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ABSTRACT 
 

OBJECTIVE: 

                        The digital signal processing landscape has long been dominated by the 

microprocessors with enhancements such as single cycle multiply-accumulate instructions and 

special addressing modes. While these processors are low cost and offer extreme flexibility, they 

are often not fast enough for truly demanding DSP tasks. The advent of reconfigurable logic 

computers permits the higher speeds of dedicated hardware solutions at costs that are 

competitive with the traditional software approach. Unfortunately algorithms optimized for these 

microprocessors based systems do not map well into hardware. While hardware efficient 

solutions often exist, the dominance of the software systems has kept these solutions out of the 

spotlight. Among these hardware-efficient algorithms is a class of iterative solutions for 

trigonometric and other transcendental functions that use only shifts and adds to perform. The 

trigonometric functions are based on vector rotations, while other functions such as square root 

are implemented using an incremental expression of the desired function. The trigonometric 

algorithm is called CORDIC an acronym for Coordinate Rotation Digital Computer. The 

incremental functions are performed with a very simple extension to the hardware architecture 

and while not CORDIC in the strict sense, are often included because of the close similarity. The 

CORDIC algorithms generally produce one additional bit of accuracy for each iteration.  

DESCRIPTION: 

                           A detailed study on various modes of CORDIC algorithm is done. First of all a 

study is made how the CORDIC algorithm is derived from the general vector equation. Then a 

study is done regarding the various modes of the CORDIC algorithm and how it can be used to 

find the sine, cosine, tan and logarithm functions, its use in conversion of coordinate systems. An 

attempt is made to carry out a rigorous study of its use in DSP oriented applications AND how it 

has revolutionized the DSP scenario. Finally simulations are carried out using MATLAB to 

support the purpose of our study.  

RESULTS 

                  The results clearly bring out the advantage of using CORDIC algorithm. First of all 

the sine and cosine of any angle could be found out easily. Similar is the case of logarithm and 

hyperbolic functions. The simulation results prove the fact that the hardware complexity gets 

reduced by using the CORDIC algorithm. A large no of plots were obtained for different 
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functions. Finally the implementation in DCT was carried out and the results obtained were in 

line with those of the theoretical values. 

 CONCLUSION 

                          The CORDIC algorithms presented in this paper are well known in the research 

and super computing circles. Here the basic CORDIC algorithm and a partial list of potential 

applications of potential applications of a CORDIC based processor array to digital signal 

processing is presented. The CORDIC based DCT architecture for low power design has been 

proposed. The proposed multiplierless CORDIC based DCT architecture produces high 

throughput and is easy to implementing VLSI. The proposed architecture reduced the input data 

range for the CORDIC processor by split and the no of compensation iterations in CORDIC 

based DCT computation by utilizing that most images have similar neighboring pixels. The 

project also shows that a tool is available for use in FPGA based computing machines, which are 

the likely basis for the next generation DSP systems.   
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1.1 BACKGROUND 

The digital signal processing landscape has long been dominated by the microprocessors with 

enhancements such as single cycle multiply-accumulate instructions and special addressing 

modes. While these processors are low cost and offer extreme flexibility, they are often not fast 

enough for truly demanding DSP tasks. The advent of reconfigurable logic computers permits 

the higher speeds of dedicated hardware solutions at costs that are competitive with the 

traditional software approach. Unfortunately algorithms optimized for these microprocessors 

based systems do not map well into hardware. While hardware efficient solutions often exist, the 

dominance of the software systems has kept these solutions out of the spotlight. Among these 

hardware-efficient algorithms is a class of iterative solutions for trigonometric and other 

transcendental functions that use only shifts and adds to perform. The trigonometric functions are 

based on vector rotations, while other functions such as square root are implemented using an 

incremental expression of the desired function. The trigonometric algorithm is called CORDIC 

an acronym for Coordinate Rotation Digital Computer. The incremental functions are performed 

with a very simple extension to the hardware architecture and while not CORDIC in the strict 

sense, are often included because of the close similarity. The CORDIC algorithms generally 

produce one additional bit of accuracy for each iteration.  

                                             The trigonometric CORDIC algorithms were originally developed as 

a digital solution for real time navigation problems. The original work is credited to Jack Volder 

.The CORDIC algorithm has found its way into diverse applications including the 8087 math 

coprocessor, the HP-35 calculator, radar signal processors and robotics.CORDIC rotation has 

also been proposed for computing Discrete Fourier[4],Discrete Cosine[4],Singular Value 

Decomposition[5],and solving linear systems[1]. 

 1.2 OBJECTIVE                                             

                     The project attempts to survey the existing CORDIC and CORDIC-like algorithms 

with an eye towards its implementation. First a brief description of the theory behind the 

algorithm and the derivation of several functions are presented. Then the theory is extended to 

the so called unified CORDIC algorithms. 
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                                                   All of the trigonometric functions can be computed or derived 

from functions using vector rotations, as will be discussed in the following sections. Vector 

rotation can also be used from polar to rectangular and rectangular to polar conversions, for 

vector magnitude, and as a building block in certain transforms such as DFT and DCT.The 

CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary 

angles using only shifts and adds. The algorithm credited to Volder [4] is derived from the 

general rotation transform 

                                        x’= x cosØ - y sinØ 

                                        y’=  y cosØ +x sinØ 

this rotates a vector in a Cartesian plane by the angle Ø. 

