
An Intelligent Cell Memory System For

Real Time Engineering Applications

by

Kant-Fat Wong, B.Sc.(Hons)

Doctor of Philosophy

Edinburgh University

May, 1987

Dedication

To my wife Alley and daughter Carmen

Without their constant encouragement and support, this work would

never have been accomplished.

Table of Contents

Table of Contents..........................^ i

Acknowledgement.. v

Declaration.._^ v

Abstract... vi

List of Figures... vii

List of Photographs.. ix

List of Tables...................................^

Chapter I........Introduction
1.1..................Background.. 1

1.2..................Garbage Collection.. 2

1.3..................The Project... 4

1.4..................Chapter Summary.. 5

Chapter II......AJ Systems
2.1..................Background.. 7

2.1.1AI for Engineering.. 8

2.2..................AI Language Features... 9

2.2.1.........Data Abstraction.. 10

2.2.2Control Structures.. 11

2.2.3.........LISP... 12

2.2.4.........Prolog... 14

2.2.5.........Software Tools... 15

2.3..................Garbage Collection.. 16

2.4..................AI Hardware.. 16

2.4.1VLSI AI Processors... 17

2.4.1.1.Examples - SCHEME And SOAR... 18

2.4.2.........LSI Systems... 20

2.4.3Coprocessor Systems... 22

2.4.4.........Non Von Neumann Architectures... 23

2.4.4.1.Demand Flow Architecture... 23

2.4.4.2.Data Flow Architecture... 24

2.4.4.3.Logic Flow Architecture... 25
2.4.5.........An AI Machine for the Future.. 26

2.5..................Hardware Complexity .. 26

Chapter IDGarbage Collection
3.1..................Background.. 32

3.1.1A Theoretical Machine.. 33
3.2..................Classical Algorithms... 34

3.2.1Reference Count Method.. 34
3.2.2.........Mark and Sweep Method.. 35
3.2.3Copying Method.. 36
3.2.4.........Discussion.. 42

3.3..................Garbage Collection in the Time Domain..................................... 43
3.3.1.........Non-Real-Time..44
3.3.2Real-Time..45
3.3.3Virtual-Real-Time.. 46
3.3.4.........A Practical Choice for Engineering Applications........................ 47

Chapter IV.....The Intelligent Cell Memory System
4.1..................Introduction.. 55
4.2..................The Design ... 55
4.3..................ICMS Design... 59
4.4..................The Baker Copying Garbage Collection Algorithm.................... 60

4.4.1The Non-Real-Time Version... 61
4.4.2Incremental Collection.. 62

4.5..................Parallelism in Hardware.. 64
4.6..................Engineering Features... 65

4.6.1Simplicity... 65
4.6.2.........Fast Response.. 65
4.6.3.........Flexible and Portable .. 66

Chapter VConstruction I: Hardware
5.1..................The LOCALbus and the Cell Memory... 69
5.2..................The Intelligent Cell Memory Controller (ICMC)........................ 71

5.2.1The Micro Program Control Unit (MPCU).................................. 71
5.2.2.........The Test Circuit (TC)... 75
5.2.3.........The Input and Output Registers (IO)... 76
5.2.4.........The Processing Unit (PU)... 77

5.3..................Construction Details.. 79

11

Chapter VL....Construction H: Microprogramming
6.1....Background.... .. 94

6.1.1High Level Programming.. 94

6. 1.2.Microprogram Assembler.. 95

6.1. 3Practical Considerations.. 96

6.2......The Local Microassembler.. 97

6.2.1.The Command - Uasm.. 98

6.3..................The Implementation of Tst ... 98

6.3.1.First Pass.. 99

6.3.2Second Pass100

6.3.3Error Messages101

6.4..Microprograms for the ICMS ...101

6.4.1...The List Primitives..l05

6.4.2The Microprogram Structures ..106

6.4.1.Error Handling...l07

Chapter VII... Verification and Results
7.1..Verification114

7.1.1Graphics...!^

7.2.1A high Level Evaluation.117

7.3..................Baker's GC on the ICMS ...118

...120

Chapter Vin. Conclusion
8.1.........Summary123

8.2..................The Future124

8.2.1An Advanced Realisation - A VLSI/ICMS..................................125

m

APPENDICES

Appendix I.UASM: The Language and the Assembler
A.I.I....Invocation of Uasm : the UNIX Command.128

A. 1.2.....The Language Specifications ..128

Appendix II.. .The LISP System: SimpleLISP
A.2.1..............Basic Cell Structure ..130

A.2.2..............The LISP System...l31

A.2.3..............Garbage Collectors .. 134

A.2.3.1Mark and Sweep Garbage Collector...134

A.2.3.2.... .Copying Collector ... 136

A.2.3.2.1 Storage Efficiency Improvement... ... 137

A.2.3.2.2 Time Efficiency Improvement ... 138

A.2.3.3... ..Remarks140

A.2.4..............The Interpreter..140

A.2.4.1Program Environment ... 141

A.2.4.2The Interpretation Routines ..142

A.2.6..............SimpleLISP for the ICMS ..143

Appendix ffl .Graphics Program

A.3.1.1Tracing. .. 157

A.3.2......Graphical Representation ..158

Appendix IV. .ICMS Microprogram Listing .. 165

Appendix V... Related Publications179

IV

Acknowledgement
The author wishes to express his gratitude to Dr. John H. Hannah for his

constructive criticisms and invaluable advice throughout the past two

years. Despite his work load as an associate dean of the university, Dr.

Hannah has exercised a good deal of patience and spent a great amount

of time in proof reading intermediate drafts, which has helped me

develop the thesis to its present state.

The author is much indebted to his ex-supervisor Dr. George G. Coghill

for his useful insight and sound guidance which helped a lot with the

initial formulation of the project.

Sincere thanks are due to Mr. Alex F.L. Wong, Mr. Cyril H.F. Chan,

Mr. C.H. Lau and Mr. Hamish Taylor for their continuous comments,

assistance and encouragement.

Last but not least, the author would like to express his appreciation and

love to his wife Alley. Her patience, constant care, support and

encouragement have withstood the difficult times and she has helped in

every way she could to make this work all worthwhile.

Declaration
This thesis is composed by the author and the work described herein is

original unless otherwise indicated.

The author,

Kam-Fai Wong BSc

Abstract

There is a growing interest in the application of Artificial Intelli­

gence (AI) techniques in engineering. Existing AI systems are not suit­

able for many applications because of their unacceptable real time

response and complexity. An Intelligent Cell Memory System (ICMS)

which is capable of providing improved real time performance is pro­

posed in this thesis. The ICMS adopts a novel mode of garbage collec­

tion which guarantees a bounded separation time. The garbage collec­

tor is an optimised hardware realisation of Baker's algorithm. A proto­

type of the ICMS which has been constructed using microprogrammed

bit-slice processors is described. It is configured as a coprocessor

module and loosely coupled to a M68000 microprocessor via a standard

VME bus interface. Experiments on the ICMS prototype have revealed

more than one order of magnitude improvement in system performance.

Suggestions for further development of the ICMS approach are

presented.

VI

List of Figures

Figure 2.1: Alty's Automation Model.. 30

Figure 2.2: The Technological Advancement of AI Software................................. 31

Figure 3.1: a) Definition of a List CeU.. 49

Figure 3.1: b) Syntax Diagram of a List... 49

Figure 3.1: c) A Graphical Example of a List:
(SQUARE (PROPERTIES (EQUAL_SIZE FOUR_VERTICES)))........ 49

Figure 3.1.1: A Theoretical Machine.. 50

Figure 3.2.1: Example GC1 - Reference Count.. 51

Figure 3.2.2: Example GC2 - Mark and Sweep :
a) Mark phase, b) Sweep phase... 52

Figure 3.2.3: Example GC3 - Copying.
a) just after memory has exhausted; b) just after GC............................... 53

Figure 3.3: Time Distribution Graphs -
a) Non-Real-Time;
b) Virtual-Real-Time;
c) Real-Time; and
d) the ICMS (c.f. next Chapter).. 54

Figure 4.4.2: Anatomy of the TOSPACE of the Incremental Baker's GC.............. 67

Figure 4.6.1: The Schematic Block Diagram of the Host-ICMS Interface.............. 68

Figure 5.1: The Detailed Block Diagram of the ICMS Architecture....................... 82

Figure 5.2.1a: The Writable Control Store (WCS)... 83

Figure 5.2.1b: The Block Diagram of the MPCU... 84

Figure 5.2.2: The Test Circuit (TC).. 85

Figure 5.2.3a: The Programmer's Model of the Supported
List Functionality of the ICMS.. 86

Figure 5.2.3b: The Circuit for DTACK Generation.. 87

Figure 5.2.4a: The Processing Unit (PU).. 88

Figure 5.2.4b: The Integration of the PU with the ICMS... 89

Figure 6.4: Stages of Microprogram Development... 112

Figure 6.4a: The Timing of Memory Access Cycles..113

Vll

Figure A.2.1.1a: A Single Cell Unit;...145

Figure A.2.1.15: An Example of a List - (A B (C)) in Cell Structure;145

Figure A.2.1.1c: (A B (C)) in Tree Structure Form...145

Figure A.2.1.2: Description of the Cell Status Flag..146

Figure A.2.2.1a: Syntax Diagram of S-expression (abbreviated exp)......................147

Figure A.2.2.1b: Syntax diagram of S-expression list (abbreviated explist)............ 147

Figure A.2.2.2: Henderson's program for input s-expression.148

Figure A.2.2.3: Program for Output S-expression..149

Figure A.2.3.1: The Simplest Marking Algorithm..150

Figure 2.3.2a: The Marking Algorithm (to be continued).150

Figure A.2.3.2b: The Marking Algorithm (continuation). ..151

Figure A.2.3.2c: The Marking Algorithm (continuation). ..152

Figure A.2.3.2.1: The Copying Garbage Collector...153

Figure A.2.4.2.2: Level 2(a) of the Interpreter : M_EVAL...................................... 154

Figure A.4.2.3: Level 2(b) of the Interpreter : M_APPLY.......................................155

Figure A.2.6: The Memory Map of SimpleLISP with the ICMS.............................156

Figure A.3.1: Standard Tree Pattern..160

Figure A.3.1.la: The Graphical Tracing Algorithm..161

Figure A.3.1.Ib: The Graphical Tracing Algorithm (continuation)162

Figure A.3.1.1c: The Graphical Tracing Algorithm (continuation).......................... 163

Figure A.3.1.Id: The Graphical Tracing Algorithm (continuation)164

V11I

List of Photographs

Plate 5: The Complete ICMS Prototype : (from left to right)
the M68000 host occupies the first board ; and
the remaining three together form the ICMS... 90

Plate 5.1: The ICMS Circuit Board... 91

Plate 5.2.1: The Writable Control Store (WCS) Circuit Board................................ 92

Plate 5.2.2: The Circuit Board for the Testing Circuitry (TC)................................. 93

Plate 7.2: Experimental Setup (from left to right: an ESPIRTT terminal
the ICMS and the HP1630G Logic Analyser)...122

List of Tables
Table 2.2: Comparison of Features of Various Languages....................................... 81

Table 5.2.2a: Details of the Test Circuit Outputs... 81

Table 5.2.2b: The Decoding of Read and Increment for the S and B pointers........110

Table 6.4: The grouping of the ICMS microinstruction word..................................121

Table 7.2: Execution times of the basic LISP primitives...121

Table 7.2.1: Execution times of fibonacci(n), where 0<n>9.....................................121

Table 7.3: Execution times of 1000 continuous cons operations,
with varying number of accessible cells..121

IX

CHAPTER I
Introduction

"... There are several bottlenecks within typical expert systems that could prevent

successful monitoring of complex, real-time events. A traditional LISP machine

is designed to be a thinking machine, not a real-time controller" [1]

1.1 Background

Artificial Intelligence AI is a science which attempts to provide machines

(artificial entities) with human-like behaviour : the ability to store and acquire

knowledge and to reason and act on deductions as a human being would. Unfor­

tunately, after decades of development, very few practical AI systems are suitable for

engineering applications. This lack of success is largely a result of two major

shortcomings of existing AI technology :

(1) Complexity of system hardware.

AI software using conventional programming languages, is large and compli­

cated, hard to comprehend and difficult to implement. Efforts have therefore been

made by researchers to produce special AI languages with highly efficient compilers.

The nature of this AI software leads to inefficient processing by conventional com­

puters. Some novel machines have been designed to improve processing efficiency.

Very Large Scale Integration (VLSI) - design at chip level has produced special pur­

pose AI processors which often involve the use of non Von Neumann architectures.

Other machines based on existing technology often use coprocessor systems. Most

AI machines however are large, complex and costly and have a system interface

which is non-standard and unsuitable for engineering applications.

t a formal definition will be given in chapter two.

- 1-

(2) Poor real time performance,

Programming languages with special features are necessary to solve AI prob­

lems. By far their most important feature is symbolic manipulation. Computer intel­

ligence implies reasoning with knowledge or "rules of thumb". Each piece of

knowledge, internally, is an object represented by a symbol. In programming terms,

objects have lists of properties and values associated with them. Functionally, rea­

soning is done by making heuristic inferences according to the information

obtained from objects' properties and the relationships between them. The most

widely used language is LISP, a language originally designed for symbolic manipu­

lation.

During the process of reasoning, units of memory are dynamically being con­

sumed and released. With a finite storage system, memory exhaustion is bound to

occur unless the released memory can be re-used. The process of memory reorgani­

sation so as to reclaim reusable units is called Garbage Collection.

Garbage Collection is usually considered to be the responsibility of the host

processor. Previously, to run such a process, the host would suspend all active jobs

and dedicated itself solely to retrieving re-usable memory. This was acceptable in

the research and development environments of the past. Nevertheless, the complexity

of present AI software has rendered this approach inadequate, especially, in practical

engineering systems. To have to stop in the middle of a continuous task could be

costly and dangerous and is completely impossible in a real time system.

1.2 Garbage Collection

Currently, three practical approaches to improve real time AI performance are

being investigated:

-2-

(1) software garbage collection algorithms with real time capability;

(2) special architecture AI machines with microcoded garbage collection schemes;

and

(3) a dedicated hardware garbage collector in a multiprocessor environment.

The first of these provides the basis for the rest which are largely hardware real­

isations of the software scheme. At present, the software solution is still practical in

some situations. However, it is only a partial remedy marginally acceptable for sys­

tems with a modest response time, e.g. a single user interactive programming

environment.

The second approach is most efficient and provides the fastest response. The

processors used in these machines are mostly based on semi-custom Very Large

Scale Integrated (VLSI) technology. Garbage collection schemes are usually micro-

coded and completely transparent to users. However, these processors are usually

part of complex systems which have their own specifications and are difficult to

integrate into engineering systems.

The performance offered by the third solution could be comparable with the

second, providing processors are configured in the proper way. Concurrent process­

ing techniques have long been employed to remove the burden from host processors.

In this case, a second processor or special purpose piece of hardware is dedicated for

garbage collection; thus removing the problem of memory exhaustion from the host

processor. As hardware costs decrease, the multiprocessing approach becomes

increasingly promising. However, present systems are far from perfect: they are

• difficult to implement: crucial inter-processor communication protocols are

required, e.g. dead-lock avoidance using semaphores. As a consequence of

-3-

this, debugging and maintenance problems become significant;

• lacking in flexibility: the garbage collection hardware is constructed around

specific processors; and worst of all interfaces are largely based on non-

standard specifications.

The multiprocessor approach is superior to the rest, despite its disadvantages,

because of its low cost, ease of expansion and flexibility. The software approach is

becoming obsolete; nevertheless, it is still viable if a quick and cheap solution

demanding only a moderate response is required. The special purpose processor with

its dedicated architecture is promising, but not until some standardised architecture

with an internationally accepted interface standard has been achieved. In the mean

time, the multiprocessor approach will remain the dominant practical solution for

improving real time AI system performance.

1.3 The Project

The aim of the project is to provide a simple yet efficient solution to improve an

AI system's real-time performance. This is achieved by the design of a special pur­

pose coprocessor system known as ICMS - Intelligent Cell Memory System to

remove the burden of garbage collection from the host. A novel operational mode

of garbage collection is introduced. An ICMS prototype has been constructed.

Experiments on the prototype have shown that the ICMS hardware can provide at

least an order of magnitude increase in execution speed for the five basic list pro­

cessing primitives: car, cdr, replaca, replacd and cons.

The ICMS has been designed to meet the need for low cost, portable, intelligent

instruments for engineering applications. These systems would have wide practical

potential, such as monitoring, control, manufacturing, etc. The final design is based

-4-

on the VME bus specification (IEEE 1014 standard multiprocessor bus), a popular de

facto industrial standard. This makes the overall system easily expandable and not

confined to a specific type of processor.

The project was divided into three stages: a literature survey, the design and

implementation of supporting software and the design and construction of the ICMS

system. During the literature survey stage, efforts were made to identify the most

important features of AI languages and processors. In addition, a survey of garbage

collection schemes was carried out. Although the project is mainly hardware orien­

tated, several pieces of software were produced in stage two, to make the final sys­

tem operational and to assess its comparative performance. This included the design

and implementation of a LISP dialect simplelJSP and its interpreter and a micropro­

gram assembler. In the third stage an ICMS prototype was constructed using bit slice

technology and by microprogramming. The five basic list processing primitives

were included in the design. This means that, effectively, the coprocessor may be

regarded as a list processing accelerator. Finally the overall system performance was

studied.

1.4 Chapter Summary

Because of the unique nature of AI problems, special features are required for pro­

gramming languages. These features are identified and a survey of common AI

languages is given in the first half of chapter two. To enhance language performance,

dedicated hardware systems are being developed. Current trends in hardware design

are reviewed and examples of existing practical machines are described at the end of

chapter two. Classical garbage collection schemes, current state of the art techniques

-5-

and desirable characteristics of a real time garbage collection system are described in

chapter three.

Chapter four reviews the functionality of the ICMS, the ICMS system interface

and the operational details of the adopted garbage collection algorithm. The design

details of the ICMS prototype to achieve the desirable features outlined in chapter

three are also described.

The construction of the system is described in chapter five and six. Chapter five

reviews the hardware construction details. The ICMS is constructed using bit-slice

devices, and internally it can be divided into several functional units, the operation of

which is depicted. In chapter six, the implementation of the micro-assembler

software, the field assignment of a microinstruction word and the ICMS microin­

struction routines are explained.

In chapter seven, the performance of a system using the ICMS and one without

is compared.

Finally, the thesis concludes with ideas leading to possible improvements of

the prototype system. Suggestions are also given for advanced realisations of the

ICMS philosophy in the future.

-6-

CHAPTER II
AI Systems

In this chapter, a formal definition of Artificial Intelligence is given and the

advantages of applying AI to engineering problems are outlined. Also, the two main

factors which have been limiting the widespread application of this approach are

identified and described.

2.1 Background

Artificial Intelligence (AI) originated in the fifties when several problems were

partly solved with computers using automatic deduction techniques. Ever since there

has been a rapidly increasing interest in research on the subject worldwide. The

term AI is formally defined as "... the part of computer science that is concerned with

the symbol-manipulation processes that produce intelligent action. By 'Intelligent

action' is meant an act of decision that is goal-oriented, arrived at by an understand­

able chain of symbolic analysis and reasoning steps, and is one in which knowledge

of the world informs and guides the reason "[2] Alty[3], with his automation model,

figure 2.1, asserts that a problem is always divided into two parts : one is automated

(by machines) and the other involves human activity. The objective of the applica­

tion of AI is to shift the boundary in the problem space. As AI technology improves,

the boundary is shifting in the direction of the arrow and gradually encompassing

more and more of the human activity.

In practice, AI is implemented as a set of advanced computer software applicable

to problems such as natural language understanding, image recognition, expert sys­

tems, knowledge acquisition and representation, heuristic search, deductive reason-

-7-

ing and planning. A rich set of literature exists on the topic. Winston [4], Gevar-

ter[5] and Nilsson[6] are all excellent introductory sources. Also in Brown [2], Barr

et al [7] and [8] overviews of the current status and future research possibilities of AI

are given.

In recent years, AI technology has been taken from laboratories to be employed

in practical areas. With constantly decreasing hardware costs and increasing com­

puting power, this trend will accelerate. Many new projects and research pro­

grammes are scheduled and all of them involve significant funding. Notable among

these are the 10-year Fifth Generation Computing programme in Japan [9], the

ESPRIT programme in Europe, the Strategic Computing project sponsored by the

Department of Defence in the USA [2] and the Information Technology boost sup­

ported by the Alvey Commission in the UK [10].

2.1.1 AI for Engineering

The potential of AI has also been realised in many fields of engineering. Practi­

cal systems have been built for a wide range of applications - such as fault diagnosis

for machines and equipment [11,12], engineering consultancy [13], factory automa­

tion [14], testing of electronic systems [15], process control [16] and VLSI design

[17,18].

The application of AI techniques to engineering overcomes the disadvantages

of normal human and machine approaches. A fully automated system is an engineer­

ing design paradigm. Automation guarantees precision, fast response and robust­

ness. It alleviates the physical limitation of human engineers; especially when they

are subjected to psychological influences - boredom, weariness and depression.

In the first stage of the design of automated systems, the process of the applica-

-8-

tion area concerned is analytically modelled using complicated mathematics. Unfor­

tunately, under operational circumstances, these models fail because they arc usually

constructed under several ideal assumptions. At this point, human effort inevitably

intervenes. The complication of the analytical models frequently demands fully-

trained personnel or even sometimes the design engineers themselves in order to

regulate "abnormal" behaviour of the systems.

The introduction of AI technology into engineering makes human expertise

available at machine level. Intelligent engineering systems are based on causality.

They emulate the procedure of problem-solving adopted by human experts who

investigate the cause of the problems. Engineering "know-how" is electronically

encoded and subsequently retrieved by heuristic searching strategies. Moreover, AI

can provide a friendly Man Machine Interface (MMI) using natural language under­

standing and/or speech recognition techniques. A less obvious benefit of AI for

engineering exists in training and education. A friendly MMI exposes engineering

knowledge to non-technical users readily and comprehensibly. Summarising, AI

technology, and its application to engineering in particular, can "preserve otherwise

perishable human expertise; distribute otherwise scarce expertise; reduce the cost of

mediocre or poor human performance and provide help to humans trying to access

information and employ computers."[19]

2.2 AI Language Features

There are several common characteristics [20] which high level programming

languages applicable to large complex systems should possess. These include

 support of a variety of data types to describe all kinds of information structures;

 support of flexible control structures, such as recursion and iteration;

-9-

 support of parallel control structure, e.g. forkQ/waitQ in C;

 ability to decompose the system into small, understandable chunks so that it is

possible to alter one part of the system without disturbing other parts.

In addition, individual languages also possess local sets of higher level functional

primitives (environment) which expedite problem solving in a specific application

domain. For example, Cobol and Fortran are widely used for business and number-

crunching, respectively.

AI problems are large, complex and unique, therefore special high level

languages are required to facilitate efficient information handling and control. On

top of the characteristics above, languages for AI programming should exhibit the

following features [7,21]:

2.2.1 Data Abstraction

i) Symbolic manipulation and list processing.

Information to be manipulated by AI programs is suitably represented by symbols.

Symbols are named entities, resembling a physical representation of objects, which

have lists of associated properties, e.g. if "square" is a symbol, it could have proper­

ties as {"a polygon", "four vertices",etc.). The capability of symbolic manipulation

is essential for languages to be used in AI applications. Association or properties of

symbols are represented in list structures. Efficient handling of lists facilitates the

process of machine reasoning.

ii) Dynamic and late binding.

Symbols are arbitrary defined and could stand for anything, numbers or characters or

names, etc. Their actual semantics are revealed upon functional invocation.

- 10-

iii) Functional'Applicative programming.

AI programs consist of functions defined in mathematical formats. Effectively, data

and functions are all symbols, which makes it possible for them to be intermixed giv­

ing referential transparency.

iv) Dynamic storage allocation.

The basic storage unit of a list is a cell. The simplicity of the cell data type assists

the creation of complicated information structures. The non-deterministic nature of

AI problems, e.g the next move of a chess game, renders predefined variables inappli­

cable. The advantage of dynamic storage allocation is the ability to "create" cells on

demand (when needed).

2.2.2 Control Structures

i) Pattern matching.

It is used to identify specific symbols and to determine control. In practice, most

existing AI systems are pattern directed e.g. Hearsay-II[22], for speech understand­

ing.

ii) Logic programming.

One type of pattern-invoked control mechanism of particular interest is production

rules. Typically of the form :

IF condition THEN primitive action.

The condition is usually a set of predicates which examines properties about the

current state and the primitive action is some simple operation that changes the

current state. If the predicates are positive then the primitive action is executed.

Systems using production rules to transform their state are sometimes known as state

automata'.

t Automata usually refers to the class of systems that operate on discrete data representations in
discrete time intervals.

-11-

iii) Deduction mechanism.

The provision of forward- and/or backward-chaining capability aids the process of

deduction. Forward and backward chaining are steps taken to solve a problem. If

reasoning starts from a set of conditions and moves toward some conclusion, the

method is known as forward chaining. If the conclusion is well defined but the path

to the conclusion is unknown then backward chaining is employed to retrace the

route of reasoning. For a state automaton, forward chaining implies that the conjunc­

tion of predicate conditions is used to drive the primitive action (antecedent driven

[23]); on the other hand, the system states (i.e. primitive action) are known in a back­

ward chaining system, and they are used to derive the condition or goals (goal

driven).

No existing AI language provides all of these properties. Some languages do better

than others. Chapter six of Barr et al [7] gives a more detailed description of the

desirable AI language features with reference to several practical systems. Corlett

[24] suggests similar language features for AI programming. Moreover, from a

software engineer's point of view, Corlett also identifies features for a complete AI

programming environment essential for software development. There are many prac­

tical AI languages; but by far the most popular are LISP and Prolog. Table 2.2, (a

part extraction from [24]), compares the features of them with other common con­

ventional languages.

2.2.3 LISP

LISP [25] is one of the oldest AI languages which was designed and imple­

mented by John McCarthy at the MIT in 1960. It is a functional programming

- 12-

language. The idea of functional programming is borrowed from mathematics

theory. Its mechanism is simply to transform the range (or arguments) into the

corresponding domain (or solution) under some predefined mapping function. The

characteristics of LISP are:

 As its name suggests, LIST Processing, LISP is extensively based on list pro­

cessing.

 Simple but flexible data structuring is achieved by LISP using two data types

atom and list.

 It supports a small but well defined set of functional primitives, namely: CAR,

CDR, REPLACAR, REPLACDR, CON, ATOM and EQ.

 Dynamic and late bindings of functional parameters at run time and referential

transparency allowing intermix of program and data.

LISP was originally designed as a purely functional language but throughout the

years imperative features have been included into various LISP dialects. Some well

known LISP dialects are MACLISP the nearest kin to the original pure LISP by

McCarthy, FranzLISP [26] written in C by the University of California at Berkeley

which is operational on many UNIX hosts and CommonLISP the proposed standard

by the Defense Advanced Research Projects Agency (Darpa) of the U.S.A. The

differences that exist between each dialect are due partly to the variation in computer

hardware and the host operating systems .

t Control flow in imperative languages (e.g. PASCAL, C) is explicit and is governed by the
content of the program counter. They can be regarded as the high level representation of the Von
Neumann computer. In functional languages (LISP, FP) control is based on graph or string
reduction.

-13-

2.2.4 Prolog

Prolog [27,28] was invented jointly by Colmerauer and Kowalski in 1972.

Since then several implementations have appeared, each with a different syntax.

Some examples are micro-Prolog implemented at Imperial College, for Z80 based

microcomputers with CP/M operating systems, and C-Prolog [29] written in C and

portable to most UNIX systems. The concept of Prolog is based on PROgramming

in LOGic. The original objective was to facilitate automatic theorem proving using

logic deduction. Unlike LISP in which programs are formed out of collections of

functions, a Prolog program consists of a sequence of relations and rules describing

the problem domain. These form a database of information that can be queried or

added to. A mixed tracking mode is in built. Consider the rule :

X is_true_if (Y and Z are both true).

All capital letters are unknowns. In this case, the left hand side i.e. X is called the

goal and on the right hand side Y and Z are considered as subgoals. The criterion for

rule evaluation in Prolog is :

To reach a goal, all subgoals have to be reached or satisfied. When a subgoal

cannot be reached, backtracking is performed to search for another statement

that matches an earlier subgoal.

Therefore, control flow is governed by pattern matching - technically known as

unification in Prolog. In practice besides pattern matching, parameters are bound

during the unification process. Programming in Prolog is hierarchical and it is done

in small, self contained, individually testable chunks. List processing is also sup­

ported using explicit list data definition (i.e. [<atoms>] in C-Prolog).

- 14-

2.2.5 Software Tools

The trend in AI software technology is moving toward the design of high level

development tools. The role of these tools is to provide a rich programming environ­

ment as suggested in Corlett [24] : interactive environment, incremental coding,

integrated editor, crash proof systems, powerful debugging aids, pretty printing,

automatic riling, program understanding aids and extensibility, thus reducing the

time and effort of software development.
The technological achievement of software tools is assessed by Hayes-Roth

[30] using the graph shown in figure 2.2. Under his assessment productivity (in

terms of engineering hours per rule) has approximately doubled annually over the

last 15 years. This trend is likely to continue and more sophisticated tools will be

created and constantly improved under practical feedback. In the figure five succes­

sive technological advancements are identifiable. They are "programming

languages, such as Lisp; programming environments, such as InterLisp; research

tools, such as Emycin; commercial tools, such as S.I; and anticipated generic

knowledge systems that incorporate a user's own knowledge into a prefabricated

heuristic problem-solving package like a personal planner." [19] The design and

development of AI tools and their applications are expected to dominate the

industrial/commercial market in the short term future. By 1990, as predicated by

Suydam [31], a total amount of over 800 million dollars will be the value of the

market.

AI languages and high level software tools expedite the process of problem

solving. This is, however, achieved at the expense of degraded real time perfor­

mance.

