
 1

CORDIC ALGORITHM

AND

ITS APPLICATIONS IN DSP

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

in

Electrical Engineering

By

SAMBIT KUMAR DASH
JASOBANTA SAHOO

SUNITA PATEL

 Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

CORDIC ALGORITHM

AND

ITS APPLICATIONS IN DSP

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
in

Electrical Engineering

By

SAMBIT KUMAR DASH
JASOBANTA SAHOO

SUNITA PATEL

Under the Guidance of

Prof. S. Mohanty

 Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

 3

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled,”CORDIC Algorithm and it’s

applications in DSP” submitted by Sri Sambit Kumar Dash, Sri Jasobanta Sahoo, Sunita

Patel in partial fulfillment of the requirements for the award of Bachelor of Technology Degree

in Electrical Engineering at the National Institute of Technology, Rourkela (Deemed University)

is an authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not

been submitted to any other University/Institute for the award of any Degree or Diploma.

Date : 02/05/07 Prof. S. Mohanty

Place: Rourkela Dept. of Electrical Engg.

 National Institute of technology

 Rourkela-769008

 4

ACKNOWLEDGEMENT

I would like to articulate my deep gratitude to my project guide Prof. S. Mohanty who has

always been my motivation for carrying out the project.

I wish to extend my sincere thanks to Prof. P. K. Nanda, Head of our Department, for

allowing us to use the facilities of the “Computing and Simulation Lab”

It is my pleasure to refer Microsoft Word exclusive of which the compilation of this report

would have been impossible. Also it would not have been possible to complete the project

without the simulation software”MATLAB”

A project of this nature could never have been attempted with our reference to and

inspiration from the works of others whose details are mentioned in references section. I

acknowledge my indebtedness to all of them. Last but not the least, my sincere thanks to all

of my friends who have patiently extended all sorts of help for accomplishing this

undertaking.

 SAMBIT KUMAR DASH

 JASOBANTA SAHOO

 SUNITA PATEL

 5

CONTENTS

 Certificate i

 Acknowledgement ii

 Contents iii

 Abstract iv-v

1. Introduction 1-2

 1.1 Background

 1.2 Objective

2. CORDIC Algorithm & its Various Modes 3-7

 2.1 Rotation Mode

 2.2 Vectoring Mode

3. CORDIC Algorithm & its Applications 8-14

 3.1 Sine & Cosine

 3.2 Polar to Rectangular Transformation

 3.3 General Vector Rotation

 3.4 Cartesian To Polar Transformation

 3.5 Inverse CORDIC functions

 3.6 Linear & Hyperbolic functions

4. CORDIC Algorithm in DFT & DCT 15-19

 4.1 DFT &DCT

 4.2 Basic CORDIC Processor

 4.3 Parallel & Pipelined arrays

 4.4 Algorithm for DFT

5 Simulation Using MATLAB 20-34

6. Conclusion 35

7. References 36

 6

ABSTRACT

OBJECTIVE:

 The digital signal processing landscape has long been dominated by the

microprocessors with enhancements such as single cycle multiply-accumulate instructions and

special addressing modes. While these processors are low cost and offer extreme flexibility, they

are often not fast enough for truly demanding DSP tasks. The advent of reconfigurable logic

computers permits the higher speeds of dedicated hardware solutions at costs that are

competitive with the traditional software approach. Unfortunately algorithms optimized for these

microprocessors based systems do not map well into hardware. While hardware efficient

solutions often exist, the dominance of the software systems has kept these solutions out of the

spotlight. Among these hardware-efficient algorithms is a class of iterative solutions for

trigonometric and other transcendental functions that use only shifts and adds to perform. The

trigonometric functions are based on vector rotations, while other functions such as square root

are implemented using an incremental expression of the desired function. The trigonometric

algorithm is called CORDIC an acronym for Coordinate Rotation Digital Computer. The

incremental functions are performed with a very simple extension to the hardware architecture

and while not CORDIC in the strict sense, are often included because of the close similarity. The

CORDIC algorithms generally produce one additional bit of accuracy for each iteration.

DESCRIPTION:

 A detailed study on various modes of CORDIC algorithm is done. First of all a

study is made how the CORDIC algorithm is derived from the general vector equation. Then a

study is done regarding the various modes of the CORDIC algorithm and how it can be used to

find the sine, cosine, tan and logarithm functions, its use in conversion of coordinate systems. An

attempt is made to carry out a rigorous study of its use in DSP oriented applications AND how it

has revolutionized the DSP scenario. Finally simulations are carried out using MATLAB to

support the purpose of our study.

RESULTS

 The results clearly bring out the advantage of using CORDIC algorithm. First of all

the sine and cosine of any angle could be found out easily. Similar is the case of logarithm and

hyperbolic functions. The simulation results prove the fact that the hardware complexity gets

reduced by using the CORDIC algorithm. A large no of plots were obtained for different

 7

functions. Finally the implementation in DCT was carried out and the results obtained were in

line with those of the theoretical values.

 CONCLUSION

 The CORDIC algorithms presented in this paper are well known in the research

and super computing circles. Here the basic CORDIC algorithm and a partial list of potential

applications of potential applications of a CORDIC based processor array to digital signal

processing is presented. The CORDIC based DCT architecture for low power design has been

proposed. The proposed multiplierless CORDIC based DCT architecture produces high

throughput and is easy to implementing VLSI. The proposed architecture reduced the input data

range for the CORDIC processor by split and the no of compensation iterations in CORDIC

based DCT computation by utilizing that most images have similar neighboring pixels. The

project also shows that a tool is available for use in FPGA based computing machines, which are

the likely basis for the next generation DSP systems.