 

 

             FIG 2.1: Rotation of a vector V by angle ø 

            These can be rearranged so that  

                                         x’= cosØ*[x- y tanØ ] 

                                     y’= cosØ*[y +x tanØ ] 

So far nothing is simplified. However if the rotation angles are restricted so that 

tan(Ø)= i−± 2 ,the multiplication by the tangent term is reduced to simple shift operation.Arbitary 

angles of  rotation are obtainable by performing a series of successively smaller elementary 

operations. If the decision at each iteration i ,is which direction to rotate rather than whether or  

not to rotate, then the cos(δi) term becomes a constant because cos(δi)= cos(-δi).The iterative 

rotation can now be expressed as:                     

                                           x i+1=Ki [xi – yi ×d i ×2 
–i
 ] 
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                                           y i+1=Ki [yi  + xi×di×2
-i
 ] 

                              where: 

                                           Ki = cos(tan 
-1
2
-i
) = 1/ i221 −+  

                                           di= 1±  

Removing the scale constant from the iterative equations yields a shift add algorithm for vector 

rotation. The product of the Ki’s can be applied elsewhere in the system or treated as apart of the 

system processing gain. The product approaches 0.6073 as the number of iteration goes to 

infinity. Therefore the rotation algorithm has a gain An of approximately 1.647.The exact gain 

depends on the no of iterations and obeys the relation 

                                            An = ∏ −+
n

i221  

The angle of a composite rotation is uniquely defined by the sequence of the directions of the 

elementary rotations. That sequence can be represented by a decision vector. The set of all 

possible decision vectors is an angular measurement system based on binary arctangents. 

Conversions between the angular systems and any other can be accomplished using a look up. A 

better conversion method uses an additional adder-subtract or that accumulate the elementary 

rotation angles at each iteration. The elementary angles can be expressed in any convenient 

angular unit. Those angular values are supplied by a small look up table or are hardwired 

depending on the application. The angle accumulator adds a third difference equation to the 

CORDIC algorithm: 

                                           z i+1= zi – di×  tan 
-1
(2

–i
) 

Obviously, in cases where the angle is useful in the arc tangent base, this extra element is not 

needed. 

The CORDIC rotator is normally operated in one of two mode3s.The first called rotation by 

Volder[4]rotates the input vector by a specified angle. The second mode called vectoring rotates 

the input vector to the x axis while recording the angle required to make that rotation. 

 

 

 

2.1ROTATION MODE: 

                                  In rotation mode, the angle accumulator is initialized with the desired 

rotation angle. The rotation decision at each iteration is made to diminish the magnitude of the 

residual angle in the angle accumulator. The decision at each iteration is therefore based on the 
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sign of the residual angle after each step.Naturally, if the input angle is already expressed in the 

binary arctangent base, the angle accumulator may be eliminated. For rotation mode, the 

CORDIC equations are: 

                                                       x i+1 =xi – yi×di×  2
-i 

                                                       y i+1 = yi + xi×  di×2
-i
 

                                                       z i+1 =  zi – di× tan 
-1
(2 

–i
)  

                                           where 

                                                       di = -1 if zi<0,+1 otherwise 

                                           which provides the following result                                                        

                                                     xn = An[x0 cosz0 – yo sin z0] 

                                                      yn = An[yo cosz0 + x0 sinz0] 

                                                      zn = 0                                                         

                                                      An = ∏ −+
n

i221   

2.2CORDIC ROTATION IN VECTORING MODE: 

                                                                                 In the vectoring mode the CORDIC vector 

rotates the input vector through whatever angle is necessary to align the result vector with the x 

axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the 

original vector (the x component of the result. The vectoring function works by seeking to 

minimize the y component of the residual vector at each rotation. The sign of the residual y 

component is used to determine which direction is to rotate next. If the angle accumulator is 

initialized with zero, it will contain the traversed angle at the end of the iterations. In vectoring 

mode the CORDIC equations are:   

                                                    x i+1 = xi – yi×  di×  2
-i
 

                                                    y i+1 = yi  + xi×  di×  2
–i
 

                                                    z i+1 = zi – di×  tan 
-1
(2

–i
)   

                              where 

                                                    di= +1 if yi<0,-1 otherwise 

                              Then: 

                                                 xn =  An× 2

0

2

0 yx +  

                                                                             yn = 0 

                                                   zn = z0 + tan
-1
(yo/x0) 
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                                                   An = ∏ −+
n

i221  

The CORDIC rotation and vectoring algorithms as stated are limited to rotation angles between -

900and 900. For composite rotations larger than 900 an additional rotation is required. 