- 15-

23 Garbage Collection

The major function of AI systems is to emulate the human procedure of

deduction/reasoning. Internally, the process of deduction/reasoning requires storage

cells which act as vehicles to transport rules and ideas. These cells are "created"

dynamically. They are mostly empirical entities and are often abandoned immedi­

ately after their utilisation. Dynamic cell allocation heavily degrades system perfor­

mance. Physically, storage media have finite capacity - allowing memory cells to be

allocated continuously, would eventually result in storage being exhausted. The pro­

cess of continuous memory allocation is prevented due to congestion created by use­

less cells "living" in systems. Book-keeping strategies are specially devised to iden­

tify useless cells, or garbage, and recycle them for later usage. These strategies are

technically known as garbage collection. Although garbage collection successfully

relieves storage congestion, it creates a problem which affects the overall system per­

formance. High level processing is frequently forced to halt in order to await the

completion of garbage collection. This unpredictable process interruption can make

AI software unsuitable for real time applications, for which most engineering sys­

tems are designed.

2.4 AI Hardware

The potential of AI techniques is gradually being realised not merely in

research and development but also in office and factory applications. Increasing

market demands for fast systems have urged the launch of a whole new range of AI

machines. The design of these machines is based on one of the following four sys­

tem configurations: VLSI processors, LSI systems, coprocessor systems and non

Von Neuman architectures. In the following sub-sections, examples of each

-16-

configuration are given.

2.4.1 VLSI AI processors

One major trend in processor design is the emphasis on targeting at and support

for high level languages. Under this trend, a whole new range of VLSI AI processors

are being designed to facilitate AI programming. The design approach for these pro­

cessors focuses on two methods:

i) design and implementation of special architectures to support AI language

features efficiently. Some desirable AI architectures are suggested by Deering [32];

they are

 Tagged architectures to enable dynamic type checking at run time. Functions

and data are intermixed, at the language level they are indistinct and known as

symbols. At machine level, however, steps have to be taken to reveal their

types prior to passing them into another function. Conventionally, this is per­

formed sequentially and thus creates considerable delays. The concept of a

tagged architecture is to sacrifice a few bits of a word for type identification.

Parallelism is exploited by monitoring these bits with dedicated hardware.

 Generic machine instructions which make use of the results of dynamic type

checking. Only one instruction is necessary for more than one type of data.

The resultant signal from type checking is used to direct the execution unit to

the appropriate microcode. This minimises the instruction set thus simplifying

AI programming.

 Use of associative memory. This is particular essential for executing Prolog

software to expedite the unification process. Instead of memory accessing as in

conventional devices using addresses, associative memory is accessed by

- 17-

content - Content Addressable Memory (CAM). The roles of the processor

with the CAM are to read/write to/from the memory, to supply the required

searching keys and to interact in case of multiple hits. All these can be

achieved with a proper I/O interface.

 External communication is necessary for message passing and to interface with

other devices - memory, similar processors, coprocessor systems, etc.

ii) adoption of conventional computer design techniques to increase processor

throughput and to reduce design time. A widely used approach is to emulate a

Reduced Instruction Set Computer (RISC) [33]. The salient features of the RISC are

 a simple instruction set with fixed length instructions reduces decoding time;

 extensive use of internal registers to reduce off-chip communication; in fact, the

only instructions which communicate off-chip are LOAD and STORE;

 register windowing which permits internal registers to be employed for tem­

porary storage (e.g. local variables);

 single cycle execution is possible because operands are internal;

 writable control store for directly compiled object code;

 pipeline architecture with delayed branches - the instruction after a branch is

not executed until the branch destination is resolved,

2.4.1.1 Examples - SCHEME and SOAR

SCHEMES 1 [34,35] is a VLSI processor chip, designed at Massachusetts Insti­

tute of Technology (MTT), which endeavoured to map a LISP variant, SCHEME,

onto silicon. Both direct interpretation and compilation of the language are sup­

ported. A two level microcode is used for program execution and garbage collection.

- 18-

Garbage collection is based on the mark and sweep strategy. Special architectural

features of SCHEMES 1 are assignment of particular registers to specified hardware

functions, concurrent invocation of functional registers, dynamic type checking using

extra tag bits to type each data item and support of multiple SCHEME environments.

The SOAR processor[36] is another example of a VLSI machine for AI appli­

cations. It was designed at the University of Berkeley to support the language

Smalltalk on a RISC. The target of the design is to execute the language efficiently.

This is done by concentrating on three areas :

i) Dynamic type checking allows instruction execution and type checking to be

performed in parallel.

ii) A register windowing scheme (a RISC feature) is used for procedural calls,

iii) Hardware support for the garbage collection process [37].

Both SCHEMES 1 and SOAR have made valuable contributions to the evolution

of VLSI AI processors. Texas Instruments Inc. (TI) is one of the pioneers of com­

mercial VLSI AI systems. A LISPchip is expected to be launched in mid 1986 [38].

It is implemented in sub-2-(i CMOS technology and contains half a million transis­

tors. The internal clock speed of the chip is 40 MHz with a power consumption of

one watt. The hardware characteristics of the chip are : IK internal word general

purpose scratch pad memory, a push down list buffer and 100K bits of RAM. The

design is based on the TI's Explorer LISP Machine [39]. It is claimed that the LISP

chip's performance is five times better than the Explorer. The processor chip, at

completion, will be used as a CPU for a complete workstation - Compact LISP

Machine (CLM) (cf Section 2.4.2).

- 19-

2.4.2 LSI Systems

LSI systems are machines with proper organisation using existing hardware.

These machines are designed for specific languages and based on two approaches :

i) use of conventional processors operating with a fast clock rate; and

ii) use of customised VLSI processors (Section 2.4.1).

AI workstations are grouped under this category. They are self-contained and mainly

designed for debugging, testing and development of AI software. There are growing

numbers of commercial AI workstations. Some examples are :

 AI workstations based on conventional processors,

The Tektronix 4400 series LISP machines are constructed using conventional

Motorola 68010 and 68020 microprocessors. The performance of LISP (both Franz

and Common) on these machines is between Franz LISP on a VAX and on a Sym­

bolics 3600. The Tektronix target is the low-end of the AI market, to supply a range

of low cost AI machines with reasonable system performance. There are basically

three machines in the 4400 family : the 68010-based 4404, the 68020-based 4405

and the 4405 upgrade 4406 which is a 68020 based machine running with a 10MHz

clock with additional floating point and graphics capabilities. [31]

The DEC AI VAXstation is based on the company's MICRO VAX II central

processor. The local LISP dialect is VAXLISP and the machine runs on a VMS host.

Another AI software package supported is OPS5 a VAX/VMS version of OPS, an

expert system shell. [40]

 AI workstations based on VLSI processors.

The LISP Machine is a high performance personal computer that is microcoded

to handle LISP operations, such as list manipulation and function calls, efficiently.

-20-

The idea of a LISP Machine originated from MTT where the first prototype was con­

structed [41]. An interesting feature of this machine is the existence of a two-bit

CDR code for each list cell. The advantage of CDR coding [42,43] is that it is possi­

ble to save a word of space in any cell in which the CDR (the tail element) is either

an end or points to the subsequent cell. Commercial machines have been constructed

[31] adopting MIT's design philosophy.

Symbolic Inc. delivered the 3600 computer initially in December 1982 [44] ;

and most recently, an updated version 3610AE has been announced [45]. In contrast

with its predecessor and other contemporary machines, the 3610AE is targeted not

just at research and development but also at office and factory applications. Low-

cost and small size are the key design issues. The machine is implemented with

seven 2-|im CMOS gate arrays on one board. On top of this, the cabinet houses

three other hardware boards: the input/output board, the console board and the Ran­

dom Access Memory (RAM) board. Technically, there are two main attractive

hardware features: tagged architecture and an "ephemeral garbage collector"[45] (a

variant of Ungar's algorithm[37]). The local programming dialect is Symbolics

LISP.

Under the sponsorship of the Defence Advanced Research Projects Agency

(Darpa) in the USA, a design project for a Compact LISP Machine (CLM) [46] is

scheduled by Texas Instruments Inc.. CLM is an updated TI's Explorer workstation

and consists of four module types:

i) a 32 bit VLSI processor (c.f. Section 2.4.1);

ii) a memory array made up on 72 256x1 dynamic RAMs, giving a total capacity

of two megabytes;

-21-

iii) a Multibus interface module; and

iv) a cache/mapper module which contains a high speed data cache to maximise

processor to memory bandwidth and minimise bus traffic; and also, an address

mapper which translates virtual addresses.

Again the main design goal is to inject AI technology into practical fields. The

machine is expected to be fully operational by September 1986.

2.4.3 Coprocessor Systems

The design objective of the coprocessor approach is to transform conventional

general purpose processors into reasonable AI machines. A coprocessor system

incorporates special purpose hardware for dedicated functions. This approach is fre­

quently adopted in memory management and arithmetic acceleration. Two examples

of existing AI coprocessors are given in the following paragraphs.

In some AI systems, reasoning is achieved by using fuzzy logic. Fuzzy logic

assigns degrees of certainty for a given decision. On these values logic operations

are applied to derive a final conclusion. AT&T Bell laboratories have announced a

fuzzy-logic inference engine on a single chip [47]. The chip is initially designed in

2.5 }J.m CMOS technology and in the future it will be refined to 1.25 Jim. The chip is

claimed to be able to process 16 inferences simultaneously and put out 80,000 infer­

ences per second. The application in mind is for personal computer based robotic

control.

A project of the Alvey programme has produced the Generic Associative

Memory (GAM) chip [48]. The design and development are being carried out in

Strathclyde University, Scotland. The function of GAM is to achieve content

addressing, in which a symbol can be accessed by its attributes/properties. It is

-22-

intended to assist AI workers in vision processing and natural language systems. A

prototype has been implemented using NMOS and it will be converted to high speed

CMOS in the near future.

2.4.4 Non Von Neumann Architectures

Von Neumann machines are sequential and control driven - program execution

is implicitly governed by a program counter. Conventional imperative languages

[49], e.g. Fortran and Pascal, are designed to be used on these sequential machines.

They are restrictive in that they provide minimal parallelism. Concurrent control

flow structures are possible in some systems, such as the fork()/waitQ function pair

in C. Nevertheless, they still have to be called explicitly.

Special AI language features are unsuited to conventional architecture. A new

generation of computer architectures is being considered to facilitate the application

of AI languages. Demand flow, data flow[50] and logic flow are all potential archi­

tectures for the next generation of computers.

2.4.4.1 Demand Flow Architecture

Demand flow (or reduction) architecture is based on the recognition of reduci­

ble expressions and the transformation of these expressions. Program execution is

achieved by traversing the program and replacing reducible expressions by others

that have the same meaning; until an indivisible literal expression representing the

result of the program is reached. Therefore, the execution sequence is governed by

the reducibiliry of an expression.

Typical demand flow machines are based on distributed computing with multi­

ple processing elements (PE). Each PE has its own memory, execution unit and

communication interface module. Program execution is achieved by message

-23-

passing between PEs which are connected via the communication interface modules

(c.f. the INMOS Transputer [51]). The connection network, i.e. topology, of PEs is

process dependent. Popular topologies are tree structures and vectors .

The most well known project for demand flow architecture in Britain is ALICE

[52] - Applicative Language Idealised Computing Engine - at Imperial College, Lon­

don. Functionally, ALICE is a reduction machine featuring parallel language evalua­

tion, packet graph representation and lazy evaluation. It is implemented with multi­

ple INMOS Transputers. Very recently, extra government support has been

approved to develop ALICE. A project, officially known as Flagship [53], is running

jointly between ICL, Plessey and Imperial college. The objective is to construct a

fifth generation computer based on ALICE using multiple INMOS Transputers.

In fact before ALICE, a similar philosophy was adopted at the University of

Kent at Canterbury where a loosely coupled multiprocessor system, based on M6800

microprocessors - PLEAIDES [54], was implemented. The prototype verified the

feasibility of distributed processing for knowledge manipulation.

2.4.4.2 Data Flow Architecture

The sequencing constraints of data flow architectures are tied to the flow of

data. Instructions are typically packets consisting of slots for the required number

of arguments, the destination addresses and instructions' identities. Destination

addresses are specific argument slots of other instructions. During execution, instruc­

tions remain idle until the required arguments have arrived. Results are, at the end,

placed in each destination address for further computation. Enhanced system

t PE are linked like binary trees; with each PE having a head and a tail neighbour.
tt PEs are connected in series.

-24-

throughput is achieved in two ways :

i) Instructions with independent arguments are executed in parallel with multiple

processors.

ii) For a stream of instructions, whose argument dependence is accumulative, a

pipeline configuration is adopted.

Commercial cascadable data flow processor chips are starting to appear. At

present, their applications are mainly in number crunching applications, such as

JIPD7281 designed for image processing [55]. Their AI potential, however, remains

[49].

Basically, a data flow machine consists of three functional units : a matching

unit, a fetch/update unit and an execution unit. Operation is based on token passing

and packet communication. Initially, the matching unit ensures that the required

arguments have arrived for an instruction. When matched, a token is passed down

stream to activate the fetch/update unit. The latter sends a packet to the appropriate

processing element, within the execution unit, which executes the instruction and

returns the results to the destination addresses through the matching unit where the

computation cycle resumes.

2.4.4 J Logic Flow Architecture

Another possible candidate for the architecture of fifth generation computers is

logic flow (or pattern driven). The concept is derived from

-25-

IF <condition_l> AND
<condition 2> AND

<condition_n>

THEN <execution>

control structures. An execution is fired only when the conditions (or required pat­

terns) are satisfied (matched). This forms the basis for Prolog machines.

2.4.4.4 An AI Machine of the Future

Computers with novel non Von Neumann architectures are most suitable for AI

programming. These machines are tailored to support AI languages best; contrasting

with classical imperative languages which are designed to suit the underlying

sequential architecture.

Novel architectures, however, are less general purpose. They are designed to fit

a particular class of language or application. The reduction machine efficiently exe­

cutes functional/applicative languages (e.g. LISP), the demand flow architecture is

best suited to single assignment languages (e.g. LUCID) and logic flow architecture

is designed to facilitate logic programming (e.g. Prolog).

In practice, problems frequently arise which are best tackled by a combination

of the above language types. It is conceivable that a distributed computing system is

the best solution. The computing system could consist of a top level controller and

a bank of heterogeneous execution units. The controller could monitor the incoming

instructions and allocate them to the appropriate execution element.

2.5 Hardware Complexity

At present, sequential machines are firmly established in engineering; most

-26-

working systems are based on this approach. On the other hand, the state of technol­

ogy for novel architectures is still in its development stage. Until the technology of

novel machines is fully developed and their concepts are well understood, Von Neu­

mann architecture based machines will persist for engineering applications.

Two different design approaches exist for AI systems based on the Von Neu­

mann architecture.

1) VLSI AI processors and LSI systems both consist of customised standalone

hardware. Low power consumption, increasing bandwidth and compactness,

together with decreasing design and fabrication costs have made the VLSI

design approach most promising for the future. Nevertheless, as for novel

architectures, VLSI AI processors are still in their infancy. More experience

has to be gained, before they would be accepted by engineers. LSI systems are

based on the proper configuration of existing technologies. These systems are

meant to be design aids for AI software programmers, but they are too bulky to

be used for many engineering applications.

2) Coprocessor systems are hardware translations of frequently used software

functions. By interfacing these to existing Von Neumann computers, system

performance is improved. For commercial reasons, vendors often produce

coprocessor systems compatible with their own range of computers. Engineers

who wish to employ specific coprocessors would have to install the complete

computer system. In addition, the running and replacement costs of the systems

could be very high.

Summarising, there are two shortcomings in existing AI technology which have

been hindering engineers from using them in practical real-time applications. They

are identified as :

-27-

 Garbage Collection which causes variable system interruption;

* the bulk and complexity of existing AI hardware.

The aim of this project is to provide a simple yet efficient solution to these problems

using existing standard hardware. Before proceeding any further, the garbage collec­

tion problem must be studied in some depth with emphasis on its significance for

real-time engineering applications. This is considered further in the next chapter.

-28-

User Defined
Data Structures

Procedures
Recursion

Symbol
Manipulation

List Processing
Dynamic Memory

Allocation
Pattern

Matching
Function as

Data
Function/Data

Intermix

LISP

V— T--^T—
V-^r~
V
X

V
V

PROLOG

V— ? —— ̂ —
V— 3 —
V
V
V
X

FORTRAN

X— ̂ —
X

X
X

X

X

X

X

c
Vnr~T-
X
X

X

X

V
X

BASIC

X
X
X

X
X

X

X

X

X

Table 2 2: Comparison of Features of Various Languages [24].

-29-

Human

Knowledge

Processing

^//y///, ''//.-• // //s / //.'//;-•'///••/< 1
/// S///// •-' S/ // -' / / / S // <-', • - - • / . \

ProWenr .fyw//////^?///////// '/. '/,',- ' - Jy///^^/^'-^.^- '/.-/-.- \
////////////////////.• /..-.. '. X/'- j /-f 'y's//'l'/,+,//s\/'s''•''/•'-/f< ''' -1 ''''•" / »
X /> •- x X ,' ^« 4 i * Jwi «v^ >«w4- >»-'^J '• -•' . •• -x .i

'////////.••///////,'.''s///.''/ s*/s/-' s -' /4/ • •'.
•'//S/Ss K-**t*S\&t

Direction of Boundary Movement

Figure 2.1: Alty' 5 Automation Model [3].

-30-

Engineering

hours/rule
/N

10000

1000_

100 —

10'

0.1

-70 Programming Languages (USP)

70-75 Programming Environments (InterUSP)

75—80 Research Tools (Emycln)

80-85 Commercial Tools (S.1)

85—90 Generic Knowledge Systems

1970 1975 1980 1985 1990

Figure 2.2: The Technological Advancement of AI Software [30].

-31-

CHAPTER in
Garbage Collection

Poor real-time response has made AJ systems unsuitable for many engineering

applications. This is caused by the unpredictable and variable interruptions incurred

by the garbage collection process. This was identified in Section 2.3. The aim of

this project is to provide a simple yet efficient solution to improve an AI system's

real-time performance. In this chapter, an overview of classical garbage collection

strategies is presented. Their relative merits are considered and from time distribu­

tion graphs, desirable features of a practical algorithm suitable for real time applica­

tions are identified.

3.1 Background

Variables in AI programming are represented as Symbols. Each symbol has

properties and/or associations which are represented by list data structures. Execu­

tion of AI software is extensively based on list manipulation. The elementary

storage unit of lists is a cell. A cell, figure 3.la, consists of a HEAD, a TAIL and

several TAG bits. HEADs and TAILs may contain either pointers to other cells (cell

pointers) or atoms. The amount of storage required for a HEAD/TAIL is machine

dependent. Literally, an atom is an indivisible entity which can either be a number,

a word or a NIL, a special atom which marks an end of a list. TAG bits serve vari­

ous purposes depending on the application. They can contain information for type

identification, status of garbage collection (mark and relocate details, c.f. Section

3.2), compaction (CDR-coding), capabilities and "age", of a cell. Using cells as

building blocks complicated information frameworks, such as lists, can be con-

-32-

structed. For example, LISP [25] a widely used AI language is designed for LISt

Processing. A list is a data structure, widely employed in AI, which enables associ­

ation of properties and values with symbols. The syntax definition of a list and an

example of a symbol with its associated list structure are shown in figures 3.1b and

3.1c,

During the course of reasoning cells are dynamically being "created". These

cells are used to transport ideas and "thoughts" and they become useless after their

roles have been fulfilled. If unwanted cells are not released the finite physical

storage of the system would be exhausted. These useless cells are called garbage.

The process of Garbage Collection (GC) is to identify garbage cells and recycle

them for future usage. The rest of this chapter is devoted to providing a survey of

garbage collection methods.

3.1.1 A Theoretical Machine

A theoretical machine can be used to assist understanding of the various gar­

bage collection schemes. It is depicted in figure 3.1.1. It consists of two parts : the

processor (P) and the cell memory (CM). Within P, there are several internal regis­

ters, called roots (RO,Rl,....Rn). Each root is a pointer to the origin (the first cell) of

a list in the CM. For instance, it may point at a property list, an association list, a

local environment, etc. The CM is a reservoir of cells. Graphically, a cell is labelled

(00,01,02...) and it consists of two outgoing arcs - the HEAD (left) and TAIL (right).

Above the cell label, tag bits are situated. Dynamic memory allocation is performed

upon these cells. Garbage cells are created by pointer redirection or root redirection.

In either case, the list which was previously linked to the pointer or root is no longer

accessible by the system (assuming it was not pointed to by any other pointers or

-33-

roots). By definition, the constituent cells of an inaccessible list are garbage - the

target of the GC process.

3.2 Classical Algorithms

The idea of garbage collection is closely associated with AI programming. In

conventional programming languages, dynamic memory allocation is achieved by

explicit function calls at run time; such as, allocQ in C and new() in PASCAL. Users

are responsible for ensuring redundant memory is returned to the operating system

by subsequent function calls, e.g. free() and disposeQ for C and PASCAL, respec­

tively. The lack of full automation and user transparency in memory allocation are

key factors rendering imperative languages unsuitable for AI applications.

Garbage collection has always been one of the active research topics in AI stu­

dies. Knuth[56] and Standish[57] are excellent introductory sources and in

Cohen[58] a thorough overview of existing theory and bibliography on the subject is

provided. Three of the classical algorithms are described below.

3.2.1 Reference Count Method

In this case, the TAG bits of a cell contain a count of the number of cell

pointers which are pointing to it at any instant. When a link is created between two

cells, the TAG of the pointer is incremented. Conversely, the TAG is decremented

when a cell is discarded. There is a special list, the FREE_LIST, which chains

together all unused cells in the system. The process of allocation extracts a fresh cell

from the FREE_LIST. When the TAG count is zero, implying a cell is not associ­

ated with any lists, it is then returned to the FREE_LIST.

Referring to example GC1, figure 3.2.1, originally, a list is composed of cells

00, 05 and 09 whose root is RO and the rest of the cells are chained together in the

-34-

FREE_LIST. At some time, cell 09 is dissociated (the dotted arc) and its TAG count

falls to zero. Subsequently, this cell will be placed at the end of FREE_LIST and

pointed to by 03.

Because of its simplicity, the reference count approach is a favourite solution

for many systems. Nevertheless, the major disadvantage of this method is that it

cannot cater for recursive or self-referential lists. Recursive lists are widely used in

practice (e.g. iteration). They are formed by cells pointing backward to their fellow

constituent cells of the same list, forming entangling circular structures. In such

cases, the reference counts can never drop to zero: To be able to recognise and recy­

cle recursive lists, practical systems include a second garbage collection scheme -

mark/sweep or copying. Normally, cells are collected "on-the-spot", immediately

after they are discarded. In addition, when the population of the FREE_LIST falls
below a preset level, the second scheme is invoked.

3.2.2 Mark and Sweep Method

When there are no more free cells, i.e. the FREE__LIST is empty, the process of
GC is invoked. GC is performed in two phases :

i) Marking - initially, all roots are marked by setting a TAG bit. Traversing all

lists reachable from the roots, constituent cells are marked. The mark phase is

terminated when all accessible cells are marked.

ii) Sweeping - unmarked cells are identified, reclaimed to the FREE_LIST and

finally, marked cells are unmarked preparing them for the next cycle.

Example GC2 (figure 3.2.2) shows snap shots just at the end of the two phases.

There are various ways to realise the mark and sweep algorithm [58].

Effectively, they are all identical in function and differ only in the marking schemes

t Example: The list formed by cells 02 and 08 in figure 3.2.1.

-35-

used. In large systems which support virtual memory, two more phases are included -

Relocation and Update. These phases help to maintain cell locality thus increasing

the hit ratio, which in turn reduces the rate of fragmentation and thrashing. Gen­

erally, the overall collection time (G) is assumed to be oN + pM, where N is the

number of useful cells, M is the total number of cells, and a and P are constants, a

is dependent on the time required to mark a cell and subsequently unmark it in the

sweep phase and P is dependent on the time to put an inaccessible cell into the

FREE_LIST. In practice, a is much bigger than p, thus G = ccN is a close approxi­

mation. This implies that as the number of useful cells increases, the systems' per­

formance will be degraded by the frequent and time-consuming GC process. More­

over, another problem of memory utilisation results from the large amount of

memory which has to be reserved for stacking during the course of list traversal. In

the worst case the stack may amount to M words.

The simplest form of mark and sweep collector is the one proposed by Wins-

ton [59]. This algorithm traces the complete list structure by first marking the tail

branches until it comes to a halt by an atom or a marked node; then it resumes trac­

ing the heads from where it originally branched off. The system stack is extensively

used for storing return addresses and each node is visited twice: once before marking

the tail and once before marking the head. The major drawback of this type of collec­

tor is that it uses extra storage for stacking return addresses. In the extreme case, if a

list space of N list cells has to be completely marked, the size of the stack required

would be that of the list space itself (i.e. N). Provision of such a huge additional

amount of memory can greatly reduce the effectiveness of garbage collection.

Deutsch, Schorr and Waite [60] had independently designed a similar marking

algorithm without incorporating a stack. This algorithm was later refined by Knuth

-36-

(algorithm E in [56]). The main idea of this method is that the nodes of a tree can be

inspected by reversing successive links, using three pointers (p,q,t), until leaves (i.e.

atoms) or already visited nodes are found. The link reversal can then be undone to

restore the original structure of the tree. Initially, p is set to point at the root of the

tree, q is set to point at the contents of the head of this root and t is set to NIL (a spe­
cial LISP atom). The first cell is marked, t is placed in the head of the cell: this acts
as the termination marker during the reverse trace; and p is set equal to q. This algo­

rithm then moves to the next cell by setting q to the head of p and t equal to p. When
the bottom of the tree is reached the same procedure is carried out in reverse until the

NIL termination marker at the root cell is encountered. At any node, the program has
a choice of two routes: either via the head or the tail. To distinguish the routes that it
has taken, the numeric atom bit is used. On branching from the head, the numeric
atom bit is set. In this way, all the numeric atom bits will have been set on tracing
the head links and these must be cleared during the reversal. Each time the head of
any node has been traced, the tail of that node is immediately traced by the same
method.

Although, the link-reversal algorithm has been widely accepted as a standard
mark/sweep garbage collector, it is by no means ideal. There are two main

identifiable drawbacks:

Dl Each node is being visited three times and extra effort is required to set the
numeric atom bit, thus rendering the technique less efficient.

D2 Because contents of nodes are modified during link-reversal, it is strictly

required that garbage collection is completed before memory accessing can

-37-

resume. This is annoying and is most apparent in multi-user systems where

users may experience interruptions lasting minutes. In extreme cases, succes­

sive collections may take place with little actual program execution between

them, making continued computation impractical.

To overcome the second drawback (D2), Dijkstra et al [61] and Kung et al [62]

have separately come up with a parallel mark and sweep scheme. Both schemes use

two processors, one known as the mutator and the other the collector. The collection

algorithm used is called shading or colouring which requires two extra bits per cell.

The information stored in those bits may be thought of as representing three colours

white, grey and black'. Initially, all cells are white and marking begins by stopping

all processes and shading the ROOT nodes grey. Grey nodes are shaded by perform­

ing the two following indivisible operations. Firstly, the offspring are shaded grey

and second, the already grey parent cell is shaded black. After the marking phase

has begun, any processes which have pointers to at least one black node may be res­

tarted. When the marking phase can find no more grey cells, the mark phase has

ended and the collection of all white cells still left in the system can begin. Note that

it is illegal for black cells to point to white ones. Therefore should a running process

attempt to perform an operation which would violate this principle, it must first

shade the offending white node grey. After the collection process has been com­

pleted the interpretation of the colours is reversed, thus saving the system from hav­

ing to clear the mark bits of all white cells before the next cycle begins.

t Algorithm designed by Kung [62] based on four colours. Besides white, grey and black an
additional colour 'off-white' was defined which is possessed by all free cells.

-38-

3.2.3 Copying Method

No FREE_LIST is required with copying type collectors. Memory is divided

into two semispaces: the TOSPACE and FROMSPACE [63]. List manipulation and

memory allocation always operate on the TOSPACE. A special pointer (B) marks

the next available free cell. When the content of B is NIL, free cells have been

exhausted thus GC is automatically initiated. Firstly, the two semispaces are flipped

• the previous FROMSPACE becomes the present TOSPACE and the previous

TOSPACE becomes the present FROMSPACE. Cells accessible from all the roots

are useful by definition, and they get copied into the present TOSPACE. GC is

finished when all accessible cells are copied over.

Figure 3.2.3 is an example of a copying collector. There are a few notable

differences from the previous examples:

• Extra storage space is required".

• Free cells are allocated to incremental addresses.

• The order of a list is altered although its information is retained.

The copying scheme moves reachable objects from OLD to NEW and ignores

the others. The collection time is simply given by *yN; where y is a constant related

to the time for testing a cell, deciding that it resides in the FROMSPACE and later

moving it into the TOSPACE. In common with the schemes already described,

when the number of reachable cells has grown substantially, the copying scheme

takes embarrassingly long for collection. Inevitably, this is usually the case because

intelligent systems are constantly being 'educated' or updated with new knowledge.

To overcome this drawback, researchers [37,64] have further amended this scheme

t Compaction techniques [43] have been designed to reduce the amount of storage required.

-39-

by differentiating between reachable cells on the basis of their period of existence.

By doing so, the longer a cell has existed the less frequently it is subjected to gar­

bage collection. In particular, once a cell has persisted for several cycles of garbage

collection, it is considered old and archived in a permanent region [37].

The idea of copying type garbage collection was first suggested by Fenichel

[65] and Cheney [66]. The most promising algorithm which was designed to over­

come the previously stated drawbacks (D1,D2 of the mark and sweep method) is the

one originally used by Fenichel and Yochelson in an early Multics LISP [65],

elegantly refined in [66], and applied by Arnborg to SIMULA [67] (a LISP system).

The principle is as previously described, i.e. it bisects the list space into two sem-

ispaces; and the moving algorithm works as follows :

During the execution of the user program, all list cells are located in the

FROMSPACE. When garbage collection is invoked, all accessible cells are traced,

and instead of simply being marked, they are moved to the other semispace. A for­

warding address is left at the old location, and whenever an edge is traced which

points to a cell containing a forwarding address, the edge is updated to reflect the

move. The end of tracing occurs when all accessible cells have been moved into the

TOSPACE and all edges have been updated. Since the TOSPACE now contains

only accessible cells and the FROMSPACE contains only garbage, the collection is

done and the program execution can resume with cell allocation proceeding in the

former FROMSPACE.

This method is simple and elegant because :

• it requires only one pass instead of two as in the mark/sweep collector,

• it requires no collector stack.