 8

 Chapter 1

 INTRODUCTION

 Background

 Objective

 9

1.1 BACKGROUND

The digital signal processing landscape has long been dominated by the microprocessors with

enhancements such as single cycle multiply-accumulate instructions and special addressing

modes. While these processors are low cost and offer extreme flexibility, they are often not fast

enough for truly demanding DSP tasks. The advent of reconfigurable logic computers permits

the higher speeds of dedicated hardware solutions at costs that are competitive with the

traditional software approach. Unfortunately algorithms optimized for these microprocessors

based systems do not map well into hardware. While hardware efficient solutions often exist, the

dominance of the software systems has kept these solutions out of the spotlight. Among these

hardware-efficient algorithms is a class of iterative solutions for trigonometric and other

transcendental functions that use only shifts and adds to perform. The trigonometric functions are

based on vector rotations, while other functions such as square root are implemented using an

incremental expression of the desired function. The trigonometric algorithm is called CORDIC

an acronym for Coordinate Rotation Digital Computer. The incremental functions are performed

with a very simple extension to the hardware architecture and while not CORDIC in the strict

sense, are often included because of the close similarity. The CORDIC algorithms generally

produce one additional bit of accuracy for each iteration.

 The trigonometric CORDIC algorithms were originally developed as

a digital solution for real time navigation problems. The original work is credited to Jack Volder

.The CORDIC algorithm has found its way into diverse applications including the 8087 math

coprocessor, the HP-35 calculator, radar signal processors and robotics.CORDIC rotation has

also been proposed for computing Discrete Fourier[4],Discrete Cosine[4],Singular Value

Decomposition[5],and solving linear systems[1].

 1.2 OBJECTIVE

 The project attempts to survey the existing CORDIC and CORDIC-like algorithms

with an eye towards its implementation. First a brief description of the theory behind the

algorithm and the derivation of several functions are presented. Then the theory is extended to

the so called unified CORDIC algorithms.

 10

 Chapter 2

 CORDIC ALGORITHM

 AND

 IT’S VARIOUS MODES

CORDIC THEORY: AN ALGORITHM FOR VECTOR ROTATION

 11

 All of the trigonometric functions can be computed or derived

from functions using vector rotations, as will be discussed in the following sections. Vector

rotation can also be used from polar to rectangular and rectangular to polar conversions, for

vector magnitude, and as a building block in certain transforms such as DFT and DCT.The

CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary

angles using only shifts and adds. The algorithm credited to Volder [4] is derived from the

general rotation transform

 x’= x cosØ - y sinØ

 y’= y cosØ +x sinØ

this rotates a vector in a Cartesian plane by the angle Ø.

 FIG 2.1: Rotation of a vector V by angle ø

 These can be rearranged so that

 x’= cosØ*[x- y tanØ]

 y’= cosØ*[y +x tanØ]

So far nothing is simplified. However if the rotation angles are restricted so that

tan(Ø)= i−± 2 ,the multiplication by the tangent term is reduced to simple shift operation.Arbitary

angles of rotation are obtainable by performing a series of successively smaller elementary

operations. If the decision at each iteration i ,is which direction to rotate rather than whether or

not to rotate, then the cos(δi) term becomes a constant because cos(δi)= cos(-δi).The iterative

rotation can now be expressed as:

 x i+1=Ki [xi – yi ×d i ×2
–i
]

 12

 y i+1=Ki [yi + xi×di×2
-i
]

 where:

 Ki = cos(tan
-1
2
-i
) = 1/ i221 −+

 di= 1±

Removing the scale constant from the iterative equations yields a shift add algorithm for vector

rotation. The product of the Ki’s can be applied elsewhere in the system or treated as apart of the

system processing gain. The product approaches 0.6073 as the number of iteration goes to

infinity. Therefore the rotation algorithm has a gain An of approximately 1.647.The exact gain

depends on the no of iterations and obeys the relation

 An = ∏ −+
n

i221

The angle of a composite rotation is uniquely defined by the sequence of the directions of the

elementary rotations. That sequence can be represented by a decision vector. The set of all

possible decision vectors is an angular measurement system based on binary arctangents.

Conversions between the angular systems and any other can be accomplished using a look up. A

better conversion method uses an additional adder-subtract or that accumulate the elementary

rotation angles at each iteration. The elementary angles can be expressed in any convenient

angular unit. Those angular values are supplied by a small look up table or are hardwired

depending on the application. The angle accumulator adds a third difference equation to the

CORDIC algorithm:

 z i+1= zi – di× tan
-1
(2

–i
)

Obviously, in cases where the angle is useful in the arc tangent base, this extra element is not

needed.

The CORDIC rotator is normally operated in one of two mode3s.The first called rotation by

Volder[4]rotates the input vector by a specified angle. The second mode called vectoring rotates

the input vector to the x axis while recording the angle required to make that rotation.