This gives the correction iteration:                                   

                                                    x’= -d×y 

                                                    y’ = d×x 

                                                    z’ = z + d× ∏ /2 

                         where 

                                                   d=+1 if y<0,-1 otherwise 

There is no growth for this initial rotation. Alternatively an initial rotation of either ∏  or 0 can 

be made avoiding the reassignment of the x and y components to the rotator elements. Again 

there is no growth due to the initial rotation                                                   

                                                   x’=d×x 

                                                   y’= d×y   

                                                   z’=z if d = 1, or z =∏ if d = -1   

                                                    d= -1 if x<0,+1 otherwise                                                                  

    

                  FIG 2.2: Iterative vector rotation, initialized with V0 
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3.1SINE AND COSINE: 

                           The rotational mode CORDIC operation can simultaneously compute the sine 

and cosine of the input angle. Setting the y component of the input vector to zero reduces the 

rotation mode results to 

                                            xn = An×x0 cos z0 

                                            yn = An×x0 sin z0 

By setting xo equal to 1/An rotation produces the unscaled sine and cosine of the angle argument 

z0.Very often the sine and cosine values modulate a magnitude value. Using other techniques 

requires a no of multipliers to obtain the modulation. The CORDIC technique performs the 

multiply as part of the rotation operation and therefore eliminates the need for a pair of explicit 

multipliers. The output of the CORDIC rotator is scaled by the rotator gain. If the gain is not 

acceptable, a single multiply by the reciprocal of the gain constant placed before the CORDIC 

rotator will yield the unscaled results. It is worth noting that the hardware complexity of the 

CORDIC rotator is approximately equivalent to that of a single multiplier with the same word 

size. 
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EXAMPLE: 

                    To find the sine of 28.027
0
 

                                              Ø=00 

                                              cos(ø)=1      X=1 

                                              sin(ø)=1       Y=0 

                     Rotate from 0
0
 to 45

0
(ø21 = 45

0
) 

                                               X’= X-Y/1 =   1-0/1 = 1 

                                               Y’= X/1+Y = 1/1+0 = 1 

                     Rotate from 450 to 18.4350(ø32 = -26.565
0
).Because this is a negative angle, and 

because the tangent function is odd, we change the sign of the numbers that get shifted. 

                                                 X’ = X + Y/2 = 1+1/2 = 1.5 

                                                 Y’ = -X/2 + Y= -1/2+1=0.5 

                      The aggregate constant is not affected because it is a product of cosines, and the 

cosine function is even.                       

                   

    Rotate from 18.435
0
 to 32.4710(ø43=14.036

0
) 

                                                 X’=X-Y/4=1.5-0.5/4=1.375  

                                                 Y’= X/4+Y=1.5/4+0.5=0.875 

                      Rotate from 32.471
0
 to 25.346

0
(ø54= -7.125

0
) 

                                                  X’=X+Y/8=1.375+0.875/8=1.484375 

                                                  Y’= -X/8+Y= -1.375/8+0.875=0.703125 

                      Rotate from 25.346
0
 to 28.922

0
(ø65 = 3.576

0
) 

                                                  X’= X-Y/16= 1.484375-0.703125/16=1.440429 

                                                  Y’= X/16+Y=1.484375/16+0.703125=0.795898 

                      Rotate from 28.922
0 
to 27.132

0
(ø76 = -1.790

0
) 

                                                  X’= X+Y/32=1.440429+0.795898/32 = 1.465300 

                                                  Y’ = -X/32+Y = -1.440429/32+0.795898=0.750884 

                      Rotate from 27.1320 to 28.0270(ø87 = 0.8950) 

                                                   X’= X-Y/64=1.465300-0.750884/64=1.453567 

                                                   Y’= X/64+Y=1.456300/64+0.750884=0.773779 

                      After that we have to just multiply by the aggregate constant 

                                                   sin(28.027
0
)=0.607253*Y=0.46988 

                                                   cos(28.027
0
)=0.607253*X=0.88268                                                                                                                                                                                                             
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3.1 POLAR TO RECTANGULAR TRANSFORMATION: 

                                                                                             A logical extension to sine and cosine 

computer is a polar to Cartesian coordinate transformer. The transformation from polar to 

Cartesian space is defined by                                                                          .                                                                                          

                                                            x=rcosθ                                                                                                                                                                                                       

                                                            y =rsinθ 

As pointed out above, the multiplication by the magnitude comes for free using the CORDIC 

rotator. The transformation is accomplished by selecting the rotation mode with x0=polar phase 

and y0=0.The vector result represents the polar input transformed to Cartesian space. The 

transform has a gain equal to the rotator gain, which needs to be accounted somewhere in the 

system. If the gain is unacceptable the polar magnitude may be multiplied by the reciprocal of 

the rotator gain before it is presented to the CORDIC rotator.   

 

3.2GENERAL VECTOR ROTATION: 

                                                          The rotation mode CORDIC rotator is also useful for 

performing general vector rotations, as are often encountered in motion correction and control 

systems. For general rotation, the 2 dimensional input vector is presented to the rotator inputs. 

The rotator rotates the vector through the desired angle. The output is scaled by the CORDIC 

rotator gain, which must be accounted for elsewhere in the system. If the scaling is unacceptable, 

a pair of constant multipliers is required to compensate the gain. 

3.3ARCTANGENT: 

                   The arctangent, θ=Atan(y/x) is directly computed using the vectoring mode 

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be 

provided as a ratio expressed as a vector(x,y).Since the arctangent result is taken from the angle 

accumulator the CORDIC rotator growth does not affect the result.                        

                                                        zn = z0 +tan
-1
(y0/x0) 

 

The vectoring mode CORDIC rotator produces the magnitude of the input vector as a byproduct 

of computing the arctangent. After the vectoring mode rotation the vector is aligned with the x 

axis. The magnitude of the vector is therefore the same as the x component of the rotated vector. 

