) concurrently, this can consume significant memory. A tradeoff
must be found between the ideal of constantly running and evaluating all available
strategies in the schedule and the memory and compute cost of doing so. We imple-
mented such a tradeoff in which strategies yet to start have a neutral static priority

compared to running strategies, evaluated by neural network. The precise algorithm
used here is as follows, taking as input a list of strategies to run:

1. Initialise an empty “run pool” of processes, with a maximum size equal to the
desired number of workers (e.g. CPU cores available). Also initialise an empty
priority queue of paused processes.

2. Whenever the pool is under capacity, either:

(a) If the best process in the paused queue has a priority greater than the static
priority pstatic, wake it and move it into the running pool. In tests, a static
priority of around 0.5 appeared to work reasonably well.

(b) Otherwise, take the next strategy from the input list and start a new process
to run that strategy.

3. When a strategy pauses to be re-evaluated:

(a) Remove the process from the pool.

(b) Re-evaluate the process priority using the neural network and the data it
provided.

(c) Insert the process into the queue with the computed priority.

4. When a strategy terminates, check if it succeeded. Otherwise, remove it from
the pool.



3.5. EXPERIMENTS 41

variation solved new unique wall (s) CPU (s)

baseline 12,899 - 420 3.03 ± 9.91 10.53 ± 33.60
no-prediction 11,827 56 33 2.86 ± 8.33 10.38 ± 32.24
prediction 12,425 111 88 2.59 ± 9.55 8.74 ± 31.03

Table 3.2: Raw results for the scheduling variations.

5. If the pool, the queue, and the set of input strategies are all depleted, all strategies
have failed. Exit.

To integrate the neural network into Vampire, we took the trained network weights
from our Python-based experiments, and generated a C source file with these weights
expressed as a large array. The neural network’s architecture was then re-implemented
manually in Vampire, using the network weights compiled into the new version. This
approach has several advantages: while perhaps not as efficient as using external li-
braries such as PyTorch [PGM+19] or TensorFlow [ABC+16] — which may use avail-
able hardware acceleration — our approach is reasonably efficient, low-latency, does
not incur any additional dependencies, and does not add to program start-up time.

3.5 Experiments

We evaluate whether prediction results carry through to improved performance in Vam-
pire. Note that in this setting, “success” is not easy to quantify: ideally Vampire’s time-
to-proof would be reduced while still proving most problems it could solve previously.

3.5.1 Setup

We take all relevant problems for Vampire from TPTP 6.4.0 (17,281 problems in total)
and run three variations of Vampire 4.2.1’s CASC portfolio mode:

baseline is Vampire’s standard sequential portfolio mode

no-prediction uses the dynamic scheduling architecture without prediction. This ef-
fectively produces a round-robin scheduling of strategies.

prediction uses the trained neural network to predict whether a strategy will be suc-
cessful as previously described.



42 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

Figure 3.4: Problems solved against time.

no-prediction prediction
wall CPU wall CPU

# problems worse 1,895 2,518 642 940
mean slowdown (when worse) 29.02 78.82 18.83 44.52
# problems better 451 788 650 1,297
mean speedup (when better) 7.02 28.19 3.47 10.46

Table 3.3: Amount of speedup or slowdown compared to the baseline solver.

The default 3GB memory limit and 300s time limit from the standard portfolio mode
are kept but in addition each variation runs in a multicore setup distributing strategies
over 4 cores. Experiments were run on the StarExec cluster [SST14] where each node
contains an Intel Xeon 2.4GHz processor.

3.5.2 Results

Table 3.2 gives some raw numbers. Here new refers to the number of problems solved
by this variation that were not solved by baseline, unique refers to the number of prob-
lems solved by a variation but not by the other two, and mean and standard deviation
solution times are given for wall-clock and CPU time. Figure 3.4 illustrates the overall
results by plotting the number of problems solved against time taken.



3.5. EXPERIMENTS 43

Table 3.3 gives further statistics comparing the two scheduling variations with the
baseline. For the purposes of this table we only compare the results on problems that
both the given variation and baseline solve and where the difference between solution
times is greater than 1 second. This second part is important as it allows for small vari-
ations in solution times due to natural non-determinism.1 Speedup is a multiplicative
factor (a speedup of 2 means a proof was found in half the time), similarly for slow-
down. “Better” means that the given variation was faster than the baseline, whereas
“worse” means that the variation was slower.

3.5.3 Discussion

An immediate observation is that the overall number of problems solved is slightly
worse for the variations performing scheduling. A possible explanation for this could
be that the strategies in the portfolio mode are quite fragile; their performance degrades
with the small overhead of context-switching and additional memory/CPU contention.
Further experiments could explore this by using more generic strategies with longer
time limits: many strategies in CASC mode run for less than 1 second. However, the
overall number of problems solved is still high enough to make the result useful.

New problems solved by scheduling variations are an oddity, perhaps explained by
introduced noise and non-determinism in the scheduling process. We note that one
explanation for this could have been if the strategy schedule was longer than the time
given and prediction moved a strategy into the allowed time. This is a behaviour we
might expect for short time limits, but for this experiment all strategies ran.

The average solution times are improved with the two variations and the variation
using prediction achieves the best solution time on average. When looking at the more
detailed results of Table 3.3 we see that in the majority of cases the prediction variation
was faster than the baseline, which was not the case when no prediction was applied.
Furthermore, the impact of “getting it wrong” was larger without prediction: that is,
the resulting slowdowns are larger.

1This allowance is often not made but it can heavily skew results. Without it, all variations look
almost identical, as cases where variations behave in the same way dominate. This does not indicate
that the variations are not an improvement, but there are many cases where there is no difference. The
most likely explanation for this is that solutions are quick and no scheduling is required e.g. if the
problem is solved during preprocessing.



44 CHAPTER 3. DYNAMIC STRATEGY PRIORITY

3.6 Summary

We are aware of work in premise selection [ISA+16, KBKU13, Urb07, WTWD17],
static strategy selection [BHP14, KU15c, KSU13], and more recently, direct proof
guidance [UVŠ11, KU15a, LISK17]. However, we are not aware of any previous
work in the area of strategy selection during search for conventional theorem provers.
Work on static strategy selection focuses on static properties of the input problem,
rather than dynamic properties of the proof search space, with the exception of Bridge
et al [BHP14]. Bridge considers various dynamic features of the search space after
100 steps of the saturation algorithm in the default mode of E. SATzilla [XHHLB08]
famously and very successfully incrementally constructs a portfolio — partially based
on a learned model — for SAT problems.

The aim of our experiments was to improve Vampire’s overall performance, if not
in the number of total theorems proved, but in the average time taken to prove prob-
lems. This approach has been shown to produce a significant increase in speed without
an excessive penalty in the number of problems solved.

There are several routes that could be explored in order to further improve per-
formance. As well as improving predictor performance by use of more sophisticated
data curation, processing, and machine-learning techniques, it may also be possible
to improve the naı̈ve scheduling algorithm. Further research might include designing
scheduling algorithms which keep predictions as up-to-date as possible, maximise pro-
cessor utilisation, minimise memory usage/swapping, reduce context-switching over-
head, or even minimise the number of required calls to the prediction algorithm.

This form of optimisation for Vampire is relatively novel: historically the aim of the
team has been to prove as many theorems as possible, rather than to improve the speed
of moderately-hard problem solving. As immediate impact, these developments may
be useful in improving Vampire’s performance in the new SLH division in the CASC
competition, as well as improving the overall usability of interactive theorem proving
via quicker “hammer” results, such as those reported via Sledgehammer [MP08].

This approach avoids most of the challenges discussed in §1.2 altogether by not
interfering with the internal search decisions under the level of strategies, although in
retrospect we suffer from an unclear objective function. This strength of the approach
is also a limitation: if the set of strategies cannot solve a problem, no amount of strategy
scheduling will help. Learning to schedule strategies from internal system statistics is
also quite coarse-grained, well removed from the decisions made by a strategy: it is



3.6. SUMMARY 45

not clear at what point this approach will run out of sufficient information or decision-
making power to obtain improved results.



Chapter 4

Guided Preprocessing

Material from the following chapter appeared in Frontiers of Combining Systems 2019

as “A Neurally-Guided, Parallel Theorem Prover” [RR19a]. The paper introduced a
theorem proving system which used a learned model to manipulate problems for an
existing ATP. The design of the system started from a clean slate: while it is not yet
particularly practical, it allows unusual features we feel may be useful in future.

We present a prototype of a neurally-guided automatic theorem prover for first-order

logic. The system uses a neural network trained on previous proof search attempts

to evaluate subgoals based directly on their structure, and hence bias proof search

toward success. An existing first-order theorem prover is employed to dispatch easy

subgoals and prune branches which cannot be solved. Exploration of the search space

is asynchronous with respect to both the evaluation network and the existing prover,

allowing for efficient batched neural network execution and for natural parallelism

within the prover. Evaluation shows that the system can improve with learning.

Recent advances in neural network systems for logical reasoning allow for processing
structured data such as terms and formulae in a neural context. This advance suggests a
new breed of neural ATP in which proof search is guided by a neural black-box acting
as “mathematician’s intuition”. However, in practice there are several implementation
issues [RR19c] which must be worked around in order for neural guidance to integrate
with traditional systems (§1.2). With a fresh take on neural guidance, our prototype
LERNA1 takes an alternative step toward useful neural automatic theorem provers.

1Learning to Reason with Neural Architectures. Lerna is also the lair of the mythical many-headed
beast HYDRA. Source code available at https://github.com/MichaelRawson/lerna.

46



4.1. NEURAL NETWORKS FOR FORMULAE 47

4.1 Neural Networks for Formulae

Work on integrating machine-learned heuristics into automatic theorem provers has
relied on hand-engineered features or other embedding methods [JU17, KH17], which
have the advantage of simplicity and relative efficiency, but do not fully encode the
syntactic structure of proof state and therefore lose information. By contrast, a method
which takes into account all information should allow for greater precision in proof
guidance systems. Deep Network Guided Proof Search (DNGPS) [LISK17] is an ex-
ample of previous work in this area, which integrated a deep neural guidance system
into the saturation-based prover E [Sch02]. DNGPS achieved successful results, but
suffered from the latency introduced into the system by the neural heuristic: despite
processing only a reduced amount of the available proof state, the reduction in through-
put necessitated a two-phase approach in which the prover was neurally-guided in the
first phase, before falling back to traditional proof search in the second (§1.2.3).

Processing structured data such as logical formulae is a relatively new domain for
neural networks (§1.2.2). Some work attempts to use unstructured representations of
such formulae, such as text, or build entirely-new models for a specific logic [ESA+18],
whereas others attempt to re-use neural techniques for structures such as trees [BPM15].
A promising direction in this area is recent research on neural methods working with
graphs [DBV16, KW16a, SKB+18], which have already been applied to premise se-
lection [WTWD17].

4.2 Design

In order to achieve the goal of a neural theorem prover without the disadvantages
associated with neural approaches, a new design of theorem prover may be required.
Popular calculi used in existing ATPs tend to be unfriendly to neural guidance (§1.2.4).
For such a system, we desire the following from the calculus:

Proof state must be reasonably-sized. Attempting to evaluate large proof states struc-
turally requires a lot of computation and resources. Popular saturation-style sys-
tems produce particularly large proof states by nature.

Evaluation of states must be possible in parallel. Machine-learning algorithms can
be accelerated more efficiently in batches. Top-down approaches lend them-
selves to this technique, whereas saturation provers are more sequential.



48 CHAPTER 4. GUIDED PREPROCESSING

Subgoals must be independent and self-contained. If the prover has a notion of sub-
goals which must be dispatched (such as in tableau provers), these should be
independent of the rest of the search space, without e.g. shared rigid variables.
Otherwise, the learning system is trying to learn while ignoring the wider context
of the search. For example, it can be the case that one way of closing a branch
of a connection tableau makes a different branch impossible to close.

Subgoals must be intelligible and freely chosen. Destructive transformations such as
the use of normal forms can obscure the original intuition behind a goal, at least
for human observers. While this is not necessarily the case for learned guidance,
it seems likely that removing structure will reduce model performance. Further,
such transformations can have significant effect on proof search: we want the
learned model to make these choices for itself.

We therefore implement a system based on a first-order tableau calculus “without uni-
fication” (i.e. variables are not treated as rigid), working on non-clausal, general for-
mulae. Each goal in this case is the set of formulae present on the tableau branch. In
this context, proof state is small (only the current branch), evaluation of states is pos-
sible in parallel, each branch is independent and contains all information required, and
all available structure from the original problem is kept.

4.2.1 Proof Search

In the calculus (see §4.3) for the system, there are two branching factors: each goal has
a set of possible inferences, and each inference contains a set of possible sub-goals. To
prove a goal, at least one inference must be proved. To prove an inference, all the infer-
ences’ sub-goals must be proved (i.e. shown to be unsatisfiable). A simple optimisa-
tion is that sub-goals may be shared between inferences, so search becomes a directed
acyclic graph alternating between goals and inferences, as shown in Figure 4.1.

Now the search graph can be explored: in each step, a leaf goal is selected for ex-
pansion, and all resulting inferences and sub-goals are added to the graph. If a goal has
no possible inferences, it is satisfiable and can be removed from the search space. On
the other hand, if a goal is trivial (i.e. contains a contradiction), it is unsatisfiable and
can be marked as proven. This idea is lifted to inferences: if an inference contains any
satisfiable sub-goal, it too is satisfiable, whereas if an inference contains all unsatisfi-
able goals, it is unsatisfiable. Proof search continues until the timeout is reached or the
root goal is shown to be (un-)satisfiable. In order to dispatch trivial sub-goals quickly,



4.2. DESIGN 49

Goal

Inference Inference

Goal Goal Goal

Figure 4.1: Proof search, showing shared sub-goals.

an existing fast oracle ATP is used (§4.4). This may mark goals as (un-)satisfiable, at
which point no further exploration is required.

Search is biased by heuristic evaluation. The neural heuristic function (§4.5) eval-
uates each goal and assigns a score corresponding to whether the network believes that
the goal is satisfiable or unsatisfiable. In order to balance exploitation of promising
directions and exploration of all parts of the search space, a UCT-based [KS06] search
algorithm is used (§2.3.1). This is similar to the Monte-Carlo search used in mon-

teCoP [FKU17] but without the randomised aspect. At each sub-goal g, the prover
chooses the inference i with subgoals s according to

max
i∈g

min
s∈i

(score(s))︸ ︷︷ ︸
exploitation

+ c×

√
lnvisits(g)

visits(i)︸ ︷︷ ︸
exploration


where score gives the heuristic score, visits gives the total number of visits to that
node so far, and c is an exploration parameter (

√
2 in the original UCB1 definition).

The sub-goal with the minimal score is selected: this may be counter-intuitive at first.
Selecting sub-goals with minimal scores encourages attacking the “hardest” part of
a goal first, and prioritises subgoals considered possibly satisfiable by the heuristic:
satisfiable subgoals allow large parts of the search space to be pruned.



50 CHAPTER 4. GUIDED PREPROCESSING

Neural Heuristic SearchHeuristic Scores
Subgoals

Oracle ATPSubgoals
Sat/Unsat/Unknown

Figure 4.2: Information flow between subsystems.

4.2.2 Architecture and Prototype

The system aims to consume all available CPU and GPU resources as efficiently as
possible. To that end, proof search is asynchronous: the search algorithm generates
new sub-goals, which are placed on two separate queues: one for the oracle ATP, an-
other for heuristic evaluation. Proof search then continues elsewhere, while the oracle
ATP is called in parallel on each sub-goal, consuming all available CPU cores, while
the heuristic consumes batches of subgoals, consuming all available coprocessor re-
sources. As information flows backwards from these processes, the search process
updates information about a given sub-goal and propagates information upwards, in-
fluencing future proof search: see Figure 4.2.

The heuristic is implemented as a server, communicating with the main prover via
a TCP socket. In principle this allows for the heuristic to be a shared resource with a
centralised heuristic server, or a load-balanced cluster.

4.3 Calculus

The proof calculus used in the above architecture may be extremely general: in fact,
any function from goals to a finite set of possible inferences (themselves finite sets of
sub-goals) will suffice, as long as each goal remains independent of any other such
that the heuristic function can process all available information. If the inference sys-
tem is complete, there are no additional constraints such as fair selection to maintain
completeness of the system, as the balanced search algorithm ensures this (§4.2).

LERNA implements a refutation tableau calculus [Häh01] without unification. The
calculus described is deliberately naı̈ve in order to easily satisfy the design constraints
given above, but could be replaced by a stronger calculus in the future. An inefficient
calculus is not a problem in principle, as the heuristic should select promising areas to
explore and ignore uninteresting sub-goals, and the oracle system also helps with this.
However, a more efficient calculus improves performance where the heuristic fails.



4.3. CALCULUS 51

CONTRADICTION

φ,¬φ,Γ

EQUAL

t = s,φ [t/s] ,Γ
t = s,φ,Γ

IMPLIES
¬φ,ψ,Γ

φ⇒ ψ,Γ

EQUIVALENT

¬φ,¬ψ,Γ φ,ψ,Γ

φ≡ ψ,Γ

CONJUNCTION
φ1,φ2, . . . ,φn,Γ

φ1∧φ2∧ . . .∧φn,Γ

DISJUNCTION
φ1,Γ φ2,Γ . . . φn,Γ

φ1∨φ2∨ . . .∨φn,Γ

INSTANTIATION
∀x1,x2, . . .xn.φ[ f (x1,x2, . . .xn)/x],∀x.φ,Γ

∀x.φ,Γ

EXISTS
φ[k/x],Γ
∃x.φ,Γ

Figure 4.3: A complete inference system for LERNA. Rules for negation are as usual
and not shown here for brevity. In rule INSTANTIATION, f is a function symbol of
arity n in the conclusion’s signature and x1 . . .xn are fresh for the conclusion. In rules
NON-EMPTY and EXISTS, k is fresh for the conclusion. φ[t/s] is a capture-avoiding
substitution replacing t for s in φ.