2.1ROTATION MODE:

 In rotation mode, the angle accumulator is initialized with the desired

rotation angle. The rotation decision at each iteration is made to diminish the magnitude of the

residual angle in the angle accumulator. The decision at each iteration is therefore based on the

 13

sign of the residual angle after each step.Naturally, if the input angle is already expressed in the

binary arctangent base, the angle accumulator may be eliminated. For rotation mode, the

CORDIC equations are:

 x i+1 =xi – yi×di× 2
-i

 y i+1 = yi + xi× di×2
-i

 z i+1 = zi – di× tan
-1
(2

–i
)

 where

 di = -1 if zi<0,+1 otherwise

 which provides the following result

 xn = An[x0 cosz0 – yo sin z0]

 yn = An[yo cosz0 + x0 sinz0]

 zn = 0

 An = ∏ −+
n

i221

2.2CORDIC ROTATION IN VECTORING MODE:

 In the vectoring mode the CORDIC vector

rotates the input vector through whatever angle is necessary to align the result vector with the x

axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the

original vector (the x component of the result. The vectoring function works by seeking to

minimize the y component of the residual vector at each rotation. The sign of the residual y

component is used to determine which direction is to rotate next. If the angle accumulator is

initialized with zero, it will contain the traversed angle at the end of the iterations. In vectoring

mode the CORDIC equations are:

 x i+1 = xi – yi× di× 2
-i

 y i+1 = yi + xi× di× 2
–i

 z i+1 = zi – di× tan
-1
(2

–i
)

 where

 di= +1 if yi<0,-1 otherwise

 Then:

 xn = An× 2

0

2

0 yx +

 yn = 0

 zn = z0 + tan
-1
(yo/x0)

 14

 An = ∏ −+
n

i221

The CORDIC rotation and vectoring algorithms as stated are limited to rotation angles between -

900and 900. For composite rotations larger than 900 an additional rotation is required.

This gives the correction iteration:

 x’= -d×y

 y’ = d×x

 z’ = z + d× ∏ /2

 where

 d=+1 if y<0,-1 otherwise

There is no growth for this initial rotation. Alternatively an initial rotation of either ∏ or 0 can

be made avoiding the reassignment of the x and y components to the rotator elements. Again

there is no growth due to the initial rotation

 x’=d×x

 y’= d×y

 z’=z if d = 1, or z =∏ if d = -1

 d= -1 if x<0,+1 otherwise

 FIG 2.2: Iterative vector rotation, initialized with V0

 15

 Chapter 3

 16

 CORDIC ALGORITHM

 AND

 IT’S APPLICATIONS

3.1SINE AND COSINE:

 The rotational mode CORDIC operation can simultaneously compute the sine

and cosine of the input angle. Setting the y component of the input vector to zero reduces the

rotation mode results to

 xn = An×x0 cos z0

 yn = An×x0 sin z0

By setting xo equal to 1/An rotation produces the unscaled sine and cosine of the angle argument

z0.Very often the sine and cosine values modulate a magnitude value. Using other techniques

requires a no of multipliers to obtain the modulation. The CORDIC technique performs the

multiply as part of the rotation operation and therefore eliminates the need for a pair of explicit

multipliers. The output of the CORDIC rotator is scaled by the rotator gain. If the gain is not

acceptable, a single multiply by the reciprocal of the gain constant placed before the CORDIC

rotator will yield the unscaled results. It is worth noting that the hardware complexity of the

CORDIC rotator is approximately equivalent to that of a single multiplier with the same word

size.

 17

EXAMPLE:

 To find the sine of 28.027
0

 Ø=00

 cos(ø)=1 X=1

 sin(ø)=1 Y=0

 Rotate from 0
0
 to 45

0
(ø21 = 45

0
)

 X’= X-Y/1 = 1-0/1 = 1

 Y’= X/1+Y = 1/1+0 = 1

 Rotate from 450 to 18.4350(ø32 = -26.565
0
).Because this is a negative angle, and

because the tangent function is odd, we change the sign of the numbers that get shifted.

 X’ = X + Y/2 = 1+1/2 = 1.5

 Y’ = -X/2 + Y= -1/2+1=0.5

 The aggregate constant is not affected because it is a product of cosines, and the

cosine function is even.

 Rotate from 18.435
0
 to 32.4710(ø43=14.036

0
)

 X’=X-Y/4=1.5-0.5/4=1.375

 Y’= X/4+Y=1.5/4+0.5=0.875

 Rotate from 32.471
0
 to 25.346

0
(ø54= -7.125

0
)

 X’=X+Y/8=1.375+0.875/8=1.484375

 Y’= -X/8+Y= -1.375/8+0.875=0.703125

 Rotate from 25.346
0
 to 28.922

0
(ø65 = 3.576

0
)

 X’= X-Y/16= 1.484375-0.703125/16=1.440429

 Y’= X/16+Y=1.484375/16+0.703125=0.795898

 Rotate from 28.922
0
to 27.132

0
(ø76 = -1.790

0
)

 X’= X+Y/32=1.440429+0.795898/32 = 1.465300

 Y’ = -X/32+Y = -1.440429/32+0.795898=0.750884

 Rotate from 27.1320 to 28.0270(ø87 = 0.8950)

 X’= X-Y/64=1.465300-0.750884/64=1.453567

 Y’= X/64+Y=1.456300/64+0.750884=0.773779

 After that we have to just multiply by the aggregate constant

 sin(28.027
0
)=0.607253*Y=0.46988

 cos(28.027
0
)=0.607253*X=0.88268

 18

3.1 POLAR TO RECTANGULAR TRANSFORMATION:

 A logical extension to sine and cosine

computer is a polar to Cartesian coordinate transformer. The transformation from polar to

Cartesian space is defined by .

 x=rcosθ

 y =rsinθ

As pointed out above, the multiplication by the magnitude comes for free using the CORDIC

rotator. The transformation is accomplished by selecting the rotation mode with x0=polar phase

and y0=0.The vector result represents the polar input transformed to Cartesian space. The

transform has a gain equal to the rotator gain, which needs to be accounted somewhere in the

system. If the gain is unacceptable the polar magnitude may be multiplied by the reciprocal of

the rotator gain before it is presented to the CORDIC rotator.

3.2GENERAL VECTOR ROTATION:

 The rotation mode CORDIC rotator is also useful for

performing general vector rotations, as are often encountered in motion correction and control

systems. For general rotation, the 2 dimensional input vector is presented to the rotator inputs.