This result is apparent in the result equations for the vector mode rotator: 
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                                                        xn = An
2

0

2

0 yx +  

The magnitude result is scaled by the processor gain which needs to be accounted for elsewhere 

in the system. The CORDIC implementation represents a significant hardware savings over an 

equivalent Pythagoras processor. The accuracy of the magnitude result improves by 2 bits for 

each iteration performed. 

3.4CARTESIAN TO POLAR TRANSFORMATION: 

                                                                                  The Cartesian to polar transformation consists 

of finding the magnitude(r=sqrt(x2+y2)) and phase angle (ø=atan[y/x]) of the input 

vector(x,y).The reader will immediately recognize that both functions are provided 

simulnteously by the vectoring mode CORDIC rotator. The magnitude of the result will be 

sealed by the CORDIC rotator gain and should be accounted for elsewhere in the system. If the 

gain is unacceptable, it can be corrected by multiplying the resultant magnitude by the reciprocal 

of the gain constant.  

3.5INVERSE CORDIC FUNCTIONS 

                                                        In most cases if a function is generated by a CORDIC style 

computer, its inverse can be computed. Unless the CORDIC rotator described is usable to 

compute several trigonometric functions directly and others indirectly. Judicious choice of initial 

values and modes permits direct computation of sine, cosine, arctangent, vector magnitude and 

transformations between polar and Cartesian coordinates. 

ARCSINE AND ARCCOSINE: 

                                     The Arcsine can be computed by starting with a unit vector on the 

positive x axis, then rotating it so that its y component is equal to the input argument. The arcsine 

is then the angle subtended to cause the y component of the rotated vector to match the 

argument. The decision function in this case is the result of a comparison between the input 

value and the y component of the rotated vector at each iteration. 

  

                                               xi+1 = xi – yi×  di 2
-i
 

                                               yi+1 = yi + xi×  di 2
-i 

                                                                       zi+1 = zi – di×  tan
-1
(2

-i
) 

                                where 

                                               di = +1 if yi<c, -1 otherwise, and 

                                               c= input argument 
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                                 Rotation produces the following result 

                                               xn = 
22

0 )( cxAn −×  

                                               yn = c 

                                               zn = z0 + arcsin(c/An x0)  

                                               An = ∏ −+
n

i221                            

The arcsine function as stated above returns correct angles for inputs -1<c/Anx0<1, although the 

accuracy suffers as the input approaches ± 1(the error increases rapidly for inputs larger than 

about 0.98).The loss of accuracy is due to the gain of the rotator. For angles near the y axis the 

rotator gain causes the rotated vector to be shorter than the reference input so the decisions are 

made improperly. 

 

3.7EXTENSION TO LINEAR FUNCTIONS: 

                                                A simple modification to the CORDIC equation permits the 

computation of linear functions 

                                               xi+1 = xi – 0×di 2
-i
 = xi 

                                               yi+1 = yi + xi×di 2
-i 

                                                                       zi+1 = zi – di× (2
-i
) 

  For rotation mode (di = -1 if zi<0, +1 otherwise) the linear rotation produces 

                                                  

                                                 xn = x0 

                                                 yn = y0 + x0×z0 

                                                 zn = 0 

This operation is similar to the shift add implementation of a multiplier and as multipliers go is 

not an optimal solution. The multiplication is handy in applications where a CORDIC structure is 

already available. The vectoring mode is more interesting as it provides a method for evaluating 

ratios 

                                                  xn = x0 

                                                  yn = 0 

                                                  zn = z0 – y0/x0 

The rotations in the linear coordinate system have a unity gain, so no scaling corrections are 

required. 

3.EXTENSION TO HYPERBOLIC FUNCTIONS: 
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                                                       The close relationship between the trigonometric an 

hyperbolic functions suggests the same architecture can be used to compute the hyperbolic 

functions. While there is early mention of using the CORDIC structure for hyperbolic coordinate 

transforms [4] the first description of the algorithm is that by Wather[1].The CORDIC equations 

for hyperbolic rotations are derived using the same manipulation as those used to derive the 

rotation in the circular coordinate system. For rotation mode these are 

                                               xi+1 = xi + yi×di×2
-i
 

                                               yi+1 = yi + xi×di×  2
-i 

                                                                       zi+1 = zi – di× tanh
-1
(2

-i
) 

                                 where 

                                               di= -1 if zi<0, +1 otherwise 

                                  Then 

                                               xn = An[x0 cosh zo + y0 sinh z0] 

                                               yn = An[y0 cosh z0 + xo sinh z0] 

                                               zn = 0 

                                               An = ∏ −−
n

i221 = 0.80  

The elemental rotations in the hyperbolic coordinate systems do not converge. However it can be 

shown [1] that convergence is achieved if certain iterations are repeated. 

The hyperbolic equivalents for all the functions discussed for the circular coordinate system can 

be computed in a similar fashion. Additionally as Wather[1] points out, The following functions 

can be derived from the CORDIC functions 

                                                     tanα= sinα/cosα 

                                                     tanhα= sinhα/coshα 

                                                expα = sinhα+ coshα 

                                                     lnα = 2tanh-1[y/x] where x= α+1 and y=α-1 

                                                     2/1)(α =(x
2
 – y

2 2/1) where x= α+1/4 and y= α-1/4 

It is worth noting the similarities between the CORDIC equations for circular, linear and 

hyperbolic systems. The selection of coordinate system can be made by introducing a mode 

variable that takes on values 1, 0 or -1 for circular, linear and hyperbolic systems respectively. 