-40-

The stack is avoided through the use of two pointers, B and S. B points to the first

free word (the bottom) of the free area, which is always in TOSPACE. B is incre­

mented by the procedure COPY, which transfers old cells from FROMSPACE to the

bottom of the free area, and by CONS which allocates new cells. S scans the cells in

the TOSPACE which have been moved, and updates them by moving the cells they

point to. S is initialised to point to the beginning of TOSPACE at every flip of the

semispaces and is incremented when the cell it points to has been updated. At all

times, then, the cells between S and B have been moved, but their heads and tails

have not been updated. Thus when S=B all accessible cells have been moved into

TOSPACE and their outgoing pointers have been updated. This method of pointer

updating is equivalent to using a queue instead of a stack for marking, and therefore

traces a spanning tree of the accessible cells in breadth first order.

Although no collector stack is required, the efficiency of memory usage is only

*A since 2N cells are required for only N useful cells. Because of this storage

inefficiency, at one stage, copying collection had nearly disappeared from the

research scene. Baker's [63] analysis of his own algorithm has proved that the

storage utilisation of copying collectors compares rather favourably with other algo­

rithms, especially when compaction (e.g CDR coding) techniques are employed.

This can reduce the amount of memory required considerably. Moreover, Baker has

also proposed an incremental version of his algorithm which allows garbage collec­

tion to be performed in 'real-time' even on a serial computer. The principle is to

interleave garbage collection with list processing.

Today, the design of novel garbage collectors is almost entirely Baker-

oriented. One most promising implementation is the idea proposed by Liberman

[64] : the Generation Garbage Collector. Studies have revealed that many

-41-

temporary cells exist in AI programs and they generally have short lifetimes.

Exploiting this observation, Liberman's algorithm segregates cells into generations.

Physically, a generation is a small region of memory the size of which is a crucial

design factor. Each generation has its own pair of semispaces. Generations can be

individually collected without disturbing older ones; thus younger generations are

collected more often. This greatly reduces the time spent collecting older, more per­

manent cells. Moreover, the processing of garbage collection of one generation does

not inhibit the instantiation of the others. Several individual generation collections

can occur at different times creating a wave of garbage collecting processes.

Liberman drew an analogy of the generation collection scheme with

'renting/buying'. His algorithm ".. can be thought of as 'renting' memory space

where the storage management cost for an object is proportional to the time during

which the object is used. Traditional methods are more like 'buying' memory

space, since the cost for an object is paid once and is always the same, regardless of

how much the object is used. When large numbers of objects are used, although

each object may be used only for a short period of time, the renting strategy will cost

less overall than the buying strategy." [64] The simplicity and effectiveness of this

algorithm has made it widely accepted. This algorithm has formed the basis of the

garbage collector in the MTT LISP machines and also its commercial offsprings e.g.

SYMBOLICS 3600.

3.2.4 Discussion

Despite its inability to identify recursive list structures, the reference count

method is used in small systems because of its ease of implementation. For large

practical systems, both the copying and mark and sweep collection schemes are

-42-

widely used. Each of them have many variants [58] which have their individual pros

and cons. No formal comparison between the performance of the two methods has

ever been published. The mark and sweep scheme is slightly more complicated and

takes a longer time for collection. This is due to the additional effort required to

maintain an explicit stack. In larger systems, which incorporate relocation and

update phases, the situation becomes worse. On the other hand, copying schemes

inter-mingle these phases and employ an implicit 'stack' (the FROMSPACE - func­

tionally, it is in fact a queue). By doing so, the collection time is generally shorter.

The penalty paid is that a larger amount of memory is required - normally twice that

of the original cell space. Paradoxically, it is shortage of memory which demands

garbage collection in the first place! Data compaction techniques are frequently

employed to alleviate this predicament. For example, Baker [63] has used cdr-

coding with a copying collector and the storage overhead has been verified to be

minimal. Recent work on GC on the basis of "objects' life times" [64] was directed

towards reducing storage overheads. By archiving permanent cells, the cell memory

is less congested - thus leaving the list processor more "room to breathe" and invok­

ing GC less frequently.

3.3 Garbage Collection in the Time Domain

In engineering design, timing is frequently a crucial design factor. Before

selecting the most suitable collection scheme, it is instructive to study the time distri­

bution graphs, shown in figure 3.3. They reveal the distribution of time on a machine

shared between GC and list processing. These graphs are produced under the follow­

ing assumptions:

1 When a system has been operating for a long period of time, it is safe to

-43-

assume that the average rate at which new cells are added to a list and the aver­

age rate at which cells arc released will be equal [68]. Under this condition, the

system is in a steady state.

2 For simplicity, it is further assumed that the system is continuously requesting

new cells (CONS).

In terms of time, garbage collection schemes can be classified into the following

three categories:

3.3.1 Non-Real-Time

The process of GC is completely independent from main program execution.

When the memory space is exhausted, the main program has to be suspended until

garbage collection has taken place. The time distribution graph of this class of col­

lector is illustrated in figure 3.3a. As shown, the garbage collection time (G) follows

immediately after the list processing time (A). In LISP terminology, A is the total

time for CONS operations (assumption 2) before the next memory exhaustion. The

fraction of useful work done (FUWD) is defined as the ratio of the processing time

spent on memory allocation to the overall machine time (M), Le.

FUWD5 total allocation rime = A (3 .3. u)
overall machine time M

In the steady state (assumption Al), A is equal to G' , thus

A A A 1FUWD = — = -A- = —— = - (3312} M A+G 2A 2 P^.i.z;

Both the copying and mark and sweep schemes have non-real-time variants. Which­

ever algorithm is adopted, the main program will have to be stopped during garbage

collection and for large systems (i.e. with a large N) the time taken for this activity

might well be hours. In most engineering applications, such long interruptions are

t Assume that the time to create a cell equals the time to recover a cell.

-44-

intolerable.

3.3.2 Real-Time

Garbage collection schemes in this category mostly work in multiprocessor

environments under mark and sweep strategies. The simplest configuration is a dual

processor system in which one processor is responsible for list processing (the muta-

tor [61]) and the other dedicated solely to garbage collection (the collector). The

two processors are running in parallel and theoretically, with no interaction. In prac­

tice, the mutator is occasionally suspended depending on what state the collector is

in when the former makes a request for a new cell. For example in [61], when the

free cell list is exhausted and the collector is still in the mark phase, the mutator will

be forced to wait until the first free cell becomes available. The exact time of the

pause varies depending upon how deep into active list space the collector has

traversed.

Figure 3.3c depicts this category in the time domain. Parallelism is achieved in

the overlapped portions of G and A. Ultimately, the goal of the design of this type

of collector system is to maximise the G/A overlap ratio. The aim is to achieve the

perfect situation of hiding G completely under A; thus making the collection process

totally transparent with respect to the mutator. Also notice that due to overlapping,

M is greatly reduced. There is occasional separation between G and A, in the por­

tions marked t 1 and u. They are the idle states of the mutator and their actual value

varies, with the worst case approaching G. At steady state, A and G are equal as

before, but M is no longer equal to their sum (usually much less), then the fraction of

useful work done is :

(3.3.1.3)

-45-

A FUWD greater than a half implies the mutator is more efficient and so can do more

work than in the non-real-time case.

The major difficulty in the implementing of this type of collector is the coordi­

nation between processors. Reported implementations [61,69,62,70] have their

own customised architectures with complicated protocols for traffic control which

improve the overall performance, but make programming very complex. Such

machines have been mainly used for research purposes and none have ever been

implemented commercially.

3.3.3 Virtual-Real-Time

The real-time performance of collectors in this category lies in the middle of the

previous two. In this case the collector deceives the list processor into believing that

the collection is always finished whenever the latter tries to make an access into the

cell space although in fact, garbage cells still exist in the system. This is achieved by
breaking up the overall garbage collection process into short bursts. Each burst
corresponds to the collection of one or more cells. Garbage collection is, effectively,
interleaved with list processing. Technically, this is known as incremental or "on-
the-fly" collection . In terms of time, it is illustrated in figure 3.3b.

As before, A and G are assumed to be equal. Incremental collection divides G

into small bursts, each with a small time interval g which is related to G as : G = Kg,
where K is the number of reachable cells collected in one burst. Similarly, allocation
is done in bursts. The overall machine time remains unchanged as in the non-real-

t Reference count systems are analogous to this approach. De-referencing a cell and
reclaiming it if its count drops to zero is equivalent to one collection burst. However, this time
burst is variable and depends on the depth into a list that the cell is located. Inevitably, this results
in the same unpredictability as a parallel collector.

-46-

time case. The only difference is simply the pattern of distribution. Not surpris­

ingly, FUWD is the same as the non-real-time case.

Intuitively, this type of collector seems to offer few advantages. Nevertheless,

it is widely adopted in many practical systems, (e.g. the current version of the M.I.T.

LISP machine is based on [64]). Frequently, A.I. systems function in an interactive

mode and interleaving garbage collection and list processing avoids intolerable

pauses. Another less apparent feature is the consistency of the collection burst time

g. This is an advantage over real-time collectors whose variable pauses could cause

unpredictability in system response. On the other hand incremental collectors

enforce a short but fixed upper bound on timing which ensures predictability thus

making the system more applicable to engineering situations.

3.3.4 A Practical Choice for Engineering Applications

From the foregoing discussion, it can be concluded that a practical garbage col­

lection system should exhibit the desirable properties of both the real-time and the

virtual-real-time schemes. These are:

PI FUWD must be greater than a half. This is achieved by maximising the G/M

overlap ratio, [real-time]

P2 Since it is apparently impossible to establish complete G/M overlap, the separa­

tion times must be minimised and they must be consistent, [virtual-real-time]

P3 If a special system architecture is required, it must be simple, and ideally it

must be transparent to the host processor. Implicitly, the communication link

between the the mutator and the collector must not be over elaborate, [not real-

time]

-47-

These characteristics are shown in figure 3.3d.

Garbage collection is an inevitable nuisance to engineering applications. It

heavily degrades a system's real-time response. The first task of this project was to

identify an appropriate garbage collection algorithm. Candidates should possess the

desirable properties outlined and be implementable in such a way that they operate

with minimum real-time overheads. In the next chapter, the selection of the suitable

algorithm is explained.

-48-

TAG HEAD TAIL

(a)
expression —,— (—- list ——)

——— atom ——

list expression expression

fot

(b)

SQUARES

PROPERTIES

(c) EQUALSIZE FOURVERTICES

Figure 3.1:a) Definition of a List Cell.
b) Syntax Diagram of a List.
c) A Graphical Example of a List:

(SQUARE (PROPERTIES (EQUAL_SIZE FOUR_VERTICES))).

- 49-

RO

R1

Processor
(P)

Rn

08

06

Cell Memory (CM) 04

Figure 3.LI: A Theoretical Machine.

- 50 -

RO

R1

Processor
(P)

Rn

unrecoverable cells X point of dlsaodotlon

Cell Memory (CM)

Figure 3.2.1: Example GCI - Reference Count.

(a) Mark Phas*

RO

R1

Processor
(p)

*

Rn

X

SL

Cell Memory (CM)

'b) Sweep Phase
RO

R1

Processor
(p)
*

Rn

Cell Memory

(CM)

j:

Figure 3.22: Example GC2 - Mark and Sweep : a) Mark phase, b) Sweep phase.

- 52 -

1

RO
00

R1

*
*

3rocessor(p)
•
*
*

Rn

•

FROMSPACE . TOSPACE
IMM

10
•••^•M

11

12

13

14
•••••••

15

IB
^^^^^

17

IB

IB

1-

.
•

t
•

h

h-
• ptr&->

00
^HMMIH

01

02

03

04
••••••

OB

OB
•••1MMM

07

OB
_
OB

«•*•••

••»•«

N
^

< _

tt

^
not ua«d • ptr S - dont care

(b)

1

RO
10

R1

*
*

Drocessor(p)
*
*
*

Rn

•

TOSPACE '. FROMSPACE

1-
h

ptr B ^

10

11
12

•••••••

13

14
•Hi^^^

18

IB

17
•••••••

18

IB

^ V

^ D
-H
< —— ptrS*

•

t

*

i

;.,

00

01

02

03

04
•••^^H

OB

OB

07
mmm^mm

OB

OB
•^•i^Bi

i __ •

^H •

3.2.3:Example GC3 - Copying.
a) just after memory has exhausted;
b) just after GC.

- 53 -

o
a*

Er

&

<<
~ £

 i
Q

H

EL

S

B'

E
C/

3
5 ^

*
G3

^

EJ
S

>-h

b
H

ex

?•
3

B

n tr

O
d

?
es- »•

(a
)

0

M M

M

*2

a
ilB

II
B

II
IB

t' d)
t

t

K /
I

t
t -

t
t

lis
t

pr
oc

es
si

ng
 t

im
e

ga
rb

ag
e

co
lle

ct
io

n
tim

e

CHAPTER IV
The Intelligent Cell Memory System

4.1 Introduction

Garbage Collection is a process to recycle deallocated memory cells. It is

essential to all AI systems. Without it, systems would suffer from a shortage of

memory and thus they would be impractical. Unfortunately, garbage collection is

performed at the expense of degradation in the system's real-time performance. Host

processing is frequently suspended waiting for garbage collection to complete. This

feature of poor real-time response of garbage collection has rendered AI systems not

suitable for engineering applications.

The aim of this project is to improve the real-time performance of AI systems

so that they can be more applicable to engineering situations. In this chapter the

design of a system, known as the Intelligent Cell Memory System (ICMS), which

possesses the desirable properties outlined in chapter in is described.

4.2 The Design

Since garbage collection is practically unavoidable, the design phase of the pro­

ject focused on deciding on a suitable algorithm and discovering a simple yet

efficient way to implement it The requirements for garbage collection in a real-time

system have been identified in section 3.3.4.

The first requirement is short intervals between processing (P2 - Section 3.3.4),

since they are inevitable. This narrows the scope of selection to virtual-real-time or

incremental collectors only. Incremental algorithms are designed to divide garbage

collection into small bursts and interleave them with host processing. Although the

-55-

reference count method would be the simplest to implement, it was rejected because

• it is useless in dealing with recursive list structures; and

• the time of collection is a variable which depends on how deep a node has

penetrated within its "associated" lists.

The next choice was the colouring or shading algorithms proposed by Dijkstra et al

[61] and Kung et al [621. They are both mark and sweep collectors which could be

organised to work incrementally and they offer a very fast response. However, they

are not suitable for this project. Fast response time is achieved by a dual or multiple

processors configuration. Reported configurations are complex - they are imple­

mented as "one-off's" and are difficult to reproduce. Although average response

time is fast, it is inconsistent. For instance, in Dijkstra's algorithm all processes are

forced idle while the collector is in the sweeping phase.

Finally, Baker's copying algorithm[631 was chosen. Baker designed this algo­

rithm with bounded (consistent) collection intervals in mind. The algorithm has

been proved to work favourably in microcode on the MTT LISP Machines. The

advantages of the algorithm are simplicity and potential for parallelism. The opera­

tional details of the Baker's algorithm are described in this chapter. The original

Baker's algorithm is a classical virtual-real-time collector. It distributes garbage

collection between host processing thus creating an illusion of transparency; but the

efficiency of the host processor is still low as formulated by the Fraction of Useful

Work Done (FUWD) being equal to !/2 in equation 3.3.1.2.

Having decided on the specific algorithm, the next requirement is to maximise

its efficiency (PI - Section 3.3.4) i.e. how would it be best implemented ? This

-56-

requires:

• minimised time for garbage collection bursts thus speeded up system response;

• maximised overlap ratio between host processing and garbage collection thus

increased system efficiency.

It seemed that Baker's implementation in ALGOL[63] had been already

stretched to its limit using a serial computer. To achieve further speed up in garbage

collection, a low level approach would be required. Such a level would enable the

designer to access the processor hardware more readily. It was decided to employ

microprogramming. Since it was impossible to use a commercially available proces­

sor, the design of special hardware was planned. The aim of the design was to real­

ise the functionality of Baker's algorithm in hardware and to make it as fast as pos­

sible. A careful study of the advantages of this algorithm revealed that its simplicity

would ease the task of microprogramming and by realising its potential parallelism

in hardware considerable speed up could be achieved.

To increase system efficiency, a new mode of garbage collection was proposed.

It is reported as dual mode garbage collection in Wong[71] (cf Appendix V). The

dual mode comprises the advantages of both incremental and parallel garbage collec­

tion. It is realised in a dual processor architecture - one processor responsible for list

processing (LP) and the other, the special hardware, for garbage collection (GC).

Normally, the GC is performing garbage collection in parallel with host processing

in the LP. When a new cell is required the GC is interrupted and a garbage collec­

tion burst is performed incrementally. The time distribution graph of this dual mode

garbage collection approach is shown in figure 3.3d.

The third requirement is for simple interfacing (P3 - Section 3.3.4). If the

-57-

difficulties commonly associated with a coprocessor are to be avoided the interface

between the LP and the GC processors should use a standard system bus. In view of

the requirements for simplicity and flexibility a "plug-in" system was considered a

prospect. Many AI systems are currently based on M68000 family processors and

the associated VMEbus [72]; the latter, especially, is gaining increasing popularity

and has been proposed as the IEEE 1014 industrial bus standard. Because of its

potential in AI/Engineering applications, a VMEbus based M68000 processor sys­

tem was felt to be a very attractive option. It was, therefore, selected as the base of

the special hardware.

This concept of using a standard bus architecture to implement an AI machine

has been further extended in the design of THESIS - The Hardware Environment for

Small Intelligent Systems [73,74] (cf Appendix V). THESIS is based on the

independence of AI functions; thus, realising them as independent functional

modules in hardware using a standard bus system. The proposed separation between

program and data memory fits well to engineering applications. The provision of

dedicated Cell Memory (CM) makes possible the design of a specialised hardware

module the Intelligent Cell Memory System (ICMS) which incorporates garbage col­

lection and cell storage. Other valuable features can also be identified in this design.

Various approaches to implement the special hardware were considered. A

VLSI chip design was considered and rejected due to the cost and long design time

which it would involve and it was decided to first build a prototype system based on

bit-slice processors. This solution was adopted because of the flexibility offered by

these devices and the high speed operation which would be possible. The possibility

of implementing Baker's algorithm in a combination of hardware and microcode was

another attraction offered by this approach.

-58-

Advance Micro Devices (AMD) 4-bit slices [75] were used because of their

availability and popularity. The power consumption of these devices (Schotky-TTL)

was the most obvious drawback followed by the large board area taken up by them.

These advantages were regarded as acceptable in a prototype system.

4.3ICMS Design

The ICMS project was completed in two stages. In the first stage an interactive

LISP interpreter was written - simpleLISP (cf Appendix n). This was later used to

produce the necessary programs for testing and verification of the hardware. In the

second stage, the project concentrated on hardware design, its implementation and

testing. The construction details of the ICMS are described in the following two

chapters.

LISP was chosen to be the local programming language for the ICMS. Besides

the fact that LISP is a popular language widely used for AI programming, there were

two reasons that LISP was chosen :

(1) its extensive use of list data structures which requires only a small set of well

defined functional primitives, namely : CAR, CDR, CONS, REPLACAR and

REPLACDR;

(2) explicit dynamic memory allocation by the CONS functional primitive.

Theoretically, other AI languages, such as PROLOG, could have been the choice.

Reason (2), however, makes LISP preferable. It is because CONS is the only primi­

tive which 'creates' a cell. Therefore, by inspecting the free cell population for

every call of CONS, garbage collection can be invoked in a controlled fashion. This

is easy to implement in hardware by using either a polling or an interrupt mechan­

ism. On the other hand, memory allocation of other AI languages is implicit and

-59-

this makes the occurrence of garbage collection completely random and uncontroll­

able. In fact, the proposed software environment for the original Baker's algorithm

was LISP.

The ICMS is a hardware implementation of the Baker garbage collection algo­

rithm. It is designed as a generic coprocessor unit without constraint to a specific

host. The desirable features of a practical garbage collection system as outlined in

section 3.3.4, are provided by the ICMS.

Normally, the Intelligent Cell Memory Controller (ICMC) is constantly per­

forming garbage collection over the cell memory (CM) in parallel with the list pro­

cessing by the M68000 host. Effectively, the host processor is totally unaware of the

existence of garbage collection. Garbage collection is performed in bursts. When

the host requests a cell, a hardware interrupt is generated in the controller. The latter

finishes off the current collection burst before servicing the requested operation.

Therefore garbage collection bursts are considered as unit operations. This

approach provides some degree of overlap between garbage collection and list pro­

cessing.

A more detailed consideration of Baker's algorithm at this point will highlight

those features exploited in the ICMS design.

4.4 The Baker Copying Garbage Collection Algorithm

Baker's algorithm [63] was chosen for use in the ICMS. It is a copying scheme

which is simple to construct in hardware, possesses potential for parallelism and

offers a bounded list processing time. The algorithm was first reported to have been

microcoded in the MIT LISP machine. The LISP machine approach was different

from the ICMS : it set out to incorporate a complete LISP system on a customised

-60-

VLSI chip. It was considered successful. Its concept has been adopted by many

commercial vendors, e.g. Symbolics Inc. However, all such commercial machines

have been built for R&D purposes and exhibit complex interfaces which make them

unsuitable for engineering applications. On the other hand, the ICMS is designed as

an extension to existing technology. Therefore, improved real time response can be

provided for engineering systems with minimum overheads. The philosophy of

copying garbage collection has been generally described in Section 3.2.3. In this

section, the operation of Baker's algorithm is explained in detail.

4.4.1 The Non-Real-Time Version

An extra pointer S is required, apart from B which points to the next available

free cell (figure 3.2.3). Pointer S is termed the SCAN pointer which always

addresses to the next target cell for GC. The objective of GC is to copy valuable lists

from the FROMSPACE to the TOSPACE. Whenever a cell is copied, a forwarding

address is left behind at the HEAD element of its original FROM reference. This
prevents garbage collection of the same cell twice and redirects pointers which

attempt to access the cell.

Subsequent to a cell allocation, B is incremented to point to the next free cell.

The need for GC is evident when B points to the bottom of the semispace. With the

non-real-time collector, list processing is suspended for as long as GC is in progress.
GC starts with an operation called FLIP which interchanges the identities of the two

semispaces. B and S are reset - pointing to the top of the new TOSPACE initially.

Immediately after FLIPping, root registers are copied. Further copying proceeds

from roots. Copying a cell, increments the B pointer but not the S. At any time,

cells residing between S and B have already been copied but their contents have

-61-

not Starting from the top of the semispace, SCANning is a process which inspects

the nature of the contents of individual cells pointed at by S - whether they are in

the TO- or FROM- SPACE, and performs copying on them when necessary. Thus,

GC is effectively a game of S chasing after B; it is completed when B is caught.

4.4.2 Incremental Collection

The original Baker's algorithm was modified to produce the incremental ver­

sion. It was implemented on serial computers and was put into practice in one of the

first LISP machines in M.I.T. Section 3.3.3 explains the basic philosophy behind

this type of collector. Prior to adopting it for the ICMS, a software version of

Baker's incremental algorithm was implemented and its correctness was verified

[76]. In the following discussion, the special treatment of list primitives by the
4.J.

software version is presented .'

The incremental algorithm is based on two principal facts: (i) GC is redundant

if no cells are requested; and (ii) at the instant of cell request, as long as there is one

or more free cells, a system can survive. Functionally, a SCAN is performed per cell

request (CONS). Again, when S has caught B, GC is finished.

CONS is a list primitive for construction which is invoked by CONS(X,Y). Its

function is to assign its parameters to the HEAD and TAIL of a newly generated cell,

respectively. Prior to assigning, X and Y are checked and copied to ensure they are

valid addresses. Since the new cell and its contents have been ensured genuine, it

would be a waste of effort to SCAN it. Being aware of this, an extra pointer T is

introduced, which points to the next available free cell from the top. T is

t The inspection then copy procedure is termed MOVE(X).
tt In the original algorithm [3], the implementation is simplified - parameters passed to these
primitives are assumed genuine thus less precaution for invalid data retrieval is required.

-62-

decremented after allocation, moving in the opposite direction from B. (The division

of TOSPACE is illustrated in Figure 4.4.2). Gradually, T approaches B. When they

meet, free memory is exhausted and GC is invoked. The longest time required to per­

form a CONS is when GC has just started. It is equal to the total time required for

FLIP, parameter checking and copying, to COPY all roots and generate a cell. Gen­

erally, the upper bound of a system is the time required for the CONS operation

which is in fact the longest of all list primitives. This upper bound affects system

bandwidth which is a crucial engineering design factor particularly for time critical

applications. Although CONS is the only function which creates a cell, special atten­

tion also has to be paid to cell accessing primitives; these include CAR/CDR and

REPLACAR/REPLACDR [59].

CAR/CDR of X, returns the HEAD/TAIL element of the cell pointer X. Now,

the list processor has to guarantee that the genuine results are returned; because if X

is a FROMSPACE pointer, X may have been copied, so the forwarding address is

used for data retrieval; and if X is a genuine FROMSPACE pointer, it is copied

before its HEAD/TAIL is returned; finally, if X is in TOSPACE, no extra operations

are required. Therefore, the worst case time performance for CAR/CDR equals the

time required to perform the primitive plus the time for one COPY operation.

REPLACAR/REPLACDR is called with two parameters X and Y. It replaces

the HEAD/TAIL content of X with Y. Both of these primitives affect connectivity,

therefore, to be safe X and Y are inspected and copied (if necessary), before any

replacement operations. In this case, the worst case time performance is the sum of

the time for the operation itself and two COPY'S.

In practice, Baker's algorithm is microcoded in the ICMS and it is performed in

a dual operational mode: incremental and parallel. Moreover, with special hardware

-63-

support its operational speed is enhanced. In the next two chapters, the functional

and construction details of the ICMS are described.

4.5 Parallelism in Hardware

Baker's algorithm was initially verified in software and preliminary studies of

the generated code revealed some degree of hidden parallelism in the algorithm. It

was realised that implementing these in hardware could provide a decrease in gar­

bage collection time.

The definition of the cell storage structure is complicated but to access a cell

many time consuming addressing instructions are required - over 50% of the gen­

erated code. A solution to the problem is to abandon the orthodox byte/word storage

convention and treat a cell as an elemental storage entity. Addressing a cell then

would be much more natural and require less time and effort. In addition, on aver­

age, up to two thirds of the cell address instructions are conditional. The cell to be

addressed mostly depends on either the state of the collection process or the region

to which the cell pointer belongs. Parallelism can be exploited by overlapping the

testing and the cell addressing instructions. Since the testing instructions are simple,

they can be realised using dedicated hardware, making them independent from cell

addressing. Thus both instructions could be executed concurrently.

Pointer T can be discarded. Its significance in the original algorithm is to save

the garbage collector from monitoring the newly created cells. In so doing the

amount of work for garbage collection is reduced. On a serial computer the benefit is

prominent. However, garbage collection with a separate unit can afford to do extra

work. The work load of the host remained unchanged, because the process of gar­

bage collection is transparent to the host. The advantage is that the hardware over-

-64-

head is reduced and less work is required for a collection burst Thus a reduced
separation time can be achieved.

The other two pointers, S and B, are similar in usage. Whenever they are
accessed, they are incremented subsequently. Some degree of speed up can be
achieved by implementing the B and S pointers in hardware, incorporating auto-
increment capability.

4.6 Engineering Features

4.6.1 Simplicity

The ICMS is an independent functional module. From the host processor, it is
seen as a passive storage device, accessible by writing or reading a bank of registers.
Each register is responsible for a LISP primitive and is assigned with an address.
Effectively, writing into a register is equivalent to passing a parameter and invoking
the corresponding list operation at the same time. At the end of the function, return
values are read from the same address.

A simplified block diagram of the host/ICMS interface is shown in figure 4.6.1.

4.6.2 Fast Response

Although the throughput of the host processor will be reduced by the frequent
requirement for garbage collection bursts, the design of ICMS ensures that these

take place at an acceptable speed by adopting several architectural features :

i) Cell Unit-addressing - Two bit slice ALUs are employed, one is responsible for

the manipulation of the HEAD pointer and the other is dedicated to the TAIL.
The operational speed for list functions on the cell is therefore enhanced.
Moreover, this architecture does not exclude the possibility of either only one

-65-

ALU or one address/data being required. In such circumstances, the unneces­

sary device may be made redundant by disabling it using the appropriate micro

control bits.

ii) Hardware Testing - Five tests are performed in hardware concurrently with the

bit slice ALUs, namely

CELL(X) is X a cell pointer,

• OLD(X) does cell pointer X exist in the OLD region;

• NEW(X) does cell pointer X exist in the NEW region;

• GC has garbage collection finished ? and

• CMEND has the cell memory been exhausted ?

iii) Content Prefetching - This idea derives from "instruction prefetch" in computer

architecture design. Running in parallel with hardware testing, it ensures the

correct address at the memory address port at the end of a conditional fetch

instruction. Thus test and fetch instructions are executed in one machine cycle

which otherwise would be two or more.

iv) Auto-incrementable Pointers - Special cell pointers B and S are constructed in

hardware using flip-flop counters. They are incremented after being used for

cell addressing.

4.5.3 Flexibility and Portability

System integration of the ICMS is made easy by using a standard bus interface.

The ICMS is not restricted to particular processor types in contrast with many AI

hardware designs which have complicated interface schemes to specific processors.

-66-

directions of pointers movement

CO

CL CL

c
•—
O*
0)
o:

0)
H-'

O

0
o

LJ

C
.2
on
(D

C£

C
o o

CO

CD
O
D
CL

CO

<u
0)
iii

c
»Si

C7*
CD
o:

c
^0
U-*
D
0)

0

LJ
O

Q_

O I—

(D

O

o ->
o

Q.

Figure 4.42: Anatomy of the TOSPACE of the Incremental Baker's GC.

-61-

HOST

ICMS

ICMC
controller

(2) CM
cell

memory

(1) VMEbus Interface

(2) LOCALbus Interface

Figure 4.6.1: The Schematic Block Diagram of the Host-ICMS Interface.

-68-

CHAPTER V
Construction I: Hardware

The ICMS is a microprogram controlled bit slice coprocessor system. A photo­

graph of the complete system is shown in plate 5. In this and the next chapter, con­

struction details of the ICMS will be described. This chapter concentrates on the

hardware aspect of the ICMS design and chapter six focuses on the development and

design of the ICMS microprograms.