The rotator rotates the vector through the desired angle. The output is scaled by the CORDIC

rotator gain, which must be accounted for elsewhere in the system. If the scaling is unacceptable,

a pair of constant multipliers is required to compensate the gain.

3.3ARCTANGENT:

 The arctangent, θ=Atan(y/x) is directly computed using the vectoring mode

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be

provided as a ratio expressed as a vector(x,y).Since the arctangent result is taken from the angle

accumulator the CORDIC rotator growth does not affect the result.

 zn = z0 +tan
-1
(y0/x0)

The vectoring mode CORDIC rotator produces the magnitude of the input vector as a byproduct

of computing the arctangent. After the vectoring mode rotation the vector is aligned with the x

axis. The magnitude of the vector is therefore the same as the x component of the rotated vector.

This result is apparent in the result equations for the vector mode rotator:

 19

 xn = An
2

0

2

0 yx +

The magnitude result is scaled by the processor gain which needs to be accounted for elsewhere

in the system. The CORDIC implementation represents a significant hardware savings over an

equivalent Pythagoras processor. The accuracy of the magnitude result improves by 2 bits for

each iteration performed.

3.4CARTESIAN TO POLAR TRANSFORMATION:

 The Cartesian to polar transformation consists

of finding the magnitude(r=sqrt(x2+y2)) and phase angle (ø=atan[y/x]) of the input

vector(x,y).The reader will immediately recognize that both functions are provided

simulnteously by the vectoring mode CORDIC rotator. The magnitude of the result will be

sealed by the CORDIC rotator gain and should be accounted for elsewhere in the system. If the

gain is unacceptable, it can be corrected by multiplying the resultant magnitude by the reciprocal

of the gain constant.

3.5INVERSE CORDIC FUNCTIONS

 In most cases if a function is generated by a CORDIC style

computer, its inverse can be computed. Unless the CORDIC rotator described is usable to

compute several trigonometric functions directly and others indirectly. Judicious choice of initial

values and modes permits direct computation of sine, cosine, arctangent, vector magnitude and

transformations between polar and Cartesian coordinates.

ARCSINE AND ARCCOSINE:

 The Arcsine can be computed by starting with a unit vector on the

positive x axis, then rotating it so that its y component is equal to the input argument. The arcsine

is then the angle subtended to cause the y component of the rotated vector to match the

argument. The decision function in this case is the result of a comparison between the input

value and the y component of the rotated vector at each iteration.

 xi+1 = xi – yi× di 2
-i

 yi+1 = yi + xi× di 2
-i

 zi+1 = zi – di× tan
-1
(2

-i
)

 where

 di = +1 if yi<c, -1 otherwise, and

 c= input argument

 20

 Rotation produces the following result

 xn =
22

0)(cxAn −×

 yn = c

 zn = z0 + arcsin(c/An x0)

 An = ∏ −+
n

i221

The arcsine function as stated above returns correct angles for inputs -1<c/Anx0<1, although the

accuracy suffers as the input approaches ± 1(the error increases rapidly for inputs larger than

about 0.98).The loss of accuracy is due to the gain of the rotator. For angles near the y axis the

rotator gain causes the rotated vector to be shorter than the reference input so the decisions are

made improperly.

3.7EXTENSION TO LINEAR FUNCTIONS:

 A simple modification to the CORDIC equation permits the

computation of linear functions

 xi+1 = xi – 0×di 2
-i
 = xi

 yi+1 = yi + xi×di 2
-i

 zi+1 = zi – di× (2
-i
)

 For rotation mode (di = -1 if zi<0, +1 otherwise) the linear rotation produces

 xn = x0

 yn = y0 + x0×z0

 zn = 0

This operation is similar to the shift add implementation of a multiplier and as multipliers go is

not an optimal solution. The multiplication is handy in applications where a CORDIC structure is

already available. The vectoring mode is more interesting as it provides a method for evaluating

ratios

 xn = x0

 yn = 0

 zn = z0 – y0/x0

The rotations in the linear coordinate system have a unity gain, so no scaling corrections are

required.

3.EXTENSION TO HYPERBOLIC FUNCTIONS:

 21

 The close relationship between the trigonometric an

hyperbolic functions suggests the same architecture can be used to compute the hyperbolic

functions. While there is early mention of using the CORDIC structure for hyperbolic coordinate

transforms [4] the first description of the algorithm is that by Wather[1].The CORDIC equations

for hyperbolic rotations are derived using the same manipulation as those used to derive the

rotation in the circular coordinate system. For rotation mode these are

 xi+1 = xi + yi×di×2
-i

 yi+1 = yi + xi×di× 2
-i

 zi+1 = zi – di× tanh
-1
(2

-i
)

 where

 di= -1 if zi<0, +1 otherwise

 Then

 xn = An[x0 cosh zo + y0 sinh z0]

 yn = An[y0 cosh z0 + xo sinh z0]

 zn = 0

 An = ∏ −−
n

i221 = 0.80

The elemental rotations in the hyperbolic coordinate systems do not converge. However it can be

shown [1] that convergence is achieved if certain iterations are repeated.

The hyperbolic equivalents for all the functions discussed for the circular coordinate system can

be computed in a similar fashion. Additionally as Wather[1] points out, The following functions

can be derived from the CORDIC functions

 tanα= sinα/cosα

 tanhα= sinhα/coshα

 expα = sinhα+ coshα

 lnα = 2tanh-1[y/x] where x= α+1 and y=α-1

 2/1)(α =(x
2
 – y

2 2/1) where x= α+1/4 and y= α-1/4

It is worth noting the similarities between the CORDIC equations for circular, linear and

hyperbolic systems. The selection of coordinate system can be made by introducing a mode

variable that takes on values 1, 0 or -1 for circular, linear and hyperbolic systems respectively.