The unified [1] CORDIC iteration equations are then 

                                                    xi+1 = xi - m×  yi×di×2
-i
 

                                                    yi+1 = yi + xi×di×  2
-i 
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                                                                              zi+1 = zi – di×ei 

where ei is the elementary angle of rotation for iteration i in the selected coordinate system. 

Specifically ei = tan
-1
(2

-i
) for m=1, ei = 2

-i
 for m=0, and ei= tanh

-1
(2

-i
) for m=-1.The unification 

due to Wather permits the design of a general purpose CORDIC processor. There are a number 

of ways to implement a CORDIC processor. The ideal architecture Depends on the speed versus 

area trade offs in the intended application. First we will examine an iterative architecture that is a 

direct translation from the CORDIC equations and then we will look at a minimum hardware 

solution and a maximum performance solution. 
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4.1DISCRETE FOURIER TRANSFORM: 

The sequence of N complex numbers x0, ..., xN−1 is transformed into the sequence of N complex 

numbers X0, ..., XN−1 by the DFT according to the formula: 

                             Xk = ∑
−

=

Π−
1

0

/2
N

n

Nikn

nex             k=0, 1………..N-1 

where e is the base of the natural logarithm, is the imaginary unit (i
2
 = − 1), and π is pi. The 

transform is sometimes denoted by the symbol F, as in X=F(X) or FX 

The inverse discrete Fourier Transform (IDFT) is given by 

                           Xn = 1/N N
iknN

K

keX
Π−

=
∑

21

0

          n=0, 1 …………N-1 

Note that the normalization factor multiplying the DFT and IDFT (here 1 and 1/N) and the signs 

of the exponents are merely conventions, and differ in some treatments. The only requirements 

of these conventions are that the DFT and IDFT have opposite-sign exponents and that the 

product of their normalization factors be 1/N. A normalization of for both the DFT and 

IDFT makes the transforms unitary, which has some theoretical advantages, but it is often more 

practical in numerical computation to perform the scaling all at once as above (and a unit scaling 

can be convenient in other ways).(The convention of a negative sign in the exponent is often 

convenient because it means that Xk is the amplitude of a "positive frequency" 2πk / N.  

DISCRETE COSINE TRANSFORM 
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          A discrete cosine transform (DCT) is a Fourier-related transform similar to the discrete 

Fourier transform (DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly 

twice the length, operating on real data with even symmetry (since the Fourier transform of a real 

and even function is real and even), where in some variants the input and/or output data are 

shifted by half a sample. There are eight standard DCT variants, of which four are common. The 

most common variant of discrete cosine transform is the type-II DCT, which is often called 

simply "the DCT"; its inverse, the type-III DCT, is correspondingly often called simply "the 

inverse DCT" or "the IDCT 

                                             The DCT, and in particular the DCT-II, is often used in signal and 

image processing, especially for lossy data compression, because it has a strong "energy 

compaction" property: most of the signal information tends to be concentrated in a few low-

frequency components of the DCT, approaching the Karhunen-Loève transform (which is 

optimal in the decorrelation sense) for signals based on certain limits of Markov processes 

DCT-II 

               Xk = ])2/1(/cos[
1

0

knNx
N

n

n +Π∑
−

=

              k = 0, 1…………N 

4.2BASIC CORDIC PROCESSOR 

                                                    A basic CORDIC processor should contain function modules 

which realize the CORDIC iterations specified, the angle update iteration specified and the 

scaling equation specified. 

                                                The modules support a single CORDIC iteration. It contains dual 

barrier shifters and dual adders to facilitate the updating of both x (i) and y (i) simultneously.The 

number of bits to be shifted is controlled by the shift sequence[s(m,i)].The shift sequence can be 

stored on chip using ROM (read only memory) or RAM(random access memory),or generated 

on chip with a simple counter and additional control devices. The add/subtract option is 

determined by the sequence {µi}, which is determined by either the sign of z (i) or –x (i).y (i). 
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                                                   The angle updating module performs simple addition operations. 

In many DSP applications, there is no need to compute the rotation angle explicitly. In these 

cases the angle updating module can be eliminated completely. 

                                                   The scaling module can share the same processing unit with the 

CORDIC iteration module. By multiplexing the data paths the, this scaling module is able to 

perform the scaling iterations.  

4.3PARALLEL AND PIPELINED ARRAYS 

                                                                    In a parallel CORDIC processor each of the n stages 

of the CORDIC iterations and s stages of scaling operations is realized with a dedicated basic 

CORDIC processor. By cascading the n+s basic CORDIC processors, we will be able to perform 

the entire CORDIC rotation operations including all the COIRDIC iterations and all the scaling 

operations in one clock cycle. 