4.3.1 Refutation Tableaux

In order to show a conjecture C from a set of axioms Ai, it suffices to negate C and
then show that the resulting conjunction A1 ∧A2 ∧ . . .∧¬C is unsatisfiable. A set of
inference rules of the form

Γ1 Γ2 . . . Γn

∆

where Γi,∆ are sets of formulae and ¬(Γ1∧Γ2∧ . . .Γn)⇒ ¬∆ is an unconditional
tautology, form a refutation calculus. Proofs in this calculus can be expressed by closed
trees of inference rules.

4.3.2 Complete Inferences

The inference rules in Figure 4.3 form a complete inference system, by analogy with
a first-order tableau calculus without unification. A difference and point of interest
is the rule for instantiating universal quantifiers: instead of instantiating a variable
with any possible term t — an infinite space — it is instantiated with one function
symbol (or constant) at a time, quantifying over new variables as needed. Note that no
free variables are permitted in formulae: variables are always quantified. This allows



52 CHAPTER 4. GUIDED PREPROCESSING

P(c),Q(c),¬P(c) P(c),Q(c),¬Q(c)
P(c),Q(c),¬P(c)∨¬Q(c)

DISJUNCTION

P(c),Q(c),¬(P(c)∧Q(c))
NEGATION

P(c),Q(c),∀x.¬(P(x)∧Q(x)),¬(P(c)∧Q(c))
WEAKEN

P(c),Q(c),∀x.¬(P(x)∧Q(x))
INSTANTIATION

P(c),Q(c),¬∃x.P(x)∧Q(x)
NEGATION

Figure 4.4: Suppose we are trying to prove ∃x.(P(x)∧Q(x)), given P(c) and Q(c),
which has an obvious constructive proof via x = c. After pushing a negation in, x is in-
stantiated once to c, after which the universally-quantified formula can be (optionally)
dropped with a WEAKEN rule. The DISJUNCTION rule produces two subgoals that can
be attacked independently.

for instantiating any term by repeated application of the instantiation rule (effectively
enumerating the Herbrand universe for the goal: as usual, if there is no constant in the
signature, one is introduced), but without an infinite number of possible inferences at
any point. Equality is handled by a rule rewriting classes of equal ground terms. These
rules are trivially complete and astonishingly inefficient, but are hoped to be used only
a few times in order to provide enough of a “hint” to the oracle system.

4.3.3 Weakening

A weakening rule is an important part of LERNA’s calculus, since the INSTANTIATION

and EQUAL rule can produce a large number of formulae, some of which must be
removed to help the oracle to prove the goal. Each application of the rule removes
some amount of information from the goal in order to simplify it — this is sound and
corresponds to removing an axiom from proof search. The rule is merely

WEAKEN

Γ

φ,Γ

4.3.4 Simplifications

Before each inferred goal is added to proof search, it is simplified. Simplifications
remove tedious inferences such as eliminating double negations, and generally reduce



4.4. ORACLE SYSTEM 53

DOUBLE-NEG
φ,Γ

¬¬φ,Γ

CONJ-ASSOC
φ∧ψ∧π,Γ

φ∧ (ψ∧π)

DISJ-PROP
φ,Γ

φ∨⊥,Γ

REFL
>,Γ

t = t,Γ

FREE
φ,Γ

∀x.φ,Γ

Figure 4.5: Some simplification rules implemented in LERNA. In rule FREE, x does
not occur in φ. Several other rules are implemented.

the search space available. Simplification rules are not intended to make choices about
proof search: otherwise, using a normal form would be a reasonable step here. Fig-
ure 4.5 gives some example simplification rules.

4.4 Oracle System

One problem with the calculus as described is that proofs can be quite lengthy, even if
the goal is relatively trivial. To rectify the situation, new goals generated by ongoing
proof search are enqueued for attempted proof by an existing oracle ATP system, as
described in §4.2. In our implementation we use the mature SMT solver Z3 [DMB08],
which supports quantified first-order logic via a combination of decision procedures for
decidable fragments (such as the Bernays-Schönfinkel class of formulae), and heuristic
quantifier instantiation routines [GDM09]. Z3 is attractive for this application due to
its low startup times and its ability to produce both satisfiable and unsatisfiable results.

LERNA uses Z3 as an external system (it could be replaced by an alternative ATP),
running it with its Model-Based Quantifier Instantiation heuristic for 20 milliseconds.
This was chosen as the shortest time in which the oracle can dispatch a reasonable
amount of trivial goals (and in fact Z3 is so strong it dispatches some goals immedi-
ately, as shown in §4.6). Longer oracle runtimes might produce better performance in
future, but for this approach longer runtimes begin to conflate the performance of the
oracle and the performance of the system as a whole.

This application is unusual for ATP systems: very short runtimes, and a mix of true
and false problem statements. Running in this setting also amounts to fuzz-testing:
in development of this system a bug was rediscovered in Z32 which resulted in non-
termination of the prover: happily, the bug was already fixed in a newer version.

LERNA might also be seen as an intelligent preprocessor for existing ATPs in this
setting: existing theorem provers are known to be sensitive to small changes in their

2https://github.com/Z3Prover/z3/issues/2101



54 CHAPTER 4. GUIDED PREPROCESSING

input [SM96], and generally make little attempt to split their input into smaller sub-
goals, for parallelism [SS94] or otherwise. The system can therefore act as an adaptor
for any existing ATP, adding parallelism opportunities and “smoothing out” sensitivity
to input syntax.

4.5 Learned Heuristic

A suitable heuristic function for the system must predict a value between 0 and 1 for a
given formula φ, where 0 represents a satisfiable goal and 1 represents unsatisfiability,
based on a set of tagged formulae seen in previous proof search. Although the data is
collected by running the system itself and might be considered reinforcement learning,
for this approach data collection and learning were considered separately and hence
forms a classic supervised-learning problem.

4.5.1 Data Collection

A large dataset of satisfiable and unsatisfiable goals were collected by running the un-
guided prover on the M40k dataset for 10 seconds. As soon as the prover determines the
satisfiability of any sub-goal, the formula it represents and its status is recorded. This
resulted in 18,340 unsatisfiable examples and 1,845,267 satisfiable examples, occupy-
ing 6GB of disk space. The dataset is imbalanced, due to a combination of weaken-
ing rules producing a large number of trivially-satisfiable examples, and to immediate
prover termination after the goal is shown to be unsatisfiable. The ratio of satisfiable
to unsatisfiable goals is around 100:1.

4.5.2 Translation to Graphs

Wang et al. [WTWD17] give a translation from higher-order formulae to directed
graphs, and a similar scheme is used here. Constants, function symbols, predicate
symbols, and bound variables are given their own node. Applications of functions and
predicates to arguments are represented as an “application node” with two children: the
symbol node and an “argument list” node representing the list of arguments. Proposi-
tional connectives and equality have the obvious representation, while quantifiers have
two children: the variable they bind and their sub-formula.

To produce an input graph from a formula F , the formula is first parsed into an ab-
stract syntax tree. Common sub-trees up to α-equivalence [Bar84] are merged, then the



4.5. LEARNED HEURISTIC 55

ALL

X AND

APP NOT

p ARGS

APP X

f ARGS

c

EQ

APP d

f ARGS

c

(a) AST.

ALL

VAR

AND

APP NOT

PRED ARGS

APP

FUN ARGS

CONST

EQ

CONST

(b) Nameless DAG.

10

1

9

6 8

4 5

6

3 5

2

7

2

(c) Final result.

Figure 4.6: The translation process for ∀x. [p( f (c),x)∧¬( f (c) = d)] to a graph, as
seen by the neural network.

resulting directed acyclic graph has any named-symbol nodes replaced with an opaque,
nameless label such as “predicate” or “variable”: since distinct symbols remain as dis-
tinct nodes under this scheme, no information is lost other than the natural-language
semantics of the symbol name. In practice, undirected graphs improved model per-
formance, so the graph is made undirected before encoding nodes as integer labels to
produce the final input graphs. Undirected graphs lose some information but allow
bi-directional information flow between nodes.

4.5.3 Augmentation

One possible solution [SWK09] to the problem of classification on imbalanced do-
mains is to synthesise new data for under-represented classes (in this case unsatisfiable
formulae) from existing data by modifying it, c.f. augmenting image data by cropping,
flipping or adding noise to existing images. There are many possible ways to augment
formulae graphs: here we add a small number of random edges to the input graphs.
We note that this does not necessarily preserve unsatisfiability or even syntactic valid-
ity, but it does appear to help. This augmentation requires the network to be robust to
noise, which might plausibly improve performance, e.g. recognising a theorem with
additional axioms. As with all such techniques, benefits are limited, and after some
point increasing the amount of regularisation simply reduces performance.



56 CHAPTER 4. GUIDED PREPROCESSING

4.5.4 Neural Architecture

In a typical convolutional network architecture for images [KSH12], there are a se-
ries of pixel-level stages, followed by a densely-connected neural network. Each pixel
stage either combines data from local features (via convolution), or reduces the di-
mensions of the image (via pooling) for the next stage. Graph neural networks have
analogous node-level operators, convolution: combining information from neighbour-
ing nodes; and pooling: merging nodes to reduce the size of the input graph. Pooling
may be localised to a subset of nodes (e.g. [GJ19]), or global pooling in which all
nodes are collapsed into one. A brief period of experimentation with these operators
yielded the following network architecture, shown in Figure 4.7.

Input. A graph G consisting of one-hot encoded nodes N and edges E.

Embedding. Each node is mapped to an embedding vector of size 64 via a trained
dense embedding.

Initial Convolution. 4 convolution layers are applied to the graph with rectified linear
activations. This yields a graph of the same size, but with information exchanged
between nodes.

Convolution/Local Pooling. Similar convolution layers are then passed through top-
k [GJ19] layers, retaining k≈ 60% of the graph’s nodes. This is repeated 3 times,
reducing the size of the graph considerably.

Convolution/Global Pooling. A final convolution layer feeds into a max-pooling layer,
combining all remaining node data into one datum, and dropping the edge data.

Output. Fully-connected hidden and output layers produce binary classification.

It is not claimed that this is the optimal configuration, and no grid search took place to
optimise the network architecture or hyperparameters. To reduce over-fitting, dropout
is applied in convolutional and fully-connected layers, p = 0.1.

4.5.5 Training

The dataset is split into a large training set and a smaller test set (200 balanced exam-
ples), since unsatisfiable examples were time-consuming to obtain in this setting. The
unsatisfiable training data were then augmented as described in §4.5.3 to produce a



4.5. LEARNED HEURISTIC 57

input (Nx1)

embedding (Nx64)

convolution + ReLU (Nx64)

convolution + ReLU (Nx64)

convolution + ReLU (Nx64)

convolution + ReLU (Nx64)

convolution + ReLU (Nx64)

top-k pooling (Nx64), (P1x64)

convolution + ReLU (P1x64)

top-k pooling (P1x64), (P2x64)

convolution + ReLU (P2x64)

top-k pooling (P2x64), (P3x64)

convolution + ReLU (P3x64)

global max-pooling (P3x64), (64)

fully-connected (64), (32)

ReLU

fully-connected (32), (2)

output

Figure 4.7: The neural network architecture. Initially there are N nodes, then after
pooling there are P1,P2,P3 nodes. Node-level embedding layers are shown per-node,
graph-level convolutional and pooling layers are shown per-graph.



58 CHAPTER 4. GUIDED PREPROCESSING

(a) Output of embedding
layer.

(b) Output after initial
convolutions.

(c) After first pooling.

(d) After second pooling. (e) After third pooling.

(f) After global
pooling.

Figure 4.8: Computation in the neural network, showing intermediate values involved
in the network (correctly) predicting the satisfiability of an input formula.

balanced total training set of 3.5 million examples. The network trained on commod-
ity desktop hardware for 8 epochs/24 hours, after which both validation and training
loss appeared to cease improving significantly.

4.5.6 Network Evaluation

The network was evaluated on the balanced test set of 200 examples, as described.
Various metrics for accuracy are shown in Table 4.1. While these results are very
promising, we note that it is unclear how effective a train/test split is in this setting
(similar subgoals may occur in both sets, even with proper data hygiene), and that this
network is not attempting to determine the satisfiability of arbitrary formulae, merely
those that occur in proof attempts on the M40k dataset. Regardless, network perfor-
mance is surprising and improves proof search in practice.



4.6. EXPERIMENTAL RESULTS 59

metric score

accuracy 0.930
precision 0.990
recall 0.884
F1 0.934

metric score

true positive 99
true negative 87
false positive 13
false negative 1

Table 4.1: Accuracy metrics for the subgoal classifier.

configuration solved

Z3 (10s, as baseline) 1216
Z3 (20ms, as oracle) 711

LERNA, unguided (10s, with oracle) 969
LERNA, guided (10s, with oracle) 1023

Table 4.2: Total solved problems on the M2k dataset.

4.6 Experimental Results

To show that neural guidance can improve the performance of LERNA the system was
run with and without guidance for 10 seconds on all available CPU cores. All results
were collected on commodity desktop hardware.

Table 4.2 shows the total number of theorems proved using various configurations
of Z3 and LERNA on the M2k dataset. Z3 ran for a full 10 seconds to establish base-
line performance, then as an oracle for 20 milliseconds to determine the number of
“trivial” problems. LERNA ran on an identical dataset, first without guidance from the
neural heuristic, then with guidance. With neural guidance LERNA was able to solve
an additional 54 problems and overall LERNA was shown to be complementary to Z3,
proving 114 problems that Z3 was unable to solve on its own, and 40 that neither un-
guided LERNA nor Z3 could solve. Conversely, Z3 was able to solve more problems
in total, which is unsurprising given the maturity of the tool. These results show that
LERNA is able to learn from experience and complement an existing ATP.

4.7 Research Directions

Given the prototype nature of this approach, we have included a detailed discussion on
possible extensions. As LERNA is a very new system, there is likely much to be gained
by simple engineering and tuning: for example, the exploration parameter c has been



60 CHAPTER 4. GUIDED PREPROCESSING

left at its original value
√

2.

4.7.1 Proof Search

Heuristic search in the system has strengths and weaknesses. The amount of informa-
tion (“confidence”) in the system grows over time, as a result of a growing number of
oracle invocations and neural network evaluations. A weakness is the heuristic search
method: UCT-based methods are not an ideal fit for theorem proving, particularly with
the ability to split goals. It also appears that the system sometimes determines that
many directions are all equally promising, and spends time investigating all of them
when one would suffice. “Can this branch be closed?” is perhaps less interesting than
“what is the shortest way to close this branch?” (§1.2.1).

Another direction for proof search is an incomplete mode where branches deemed
sufficiently uninteresting by the heuristic are pruned, perhaps in response to resource
constraints as in limited resource strategies [RV03]. This approach, while clearly in-
complete, would significantly accelerate proof search in the direction of more promis-
ing search within the available resources.

4.7.2 Prover Calculus

The calculus currently employed is deliberately naı̈ve and extensions could be explored
to reduce redundant search. As one possible view of this approach is as an intelli-
gent preprocessor for an existing ATP, more aggressive and/or weakening inferences
might be included in the calculus. For instance, prenexing (or conversely miniscoping)
formulae can have a significant effect on proof search for some theorem provers, so
including suitable quantifier-manipulation rules might prove to be a useful extension.
Definition introduction for sub-formulae or terms is another similar direction.

Ideas from other tableau calculi could well be suitable for this system, such as an
adapted connection rule from the non-clausal connection calculus [Ott11], as used in
nanoCoP [Ott16]. Finally, this prover architecture can support other logics without
excessive modification. Given that Z3 is already capable of supporting many theories,
such as arithmetic or datatypes, a many-sorted first order logic such as those described
by SMT-LIB or the TFF0 dialect of TPTP seems appropriate.



4.8. SUMMARY 61

4.7.3 Oracle System

While Z3 is a strong theorem prover in its own right and performs well here, it remains
to be seen if it is the best for this application. Other ATPs (or counter-example-finding
systems) could be investigated. A portfolio of several oracle systems working in tan-
dem might also be considered, although of course this will eventually retard proof
search linearly in the number of systems present.

Reducing the number of oracle invocations is another area for optimisation. Cur-
rently, the system calls an oracle for every new sub-goal generated. It seems unlikely
in some cases that the sub-goal is materially easier to dispatch than its parent — for
example, in the case of propositional inferences that do not split the goal — so reduc-
ing such subgoal invocations by heuristic or randomised means is a possible area for
improvement. LERNA does not currently use any information from the oracle beyond
its status: using auxiliary information such as satisfying models or unused formulae
could well aid proof search.

4.7.4 Machine-Learned Heuristic

Many other graph-based neural architectures are possible. Neural models specifically
for theorem proving are relatively under-studied. Different approaches to formula-to-
graph translation, symbol embeddings, data augmentation, and model integration may
also be explored.

4.8 Summary

The introduced LERNA system implements a theorem prover with a neural heuristic
processing the entire proof state, structured as a graph. After training on data automat-
ically generated by the prover system (even where it fails to find a proof), the neural
network approach is shown to be practically useful for improving proof search perfor-
mance. A number of approaches (batching, oracle invocations, parallelism) are em-
ployed to improve system efficiency. While the system is not a state-of-the-art ATP, it
has some unique desirable properties, among them simplicity, parallelism, parametric-
ity with respect to calculus/oracle/heuristic, and introspection of proof state. The gen-
eral approach is flexible and presently unexplored.