The unified [1] CORDIC iteration equations are then

 xi+1 = xi - m× yi×di×2
-i

 yi+1 = yi + xi×di× 2
-i

 22

 zi+1 = zi – di×ei

where ei is the elementary angle of rotation for iteration i in the selected coordinate system.

Specifically ei = tan
-1
(2

-i
) for m=1, ei = 2

-i
 for m=0, and ei= tanh

-1
(2

-i
) for m=-1.The unification

due to Wather permits the design of a general purpose CORDIC processor. There are a number

of ways to implement a CORDIC processor. The ideal architecture Depends on the speed versus

area trade offs in the intended application. First we will examine an iterative architecture that is a

direct translation from the CORDIC equations and then we will look at a minimum hardware

solution and a maximum performance solution.

 Chapter 4

 CORDIC ALGORITHM

 IN

 DFT & DCT

 23

4.1DISCRETE FOURIER TRANSFORM:

The sequence of N complex numbers x0, ..., xN−1 is transformed into the sequence of N complex

numbers X0, ..., XN−1 by the DFT according to the formula:

 Xk = ∑
−

=

Π−
1

0

/2
N

n

Nikn

nex k=0, 1………..N-1

where e is the base of the natural logarithm, is the imaginary unit (i
2
 = − 1), and π is pi. The

transform is sometimes denoted by the symbol F, as in X=F(X) or FX

The inverse discrete Fourier Transform (IDFT) is given by

 Xn = 1/N N
iknN

K

keX
Π−

=
∑

21

0

 n=0, 1 …………N-1

Note that the normalization factor multiplying the DFT and IDFT (here 1 and 1/N) and the signs

of the exponents are merely conventions, and differ in some treatments. The only requirements

of these conventions are that the DFT and IDFT have opposite-sign exponents and that the

product of their normalization factors be 1/N. A normalization of for both the DFT and

IDFT makes the transforms unitary, which has some theoretical advantages, but it is often more

practical in numerical computation to perform the scaling all at once as above (and a unit scaling

can be convenient in other ways).(The convention of a negative sign in the exponent is often

convenient because it means that Xk is the amplitude of a "positive frequency" 2πk / N.

DISCRETE COSINE TRANSFORM

 24

 A discrete cosine transform (DCT) is a Fourier-related transform similar to the discrete

Fourier transform (DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly

twice the length, operating on real data with even symmetry (since the Fourier transform of a real

and even function is real and even), where in some variants the input and/or output data are

shifted by half a sample. There are eight standard DCT variants, of which four are common. The

most common variant of discrete cosine transform is the type-II DCT, which is often called

simply "the DCT"; its inverse, the type-III DCT, is correspondingly often called simply "the

inverse DCT" or "the IDCT

 The DCT, and in particular the DCT-II, is often used in signal and

image processing, especially for lossy data compression, because it has a strong "energy

compaction" property: most of the signal information tends to be concentrated in a few low-

frequency components of the DCT, approaching the Karhunen-Loève transform (which is

optimal in the decorrelation sense) for signals based on certain limits of Markov processes

DCT-II

 Xk =])2/1(/cos[
1

0

knNx
N

n

n +Π∑
−

=

 k = 0, 1…………N

4.2BASIC CORDIC PROCESSOR

 A basic CORDIC processor should contain function modules

which realize the CORDIC iterations specified, the angle update iteration specified and the

scaling equation specified.

 The modules support a single CORDIC iteration. It contains dual

barrier shifters and dual adders to facilitate the updating of both x (i) and y (i) simultneously.The

number of bits to be shifted is controlled by the shift sequence[s(m,i)].The shift sequence can be

stored on chip using ROM (read only memory) or RAM(random access memory),or generated

on chip with a simple counter and additional control devices. The add/subtract option is

determined by the sequence {µi}, which is determined by either the sign of z (i) or –x (i).y (i).

 25

 The angle updating module performs simple addition operations.

In many DSP applications, there is no need to compute the rotation angle explicitly. In these

cases the angle updating module can be eliminated completely.

 The scaling module can share the same processing unit with the

CORDIC iteration module. By multiplexing the data paths the, this scaling module is able to

perform the scaling iterations.

4.3PARALLEL AND PIPELINED ARRAYS

 In a parallel CORDIC processor each of the n stages

of the CORDIC iterations and s stages of scaling operations is realized with a dedicated basic

CORDIC processor. By cascading the n+s basic CORDIC processors, we will be able to perform

the entire CORDIC rotation operations including all the COIRDIC iterations and all the scaling

operations in one clock cycle.

 Let t0 be the time needed for performing a single

CORDIC iteration or a single scaling iteration. Then the total computational delay will be

(n+s)t0.Or equivalently, the signal processing throughput rate will be bounded by(1/[(n+s)t0].To

increase the throughput ,one may choose to insert a latch between successive stages of a

CORDIC processor and convert it into a pipelined CORDIC processor array. The latch is able to

store the intermediate result after a CORDIC iteration or a scaling operation. Hence the

computation of a CORDIC processor is isolated from the computation at the adjacent CORDIC

processors. As a result these latches can be clocked at a period of time t0 time units which is the

computational delay between adjacent stages. In other words the throughput rate is now

increased (n+s) fold to 1/t0.However each individual data will take n+s clock cycles to complete.

Hence the latency is (n+s)t0 time units.