                                                                    Let t0 be the time needed for performing a single 

CORDIC iteration or a single scaling iteration. Then the total computational delay will be 

(n+s)t0.Or equivalently, the signal processing throughput rate will be bounded by(1/[(n+s)t0].To 

increase the throughput ,one may choose to insert a latch between successive stages of a 

CORDIC processor and convert it into a pipelined CORDIC processor array. The latch is able to 

store the intermediate result after a CORDIC iteration or a scaling operation. Hence the 

computation of a CORDIC processor is isolated from the computation at the adjacent CORDIC 

processors. As a result these latches can be clocked at a period of time t0 time units which is the 

computational delay between adjacent stages. In other words the throughput rate is now 

increased (n+s) fold to 1/t0.However each individual data will take n+s clock cycles to complete. 

Hence the latency is (n+s)t0 time units. 

4.4ALGORITHM FOR DFT 

                           Initiation (0, k) =0 for0≤  k≤  N-1 

                           For k = 0, 1,…… N-1 Do 

                           For m= 0, 1,…….N-1 Do 
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                             End m-loop 

                             Y(k)=Y(N,k)/K1(n)   /* Scaling operation*/ 

                             End k loop                                                  

Here the sequence X(n) is taken from the left end of the processor array. Each X (n), which 

contains two real numbers xr(n) and xi(n),will be propagated from the current processor to the 

nearest neighbour processor in a pipelined manner. Since X (n) is not to be modified during 

propagation they can be piped at a rate of t0 time unit (1 clock cycle) per stage. Each of the N 

CORDIC processors in this processor array will be responsible for evaluating a particular Y (k). 

This implies that N different rotation angles must be stored in each processor. Since each rotation 

angle requires n bits to store, the total storage requirement, including the s scaling iterations, will 

be nN +s bits. 
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PROGRAM 1  

% MATLAB CODE FOR CORDIC IN VECTOR MODE FOR TANGENT FUNCTIONS 

clear all 

x(1)=1; 

y(1)=1; 

z(1)=0; 

A=1; 

for i=1:25 

    if y(i)<0 

        d(i)=+1; 

    else 

        d(i)=-1; 

    end 

        x(i+1)=x(i)-y(i)*d(i)/2^(i-1); 

    y(i+1)=y(i)+x(i)*d(i)/2^(i-1);  

    z(i+1)=z(i)-d(i)*atan(2^(1-i)); 

    A=A*sqrt(1+2^(2*(1-i))); 

    if y(i+1)==0 

        break; 

    end 

     x(i+2)=x(i+1)/A; 

     y(i+2)=y(i+1)/A; 

end 

for i=1:30 

    plot(x,y,'*',x,y,'b-'); 

end 
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                     FIG  5.1   (SIMULATION RESULTR FOR CORDIC IN VECTOR MODE) 

PROGRAM-2                   

% MATLAB CODE FOR CORDIC IN ROTATION MODE FOR SINE AND COSINE 

FUNCTIONSl 

x(1)=1; 

y(1)=0; 

z(1)=28; 

A=1; 

for i=1:100 

    A=A*sqrt(1+2^(2*(1-i))); 

end 

    x(2)=A* (x(1)*cos(z(1))-y(1)*sin(z(1))); 

    y(2)=A* (y(1)*cos (z(1))+x(1)*sin(z(1))); 

    z(2)=0;  

plot(x,y,'*',x,y,'b-') 

OUTPUT 
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a =1                 0 

a =-1.5852    0.4461 

 

 

   FIG 5.2(SIMULATION RESULT FOR CORDIC IN ROTATION MODE FOR SINE AND  

                                                COSINE FUNCTIONS               

                                                                                                                                                  

PROGRAM 3 

% MATLAB CODE FOR CORDIC IN ROTATION MODE 

clear all 

x(1)=1; 

y(1)=0; 

z(1)=0.5; 

for i=1:25 

if z(i)<0 

       d(i)=-1; 

 else 

        d(i)=1; 

    end     

if i == 4 | 13 | 40 
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      x(i+1)=x(i)+y(i)*d(i)/2^(i); 

      x(i)=x(i)+y(i)*d(i)/2^(i); 

      y(i+1)=y(i)+x(i)*d(i)/2^(i); 

      y(i)=y(i)+x(i)*d(i)/2^(i); 

       z(i+1)=z(i)-d(i)*atanh(2^-i); 

       z(i)=z(i)-d(i)*atanh(2^-i); 

    else 

       x(i+1)=x(i)+y(i)*d(i)/2^(i); 

       y(i+1)=y(i)+x(i)*d(i)/2^(i); 

       z(i+1)=z(i)-d(i)*atanh(2^-i); 

    end 

end 

for i=1:15 

         a=[x(i),y(i)] 

        plot(x,y,'*',x,y,’b-‘) 

end 

 

                         FIG 5.3(SIMULATION RESULT FOR CORDIC IN ROTATIONAL MODE) 
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PROGRAM 4 

MATLAB CODE FOR CORDIC IN FOR HYPERBOLIC FUNCTIONS                                                                                                                          

x(1)=1; 

y(1)=0; 

z(1)=1; 

for i=1:20 

    if z(i)<0 

        d(i)=-1; 

    else 

        d(i)=1; 

    end 

    x(i+1)=x(i)+y(i)*d(i)/2^(i); 

    y(i+1)=y(i)+x(i)*d(i)/2^(i); 

    z(i+1)=z(i)-d(i)*atanh(2^(-i)); 

    if z(i+1)==0.0 

        break; 

    end 

end 

figure   

plot(x,y,'*',x,y,'b-') 