We now leave this exploratory work to investigate some specific areas in depth:
the representation of formulae as graphs in Chapter 5, the idea of theorem proving



62 CHAPTER 4. GUIDED PREPROCESSING

as reinforcement in Chapter 6, and asynchronous heuristic search for tableau-style
systems in Chapter 7.



Chapter 5

Directed Graph Networks

Material from the following chapter will be published in the proceedings of Practical

Aspects of Automated Reasoning 2020 as “Directed Graph Networks for Logical Rea-
soning”. The paper introduced neural models that work over directed graphs, allowing
lossless encoding of a variety of logical data, such as formulae in first-order logic.

We introduce a neural model for approximate logical reasoning based upon learned

bi-directional graph convolutions on directed syntax graphs. The model avoids inflex-

ible inductive bias found in some previous work on this domain, while still produc-

ing competitive results on a benchmark propositional entailment dataset. We further

demonstrate the generality of our work in a first-order context with a premise selection

task. Such models have applications for learned functions of logical data, such as in

guiding theorem provers.

Neural networks are ubiquitous in tasks in which features must be extracted from
unstructured data — tasks such as computer vision, or natural language processing.
However, learning in a similar way from data that are already highly-structured is only
beginning to be studied, but is sorely needed in fields such as program synthesis or au-
tomated reasoning. We approach this area from guidance of automatic theorem provers
for first-order logic: an undecidable setting that nevertheless might benefit from heuris-
tic guidance, as strategies for a subset of “useful problems” can be learned this way.
It should be noted that we do not aim to solve known computationally-hard or unde-
cidable problems with this approach, merely approximate these functions for practical
purposes. In this chapter we explore the use of neural models for heuristic tasks on
logical data, first in a propositional context, then progressing to a first-order setting.

63



64 CHAPTER 5. DIRECTED GRAPH NETWORKS

5.1 Propositional Task

Evans et al. [ESA+18] introduce a dataset for studying the ability of neural networks
to perform tasks which are “primarily or purely about sequence structure”. The dataset
consists of tuples of the form (A,B,y) where A and B are propositional formulae and
y is the binary output variable. The task is to predict logical entailment: whether or
not A |= B holds in classical propositional logic. A and B use only propositional vari-
ables and the connectives {¬,∧,∨,⇒} with the usual semantics. The dataset provides
training, validation and test sets, with the test set split into several categories: “easy”,
“hard”, “big”, “massive” and “exam”. The “massive” set is of particular interest to us
as it contains larger entailment problems, similar in size to those found in real-world
first-order problems.

PossibleWorldNet is introduced alongside the dataset [ESA+18] as a possible so-
lution to the task: an unusual neural network architecture making use of algorith-
mic assistance in generating repeated random “worlds” to test the truth of the en-
tailment in that world, in a similar way to model-based heuristic SAT solving or
semantically-guided premise-selection systems such as SRASS [SP07] or MaLARea-
SG1 [USPV08]. The PossibleWorldNet approach performs exceptionally well, but
does suffer from inflexible inductive bias: it is unclear how this model would perform
on harder tasks without a finite number of possible worlds, or tasks where model-based
heuristics don’t perform as well. Tending instead toward a purely-neural approach,
Chvalovský introduces TopDownNet [Chv18], a recursively-evaluated neural network
with impressive results on this dataset.

Graphical representations have been used with some success for logical tasks:
Olšák et al. introduce a model based on message-passing networks working on hy-
pergraphs [OKU19], while Paliwal et al. [PLR+19] use undirected graph convolu-
tions for a higher-order task. Crouse et al. show that particular form of subgraph
pooling [CAC+19] improves the state of the art on two logical benchmarks for graph
neural networks. An interesting effort related to the propositional task is that of Neu-
roSAT [SLB+19], a neural network that learns to solve SAT problems presented in
conjunctive normal form. We are aware of other similar work [GAA+19] developed
concurrently: the work achieves good results by adding a fixed number of edge la-
bels and edge convolutions to the model, in exchange for additional complexity and
artificially limiting e.g. function arity.



5.2. APPROACH 65

∨

∧ ¬

¬ Q

P

¬

P

(a) syntax tree

∨

∧¬

¬ Q

P

(b) DAG - named

∨

∧¬

¬ *

*

(c) DAG - nameless

Figure 5.1: Producing a DAG representation of (¬P∧Q)∨¬¬P.

5.2 Approach

Our main contribution is a graph neural network model working directly on logical
syntax that performs well on benchmark datasets, while remaining simple and flexible.
Suitably-designed representations retain enough information such that an equivalent
input (up to renaming) can be reconstructed from the representation, a property we will
call lossless. Lossless representations have no direct practical benefit, but eliminate the
possibility of poor model performance due to insufficient information (§1.2.2).

To achieve this goal we use a bi-directional convolution operator working over
directed graphs and experiment with different architectures to accommodate this ap-
proach, which achieves strong performance on the propositional entailment dataset
discussed in §5.1. Progressing to first-order logic, we also demonstrate a lossless first-
order encoding method and investigate the performance of an identical network archi-
tecture on a first-order dataset.

5.3 Input Encoding

Directed acyclic graphs (DAGs) are a natural, lossless representation for most types
of logical formulae the authors are aware of; including modal, first-order and higher-
order logics, as well as other structural data such as type systems or parsed natural
language. A formula-graph is formed by taking a syntax tree and merging common
sub-trees, followed by mapping distinct named nodes to nameless nodes that remain
distinct: an example is shown in Figure 5.1. Such graphs have previously been used for



66 CHAPTER 5. DIRECTED GRAPH NETWORKS

problems such as premise selection [WTWD17] or search guidance of automatic the-
orem provers (Chapter 4). It should be noted that the acyclic property of these graphs
does not seem to be important — it just so happens that convenient representations
happen to be acyclic. This representation has several desirable properties:

Compact size. Sufficiently de-duplicated syntax DAGs have little to no redundancy,
and in pathological cases syntax trees are made exponentially smaller.

Shared processing of redundant terms. Common sub-trees are mapped to the same
DAG node, so models that work on the DAG can identify common sub-terms
trivially.

Bounded number of node labels. By use of nameless nodes, a finite number of dif-
ferent node labels are found in any DAG. This allows for simple node represen-
tations and does not require a separate textual embedding network, although this
could be used if desired.

Natural representation of bound variables. Representing bound variables such as
those found in first-order logic can be difficult [Pit01] — this representation
side-steps most, if not all, of these issues and naturally encodes α-equivalence.

One drawback of such DAGs as a representation for logical formulae is that they lack
ordering among node children: with a naı̈ve encoding, the representation for A⇒ B

is the same as B⇒ A, but the two are clearly not equivalent in general. The same
problem also arises with first-order terms: f (c,x) is indistinguishable from f (x,c).
However, this problem can be removed by use of auxiliary nodes and edges such that
an ordering can be retrieved, as shown in §5.6. For the propositional dataset, the
classical equivalence A⇒ B ≡ ¬A∨B is used to rewrite formulae, avoiding ordering
issues. We also recast the entailment problem A |= B as a satisfiability problem: is
A∧¬B unsatisfiable? These methods reduce the total number of node labels used (4 in
total — one for propositional variables, and one for each of {¬,∧,∨}), and allow the
network to re-use learned embeddings and filters for the existing operators.

5.4 Model

We introduce and motivate a novel neural architecture for learning based on DAG rep-
resentations of logical formulae. Unusual neural structures were found to be useful,



5.4. MODEL 67

valid easy hard big massive exam

mean node count 23.5 23.7 47.5 51.4 80.2 9.1
maximum node count 37 39 65 86 102 13
standard deviation 4.6 4.7 5.9 11.0 6.7 2.1

mean symbol count 5.2 5.3 5.8 5.2 18.5 2.4

Table 5.1: Encoding statistics

∨

∧

P Q

(a) top-down only

∨

∧

P Q

(b) bottom-up only

∨

∧

P Q

(c) undirected

Figure 5.2: Information flow in a formula DAG representing P∧Q∨P.

and are described first, before these blocks are then combined into the model architec-
ture.

5.4.1 Bi-directional Graph Convolutions

We assume the input DAG is a graph (X,A) where X is the node feature matrix and A is
the directed graph adjacency matrix. Various graph convolution operators — denoted
conv(X,A) here as an arbitrary operator — have enjoyed recent success. These gener-
alise the trainable convolution operators found in image-processing networks to work
on graphs, by allowing each layer of the network to produce an output node per input
node based on the input node’s existing data and that of neighbouring nodes connected
with incoming edges. This can be seen as passing messages around the graph: with k

convolution layers, a conceptual “message” may propagate k hops across the graph.
Here, we use the standard convolutional layer found in Graph Convolutional Net-
works [KW16a]. This operator suffers from a shortcoming (illustrated in Figure 5.2) on
DAGs such as those used here: information will only pass in one direction through the
DAG, as messages propagate only along incoming edges. Unidirectional messages are
not necessarily a problem: bottom-up schemes such as TreeRNNs [TSM15, Gau20]



68 CHAPTER 5. DIRECTED GRAPH NETWORKS

exist, Chvalovský uses a top-down approach [Chv18], and cyclic edges are another
possible solution. However, to play to the strengths of the graphical approach the ideal
would have messages passed in both directions, with messages from incoming and
outgoing edges dealt with separately. It is possible to simply make the input graph
undirected, but this approach discards much of the crucial encoded structure and was
not found to perform much better than chance on the propositional task. Instead, a
bi-directional convolution is one possible solution:

biconv(X,A) = conv(X,A)‖conv(X,AT)

where the ‖ operator denotes feature concatenation. By convolving in both edge direc-
tions (with disjoint weights) and concatenating the node-level features produced, infor-
mation may flow through the graph in either direction while retaining edge direction
information. A concern with the use of bi-directional convolution in deep networks
is that each unidirectional convolution must decrease the size of output features by a
factor of at least 2 in order to avoid exponential blowup in the size of feature vectors
as the graph propagates through the network. Due to the use of a DenseNet-style block
with feature reduction built-in, this was not an issue here.

We use a directed adjacency matrix and the convolution operator

conv(X,A) = σ
(
D̂−1ÂXW

)
where D̂ is the degree matrix of Â = A+ I. This is a row-normalisation of the adja-
cency matrix: we did not find symmetric normalisation employed in the original graph
convolution operator to be useful, probably due to the lack of undirected edges.

5.4.2 DenseNet-style blocks

Recent trends in deep learning for image processing suggest that including shorter
“skip” connections between earlier stages and later stages in a deep convolutional
network can be beneficial [HZRS16]. DenseNets [HLMW17] take this to a logical
extreme, introducing direct connections from any layer in a block to all subsequent
layers. We found a graphical analogue of this style of architecture very useful. Sup-
pose that Xi−1 is the input of some convolutional layer Hi. Then, by analogy with
DenseNets, Hi should also be given the outputs of previous layers as input:

Xi = Hi (X0‖X1‖ . . .‖Xi−1,A)



5.4. MODEL 69

However, in later layers this node-level input vector becomes very large for a computationally-
expensive convolutional layer such as Hi. DenseNets also include measures designed
to reduce the size of inputs to convolutional layers, such as 1× 1 convolutions. We
include an analogous “compression” fully-connected layer h, which reduces the input
size before convolution by allowing the network to project relevant node features from
previous layers:

Xi = Hi (h(X0‖X1‖ . . .‖Xi−1) ,A)

5.4.3 Graph Convolution Operators and Pooling

It has been shown that the standard graph convolution layer is incapable of distin-
guishing some types of graph, motivating Graph Isomorphism Networks [XHLJ18].
Since logical reasoning is almost entirely about graph structure and is known to be
computationally hard, it was expected that the more powerful convolution operator
would produce better results, but the isomorphism operator did not outperform the
baseline graph convolution operator in experiments. Similarly, localised pooling is
well-known to be useful in image processing tasks, and its graphical analogues such
as top-k pooling [GJ19] and edge contraction pooling [Die19] also perform well on
some benchmark tasks. These also appear useful here, perhaps corresponding to the
human approach of simplifying sub-formulae. However, these also did not improve
performance, possibly due to the lack of redundancy in formula graphs. Further inves-
tigations into integrating these powerful methods is left as future work.

5.4.4 Architecture

A simplistic neural architecture is described. Batch normalisation (BN) [IS15] is
inserted before convolutional and fully-connected layers, and rectified linear units
(ReLU) [NH10] are used as nonlinearities throughout, except for the embedding layer
(no activation) and the output layer.

Embedding. An embedding layer maps one-hot input node features into node features
of the size used in convolutional layers.

Dense Block. DenseNet-style convolutional layers follow, including the fully-connected
layer (FC) so that each layer consists of ReLU-BN-FC-ReLU-BN-BiConv. Only
one block is used, with each layer using all previous layers’ outputs.



70 CHAPTER 5. DIRECTED GRAPH NETWORKS

network training

input features 4 batch size 64
convolutional features 16 momentum 0.9
convolutional layers 48 weight decay 0.0001

initial min. learning rate 0.01
initial max. learning rate 0.1
learning rate decay factor 0.99995
learning rate cycle length 8000

Table 5.2: Network and training hyperparameters

Global Average Pooling. At this point the graph is collapsed via whole-graph average
pooling into a single vector. Passing forward outputs from all layers in the dense
block to be pooled was found to stabilise and accelerate training significantly.

Output Layer. A fully-connected layer produces the final classification output.

A relatively large number of convolutional layers — 48 — are included in the dense
block, for both theoretical and practical reasons. Theoretically, if information from
one part of the graph must be passed to another some distance away in order to deter-
mine entailment or otherwise, then a greater number of layers can prevent the network
running out of “hops” to transmit this information. Practically, more layers were found
to perform better, particularly on the larger test categories, confirming the theoretical
intuition. In principle there is no limit to the number of layers that might be gainfully
included.

5.5 Experimental Setup and Results

Source code for an implementation using the PyTorch Geometric [FL19] extension
library for PyTorch [PGM+19] is available1.

5.5.1 Training

Training setup generally follows that suggested for DenseNets [HLMW17]: the net-
work is trained using stochastic gradient descent with Nesterov momentum and weight

1https://github.com/MichaelRawson/gnn-entailment



5.5. EXPERIMENTAL SETUP AND RESULTS 71

model valid easy hard big massive exam

PossibleWorldNet 98.7 98.6 96.7 93.9 73.4 96.0
TopDownNet 95.5 95.9 83.2 81.6 83.6 96.0

contribution 99.4 99.3 91.2 88.3 89.2 97.0

Table 5.3: Accuracy scores for the propositional entailment task

decay, with the suggested parameters. Parameter initialisation uses PyTorch’s de-
faults: “Xavier” initialisation [GB10] for convolutional weights and “He” initialisa-
tion [HZRS15] for fully-connected weights. A cyclic learning rate [Smi17] was found
to be useful for this model — we applied a learning rate schedule (“exp range” in
PyTorch) in which the learning rate cycles between minimum and maximum learning
rates over a certain number of minibatches, while these extremes themselves decay
over time. Training continued until validation loss ceased to obviously improve. See
Table 5.2 for training parameter details.

5.5.2 Augmentation

No data augmentation is used as the dataset is relatively large already, and further it
is unclear what augmentation would be applied: the “symbolic vocabulary permuta-
tion” approach [ESA+18] is not applicable here due to the nameless representation,
but randomly altering the structure of the graph does not seem useful as it could well
change the value of y unintentionally. One could imagine a semantic augmentation
in which A is made stronger or B weaker — this would produce data augmentation
without invalidating the value of y.

5.5.3 Reproducibility

Results are reproducible, but caveat implementor. Training runs performed on a CPU
are fully deterministic, but slow. Conversely, training runs performed on a GPU are
not fully deterministic2, but are significantly accelerated. Results reported here are
obtained with a GPU, but produce comparable results on repeated runs in practice.

2An unfortunate consequence of GPU-accelerated “scatter” operations. See https://pytorch.
org/docs/stable/notes/randomness.html



72 CHAPTER 5. DIRECTED GRAPH NETWORKS

5.5.4 Results

Experimental results are shown in Table 5.3. Results reported from PossibleWorldNet
and TopDownNet (d = 1024) are also included verbatim, without reproduction, for
comparison. Test scores of the best model on each data split are highlighted. Results
show that our model is competitive on the test categories, both with algorithmically-
assisted approaches (PossibleWorldNet), and with a pure neural approach (TopDown-
Net). The model significantly outperforms on the “massive” test category.

5.5.5 Discussion

We conjecture that our model generalises to some degree the approach taken with Top-
DownNet. In our model arbitrary message-passing schemes within the entire DAG are
permitted, rather than TopDownNet’s strict top-down/recurrent approach, which may
go some way to explaining the difference in performance. However, the relationship
with PossibleWorldNet is less clear-cut, and this is reflected in results: PossibleWorld-
Net remains unbeaten on the “hard” and “big” categories, but is surpassed on all others.

5.6 First-Order Logic

We demonstrate the flexibility and generality of our approach by also applying the
same model without adaptation or tuning to a different dataset expressed in first-order
logic. First-order logic is significantly richer than propositional logic, which allows us
to demonstrate naturally encoding argument order with directed graphs (§5.6.2).

5.6.1 Dataset

We employ the Mizar/DeepMath premise-selection dataset [KU15b] used in the eval-
uation of the distributed feature representations of Kucik and Korovin [KK18], the
subgraph-pooling models of Crouse et al. and the hypergraph model of Olšák et al.
The task is to predict whether or not a given premise is required for a given conjecture,
both expressed in full first-order logic. The dataset asserts a baseline score of 71.75%,
Kucik and Korovin achieve 76.45%, while the best subgraph-pooling model achieves
79.9%. Olšák et al. report 80% but do not reserve a validation set, and further em-
ploy clausification. It is unclear to what extent clausification helps or hinders machine
learning approaches on this dataset.