5.1 The LOCALbus and the Cell Memory

The architecture of the ICMS can be divided into two main parts: the cell

memory (CM) and the controller (ICMC), as shown in figure 4.6.1. The interface

between the two is achieved by a local bus system (LOCALbus). The structure of

the ICMS is shown in more detail in figure 5.1 and plate 5.1 is a photograph of the

ICMS circuit board.

The LOCALbus can be grouped into three channels: the control, data (BD) and

address (YA) lines. There are 64 control signals which correspond to the 64 micro

control bits and these are generated from a microprogram store within the controller.

The BD and the YA channels originate from the processing units' input and output,

respectively. Both of them consist of 48 lines, 24 for each HEAD and TAIL

address/data. In addition, the LOCALbus is also used to integrate all functional units

in the controller internally.

The cell memory (CM) is configured to be cell addressable. It is organised into

two banks of identical Random Access Memory (RAM), one for each HEAD and

TAIL element of a cell. Separate ALUs are assigned to each bank. The content of a

-69-

HEADA'AIL element can either be an atom or a cell pointer. Both of them are

addresses - the former points to numbers or strings and the latter references other

cells. For use with a M68000 host, the size of each HEAD/TAIL element was

chosen to be 24 bits. However, when the ICMS was implemented, this turned out to

be an awkward choice. This is because, internally the data and the address registers

of the 68000 are all 32 bits in size. When information is read from the cell memory,

its upper byte (BIT^-fin^) is in the high impedance state; thus FF (hex) is inserted

in the most significant byte (MSB) of the registers. This would create problems for

comparison instructions. To overcome this, all MSB's are ignored, or masked to

zeros.

The cell memory can be accessed from the controller through the LOCALbus.

The memory address is presented at the YA channel and data transfer is done on BD.

Only three control lines are responsible for memory access. They are: Read/Write

«2>mem_read), Chip Select «2>mem_sel) and Output Enable (@mem_oe). At

present, only 2k cells are implemented (split equally amongst TOSPACE and

FROMSPACE). They are addressed by YA^-YAg, and YA,Q is used to determine

the semispace in which the cell is located. The remaining YA lines are used to

differentiate a cell pointer from normal addresses. At least one bit has to be reserved
23 for this purpose. Therefore, 8M (2) is the maximum number of possible cells with

the current controller design.

Standard RAM devices - static CMOS RAM 6116 - are used for storage. There

are two reasons for this choice. Firstly, it is to show that the enhanced system per-

t Throughout the thesis, all micro instruction fields are preceded with a "<2>". This is mainly to
help differentiating them from other symbols or abbreviations. In the actual microprogram source,
(shown in appendix IV) this character is dropped.

-70-

formance is brought about by the ICMS architecture rather than high-speed memory.
Secondly, to achieve compatibility with popular memory devices to reduce system
costs.

The Intelligent Cell Memory Controller (ICMC)

The controller is the heart of the ICMS. Its major role is to coordinate data
transfer between the host and the cell memory. LSI Bit-Slice components from AMD
(Advanced Micro Devices [75]) and 74LS series MSI devices were extensively used

in its construction. The AMD 2900 family devices are widely used in bit slice
microprocessor designs.

Internally, the ICMC is divided into four functional units . They are : the
microprogram control unit (MPCU), the test circuit (TC), the Input/Output ports (IO)
and the processing unit (PU). Synchronisation of these units is maintained by a sys­
tem clock. It is generated from a clock driver which is driven by the 16 MHz
SYSCLK VME line. The driver has a number of outputs which can be selected by

micro instructions. Particular outputs of interest are +2 for normal operation, +4 for
memory read and +5 for memory write. Debugging of the controller was made pos­
sible by providing the system clock with halt and single stepping facilities, using two

SPDT switches.

5.2.1 The Micro Program Control Unit (MPCU)

The entire ICMS operates under microprogram control. To enable micropro­

gram development a micro assembler, UASM, was written. UASM is a meta assem­

bler, with which users can define the machine configurations in the definition phase.

From then on, in the statement phase, lines of instructions together form micropro­

grams. UASM accepts lines of micro instructions and translates them into the

-71-

required bit patterns for the pre-defined machines. The implementation and invoca­

tion details of the assembler are explained in the next chapter and the syntax

specification of the micro assembly language is described in appendix I.

The generated microcode is down loaded into some fast bipolar Random

Access Memory. This RAM forms a Writable Control Store (WCS). A photograph

of the WCS is shown in plate 5.2.1. The Am93422, 256 by 4-bit bipolar RAM, is

used. Sixteen Am93422 cascaded together form a 256 microinstruction store with

each instruction 64 bits in length (c.f Section 6.4). The WCS can either be connected

to the M68000 host or the ICMS, figure 5.2.la. The access time from the M68000

host is 40 nano seconds, which is about one third of the M68000's clock period

(125ns). Normally, it is connected to the M68000 through the VMEbus interface.

The WCS is mapped into the VME bus address space so that the M68000 can read

and write from/to it. Standard address decoding techniques are adopted. The lower

byte of the M68000 address bus is used to reference any one of the 256 microinstruc­

tions. The remaining address bytes are compared with a pre-selected WCS base

address, via two 8 bit comparators (74LS687). The result of which partially enables

all Am93422 devices. The pre-selected address is changeable. It is set by 2 banks of

SPDT switches. For simplicity, only the starting WCS address is checked. The

WCS, therefore, has been restricted to start from the last address (i.e.

FFFFFFFF(hex)) and expands upward.

Microprogram development is carried out when the WCS is "talking" to the

host. Alternatively, there is a mechanical switch to permanently disable the decoders,

thus the M68000 can no longer access the WCS. In this mode, a standard micropro­

grammed computer architecture is formed: with the output from WCS (microinstruc­

tions) controlling various functional parts of the ICMS.

-72-

The outputs from the WCS are buffered (74LS245) while it is connected to the

M68000; and they are latched (Am2920A), when the WCS is connected to the

ICMS. In so doing, a one stage pipeline is achieved. Instruction address N appears

at the address port of the WCS while instruction N+l had been pre-fetched from the

previous cycle. Instruction pre-fetching is a popular technique in computer design.

Instruction latching is edge-triggered under the system clock; therefore, transient

states, commonly occurring during conditional branching on pipelined machines, are

ignored.

The execution sequence of a microprogram is directed by the microprogram

addresses. These addresses are 8 bits wide and are generated from the sequencer

(SEQ'er - two Am2911A). There are several sources for the generated addresses.

They can either be transferred from internal registers within the SEQ'er or redirected

from the @BA (Branch Address). The choice is determined by a 4 bit micro instruc­

tion field, @Instr_sel. This allows 16 possible control sequences. Normally, execu­

tion is sequential. There is an internal microprogram counter which remembers the

next consecutive micro instruction and is incremented after each cycle. Neverthe­

less, occasionally, branch instructions will lead execution to different points. When

this happens the microprogram counter is automatically updated. The @BA can

either be one of two types:

i) static - it is predefined as part of the microprogram; or

ii) dynamic - it comes from the output of the mapping ROMs (MAP) which

depend on the host requests. The MAP is a pre-programmed PAL, Programm­

able Array Logic, N82S105 from Signetics which has an maximum access time

of 65ns.

-73-

Also, a 16 entries deep stack is implemented in the SEQ'er. When a jump to subrou­

tine instruction is called, the return address is automatically pushed onto the top of

the stack and these return addresses are popped upon exit from the subroutine. This

enables 16 level nesting in procedural/functional calls. At power up the SEQ'er is

reset to zero. Location zero is the startup vector where the first micro instruction is
placed.

12 out of 16 of @Instr_sel are conditional instructions which determine the out­

come of the microprogram addresses. The conditions are based on the setting of a

test bit which is selected from the 8 to 1 condition code multiplexer (MUX -

Am2922) The inputs to the MUX are provided by the test circuitry whose selection

is driven by the 3 bit @TEST_seL A Next Address Generator (NAG - Am29811A)

decides the source of the next address. It generates the required signals to either the

sequencer or the MAP ROM. The block diagram of the complete MPCU is as shown

in figure 5.2. Ib.

The ICMS is interrupt driven. It is continuously performing garbage collection

in bursts transparently to the host. During each burst, a micro control bit @INT is

pulled high (refer to figure 5.2. Ib). This forces the output of the OR gate high hence

disabling the output from the MAP ROM. Effectively, interrupts are disabled. At

the end of the burst, @INT is cleared which re-enables the interrupt capability.

When the M68000 host requests a list operation, at this point, an interrupt is gen­

erated. The interrupt service vector is provided by the MAP ROM which is

addressed by 8 of the VMEbus lines, namely address lines A, -A- and the read/write

control line.

-74-

5.2.2 The Test Circuit (TC)

The inputs to the test circuit are derived from the BD lines. Seven outputs are

provided which are directly connected to the inputs of the MUX. The microprogram

sequence is determined by selectively sampling them. In table 5.2.2a, the details of

the test circuit outputs are summarised. The complete test circuit is illustrated in

figure 5.2.2.

Pointers B and S are included in the test circuit. Both of them are implemented

using three 4 bit asynchronously resettable counters. The first ten output Hnes are

used allowing them to address Ik cell memory (one semispace only). The eleventh

line is fed back to reset the counter to null. Reading and incrementing are controlled

by 3 micro control bits, as shown in table 5.2.2b. The states of the counters affect the

rest of the test circuits.

When B overflows, it means that the TOSPACE is exhausted. At this moment,

a FLIP is performed. This simply toggles the flip flop (TFF1) whose outputs contri­

bute to two events:

i) Q is read as the eleventh bit of B or S (B ,Q and S-.Q); and

ii) Q and Q are control inputs to the TO and FROM testers, respectively.

TFF1 remains unchanged until the next FLIP. The B overflow signal is also latched

(DFF1) until the next B increment. This is interpreted as the FLIP test signal. The

process of garbage collection is completed when the pointer S has "caught up" with

B. Similarly, there is a case when S is caught by B - just after a FLIP, both B and S

are reset, pointing at the top of the new TOSPACE. Therefore, the test signal GC is

logically defined as:

GC = (S equal to B) AND (not FLIPped)

-75-

When this happens, test output GC is asserted by forcing the TFF2 to zero. This sig­

nal will last until the next B overflow, when TFF2 is toggled to a 1.

Whether an object is a cell or an atom is determined by the test signal CELL.

The test is performed on the upper part of the BD lines, namely BD. j-BD^?, which

reveals an address identity. Presently, the cell space is set from FFF800 to hhhhhh

(hex). Once the CELL test on an object is true, the TO and FROM tests are enabled.

BD 10 is and'ed with the Q and Q of TFF1, respectively.

TRUE and FALSE are to provide "branch always/positive" and "branch

never/negative" micro instructions. POLLED is a signal generated from the

decoder's (DEI) output. At the beginning, a polling mechanism was adopted, and

POLLED was set when the correct address from the VMEbus appeared at DEI. In

its present form, the system is interrupt driven although POLLED still exists. This

provides faster operation.

The size of the ICMS board as shown in plate 5.1 is too small to accommodate

the testing circuitry. Therefore the latter was built on another Eurocard printed cir­

cuit board as shown in plate 5.2.2. A 64 line ribbon cable was used to interconnect

the two boards.

5.2.3 The Input and Output Registers (IO)

Two pairs of memory mapped IO registers (twelve Am2920A) are incorporated.

Separate registers are used for input and output, but the same address is shared. The

selection between the two is governed by the read/write line. They can be accessed

at several addresses from the VMEbus and each address is associated with one list

operation. When an address is asserted, Ao-A^a are compared with a pre-defined

base address. The base address is relocatable, and it is currently set to FF8000 (hex).

-76-

If these are matched, the data lines are latched into the IO, an interrupt is sent, the

MAP ROM is enabled and the required list operation is executed. The role of these

registers is for message passing between the host and the ICMS - messages include

functional parameters and subsequent return values. Therefore, a list operation is

simply invoked by writing the appropriate parameters into the desired IO registers.

The programmer's model of the supported list functionality of the ICMS is shown in

figure 5.2.3a.

The entire transaction is performed asynchronously. By definition, for the

VMEbus protocol [77], an Address Strobe (AS) is sent by the host to advise slaves

of the availability of some information. In return, after acquiring the information,

Data Transfer ACKnowledge (DTACK) is generated by the slave to terminate the

transfer cycle. Until DTACK is received, the host remains idle. For the ICMS con­

troller, DTACK is generated by the circuit shown in figure 5.2,3b. Consecutive

addresses are allocated for the two pairs of registers (2 by 4 bytes). A list operation

is requested when the appropriate address of the second (or upper) IO register

appears on the bus. The first (or lower) register is passive: the register is merely

updated. For either register, data is transferred in two word (16 bit) cycles. Apart

from the lower word cycle of the second register, DTACK is returned directly

without waiting. During this lower word transfer, the interrupt signal is generated

and the task of DTACK generation is passed to the microprogram, namely when

@BUSY=1, at the completion of the list operation. Thus:

DTACK = (not lower word access of the 2nd IO register)
OR (@BUSY is set)

5.2.4 The Processing Unit (PU)

The functions of the processing unit are to direct traffic on the data path and to

-77-

perform arithmetic and logical computation. Presently, however, only the first of
these has been realised. The latter will be implemented in the future so that the
ICMS could provide more list functions, such as ADD, AND, etc. There are two
functional parts within the processing unit; these are two bidirectional buffers (six
74LS645) and two banks of ALUs (twelve Am2903A), figure 5.2.4a.

The two buffers are implemented to create communication links between the
HEAD and TAIL data and address paths. One buffer is connected to the BD data
channel and it is known as the @data_buf; the other, @add_buf, is interfaced to the
YA channel. With these buffers one of five possible data/address routes can be esta­
blished. These are: HEAD only, TAIL only, HEAD to TAIL, TAIL to HEAD or
independent.

The ALUs are constructed using bit slice processors. There are two reasons for
this choice. Firstly, it is because of the flexible nature of the bit slice design

approach. This allows easy expansion of the data path in the future with minimal re­
design being required. Secondly, these devices have potential speed advantages. The
two banks of ALUs are responsible for the processing of the HEAD and TAIL infor­
mation in parallel. Each consists of six 4 bit processors, together forming a 24 bit
data path.

Am2903A 4-bit bipolar microprocessor slices are used. The hardware features
of the Am2903A exploited in the ICMC are:

An internal 16 word by 4 bit dual ported RAM which is infinitely expandable
using external register files. That means that more working space (e.g. more
ROOTS) can be built if required;

Three ports: two bidirectional ('b' and *y') and one input only ('a')- A total of

-78-

twelve Am2903A are used to provide the two 24-bit data paths for the HEAD

and the TAIL.

The functions of the ALUs are controlled by a 9 bit micro control word

@ALU_instr. The YA and BD channels of the LOCALbus are derived from the bi­

directional ports of the ALUs, namely, 'y' and 'b' respectively. There is also an V

port which is responsible for internal data transfer. Each ALU contains sixteen dual

ported registers. A particular register is addressed by two 4 bit fields @AA ('a' port

address) and <2>BA ('b' port address). The 'b' port is read/write but the 'a' port is

read only. The upper eight registers are assigned as roots. The flexibility of bit slice

design is illustrated at this point, since dual ported RAMs could be used for expan­

sion as explained in [75]. The integration of the processing unit with the rest of the

ICMS can be represented, as shown in figure 5.2.4b. The test circuit is always con­

nected and operates concurrently with the ALUs in every micro instruction. Apart

from it, at any time only one functional unit is connected to the YA channel and

another to the BD. This selection is microprogrammed.

5.3 Construction Details

The circuitry described here was constructed on extended Euro-card circuit

boards using wire wrap techniques. Due to the high speed operation of the bit slice

devices some problems were experienced with this technique. It proved necessary to

redesign the initial prototype boards to improve the layout and avoid problems with

electrical noise. Another minor problem is heat dissipation due to the bipolar tech­

nology used to fabricate AMD 2900 devices. This was solved by mounting a small

extractor fan on top of the rack.

The large number of components was partly due to the choice of devices used. 4

-79-

bit slices were adopted because they were the only fully developed device set
known at the time. Moreover, future expansion was envisaged; therefore the smaller

the slice, the more flexible it would be. For future working systems, should the size
of the datapaths be definite and no expansion be expected, the system could be
designed with devices with "larger" bit slices e.g. Am29116, a 16-bit microprocessor
slice.

The number and size of components meant that three circuits boards were
required and the necessary wiring lengths and interconnections resulted in some tim­
ing problems. These could have been eliminated with a custom designed multilayer
printed circuit board; but the high cost of this was not considered to be justified for
the present prototype system.

Finally, the coordination and communication between individual units are
under microprogram control and the details of this are given in the next chapter.

-80-

Tests
POLLEDt

CELL
GC

TO

FROM

FLIPPED

TRUE
FALSE

TC inputs
VME address lines

BDn-BDQ
internal

BD10

BD10

internal

none
none

Connections
toMUX

0

1
2

3

4

5

6
7

Comments
Has an operation
been requested ?
Is the input a cell ?
Has garbage collec­
tion finished ?
Does input exist in
TOSPACE ?
Does input exist in
FROMSPACE ?
Has the system just
FLIPped?
Always true or high.
Always false or
low.

t Initially, a polling mechanism was used instead of interrupt.

Table 522a: Details of the Test Circuit Outputs.

Functions
increment S
readS
increment B
readB

@sel_139
1
1
1
1

<2>AO_139
0
1
0
1

@A1_139
0
0
1
1

Table 522b: The Decoding of Read and Increment for the S and B pointers.

-81-

1

•o
o

1 '

1

*_

I

t

1

t

t

•M

\

^H

00
•MM

X'

O

-60
o

a.
2x"

CMH|-J

S.

MM

-c

N
S

"CM

ON!

; " >
^m

\Jx
L.

b
UJ
00

4

-J
^

—— V-

Q

X

S

^m

-4̂
fl

T

•

\l/ 21 \U
•» X

Z)
? »-

C+ (/)
LU

X

0)

_J<
"7

J^

\ (

X

I^M

CM

2 ^
N T

C

(0

-J
<

S

^

-S

LNi
**
CM—— f —— '

\ "

00DJJ»*U|

• -

^ -5

2ino

•Ml

V

I

*-»
o

V.

-r

^

J
3
3

*
V^

k.

i

k

1

••

•*
" C

O
•4-J

•*

"" CM

cino

-5
»nq3«A

»

1
• •

1

•

• CM

O
r *
4

«

t

1

~f
^

k

-^

flO

•

•

4

|

N

(D

«f
>4

*
Nh>

1
O
]c

m

m^m^m

CM
1 1

S'

^.2 >- 3 .
^.o 0=J S -

? |?

<o* X ^-1 ——— 2-
0,

NX

S- ^9i\ C J ^i

* r2. x. g S .

S.?

a

Figure 5.1 The Detailed Block Diagram of the ICMS Architecture.

-82-

VMEbus Interface

x v data

oc

8

/

(dress
N

•

\ "7

8

0 -* Multiplexer

/

••••

wrcVf w^

|8 v
1 X

H

>

FAST
RAM

16

y v
\ ^

\
Select
1 orO

1
M^

H^H^HMi

Mechanical
„/ Switch

v

ICMU

N
x

S,

^ buffer

64 —— 7

64
V
X

,,
1u

P
K«

X

•^H

t

f

t

enable •

L
eg

t

*

enable *
^Ffl I^^VrV^r

1
^__ «MM

64
^•i^B*

^ micro Instructions

Structure of the Writable Control Store

Figure 52.la: The Writable Control Store (WCS).

-83-

00

I oo

S"

isj ? . •I 3- I

VM
Eb

us

In
te

rfa
ce

In
eS

In
cB

i oo

k
)

k> I? 2?

•
•

I
•

*
*

•
•

•
*

•

re
s«

t\
|/

sp
re

ad

s-
-C

N
l

TE
ST

 C
IR

CU
IT

(T

C
)

in
pu

t!
-

sw
itc

he
s

B
ov

er
flo

w

C
om

pa
ra

to
r

p-
c

CE
LL

Ni

x.
 F

RO
M

.N
/9

P

.
V

Functions

setREGO

setREGl

Parameters Parameters

setREG15

CAR

CDR

REPLACAR

REPLACDR

CONS

unused

unused

ROOTO

ROOT1

Future
Development

undefined

32
bits

undefined

32
bits

unused

unused

unused

X

X

X

undefined

ROOT15

X

X

Y

Y

Y

undefined

Figure 523a:The Programmer's Model of the Supported List
Functionality of the ICMS.

Addresses

FF8000

FF8008

FF8078

FF8080

FF8088

FF8090

FF8098

FF80AO

FF80AO

FF80F8

-86-

Input «•
IO base
address hardware ____

generated DTACK

) o.c.

5V

330R

-)
DFF5

D Q
ck

O

§
C1

system clock

O.C.

microprogram
generated DTACK

Circuit for DTACK* Generation

Figure 5.2 Jb: The Circuit for DTACK Generation.

-87-

from INO from WCS

•

•

•

""• ixE: —— ̂
o

M- '

*

•

CM'
H ID'
O ———

•

O -*-> •

•

9

•

rOh-'-J
oo'
-1-*

•

/

J/a

Bit Slice
ALU

HEAD

24

Z4

BD N

«•

x control
\

yh- 24 - - \
A addr / \. i • j*

^ 2
x uiuir«t

4 buf

\

A da
\ i_r_ir^
/ UlUMCt

24 buf

- 64

lines x

~ 10

/
ess
itional
fer

~8

/
to
;tiona!
fer

X

<3,

Bit Slice
ALU
TAIL

\
C J4 '

^4\

2
24 4-6

/YA ^control

4

N

y

C b
\

~24

1A

,-BD
«^

•

*

t

•

«

•

•

24 *•'
'r*

— 7-co
/-*

'0

•s
•

•

•

I

-24*

YA/• •all signals are connected to the LOCALbus

Figure 52.4a: The Processing Unit (PU).

\ microprogrammed linkspermanent link

TEST
circuit

Processingchannel boundary channel boundary

memory
address

Figure 52.4b: The Integration of the PU with the /CMS.

-89-

Plate 5 : The Complete ICMS prototype : (from left to right)
the M68000 host occupies the first board and
the remaining three together form the ICMS.

-90-

Plate 5.1: The ICMS Circuit Board.

-91-

Plate 52.1: The Writable Control Store (WCS) Circuit Board.

-92-

Plate 522: The Circuit Board for the Testing Circuitry (TC).

-93-

u
to

CHAPTER VI
Construction II: Microprogramming

In order to drive the ICMS, a series of microprograms was produced. They

were written using a custom micro-assembly language whose syntax is specified in

Appendix I. A microprogram assembler, called uasm, has been developed to

translate microinstructions into the appropriate control bit patterns.The construction

of the microprogram assembler and the implementation of all ICMS microprograms

is explained in this chapter.

6.1 Background

The control of bit slice devices [75] is governed by bit patterns which are stored

in micro control memory. A sequence controller fetches bit patterns from the

memory once every cycle with which it generates or redirects signals to control

appropriate slices. The definitions of sequences and functions stored in the micro

control memory comprise a microprogram. A good bit slice design requires the con­

sideration of an enormous amount of detail, including selection, placement and con­

nection of the chips. In addition, the choice of functions and bit patterns of the

microprogram are equally critical. Just as in other fields of computer design, the

designer needs good supporting tools. These supporting tools are needed to aid the

designer to control the structuring of these bit patterns and to provide freedom for

pattern alteration.

6.1.1 High Level Microprogramming

A natural choice of tool is a design language which enables the designer to

specify the bit patterns in each microinstruction and hence the entire microprogram.

-94-

There has been much discussion in the field of computer engineering, about the level
of programming for microprograms. A number of high level languages have been
designed, e.g. STRUM, an algol like language, designed and implemented by Patter-
son [78] which is oriented towards the Burroughs D machine. These languages,
however, are heavily machine dependent and hence lack portability. Dasgupta [79]
has identified the necessity for high level microprogramming, and has discussed at
some length the nature of the problems encountered by language designers. Also, he
has suggested future directions in research.

6.1.2 Microprogram Assembler

In view of the unsolved problems in high level microprogramming, assembly
level programming [80] is currently the most widely adopted approach. Micropro­
gram assemblers are analogous to ordinary macro assemblers; they are code transla­
tors - from mnemonics to machine words.

A microprogram memory word or a microinstruction is unlimited in length and
a typical microprogram consists of 1000 instructions or more. A microinstruction is
segmented. These segments are called fields and convey control information, such as
the microprogram execution sequence, functions of the ALUs, register addresses,
timing and enabling conditions for fetches and switches, register pre-loading,
instruction pre-fetching, masking, etc. The grouping of bits into fields is a crucial
design choice which directly affects the performance of the ultimate system. Tech­
niques of optimal encoding have been an active research topic. The two extremes
are:

i) Minimal Encoding.

Each bit of the microinstruction is responsible for one function. In this way,

-95-

maximum parallelism is achieved. Thus, an increased throughput is possible.

The disadvantage is the requirement for an enormous control store.

ii) Maximal Encoding.

The entire microinstruction is treated as a whole. It is encoded according to 2 ,

where b is the microinstruction word size. This method requires a small con­

trol memory with the trade off of decreased throughput which is incurred by

decoding.

In practice, micro instructions are designed as a compromise between the two

extremes. The decision is based on the hardware configuration and the intended

macro operation. Typically, a micro instruction consists of several fields. Each of

them is designated with a different number of bits. Specifying the content of each

field in an assembly language requires multiple assignments. This is equivalent to

having multiple opcodes in one instruction. Different opcode patterns might call for

different field groupings in successive instructions. A jump instruction, for example,

might call for only two fields: the field specifying the jump function, and the other

giving the jump address. On the other hand, an ALU operation such as C=A+B,

requires several short fields containing codes giving the first and second operand

source locations, the code for the ALU operation to be performed, the destination of

the result and bits to control the handling of carries and conditional codes.

A special feature of bit slice design is its flexibility: it permits alteration to

the architecture of the target machine. The assembler being a design tool for helping

to construct the hardware/software combination would be expected to accommodate

these changes. This is one of the design problems currently associated with high

level microprogram languages. Their lack of "redefinability" has rendered present

languages much less useful. This problem can be tackled by developing two phase

-96-

(or meta) assemblers. Firstly, in the definition phase lines of specification describing

the target machine are read. These include sizes, positions and default values of all

existing fields. In the second assembly phase, lines containing field assignments are

scanned and translated into the required bit patterns.

6.1.3 Practical Considerations

In bit slice design environments, the assembler may be used by engineers who

are not very familiar with the idea of microprogramming. An initial use might be for

a very simple microprogram structure which should allow successful assembly

without resorting to a large variety of special keywords, formats and constructs.

Direct entry of binary contents of a microinstruction should be straight forward. At

the other extreme, the same assembler should also allow use by designers who have

already familiarised themselves with the reasons for and the means of using rela­

tively advanced tools, such as macros. With such assemblers, the engineer can make

more advanced use of the tool easily and naturally, as his applications and his skills

become more sophisticated.

6.2 The Local Microassembler

There were no microprogram development tools available so a decision had to

be taken whether to purchase these or to develop a customised set. As there did not

seem to be any suitable tools available commercially which would run on local com­

puter systems under UNIX, it was decided to develop a microassembler. The facili­

ties provided under the UNIX operating system provided a valuable asset in this

work and the resultant assembler is flexible and powerful and capable of being rela­

tively easy modifiable for other bit slice targets.

-97-

6.2.1 The Command - Uasm

Uasm is a custom UNIX command developed using shell programming. The

invocation of this command is described, in the form of a UNIX manual page, in

Appendix I. It accepts a microprogram source and translates it into a loadable for­

mat for the M68000 host. Three processing stages are involved in it, namely: M4 —»

tst —» srecoid. In the first stage a named source file (suffix .um) is passed through

M4, which is a built-in UNIX macro preprocessor [81]. The output of M4 is piped to

the second stage, tst, directly. Tst is a microprogram assembler which performs the

translation. It is written in yacc [82], a useful software design tool on UNIX. The

syntax of the tst micro assembly language resembles the one described in [83] which

is written for a bit slice graphics controller interface to a M68000 based workstation.

Tst could stand on its own as a translator that allows users to 'touch* the microin­

structions. By incorporating tst with the M4 front end, a powerful high level tool has

been achieved. An intermediate file is created - umout, containing the load

addresses and the bit patterns in hexadecimal. Finally, um.out is fed into'srecord,'

another custom program written in C, which converts um.out into the loadable S-

Record format.

6.3 The Implementation of Tst

Tst is a micro assembler which accepts a microprogram input file (in uasm for­

mat, c.f. Appendix I) and translates it into corresponding micro control word patterns

and outputs them to a file (default 'um.out').

Tst is a two pass assembler. In the FIRST_PASS the syntax is checked,

literals (strings of alphanumerics, <25 characters) are collected in a symbol table and

t in this context, all words in capital letters are defined or key words in the assembler program.

-98-

branch addresses are calculated. All kinds of errors are reported in this pass. If there

are none, tst proceeds to the SECOND_PASS, otherwise it stops and destroys
a -

umout before exiting with a status 1, which is normally interpreted as incomplete

task in UNIX.

6 J.I First Pass

The HRST_PASS is further divided into two phases. Phase one is the

definition phase in which information defining the machine architecture is given.

This includes the size of the control store (breadth and width) and the declarations of

all the control fields and their default settings. The maximum width of a control

word is 128 bits (4xsizeof(long), 32 bit), exceeding this would cause immediate sys­

tem abortion. Each control field can only appear once in the definition phase. Any

fields occurring twice will generate an error. If the size of the default value of a

field is greater than the size of the field itself, the default value is only partially

recognised - up to the size of the field.

Labels are entry points for branch instructions. They are identified in the

second phase; branch addresses are calculated and assigned to the corresponding

labels. These are kept in the symbol table and later retrieved during code generation.

Labels can only be defined once; multiply defined labels would generate complaints.

Labels are assigned to BA (Keyword: Branch Address) within the microprogram.

Forward addressing is allowed. To achieve this feature, undefined literals which

appear in the microprogram are tagged as UNDEFs. Hopefully, UNDEF literals are

re-defined as JUMP_ADDRESSes at a later stage. At the end of this second phase all

proper entries in the symbol table should have been defined either as FIELDs or

t to use a branch label which is defined later

-99-

JUMP_ADDRESSes. UNDEFs are improper and will be picked up in the

SECOND.PASS.