4.4ALGORITHM FOR DFT

 Initiation (0, k) =0 for0≤ k≤ N-1

 For k = 0, 1,…… N-1 Do

 For m= 0, 1,…….N-1 Do

 26

+

+

),1(

),1(

kmY

kmY

i

r

=K1(n)

Π+Π

Π−Π

NmkNmk

NmkNmk

/2cos/2sin

/2sin/2cos

)(

)(

mx

mx

i

r

 +

),(

),(

kmY

kmY

i

r

 End m-loop

 Y(k)=Y(N,k)/K1(n) /* Scaling operation*/

 End k loop

Here the sequence X(n) is taken from the left end of the processor array. Each X (n), which

contains two real numbers xr(n) and xi(n),will be propagated from the current processor to the

nearest neighbour processor in a pipelined manner. Since X (n) is not to be modified during

propagation they can be piped at a rate of t0 time unit (1 clock cycle) per stage. Each of the N

CORDIC processors in this processor array will be responsible for evaluating a particular Y (k).

This implies that N different rotation angles must be stored in each processor. Since each rotation

angle requires n bits to store, the total storage requirement, including the s scaling iterations, will

be nN +s bits.

 27

 Chapter 5

 SIMULATION

 USING

 MATLAB

 28

PROGRAM 1

% MATLAB CODE FOR CORDIC IN VECTOR MODE FOR TANGENT FUNCTIONS

clear all

x(1)=1;

y(1)=1;

z(1)=0;

A=1;

for i=1:25

 if y(i)<0

 d(i)=+1;

 else

 d(i)=-1;

 end

 x(i+1)=x(i)-y(i)*d(i)/2^(i-1);

 y(i+1)=y(i)+x(i)*d(i)/2^(i-1);

 z(i+1)=z(i)-d(i)*atan(2^(1-i));

 A=A*sqrt(1+2^(2*(1-i)));

 if y(i+1)==0

 break;

 end

 x(i+2)=x(i+1)/A;

 y(i+2)=y(i+1)/A;

end

for i=1:30

 plot(x,y,'*',x,y,'b-');

end

 29

 FIG 5.1 (SIMULATION RESULTR FOR CORDIC IN VECTOR MODE)

PROGRAM-2

% MATLAB CODE FOR CORDIC IN ROTATION MODE FOR SINE AND COSINE

FUNCTIONSl

x(1)=1;

y(1)=0;

z(1)=28;

A=1;

for i=1:100

 A=A*sqrt(1+2^(2*(1-i)));

end

 x(2)=A* (x(1)*cos(z(1))-y(1)*sin(z(1)));

 y(2)=A* (y(1)*cos (z(1))+x(1)*sin(z(1)));

 z(2)=0;

plot(x,y,'*',x,y,'b-')

OUTPUT

 30

a =1 0

a =-1.5852 0.4461

 FIG 5.2(SIMULATION RESULT FOR CORDIC IN ROTATION MODE FOR SINE AND

 COSINE FUNCTIONS

PROGRAM 3

% MATLAB CODE FOR CORDIC IN ROTATION MODE

clear all

x(1)=1;

y(1)=0;

z(1)=0.5;

for i=1:25

if z(i)<0

 d(i)=-1;

 else

 d(i)=1;

 end

if i == 4 | 13 | 40

 31

 x(i+1)=x(i)+y(i)*d(i)/2^(i);

 x(i)=x(i)+y(i)*d(i)/2^(i);

 y(i+1)=y(i)+x(i)*d(i)/2^(i);

 y(i)=y(i)+x(i)*d(i)/2^(i);

 z(i+1)=z(i)-d(i)*atanh(2^-i);

 z(i)=z(i)-d(i)*atanh(2^-i);

 else

 x(i+1)=x(i)+y(i)*d(i)/2^(i);

 y(i+1)=y(i)+x(i)*d(i)/2^(i);

 z(i+1)=z(i)-d(i)*atanh(2^-i);

 end

end

for i=1:15

 a=[x(i),y(i)]

 plot(x,y,'*',x,y,’b-‘)

end

 FIG 5.3(SIMULATION RESULT FOR CORDIC IN ROTATIONAL MODE)

 32

PROGRAM 4

MATLAB CODE FOR CORDIC IN FOR HYPERBOLIC FUNCTIONS

x(1)=1;

y(1)=0;

z(1)=1;

for i=1:20

 if z(i)<0

 d(i)=-1;

 else

 d(i)=1;

 end

 x(i+1)=x(i)+y(i)*d(i)/2^(i);

 y(i+1)=y(i)+x(i)*d(i)/2^(i);

 z(i+1)=z(i)-d(i)*atanh(2^(-i));

 if z(i+1)==0.0

 break;

 end

end

figure

plot(x,y,'*',x,y,'b-')

 FIG 5.4(SIMULATION RESULT FOR HYPERBOLIC FUNCTIONS)

PROGRAM 5

 33

MATLAB CODE FOR ROTATING ABOUT THE THREE AXES

clear all

%initialization of coordinates x1=1,y1=0,z1=3,xn=0.707,yn=0.707,zn=5;

x(1)=1;

y(1)=0;

z(1)=3;

u(1)=45;

v(1)=45;

A1=1;

A2=1;

% applying cordic equations in rotational mode

for i=1:20

 if u(i)<0

 d(i)=-1;

 else

 d(i)=1;

 end

 A1=A1*sqrt(1+2^(2*(1-i)));

 x(i+1)=x(i)-y(i)*d(i)/2^(i-1);

 y(i+1)=y(i)+x(i)*d(i)/2^(i-1);

 z(i+1)=z(i);

 u(i+1)=u(i)-d(i)*atan(2^(1-i));

end

% scaling operation starts

x(22)=x(21)/A1;

y(22)=y(21)/A1;

z(22)=3;