5.7. SUMMARY 73

5.6.2 Representation

A similar input representation to that in the propositional case is used here. However,
argument order in function and predicate application must be preserved in order to
maintain a lossless representation. This is achieved by use of an auxiliary “argument
node” for each argument in an application, connected by edges indicating the order
of arguments, shown in Figure 5.3. Quantifier nodes have two children: the variable
which they bind, and the sub-formula in which the variable is bound. More space-
efficient or otherwise performant graph representations are a possibility left as future
work. 17 node types are used in total.

5.6.3 Training and Results

We used an identical configuration as with the propositional case: it is possible that
with some tuning better performance can be produced. We do however note that using
fewer layers (down to around 24 — half of the original number), did not seem to hurt
performance for this benchmark and significantly reduced computation requirements
and GPU memory usage. Data was split as suggested3 at the conjecture level into
29,144 training conjectures and 3252 testing conjectures (we reserve a validation set
of 128 conjectures). The model achieves a classification accuracy of 79.8% on the
unseen test set.

5.6.4 Discussion

The network achieves performance significantly above the baseline, comparable with
Crouse et al. and Olšák et al., without task-specific tuning. We consider this a good
result, suggesting that the network architecture is able to perform without adaptation
on more complex tasks expressed in different logics.

5.7 Summary

We explore directed-graph representations and a new architecture for logical approxi-
mation tasks and show that they have good performance characteristics and a number
of advantages, notably simplicity. The approach can work over many different logics
in principle, and practical experiment suggests this is true in practice. The network

3https://github.com/JUrban/deepmath



74 CHAPTER 5. DIRECTED GRAPH NETWORKS

@

f * * *

c

X @

g * *

Y

(a) f (c,X ,g(c,Y ))

∀

∃

X

∨

Y @@

*p* q

(b) ∀x.∃y.P(x)∨Q(y)

Figure 5.3: First-order graph encodings, showing (a) argument ordering and (b) vari-
able binding.

does not use any algorithmic assistance as PossibleWorldNet does, yet achieves com-
petitive performance — this allows the network to process similar tasks which do not
have a useful concept of “possible worlds”. Combining our work with the best of other
approaches, such as using the densely-connected network architecture with hypergraph
methods, is a promising direction.

In some applications, such as guiding automatic theorem provers, network predic-
tion throughput is crucial. High-performance automatic theorem prover internals typ-
ically use a graphical representation [SRV01], so graphs are a natural choice for these
structures. Additionally, graph neural networks parallelise [FL19] somewhat more nat-
urally than previous approaches such as TreeNets, suggesting that this style of network
may be more applicable to these domains.

Much future work is possible, especially to improve efficiency. In particular, we
suspect that multiple dense blocks might use fewer parameters or perform better than
one large block. A hybrid skip-connection approach, such as connecting smaller dense
blocks with residual connections, is of particular interest to us as it may reduce com-
putational cost significantly. We used versions of this method in the following chapters
as a general-purpose learning tool, and were pleased to find that it has generally-good
performance without much tuning, and can adapt easily to encode extra-logical data
such as actions or metadata into the graphical representation.



Chapter 6

Reinforced Theorem Proving

Material from the following chapter was presented at Practical Aspects of Automated

Reasoning 2020 under the title “Reinforced External Guidance for Theorem Provers”.
At the virtual conference, we introduced a reinforcement-learning setting for auto-
mated theorem proving, discussed its merits and presented some attempts to solve it in
the context of Vampire.

We introduce a reinforcement learning environment for deriving useful “lemma” facts

to aid existing automated theorem provers: agents receive reward for making deduc-

tions which reduce system effort. This forms a challenging reinforcement task with

applications for practical theorem proving. We present and train an exemplar deep

neural agent for the environment and demonstrate deduction of helpful formulae for

unseen, harder problems once trained on similar, easy problems. The environment is

fully general and can accommodate any automated theorem prover, deduction system

or reinforcement algorithm.

We begin with the foibles of ATP systems. Modern ATP systems can explore a large
search space quickly while eliminating redundancies, but even sophisticated provers
can get “stuck” in explosive search areas or fail to exploit promising directions. Such
conventional systems are also sensitive to their input: adding unhelpful axioms or us-
ing a different formulation of the same problem can result in losing a proof (§1.2.1).
However, the opposite is also true: adding useful lemmas — perhaps not found other-
wise until significantly later in proof search — can cause a system to find a proof much
more quickly.

75



76 CHAPTER 6. REINFORCED THEOREM PROVING

To exploit the situation we train agents to select helpful formulae for an exist-
ing ATP from a set provided by some inference system. During training episodes on
easier problems, agents are provided the problem statement combined with previously-
selected formulae, and are presented with a set of new formulae derived from existing
formulae by the inference system. After the agent selects a formula, a reward or pun-
ishment signal is then administered depending on whether the ATP found the deduction
helpful, or unhelpful. The relationship is symbiotic:

1. The agent learns to select helpful inputs for the ATP

2. The ATP provides an approximate reward signal to guide agent learning

The former is practically useful for improving the performance of existing theorem
provers: if an agent provides sufficiently useful input a proof can be brought within
the the resource limits of the user, turning a timeout into a proof. The latter is not
as directly useful — it is unlikely that the agent makes a good ATP by itself — but
it makes an interesting tradeoff. The agent must learn to deal with the quirks of the
underlying prover, but the learning signal dispenses reward or punishment more readily
than simple proof/no-proof reward schemes. It further appears that learning to help
an existing system find proofs is a good proxy for learning to find proofs: during
evaluation we found that agents occasionally found a proof independently of the ATP.

Well-trained agents may be of enormous practical significance: as well as improved
performance on problems in the domain of interest, the generality of this approach
means that some amount of engineering effort can be removed. For example, the
importance of parameter tuning for a given problem domain may be reduced, or some
ad-hoc heuristic can be learned effectively.

6.1 Reinforcement Learning and Theorem Proving

Reinforcement learning (RL) deals with agents learning to take optimal actions in
an environment that dispenses some reward [SB18]. There are a number of algo-
rithms that solve variations of this problem, such as Q-learning. In Q-learning, agents
learn to approximate a function Q(s,a) that represents the long-term reward expected
from taking action a in state s. Reinforcement learning can use deep neural net-
works as function approximators, as in the DQN algorithm used to play classic Atari
games [MKS+15]. A recurring issue in online RL algorithms (the state of the art
for some time) such as DQN is the amount of computation required to continuously



6.2. MOTIVATION AND LEARNING TASK 77

generate relatively few training examples. This is exacerbated in our approach with
computationally-expensive ATP system invocations and data-hungry deep neural net-
works. Offline RL [ASN19] has received less attention historically, but the appeal
of collecting a dataset of environment interactions ahead of time and training without
interaction drives a modern resurgence in interest.

Initial efforts have been made to apply reinforcement learning techniques to guid-
ing theorem proving, notably by biasing Monte-Carlo tree search with learned ap-
proximations [KUMO18]. One problem observed by the reinforcement FLoP sys-
tem [ZCM+19] is the sparsity of reward available in theorem-proving environments.

6.2 Motivation and Learning Task

Research applying RL techniques to automated theorem proving has encountered ob-
stacles, both in the sparsity of reward in theorem proving (either a proof is found, or it
is not — no reward can be reasonably dispensed until the agent finds it) and with rel-
atively weak initial performance of the ATP/agent hybrid (§1.2). By separating agent
and ATP, our approach partially side-steps these issues in exchange for agents special-
ising to particular system behaviour: instead of attempting to learn some policy for a
formal calculus, agents learn to help a concrete ATP system. This represents a different
problem to that found in previous work directly combining RL and theorem proving.
We now codify the new environment.

6.2.1 Necessity of Reinforcement Learning

At first this might appear to be a supervised learning problem: simply try a number
of deduced lemmas, observe their effect on the prover and classify them as helpful or
unhelpful. Unfortunately, deductions do not exist in isolation: consider two deductions
that are mildly unhelpful alone but when combined produce a rapid proof, or two
deductions which are mildly helpful alone but produce explosive proof search when
combined. Further, the ordering of deductions matter: provers typically process inputs
sequentially in some order with effect on proof search. Therefore, the task must be
approached as a reinforcement learning exercise, maximising the long-term reward
possible to achieve from making some deduction in the here-and-now.



78 CHAPTER 6. REINFORCED THEOREM PROVING

Algorithm 1: RL environment allocating reward from an existing ATP
Parameter: conventional ATP system A
Parameter: 1-step inference system infer
Parameter: maximum steps T
Input: learned (stochastic) agent policy π

Input: training problem P, easily solved by A
Output: selected actions at receiving rewards rt at step t
begin

load and optionally preprocess P, obtaining axioms and conjectures
selected← conjectures
actions← axioms∪ infer(selected)
run A(axioms∪ selected) to get initial score s0
for t← 1 to T do

sample action at ∈ actions according to π

axioms← axioms\{at}
selected← selected∪{at}
actions← axioms∪ infer(selected)
st ← A(axioms∪ selected)
compute rt from st , then report (at ,rt)

end
end

6.2.2 Rules of Play

A naive approach for listing possible deductions takes all available input formulae and
enumerates all possible 1-step deductions between them. While this works, with O(n2)

possible binary deductions it is prohibitive on some problems. Instead, we take an
approach similar to a given-clause loop: formulae are split into a selected set (initially
empty, or the negated conjecture for refutational provers) and an actions set (remaining
axioms and 1-step deductions from selected). Agents may select a formula from the
actions group to move to the selected group, updating actions with any new inferences.
After each step, the ATP system runs on the remaining axioms and the selected set in
order to establish a reward. The RL task is therefore defined by:

• current state: disjoint sets of remaining axioms and selected

• possible actions: not-yet-selected axioms and 1-step deductions from selected

• a reward function based upon the underlying ATP system



6.2. MOTIVATION AND LEARNING TASK 79

6.2.3 Black-Box: Vampire

This work is deliberately agnostic to the particular theorem-proving technology used,
but we use the archetypal superposition system Vampire [KV13] as a research vehicle.
The system can prove many hard theorems in first-order logic, such as those found in
the widely-used TPTP [SSY94] problem set. Recently, the system has been extended
to support problems expressed in a higher-order logic [BR20].

In the specific case of Vampire, all formulae are converted to clause normal form
in a preprocessing step first, so all formulae mentioned are clauses. Tracking which
clauses are derived from the conjecture allows for the separation of conjecture and
axiom clauses: this has the pleasant side-effect of making the environment somewhat
goal-directed in this case. Clauses are fed into Vampire in such a way that clauses
in selected are processed first: this allows for clauses selected by the agent to have a
much larger impact (in either direction) on proof search.

6.2.4 Reward Function

Intuitively, we would like to measure the amount that a deduction contributes to a
prover finding a proof more easily. There are many possible reward functions, such
as the difference in the total number of formulae generated, number of proof search
loops, or dispensing reward when the deduction appears in proof output. All of these
are easily measured and consistent across multiple runs. However, any fixed statistic
is susceptible to the complexity of the ATP system: it is for example possible for a
deduction to reduce the number of formulae generated during search while simultane-
ously slowing the prover down due to more-involved search steps. Another possible
unfortunate case is rewarding formulae which appear in the final proof, where a de-
duction which made a large section of search space redundant — but did not appear in
the proof — is not rewarded.

Instead we measure the number of user-space instructions executed by the ATP to
find a proof, as reported by the Linux utility perf [DEKB16]. The negation of this can
be used as a scoring function: the maximum score is 0 (no instructions required to find
a proof), and one score is better than another if it took fewer instructions. In practice it
is helpful to subtract a constant number of instructions representing ATP start-up: this
can be measured by proving a trivial statement. While there is some “jitter” incurred
by using this method, this is comparatively small with respect to the difference caused
by input changes. A reward function is defined in terms of this score: if a set of agent



80 CHAPTER 6. REINFORCED THEOREM PROVING

t selected axioms infer(selected) choice st rt cumulative reward

1 1,2,3,4,5,6 2 -7 0.3 0.3
2 1 2,3,4,5,6 5 -8 -0.1 0.2
3 1,5 2,3,4,6 10 10 ∞ -1.2 -1

1 1,2,3,4,5,6 3 -9 0.1 0.1
2 3 1,2,4,5,6 1 -8 0.1 0.2
3 3,1 2,4,5,6 8 6 -9 -0.1 0.1
4 3,1,6 2,4,5 8 8 -2 0.7 0.8
. . .

Figure 6.1: Example training episodes illustrating the environment. Baseline score s0
is -10.

deductions scores st and after a new deduction is made it scores st+1, a possible reward
is st+1− st . To normalise rewards across different problems, the initial score s0 is used
as a baseline, so that the final reward function is

rt =
st+1− st

−s0

This definition can cause some confusion due to the negative scoring. For example,
if initially a problem takes 10 instructions and after taking the first action takes 5,
s0 = −10 and s1 = −5, so therefore r0 = 0.5. If instead the first action now takes 12
instructions, s1 =−12 and therefore r0 =−0.2.

While the maximum episode reward is now +1, it is possible for agents to produce
unboundedly negative episodes with unwise deductions. Some RL algorithms used in
our initial experiments were unstable in the presence of this kind of unbounded pun-
ishment. To restrict this, if the cumulative episode reward at any point is less than -1
(meaning that the ATP needed twice as many instructions as originally), the episode
can be terminated. This early termination was found to stabilise training with misbe-
having algorithms as episode rewards are now limited to the range [-1, 1]. Timeouts
therefore result in an episode reward of -1, finding a proof outright by deduction results
in +1. However, this restriction was not used with our final approach: there we allow
arbitrary negative reward.



6.2. MOTIVATION AND LEARNING TASK 81

6.2.5 Example

Consider the following problem in (very) classical first-order logic to illustrate the
environment. We have a knowledge base:

1. All men are mortal.

2. Socrates is a man.

3. Mortals eat olives.

4. Meletus is a man.

5. Mortals wear sandals.

6. Hemlock is unpleasant.

and we wish to prove the conjecture “Socrates eats olives”. Only 1, 2 and 3 are required
for the proof: 4 and 5 are related but unhelpful and 6 is completely unrelated. A
fictional inference system might come up with the following valid deductions given
some subsets of these axioms:

7. Socrates is mortal.

8. All men eat olives.

9. Meletus is mortal.

10. All men wear sandals.

11. Hemlock is not pleasant.

12. Mortals eat olives and wear sandals.

Among these deductions, some are helpful and others are not. 7 is the first step of the
proof, while 8 is a helpful lemma: these are useful individually, but are not more useful
when combined. 9 and 10 are meaningful but irrelevant, while 11 and 12 are redundant.
Developers and users of ATP systems are no doubt familiar with more advanced but
similar deduction behaviours.

Figure 6.1 shows some example episodes with a fictional (and terrible) ATP. In
the first, the agent selects 1, a helpful axiom. Processing this axiom early reduces the
amount of work required and produces a positive reward. The agent then selects 5,
which is unhelpful but does not affect the prover too much, returning a slight negative
reward. This allows the deduction of 10, which the agent then selects, thinking that
this seems like a helpful lemma. Unfortunately, this causes an explosion of facts re-
lated to sandals inside the ATP, resulting in a timeout. The agent might learn to avoid
sandal facts in the future when proving conjectures about olives. After some training,
the agent returns to this problem for another go. This time it does much better: it
successfully deduces 8, while not selecting anything too unhelpful.



82 CHAPTER 6. REINFORCED THEOREM PROVING

0 2 4 6 8 10
episode step

0.30

0.25

0.20

0.15

0.10

0.05

0.00

to
ta

l r
ew

ar
d

(a) Running total reward up to 10 steps.
Mean and 95% confidence interval after 1000
episodes.

0 1 2 3 4 5 6 7 8
multiple of original instructions

0

20

40

60

80

100

120

140

160

fre
qu

en
cy

(b) Distribution of ATP instructions required
to solve derived problem after 50 steps. 1000
samples.

Figure 6.2: Illustrating task difficulty with a uniform random policy on GRP001-1.

6.2.6 Environment Properties

This setting creates an episodic RL task with a discrete, deterministic action space
and somewhat stochastic reward. Any algorithm for solving it must be highly sample-
efficient, as each sample requires running an ATP system to completion [PU18]. The
task is also relatively difficult when compared to other benchmark RL tasks: even
returning zero reward requires following a narrow set of actions, mistakes are punished
harshly, and delayed reward is common.

Some properties of this environment set it apart from typical RL tasks. Training
and testing are distinguished meaningfully in this environment, since in testing we
cannot in general receive rewards: if we could solve the problem, we would be done.
Another difference is the ability to backtrack: while this is occasionally possible in
other environments, it is unusual.

Figure 6.2 shows the episode reward obtained by running a random policy repeat-
edly on a single problem from the TPTP set, GRP001-11. The general trend is down-
ward, and progressively steeper as the growing number of random formulae start to
interfere with proof search. Figure 6.2 also shows the distribution of instructions re-
quired from running a random policy for 50 steps, then running the prover again. A
small number of random explorations improve on the original problem, but the major-
ity are unhelpful and damage ATP performance. This demonstrates a key feature of
this environment: making these selections for the ATP can be helpful, but a random

1Reward is computed from the Vampire ATP. Its configuration and an inference system based upon
Vampire are described in §6.4.1.