63.2 Second Pass

The SECOND_PASS is responsible for generating micro control words from

the microprogram instructions. Four long words (OUTPUT_PAT) are dedicated to

this task and initially, they are set to the default pattern, generated from all the

default values arranged in the right order. The exact number of OUTPUT_PAT's

used depends on the size of the control word as specified in the definition phase. It is

not necessary to use all control FIELDs. The right hand side of a field assignment is

read. This could be a straightforward number (binary, octal, decimal or hexade­

cimal) or an arithmetic/logic expression (+,-,V,«,»,l and &). The calculated

value is shifted to the appropriate position corresponding to the control field.

Unused FIELDS are padded out with their defaults.

During the translation process the address of the current micro word (DOT) and

the physical memory address (PM) are recorded. Effectively, DOT is the micro-

address viewed from the microprogram sequence controller, whilst the physical

address is for down loading into the Writable Control Store (WCS) from the host (in

this case M68000). Branch address calculations are performed using DOT. DOT

may not be the same as the physical address of the memory depending on the setting

of NFLAG. NFLAG is a variable which is set by the '-n' optional flag, included in

the command invocation. If NFLAG is equal to 1 , DOT is incremented by 1 other­

wise it is the same as PM, incremented by the number of bytes taken up by a micro

word, after each microinstruction. The number of bytes occupied by the line

together with the value of PM is written onto an output file 'um.out', followed by

-100-

the translated micro word.

Before exiting with a 0 status, a message is displayed on the screen informing

the user of the number of micro words generated and all open files are closed

63.3 Error Messages

Error messages are printed on the standard error output (STDERR). Errors

occurring in the first phase are marked with "Definition error" at the beginning of the

message followed by the description of the specific error followed by the line of

occurrence. In the second phase, messages take a similar pattern with "Statement

error" followed by the error message followed by the instruction number at which the

error occurs. Because microinstructions extend over more than one line, to print

errors by their line number is virtually meaningless.

6.4 Microprograms for the ICMS

In the microprograms developed for control of the ICMS, each microinstruction

is 64 bits wide and is segmented into 35 different fields. The grouping of these fields

and their practical meanings are summarised in Table 6.4.

The microprograms for the ICMS were developed in a hierarchical fashion,

see figure 6.4. The nuclei of all micro routines are based on the memory access

instructions, namely

_mem_write(DATA_REG,ADD_REG,ADD_ROUTE); and

_mem_read(DATA_REG,ADD_REG,DATA_ROUTE,ADD_ROUTE).

Data and addresses of these operations are derived from the 16 internal registers, as

specified in DATA_REG and ADD_REG. The last (16th) internal register is

t Throughout the thesis, 'microinstructions are preceded by "_", followed by the instruction
names (in capital letters); parameters are embraced by "(" and ")" at the end of the names.

-101 -

constantly regarded as the data transfer buffer. The data to be written/read is first

transferred to/from them and the outputs are then gated. There are five possible

routes of data and addresses to the cell memory through the control of the bi­

directional buffers with the parameters DATA_ROUTE and ADD_ROUTE. Timing

difficulties arise because of the use of ordinary "slow" RAM for the cell memory.

This is overcome by stretching the clock, as shown in figure 6.4a. The mark/space

ratio and the period are specially chosen to satisfy the worst case requirements. The

worst case set up time for the ALU is 50 ns and the memory access time of the

RAM (6116-2) is 120 ns. Therefore the worst case access for writing is

50-»-120= 170ns. An extra cycle is needed for reading because the data fetched from

the memory is going to be stored in the ALU; this gives 50+120+50=220ns.

The other routines include, _COPY(X) which copies X (a FROMSPACE

pointer) into the TOSPACE location pointed at by the B pointer. A conditional

_COPY is also provided, _MOVE(X); in this case, the origin of X is tested and it is

copied if it is a FROMSPACE pointer otherwise it is left intact. The _SCAN micro

routine which is based on _MOVE is the unit operation for garbage collection. The

GC test signal is constantly monitored at the beginning of a garbage collection cycle.

During this the ICMS is vulnerable to interruption. When GC is high and there is no

request for a list operation, another _SCAN is performed. Normally, the function of

_SCAN is to apply _MOVE to the HEAD and TAIL elements of cell addressed by

the S pointer. In a special case when the system has just flipped, which happens

rarely (only once every M allocations, where M is the total number of cells in the

TOSPACE), internal registers 0 to 7 (the roots) are _MOVEd and their contents are

updated. The final stage of microprogram development was the realisation of five

list manipulation primitives: _CAR(X), _CDR(X), _REPLACAR(X,Y),

- 102-

_REPLACDR(X,Y) and CONS(X,Y). _MOVE is applied to the parameters before

they are loaded into the corresponding functional IO registers. There are also several

supporting micro-subroutines:

_INCB/_READB - increments and reads the B pointer.

_INCS/_READS - increments and reads the S pointer.

Eight conditional flag selectors:

1) _IF_POLLED - has the host requested a LISP function ? (This was only

used at the beginning. Polling has now been replaced by interrupt.)

2) _IF_CELL - is it a cell pointer ?

3) _IF_GC - has garbage collection completed ?

4) _IF_TO - does a cell pointer exist in the TOSPACE region ?

5) _IF_FROM - does a cell pointer exist in the FROMSPACE region ?

6) _TRUE - always true or ' 1'.

7) _FALSE - always false or '0'.

Eleven conditional/nonconditional branch microsubroutines which control the

execution sequence explicitly according to the result of a conditional flag selec­

tor :

1) _JZ - branchJ always to the the first location of the WCS. This, usually, is

the first instruction of many bit slice microprocessors. The startup vector

is placed in the first location of the store.

2) _JSR - jump to subroutine unconditionally. Before jumping, the present

t Branch and jump are used differently here for better explanation. A branch is a "GOTO"
operation. A jump is associated with subroutine calls in which return addresses are saved.

- 103-

value of the program counter is pushed onto the NAG's (Am2911A) 16-

level LIFO memory. The subroutine address is specified by the @BA

field.

3) _CJSR - conditional jump to a subroutine if the result of the conditional

flag selector is high.

4) _JMAP - branch always to the point specified by the output of the MAP

ROM.

5) _JHI - branch to the point specified by @BA if the result of the conditional

flag selector is high else continue.

6) _JPR - if the conditional flag selector returns low the present execution

will be repeated; otherwise a branch is taken to @BA.

7) _JLO - branch to @B A if the conditional flag selector returns low.

8) _RTN - return from subroutine.

9) _CONTINUE - execution continues from the program counter.

10) _NOP - no branching, same as .CONTINUE.

11) _JBA - branch always to @BA.

ESfPARAO(x)/INPARAl(x) - read in the content of the input register (INO/INl)

and put into the xth internal register.

OUTPARA3(x)/OUTPARA4(x) - write the content of the xth internal register

and put it into the output register (OUT2/OUT3).

BERR - assert BERR onto VMEbus.

- 104-

6.4.1 The LISP Primitives

Five LISP primitives are provided by the ICMS firmware, they are :

i _CAR(X)/_CDR(X):- This primitive extracts the HEAD/TAIL element of the

cell pointer X. To invoke this function the host writes the content of X into the

CAR/CDR register (FF8080/FF8088, cf Table 5.2.3a). Part of this address

(FF8000, Bitg_23 & Biu 7) addresses the first of the two input registers.

Immediately after the last write cycle to the register, an interrupt is generated to

the ICMS. The remaining bits of the address (80/88, Bit--) are used to address

the MAP ROM so that the PU starts executing from the _CAR/_CDR micro-

subroutine when the ICMS has finished the present garbage collection cycle.

Upon execution, the PU reads in X from the input register, ensures X is a cell

pointer, passes X into micro-subroutine _MOVE which copies X from one

region to the other if required and updates all pointers, extracts X's

HEAD/TAIL element, writes it to the output register and instructs the host that

the answer is available by asserting DTACK. DTACK is asserted by setting

micro bit @BUSY to T.

ii _REPLACAR(X,Y)/_REPLACDR(X,Y) :- This primitive replaces the

HEAD/TAIL element of cell Y to X. To invoke this function the host writes

the contents of X and Y into the REPLACAR/REPLACDR registers (FF8094 &

FF8090/FF809C & FF8098, respectively). The order of parameter setting is

important, X has to be written before Y. Immediately after the last write cycle

of Y, an interrupt is generated to the ICMS. Bits-2_7 (namely, 90/98) direct the

PU to execute the _REPLACAR/_REPLACDR micro-subroutine after the

present garbage collection cycle is finished. Upon execution the PU reads in X

from the second input register and passes it to the _MOVE subroutine; then the

-105-

PU reads in Y from the first input register and passes it to the _MOVE subrou­

tine. After X and Y have been _MOVEd, the PU places X into the

HEAD/TAIL of the cell location referenced by Y and asserts DTACK.

iii _CONS(X,Y) :- This primitive creates a new cell and places X and Y into its

HEAD and TAIL elements, respectively. To invoke this function the host

writes the contents of X and Y into the CONS registers (FF80A4 & FF80AO,

respectively). Immediately after the write cycle of Y, an interrupt is generated

to the ICMS. Bits3 - (AO) direct the PU to execute the _CONS micro-

subroutine after the garbage collection cycle is completed. Prior to creating a

new cell, X and Y are passed into _MOVE. To create a new cell, the B counter

is incremented by the _INCB micro-subroutine and the value of the B is read

CREADB) into the 16th internal register. Finally, X and Y are written into the

cell location pointed at by B and DTACK is asserted.

The complete microprogram for controlling the ICMS is listed in Appendix IV.

6.4.2 The Microprogram Structure

The structure of the ICMS microprograms is very modular. Subroutine calling

is extensively used. This is facilitated by the NAG (next address generator,

Am2911A) which has a 16 internal LIFO register file for stacking return addresses

and the 8 conditional/unconditional jump to subroutine instructions. Parameter pass­

ing is achieved via the last eight registers of the ALU. These registers are also used

as the scratch pad. The 16th register is most heavily used because of its role as the

data transfer buffer during memory access. This is restrictive because only up to

eight parameters can be passed and their positions are fixed. During nested calls the

value of the shared registers has to be saved and conversely, restored after returning.

-106-

Therefore, although the NAG architecture supports nested subroutines, it is only

effective for non-parametric calls. Some external register files could be added to the

ALU thus providing extra work space. Moreover, a parameter stacking mechanism

could be incorporated, which would provide dynamic allocation of internal registers

and save the ALU from saving/restoring during nested subroutine calls.

At present, the size of the Writable Control Store (WCS) is 2k bytes. There are

64 bits in one ICMS microinstruction word. This implies that the logical address

space of the WCS is 256 words. The modular structure of the ICMS microprogram

has resulted in 116 microcode words and they are comfortably fitted into the WCS.

6.4.3 Error Handling

There is a small amount of error handling capability built in with the micropro­

grams. When an error is encountered a BERR is asserted on the VMEbus. This is,

however, very crude and the source of error is not specified. This could be overcome

by utilising the VME interrupt mechanism: i.e. assign interrupt levels (0-7) and vec­

tors to individual sources. There are mainly two types of errors, namely:

Parameter errors - the Xs and Ys supplied to the list primitives are not the

proper type; for example, it is illegal to apply _CAR(X) if X is not a cell

pointer.

System error in cell allocation - supply is less than demand in cell allocation.

In the ICMS, this happens when the GC test signal is high at the moment of

FLIPping.

The second error is fatal. It is, in fact, a violation of Baker's second principle (sec­

tion 3.4.2) which states that there should always be at least one free cell available at

the instant of a cell request. In practice, it is possible to have some temporary cells

-107-

created while the garbage collection process is still ongoing. These are called float­

ing garbage. The non-deterministic nature of dynamic memory allocation provides

no means of foreseeing the amount of floating garbage that needs to be created. The

condition for a machine to remain functional is derived as follows :

Let M be the total number of cells in TOSPACE, N be the number of inaccessi­

ble cells at the beginning of a FLIP and k be the number of garbage cells being col­
lected at one burst. Accordingly, the number of cycles required for completion of

N N N garbage collection is —. After the — th cycle, — new cells are created. To ensure
.». Jk. &

that the memory is not over populated, which would lead to system failure, the fol­

lowing condition has to be satisfied:

number of new cells < number of free cells
— < M-N
k
1 M-N _, 1X- < M (6A1)k N

M is fixed and N is fairly constant in the steady state, therefore the larger k is the

more likely condition 6.4.1 is to be satisfied. Applying Baker's algorithm on a serial

computer, when k=M, is the non-real-time realisation. Thus,

1 M-N
M N

M+l M (6.4. la)M N
This is always true because M > N, so the left hand side of 6.4.la is « 1 and the right

hand side is > 1. In fact for any k which is > N, a machine will be safe from system

error (providing M > N). Nevertheless, more work will have to be done on each gar­

bage collection burst for a large k; which would then result in a sluggish response

time. On the other hand, when k —»0, less and less effort is needed for each cycle;

-108-

thus ensuring prompt machine response. The trade off is to expose the machine to

system error.

The advantage of the ICMS scheme is apparent at this point. A dynamic k is

possible under a mixed real-time and incremental collection strategy. For as long as

there is no list operation requested, garbage collection is performed in parallel there-
N fore it takes less than •—• cycles before the task is completed. Effectively, a large k is
JEL.

established. However, the garbage collection process is transformed into the incre­

mental mode when list operations are requested. This ensures k —» 0 and machine

response time remains bounded and tolerablely short. Therefore, by employing an

ICMS based machine, the rate of system error is minimised and fast system response

is guaranteed.

-109-

Fields Bit no. Default Operations
BA
seqjnstr
RE2911
OE2911
lOsel

0-7
8-11
12
13
14,15

0
0
1
0
0

OEy_h
OEy_t
addA

16
17
18-21

0
0
0

addB

add_buf_dir
add_buf_en
ALU_instr
AO 139

22-25 0

data buf dir 26

data buf en 27

28
29
30-38
39

mem read h 40

mem read t 41

0

0
1
alll's
0

1

mem_sel_h
mem_sel_t
oebji

oeb_t

ea_h

42
43
44

45

46

1
1
1

1

1

branch address
instruction control of 29811
register enable of 2911
output enable of 2911
selection of IO registers :
00 read IN register 0
01 read IN register 1
10 load OUT register 2
11 load OUT register 3
output enable of HEAD ALUs
output enable of TAIL ALUs
selection of the dual-ported
internal ALUs' registers at
port A
selection of the dual-ported
internal ALUs' registers at
portB
control of the routes on the
datapath:
0
1
enable of the data buffer, dis­
able (1) implies separate
routes of data
same as bit27 on address path
same as tnt28 on address path
function control of ALUs
special decoder (SD) control
(see later)
HEAD memory read/write
control:
0 Write
1 Read
TAIL memory read/write con­
trol
HEAD memory select
TAIL memory select
enable output of HEAD ALUs
registers at port b
enable output of TAIL ALUs
registers at port b
enable output of HEAD ALUs
registers at port a

Table 6.4 a: The Grouping of ICMS Microinstruction Word.

- 110-

eaji 47 1 enable output of
TAIL ALUs registers at port a

IEN_h 48 1 instruction enable of HE AD ALU;
when 0 internal register can be written at port b

ffiNJi 49 1 instruction enable of HE AD ALU;
when 0 internal register can be written at port b

Al_139 50 0 Special Decoder control (see later)
carryji 51 0 carry of HE AD ALUs
carry_t 52 0 carry of TAIL ALUs
clock 53-55 0 clock rate select
sel_139 56 0 select of the Special Decoder (SD):

Whensel_139 = 0
AO Al
0 0 Default no action
0 1 Latch in test signals
1 0 Not used
1 1 Bus Error
When sel_139 = 1
0 0 increment S ptr
0 1 readS ptr
1 0 increment B ptr
1 1 read B ptr

1 HEAD memory output enable
1 TAIL memory output enable
0 select output from

the conditional multiplexer:
0 POLLED
1 CELL
2 GC
3 TO
4 FROM
5 FLIP
6 TRUE
7 FALSE

INT 62 1 68K-ICMS interrupt enable
BUSY 63 0 DTACKwhen 1

mem_oe_h 57
mem_oe_t 58
TESTsel 59-61

Table 6.4b: The grouping of the ICMS microinstruction word(cont'd)

- Ill -

List Operations

c
*»•

o

O

Scon

o

\
s:

/

Move

\^ Copy
0

| Memory Read it Write

/ Copy

5

Move

/
2

\

o o
VI

Scan

ag

List Operations

Micro—Routines Hierarchy

Figure 6.4: Stages of Microprogram Development

-112-

FO_TLn_n LOW

C1_J

C4n

^ J-
b . —— --- • mBmorj

e:ALU

UDW

(<«2J

120m)

w

/^y ^ £

WOM X

IfltfN /• vlx

\m

Operations

@mcm_writc:

times (ns)

address/data setup
memory access

< 62.5
> 120
4 cycles = 250

@mem read: address/data setup
memory access
ALU store

< 62.5
> 120
< 62.5
5 cycles = 312.5

Figure 6.4a: The Timing of Memory Access Cycles.

-113-

CHAPTER VII
Verification and Results

7.1 Verification

At the first stage of the project, both non-real-time and incremental versions of

Baker's garbage collection algorithm were studied. The main objective was to prove

their correctness. Apart from the necessary changes to account for the difference in

cell definition, the realisation of the algorithms was simply a task of translating the

original algorithms from ALGOL [63] into C. To assist this verification exercise, a

simple LISP interpreter - simpleLISP - was written. It is an interactive variant of

MACLISP [59] whose construction details are explained in appendix n. Although

simpleLISP is crude, it contains sufficient LISP primitives for the purpose of this

project .

While simpleLISP is running, there are always two lists being maintained. A

global list, or the program environment, contains all user-defined functions (created

by defun) and objects with their associations (created by setq). Newly defined func­

tions and objects are added to the top of the existing list; and, on the other hand,

redundant ones are deleted by applying the primitives undef and unset, respectively.

The other list is a temporary entity, the local environment, which is maintained dur­

ing a user-defined function call. It consists of the run-time associations of all param­

eters and has a link to the global program environment at the time when a function is

invoked. Effectively, it operates as a stack which facilitates dynamic late binding.

t The LISP primitives supported by simpleLISP are : add, append, assoc, atom, car, cdr, cons,
cond, defun, difference, lambda, null, replacar, replacdr, setq undef, unset and zerop.

-114-

The information contained in both lists is essential and therefore their originat­

ing pointers are stored in the system's root registers. A practical criterion of the

correctness of this implementation is that the integrity of both lists is retained

without corruption for as long as simpleLISP is active and is subjected to, ideally, an
infinite number of garbage collection cycles. In order to do this the familiar recur­
sive function, fibonacci, was defined:

(defun fibonacci (n) (cond ((zerop n) nil) ((equal n 1) nil) (t (add (fibonacci (
difference n 1)) (fibonacci (difference n2))))))

This function was called many times. The characteristic of it is that the amount of
cells required increases with the value of n. If n is large, at some point in the middle
of an execution, the cell memory would be exhausted. Had information contained in
both environments not been preserved, invalid answers would be the likely conse­

quence.

Initially the exercise was scheduled on a VAX 11/750, then it was repeated on a
M68000 with and without the ICMS. In all cases, both environments were never
corrupted which suggested that Baker's garbage collection scheme has been suc­
cessfully implemented. At a later stage, some timing measurements were taken (c.f.
section 7.4). For ease of implementation, the simpleLISP cell space was installed

with two thousands cells only (split equally between the TO- and FROM- SPACE).
Unfortunately, this limited cell memory size caused the test to fail when n > 9. This
was because fibonacci(9) consumes over 1000 cells in simpleLISP, more than the

system could afford.

7.1.1 Graphics

In addition a graphical tree traversal program module was written which was

-115-

added to the existing software. The intention of writing this module was to provide

extra information on the low-level operation of the collector. The details of the pro­

gram are presented in appendix HI. Practically, the module serves two functions :

i) to display an input list graphically in binary tree format;

ii) to reveal the route taken by the garbage collector during its execution.

Baker's algorithm is a copying type collector, and the routes taken by the garbage

collection process are completely different from those in mark and sweep algorithms.

In order to demonstrate this fact, a link-reverse mark and sweep collector was writ­

ten, algorithm E in [56]. Applying the graphical module to Baker's and Knuth's, the

routes of garbage collection were revealed, respectively, to be "breadth first" - cell

inspection proceeds from left to right and roots to atoms, and "depth first" - cell

inspection proceeds from a tail until an atom is reached and then resumes again

from where it was diverted. This graphical module will be very useful for helping

new comers to learn the concepts of list manipulation and garbage collection.

7.2 Results

Within the implemented primitive set, there are five functions which are

directly concerned with Baker's algorithm (c.f. Chapter HI). They are :

cons(x,y) create a cell and construct a list with x being the head and y being the

tail;

car(x) and cdr(x) return the head and tail element of the cell x, respectively;

replacar(x,y) and replacdr(x,y) replace the head or tail element of the cell x with

that of cell y, respectively.

The first experiment was to obtain the times required by each of these functions on a

M68000, with and without the ICMS. The equipment used for this exercise was a

-116-

HP logic analyser (1630G), shown at the right of Plate 7.2 which is a photograph of

the complete experimental setup. Before entering the functions, a flag was set and

similarly, just after return from the calls, another flag was set. Using two analyser

probes, one connected to each flag, provided the required information. Each function

was called in turn and their execution times were recorded.

The results are tabulated in table 7.2. The worst case set up (row 1) happens

when garbage collection is active and the parameters supplied to the functions reside

in the FROMSPACE. When this occurs, extra effort is required to copy these param­

eters and to ensure that the return values are genuine (e.g. car could have returned the

forwarding address of a moved cell). Therefore, as expected, the execution times for

set up 1 are longer than those of 2; and for all functions, the amount of extra time

required is approximately doubled. Set up 3 is configured with simpleLISP mounted

on a M68000 interfaced to the ICMS which contains the functions in microcode. The

difference between the worst and normal cases are unnoticeable because a garbage

collection burst (a scan operation) is short as compared to the actual functions them­

selves. Rows 5 and 6 indicate the speed improvement between the M68000 with

and without the ICMS in the worst and normal situations, respectively. Clearly,

when interfaced with the ICMS, the M68000 performs much faster. For cons which

involve several cell copying operations the improvement is most noticeable.

7.2.1 A High Level Evaluation

Since the five primitives tested were elementary, higher level functions can be

built from them. Having shown that individual primitives are executed faster thus

demonstrating the advantage of the ICMS, this fact may be justified further show­

ing that the improved figures in table 7.2 are realistic. A similar experiment as

-117-

described in section 7.1 was performed. A user-defined fibonacci function was
invoked with various parametric values. The results are given in table 7.2.1.

The numbers of cons, car, cdr, replacar and replacdr which have been called in
fibonacci are directly proportional to n. Consequently, the improvement factors for
all cases are fairly constant (~ 15). The variations are due to occasional bus delays.
As mentioned in section 7.1, the evaluation of the fibonacci function requires an
rapidly increasing number of temporary cells. These cells are mainly for late-
binding of parameters and the numbers required increase monotonically with n as
shown in column two of table 7.2.1. When this number is greater than or equal to
the amount of cells available, (>=1000 in simpleLISP, i.e. fibonacci(9)), the system
fails.

7.3 Baker's GC on the ICMS

A final experiment was carried out to show that the ICMS is superior to the
version of Baker's algorithm running on a serial computer (M68000). This was done
by creating global environments, whose size varied from 1% to 99% in 10% incre­
ments, and then 1000 cons functions were called. In so doing, at the 1000x(100-n)th
cell requests, garbage collections were initiated, where n is the percentage of accessi­
ble cells with respect to the total number of available cells (i.e. 1000 for the ICMS).
The measured times are tabulated in table 7.3.

Since the task of Baker's algorithm is to copy all accessible cells from the
FROMSPACE to the TOSPACE, it is not surprising to see that as the number of
accessible cells increases, the time required for garbage collection also increases.
Notice that throughout the experiment, the ICMS times remain constant while the
68K times increase monotonically. Consequently the relative performance, which is

-118-

a ratio of the two, also increases.

At some point, the experiment failed for the M68000 alone set up. From 1% to

50% full, the system operated normally and the execution of the cons experiment

involved only one garbage collection cycle. For 60% onwards, the system behaved

differently. When the system was 60% full, two garbage collection cycles were

required. At the beginning of the experiment, before the first cons operation, there

were 400 free cells available. After 400 cons, the system entered into garbage col­

lection for the first time. For the M68000 alone case, three garbage collection bursts

(the scan quota) were performed for every invocation of cons. Theoretically, the

worst case of 200 cons operations is required for a list of 600 cells. After the

required 200 cons, the system was then 800 cells full (600-1-200). Finally, at the

200th of the remaining 400 cons operations, the system flipped again. Therefore, it

can be seen that the execution time for the 60% case is slightly longer. Because of

the same reason, the system crashed from 70% onwards. For the 70% full experi­

ment, the system required (700-5-3) -266 cons in order to recover. Nevertheless, the

system failed at the 250th cons. At which point, (4x250) 1000 cells existed, but gar­

bage collection had not yet finished. Technically, system failures in these cases

were caused by:

(S < B) and (the system has just flipped).

This predicament was not suffered by the ICMS because garbage collection was per­

formed both in parallel and incrementally. Parallel collection operates in between

cons - for instance, during parameter setting. In so doing a fast rate of cell recovery

is guaranteed; thus avoiding the cell shortage problem when the M68000 operates

alone. At the same time, short and constant garbage collection bursts are ensured;

they are performed incrementally, as part of the cons operations. The dual operation

-119-

mode of the ICMS is an advantage for engineering applications. Effectively, this

experiment is, in fact, an experimental justification of expression 6.4.1, with a

dynamic k.

1 M-N
k N

where k — » M for parallel mode and k — » 0 for incremental mode (cf Section 6.4.3).

7.4 Conclusions

The results presented above clearly demonstrate the very considerable improve

ment in performance provided by the ICMS design. Such performance would obvi

ously be very attractive in real-time engineering applications of AI.

-120-

#
1
2
3
4
5

SetUp
68K alone (worst case)
68K alone (normal case)
68K with ICMS
Worst case Improvements (1+3)
Normal case Improvements (2+3)

car/cdr
820.8
293.0

57.1
12.6
5.1

replace
1392.0
581.4
65.2
25.9

8.9

cons
2971.0
1361.0

53.8
55.3
25.3

N.B. All times measured in micro seconds Qis).

Table 7.2: Execution times of the basic LISP primitives.

fibonacci(n)
n
0
1
2
3
4
5
6
7
8
9

cells consumed
20
20
36
56
92

148
240
388
628

1016

68K alone (ms)
23.17
34.44

105.9
190.8
351.2
602.5

1202.0
2536.0
5289.0
invalid

68K+ICMS (ms)
1.553
2.31
7.12

12.53
23.77
40.28
77.47

172.51
311.04
invalid

Improvement ratio
14.9
14.9
14.9
15.2
14.8
15.0
15.5
14.7
15.5

invalid
Table 7.2.1: Execution times offibonacci(n), where 0<n>9.

Continuous Cons Experiment
% of Accessible Cells w.r.L

total cells available (%)
1

10
20
30
40
50
60
70
80
90
99

68K alone
(s)
2.5
2.6
2.7
2.8
2.9
3.0
3.7

failure
failure
failure
failure

68K+ICMS
(ms)
55.9
55.7
55.5
55.7
55.4
55.4
55.6
55.4
55.4
55.7
55.4

relative
performance

45.6
47.2
48.9
50.3
52.2
54.0
67.4

invalid
invalid
invalid
invalid

Table 73: Execution times of 1000 continuous cons operations,
with varying number of accessible cells.

-121-

Plate 72: Experimental Setup (from left to right: an ESPIRTT terminal
the ICMS and the HP1630G Logic Analyser).

- 122-

CHAPTER VIH
Conclusion

8.1 Summary

This thesis has described a special purpose coprocessor system known as the

Intelligent Cell Memory System (ICMS). The fundamental role of the ICMS is to

facilitate the employment of Artificial Intelligence techniques in real time engineer­

ing applications. One of the major difficulties in this area is poor response time

caused by variable delays incurred by garbage collection. Effectively, the ICMS is a

hardware realisation of Baker's garbage collection algorithm. The heart of the

hardware is based on bit slice devices controlled by microprograms. The novelty of

the ICMS is its dual operation mode in garbage collection - either parallel or incre­

mental. Parallel mode provides a fast rate of cell recovery and incremental mode

ensures short and bounded garbage collection intervals. Normally, the rate of garbage

collection on a serial computer, increases with the amount of accessible cells. It was

shown in section 7.3 that the ICMS is capable of keeping this rate constant.

On top of the garbage collector, five basic primitives for list processing : car,

cdr, replacar, replacdr and cons, were also implemented in the ICMS. Therefore,

functionally, the ICMS can be regarded as a linked list coprocessor. Interfacing the

ICMS with a conventional host processor, the latter can be transformed into an A.I.

machine with reasonable processing power. This would greatly reduce the overhead

cost and time for installing new equipment. The ICMS is easy-to-use : a primitive is

invoked simply by setting the appropriate memory mapped registers. Moreover, the

ICMS is designed to be generic with its interface being host-independent. Providing

- 123-

the VMEbus specifications are met, the ICMS can be interfaced to virtually any pro­

cessor. Experiments have shown that with the ICMS connected, a processor can

exhibit more than one order of magnitude speed improvement in list processing.

On top of the basic host-ICMS couple, the THESIS - The Hardware Environ­

ment for Small Intelligent System [73,74] - hardware design philosophy for

engineering applications has been developed (chapter IV). It is intended to simplify

hardware design by reducing system complexity; and to shrink system size - thus

on-the-site intelligence is made possible.

8.2 The Future

At present, the storage size of the ICMS is inadequate for practical applica­

tions. There are two ways of expansion : either to provide the system with additional

RAM, via the local bus, or incorporate disk memory with a virtual memory access

technique. As usual, the choice between the two is a trade-off between speed and

cost, which varies with the application. The second approach can be achieved in

the same way as memory expansion for conventional computers. It is simply to

place a memory management unit (MMU), a disk controller and some disk memory

in between the cell memory controller (ICMC) and the RAMs.