% scaling operation ends

for i=22:40

 j=i-21;

 if v(j)<0

 d(i)=-1;

 else

 34

 d(i)=1;

 end

 A2=A2*sqrt(1+2^(2*(1-j)));

 y(i+1)=y(i)+z(i)*d(i)/2^(1-j);

 z(i+1)=z(i)-y(i)*d(i)/2^(1-j);

 x(i+1)=x(i);

 v(j+1)=v(j)-d(i)*atan(2^(1-j));

end

 y(42)=y(41)/A2;

 z(42)=z(41)/A2;

 x(42)=x(41);

figure

plot3(x,y,z,'*',x,y,z,'b-')

xlabel('x');

ylabel('y');

zlabel('z');

grid on;

figure

subplot(1,2,1)

plot3(x(1),y(1),z(1),'*',x(1),y(1),z(1),'b-')

grid on;

subplot(1,2,2)

plot3(x(42),y(42),z(42),'*',x(42),y(42),z(42),'b-')

grid on;

 35

 FIG 5.5(SIMULATION RESULT FOR ROTATING ABOUT THREE AXES)

PROGRAM 6

MATLAB CODE FOR ROTATING ABOUT THREE AXES

clear all

x(1)=3;

y(1)=1;

z(1)=3;

u(1)=56; %ATAND(YN/XN)-ATAND(Y1/X1)

v(1)=30; %ATAND(SQRT(XN^2+YN^2)/ZN)-ATAND(SQRT(X1^2+Y1^2)/Z1)

A=1;

for i=1:20

 if u(i)<0

 36

 d(i)=-1;

 else

 d(i)=1;

 end

 A=A*sqrt(1+2^(2*(1-i)));

 x(i+1)=x(i)-y(i)*d(i)/2^(i-1);

 y(i+1)=y(i)+x(i)*d(i)/2^(i-1); %CORDIC EQUATIONS FOR VECTOR ROTATING

AROUND Z AXIS

 z(i+1)=z(i);

 u(i+1)=u(i)-d(i)*atan(2^(1-i));

end

 i=i+2;

 x(22)=x(21)/A;

 y(22)=y(21)/A; %SCALING OPERATION

 z(22)=3;

 B=1;

for j=1:22

 if v(j)<0

 e(j)=-1;

 else

 e(j)=1;

 end

 B=B*sqrt(1+2^(2*(1-j)));

 x(j+i)=x(j+i-1);

 y(j+i)=y(j+i-1)+z(j+i-1)*e(j)/2^(j-1); %CORDIC EQUATIONS FOR VECTOR

ROTATING AROUND X AXIS

 z(i+j)=z(j+i-1)-y(j+i-1)*e(j)/2^(j-1);

 v(j+1)=v(j)-e(j)*atan(2^(1-j));

end

z(45)=z(44)/B;

y(45)=y(44)/B; %SCALING OPERATION

x(45)=x(44);

figure

 37

plot3(x,y,z,'*',x,y,z,'b-')

xlabel('x');

ylabel('y');

zlabel('z');

grid on;

figure

subplot(1,2,1);

plot3(x(1),y(1),z(1),'*',x(1),y(1),z(1),'b-')

xlabel('x');

ylabel('y');

zlabel('z');

grid on;

subplot(1,2,2);

plot3(x(45),y(45),z(45),'*',x(45),y(45),z(45),'b-')

xlabel('x');

ylabel('y');

zlabel('z');

grid on;

 38

 FIG 5.6(SIMULATION RESULT FOR ROTATING ABOUT THREE AXES)

PROGRAM 7

 MATLAB PROGRAM FOR COMPUTING 2_DIMENSIONAL DCT

clc

clear all

close all

if (input(' WANT TO ENTER MATRIX FROM COMMAND LINE(1 for Y/2 for N) ')==1);

 x= input('ENTER THE ORDER OF THE MATRIX')

 disp('enter the elements of the matrix')

 for i=1:x

 for j=1:x

 A(i,j)=input(' ');

 end

 end

else

 x= input('ENTER THE ORDER OF THE MATRIX')

 A=rand(x);

end

disp('input matrix ')

B=A

for i=1:x % implementation of 1-D DCT row wise

 39

 A(1,i)=B(1,i)+B(4,i);

 A(2,i)=B(2,i)+B(3,i);

 A(3,i)=B(1,i)-B(4,i);

 A(4,i)=B(3,i)-B(2,i);

end

B=A;

for i=1:x

 [A(3,i),A(1,i)]=cordicdct(B(1,i),B(2,i),45);

 [A(2,i),A(4,i)]=cordicdct(B(3,i),B(4,i),22.5);

end

disp('matrix after applying 1-D DCT column wise')

B=A

for i=1:x % implementation of 1-D DCT row wise

 A(i,1)=B(i,1)+B(i,4);

 A(i,2)=B(i,2)+B(i,3);

 A(i,3)=B(i,1)-B(i,4);

 A(i,4)=B(i,3)-B(i,2);

end

B=A;

for i=1:x

 [A(i,3),A(i,1)]=cordicdct(B(i,1),B(i,2),45);

 [A(i,2),A(i,4)]=cordicdct(B(i,3),B(i,4),22.5);

end

disp('matrix after applying 1-D DCT ROW wise')

A

function [p,q]= cordicdct(a,b,theta)

x(1)=a;

y(1)=b;

z(1)=theta;

A=1;

for i=1:25

 if z(i)<0

 d(i)=-1;

 40

 else

 d(i)=1;

 end

 x(i+1)=x(i)-y(i)*d(i)/2^(i-1);

 y(i+1)=y(i)+x(i)*d(i)/2^(i-1);

 z(i+1)=z(i)-d(i)*atand(2^(1-i));