6.3. SOLVING THE REINFORCEMENT TASK 83

0 2000 4000 6000 8000 10000 12000
episodes

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
ep

iso
de

 sc
or

e

(a) Single-problem reward

0 1000 2000 3000 4000 5000 6000 7000 8000
episodes

0.30

0.25

0.20

0.15

0.10

ep
iso

de
 sc

or
e

(b) Multi-problem reward

Figure 6.3: Total reward received with Q-learning over time on: (a) a single problem;
(b) a set of problems. In the single-problem case online learning converges to a good,
but not optimal, solution. With a set of problems reward still improves, but fluctuates
and does not achieve positive reward.

policy is harmful more often than not. Can an agent learn to do better?

6.3 Solving the Reinforcement Task

At this point there are two practical problems to solve: train an agent to perform well
on this RL task, and subsequently use the trained agent in some way to improve ATP
performance.

6.3.1 Online, Model-Free Learning

We implemented a number of different conventional online, model-free RL algorithms
in search of performance, but none were particularly successful. Significant engineer-
ing effort, manual tuning and reducing the task to that of learning a policy for a single
problem produced very few positive results. DQN [MKS+15] (value function estima-
tion), REINFORCE [Wil92] (policy gradients) and A3C [MBM+16] (actor-critic with
parallelism) were all implemented, but would not reliably converge in reasonable time
on the single-problem case and performed poorly when required to generalise. DQN
with a large replay buffer was the best-behaved among these, shown in Figure 6.3.
Even when algorithms behaved well, learned policies were prone to “forgetting” good
policies as training continued. Impractical amounts of computation were required to
gain any measurable episode reward in all cases.

While these shortcomings are known difficulties in deep reinforcement learning,



84 CHAPTER 6. REINFORCED THEOREM PROVING

we also suspect that current online methods are not well-suited for this task. The rel-
atively large amount of compute required for assigning reward means that algorithms
must learn quickly from relatively small amounts of data in order to deliver visible
progress. DQN’s use of a replay buffer allows re-use of samples: this may explain
why it outperformed other methods for this task. Moreover, the performance of these
algorithms is also typically evaluated on control and game-playing tasks such as Mu-
JoCo [TET12], presumably very different from this one.

6.3.2 Offline Learning

To reduce the amount of computational effort required, offline RL techniques are
promising. Offline approaches are known to work well on heuristic search tasks such
as two-player strategy games [SHM+16], but it is not clear how to adapt these tech-
niques to our task, especially if expensive backtracking search at test time is avoided.
At this point applying algorithms from literature was abandoned in favour of an ad-hoc

practical approach which works well on this task.

First, a large tree of possible states is explored from a training problem. Each state
is evaluated by the target ATP, and the results propagated upwards through the tree
to provide an estimate of the long-term discounted reward from taking a given action
in a given state. Toward the leaves of the tree, this estimate becomes myopic: this
is accepted as a limitation for now. In practice this seems not to matter, perhaps the
better-quality estimates for actions taken at the start of an episode have more impact on
long-term performance. We leave placing greater emphasis on better estimates during
training as future work.

Once this estimate for long-term reward is obtained, we produce a target Boltzmann
distribution π̂(s) over the possible actions in a given state s from these rewards2: the
better the long-term reward, the more likely the action. Finally, we train a function
approximator to estimate this distribution as π(s) by minimising the KL-divergence
DKL(π̂||π). We again emphasise the lack of theoretical backing for this approach, but
note that this appears to be better in practice than merely training the agent to select the
action with the greatest estimated reward. In the event that the agent picks an action
incorrectly, this biases training so that the “best of the rest” is preferred rather than
treating all non-optimal actions equally. Such a stochastic policy also fits well with the
approach taken in 6.3.6.

2merely a convenient way to map rewards into a probability distribution [SB18]



6.3. SOLVING THE REINFORCEMENT TASK 85

6.3.3 Data Generation

A fundamental problem of generating training data for offline learning is matching the
distribution of data to “real-world” data, that seen by fully-trained agents during test-
ing. If an agent sees only data from good situations, then it is incapable of getting itself
out of a bad one. Conversely, given only bad situations, it is unlikely to fully exploit
good choices. Therefore, simple exploration techniques such as best-first search (too
optimistic) or breadth-first search (too pessimistic) are unlikely to produce good train-
ing distributions. Instead, we use a UCT-maximising search [KS06] (§2.3.1) similar to
that employed in AlphaGo and rlCoP, without random playouts. Playouts (and associ-
ated leaf value estimates) are replaced by an ATP invocation to compute reward for the
leaf’s state. This information is propagated upwards to estimate maximum discounted
rewards for branches. Leaves which exceed resource limits or have no possible infer-
ences are considered closed, and branches are closed if all their children are.

This approach balances exploration (expanding rarely-visited parts of the search
tree) and exploitation (expanding promising parts of the search tree), and therefore
provides a somewhat better distribution of training examples for the agent. After a
round of training, a tree of states and corresponding discounted reward estimates for
their children is generated. Previous approaches have used the number of visits to child
states to induce a probability distribution on actions. However, this is not particularly
efficient in our case: leaf nodes are all visited once but have significantly different
rewards. We take a Boltzmann distribution over a state’s estimated discounted rewards
(with manually-tuned temperature τ) and use the resulting probabilities.

6.3.4 State Encoding

In order to represent the structure of states and actions, we use a graphical represen-
tation, as in Chapter 5. Available actions, axioms and conjectures are tagged as such
with auxiliary nodes and edges. Additionally, the order in which formulae are given
to the ATP can make significant difference to system performance: this is encoded
by adding directed edges between top-level formula nodes. No attempt was made to
add further information to the graph, although in future auxiliary data might be used
to communicate prover-level information such as term orderings or formula parents to
the agent. Figure 6.4 shows a fragment encoding a first-order term, and a complete
graph encoding initial state of a propositional problem: if ¬P, and P∨Q, then Q.



86 CHAPTER 6. REINFORCED THEOREM PROVING

@

f * * *

c

X @

g * *

Y

(a) Fragment encoding f (c,X ,g(c,Y )).

act

ax ax

sel

con

¬ ∨

QP

(b) Complete state for a propositional prob-
lem.

Figure 6.4: Encoding states with directed graphs. Note auxiliary nodes and edges
encoding function argument order, and “marker” nodes differentiating formula roles in
the overall state.

6.3.5 Network Architecture

We use a residual, rather than dense, version of the network described in Chapter 5.
The only difference is at the output: node-level features for action nodes are projected
out of the graph, then fed through a fully-connected layer to produce the required per-
action scalars. The neural network architecture employed to process and learn from
data of this kind is not important, and we use it here only as a practical instrument.
Training used mini-batch stochastic gradient descent with Nesterov momentum, L2

regularisation and a cyclic learning rate with fixed triangular policy [Smi17]. See
§7.5.2 for a more detailed discussion of a similar approach.

6.3.6 Application of Learned Policy to ATP Systems

The end result of a successful training routine in our environment is a learned policy
π selecting an action a for the given state s — or, in the stochastic case, producing
a probability distribution over available actions. Although seemingly useful, it is not
immediately obvious what to do with this object to improve ATP performance on prob-
lems not solved within resource limits.

To avoid the difficult engineering and inevitable performance penalties experienced
when adding learned guidance to existing theorem provers, we take a simple fire-and-
forget approach: a fixed number of deductions are made one after another according to
the policy, then the agent’s work is finished and the unmodified ATP runs on the derived



6.4. EXPERIMENTS 87

Table 6.1: Tunable parameters for various parts of the system.

Generation Network Training

parameter value parameter value parameter value

exploration factor c 1 residual modules 16 min. learning rate 0.0001
temperature τ 5 layers per module 2 max. learning rate 0.001
discount factor γ 0.99 node channels 64 cycle period 20000

hidden layer neurons 1024 batch size 64
L2 weight penalty 0.0001
momentum 0.95

problem unhindered by guidance penalties. An effect similar to portfolio modes can
be achieved by repeating this process with a stochastic policy so that from an original
problem P a random process of derived problems P1,P2,P3 . . . can be produced for the
ATP to attempt. We do not claim that this is optimal, and leave variations such as
best-first search or e.g. UCT-based methods as future work.

6.4 Experiments

We perform three experiments of increasing difficulty to exercise the environment, test
our solution method and investigate practical uses for this approach. The first is a pilot
study training and testing on a single easy problem: this is of no practical use, but
provides a sanity check for the system. We then show that on a very limited problem
domain (synthesising Church numerals), the system can learn to identify patterns so
that harder problems can be brought within reach by pointing the system in the correct
direction. Finally, an entire TPTP domain (GRP, group theory) is selected to provide a
realistic use case. An online repository3 contains scripts and data that (i) were used to
produce these experiments, and (ii) can be adapted for similar work.

6.4.1 Experimental Setup

We set up our experiments in the context of the Vampire system. A deterministic con-
figuration4 of Vampire is used as the underlying ATP, and a special mode is used as
the inference system, although in full generality this could employ a separate inference

3https://github.com/MichaelRawson/paar20
4no portfolios (§3), DISCOUNT in place of LRS [RV03], no AVATAR [Vor14], otherwise default —

AVATAR is in principle deterministic, but caused more jitter than we would like here



88 CHAPTER 6. REINFORCED THEOREM PROVING

2 1 0 1 2 3
multiple of original instructions - logarithmic scale

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
de

ns
ity

 e
st

im
at

e

Figure 6.5: Kernel density estimates showing distribution of relative instructions re-
quired for Vampire to solve problems derived from GRP001-1 with a learned (left) and
random (right) policy. 1000 samples per distribution, Gaussian kernel, natural loga-
rithmic scale for clarity.

system. The mode performs all 1-step inferences in Vampire’s calculus from a set of
clauses efficiently, while removing redundancies. Clauses are kept in textual form until
conversion is required for processing by the neural network. The neural network im-
plementation and training uses the PyTorch [PGM+19] library for GPU acceleration.
Tunable parameters for the system are listed in Table 6.1.

6.4.2 Pilot: GRP001-1

We trained an agent as described above on approximately 5000 samples generated from
GRP001-1, a relatively easy problem for Vampire. The experiment was a success: con-
vergence was assured, compute requirements significantly reduced, and the resulting
learned policy is markedly better than a random policy. To quantify the performance
of different policies, we first run the learned stochastic policy for 50 steps to generate
a derived problem, then measure the number of instructions required for Vampire to
solve the derived problem, relative to that required to solve the original problem. The
distribution generated by our learned policy compared to a uniform random policy is
shown in Figure 6.5. The best episode with learned policy produced a derived problem
requiring only 28% of the instructions required to solve the unmodified problem.



6.4. EXPERIMENTS 89

6.4.3 Small Domain: Synthesising Church Numerals

The Vampire theorem prover has been extended to support higher-order logic (HOL).
This is achieved by implementing a recently-developed modification of first-order su-
perposition which is complete for HOL [BR20]: the calculus represents an unfolding
of higher-order unification into superposition. This differs from standard first-order
superposition mainly in the addition of an inference rule, narrow. In essence, nar-

row involves rewriting with a combinator equation left-to-right. The approach is a
new method for higher-order theorem proving and is yet to be fully evaluated, but
preliminary investigations suggest that on problems requiring complex higher-order
unification, it is at a disadvantage in comparison to calculi based on λ-calculus.

Church numerals are representations of natural numbers using higher-order func-
tions [Chu36]: problems involving such numerals often require the synthesis of com-
plex unifiers. Problems that posit the existence of a particular numeral require unifi-
cation (or narrowing in case of Vampire) to synthesise this numeral. An example is
“there exists a Church numeral n such that n× n = n+ n”: clearly n = 2 is a con-
structive proof for this problem, but this is not trivial for systems attempting problems
involving larger values of n. With recurring structures and an explosive search space,
this is a promising domain for application of our learning method. We curate a set of
training problems which synthesise the numeral 2 (which Vampire solves easily), and
attempt to learn to improve performance where larger numerals are required.

While the overall approach here is the same, some extra details appear in the formu-
lae (types, function application operators and a finite set of combinators necessary for
the HOL calculus), which should be treated semantically in the state-encoding graph.
For example, explicit function applications are treated as normal first-order function
applications, and the combinators each receive a special node label of their own.

Training on this domain was more difficult than initially expected: as well as the
significant technical complexity involved, environment dynamics are unusual com-
pared to typical first-order problems. We found that it was relatively rare for the ATP
to solve a modified problem (possibly due to the explosive nature of some derived
clauses), but that occasionally the learning system found a proof outright during train-
ing or testing. This somewhat negates our system’s main advantage of incrementally
dispensing reward, and makes it difficult to generate large training datasets.

Results are therefore somewhat mixed: trained policies solved the training prob-
lems significantly more frequently than a uniform random policy. Both trained and ran-
dom policies were capable of reducing time taken for problems test problems involving



90 CHAPTER 6. REINFORCED THEOREM PROVING

synthesis of the church numeral 3, but it was more difficult to show that training helps
here: we report the result anyway to demonstrate the strengths and weaknesses of the
approach. We expect that tuning system options or behaviour to produce a more grad-
uated reward will yield an easier task: we have at least shown that modifying the input
problem can significantly help the ATP system.

6.4.4 Large Domain: Group Theory

We attempt the ultimate task for this kind of approach, generalising from easier prob-
lems to related harder problems: we envisage a future ATP tuning system in where
a large corpus of easier problems allow training to attempt a few remaining unsolved
problems, a problem of significant interest for the community [Reg19].

The TPTP GRP domain is used for this study, containing a large number of first-
order problems with a range of difficulty. The configuration of Vampire used for the
pilot study can solve 384 of the problems in this domain in under 1 second: these
were used as training problems while the remaining 706 problems form the test set. It
is unclear to what extent the problems within GRP are actually similar from the ATP
perspective: this is a reasonable criticism, but we expect that in practical problem sets
similarity is equally unclear. Sufficient data can be easily generated from these train-
ing problems: we generated approximately 100,000 data in under a day with modest
parallelism on commodity desktop hardware. Network training continued until loss on
a small held-out validation set failed to improve.

We note at this point the difficulties of evaluating any new ATP feature or modifi-
cation [RSV14]. In our case the situation is only worsened by the necessary presence
of non-determinism, the relatively strong effect of starting afresh in first-order theorem
proving (c.f. portfolio modes and Chapter 3) and the very large differences in perfor-
mance that can be caused by modifying problems. As a compromise, we evaluate four
configurations of Vampire on the test set of problems in GRP:

1. 6 runs of a uniform-random policy for 10 steps, producing 6 derived problems
for Vampire to attempt within a time limit of 10 seconds.

2. 6 runs of the learned stochastic policy for 10 steps, as with the uniform policy.

3. Vampire running as usual with a time limit of 10 seconds. This forms a lower
baseline point of comparison against policy configurations.

4. Vampire running continuously for 60 seconds as the upper point of comparison.



6.5. SUMMARY 91

Table 6.2: Results for 4 Vampire configurations on harder problems in GRP.

configuration solved unique

baseline (10s) 191 0
uniform random policy (6×10s) 206 0
learned stochastic policy (6×10s) 234 7
baseline (60s) 275 26

Results are shown in Table 6.2. First, a learned policy improves by some margin over
a uniform random policy, although it is difficult to make arguments about significance
here without prohibitive computational cost. Manual inspection of random/learned
policy behaviour on a few test problems tends to show that learned policies produce
fewer timeouts, but where solutions are found the distribution of instructions required
is not significantly different. Further, it appears that problems where the learned policy
performs well are similar to problems in the training set: this is discouraging from the
point of view of learning general heuristics for Vampire, but encouraging for the idea
of learning from easy problems in a hard problem set.

Overall, the 60-second baseline is stronger in terms of total number of problems
solved than either of the 6×10 second runs, but the learned policy solves 7 problems
that the 60-second run cannot, lending some credence to the idea that generating useful
lemma clauses is worthwhile for first-order theorem proving. Even without learning,
this approach is potentially useful for some sort of portfolio mode.

6.5 Summary

A novel reinforcement learning task for aiding practical automated reasoning systems
by deducing helpful lemmas is motivated and implemented. It has some advantages
over other methods for combining automated reasoning and reinforcement learning, in
exchange for learning a policy specialised to concrete ATP systems rather than a formal
proof calculus. Successfully solving such a task in general has significant potential
practical benefit for ATP systems.

In this chapter, we set out the RL task and show that it is at least partially tractable
for specific domains by means of practical experiment. We develop an offline RL
method for this task to combat the significant computational cost incurred, then show
that it trains to a useful policy within a single-problem environment. Subsequently,
we show that this approach has good initial performance on more difficult practical



92 CHAPTER 6. REINFORCED THEOREM PROVING

reasoning settings. When suitably trained, our exemplar deep neural agent can select
lemma facts which reduce the time required sufficiently to bring a difficult proof within
resource limits that would not otherwise be found.

This environment allows many possible developments from the basic task. In our
experiments, we focus on specialising to a particular problem domain, leaving the
bias to a particular ATP system implicit. Human engineers have spent significant time
engineering good heuristics for existing systems that work well across many different
domains: future experiments might also include a very large, cross-domain experiment
to focus on the ATP system, rather than the domain of application. Developments in
interpretable models [GMR+18] may even allow for automatic discovery of good ATP
heuristics for manual implementation.

The reinforcement task laid out seems to have many positive aspects, but persuad-
ing existing RL techniques to make any progress is very difficult. Additionally, the
ad-hoc offline method developed to solve this task in reasonable time and with reason-
able convergence is somewhat suspect from an RL standpoint: we have no theoretical
guarantee that our agent is learning anything beyond optimising for a distribution we
thought relevant (although practical results show that it is at least partially useful). Fur-
ther detailed research is required to either shore this approach up theoretically, or find
an existing method in the RL literature that has better performance.