The concept of garbage collection on objects' lifetimes, proposed by [64], is a

desirable mechanism to adopt. The idea is that once a cell is discovered to have

existed for a long time (several garbage collection cycles), it is regarded as per­

manent. All permanent cells are then transported out of the cell memory into some

other storage area for archiving. Incorporating this mechanism in the ICMS would

reduce the average time for garbage collection and would also provide a fairly con­

stant workspace.

-124-

Although the speeds of execution of the 5 fundamental primitives are improved,

this only provides a low level design aid. In practice, optimised high level algo­

rithms are necessary for ultimate efficiency. Additionally, the use of well-written

compilers, rather than interpreters, such as simpleLISP, to generate optimised

machine codes would be most helpful if not essential. Both suggestions are outwith

the scope of this project but are worth investigating in the future.

There are several unused addresses for future expansion. Frequently used high

level functions can be microcoded, loaded into the ICMS and assigned with one of

these addresses. Another desirable amendment to the existing hardware is the inclu­

sion of error handling capability. Currently, an operational error would merely result

in the assertion of the Bus ERRor (BERR) signal on the VMEbus. This, however, is

not very informative. There is no indication of the nature of the error. One solution

is to employ interrupting with pre-defined interrupt vectors, which will specify the

nature of the error.

The ICMS based THESIS design concept supports hardware modularity. Simi­

lar to the ICMS, other functional modules are independent units. Inter-module com­

munication and coordination are scheduled by a host processor. The major advan­

tage of the use of independent functional modules is flexibility. Normally, a proces­

sor can function adequately by itself. However, if provided with additional modules,

the capability and the performance can be enhanced.

8.2.1 An Advanced Realisation - A VLSI/ICMS

The ICMS can be classified as a Single Instruction Multiple Data (SIMD) pro­

cessor with redundancy. The target data structure of the current implementation is

the list, but the philosophy is not restrictive. A list is an example of n-ary vector

-125-

structure (where n=2); the ICMS could be tailored to process other complex data

structures (e.g. objects, IKBS tuples). Bit-slice design techniques would be most

suitable for this application. There should be two types of slices : the controller and

the memory; and together they form a column (or an element) of cell memory.

Therefore, to implement a vector machine, one could simply concatenate the

required number of slices.

Extending the concept of hardware modularity further and employing state-of-

the art technology, the ICMS (and the other THESIS modules) could be converted

into VLSI circuits. Each VLSI module would be stored independently in a design

library. Designing a complete system would require establishing connections

between them. In so doing, several benefits are predictable:

• cheap mass production cost;

• reduced design cost and time;

• minimised system size and possibly power consumption; and

• increased speed of execution because of closer coupling.

At the software level, it would be useful to have a special hardware design

language. Thus, designing a processor would be reduced to specifying its required

hardware functions with this language. The specification program would then be

translated into VLSI details directly using a silicon compiler. Practically, this com­

piler would operate incrementally in order to enable modularisation of intermediate

design or commonly used units into library cells.

Finally, it is conceivable that bus standards would not be confined to system

level. Standard VLSI bus specifications would evolve. Designing the ICMS and

other functional modules with it, the original generic nature of processor indepen-

- 126-

dence would be retained. Another possible way of modular integration would be the

use of programmable switch matrix bus architecture proposed by Chen [84]. The

idea is that connections between two ports are programmable. Therefore, the switch

matrix could be configured to adopt the VMEbus protocol.

-127-

APPENDIX I
UASM : the Language and the Assembler

A.I. Invocation of Uasm - a UNIX command

NAME
uasm - the local microprogram assembler.
SYNOPSIS
uasm file -bno -s[hex] -oname -n -i
DESCRIPTION
Uasm translates \hefile from microprogram format into S-record format. The options
are:
-bno:
[optional] no of output words; should be hex and <= f. Only hex right next to "-b" is
accepted; also defines the pc incremental quantum.
-rhex:
[optional] relocation address; hex should be a (< 4) bytes hex word.
-oname :
[optional] rename object load file from S.out (default) to name.
-n :
[optional] if n flag is on, the microprogram address is not the same as machine
address. This is useful for target processors which can programme its own control
store; in that case, all addresses will increment by one to access the next instruction,
irrespective of its size. On the other hand, if it is not set (the default case) addresses
will increment by the number of bytes equal to the instruction word size.

•-i:
retain intermediate file (um.ouf).
FILES
~kfw/bin/uasm (executable source); um.out (intermediate output file) and S.out (
output file in S-record format).

A.2 The Language Specifications
Uasm is a custom assembler and like any other language requires the input

statements to conform to a certain syntax. The production of uasm was facilitated by
the use of UNIX software development tools lex [85] and yacc [86]. The assembler
also accepts macro definitions and calls in M4 [87] syntax which raises the level of
microprogramming. The syntax specification of the uasm assembler language is
shown in the following :

-128-

spec
defin

sizasn

number

hex
oct
bin
dig
fieasn

fieldeq :

assem
origin
statment
bitset

label

operation

ops
branchadd

expr

•

:

;

•
•

OR
OR
OR
•

;

;

•

•

OR

defin
FORM
END
SIZE
V
hex
oct
bin
dig
V
V'b"
{0-9}
fieasn
fieasn

FIELD

•

•
'

•
OR
OR
•

OR
B

OR
;

,

OR
I

OR
OR
OR
OR
OR
OR
OR
OR
OR

V
origin
ORG
statment
label
operation
label
{a-z}
{A-Z}
ops
operation
branchadd
{a-z}
{A-Z}
number
number
number
number
number
number
number
dot
dot
dot

assem
$irasn
«.»

»
'<'

EQU

fieasn

number

— >

{0-9}
{0-9}
{0-9}

fieldequ

dig

— >

statment
number
bitset

operation

ops
expr

— >
V «**

—»
—>
—>
—>
—>

number
number
number
number
number
number

number
number

- 129-

APPENDIX II
The LISP System : simpleLISP

A LISP look alike system was implemented to facilitate ICMS testing. It is

known as simpleLISP and contains sufficient LISP functions for the purpose of the

ICMS. The software was written in C. Other languages could have been used; but,

since the development environment was a VAX minicomputer mounted with a

UNIX operating system, C was the obvious favourite. Unfortunately, the syntax of C

is not easily comprehensible by the uninitiated and hence in the following discussion

a Pascal-like format is used to improve readability. There were three stages of

development of the software. At first it was verified on the departmental VAX

machine, latter it was modified to operate on a 68000 microprocessor and finally, the

LISP primitives were transformed into an ICMS compatible format.

A.2.1 Basic Cell structure

The fundamental data item of LISP is called an atom. Groups of atoms form

lists (or s-expression lists). Lists themselves can be grouped together to form more

complex lists. Indeed, the ability to form hierarchical groups is of utmost impor­

tance. Atoms and lists are collectively known as symbolic expressions (or simply

s-expressions). Working with these is what symbol manipulation using LISP is

about.

In LISP systems, s-expressions are stored in binary-tree-like cell structures.

Each node consists of a cell and each cell is composed of head and tail pointers

(figure A.2.1.la) The basic cell structure defined in the LISP system developed in

this project is of the type structure occupying ten bytes. The first two 4-byte loca-

-130-

tions form the head and tail, respectively; the remaining 16-bits are used indepen­

dently as the cell status flags (figure A.2.1.2). Knowing that both heads and tails can

contain either pointers to other cells or atoms, they are defined as unions. A union is

a pseudo structure which can hold different types, one at a time. The size of the
'union' is that of the longest type declared within it But, the C language itself does

not keep track of the type stored. This job is performed by the status flags. The
functions of each bit are described in figure A.2.1.2.

A.2.2 The LISP System

In operation, the simpleLISP system developed resembles the 'OPUS version
36 Franz LISP system' used in the Artificial Intelligence Department in Edinburgh
University. It reads in a LISP instruction, evaluates it, sets the programming environ­
ment and prints out the result accordingly.

SimpleLISP is very primitive in error handling as compare to OPUS. In OPUS,
error handling is maintained by a technique called * Spaghetti Stack' [26]. When an
error is detected in the LISP instruction, OPUS will nest into the first level of the
stack (prompt as <!>:); if the user then corrects the corresponding error, it will
resume operation from the original level. If, however, an error occurs in the first

level, OPUS will then nest into a second level (prompt as <2x). If the amendment

then made was correct, OPUS would unwind itself to the previous level; otherwise,

such a nesting scheme would proceed into deeper levels. On the other hand, for sim­

pleLISP, error handling is relatively crude: whenever an error is detected, it will

abandon the current instruction, print an error message and prompt the user for the

next instruction. A nesting scheme like that of OPUS, would of course be desirable if
it could be installed in simpleLISP in the future; nevertheless, a lack of it does not

-131-

prevent investigation of engineering applications.

In the following sub-sections the implementation details of the simpleLISP sys­

tem will be discussed.

A.2.2.1 Input/output

The purpose of the input routine is to read in a s-expression and from it to build

up a data structure. The techniques adopted are conventional compiler/interpreter

design practice, which proceeds in two phases: lexical analysis and syntax analysis.

a) Lexical analysis

S-expressions are entered one line at a time. Each line being stored in a line

buffer before being scanned by a lexical analyser. The lexical analyser classifies the

various symbols or groups of symbols into a series of tokens. There are four types of

token:

TOKEN TYPES

(< or [delimiter - open parenthesis

) > or] delimiter - close parenthesis

separator - dot

e.g. TOM alphanumeric

e.g. 4 numeric

Spaces and newline characters, act as separators between different symbol

types; and they are ignored. The different forms of parenthesis are used to improve

readability and have no other meaning.

b) Syntax analysis

-132-

The syntax diagram for an s-expression is shown in figure 2.2.la. The s-

exprcssion is defined in such a way that it may be syntactically analysed by a method

known as 'recursive descent* [88]. This is nothing more than writing a recursive

procedure for each category of phrase: s-expression and s-expression list, whose job

it is to scan the input and recognise the phrase with which it is associated. The ability

to do this depends upon being able to predict the next token on the input.

The final stage of the input section constructs a cell structure in list space which

represents the s-expressions. Up until this stage, the algorithms for both lexical and

syntax analysis are derived from Henderson [88]. Henderson has also suggested an

algorithm for the final stage, the main feature of which is depicted in figure A.2.2.2.

His algorithm can be seen to be a direct translation from the syntax diagram (figure

A.2.2.1). However, on careful examination, it was found that this algorithm is

impractical. In the second procedure - getexplistQ - the functions CAR and CDR are

called, which are supposed to return the head and tail pointer, respectively. But, these

cannot be evaluated without arranging the complete s-expression into the list space

first! Thus the algorithm finally adopted was the one designed by Coghill[54].

Coghill based his getexp and getexplist procedures on a link-reversal technique,

which is a classical algorithm most frequently applied to garbage collection [56].

The link-reversal algorithm will be explained in the next section.

For the output of s-expressions, the reverse of Henderson's algorithm in figure

A.2.2.2 is employed. Since now, having the s-expressions already allocated in the

b'st space, CAR and CDR can be invoked. In [54] a different output algorithm was

developed which works on the reverse of his input method. Such an algorithm is less

efficient since every node is visited thrice on completion - once for the forward trace

and twice for the backward trace. In Henderson's algorithm, every node is only

- 133-

visited twice. Whenever the program branches from a node the return address of that

node is automatically saved on the hardware stack; thus, there is no need to keep

track of the tracing route within the software as Coghill had done. For simplicity,

there is no provision for 'pretty' printouts in the current implementation.

A.2.3 Garbage Collectors

SimpleLISP like any other list processing system comprises two related

processes. The 'mutator' allocates cell from free storage and links them together to

form data structures representing s-expressions. When the mutator drops a data struc­

ture it no longer needs, the abandoned cells remain in the system but are no longer

accessible. In order to prevent the mutator from running out of cells to allocate and

thus blocking computation, a 'collector' process gathers the inaccessible or garbage

cells and returns them to free storage for reuse by the mutator.

Three versions of simpleLISP were implemented and each of them was based

on a different garbage collection algorithm. The algorithms implemented were : the

link reversal mark and sweep collector, the Baker copying collector and the Baker

incremental collector.

A.2.3.1 Mark and Sweep Garbage Collector

The first garbage collector installed in simpleLISP was a classical mark and

sweep type. As its name suggests, mark/sweep collectors proceed in two phases:

1 in the first phase (MARK), garbage cells are identified;

2 during the second phase, all marked cells are reclaimed and linked together in

free storage - SWEEP.

Sweeping is a fairly straight forward process which requires a linear scan of the free

-134-

list space, unmarking and linking all marked cells as it goes. The result is a a chain

of free cells ready to be reused by the mutator.

The simplest form of marking algorithm is the one shown in figure A.2.3.1,

which is proposed in Winston[59]. This algorithm traces the complete cell structure

by first marking the tail branches until it comes to a halt by an atom or a marked

node; then it resumes tracing the heads from where it originally branches off. Note

that the system stack is used for storing return addresses and each node is visited

twice: once before marking the tail and once before marking the head. The major

drawback of this type of collector is that it uses extra storage for stacking return

addresses. In the extreme case, if a list space of N list cells have to be completely

marked, the size of the stack required would be that of the list space itself (i.e. N).

Provision of such a huge additional amount of memory could greatly reduce the

effectiveness of garbage collection !

Deutsch, Schorr and Waite [60] had independently designed a similar marking

algorithm without incorporating a stack. This algorithm was later refined by Knuth

(algorithm E in [56]); and it is currently being employed in simpleLISP. Figure

A.2.3.2 shows the algorithm.

The main idea of this method is that the nodes of a tree can be inspected by rev­

ersing successive links, using three pointers (p,q,t), until leaves (i.e. atoms) or

already visited nodes are found. The link reversal can then be undone to restore the

original structure of the tree. Referring to the figure A.2.3.2 : Initially, p is set to

point at the root of the tree, q is set to point at the contents of the head of this root

and t is set to NIL (a special LISP atom). The first cell is marked, t is placed in the

head of the cell: this acts as the termination marker during the reverse trace; and p is

set equal to q. This algorithm then moves to the next cell by setting q to the head of

-135-

p and t equal to p. When the bottom of the tree is reached the same procedure is car­

ried out in reverse until the NIL termination marker at the root cell is encountered.

At any node, the program has a choice of two routes: either via the head or the tail.

To distinguish the routes that it has taken, the numeric atom bit is used. On branch­

ing from the head, the numeric atom bit is set In this way, all the numeric atom bits

will have been set on tracing the head links and these must be cleared during the

reversal. Each time the head of any node has been traced, the tail of that node is

immediately traced by the same method.

Although, the link-reversal algorithm has been widely accepted as a standard

mark/sweep garbage collector, it is by no means ideal. There are two main

identifiable drawbacks:

1 Each node is being visited three times and extra effort is required to set the

numeric atom bit, thus rendering the technique less efficient. In recent years,

various pseudo link-reversal and * copying' collectors have been designed with

improved efficiency [58].

2 The most annoying aspect common to all conventional garbage collectors is

that program execution comes to a complete halt while the collection process is

in action. This is annoying and is most apparent in multi-user systems where

users may experience interruption lasting minutes. In extreme cases, successive

collections may take place with little actual program execution between them,

making continued computation impractical.

A.2.3.2 Copying Collector

After the suggestions made by Fenichel [65] and Cheney [66], various versions

of the copying garbage collector have been designed. They all work under the same

-136-

principle, and differ only on the moving algorithm used.

The cell storage is divided into two semispaces whose roles are reversed with

each garbage collection cycle. When collection begins, the semispace labeled

TOSPACE is empty, and all accessible and garbage cells are in the semispace

labeled FROMSPACE. The collector copies the accessible cells out of FROM-

SPACE into TOSPACE. When this process is completed, FROMSPACE contains

only inaccessible cells, while TOSPACE contains all and only accessible cells. Now

program execution can resume with the mutator allocating cells from the garbage

free TOSPACE until it is again necessary to collect

A.2.3.2.1 Storage Efficiency Improvement

The most promising algorithm which can solve the problems stated earlier is

the one originally used by Fenichel and Yochelson in an early Multics LISP [65],

elegantly refined in [66], and applied by Arnborg to SIMULA [67] (a LISP system).

The principle is as previously described, i.e. it bisects the list space into two sem­

ispaces; and the moving algorithm works as follows :

During the execution of the user program, all list cells are located in the

FROMSPACE. When garbage collection is invoked, all accessible cells are traced,

and instead of simply being marked, they are moved to the other semispace. A for­

warding address is left at the old location, and whenever an edge is traced which

points to a cell containing a forwarding address, the edge is updated to reflect the

move. The end of tracing occurs when all accessible cells have been moved into the

TOSPACE and all edges have been updated. Since the TOSPACE now contains

only accessible cells and the FROMSPACE contains only garbage, the collection is

done and the program execution can resume with cell allocation proceeding in the

- 137-

former FROMSPACE. This algorithm is depicted in figure A.2.3.2.1.

This method is simple and elegant because:

1 it requires only one pass instead of two as in the mark/sweep collector,

2 it requires no collector stack.

The stack is avoided through the use of two pointers, B and S (c.f. figure A.2.3.2.1).

B points to the first free word (the bottom) of the free area, which is always in

TOSPACE. B is incremented by the procedure COPY, which transfers old cells from

FROMSPACE to the bottom of the free area, and by CONS which allocates new

cells. S scans the cells in the TOSPACE which have been moved, and updates them

by moving the cells they point to. S is initialised to point to the beginning of

TOSPACE at every flip of the semispaces and is incremented when the cell it points

to has been updated. At all times, then, the cells between S and B have been moved,

but their heads and tails have not been updated. Thus when S=B all accessible cells

have been moved into TOSPACE and their outgoing pointers have been updated.

This method of pointer updating is equivalent to using a queue instead of a stack for

marking, and therefore traces a spanning tree of the accessible cells in breadth first

order.

A.2.3.2.2 Time Efficiency Improvement

To tackle the second inefficiency problem of classical collectors, an improved

version of Arnborg's algorithm is suggested in [63] which makes real-time collec­

tion possible by sacrificing some time in each cell allocation call.

During each CONS operation, cells are requested from the list space. In classi­

cal collectors, a shortage of an upper bound (in the time domain) of CONS causes

embarrassing program interruption - if CONS is called during exhaustion of either

-138-

semispace, garbage collection is invoked, whose functional time would, unpredict-

ably, depend on the number of cells to be marked. Baker's real-time algorithm over­

comes such non-deterministic behaviour by forcing an upper time limit on the CONS

call; such that each time a cell is requested, a fixed number of cells, k, are moved

from one semispace to the other. This implies that the two semispaces are simul­
taneously active. The moving of k cells during a CONS corresponds to the tracing of
that many cells in the collection process. By distributing some of the collection tasks
during list processing, this method provides a guarantee that the actual garbage col­
lection cannot last more than a fixed (tolerable) amount of time : the time to flip the
semispaces and to readjust a fixed number of points declared in the user's program.
Thus, it is applicable to real-time situations.

A characteristic of Baker's real-time collector is that the size of the semispaces
may have to be increased, depending on the value of k [63]. In other words, the
choice of k expresses the trade-off between the time to execute a CONS and the total
storage required. The following equation relates k and the maximum storage size
required:

MAX STORAGE REQUIRED < N (2 + -) A.2.3.2.2k
where N is the number of accessible nodes.

At first sight, equation A.2.3.2.2. reveals that increasing k decreases the storage
requirement of a system. However, k should be bound, otherwise, program execution
would be delayed for every CONS operation. Depending on the operational environ­
ment, therefore, one should choose a suitable k in order to obtain the maximum gain

of the system. For example, if Baker's collector is applied for the management of a

large database residing on secondary storage, k could be made a positive rational

- 139-

number less than one. If k=3, for instance, one could have CONS perform an itera­

tion of the collector only every third time it is called. The result of this is the require­

ment of a larger free storage, according to eqn. A.2.3.2.2; which physically means to

provide a constant supply of accessible cells, and hence the program will avoid cell

starvation during each CONS cycle.

A.2.3.3 Remarks

The correctness of the adopted collection algorithms was justified. This was

achieved by first creating a useful list (e.g. an environment list) and then continu­

ously forcing simpleLISP to garbage collect. The result was positive with all infor­

mation retained uncorrupted. Another experiment was carried out to demonstrate the

slow response of the non-real-time algorithms. A fibonacci(n) function was used.

As the parameter n increased the number of cells allocated increased and at some

stage garbage collection occurred. For small n there was a slight difference; as n

increased over 10, however, the responses of the non-real-time collectors were very

sluggish whilst the time taken for the real-time collector was reasonable. Unfor­

tunately, no physical timing was taken; nevertheless, the relative response of the two

collector types clearly favoured the real-time algorithm for engineering applications.

A.2.4 The Interpreter

A.2.4.1 Program Environment

One of the features of LISP software which makes it suitable for implementing

intelligent systems is the interactive way in which instructions are interpreted.

Thus, users can 'educate' the system as the system's environment varies.

-140-

LISP atoms are bound to objects. Unlike other languages, however, objects are

s-expressions. An 'association list' is a list of bindings defining the pairing between

various atoms and their bound s-expressions. During program execution, atoms are

continuously being assigned and defined - using SETQ and DEFUN; such bindings

are recorded in a global association list (i.e. accessible by the program at any time),

called the 'program environment'. The program environment can be thought of as a

dynamic memory which absorbs and remembers anything it has acknowledged.

The environment grows in two directions as computation progresses. When an

s-expression is interpreted as an assignment statement, the association of that atom is

appended to the tail of the existing environment In this way it becomes a global

variable which can be recalled later. The second way, alters the structure of the

environment only temporarily by adding associations on to the head of it. This is

called 'local binding' which occurs during function calls. During function execution,

temporary variables may have been declared, the bindings of such variables are fairly

loose: when they are assigned, their bindings are created; nevertheless, they are only

valid within the context of the function and would be dropped when computation

exits from this function.

A.2.4.2 The Interpretation Routines

The interpreter used in simpleLISP is based on [59] and works in three levels:

a) level 1:

The system starts from this level. The routine responsible for this top level is

M_R_E_P, which reads expressions to be evaluated, evaluates them, and prints the

result (figure A.2.4.2.1). M_R_E_P also arranges for function definitions to be stored

-141-

in the program environment to be supplied to the second level. The ability to define

functions is another useful feature in having an interactive interpreter.

b) level 2:

Two functions are included in this level:

M_EVAL gets two arguments, an expression and the program environment

(figure A.2.4.2.2). The job of which is to classify the s-expression and to decide how

it should be evaluated. If the s-expression is an atom, it uses the environment to

retrieve its corresponding association. Otherwise, it assumes the s-expression is a

function with several arguments and evaluates the arguments in the way that is

appropriate for the function.

M_APPLY gets three arguments, a function name or description, a list of argu­

ments and the program environment (figure A.2.4.2.3). Its job is to classify func­

tions and to arrange for their proper application. M_APPLY handles some simple

functions directly. For others M_APPLY augments the environment and appeals to

M_EVAL for help. For user defined functions, M_APPLY has to retrieve the func­

tion definitions from the program environment, and then, recursively, call itself with

the original function replaced by the retrieved function definition.

c) level 3:

This lowest level comprises several individual procedures corresponding to

each LISP operational primitive. At present, simpleLISP only supports a limited

number of LISP primitives: namely, CONS, CAR, CDR, SETQ, QUOTE, APPEND,

REPLACA, REPPLACD, APPEND, ATOM, NULL, DEFUN, LAMBDA, and EQ.

It is intended that the system will be expanded in the future.

-142-

A J.5 SimpleLISP On a M68000

SimpleLISP was later transported into a M68000 microprocessor. In order to

use the original source interpreter, it had to be cross compiled. A C-to-M68000 cross

compiler, CC68 was available on the original VAX machine. However, two prob­

lems with CC68 discovered during the debugging stage did cause some difficulties.

These were the inability to define functions which returned union types and errors in

the indirection of local pointer variables. Some rewriting of code was necessary to

overcome these problems.

A.2.6 SimpleLISP for the ICMS

For the final stage, only a slight amount of modification to the M68000 version

was required. The size of a cell is reduced to 48 bits, shared equally between the

HEAD and TAIL elements. Differentiation between a cell pointer and an ordinary

address was done by direct decoding. Therefore at least one bit is required for this
23 purpose reducing the maximum amount of storage to 2 cells. At present, only Ik

cells are implemented.

The garbage collection module was removed since the ICMS provided this

function. The algorithm adopted was the Baker real-time copying collector. It was

microcoded and together with the special ICMS architecture the operational speed of

the original algorithm has improved.

Five LISP primitives are built-in with the ICMS. They are _CAR(X),

_CDR(X), _REPLACAR(X,Y), _REPLACDR(X,Y) and _CONS(X,Y). On the

software level, to invoke these functions are simply to set the appropriate IO regis­

ters; such as, the 68000 code for CARQ is simply:

CAR:MOVE.L X, $FF8000 ; parameter in X
MOVE.L $FF8000,DO ; result return in DO

-143-

In addition there are 8 local functions which are used for setting and reading the root

registers, which are situated internally within the ALUs. For these functions when a

cell address is placed into the IO register, it implies a set operation; otherwise, for

any other data placed, a read operation is performed. Finally, the memory map of

simpleLISP with the ICMS, as shown in figure A.2.6, indicates the ranges at which

simpleLISP is placed and where the IO registers are located.

- 144-

HEAD TAIL

(a)

(b) (0

Figure A.2.1,la: A Single Cell Unit;
Figure A.2.1. Ib: An Example of a List -(AB(C))in Cell Structure;
Figure A.2. l.lc: (AB(C))in Tree Structure Form.

-145-

HEAD
no. of bytes

4

TAIL

STATUS FLAG +)•

31 15 10

bit no.
0
1
2
3

4,5

6,7

bit name
mark bit

direction bit
numeric bit

cons bit
head type

tail type

description
used in garbage collection
used in input s-expression

set if cells contain an numeric atom
set if cells are associated with lists

indicate head type:
0: cons, 1: number, 2: literal, 3: keywords,

indicate tail type (as above)

Figure A 2.12: Description of the Cell Status Flag.

-146-

e x-
P

explist

number

symbol

(a)

e x
P l-
i
s
t

exp

exp

explist

(b)

Figure A2 2.la:
Figure A.2.2.15:

Syntax Diagram of S-expression (abbreviated exp);
Syntax diagram of S-expression list (abbreviated explist).

-147-

PROCEDURE getexp(e: pointer);
BEGIN

IF (token = open_bracket) THEN
BEGIN

getexplist(e);
END
ELSE
IF (token = number) THEN

work out its value;
ELSE

% A string
work out its symbol;

END % Getexp

PROCEDURE (getexplist(e : pointer);
BEGIN

IF (e is a list) THEN
getexp(CAR(e));

ELSE
IF (token = dot) THEN

getexp(CDR(e));
ELSE
% End of a list
IF (token = close_bracket) THEN

set tail of e to be NIL;
ELSE

getexplist(CDR(e));
END; % Getexplist

Figure A 2.2 2: Hender son's program for input s-expression [88].

-148-

PROCEDURE putexp(e: pointer);
VAR p: pointer,
BEGIN

IF (e is a symbol) THEN
BEGIN

lookup the dictionary;
get the symbol;
print it;

END
ELSE
IF (e is a number) THEN

print the number;
ELSE
BEGIN

% Start of a new list
WRITECO;
% Save e and use p for recursionD * — e*
WHILE (p is a list) DO
BEGIN

putexp(CAR(p));
p := CDR(p);

END;
IF (p is a symbol AND its value is NIL)
THEN GOTO finish;
ELSE
BEGIN

WRTTE(V);
putexp(p);

END;
finish: WRITER)');

END;
WRTTELN;

END; % Putexp

Figure A.2.2.3: Program for Output S-expression.

-149-

PROCEDURE maikal(p: pointer);
BEGIN

IF (p is not marked) THEN
BEGIN

mark node p;
IF (p is not an atom) THEN
BEGIN

markal(head of p);
markal(tail of p);

END;
END;

END; % Mark

Figure A2.3.1: The Simplest Marking Algorithm.

% Global cell pointers
VAR p,q,t: pointer;

PROCEDURE upheadQ;
BEGIN

t := head of q;
head of q := p;

END; %>*Upnead

PROCEDURE uptailQ;
BEGIN

t := tail of q;
tail of q := p;
p :=q;

END; % Uptail
Figure 232a: The Marking Algorithm (to be continued).

-150-

PROCEDURE downheadQ;
BEGIN

q:=headofp;
WHILE (q is a cell AND it is not marked) DO
BEGIN

mark node q;
IF (q is not an atom) THEN
BEGIN

% Indicate branching is from head
set the direction bit;
% Reverse pointers
head of p := t;
t := p; p := q;
q := head of p;

END;
ELSE BREAK;

END;
END; % Downhead

PROCEDURE downtailQ;
BEGIN

q := tail of p;
WHILE (q is not a cell AND it is not marked) DO
BEGIN

mark node q;
IF (q is not an atom) THEN
BEGIN

tail of p := t;
t := p; p := q;
% Traverse the head links of each tails
downhead();
q := tail of p;

END;
ELSE BREAK;

END;
END; % Downhead

Figure A2.32b: The Marking Algorithm (continued from previous page).

-151-

PROCEDURE markaKpO: pointer);
BEGIN

IF (pO is not a cell) THEN RETURN;
IF (pO has already been marked) THEN RETURN;
% Initialise pointers
p ;= pO; t := NIL;
mark node p;
IF (p is a number) THEN RETURN;
downheadQ;
WHILE (TRUE) DO
BEGIN

% A termination is reached
IF (t is equal to NIL) THEN
% Reverse links and start back trace
q := t;
IF (direction bit is not set) THEN
BEGIN

uptailQ;
CONTINUE;

END;
clear direction bit;
upheadQ;
BREAK;

END;
END; % Markal

Figure A2.32c: The Marking Algorithm (continue from previous page).

-152-

VAR
B : pointer, % B points to bottom of free area
T : pointer, % T points to top of free area
S : pointer, % S points to the next untraced cell

FUNCTION CONS(x : pointer, y : pointer): pointer,
BEGIN

% If there is no more free space
IF (B is equal to T) THEN
BEGIN

interchange semispaces;
update all ROOT registers;
x := move(x);
y := move(y);

END;
% Scanning => trace untraced cells
WHILE (S < B) DO
BEGIN

head of S := move(head of S);
tail of S := move(tail of S);
increment S pointer;

END;
IF (B >= T) THEN error,
% Construct a new cell
head of B :=x;
tail of B :=y;
increment B;
RETURN(B-l);

END; % CONS

FUNCTION move(p : pointer): pointer,
BEGIN

IF (p is not in FROMSPACE) THEN RETURN(p);
ELSE BEGIN

IF (head of p is not in TOSPACE) THEN
BEGIN

% implies p is an atom
head of p := copy(p);
RETURN(headofp);

END;
END; % Move

FUNCTION copy(p : pointer): pointer,
BEGIN

IF (B >= T) THEN error;
head of B := head of p;
tail of B := tail of p;

END; % Copy

Figure A.2.3.2.1: The Copying Garbage Collector.