 A=A*sqrt(1+2^(2*(1-i)));

end

x(27)=x(26)/A;

y(27)=y(26)/A;

p=x(27);

q=y(27);

input matrix

B =

 1 2 3 4

 2 3 4 1

 3 4 1 2

 4 1 2 3

Matrix after applying 1-D DCT column wise

B =

 7.0711 7.0711 7.0711 7.0711

 -3.1543 0.5412 2.0719 0.5412

 0.0000 -2.8284 0.0000 2.8284

 -0.2242 1.3066 -2.3890 1.3066

Matrix after applying 1-D DCT ROW wise

A =

 20.0000 0.0000 0.0000 -0.0000

 0.0000 -4.0000 -3.6955 0.0000

 0.0000 -3.6955 4.0000 1.5307

 -0.0000 0.0000 1.5307 -4.0000

clc

clear all

close all

 41

if (input(' WANT TO ENTER MATRIX FROM COMMAND LINE(1 for Y/2 for N) ')==1);

 x= input('ENTER THE ORDER OF THE MATRIX')

 disp('enter the elements of the matrix')

 for i=1:x

 for j=1:x

 A(i,j)=input(' ');

 end

 end

else

 x= input('ENTER THE ORDER OF THE MATRIX')

 A=rand(x);

end

disp('matrix after applying 1-D DCT column wise')

B=dct(A)

C=B';

disp('matrix after applying 1-D DCT row wise')

A=dct(C);

A=A'

Matrix after applying 1-D DCT column wise

B =

 5.0000 5.0000 5.0000 5.0000

 -2.2304 0.3827 1.4651 0.3827

 0 -2.0000 0 2.0000

 -0.1585 0.9239 -1.6892 0.9239

Matrix after applying 1-D DCT row wise

A = 10.0000 0 0 0

 0 -2.0000 -1.8478 0.0000

 0 -1.8478 2.0000 0.7654

 0.0000 -0.0000 0.7654 -2.0000

CONCLUSION

The CORDIC algorithms presented in this project are well known in the research and super

computing circles. The trigonometric CORDIC algorithms were originally developed as a digital

 42

solution for real time navigation problems. The original work is credited to Jack Volder .The

CORDIC algorithm has found its way into diverse applications including the 8087 math

coprocessor, the HP-35 calculator, radar signal processors and robotics.CORDIC rotation has

also been proposed for computing Discrete Fourier[4],Discrete Cosine[4],Singular Value

Decomposition[5],and solving linear systems[1].

 Here the basic CORDIC algorithm and a partial list of potential applications s of a CORDIC

based processor array to digital signal processing is presented. The CORDIC based DCT

architecture for low power design has been proposed. The proposed multiplier less CORDIC

based DCT architecture produces high throughput and is easy to implementing VLSI. The

proposed architecture reduced the input data range for the CORDIC processor by split and the no

of compensation iterations in CORDIC based DCT computation by utilizing that most images

have similar neighboring pixels. The project also shows that a tool is available for use in FPGA

based computing machines, which are the likely basis for the next generation DSP systems. Its

basis of application in DSP has been thoroughly investigated.

 The day is not far away when many of the software algorithms will be replaced

by the hardware efficient algorithms paving way for reduced complexity and faster operation.

REFERENCES

[1] J.E. Volder.”The CORDIC trigonometric computing technique,”IRE Trans.Electron..

Comput. Vol. EC-8,no 3,pp.335-339,Sept 1959

 43

[2]B.G.Lee,”A new algorithm to compute the discrete cosine transform,”IEEE transactions on

Acoustics,Speech and Signal Processing,vol ASSP-32,no. 6,pp. 1234-1245,Dec 1984

[3]Despain, A.M., “Fourier Transform Computations Using CORDIC Iterations,”IEEE

Transactions On Computers,Vol.23,1974,pp. 993-1001

[4]A.Peled and B.Liu,”A newhardware realization of digital filters,”IEEE Trans.

Acoust.,Speech,Signal Processing,vol, ASSP-22,PP. 456-462,Dec. 1974

[5]N. Weste and K. Eshraghian, Principles of CMOS VLSI De-sign-A Systems Perspective,2
nd

ed Reading,MA Addison-Wesley,1993

[6]A. P. Chandrakasan and R.W . Brodersen,Low-Oiwer CMOS Design.Piscataway. NJ: IEEE

Press,1998. Ed..

[7] Chang, L.W., and S.W. Lee,”Systolic Arrays for the discrete Cosine Transform”IEEE Trans.

On Signal Processing, Vol.29,No 11,Nov.1991,2411-2418

[8]Chen,W.h., C.H Smith, and S.C.Fralik,”A fast computational algorithm for the discrete cosine

transform”,IEEE Trans.on Communications,Vol.COM-25,pp.1004-9,Sept. 1977.

[9]Andraka,R.J., “Building a High Performance Bit-Serial processor in an FPGA,”Proceedings

of Design SuperCon’96,Jan 1996,pp5.1 – 5.21

[10]Duh, W.J., and Wu, J.L.,”Implementing the Discrete Cosine Transform by Using CORDIC

Techniques,”Proceedings The International Symposium on VLSI Technology,Systems and

Applications,Taipei,Taiwan,1989,pp. 281-285

[11]Wang,S. aned Piuri,V., “A unified View of CORDIC Processor Design”,Application

Specific Processors,Edited by Earl E.Swartzlander,Jr., Ch. 5, pp. 121-160,Kluwer Academic

Press,November 1996

[12]Walther,J.s., “A unified algorithm for elementary functions,”Spring Joint Computer

Conf.,1971,proc.,pp.379-385