Chapter 7

Asynchronous Policy Evaluation

Material from the following chapter is due to appear in TABLEAUX 2021 as “lazyCoP:
Lazy Paramodulation meets Neurally Guided Search”. The paper introduces a system,
lazyCoP, designed from scratch to use expensive learned guidance without slowing
inference rate. It is also the first known implementation of the “lazy paramodulation”
calculus LPCT, an approach to equality handling in connection calculi.

State-of-the-art automated theorem provers explore large search spaces with carefully-

engineered routines, but do not learn from past experience as human mathematicians

can. Unfortunately, machine-learned heuristics for theorem proving are typically ei-

ther fast or accurate, not both. Therefore, systems must make a tradeoff between the

quality of heuristic guidance and the reduction in inference rate required to use it. We

present a system that is completely insulated from heuristic overhead, allowing the use

of even deep neural networks with no measurable reduction in inference rate. Given

10 seconds to find proofs in a corpus of mathematics, the system improves from 64%

to 70% when trained on its own proofs.

The great majority of automatic theorem provers use some kind of heuristic search.
This could be simple, such as the use of iterative deepening on a certain property to
achieve completeness [OB03]; complex, as in hand-engineered schemes [GS20]; or
even learned in some way [UVŠ11]. Such heuristics are critical for system perfor-
mance: an excellent heuristic could find a proof in linear time, while a poor heuristic
increases search time drastically. Historically these routines have been engineered,
rather than learned, resulting in fast yet disproportionately-effective heuristics like the
age/weight schemes [SM16] used in systems like Vampire [KV13].

93



94 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

Learning a good heuristic from previous proof attempts has become more popular
recently, and can achieve good results [JU17]. Techniques from machine learning can
approximate complex functions that are difficult to discover or write down, but this
comes at computational cost (§1.2.3). This cost can result in an unfortunate outcome
where a learned heuristic that appears promising during testing actually degrades per-
formance when included in a concrete system, due to reduced inference throughput.

Even assuming a heuristic is both fast and accurate, it is not always clear how to
gainfully include predictions into existing target systems, particularly as a single wrong
prediction can sometimes have disastrous results (§1.2.1). Approaches are either ad-
hoc or adapt existing techniques from other domains which are not necessarily well-
suited to theorem proving.

7.1 Approach

We construct a system from scratch designed to avoid these issues. lazyCoP is an
automatic theorem prover for first-order logic with equality in the connection-tableau
family (§7.3). The system may use a policy learned from previous proofs (§7.5) to
bias a special-purpose backtracking search (§7.4.1) toward areas the policy considers
promising. Performance penalties are eliminated by asynchronously evaluating the
policy network on a coprocessor, such as commodity GPU hardware (§7.4.2).

The result is a system in which learned guidance has no measurable impact on
inference rate (§7.6.1) and learns in a feedback loop from previous proofs on a set of
training problems (§7.6.2). No manual features are used for learning, and the only
manual heuristic used is “tableaux with fewer subgoals are more likely to lead to a
proof”. The system augmented with the final learned policy improves from 64% to
70% in real time when provided with a coprocessor for policy evaluation.

7.2 Performance Penalties in Existing Solvers

The rlCoP system introduced in “Reinforcement Learning of Theorem Proving” [KUMO18]
is the inspiration for this chapter and is most similar in spirit. A connection-tableau



7.3. UNGUIDED SYSTEM 95

system is guided by Monte-Carlo Tree Search (MCTS henceforth, as in work on two-
player games [SHM+16]), learning both policy and value guidance with gradient-
boosted trees from hand-engineered features. Learning from previous proofs or fail-
ures is a common approach for many different applications of machine learning to the-
orem proving, avoiding the need to generate data manually. For instance, all learned
premise-selection systems we are aware of are trained using premises used by auto-
mated systems in existing proofs [WTWD17, ISA+16]. rlCoP sets up a feedback loop
in which new information automatically found by the system is added to the training
set in order to guide future iterations, as we do here.

Connection tableaux and classical first-order logic are popular settings for other in-
ternal guidance experiments — notably monteCoP [FKU17], rlCoP, MaLeCoP [UVŠ11],
FEMaLeCoP [KU15a], and FLoP [ZCM+19] — but internal guidance for other do-
mains exist, including first-order saturation systems [JU17], SAT and QBF solvers [SLB+19,
LRSL20], and systems for higher-order logics [BLR+19, FB16].

Performance is a recurring problem for systems with learned internal guidance.
The authors of rlCoP exclude some kinds of learned models for performance reasons,
and results are reported based on an inference, rather than time, limit. “Deep Net-
work Guided Proof Search” [LISK17] reports that the main bottleneck in the guided
saturation-style system E [Sch02] is the evaluation of inferences, and suggest a two-
phase guided/unguided approach to theorem proving with learned guidance.

7.3 Unguided System

If an unguided system is completely hopeless, little progress can be made: very few
positive training data can be generated from successful proofs, and the learned guid-
ance must be better still in order to achieve reasonable performance. However, it is not
as simple as selecting a state-of-the-art theorem prover, as some are more amenable
to guidance than others (§1.2.4). Instead, there is a spectrum of different possible re-
search directions, from attempting to guide weaker-yet-amenable systems up to meet
stronger unguided systems, to integrating learning into already-strong systems which
are not so easily improved by guidance.

The guidance scheme suggested here is designed for backtracking search, such as
that found in systems based on connection calculi. It is not clear how this could be
adapted to a modern saturation theorem prover such as Vampire or E, which employ
proof-confluent search with a time-sensitive choice point at the selection of a given



96 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

P(t1, . . . , tn)

¬P(s1, . . . ,sn) C

σ(ti) = σ(si)

P(t1, . . . , tn)

¬P(s1, . . . ,sn)

x1 6= s1 . . . xn 6= sn

C

σ(xi) = σ(ti)

Figure 7.1: Adding ¬P(s1, . . . ,sn)∨C to a tableau where P(t1, . . . , tn) is the goal. The
left tableau shows conventional “strict” extension, the right LPCT “lazy” extension.

clause. The basic system must therefore be as strong as possible while still allowing
backtracking policy-guided search, and lazyCoP makes some attempt at this, notably
with respect to equality (§7.3.2). A prototype version [RR20c] entered the most recent
CASC competition [Sut16], and subsequent work has improved performance.

7.3.1 Connection Tableau Procedures

lazyCoP belongs to the connection-tableau/model-elimination family [LS01] of the-
orem provers, which includes systems such as leanCoP and SETHEO. Connection

tableau methods reduce the search space by constraining general tableaux such that
each addition to any given tableau must be connected in some way to the current leaf, as
shown on the left-hand side of Figure 7.1 where P(t1, . . . , tn) connects to ¬P(s1, . . . ,sn).

Since there is often more than one possible next step in building a tableau, not all
of which lead to a proof, it is necessary to backtrack if a misstep is made. Typical con-
nection systems often use some kind of iterative deepening to maintain completeness,
but any reasonably-fair scheme works: rlCoP uses MCTS for this purpose.

7.3.2 Lazy Paramodulation

Reasoning with equality has traditionally been a weak point of connection systems.
The most widespread method for efficiently reasoning with equality, paramodula-

tion [NR01], is incomplete in the obvious formulation for connection tableau due to
insufficient flexibility in the order of inferences. There have been various attempts to
remedy this deficit, but as yet there is no conclusive solution.



7.3. UNGUIDED SYSTEM 97

lazyCoP uses the “lazy paramodulation” proof calculus LPCT [Pas08], which re-
laxes some of the classical connection-tableau rules in exchange for a paramodulation-
like rule and some extra refinements. The basic idea is delaying unification to allow
rewriting terms in the resulting disequations. For example, in the right-hand side of
Figure 7.1, it is not required that P(t̄) unify with P(s̄) immediately as in the classical
calculus, instead deducing that at least one of the terms must not be equal. Terms may
still be unified with a reflexivity rule dispatching goals of the form s 6= t.

This implementation detail of lazyCoP is not the main focus of this chapter: the
vital feature of the proof calculus is backtracking proof search.

7.3.3 Calculus Refinements

To improve performance against the pure calculus, lazyCoP implements a number of
well-known refinements of the classical predicate calculus (which are lifted to equal-
ities where appropriate), including tautology deletion, various regularity conditions,
and folding up, a way of re-using proofs of literals. Additionally, it is frequently the
case that a unification is “lazy” when it could have been “strict” — such as where no
equality is present. lazyCoP implements “lazy” and “strict” versions of every relevant
inference rule, which shortens some proofs considerably. The resulting duplication is
eliminated by not permitting “lazy” rules to simulate their “strict” counterparts.

It is not clear whether some refinements help or hinder the learned-guidance sce-
nario (§1.2.4). Some are definite improvements: folding up and strict rules decrease
proof lengths and therefore increase the potential benefit of learned guidance. How-
ever, others, such as the regularity condition or the term ordering constraints in LPCT,
are not as clear-cut. In some cases such refinements lengthen proofs significantly,
outweighing the pruning effect, and previous work shows that guidance can partially
replace these pruning mechanisms [Goe20]. We leave all refinements switched on for
this approach, but allowing the learned policy a greater amount of freedom is a par-
ticularly interesting extension for this approach. Some techniques such as restricted

backtracking [Ott10] sacrifice completeness for performance. lazyCoP does not im-
plement any approach known to be incomplete: all problems attempted can be solved
in principle.



98 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

7.4 Proof Search

Given a learned policy1, we aim to use it to improve proof search outcomes (§1.2.1).
The policy π(a | n) is a function from a tableau n and possible inferences a to a proba-
bility distribution. We work with an explicit search tree, each node of the tree rep-
resenting an open tableau, although tableaux are not actually kept in memory for
efficiency reasons. From each open tableau, there is a positive non-zero number of
possible inferences (or actions in the reinforcement learning literature) which may be
applied to generate a new child tableau. Nodes with zero possible inferences cannot
be closed and are pruned from the tree. The root of the tree is an empty tableau, from
which possible inferences are the start clauses, in this case clauses from the conjecture.

7.4.1 Policy-Guided Search

There are many possible tree search algorithms which can include some kind of learned
heuristic. We experimented with the classical A∗ informed-search procedure, although
we found that it was difficult to learn a good heuristic function that was neither too
conservative nor too aggressive. Other approaches might include the aforementioned
MCTS, single-player adaptations of MCTS [SWVDH+08], single-agent approaches
like that of LevinTS or LubyTS [OLLW18], or simply following a stochastic policy
with restarts if no proof is found at some depth. While these approaches are no doubt
interesting and provide theoretical guarantees, we did not find them to be necessary.

As a starting point, we can simply employ best-first search, expanding the leaf
node that the policy considers most likely first. If a leaf node n was obtained by taking
actions ai from ancestor nodes ni, select

argmax
n

∏
i

π(ai | ni)

Unfortunately, this simple scheme is not likely to recover if π makes a confident mis-
prediction, and is even incomplete if any node has an infinite chain of single children
beneath, where π

(
a j | n j

)
= 1 by definition. To correct this issue we take inspira-

tion from rlCoP’s initial value heuristic, where tableaux are exponentially less likely
to be closed the more open branches they have. We model this idea as an exponential

1no value function is employed: it is unclear how to adapt this to asynchronous evaluation, or how
useful this would be in an asynchronous context



7.5. LEARNED POLICY 99

distribution
p(n) = λe−λg(n)

where λ is a tunable parameter (set to 1 in our experiments here) and g(n) is “number of
open branches plus length of the active path”. Including “length of the active path” in
g(n) makes little practical difference and makes the search procedure complete again.
The two estimates are combined with a geometric mean so that nodes are selected by

argmax
n

√
p(n)∏

i
π(ai | ni)

In practice this expression is numerically-difficult to evaluate, but in logarithmic space
it is better-behaved, producing the final expansion criterion

argmax
n

[(
∑

i
lnπ(ai | ni)

)
−λg(n)

]

7.4.2 Asynchronous Policy Evaluation

The proof search routine above assumes that the policy is evaluated synchronously
for each expanded node. As discussed in the introductory sections, this has a signif-
icant impact on performance, particularly so for computationally-expensive policies.
Instead, evaluation is deferred and a separate CPU thread continuously arranges for
nodes to be processed on a GPU, selecting the first non-evaluated node on the path to
the current best leaf node. π(a | n) is set to 1 for nodes not yet evaluated: applying a
uniform distribution does not work well in practice.

It does not appear to be particularly important that all nodes are evaluated for a
learned policy to improve search, perhaps because guidance at the top of the search tree
has a disproportionate effect. Asynchronous policy evaluation allows use of policies
that are orders of magnitude slower than expansion steps without reduction in inference
rate.

7.5 Learned Policy

7.4.1 describes biasing proof search with a learned policy, directing node expansions
toward areas the policy considers useful. lazyCoP’s policy is trained from its own
proofs: at each non-trivial step in proofs the tableau, all available actions and the ac-
tion that lead to a proof is recorded. This procedure produces a training set of tableaux



100 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

and actions which we use to train a neural-network based policy to predict the correct
action. Learning from existing system proofs in this way has advantages and disad-
vantages: each example’s label is guaranteed to lead to a proof, but it is not necessarily
the shortest proof, nor can the training data express preference amongst other actions.

We train and evaluate using the same set of problems from the MPTP transla-
tion [Urb06] of the Mizar Mathematical Library [GKN10] into first-order logic with
equality. There are 32,524 problems in total in the M40k set; we use the M2k subset
of 2003 problems in order to iterate quickly. All problems have a labelled conjecture
which lazyCoP is able to exploit so that search proceeds backward from the conjecture.
Problems from the M2k set come from related articles in Mizar, suggesting a degree of
similarity which may be exploited by learning.

7.5.1 Representing Tableaux with Actions

Construction of directed graphs from tableaux is mostly typical for first-order repre-
sentations as in Chapter 5, with a few modifications specific to tableaux-with-actions.
First, while occurrences of identical symbols and variables share nodes in the graph,
identical compound terms do not: this is because they may be rewritten by equalities
separately in LPCT. Additionally, variable binding is non-destructive in LPCT to im-
plement a form of basic paramodulation2. Bound variables therefore remain in place
but have an outgoing edge attached to their binding. Tableaux may then be represented
in the conventional graphical way, linking literal nodes with directed edges.

Encoding actions is then straightforward. lazyCoP implements a small number
of different types of inference, such as reductions, extensions, reflexivity and so on.
Each inference is attached to some terms or literals in the tableau to form a concrete
action: rewriting s = t in L[p], for example, is represented as a node connected to the
graph with an incoming edge from the s in s = t and an outgoing edge from p, uniquely
identifying the inference. t is involved by being the “other side” of the purely-syntactic
subgraph forming s = t.

7.5.2 Network Architecture

We use a residual version of the directed graph networks introduced in Chapter 5 which
allow the network to distinguish incoming and outgoing edges. The core of the network

2concisely, in this context basicness forbids paramodulating into terms introduced by instantiation
or previous paramodulations — see [Pas08] and [Mos93] for details and [NR01] for wider context



7.5. LEARNED POLICY 101

+

gather
incoming

gather
outgoing

batch
normalisation

batch
normalisation

incoming
weight

outgoing
weight

ReLU

ReLU

Figure 7.2: Residual block used in the network. Note disjoint parameters for incoming
and outgoing edges, both linear and normalisation layers.

input
graph

node
embedding

residual
convolutions

select
actions

hidden
layer

output
layer

softmax
policy

*

*

Figure 7.3: Network schematic. As there is no pooling of any kind, data is processed
at the node level until action nodes marked (*) are projected out.



102 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

Table 7.1: Network and training hyper-parameters.

Parameter Value Parameter Value

node dimension 64 initial learning rate 0.01
residual layers 24 cycle batches 2000

batch size 64
momentum 0.9
weight decay 0.0001

is the residual block shown in Figure 7.2: this performs one round of message-passing
from neighbouring nodes in the graph, treating incoming and outgoing edges sepa-
rately before combining the results for the next layer. Batch normalisation [IS15] is
inserted before the linear part of the convolution. The theoretical merits of this are
unclear but it works well in practice. The complete network (Figure 7.3) is, in order:

Embedding. An embedding layer projects integer node labels into a real vector of the
same size used in the convolutional layers. No symbol names are used here, as
in e.g. ENIGMA Anonymous [JCO+20].

Convolution layers. Several residual blocks combine and transform feature maps from
neighbouring nodes, producing in particular a real vector for each action node.

Action projection. The vector for each action node is projected out, all other nodes
are discarded at this point.

Hidden layer. Each action vector is passed through a hidden layer.

Output layer. Computes a single output value for each action.

Rectified linear units are used as non-linearities throughout.

7.5.3 Training

Training such a network on limited training examples from early iterations is chal-
lenging due to its tendency to memorise the training set if sufficient parameters are
available and underfit drastically if they are not. This is perhaps a good argument for
feature-based learning rather than the approach we take here. However, the network
can be made to train somewhat effectively by cosine annealing a high initial learning
rate to 0 with “warm restarts” [LH17], repeating after a certain number of mini-batches.



7.6. EXPERIMENTAL RESULTS 103

This has two benefits: the regularising effect of high learning rates somewhat reduces
overfitting, and the network also trains faster.

7.5.4 Integration and Optimisation

After the network is trained, network weight data are included as an admittedly-large
compile-time constant into lazyCoP, which are then asynchronously uploaded onto
the CUDA device at startup. The forward pass is re-implemented from scratch in
CUDA [NBGS08], allowing a number of optimisations such as known array sizes, re-
use of allocated buffers and the ability to profile for the specific workload. Addition-
ally, batch normalisation layers’ forward operation can be fused into the subsequent
layer in this case, decreasing implementation complexity and increasing performance.