-153-

VAR envir: pointer; % Program environment

PROCEDURE M_R_E_PQ;
VAR exp: pointer,
BEGIN

% Environment is initially empty
envir := NIL;
WHILE (TRUE) DO
BEGIN
exp := input s_expression;
IF (exp is an atom) THEN

IF (exp is associated) THEN
extract association from environment;

ELSE
WRTTEC'Unbound Variable.... 11);

ELSE
IF (exp is a definition statement) THEN
BEGIN

set the environment accordingly;
print the name of the defined function;

END
ELSE

outexp(M_EVAL(exp,envir));
END;

END; % M_R_E_P

FUNCTION M_EVAL(s,environment: pointer): pointer;
BEGIN

IF (s is an atom) THEN
work out its association;

ELSE
IF (it is a QUOTE statement) THEN

RETURN(CAR(CDR(s)));
ELSE
IF (s is a COND statement) THEN

pass to M_COND in level three;
ELSE
BEGIN

% Here if s is a FUNCtion
evaluates all the sub-expression;
pass them as parameters into M_APPLY;
and finally return the results;

END;
END; % M_EVAL

Figure A.2.4.2.2: Level 2(a) of the Interpreter : M_EVAL.

-154-

PROCEDURE M_APPLY(func,args,envir: pointer): pointer,
BEGIN

IF (func is an atom) THEN
IF (it is CAR) THEN

RETURN(head(head(args)));
ELSE
IF (it is CDR) THEN

RETURN(tail(head(args)));
ELSE
IF (it is CONS) THEN

RETURN(CONS(head(args), tail(args));
ELSE
IF (it is ATOM) THEN

RETURN(AOM(head(args));
ELSE
IF (it is NULL) THEN
BEGIN

test if head of args is NIL;
RETURN the atom T if true;
otherwise RETURN atom NIL;

END;
% Additional LISP primitives can be added here, if M_APPLY
% cannot cope with them itself, they can be passed into
% pre-defined modules in level three.
ELSE
% At this stage func must be a user defined function
% whose context must have been associated in envir.
BEGIN

M_EVAL(func,envir);
% Then re-apply M_APPLY on the result;

END;
END;

END; % M_APPLY

Figure AA23: Level 2(b) of the interpreter : M_APPLY.

-155-

Interrup Vectors

User Stack

SimpleLISP (107k)

Unused Memory

VOIDS
System ROM

I/O Address Space

VOIDS
ICMS Functional Registers

(c.f. fig. 5.2.3aj

VOIDS
Cell Memory (CM)

000000
0003ff
000400
OOlfff
002000

Olabff
OlocOO
Olffff
020000

»*»»»eTTTTT
fOOOOO
fOffff
f 10000
flffff
f20000

mm
ffSOOO

ffSOff
ffB100

fff7ff
ffiBOO
XC£CC£nun

Figure A2.6: The Memory Map of SimpleLISP with the ICMS.

-156-

APPENDIX III
The Graphical Program

The best way to study the garbage collection process is to obtain a visual pic­

ture of how the process works. This has been done by writing a graphical program to

reveal the route which a collector takes during the inspection of a spanning tree. The

program developed is in C on a HP9000, using the library graphical routines -

Device-independent Graphics Library (DGL) [89].

A.3.1 Standard Tree Pattern

The first step is to identify the locations of all the nodes to be drawn in terms of

a 'standard tree pattern'. Figure A.3.1 shows a standard tree; two pieces of informa­

tion on the tree are most importance :

a the relationships between a node and its head and tail, as shown in the follow­

ing equations:

head(n) = 2n+l A.3.1.1
tail(n) = 2n-l A.3.1.2

where 'n' is the node number,

b the number of nodes in each level:

no.ofnodes = 2L A.3.1.3

where L is the level number.

A.3.1.1 Tracing

To identify the locations of the nodes, a link-reversal technique [54] is used.

Before it can be applied, four extra items have to be declared. Arrays A and B: B

- 157-

contains the current node number and A contains the number of the node from where

B is branched; two integers: indexA and indexB to keep track of array A and B,

respectively, during the process.

Initially, A[0], B[0], indexA and index B are all zero, since the first node being

inspected is the root with node number equal to zero. From then on, during the for­

ward trace, when a node branches from its head, the relationship between A and B is

B[indexB] = A[indexA] x2+ 1 A.3.1.1.1
and if it branches from its tail:

B[indexB] = AfindexA] x 2 + 2 A.3.1.1.2
(where A contains the node number from which the branch is made). Every time A

is set to the previous value of B and indexA and indexB are incremented after a new

node number has been assigned to B. On the backward trip, indexA is decremented

by two whilst other variables remain unchanged. This procedure continues until the

root of the tree is encountered when the complete process terminates. On comple­

tion the node numbers contained in array B have already been arranged in the order

in which the nodes are visited by the garbage collector. Thus to study the collection

process, it is necessary only to translate the locations in B into graphical coordinates.

The complete tracing algorithm is as shown in figure A.3.1.1.

A.3.2 Graphical Representation

One difficulty in drawing a graphical tree structure is to make it evenly

displayed on the screen, this requires a prior knowledge of the size (depth) of the

tree. This information is obtained by first copying array B into a similar array C, and

later arranging the entries in C in ascending order; thus, from the anti-logarithm

(base 2) of the last entry in array C, which must be one of the nodes on the deepest

-158-

level, the level number is determined. Knowing the depth of the tree, separation

between levels is just equal to the quotient of the vertical screen size and the tree

depth - in other words, the Y coordinates of each level are determined. The next step

is to work out the horizontal separation between nodes on each level. This is done

by dividing the breadth of the screen by the number of nodes on the particular level.

After obtaining the X and Y coordinates, the tree structure can be drawn.

Drawing starts from left to right. After drawing one level the coordinates of all the

nodes are saved. With the coordinates of these nodes, the program knows where to

draw line segments when it is working on the level above. These lines correspond to

head and tail links. A colour convention has been adopted : each node is represented

by diamond markers and their colours indicate whether they are atomic (RED) or

non-atomic (GREEN) nodes. Also, untraced lines are coloured white, and later

over-coated by blue when they are marked.

The tree structure is first produced once with all white links then coordinates of

all the nodes are re-arranged in such a way that they appear in the same order as in

the original array B ~ i.e the order of tracing. In this way, re-applying the drawing

algorithm again, but using blue for each link, the complete garbage collection pro­

cess can be graphically visualised.

A.3.3 Comment

The graphics program has been tested and proved to be capable of drawing tree

structures as deep as seven levels. Higher level trees tend to have their nodes and

links merged together if they are drawn; thus producing an unclear view. In practice

many lists are much deeper than seven levels, but the present software does provide a

useful visual indication of how garbage collection operates.

-159-

3 4 5

7 8 9 10 11 12 13 14

level nodes/
no. level
0 1

1 2

2 4

3 8

node(n) I 2

.11+1)

Figure A J.I: Standard Tree Pattern.

-160-

VAR A[200], B[200]: array of integer,%A[] & B[] contain node nos.
indexA, indexB : integer:%Indices into A[] & BQ;

PROCEDURE g_maikal(pO:pointer);
BEGIN

IF (pO is not a cell) THEN RETURN;
IF (pO has not been marked) THEN RETURN;
p := pO;
t:=NIL;
A[0] := 0; B[0] := 0;
indexA := 0; indexB := 0;
mark node p;
IF (p is a number) THEN RETURN
g_downhead();
WHILE

g_downtailQ;
WHILE (TRUE) DO
BEGIN

% Termination has been reached
IF (t=NBL) THEN RETURN
q:=t;
IF (direction bit is not set) THEN
BEGIN

uptailQ;
% Return to the node at a level above
update(1 ,indexB-i-1);
CONTINUE;

END;
clear direction bit;
upheadQ;
% return to the node at a level above
update(04ndexB+1);
BREAK;

END;
END;

END; G_markal

Figure A3.LI a: The Graphical Tracing Algorithm.

-161-

PROCEDURE g_downhead()
BEGIN

WHILE (head ofjp points to a cell) DO
BEGIN

q := head(p);
IF (q is not a cell) THEN
% Head of pis a NIL
BEGIN

% equation A.3.1.1.1
B[indexB] := A[indexA]*2 + 1;
% return to branching node before return
update(l,index);

END
ELSE
BEGIN

IF (q has not yet been marked) THEN
BEGIN

set direction bit;
BfindexB] := A[indexA]*2 + 1;
% Trace head down
head(p) := t;
t := p; p := q;

END
% From here the inspected node is atomic, thus set
% the content of B to be negative.
BfindexB] := -(A[indexA]*2 + 1);
update(04ndex);
increment both indexA and indexB;

END;
END;

END; % G_downhead;

Figure A3.Lib: The Graphical Tracing Algorithm (continued from previous page).

-162-

PROCEDURE g_downtail()
BEGIN

WHILE (head of p is pointing at a cell) DO
BEGIN

a := tail(p);
IF (q is not a cell) THEN
BEGIN

% equation A.3.1.1.2
B[indexB] := A[indexA]*2 + 2;
% return to branching node
update(l,index);
RETURN;

END
ELSE
BEGIN

IF (q has not been marked) THEN
BEGIN

mark node q;
B[indexB] := A[indexA]*2 + 2;
IF (this is the first round in this loop)
THEN indexB := indexA - 1;
ELSE indexB := indexB + 1;

END;
IF (q is not a number) THEN
BEGIN

tail(p) := t;
t := p; p:= q;
g_downhead();

END;
ELSE BREAK;

END
END;
% An atom!
B[indexB] := -(A[indexA]*2 + 2);
update(l, index);
increment indexA and indexB;

END; % G_downtail

Figure A3.Lie: The Graphical Tracing Algorithm (continued from previous page)

-163-

PROCEDURE upheadQ;
BEGIN

t := head(q);
head(q) := p;p := q;

END; % Uphead

PROCEDURE uptailQ;
BEGIN

t := tail(q);
tail(q) := p; P « = Q*

END; %'Uptail

PROCEDUE update(n,x: integer);
VAR temp, tempi: integer;
BEGIN

temp := B[indexB];
temp := modulus of temp;
IF (n=l) THEN

% Tail -> reverse of equation A.3.1.1.2
tempi := (temp-2)/2;

ELSE
% HEAD -> reverse of equation A. 3.1.1.1
tempi :=(temp-l)/2;

temp := 0;
WHILE (B[temp] not equal to tempi) DO
% Get index, value for the branching node

temp := temp+1;
indexA := temp;

END; % Update

Figure A J.I.Id: The Graphical Tracing Algorithm (continued from previous page)

-164-

APPENDIX IV
ICMS Microprogram Listing

Micro program for the ICMS : by K F Wong : April, 1986;
#
Electrical Engineering Department of Edinburgh University
#
#

***************************** MACRO DEFINITION *******************************

include(header)

changequote([,])

****************************** CONDITIONS ************************************

define(_IF_POLLED,TESTsel=0)
defineUF_CELL,TESTsel=l)
define<_IF_GC,TESTsel=2)
defineCIF_TO,TESTsel=3)
defineCIF_FROM,TESTsel=4)
define(JF_FLIPPED,TESTsel=5)
define(_TRUE,TESTsel=6)
defineCFALSE,TESTsel=7)

****************************** BRANCH MACROS *********************************

define(_JZ,seq_instr=0) # jump zero
defineCJSR,[seq_instr=13A=$l,TESTsel=6]) # jump to subroutine
define(_CJSR,[seqJnstr=l 3 A=$l]) # conditional jsr (branch if HI)
define(_JMAP,seq_instr=2) # jump map
defineCJHI,[seq_instr=33A=$l]) # jump to B A if test=HI else pc
defineCJRP,[se<Linstr=73 A=$l, RE291 1=0]) # if LOW repeat else jump to B A
defineCJLO,[seq_instr=9,BA=$l]) # jump to BA if test=LOW else pc
define(_RTN1 [seq_instr=x'alTESTsel=6]) # return from subroutine
defineCCONTINUE,seq_instr=14) # continue from pc
define(_NOP,seq_instr=14) # no operation = continue
defineCJBA,[seq_instr=153A=$l]) # jump always to BA

**************************** OTHER MACROS ************************************

BERR: assert BUS ERROR .

defineCBERR,[
sel_139=0, AO_139=1, Al_139=l

-165-

INCS : increment SCAN pointer.

define(JNCS.[
sel_139=l , # enable 74LS 139
AO_139=0,A1_139=0 # increment S

#READS(x): read in value of SCAN pointer and store it
in RAM[x].

defineCREADS,[
ALU_instr=b' 1 1 1 101000, # Y=S+Cn
carry_h=0, carry_t=0, # Y = S pointer
oeb_h= 1 , oeb_fc= 1 , # direct input from B port
OEy_h=0, OEy_t=0, # enable Y o/ps
addB = $1, # setup RAM address
ffiN_h=0, ffiN_t=0,
add_buf_en=0, add_buf_dir= 1 , # HEAD data at TAIL input
sel_139=l , # enable 74LS 139
AO_139=1,A1_139=0 # read S

INCB : increment B pointer .

define(_INCB,[
sel_139=l, # enable 74LS 139
A0_139=0, Al_139=l # increment B

READB(x): read in the value of B pointer and store it
in RAM[x].

defineCREADB,[
ALU_instr=b'l 1 1 101000, # Y = S-fCn
carry_h=0, carry_t=0, # Y = B pointer
oeb_h=l, oeb_t^l, # disable b o/ps => DB inputs
OEy_h=0. OEy_fc=0, # enable Y o/ps
addB = $1, # setup RAM address
ffiN_h=0, ffiN_i=0,
add_buf_en=0, add_buf_dir= 1, # HEAD data at TAIL input
sel_139=l, # enable 74LS139
A0_139=l. Al_139=l # read B

START: keep on polling the test input of the micro-
program sequencer, if it is 0 jump to MAP
ROM address eke START again.

defineCSTART.t
START:

seq_instr=3, # conditional jump
BA=0 # back to START

- 166-

#INPARAO(x): read in a parameter from INPUT register 0.
INPUT register 0 is connected to the DAs
input of 2903. Parameter is read into
RAM[[x]s of both HEAD and TAIL ALUs.
"x" must be a number between 0 to 15.

***** IMPORTANT *****
£ ************************
For a 2 parameters instruction INPUT reg 0
should be set last because by addressing
this register the ALUs are miri«t«d and
the host processor is suspended.

define(JNPARAO,[
ALU_instr=b' 1 1 1 101 100. # Y=R+Cn
ea_h=l, ea_t=l, # DAs
addB=$l , # latch INPUT into RAM[x]
EEN_h=0, IEN_t=0,
OEy_h=0, OEy_t=l, # disabled TAIL output
data_buf_en=0,
data_buf_dir=l, #HEAD only
IOsel=0, IOenable=0 # select INPUT register 0

INPARAl(x): same as INPARAl(x). INPUT register 1
outputs are connected to Y bus of the
ALUs; therefore to read them OEy of both
head nd tail have to be disabled first

defineCINPARAl,[
ALU_instr=b'111110001 f # don't care
addB=$l,
IEN_h=0, ffiN_t=0, # latch input into RAM[x]
OEy_h=l, OEy_t=l, # disabled output
data_buf_en=0,
data_buf_dir=l, # HEAD only
IOsel=UOenable=0 # select INPUT register 1

#OUTPARA2: output parameter from RAM[x] onto OUTPUT
register 2. This register has the same
add. as INPUT register 0 on the host processor
side. On the BS side its input is connected
to the B bus of the ALUs. It is use for
*****ADDRESS OUTPUT******.
EXTRA:
normally, output is latched from the HEAD ALU;
a 2nd argument (=2) can be supplied which would
output the TAIL content instead, (optional)

define(_OUTPARA2,[
ALUJnsu^b'llll 10001, # don't care
addB=$l,

- 167-

ifelse<$2,2,[
oeb_h=l, oeb.t^O, * TAIL only
add_buf_en=0. add_buf_dir=0, # TAIL output at HEAD
}JL
oeb_h=0, oeb_>l. # HEAD only])

OEy_h=l, OEy.t^l,
IOsel=2, IOenablc=0 # select OUTPUT register 2

1)

OUTPARA3: ouput parameter from RAM[x] onto OUTPUT
registers. This register has the same
address as INPUT register 0 on the host
processor side. On the BS side, its
input is connected to the Y bus of the
ALUs. It is use for DATA OUTPUT.
EXTRA:
normally, output is latched from the HEAD ALU;
a 2nd argument (=2) can be supplied which would
output the TAIL content instead (optional).

define(_OUTPARA3,[
ALU_instr=b'111101100, #Y=R+Cn
carry_h=0, carry_t=0,
addA=$l,
ea_h=0,ea_t=0,
ifelse($2,2,[
OEy_h=l, OEy_M), # TAIL only
data_buf_en=0, data_buf_dir=0, # TAIL output at HEAD
].[
OEy_h=0, OEy_t=l, # HEAD only])

IOsel=3, IOenable=0 # select OUTPUT register 3

MEMWRITE<data,add,dataflag,addflag):
write into memory with address specified in
RAM [add] and dala in RAM [data]. Dataflag
determines the source of the data, and it
takes 3 possible values:
ALLDATA = 0 HEAD and TAIL have independent
data;
HDDATA = 1 HEAD data at TAIL also;
TLDATA = 2 TAIL data at HEAD also;
HDONLY = 3 HEAD data only;
TLONLY =4 TAIL data only.
Similarly, addflag determines the source of
the address, and takes 2 possible values:
HDADD = 1 HEAD address only;
TLADD = 2 TAIL address only.

***** IMPORTANT *****

-168-

Address bus is connected to the B bus and data
bus is connected to the Y bus of the ALUs.

define(ALLDATA,0)

define(HDDATA,l)

define(TLDATA^)

define(HDONLY3)

define(TLONLY,4)

define(HDADD,l)

define(TLADD,2)

defineCMEMWRITE,[
ALU_inslr=b' 1 1 1 101 100, # Y=R+Cn
addA = $1, # Data = RAM[data]
ea_h=0, ea_fc=0,
carry_h=0, carry_t=0,
addB = $2, # Address = RAM[add]
ifelse($4,l,[
oeb_h=0, oeb_t^l , # HEAD address only
add_buf_en=0, add_buf_dir= 1, # HEAD address at TAIL
].$4,2,[
oeb_h=l, oeb_>=0, # TAIL address only
add_buf_en=0, add_buf_dir=0, # TAIL address at HEAD])
ifelse($3,0,[
OEy_h=0, OEy_t=0, # independent data
data_buf_en= 1 , # disable buffer
].$3.1,[
OEy_h=0, OEy_t=l , # HEAD data only
data_buf_en=0, data_buf_dir=l, # HEAD data at TAIL
],$3,2,[
OEy_h=l. OEy_t=0, # TAIL data only
data_buf_en=0, data_buf_dir=0, # TAIL data at HEAD

OEy_h=0, OEy_fc=l, # HEAD data only
data_buf_en=l, data_buf_dir=0, # disable data buffer
],$3,4,[
OEy_h= 1 , OEy_t=0, # TAIL data only
data_buf_en=l,data_buf_dir=0, # disable data buffer])
ifelse($3,3,[
mem_sel_h=0, mem_sel_t=l, # disable TAIL memory
].$3,4,[
mem_sel_h= 1 , mem_sel_t=0, # disable HEAD memory
],[
mem_sel_h=0, mem_sel_t=0, # otherwise, enable both])
mem_read_h=0, mem_read_t=0, # assert WRITE*
clock= 1 # slow down clock

-169-

MEMREAD<add,d»taflag,addFLAG):
read data from memory specified by RAM[add].
Dataflag and addfiag have the same meanings as
MEMWRTTE. This macro takes 2 micro-instructions.
In the 1st cycle, address 15 set up in RAM[15].
In the 2nd, memory signals are asserted and data
is read into RAM[15]. But be then, memory address
has already been latched.

***** IMPORTANT *****
£ *************************

RAM[15] is used as the memory address register
during address setup and data register during
the actual READ operation.
Therefore it is vital that no valuable inform-
action is stored in it prior a MEMREAD operation.

defineCMEMREAD.t
ALU_instr=b' 1 1 1 101 100, # Y=R+Cn
addA = $l, # address = RAM[add]
ea_h=0, ea_t=0,
carry_h=0, carry_t=0,
addB= 15, # RAM[15] acts as die DATA register
IEN_h=0, IEN_t=0, # write into RAM[15]
OEy_h=0, OEy_fc=0; # RAM[15] = RAM[add]

ALU.inst^b' 1 1 1 100001 , # don't care
addB=x'f, # set up address
EEN_h=0, IEN_t=0,
OEy_h=l, OEy_t=l, # disable ALU output
ifelse($2,0,[
mem_oe_h=0, mem_oe_t=0, # independent data
data_buf_en=l, # disable buffer

mem_oe_h=0, mem_oe_t^l, # HEAD data only
data_buf_en=0, data_buf_en=l , # HEAD data at TAIL input

mem_oe_h=l, mem_oe_t=0,
data_buf_en=0, data_buf_en=0, # TAIL data at HEAD input])
ifelse($3,l.[
oeb_h=0, oeb_t= 1 , # HEAD address only
add_buf_en=0, add_buf_dir=l, # HEAD address at TAIL
],$3,2,[
oeb_h=l , oeb_t=0, # TAIL address only
add_buf_en=0, add_buf_dir=0, # TAIL address at HEAD])
clock = b' 1 0 1 , # slo w down clock
mem_sel_h=0, mem_sel_t=0,
mem_rcad_h=l, mem_read_t=l # assert READ pulse

TRANSFER(x.y): transfer content of RAM[x] to RAM[y].

define(_TRANSFER,[

-170-

ALU__instr=b'l 1 1101 100. # Y=R+Cn
*JdA=$l, # RAM[x]
e«_h=0, ea_t=0,
carry J*=0, c«rry_tsO,
addB=$2, # RAM[y]
OEy_h=0,
IEN_h=0,

COPY(x,dir): copy content of register x from :
HEAD to TAIL, dir=0, default; or
TAIL to HEAD, dir=l.

define(_COPY,[
ALU_instr=b' 1 1 1 101 100, # Y=R+Cn
addA=$l, # RAM[a]
addB=$l,
ea_h=0, ea_fc=0,
ifelse($2,l,[
OEy_h=l, OEy_fc=0, # disable HEAD output
data_buf_en=0,data_buf_dir=0, # TAIL output at HEAD input
IEN_h=0, IEN_t= 1 # write into HEAD only
].[# default
OEy_h=0, OEy_fc=l , # disable TAIL output
data_buf_en=0, data_buf_diis=l, # HEAD output at TAIL input
ffiN_h=l, ffiN_t=0 # write into TAIL only])

1)

DTACK : assert data acknowledge signal.

defineCDTACK3US Y=l)

LATCH_COND : latch in condition; applicable to conditions which test for
the nature of a cell pointer ie CELL, TO & FROM.

defineCLATCH_COND_CELL,[sel_139=0, A0_139=0, Al_139=l])
defineCLATCH_COND_TO,[sel_139=0, A0_139=0, Al_139=l])
defineCLATCH_COND_FROM,[sel_139=0, AO_139=0, Al_139=l])
defineCSAMPLE_GC_STATUS,[sel_139=0,AO_l39=l,Al_139=0])

************************ MAIN STARTS HERE ************************************
Tr

ORG x'fffOOO,

ENTER: # start again
_IF_GC, _CJSR(SCAN); # garbage coUect if required

GC cond is latch once at the start
_SAMPLE_GC_STATUS, # ready to be tested in later cycle
_IF_POLLED, _JHI(ENTER); # Is it polled? repeat itself if not

- 171-

_JMAP; # jump map

_NOP; # pad out

_NOP;

_NOP;

^ ************************** OPCODE MAPPING ************************************

MAP6: _JBA(car);

MAP7: JBA(cdr);

MAPS: _JBA(replacar);

MAP9: _JBA(rcplacdr);

MAPa: _JBA(cons);

MAPb: _JBA(setreg3);

MAPc: JBA(setreg4);

MAP± _JBA(setregO);

MAPe: _JBA(setregl);

MAPf: _JBA(setreg2);

MAP11: _JBA(rcadregO);

MAP12: JBA(readregl);

MAP13: _JBA(readreg2);

****************** MAPPING FUNCTION DECLARATION ****************************
All routines will latch parameter into reg8 and reg9 is used as a working
register, return value is store in regl5. Registers 0 to 7 are ROOTs.

CAR(X) *************************************
can

car(X): return the HEAD (car) element of X.

_INPARAO(8), # read in parameter X
_LATCH_COND_CELL; # latch in CELL bit

_IF_CELL. _JHI(ERR); # if it's an atom => error

gc X if necessary
genuine cell pointer in REG15

_JSR(MOVE);

-172-

_MEMREAD(15.HDDATA.HDADD); # fetch HEAD of X

_JBA(EXTTX
_OUTPARA2(15); # TEST

#******************************** CDR(X) **************************************

cdr
cdi(X): return TAIL (cdr) element of X.

_INPARAO(8X # read in parameter
_LATCH_COND_CELL; # latch in CELL bit

if it's an atom => error
_IF_CELL, _Jffl(ERR);

gc X if necessary
genuine cell pointer in REG 15

JSR(MOVE);

_MEMREAD(15,TLDATA,HDADD); # fetch TAIL of X

_JBA(EXTT),
_OUTPARA2(15); # set up return value

£ **************************** R£PLACAR(X Y) ***********************************

replacar

replacar. replace the HEAD (car) of X with Y.

_INPARA1(8), # read in Y then MOVE
_JSR(MOVE);

_INPARAO(8X # read in X
_LATCH_CX)ND_CELL; # latch in CELL bit

_TRANSFER(15,9), # store result from last MOVE
_IF_CELL, _Jffl(ERR); # if X is an atom => error

gc X if necessary
genuine cell pointer in REG15

_JSR(MOVE);

both X and Y are now genuine cell pointers
_MEMWRTTE(9,15,HDONLY,HDADD); # REPLAce CAr of X

_MEMREAD(15,ALLDATA,HDADD); # TEST

_JBA(EXTT); # n° return value

^ ****************************** REPLACDR(X,Y) *********************************

-173-

replaodr.

replacdr replace the TAIL (cdr) of X with Y.

_INPARA1(8X # input Y then MOVE
_JSR(MOVE);

_INPARAO(8), # read in X
_LATCH_COND_CELL; # latch in CELL bit

_TRANSFER(15,9X # store previous MOVE result
JF.CELL, _Jffl(ERR); # if X is an atom => error

gc X if necessary
genuine cell pointer in REG 15

_JSR(MOVE);

_MEMWRTTE<9,15,TLONLYjroADD); # REPLAce CDr of X

_MEMREAEK15,ALLDATA#DADD); # read return values

_JB A(EXrr); # no return value

******************************* CONS(X,Y) ************************************

cons:

cons(X,Y) : construct a new cell with HEAD=X & TAIL=Y.

JNPARAO(8X # input X
_JSR(MOVE);

_TRANSFER(15,9); #X is updated

_INPARA1(8), # input Y
_JSR(MOVE); # genuine Y is in reglS

_READB(8);

_MEMWRITE(9,8,HDONLY,HDADD); # HEAD of new cell = X

_MEMWRTTE(l5,8,TLONLYJiDADD); # TAIL of new cell = Y

_TRANSFER(8,15), # set return value
_INCB, # increment Bptr
_IF_FLIPPED, _JHI(.+2); # if system has just flipped

&&
_IF_GC,_JHI(ERR); # gc has not yet finished => ERROR

_OUTPARA2(15), # output return value
_JBA(EXTT); # start again

^ ******************************* SETREGO,1,2,3,4(X) ***************************

-174-

setregO:

setreg(X): register*) = ROOT[0] = environ = X

_INPARAO(15);

_TRANSFER(15,0);

_JBA(EXTTX
_OUTPARA2(0);

readregO:
_JBA(EXTTX
_OUTPARA3(0); # set return value

setregl:

setregl(X): registerl = ROOT[1] = X

_INPARAO(15);

_TRANSFER(15,1);

_JBA(EXTT),
_OUTPARA2(1); # set return value

readregl:
_JBA(EXTT),
_OUTPARA3(1);

setreg2:

setreg2(X): register2 = ROOT[2] = X

_INPARAO(15);

_TRANSFER(15^);

_JBA(EXIT),
_OUTPARA2(2); # set return value

readreg2:
_JBA(EXTT),
_OUTPARA3(2);

setreg3:

setreg3(X): registers = ROOT[3] = X

_INPARAO(15),
_LATCH_COhfD_CELL; # latch in CELL bit

_IF_CELL, _Jffl(.+2);

-175-

-9Z.I-

«! s? pajdoo 3q ai iiraiuoo #

nq Ol ™ ipwi # -OJL~aNOD~HDlVl
3 'ox M^j f '(dOVOH VlVaTW'8)OVH^WHW

-WO>iJ~CINOD~HaL>n

uinjai pBO^-aj <= ^
01 gSai uiojg x -rajsiren #

ii paiBununuoo si

** (X)HAOW ***************************** #

*********************************** SHNLLTIO^I ONLL^OddAS ********************** #

las # -(f)ZV«V<LLQO~
4(nxH)vaf~

•(jixH)vaf

X =

umjai jas f
XjjxH)var

_MEMWRrTE(14.8,HDONLYJiDADD); # leave forwarding address

_TRANSFER(14,15), # set return REG15 with Bptr
_INCB, # increment Bptr
_IF_FLIPPED, _JHI(.+2); # if system has just flipped

* &&
_IF_GC, _JHI(ERR); # gc has not yet finished => ERROR

NOTFROM:
_COPY(15),
_RTN;

return value= HEAD15= TAIL15
return from subroutine

**************************** SCAN **

SCAN: # Scavenge, 1 gc burst operation

reg8,9,14 and 15 are used

_READS(9),
_IF_FLIPPED, _Jffl(Sl); # if just flipped, do the ROOTS first

Garbage Collection starts from ROOTS

_TRANSFER(0,8),
_JSR(MOVE);

_TRANSFER(15,0);

_TRANSFER(1,8),
_JSR(MOVE);

_TRANSFER(15,1);

_TRANSFER(2,8),
_JSR(MOVE);

_TRANSFER(15^);

_TRANSFER(3,8),
_JSR(MOVE);

_TRANSFER(153);

_TRANSFER(4,8),
_JSR(MOVE);

_TRANSFER(15,4);

move ROOTO

update

move ROOT1

update

move ROOT2

update

move ROOTS

update

move ROOT4

update

SI:

_MEMREAD(9,TLDATA,HDADD);

-177-

next, move TAIL of S
_TRANSFER(15,8X # HEAD of reg8 := TAIL of reg8
_JSR(MOVE);

_MEMWRTTE<15,9,TLONLY,HDADD); # update TAIL content of S

_MEMREAD(9,HDDATAJfl>ADD); # Scavenge starts here

first, move HEAD of S
_TRANSFER(15,8X # set up parameter for MOVE
_JSR(MOVE);

_MEMWRTTE(15,9,HDONLY,HDADD); # update HEAD content of S

_INCS, # next cell to be scanned
_RTN;

fl ****************************** ERR ***

ERR: _BERR; # generate bus error signal

res tan
_JRP(ENTER);

o**************************** WARM START *************************************

EXIT:
_DTACK ; # assert DTACK

start again
_JRP(ENTER);

^ *************************** END OF PROGRAM ***********************************

************************** poOT NOTES **
N.B. All macro starts with an underscore;
main functional routines are in small letters;
supporting routines are in capital letters.
#•

- 178-

APPENDIX V
Related Publications

Paperl:

"A Specialised Microcomputer System for the Application of Artificial Intelli­

gence Techniques to Engineering" by K.F. Wong, G.G. Coghill and J.M. Han­

nah in the Proceedings of the 10th Annual Workshop on Microcomputer Appli­

cations organised by Strathclyde University in 8-10 September 1986 at Glas­

gow, Scotland. [73]

Paper2:
"THESIS : The Hardware Environment for Small Intelligent Systems", by K.F.