   

                 FIG 5.4(SIMULATION RESULT FOR HYPERBOLIC FUNCTIONS) 

PROGRAM 5  
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MATLAB CODE FOR ROTATING ABOUT THE THREE AXES  

clear all 

%initialization of coordinates x1=1,y1=0,z1=3,xn=0.707,yn=0.707,zn=5; 

x(1)=1; 

y(1)=0; 

z(1)=3; 

u(1)=45; 

v(1)=45; 

A1=1; 

A2=1; 

% applying cordic equations in rotational mode 

for i=1:20 

    if u(i)<0 

        d(i)=-1; 

    else 

        d(i)=1; 

    end 

    A1=A1*sqrt(1+2^(2*(1-i))); 

    x(i+1)=x(i)-y(i)*d(i)/2^(i-1);  

    y(i+1)=y(i)+x(i)*d(i)/2^(i-1); 

    z(i+1)=z(i); 

    u(i+1)=u(i)-d(i)*atan(2^(1-i)); 

end 

%  scaling operation starts 

x(22)=x(21)/A1; 

y(22)=y(21)/A1; 

z(22)=3; 

% scaling operation ends 

for i=22:40 

    j=i-21; 

    if v(j)<0 

        d(i)=-1; 

    else 



 34 

        d(i)=1; 

    end 

    A2=A2*sqrt(1+2^(2*(1-j))); 

    y(i+1)=y(i)+z(i)*d(i)/2^(1-j); 

    z(i+1)=z(i)-y(i)*d(i)/2^(1-j); 

    x(i+1)=x(i); 

    v(j+1)=v(j)-d(i)*atan(2^(1-j)); 

end 

    y(42)=y(41)/A2; 

    z(42)=z(41)/A2; 

    x(42)=x(41); 

figure 

plot3(x,y,z,'*',x,y,z,'b-') 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

grid on;  

figure 

subplot(1,2,1) 

plot3(x(1),y(1),z(1),'*',x(1),y(1),z(1),'b-') 

grid on;  

subplot(1,2,2) 

plot3(x(42),y(42),z(42),'*',x(42),y(42),z(42),'b-') 

grid on; 
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           FIG 5.5(SIMULATION RESULT FOR ROTATING ABOUT THREE AXES) 

 

PROGRAM 6       

MATLAB CODE FOR ROTATING ABOUT THREE AXES 

clear all 

x(1)=3; 

y(1)=1; 

z(1)=3; 

u(1)=56;  %ATAND(YN/XN)-ATAND(Y1/X1) 

v(1)=30;  %ATAND(SQRT(XN^2+YN^2)/ZN)-ATAND(SQRT(X1^2+Y1^2)/Z1) 

A=1; 

for i=1:20 

    if u(i)<0 
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        d(i)=-1; 

    else 

        d(i)=1; 

    end 

    A=A*sqrt(1+2^(2*(1-i)));  

    x(i+1)=x(i)-y(i)*d(i)/2^(i-1); 

    y(i+1)=y(i)+x(i)*d(i)/2^(i-1);        %CORDIC EQUATIONS FOR VECTOR ROTATING 

AROUND Z AXIS 

    z(i+1)=z(i); 

    u(i+1)=u(i)-d(i)*atan(2^(1-i)); 

end 

  i=i+2; 

 x(22)=x(21)/A; 

 y(22)=y(21)/A;                %SCALING OPERATION 

 z(22)=3; 

 B=1; 

for j=1:22 

    if v(j)<0 

        e(j)=-1; 

    else 

        e(j)=1; 

    end 

    B=B*sqrt(1+2^(2*(1-j))); 

    x(j+i)=x(j+i-1); 

    y(j+i)=y(j+i-1)+z(j+i-1)*e(j)/2^(j-1);      %CORDIC EQUATIONS FOR VECTOR  

ROTATING AROUND X AXIS 

    z(i+j)=z(j+i-1)-y(j+i-1)*e(j)/2^(j-1); 

    v(j+1)=v(j)-e(j)*atan(2^(1-j)); 

end 

z(45)=z(44)/B; 

y(45)=y(44)/B;              %SCALING OPERATION 

x(45)=x(44); 

figure 
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plot3(x,y,z,'*',x,y,z,'b-') 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

grid on; 

figure 

subplot(1,2,1); 

plot3(x(1),y(1),z(1),'*',x(1),y(1),z(1),'b-') 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

grid on; 

subplot(1,2,2);  

plot3(x(45),y(45),z(45),'*',x(45),y(45),z(45),'b-') 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

grid on; 
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    FIG 5.6(SIMULATION RESULT FOR ROTATING ABOUT THREE AXES) 

 

PROGRAM 7 

 MATLAB PROGRAM FOR COMPUTING  2_DIMENSIONAL DCT  

clc 

clear all 

close all 

if (input(' WANT  TO ENTER MATRIX FROM COMMAND LINE(1 for Y/2 for N)   ')==1); 

   x= input('ENTER THE ORDER OF THE MATRIX') 

   disp('enter the elements of the matrix') 

   for i=1:x 

       for j=1:x 

       A(i,j)=input(' '); 

       end 

   end 

else 

    x= input('ENTER THE ORDER OF THE MATRIX') 