7.6 Experimental Results

We investigate two areas of practical interest: the effect of learned policy evaluations
on inference rate, and whether this learning translates into improved performance on
a training set of problems. Systems are only allowed 10 seconds of real time: this
is relatively short, but a good approximation to real-world settings in which users of
automatic “hammers” included in interactive theorem proving systems are unwilling
to wait much longer than 30 seconds [MP08].

7.6.1 Inference Rates

There is no measurable decrease in inference rate when learned guidance is switched
on. Occasionally the rate of inference even improves, perhaps due to guidance pro-
ducing areas which are less productive or otherwise easier to explore. Running on
TOP001-1, a non-theorem mid-sized topology problem from TPTP [SSY94], unguided
lazyCoP achieves around 62,000 expansions per second for 10 seconds at the time of
writing on desktop hardware. Guided, the system evaluates around 200 policies per
second and reaches inference speeds in excess of 70,000 expansions per second.

7.6.2 Effect of Guidance

We train lazyCoP iteratively on M2k as described in §7.5, training each iteration on the
proofs produced by all previous iterations. Iteration 0 does not have access to a learned



104 CHAPTER 7. ASYNCHRONOUS POLICY EVALUATION

Table 7.2: Results from iterative training of lazyCoP’s policy on M2k.

# Proved Cumulative Steps

0 1,289 1,289 16,880
1 1,390 1,406 19,394
2 1,402 1,419 19,700
3 1,403 1,426 19,881

policy, iteration 1’s policy is trained on iteration 0’s proofs, iteration 2 on proofs from
both iteration 0 and 1, etc. If there are two proofs for the same problem, the shorter
proof is retained. The system is given 10 seconds of real time per problem, measured
from program startup to the point of discovering a proof (but before output begins),
and 16GB memory on a desktop machine3. Table 7.2 shows the number of problems
solved by that iteration, the number of problems proved by all previous iterations, and
the total number of proof steps for training available after the iteration finishes.

7.7 Summary

We have shown that even heavyweight neural guidance can be integrated without per-
formance penalty, provided we have ability to backtrack and tolerate a temporary lack
of learned guidance. Therefore, the challenge of performance penalties laid out in
§1.2.3 is solved, albeit under some conditions. There are several directions that might
improve results further:

Improving basic solver performance. Basic lazyCoP is clearly not yet competitive
with state-of-the-art systems. There are many possible directions to achieve im-
proved system performance, but we are particular interested in the integration of
SAT/SMT solvers into backtracking systems for fast ground reasoning.

Scaling network and problem sets. It is very possible that a larger/deeper policy net-
work would allow learning better policies. This requires either more careful
tuning or a larger set of problems such as M40k to avoid overfitting excessively.

Parallelism. Implementing both parallel search and parallel evaluation on today’s
multicore machines would have a beneficial impact on performance. Parallel
search allows exploiting remaining cores to search faster and is a clear win, the

3Intel® Core™ i7-6700 CPU @ 3.40GHz, NVIDIA® GeForce® GT 730



7.7. SUMMARY 105

explicit search tree of lazyCoP allowing for several easy schemes to inject par-
allelism. Parallel evaluation does not inherently improve performance, but does
ensure that the coprocessor is always kept busy: at present there are short pauses
while the evaluation thread propagates the previous evaluation and prepares an-
other input. Using multiple host threads also allows hiding latency from e.g.
coprocessor cache misses, increasing overall throughput at the expense of the
speed of single evaluation.

Incomplete modes. A system does not necessarily have to be complete to be use-
ful. leanCoP includes a powerful but incomplete restricted-backtracking mode,
for example. As well as e.g. restricted backtracking, lazyCoP could imple-
ment a strategy in which parts of the search tree are progressively discarded as
resource limits draw nearer, in a similar way to Vampire’s limited resource strat-

egy [RV03]. We expect this to help with finding extremely long proofs.



Chapter 8

Concluding Remarks

There are challenges to practical learned guidance for automated reasoning on several
fronts (§1.2), but this work has made some progress. Attempts are made to improve the
relationship between training objective and resulting performance (§1.2.1), particularly
in Chapter 6. Chapter 5 describes simple-but-effective methods for learning from syn-
tactic data (§1.2.2), such as those used in automated reasoning systems. Such methods
can improve the accuracy of learning directly from problem structure and therefore in-
crease the possible impact of learned guidance in a variety of settings. Chapter 7 gives
one solution to the practical problem of performance penalties from learned guidance
(§1.2.3), although Chapters 3, 4, and 6 find their own ways around this issue. The
tradeoff between unguided performance and the suitability for integration of learned
guidance (§1.2.4) is explored throughout.

Several entirely-new ways to combine machine learning to automated reasoning
are discussed. Chapter 3 introduces a method for scheduling running proof attempts
in portfolio systems. Chapter 4 is a new take on the internal-guidance theme explored
more conventionally in Chapter 7. Chapter 6 provides a new type of reinforcement-
learning setting for ATP systems.

8.1 Retrospective

I had a lot of fun coming up with new ways to use old ideas, hopefully with practical
applications. “Dynamic Strategy Priority” (Chapter 3) was in some ways technically
easier than later work, and provided a good starting point. Continuing similar projects
would have been much safer and perhaps more practical, but my dissatisfaction with

106



8.1. RETROSPECTIVE 107

the feature-based approach and the lack of decision-making power led me into dan-
gerous, neural, internally-guided waters. LERNA (Chapter 4) is probably my most
innovative work, although the sacrifices that were made in order to achieve its design
meant that it was never particularly practical, despite my efforts to improve matters.

Looking back, the representation of proof state was a strong aspect of the LERNA

work, although the learning itself was not systematic and the generation/distribution
of learning data left something to be desired. Graphs were just becoming popular
as a representation for logical data: previous approaches had used some variation on
manual features, term walks, bag-of-words, or “it’s just text/tokens”. Syntax trees and
tree networks were also used for logical data: these had a major advantage over other
methods in that the representation was pre-parsed and did not lose any information: in
principle an equivalent datum could be reconstructed from its representation.

Graphs were still a big step forward in my view: they had many of the benefits
of trees but with more flexible information flow, the ability to represent shared sub-
structures, and some types of invariance, such as commutativity and associativity of
binary operators and binding up to α-equivalence. The machine learning community
progressed fortuitously at about the same time: graph convolutional networks first
became well-known around 2017. I had been experimenting with such networks and
logical data since spring 2018, although without any real direction. In spring 2019 I
had the good fortune to talk to Karel Chvalovský of TopDownNet fame, who let me
take a look at his preprint1. The paper used a propositional dataset which seemed easy
to get started with, and those investigations became Chapter 5.

Discussions with Martin Suda during the same trip produced the idea for Chapter 6,
using reinforcement learning and an existing strong system to smooth out the delayed,
discrete reward in theorem proving: either you’ve found a proof, or you haven’t. De-
spite the theoretical niceties and minimal assumptions of the approach, results were
mixed and I was running out of time for research in my program by spring 2020. I plan
to return to this promising idea when time permits.

Finally, I’d wanted to return to the ideas of Chapter 4 for some time, but in a more
practical context and in a more conventional way. Some concessions were made to al-
low for connection tableaux, and the result with some refinements is Chapter 7. Asyn-
chronous evaluation, present in Chapter 4 and developed in Chapter 7, is a powerful
mechanism allowing for guided proof search at full speed.

1subsequently published [Chv18]



108 CHAPTER 8. CONCLUDING REMARKS

8.2 Epilogue

The future for this intersection of machine learning and automated reasoning seems
bright: methods for learning over syntactic data improve all the time, and new en-
vironments and new techniques to apply learning to theorem proving arrive almost
constantly. Practical implementations also continue to surprise: it is no longer incon-
ceivable that future systems must integrate some sort of learning to be competitive, and
even the most recent edition of CASC, traditionally a failed hurdle for learning-assisted
reasoning, seems to show that the grip of traditional systems is slowly loosening. The
system that learns to write my Isabelle proofs for me is just around the corner...



Bibliography

[ABC+16] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. TensorFlow: A system for large-scale
machine learning. In 12th USENIX symposium on operating systems

design and implementation (OSDI 16), pages 265–283, 2016.

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analy-
sis of the multiarmed bandit problem. Machine learning, 47(2):235–
256, 2002.

[Agr95] Rajeev Agrawal. Sample mean based index policies with O(logn)

regret for the multi-armed bandit problem. Advances in Applied Prob-

ability, 27(4):1054–1078, 1995.

[AS97] Christopher G Atkeson and Juan Carlos Santamaria. A comparison
of direct and model-based reinforcement learning. In Proceedings of

the International Conference on Robotics and Automation, volume 4,
pages 3557–3564. IEEE, 1997.

[ASN19] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An
optimistic perspective on offline reinforcement learning. In NeurIPS

Deep Reinforcement Learning Workshop, 2019.

[ATCF20] Ibrahim Abdelaziz, Veronika Thost, Maxwell Crouse, and Achille
Fokoue. An experimental study of formula embeddings for automated
theorem proving in first-order logic. arXiv preprint arXiv:2002.00423,
2020.

[Bar84] Hendrik P Barendregt. The Lambda Calculus. North-Holland Ams-
terdam, 1984.

109



110 BIBLIOGRAPHY

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. The Journal of Machine Learning Research,
13(1):281–305, 2012.

[BEL01] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form trans-
formations. In Handbook of Automated Reasoning, pages 273–334.
Elsevier, 2001.

[BG01a] Leo Bachmair and Harold Ganzinger. Resolution theorem proving. In
Handbook of Automated Reasoning, pages 19–100. Elsevier, 2001.

[BG01b] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial

Intelligence, 129(1-2):5–33, 2001.

[BHP14] James P Bridge, Sean B Holden, and Lawrence C Paulson. Machine
learning for first-order theorem proving. Journal of Automated Rea-

soning, 53(2):141–172, 2014.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning.
Springer, 2006.

[BKM17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational in-
ference: A review for statisticians. Journal of the American Statistical

Association, 112(518):859–877, 2017.

[BLR+19] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and
Stewart Wilcox. HOList: An environment for machine learning of
higher order logic theorem proving. In International Conference on

Machine Learning, pages 454–463, 2019.

[BPM15] Samuel Bowman, Christopher Potts, and Christopher D Manning. Re-
cursive neural networks can learn logical semantics. In Proceedings

of the 3rd workshop on Continuous Vector Space Models and their

Compositionality, pages 12–21, 2015.

[BR20] Ahmed Bhayat and Giles Reger. A combinator-based superposi-
tion calculus for higher-order logic. In Nicolas Peltier and Viorica
Sofronie-Stokkermans, editors, IJCAR 2020, LNCS. Springer, 2020.



BIBLIOGRAPHY 111

[BS20] Filip Bártek and Martin Suda. Learning precedences from simple sym-
bol features. In 7th Workshop on Practical Aspects of Automated Rea-

soning, 2020.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB stan-
dard: Version 2.0. In Proceedings of the 8th International Workshop

on Satisfiability Modulo Theories, volume 13, page 14, 2010.

[CAC+19] Maxwell Crouse, Ibrahim Abdelaziz, Cristina Cornelio, Veronika
Thost, Lingfei Wu, Kenneth Forbus, and Achille Fokoue. Improving
graph neural network representations of logical formulae with sub-
graph pooling. arXiv preprint arXiv:1911.06904, 2019.

[CBSS08] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
Monte-carlo tree search: A new framework for game ai. AIIDE,
8:216–217, 2008.

[CGCB15] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-
gio. Gated feedback recurrent neural networks. In International Con-

ference on Machine Learning, pages 2067–2075, 2015.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory.
American journal of mathematics, 58(2):345–363, 1936.

[Chv18] Karel Chvalovský. Top-down neural model for formulae. In Interna-

tional Conference on Learning Representations, 2018.

[CJSU19] Karel Chvalovský, Jan Jakubův, Martin Suda, and Josef Urban.
ENIGMA-NG: efficient neural and gradient-boosted inference guid-
ance for E. In International Conference on Automated Deduction,
pages 197–215. Springer, 2019.

[Dav01] Martin Davis. The early history of automated deduction: Dedicated
to the memory of Hao Wang. In Handbook of Automated Reasoning,
pages 3–15. Elsevier, 2001.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional neural networks on graphs with fast localized spectral fil-
tering. In Advances in neural information processing systems, pages
3844–3852, 2016.



112 BIBLIOGRAPHY

[DEKB16] Maria Dimakopoulou, Stéphane Eranian, Nectarios Koziris, and
Nicholas Bambos. Reliable and efficient performance monitoring
in Linux. In SC’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
pages 396–408. IEEE, 2016.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of

machine learning research, 12(7), 2011.

[Die19] Frederik Diehl. Edge contraction pooling for graph neural networks.
arXiv preprint arXiv:1905.10990, 2019.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pages 337–340. Springer, 2008.

[DRK+14] Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett, and Ce-
sare Tinelli. A tour of CVC4: how it works, and how to use it. In For-

mal Methods in Computer-Aided Design (FMCAD), pages 7–7. IEEE,
2014.

[DV96] Anatoli Degtyarev and Andrei Voronkov. The undecidability of si-
multaneous rigid E-unification. Theoretical Computer Science, 166(1-
2):291–300, 1996.

[DV98] Anatoli Degtyarev and Andrei Voronkov. What you always wanted
to know about rigid E-unification. Journal of Automated Reasoning,
20(1-2):47–80, 1998.

[EMH18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[ES11] Stefan Edelkamp and Stefan Schroedl. Heuristic search: theory and

applications. Elsevier, 2011.

[ESA+18] Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Ed-
ward Grefenstette. Can neural networks understand logical entail-
ment? arXiv preprint arXiv:1802.08535, 2018.



BIBLIOGRAPHY 113

[ESS89] Wolfgang Ertel, Johann M Ph Schumann, and Christian B Suttner.
Learning heuristics for a theorem prover using back propagation. In 5.

Österreichische Artificial-Intelligence-Tagung, pages 87–95. Springer,
1989.

[FB16] Michael Färber and Chad Brown. Internal guidance for Satallax. In
International Joint Conference on Automated Reasoning, pages 349–
361. Springer, 2016.

[FKU17] Michael Färber, Cezary Kaliszyk, and Josef Urban. Monte-Carlo
tableau proof search. In International Conference on Automated De-

duction, pages 563–579. Springer, 2017.

[FL19] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with PyTorch Geometric. arXiv preprint arXiv:1903.02428, 2019.

[GAA+19] Xavier Glorot, Ankit Anand, Eser Aygün, Shibl Mourad, Pushmeet
Kohli, and Doina Precup. Learning representations of logical formu-
lae using graph neural networks. In Neural Information Processing

Systems, Workshop on Graph Representation Learning, 2019.

[Gau20] Thibault Gauthier. Tree neural networks in HOL4. In International

Conference on Intelligent Computer Mathematics, pages 278–283.
Springer, 2020.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thir-

teenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[GDM09] Yeting Ge and Leonardo De Moura. Complete instantiation for quan-
tified formulas in satisfiabiliby modulo theories. In International Con-

ference on Computer Aided Verification, pages 306–320. Springer,
2009.



114 BIBLIOGRAPHY

[Gie06] Martin Giese. Saturation up to redundancy for tableau and sequent cal-
culi. In International Conference on Logic for Programming Artificial

Intelligence and Reasoning, pages 182–196. Springer, 2006.

[GJ19] Hongyang Gao and Shuiwang Ji. Graph U-nets. arXiv preprint

arXiv:1905.05178, 2019.

[GJU19] Zarathustra Goertzel, Jan Jakubův, and Josef Urban. ENIGMAWatch:
ProofWatch meets ENIGMA. In International Conference on Auto-

mated Reasoning with Analytic Tableaux and Related Methods, pages
374–388. Springer, 2019.

[GK03] Harald Ganzinger and Konstantin Korovin. New directions in
instantiation-based theorem proving. In 18th Annual IEEE Symposium

of Logic in Computer Science, pages 55–64. IEEE, 2003.

[GKN10] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar
in a nutshell. Journal of Formalized Reasoning, 3(2):153–245, 2010.

[GMR+18] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM computing surveys (CSUR), 51(5):1–42,
2018.

[Goe20] Zarathustra Amadeus Goertzel. Make E smart again. In International

Joint Conference on Automated Reasoning, pages 408–415. Springer,
2020.

[GS20] Bernhard Gleiss and Martin Suda. Layered clause selection for the-
ory reasoning. In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning, pages 402–409, Cham, 2020. Springer
International Publishing.

[Häh01] Reiner Hähnle. Tableaux and related methods. In Handbook of Auto-

mated Reasoning, pages 101–178. Elsevier, 2001.

[Hal06] Thomas C Hales. Introduction to the Flyspeck project. In Dagstuhl

Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2006.



BIBLIOGRAPHY 115

[HK19] Edvard K Holden and Konstantin Korovin. SMAC and XGBoost your
theorem prover. In Proc. 4th Conference on Artificial Intelligence and

Theorem Proving (AITP 2019), pages 93–95, 2019.

[HLMW17] Gao Huang, Zhuang Liu, Laurens van der Maarten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recogni-

tion, pages 4700–4708, 2017.

[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras.
The Journal of Symbolic Logic, 16(1):14–21, 1951.

[HV11] Kryštof Hoder and Andrei Voronkov. Sine qua non for large the-
ory reasoning. In International Conference on Automated Deduction,
pages 299–314. Springer, 2011.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on

computer vision, pages 1026–1034, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–
778, 2016.

[Irp18] Alex Irpan. Deep reinforcement learning doesn’t work yet. https:

//www.alexirpan.com/2018/02/14/rl-hard.html, 2018.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167, 2015.

[ISA+16] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén,
François Chollet, and Josef Urban. DeepMath — deep sequence mod-
els for premise selection. In Advances in Neural Information Process-

ing Systems, pages 2235–2243, 2016.



116 BIBLIOGRAPHY

[JCO+20] Jan Jakubův, Karel Chvalovskỳ, Miroslav Olšák, Bartosz Piotrowski,
Martin Suda, and Josef Urban. ENIGMA anonymous: Symbol-
independent inference guiding machine (system description). In Inter-

national Joint Conference on Automated Reasoning, pages 448–463.
Springer, 2020.

[JU17] Jan Jakubův and Josef Urban. ENIGMA: efficient learning-based in-
ference guiding machine. In International Conference on Intelligent

Computer Mathematics, pages 292–302. Springer, 2017.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KBKU13] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and
Josef Urban. MaSh: machine learning for Sledgehammer. In Inter-

national Conference on Interactive Theorem Proving, pages 35–50.
Springer, 2013.

[KH17] Ekaterina Komendantskaya and Jónathan Heras. Proof mining with
dependent types. In International Conference on Intelligent Computer

Mathematics, pages 303–318. Springer, 2017.

[KK18] Andrzej Stanisław Kucik and Konstantin Korovin. Premise selection
with neural networks and distributed representation of features. arXiv

preprint arXiv:1807.10268, 2018.

[KLT+12] Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef
Urban, and Tom Heskes. Overview and evaluation of premise crate
techniques for large theory mathematics. In International Joint Con-

ference on Automated Reasoning, pages 378–392. Springer, 2012.

[Kor08] Konstantin Korovin. iProver — an instantiation-based theorem prover
for first-order logic. In International Joint Conference on Automated

Reasoning, pages 292–298. Springer, 2008.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo
planning. In European Conference on Machine Learning, pages 282–
293. Springer, 2006.



BIBLIOGRAPHY 117

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
classification with deep convolutional neural networks. In Advances

in Neural Information Processing Systems, pages 1097–1105, 2012.

[KSU13] Daniel Kühlwein, Stephan Schulz, and Josef Urban. E-MaLeS 1.1. In
International Conference on Automated Deduction, pages 407–413.
Springer, 2013.

[KSUV15] Cezary Kaliszyk, Stephan Schulz, Josef Urban, and Jiřı́ Vyskočil. Sys-
tem description: ET 0.1. In International Conference on Automated

Deduction, pages 389–398. Springer, 2015.

[KU14] Cezary Kaliszyk and Josef Urban. Learning-assisted automated rea-
soning with Flyspeck. Journal of Automated Reasoning, 53(2):173–
213, 2014.

[KU15a] Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient ma-
chine learning connection prover. In Logic for Programming, Artificial

Intelligence, and Reasoning, pages 88–96. Springer, 2015.

[KU15b] Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. Journal

of Automated Reasoning, 55(3):245–256, 2015.

[KU15c] Daniel Kühlwein and Josef Urban. MaLeS: A framework for auto-
matic tuning of automated theorem provers. Journal of Automated

Reasoning, 55(2):91–116, 2015.

[KUMO18] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav
Olšák. Reinforcement learning of theorem proving. In Advances in

Neural Information Processing Systems, pages 8822–8833, 2018.

[KUV15] Cezary Kaliszyk, Josef Urban, and Jiřı́ Vyskočil. Efficient semantic
features for automated reasoning over large theories. In Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving and
Vampire. In International Conference on Computer Aided Verification,
pages 1–35. Springer, 2013.



118 BIBLIOGRAPHY

[KW16a] Thomas N Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907,
2016.

[KW16b] Thomas N Kipf and Max Welling. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

[LaV06] Steven M LaValle. Planning Algorithms. Cambridge University Press,
2006.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[LH17] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent
with warm restarts. In 5th International Conference on Learning Rep-

resentations, 2017.

[Lig73] James Lighthill. Artificial intelligence: A general survey. In Artifi-

cial Intelligence: a paper symposium, pages 1–21. Science Research
Council London, 1973.

[Lin69] Per Lindström. On extensions of elementary logic. Theoria, 35:1–11,
1969.

[LISK17] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
Deep network guided proof search. arXiv preprint arXiv:1701.06972,
2017.

[LRSL20] Gil Lederman, Markus Rabe, Sanjit Seshia, and Edward A. Lee.
Learning heuristics for quantified boolean formulas through reinforce-
ment learning. In International Conference on Learning Representa-

tions, 2020.

[LS01] Reinhold Letz and Gernot Stenz. Model elimination and connection
tableau procedures. In Handbook of Automated Reasoning, pages
2015–2114. Elsevier, 2001.

[LSBB92] Reinhold Letz, Johann Schumann, Stefan Bayerl, and Wolfgang Bibel.
SETHEO: A high-performance theorem prover. Journal of Automated

Reasoning, 8(2):183–212, 1992.



BIBLIOGRAPHY 119

[Mar18] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint

arXiv:1801.00631, 2018.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learn-
ing. In International Conference on Machine Learning, pages 1928–
1937, 2016.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Mos93] Max Moser. Improving transformation systems for general E-
unification. In International Conference on Rewriting Techniques and

Applications, pages 92–105. Springer, 1993.

[MP08] Jia Meng and Lawrence C Paulson. Translating higher-order clauses
to first-order clauses. Journal of Automated Reasoning, 40(1):35–60,
2008.

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[MW97] William McCune and Larry Wos. Otter — the CADE-13 competition
incarnations. Journal of Automated Reasoning, 18(2):211–220, 1997.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able parallel programming with CUDA. ACM Queue, 6(2):40–53,
2008.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In International Conference on Machine

Learning, 2010.

[NR01] Robert Nieuwenheis and Albert Rubio. Paramodulation-based theo-
rem proving. In Handbook of Automated Reasoning, pages 371–444.
Elsevier, 2001.



120 BIBLIOGRAPHY

[OB03] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based the-
orem proving. Journal of Symbolic Computation, 36(1-2):139–161,
2003.

[OKU19] Miroslav Olšák, Cezary Kaliszyk, and Josef Urban. Property
invariant embedding for automated reasoning. arXiv preprint

arXiv:1911.12073, 2019.

[OLLW18] Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber.
Single-agent policy tree search with guarantees. In Advances in Neural

Information Processing Systems, pages 3201–3211, 2018.

[Ott10] Jens Otten. Restricting backtracking in connection calculi. AI Com-

munications, 23(2-3):159–182, 2010.

[Ott11] Jens Otten. A non-clausal connection calculus. In International Con-

ference on Automated Reasoning with Analytic Tableaux and Related

Methods, pages 226–241. Springer, 2011.

[Ott16] Jens Otten. nanoCoP: A non-clausal connection prover. In Inter-

national Joint Conference on Automated Reasoning, pages 302–312.
Springer, 2016.

[Pas08] Andrei Paskevich. Connection tableaux with lazy paramodulation.
Journal of Automated Reasoning, 40(2-3):179–194, 2008.

[PdMB08] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. Deciding
effectively propositional logic with equality. Technical Report MSR-
TR-2008-181, Microsoft Research, December 2008.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information

Processing Systems, pages 8026–8037, 2019.

[Pit01] Andrew M Pitts. Nominal logic: A first order theory of names and
binding. In International Symposium on Theoretical Aspects of Com-

puter Software, pages 219–242. Springer, 2001.



BIBLIOGRAPHY 121

[PLR+19] Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Chris-
tian Szegedy. Graph representations for higher-order logic and theo-
rem proving. arXiv preprint arXiv:1905.10006, 2019.

[PLR+20] Aditya Paliwal, Sarah M Loos, Markus N Rabe, Kshitij Bansal, and
Christian Szegedy. Graph representations for higher-order logic and
theorem proving. In AAAI, pages 2967–2974, 2020.

[PU18] Bartosz Piotrowski and Josef Urban. ATPboost: Learning premise
selection in binary setting with ATP feedback. In International Joint

Conference on Automated Reasoning, pages 566–574. Springer, 2018.

[PU20] Bartosz Piotrowski and Josef Urban. Guiding inferences in connection
tableau by recurrent neural networks. In International Conference on

Intelligent Computer Mathematics, pages 309–314. Springer, 2020.

[PUBK19] Bartosz Piotrowski, Josef Urban, Chad E Brown, and Cezary Kaliszyk.
Can neural networks learn symbolic rewriting? arXiv preprint

arXiv:1911.04873, 2019.

[RBR20] Michael Rawson, Ahmed Bhayat, and Giles Reger. Reinforced ex-
ternal guidance for theorem provers. Presented at 7th Workshop on

Practical Aspects of Automated Reasoning, 2020.

[Reg19] Giles Reger. Boldly going where no prover has gone before. arXiv

preprint arXiv:1912.12958, 2019.

[RN02] Stuart Russell and Peter Norvig. Artificial intelligence: a modern ap-

proach. Pearson, 2002.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[RR18] Michael Rawson and Giles Reger. Dynamic strategy priority: Em-
power the strong and abandon the weak. In 6th Workshop on Practical

Aspects of Automated Reasoning, pages 58–71, 2018.

[RR19a] Michael Rawson and Giles Reger. A neurally-guided, parallel theo-
rem prover. In International Symposium on Frontiers of Combining

Systems, pages 40–56. Springer, 2019.



122 BIBLIOGRAPHY

[RR19b] Michael Rawson and Giles Reger. Old or heavy? Decaying gracefully
with age/weight shapes. In International Conference on Automated

Deduction, pages 462–476. Springer, 2019.

[RR19c] Michael Rawson and Giles Reger. Towards an efficient architecture
for intelligent theorem provers. Conference on Artificial Intelligence

and Theorem Proving, 2019.

[RR20a] Michael Rawson and Giles Reger. Autoencoding TPTP. In Conference

on Artificial Intelligence and Theorem Proving, 2020.

[RR20b] Michael Rawson and Giles Reger. Directed graph networks for log-
ical reasoning. In 7th Workshop on Practical Aspects of Automated

Reasoning, pages 109–119, 2020.

[RR20c] Michael Rawson and Giles Reger. lazyCoP 0.1. EasyChair Preprint
no. 3926, EasyChair, 2020.

[RR21] Michael Rawson and Giles Reger. lazyCoP: Lazy paramodulation
meets neurally guided search. In 30th International Conference on

Automated Reasoning with Analytic Tableaux and Related Methods,
2021.

[RRWN11] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu.
HOGWILD!: A lock-free approach to parallelizing stochastic gradi-
ent descent. In Advances in neural information processing systems,
pages 693–701, 2011.

[RS17] Giles Reger and Martin Suda. Measuring progress to predict success:
Can a good proof strategy be evolved? Conference on Artificial Intel-

ligence and Theorem Proving, 2017.

[RS19] Giles Reger and Martin Suda. Can a failed strategy be useful? In
Conference on Artificial Intelligence and Theorem Proving, 2019.

[RSV14] Giles Reger, Martin Suda, and Andrei Voronkov. The challenges of
evaluating a new feature in Vampire. In Vampire Workshop, pages
70–74, 2014.



BIBLIOGRAPHY 123

[RSV15] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with
AVATAR. In International Conference on Automated Deduction,
pages 399–415. Springer, 2015.

[RSV16] Giles Reger, Martin Suda, and Andrei Voronkov. Finding finite
models in multi-sorted first-order logic. In International Conference

on Theory and Applications of Satisfiability Testing, pages 323–341.
Springer, 2016.

[RV01] Alan JA Robinson and Andrei Voronkov. Handbook of Automated

Reasoning. Elsevier, 2001.

[RV03] Alexandre Riazanov and Andrei Voronkov. Limited resource strat-
egy in resolution theorem proving. Journal of Symbolic Computation,
36(1-2):101–115, 2003.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[Sch02] Stephan Schulz. E — a brainiac theorem prover. AI Communications,
15(2, 3):111–126, 2002.

[SE90] Christian Suttner and Wolfgang Ertel. Automatic acquisition of search
guiding heuristics. In International Conference on Automated Deduc-

tion, pages 470–484. Springer, 1990.

[SGS15] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber.
Highway networks. arXiv preprint arXiv:1505.00387, 2015.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[SKB+18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling. Modeling relational data
with graph convolutional networks. In European Semantic Web Con-

ference, pages 593–607. Springer, 2018.



124 BIBLIOGRAPHY

[SLB+19] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang,
Leonardo de Moura, and David L. Dill. Learning a SAT solver from
single-bit supervision. In International Conference on Learning Rep-

resentations, 2019.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[SM96] Geoff Sutcliffe and Stuart Melville. The practice of clausification in
automatic theorem proving. Computer Science and Information Sys-

tems, 1996.

[SM16] Stephan Schulz and Martin Möhrmann. Performance of clause selec-
tion heuristics for saturation-based theorem proving. In International

Joint Conference on Automated Reasoning, pages 330–345. Springer,
2016.

[Smi17] Leslie N Smith. Cyclical learning rates for training neural networks.
In 2017 IEEE Winter Conference on Applications of Computer Vision,
pages 464–472. IEEE, 2017.

[Smu95] Raymond M Smullyan. First-order logic. Courier Corporation, 1995.

[SP07] Geoff Sutcliffe and Yury Puzis. SRASS — a semantic relevance axiom
selection system. In International Conference on Automated Deduc-

tion, pages 295–310. Springer, 2007.

[SRV01] R Sekar, IV Ramakrishnan, and Andrei Voronkov. Term indexing. In
Handbook of Automated Reasoning, pages 1853–1964. Elsevier, 2001.

[SS94] Christian B Suttner and Johann Schumann. Parallel automated theo-
rem proving. In Machine Intelligence and Pattern Recognition, vol-
ume 14, pages 209–257. Elsevier, 1994.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-
community infrastructure for logic solving. In International Joint

Conference on Automated Reasoning, pages 367–373. Springer, 2014.



BIBLIOGRAPHY 125

[SSY94] Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The TPTP
problem library. In International Conference on Automated Deduc-

tion, pages 252–266. Springer, 1994.

[ST19] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast
training of neural networks using large learning rates. In Artificial In-

telligence and Machine Learning for Multi-Domain Operations Appli-

cations, volume 11006, page 1100612. International Society for Op-
tics and Photonics, 2019.

[Sut08] Geoff Sutcliffe. CASC-J4 the 4th IJCAR ATP system competition. In
International Joint Conference on Automated Reasoning, pages 457–
458. Springer, 2008.

[Sut16] Geoff Sutcliffe. The CADE ATP system competition — CASC. AI

Magazine, 37(2):99–101, 2016.

[SWK09] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. Classifica-
tion of imbalanced data: A review. International Journal of Pattern

Recognition and Artificial Intelligence, 23(04):687–719, 2009.

[SWVDH+08] Maarten PD Schadd, Mark HM Winands, H Jaap Van Den Herik, Guil-
laume MJ-B Chaslot, and Jos WHM Uiterwijk. Single-player Monte-
Carlo tree search. In International Conference on Computers and

Games, pages 1–12. Springer, 2008.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[TSM15] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Im-
proved semantic representations from tree-structured long short-term
memory networks. Association for Computational Linguists, 2015.

[TUGH11] Evgeni Tsivtsivadze, Josef Urban, Herman Geuvers, and Tom Heskes.
Semantic graph kernels for automated reasoning. In Proceedings of

the 2011 SIAM International Conference on Data Mining, pages 795–
803. SIAM, 2011.



126 BIBLIOGRAPHY

[UJ20] Josef Urban and Jan Jakubův. First neural conjecturing datasets and
experiments. In International Conference on Intelligent Computer

Mathematics, pages 315–323. Springer, 2020.

[Urb06] Josef Urban. MPTP 0.2: Design, implementation, and initial experi-
ments. Journal of Automated Reasoning, 37(1-2):21–43, 2006.

[Urb07] Josef Urban. MaLARea: a metasystem for automated reasoning in
large theories. ESARLT, 257, 2007.

[USPV08] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiřı́ Vyskočil.
MaLARea SG1 — machine learner for automated reasoning with se-
mantic guidance. In International Joint Conference on Automated

Reasoning, pages 441–456. Springer, 2008.

[UVŠ11] Josef Urban, Jiřı́ Vyskočil, and Petr Štěpánek. MaLeCoP machine
learning connection prover. In International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods, pages 263–
277. Springer, 2011.

[Vor14] Andrei Voronkov. AVATAR: The architecture for first-order theorem
provers. In International Conference on Computer Aided Verification,
pages 696–710. Springer, 2014.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[Waa01] Arild Waaler. Connections in nonclassical logics. In Handbook of

Automated Reasoning, pages 1487–1580. Elsevier, 2001.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning, 8(3-
4):229–256, 1992.

[WL99] Andreas Wolf and Reinhold Letz. Strategy parallelism in automated
theorem proving. International journal of pattern recognition and ar-

tificial intelligence, 13(02):219–245, 1999.



BIBLIOGRAPHY 127

[WTWD17] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selec-
tion for theorem proving by deep graph embedding. In Advances in

Neural Information Processing Systems, pages 2786–2796, 2017.

[XHHLB08] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
SATzilla: portfolio-based algorithm selection for SAT. Journal of ar-

tificial intelligence research, 32:565–606, 2008.

[XHLJ18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint

arXiv:1810.00826, 2018.

[ZCM+19] Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary
Kaliszyk, and Josef Urban. Towards finding longer proofs. arXiv

preprint arXiv:1905.13100, 2019.

[ZTXM19] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
convolutional networks: a comprehensive review. Computational So-

cial Networks, 6(1):11, 2019.