     A=rand(x);     

end 

disp('input matrix ') 

B=A 

for i=1:x                             % implementation of 1-D DCT row wise 
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 A(1,i)=B(1,i)+B(4,i); 

 A(2,i)=B(2,i)+B(3,i); 

 A(3,i)=B(1,i)-B(4,i); 

 A(4,i)=B(3,i)-B(2,i); 

end 

B=A; 

for i=1:x 

    [A(3,i),A(1,i)]=cordicdct(B(1,i),B(2,i),45); 

    [A(2,i),A(4,i)]=cordicdct(B(3,i),B(4,i),22.5); 

end 

disp('matrix after applying 1-D DCT column wise') 

B=A 

for i=1:x                      % implementation of 1-D DCT row wise 

    A(i,1)=B(i,1)+B(i,4); 

    A(i,2)=B(i,2)+B(i,3); 

    A(i,3)=B(i,1)-B(i,4); 

    A(i,4)=B(i,3)-B(i,2); 

end 

B=A; 

for i=1:x 

    [A(i,3),A(i,1)]=cordicdct(B(i,1),B(i,2),45); 

    [A(i,2),A(i,4)]=cordicdct(B(i,3),B(i,4),22.5); 

end 

disp('matrix after applying 1-D DCT ROW wise') 

A 

function [p,q]= cordicdct(a,b,theta) 

x(1)=a; 

y(1)=b; 

z(1)=theta; 

A=1; 

for i=1:25 

    if z(i)<0 

        d(i)=-1; 



 40 

    else 

        d(i)=1; 

    end 

    x(i+1)=x(i)-y(i)*d(i)/2^(i-1); 

    y(i+1)=y(i)+x(i)*d(i)/2^(i-1); 

    z(i+1)=z(i)-d(i)*atand(2^(1-i)); 

     A=A*sqrt(1+2^(2*(1-i))); 

end 

x(27)=x(26)/A; 

y(27)=y(26)/A; 

p=x(27); 

q=y(27); 

input matrix  

B = 

     1     2     3     4 

     2     3     4     1 

     3     4     1     2 

     4     1     2     3 

Matrix after applying 1-D DCT column wise 

B = 

    7.0711    7.0711    7.0711    7.0711 

   -3.1543    0.5412    2.0719    0.5412 

    0.0000   -2.8284    0.0000    2.8284 

   -0.2242    1.3066   -2.3890    1.3066 

Matrix after applying 1-D DCT ROW wise 

A = 

   20.0000    0.0000    0.0000   -0.0000 

    0.0000   -4.0000   -3.6955    0.0000 

    0.0000   -3.6955    4.0000    1.5307 

   -0.0000    0.0000    1.5307   -4.0000 

clc 

clear all 

close all 
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if (input(' WANT  TO ENTER MATRIX FROM COMMAND LINE(1 for Y/2 for N)   ')==1); 

   x= input('ENTER THE ORDER OF THE MATRIX') 

   disp('enter the elements of the matrix') 

   for i=1:x 

       for j=1:x 

       A(i,j)=input(' '); 

       end 

   end 

else 

    x= input('ENTER THE ORDER OF THE MATRIX') 

     A=rand(x);     

end 

disp('matrix after applying 1-D DCT column wise') 

B=dct(A) 

C=B'; 

disp('matrix after applying 1-D DCT row wise') 

A=dct(C); 

A=A' 

Matrix after applying 1-D DCT column wise 

B = 

    5.0000    5.0000    5.0000    5.0000 

   -2.2304    0.3827    1.4651    0.3827 

     0            -2.0000   0             2.0000 

   -0.1585    0.9239   -1.6892    0.9239 

Matrix after applying 1-D DCT row wise 

A =  10.0000     0         0         0 

         0        -2.0000   -1.8478    0.0000 

         0        -1.8478    2.0000    0.7654 

         0.0000   -0.0000    0.7654   -2.0000 

CONCLUSION 

 

The CORDIC algorithms presented in this project are well known in the research and super 

computing circles. The trigonometric CORDIC algorithms were originally developed as a digital 



 42 

solution for real time navigation problems. The original work is credited to Jack Volder .The 

CORDIC algorithm has found its way into diverse applications including the 8087 math 

coprocessor, the HP-35 calculator, radar signal processors and robotics.CORDIC rotation has 

also been proposed for computing Discrete Fourier[4],Discrete Cosine[4],Singular Value 

Decomposition[5],and solving linear systems[1]. 

 Here the basic CORDIC algorithm and a partial list of potential applications s of a CORDIC 

based processor array to digital signal processing is presented. The CORDIC based DCT 

architecture for low power design has been proposed. The proposed multiplier less CORDIC 

based DCT architecture produces high throughput and is easy to implementing VLSI. The 

proposed architecture reduced the input data range for the CORDIC processor by split and the no 

of compensation iterations in CORDIC based DCT computation by utilizing that most images 

have similar neighboring pixels. The project also shows that a tool is available for use in FPGA 

based computing machines, which are the likely basis for the next generation DSP systems. Its 

basis of application in DSP has been thoroughly investigated. 

                             The day is not far away when many of the software algorithms will be replaced 

by the hardware efficient algorithms paving way for reduced complexity and faster operation.   
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