Wong, G.G. Coghill and J.M. Hannah in pages 173-176 of the Proceedings of

the 86 Conference on Personal & Small Computers organised by ACM

SIGSMALL/PC in 2-5 December 1986 at San Francisco of the U.S.A. [74]

Paper3:

"ICMS: Intelligent Cell Memory System", by K.F. Wong, G.G. Coghill and

J.M. Hannah in pages 168-172 of the Proceedings of the 86 Conference on Per­

sonal & Small Computers organised by ACM SIGSMALL/PC in 2-5 December

1986 at San Francisco of the U.S.A. [71]

Note: In this appendix, all related publications are photo copies of the relevant

proceedings. The original page numbers are retained. Page numbers with repect to

this thesis are shown on the cover sheets of each of the papers.

-179-

Tenth Annual Microcomputer
Applications Workshop

Department
of

Computer Science

UNIVERSITY OF STRATHCLYDE

8th to 10th September 1986

Strathclyde Business School

Department of Computer Science
University of Strathclyde
Glasgow, Scotland - Pa§es 180 to 192 - Tel: 041 -552 4400

A Specialised Microcomputer System for the Application of
Artificial Intelligence Techniques to Engineering

K.F. Wong.BSc., J.M. Hannah,PhD. and G.G. Coghill,PhD.

Department of Electrical Engineering
Edinburgh University
The King's Buildings
Edinburgh EH9 3JL.

ABSTRACT

There is a growing interest in the application of
Artificial Intelligence (AI) techniques in engineering.
Existing AI systems are not suitable for many applications
because of their unacceptable real-time response and com­
plexity. In this paper an approach to system design which
offers a potential solution to these problems is presented.
The Hardware Environment for Small ~. telligent Systems
(THESIS) is based on a loosely-coupIod bus architecture
incorporating five basic functional rac \ -les: Input/Output
Unit, Control Unit, Inference Engine. Knowledge Base and
Intelligent Cell Memory System (ICMS). I" is design approach
makes possible simple, flexible, expandable systems which
can be easily implemented using standard microprocessor
technology. The design of the ICMS provides virtually tran­
sparent garbage collection resulting in -jreatly enhanced
real-time performance. A prototype implementation of an
ICMS which performs parallel and incremental garbage collec­
tion ensuring a fast recovery rate and bounded separation
times is described. The prototype system is based on the
VME bus using mainly standard hardware to meet the design
requirements that it should be easy-to-use, flexible, port­
able and suitable for engineering applications where fast
response time is required. Results are presented which
illustrate the dramatic improvement in real-time performance
which can be achieved with this approach to system design.

1. Introduction

The adoption of AI techniques in engineering applications is becom­
ing increasingly popular. AI in engineering combines the advantages of
both automatic and manual systems; namely, the precision and robustness
of the former; and the flexibility and simplicity, of the latter. At
present, however, existing hardware has two main drawbacks which have
been hindering more widespread use. They are :

-1-

1. bulk and complexity;

2. poor real time performance caused by the garbage collection pro­
cess.

In may cases practical systems for engineering applications have to
be small [1] in order to be easily transportable from one site to
another. The ability to response instantaneously to external stimuli is
often an important requirement for engineering systems.

A brief outline of the characteristics of intelligent systems,
leading to an understanding of their shortcomings, is given in section
two. In the third section, the proposed design approach is described A
prototype system has been constructed and sections five and six depict
some of the design details. Experimental results are given in section
six and conclusions are drawn in section seven.

2. Intelligent Systems

AI is a science which attempts to provide machines (artificial
entities) with human-like behaviour, such as the ability to store and
acquire knowledge and make use of it to reason and to act on deductions
as a human being would. Since the beginning of this decade, AI has
started to break away from the laboratory envronment and its potential
is gradually being realised in many practical -reas.

An intelligent system in this context; is defined as a
hardware/software system which exhibits AI car-Vuilities. Basically, it
consists of the following parts[2,3] (figure 1) :

1. a Knowledge Base (KB);

2. an Inference Engine (IE);

3. an Input and Output Interface (10); and

4. a Control Unit (CU).

The KB is a massive data base consisting of facts which vary with the
application i.e. domain-dependent. The IE encompasses rules and guide­
lines for heuristic deduction. These rules are problem-dependent - a
set of solving techniques is applicable to the same class of problem,
e.g. methods for disease diagnosis can be applied to fault diagnosis
with minimal alteration. The 10 interface provides the communication
paths with the external world. These could be stimuli such as electric
signals from transducers or input information keyed in from a terminal.
The CU is responsible for directing the "traffic" within the system. It is essentially a program environment which consists of entities such as
a run-time stack, static and dynamic variables and their associations,
some free memory space and the program code.

-2-

2.1. Reasoning

Initially, the KB and the IE are pre-programmed with relevant
information. When queries enter from the 10, the CU reacts promptly and
monitors them. Accordingly, information frameworks are generated in
the CU by applying lE's rules to the KB. The results are fed back into
the CU which will send a response to the intended recipient - either to
the 10 interface asking for extra input or to the IE creating more
tasks. Effectively, the CU's decision is made by applying heuristical
inference techniques on "past experience".

2.2. Learning

Learning is the ability to acquire new knowledge. The normal way
of learning is by education. New information is fed into the system
manually through the 10 interface. In addition, intelligent systems are
capable of acquiring information automatically through learning by anal­
ogy. When a spurious signal, which the system has had no previous
experience of, is read from the 10, the system endeavours to perform
educated guesses using past experience. The final solution and the
transformation steps leading to the solution are associated with the
spurious input signal. Together they are remembered/stored. If, how­
ever, no solution can be derived, the system will attempt to summon
human aid. Theoretically once an intelligent system, with a learning
capability, is furnished with some basic know: dge, it can adapt itself
to the surrounding environment.

2.3. The Shortcomings of Existing Systems

At present, intelligent systems are mostly implemented in two ways:

t software realisation on a conventional serial computer; OR novel
computers with special architectures.

The first approach is the simplest. A well kncw.-; example is an Expert
System whose 10 signals are interactive -_alogue from a VDU. For
engineering, existing intelligent systems of thu type are only applica­
ble to situations which are not very time critical; situations such as
fault diagnosis, consultancy, engineering design aids, etc[4]. In these
situations, a snap shot of the input is taken and upon which inferential
procedures are applied. The solution may appear after some length of
time, depending on the nature of the problem and the state of the pro­
cessor.

Because of the way in which memory is dynamically allocated within
AI systems the processor may temporarily run out of available memory.
When this happens, a time-consuming process known as garbage collec- tion[5j is invoked for memory reclamation. Its responsibility Is to
recycle potentially reusable memory. When this happens, all other pro­
cessing is stopped which results in occasional system interruptions.
These processing interruptions have prevented the use of intelligent
systems in real time engineering applications. Several methods [6] have
been devised to shorten the interruption period. Fundamentally, they
are variants of either the parallel collection scheie which exhibits a

-3-

very fast leiory recovery rate with small but variable suspension inter­
vals; or the incremental collection scheme which has small and bounded
suspension intervals but a slow memory recovery rate. The preferred
choice between the two is application dependent.

As hardware costs decrease, the implementation of intelligent sys­
tems using special architectures is an increasingly promising approach.
Since the beginning of this decade, many special purpose AI machines
have been launched into the market. These machines are mainly built for
research and development applications and are powerful with support for
a rich programming environment, e.g. a complete set of design tools.
Nevertheless, the lack of hardware standards, particularly in interfac­
ing, makes system expansion difficult. In addition, these machines are
usually large - too large, in fact, for many on- site engineering appli­
cations. Their customised design often makes them unsuited to a wide
range- of operations .

3. THESIS[7]

The Hardware Environment for Small Intelligent Systems (THESIS) is
a hardware design concept intended to overcome some of the technical
difficulties in the application of AI to engineering. A major feature
of THESIS is its hardware modularity based on a standardised interface.
Individual blocks are implemented as separate hardware modules whose
functions are independent. An additional modi/. Intelligent Cell Memory
System (ICMS) further enhances the system. Bd, .cally, this is a reser­
voir of free storage specifically set aside " : dynamic memory alloca­
tion. Inter module communication is controlled globally by the Control
Unit (CU) under a standard protocol. The CU .3 simply a conventional
processor unit with some local heap memory. The structure of THESIS is
shown in figure 2.

At first sight THESIS does not seem to be v-?ry different from clas­
sical intelligent systems. One difference . s in the partitioning of
storage between the CU and the ICMS. In classical intelligent systems,
programs and data mingle together in the heap. In so doing, they exhi­
bit referential transparency, one of the unique features of AI languages
[8]. There is no difference between program and data - both are classed
as symbols or objects. Each object is constructed from one or more
cells* and has some properties associated with it. Properties may be
either a collective list of other objects or a list comprising some
functional specifications. The actual constituents are only reviewed at
run-time. Thousands of objects form a program environment and new
objects are created continuously whilst old ones are discarded during
program execution.

data BSa*S8 ^nP'SSli^ottSn^Ifii^ysHtffi a$r?8!llfifc wcSfi 683f lyaBS
degraded. For instance, if the memory is mostly filled with program
code, it would not take long before memory exhaustion occurred. More­
over, the frequent need for garbage collection would cause intolerable

t The basic storage unit.

-4-

interruptions. In practice, programs are mostly permanent objects which
lake garbage collection on them not worthwhile.

The reason for separating the ICMS from the heap is to facilitate
the division of program and data. Programs are stored in the heap
within the CU. Since program codes are instructions to direct the CU,
this ensures direct access to instructions from it. Cache memory can be
used to further increase the rate of instruction fetching. For a large
software environment, secondary memories, with page scheduling, can be
attached to the heap. Data is restricted to the ICMS only. The dynamic
memory allocation process will create and release cells from this
region.

Unfortunately, ICMS/heap separation has partially sacrificed the
characteristic of referential transparency. However, this may not be
essential in an engineering environment. This contrasts with a develop­
ment environment, where "referential transparency is crucial because
every object is dynamic and may be subject to change. In engineering
applications, programs are well defined and mostly static. It is not
worth including this code in the ICMS because this would do nothing but
increase congestion. When objects become permanent during program exe­
cution, e.g. experiences which are learned, the ICMS can transfer them
to other non-temporary memory modules (the IE and the KB).

Separate segments for programs and data allows more room for the CU
to work on and the frequency of garbage collection is reduced. Also,
the rate of the garbage collection process is ;-2eded up due to the fact
that the collector is dealing with cells only -rells are generally tem­
porary entities[9] and so they required less effort to recycle. To rely
only on the ICMS for cell objects, greatly reduces the CU's search
paths and processor throughput is increased.

4. The Prototype System

A prototype system has been devrlcped based on the THESIS design
philosophy. This has largely been constructed from standard circuit
boards and is based on the industry standard VMF.lus. Figure 3 shows the
structure of the prototype system. The CU is the host processor, a
M68000, on an off-the-shelf VMEbus compatible C?n board. The on-board
128k dynamic RAM is used as the program space where the inference rules
reside (IE). The KB is another standard VMEbus compatible memory board
which has 512k bytes of storage. The I/O module is application depen­
dent and could be selected from many VMEbus based I/O modules on the
market, e.g. serial-in-parallel-out buffers, analogue to digital con­
verters, etc. The ICMS is the only specialised board and the key to the
improved system performance. The design and construction of the ICMS is
described below.
5. The ICMS[10]

There are two submodules within the ICMS, see figure 4. They are
the cell memory (CM) and the intelligent cell memory controller (ICMU,
the controller for short). A cell comprises of two words, a head and a
tail, and several tag bits. Abandoning the orthodox word addressing

-5-

mechanise, memory in the CM is addressable by cells. This is achieved
by configuring storage into two banks and sacrificing one bit of each
bank for tagging. The controller is a processor dedicated to extract­
ing information from the CM and subsequently passing it on to the CU.
It aljo monitors the state of the CM frequently; and performs garbage
collection if the CM is exhausted. Physically, the controller is con­
structed with bit slice devices[11] under microprogram control. A
writable control store (WCS), 256x64, has specially been constructed for
this purpose. The flexibility of bit slice design is most suitable for
this project because it has left open the cell size of the

Normally, the controller is constantly performing garbage collec­
tion. This is done in bursts and each garbage collection burst is indi­
visible - a unit operation. The CU is not aware of this happening and
busily executing its own tasks. When the CU wants to request a cell
operation, the controller is interrupted. It will then finish up with
its present garbage collection burst and service the cell operation
requested.

Baker's garbage collection algorithm[12] is used. A novel dual
mode of operation of the algorithm is adopted in the ICMS. While the
TCMS is garbage collecting invisibly from the CU, the parallel mode is
active. Upon interruption, the ICMS garbage collects incrementally
ensuring at least one free cell is available. A dual mode garbage col­
lector offers a fast cell recovery rate with ;.cunded collection inter­
vals. Moreover, the speed of operation is en!-:- need by the following
features.

5.1. Simplicity

From the MGSCOO the ICMS is seen as a passive storage device,
accessible by writing or reading a bank of registers (INO,1 and OUT2,3).
Each register is responsible for a LISP primitive and is assigned with
an address. Effectively, writing into a register is equivalent to pass­
ing a parameter and invoking the corresponding list operation at the
same time. At the end of the function, return . ilue-j are read from the
same address.

The entire transaction is performed asynchr:nously. According to
the VMEbus protocol, the address strobe signal (AS*) is sent by the
M68000 host to inform the ICMS of the availability of some parameters.
The ICMS then fetches them from the registers and performs the requested
LISP primitive while AS* is still asserted. During this period, the
host is suspended. Upon completion, the results are put back into the
corresponding registers and the data transfer acknowledge signal
(DTACK*) is set which activates the M68000.

tAt present the ICMS is set up to be 48 bits wide, with 2 bits
for tagging.

-6-

5.2. Fast Response

Although the throughput of the host processor will be reduced by
the frequent requirement for garbage collection bursts, the design of
the ICMS ensures that these take place at an acceptable speed by adopt­
ing several architectural features:

i) Cell Unit -addressing - Two bit slice ALUs are employed, one is
responsible for the manipulation of the HEAD pointer and the other
is dedicated to the TAIL. The operational speed for list functions
on the cell is therefore enhanced. Moreover, this architecture
does not exclude the possibility of either only one ALU or one
address/data being required. In such circumstances, the unneces­
sary device may be made redundant by disabling it using the
appropriate micro control bits.

ii) Hardware Testing - Five tests are performed in hardware con­
currently with the bit slice ALUs, namely

 CELL(X) is X a cell pointer;

 OLD(X] does cell ponter X exist in the OLD region;

 NEV(X) does cell pointer X exist in the NEW region;

 CC has garbage collection finished ? and

 CMEND has the cell memory been ex:.austed ?

iii) Content Pref etching - This idea derives from "instruction prefetch"
in computer architecture design. Running in parallel with hardware
testing, it ensures the correct address at the memory address port
at the end of a conditional fetch instruction. Thus test and fetch
instructions are executed in one machine cycle which otherwise
would be two or more.

5.3. Flexibility

The ICMS is not restricted to a particular type of processor.
Theoretically, because the bus standard has been conformed to, it should
be compatible with any host system.

6. System Performance

The ICMS prototype system is embedded in a custom LISP environ­
ment, known as simpleLISP. This is a simplified version of pure LISP,
but.it does include . all the basic LISLtSUmitives . vT5e DIO §t time C9n "
suming primitive implemented is CONST X,Yj which demands a new cell,
checks the regions in which X and Y are located, performs collections on
X and/or Y when necessary and finally places X and Y into the HEAD and
TAIL of the new cell, respectively. Normally, there is no problem in
cell allocation until no free cells remain. At this point, garbage col­
lection is initiated. An analysis shows that the worst case of CONS is
the most time consuming operation in the overall system. For the M68000

-7-

CPU with a 8 MHz clock, the measured time is 1.8 as. Writing the algo­
rithm in licro-code and running the operation on the ICMS gives a worst
case CONS time of 8.3 us.

Compared with the software implementation in the host, the ICMS is
obviously much superior giving a greater than two orders of magnitude
improvement in the worst case performance. Similar comparisons for
other LISP primitives have been carried out and their results are shown
in table 1. These results give a good indication of the improvement in
overall system performance because application programs are mainly con­
structed from these primitives. In practice, the actual overall
improvement factor will vary somewhat depending on the application.

A second experiment was arranged to verify that the ICMS does
ensure a bounded response time. Initially, an useful list is created.
The number of constituent cells was increased gradually each time, in
the increment of 10** of"the overall cell population. Every time 1000
CONS operations were performed, and the times of execution were
recorded. As shown in table 2, the exection time is, in fact, fairly
constant. On average, it is 55.5ms with a relative percentage error
bound of +0.2V

7. Conclusion

THESIS is a design concept which overcome^ many existing technical
difficulties leading to the inclusion of AI functionality in engineering
systems. The concept is based on hardware modularity and on a standard
bus interface scheme. A prototype system has been implemented which is
based on on the VMEbus specification, standard circuit boards have been
employed for the IE,KB and CU. The ICMS is specially designed using bit
slice devices which is dedicated to list processing. Using it, the
worst case speed of list manipulation on a M68000 system has been
increased by more than two orders of magnitude.

In the future, realisation of the KB and the IE could take two
forms. They could either be completely passive memory devices; in which
case information retrieval would controlled by the CU. Alternatively,
special purpose controllers, similar to the* ICMS, could be implemented
at the memory front-end to expedite the operational speed. Some sugges­
tions are:

 to design the KB controller with multiple memory access modes
such as random access, content addressing, hashing, etc.; and

 to adopt a logic driven architecture for the IE controller.

The implementation of the I/O unit will be application dependent. In
some applications, for instance data logging, analogue-to-digital con­
verters, filters, amplifiers, etc. would be required.

In many cases the widespread use of AI techniques in practical
engineering systems still awaits the development of suitable applica­
tions software. The THESIS design approach described here offers a
powerful environment to use this software.

-8-

References

1. H.W. Whittington and G.G. Coghill, "Hand-Held Digital Echo Sonic
Pile Testing Systems," Proceedings of International Conference on
Structural Repair, pp. 173-176 (1983). ISBN no: 0-947644-03-2

2. D.S. Nau, "Special Feature: Expert Computer Systems," Computer,
pp. 63-85 IEEE, (Feb., 1983).

3. U.S. Department of Commerce, An Overview of Expert Systems,
National Aeronautics and Space, Washington, D.C. (May, 1982).

4. Strathclyde University, Proceedings of the Current Trends in the
Application of Expert Systems, IEE Scottish Centre Electronics Com­
puter & Control Section, Glasgow, Scotland (2 April 1986).

5. D.E. Knuth, The Art of Computer Programming Vol. I: Fundamental
Algorithms, Addison-Wesley, Reading, Mass. (1973).

6. J. Cohen, "Garbage Collection of Linked Data Structures," Computing
Surveys, Vol 13, (3) pp. 341-367 The Association of Computing
Machinery, (Sept. 1981).

7. K.F. Wong, G.G. Coghill, and J.M. Hannah, "THESIS: The Hardware
Environment for Small Intelligent Systems, for Engineering Applica­
tions," Proceedings of the 86 Conference -. Personal & Small Com­
puters, ACM SIGSMALL/PC, (2-5 Dec, 1986). (to be published)

8. B. Barr and E.A. Feigenbaum, The Handbook of Artificial Intelli­
gence, Pitman (1983).

9. H. Liberman and C. Hewitt, "Garbage Collection Based on the Life­
times of Objects," MIT AT Memo no.569 , M.I.T., (1981).

10. K.F. Wong, G.G. Coghill, and J.M. Hannah, "ICMS: An Intelligent
Cell Memory System For Real-Time Engineering Applications,"
Proceedings of the 86 Conference on Personal & Small Computers, ACM
SIGSMALL/PC, (2-5 Dec, 1986). (to be published)

11. J. Mick and J. Brick, flit Slice Microprocessor Design, McGraw-Hill
(1980).

12. J. Baker, "List Processing in Real Time on a Serial Computer," Com­
munications of the ACM, Vol. 21, (4) pp. 280-294 (April, 1978).

-9-

LISP

Primitives
CAR, CDR
REPLACA.
REPLACD
CONS

The worst case
no. of GC

bursts
1
2

11

68 C machine
times

(i j&sec)
165.8
453.8

1815.0

ICMS machine
times

(y MCC)
6.2
7.5

8.3

Improvement
Factors

(»/y)
31.9
60.5

220

Table 1: Improvement In Performance for Various LISP Primitives.

% of Usefni Cells
1

10
20
30
40
50
60
70
80
90
99

ICMS m/c times (ms)
55.6
55.6
55.4
55.6
55.4
55.4
55.5
55.4
55.4
55.6
55.4

average time : 55. 5 ±0.1 ms

Table 2: ICMS Execution Times for 1000 Consequtive CONS.

ft
I/O
/Ts

Figure 1: Anatomy of an Intelligent System.

CU

Standard Bus Interface
/\

I/O IE

/\

\/
KB

/\

\/
ICMS

Flgure2: THESIS — The Hardware Environment
for Small Engineering Systems.

VMEbus Interface

M 68000

based

CU & IE

KB

512k RAM
I/O Unit

standard off-the-shelf boards

ICMS

(bit slice +

u- program)

customised

Figured: The Prototype System.

MEMORY
HEAD

J CM

MEMORY
TAIL

i

Flgure4: The Schematic Block Diagram
of the ICMS.

PROCEEDINGS

1986 ACM SIGSMALL/PC
Symposium on Small Systems

Sir Frances Drake Hotel • San Francisco, California

December 3-5,1986

Sponsored by ACM SIGSMALL/PC

- pages 193 to 197 -

THESIS: TW Hardware Bavlroameat for Small Intelligent Systems.
for Bagiae«riag Appllcatioas

K.P. Wont, B.Sc.. O.O. Cogaffl. B.Sc.,Ph.D. aad J.M. Hannah. B.Se.. Ph.D.

Electrical Engineering Departmeat, Edinburgh University,
The Kings' Buildings, Mayfield Road. Edinburgh, EH9 3JL,

Scotland.

ABSTRACT
System size, lack of standards aad poor real time response have
prevented the widespread acceptance of AI techniques in
engineering applications. By tailoring the hardware configura­
tion specifically for applications and by utilising an accepted bus
standard, improved performance may be achieved. In this paper,
the above approach is justified through the explanation of the
principles of a hardware system, named The Hardware Environ­
ment for Small Intelligent Systems (THESIS) which is currently
under development in Edinburgh University.

1. Introduction
Antflclml tnuUtgtmct (AI) is a science which attempts to

provide machines (artificial entities) with human-like behaviour
such as the ability to store and acquire knowledge and make use
of it to reason and to act on deductions as a human being would.

A study of how to best support AI applications programs in
a real time engineering environment is being conducted in the
Department of Electrical Engineering of Edinburgh University,
Scotland (!]. Fields of interest include: signal processing, speech
processing, engineering consultancy, monitoring, control and
instrumentation.

It has been shown (2) that practical systems for engineering
applications have to be small in order to be easily transportable
from one site to another. Frequently, they are operated by non­
technical personnel and therefore they should have user-friendly
interfaces. The ability to respond instantaneously to external
stimuli is often an important requirement for engineering sys­
tems. Commissioning considerations are also crucial as these can
be more expensive than the system and its design cost taken
together. For good design practice, factors such as ease of
maintenance, serviceability and ease of future expansion, need to
be taken into account as well.

At present, most small engineering systems are only semi-
automated. Users still have ID interact with them to ensure
acceptable performance. Take for example the case of a spec­
trum analyser with data acquisition capability. Normally,

PHMitiufi (o copy without fee all or pan of ibis material a framed provided that the
u*iia arc nu4 made ur distributed Tor direct commercial advantage, the ACM copyright
notice and I he til le of the publication and «i dale appear, and not ice • given that oopyms
* by pmniukMi of the Association for CompMms MacMnery. To copy otacrwue. or
to repnbtua. requires a fee and /or specific |

engineers have to interact with the instrument, so that ambigu­
ous data samples are rejected leaving only valid cases for con­
sideration. With built-in intelligence, unacceptable signal pat­
terns could be initially stored as background knowledge. Using
inference ***'Vrt<p«v the instrument can 'smartly' filler out
unwanted signals and continue sampling with little, or even no,
human intervention. Complete automation in such instruments
has long been an engineering aspiration.

1.1. Section Summary
The factors prohibiting AI techniques from being con­

sidered as a practical proposition are identified in section two.
A suggested remedy may be found through proper system confi­
guration and the use of a standard system interface. This is
described in the third section. Finally, in section four, conclu­
sions are drawn with suggestions of other configuration possibil­
ities.

2. Predicaments of Existing AI Technology
Presently, there are two major drawbacks of existing AI

technology which have been prohibiting its wide acceptance in
engineering applications. They are :

2.1. The bulk and lack of standards in AI systems
hardware

AI software is generally too large aad complicated for con­
ventional programming languages e.g Pascal. Efforts have been
made by researchers to produce special AI languages (3) with
optimising compilers. In addition, compact data structuring tech­
niques applied to advanced algorithms, have reduced program
size aad complexity.

Several small to medium scale systems are under research
and development. Some of these have left the laboratory
environment and have started to gain practical signifkance (3).
For example, Symbolic 3600, a commercial LISP machine which
evolved from the CADR processor system first developed in
Massachsetts Institute of Technology (MIT). These systems are
meant to be design aids for AI software programmers, but they
are unsuitable to be used for engineering applications.

2.2. Poor system response for real time applications
Computer intelligence implies rtttenl»g with knowledge or

applying rules to facts. During the process of reasoning, units of
memory (cells) are dynamically being consumed and released.
With s finite storage system, memory exhaustion is bound to
occur unless released memory can be re-used. The process of
memory reorganisation so as to reclaim re-usable cells is called

CoUtctio*.

© 1986 ACM 0-89791-211-4/86/1200-0173 75«

Garbage Collection is usually considered to be the responsi­
bility of the host processor. Previously, to ran such a process.
the host would suspend all active jobs and dedicate itself solely to
retrieving re-usable memory. This was acceptable in the research

173

dta neat.
— - kt *y»*>» Mvtroajaaati of
Nevertheless, th« complexity of present Al software has ranaad
erea this approach inadequate. |f engineering applications had
to stop at the middle of t continuous task the result comld b«
cosdy or o^ngerou. Imagi^ « I»«ii|.,t Syst*. ra.po.aIbU
for a .unfactunnc line halting during production to carry^oTa
Garbage Collection cycle.

Coireatly. three practical solutions to improve real time Al performance are being investigated:
(1) software garbage collection algorithms with real time capa­

bility;
(2) special architecture Al machines with microcode* garbace

collection schemes; and
(3) a dedicated hardware garbage collector in a multiprocessor

environment.

(acts m the D art scrutinised under tfM guidance of the IE. Th»
rote of the CS is to transport information to and from tte KJ
according to the HP's instruction*. Physically. CS to • writable

store where calls are eras tad.

, tpPromeb U °««niiag obsolete; nevertheless, it is still viable If a quick and cheap solution demanding moderate
response to required. Effectively, ideas two and three are
hardware realisations of the software algorithms. Tne special
purpose processor with its dedicated architecture is promising
but it would not be practical until some standardised architect
tare, or architecture with an internationally accepted interface
standard has been achieved. Because of its cheap production cost
and ease of expansion the multiprocessor approach is superior to
the rest at present.

The multiprocessor solution consists of a coprocessing sys­
tem working in parallel with the host, devoted mainly to Garbage
Collection. In so doing, the problem of memory exhaustion is
taken from the host. The result is a more dedicated host process­
ing unit. As hardware costs are ever decreasing, this approach
becomes increasingly attractive. Unfortunately, the existing sys­
tems are far from perfect. They are

difficult to implement: usually crucial inter-processor com­
munication protocols are required, e.g. dead-lock
avoidance using semaphores. Consequently, debugging and
maintenance problems prevail;
lack of flexibility: existing systems have their their garbage
collectors constructed around specific processors. Com-
manicatioa between them is via non-standard interface
specifications. In so doing, system designers are restricted
to one specific type of processor. Worst of all, random
interfacing design methodology is error prone and labori­
ous.

3. THESIS
Tk* H*r4wmrt Emvintummt /or Smmtl ImilUgtnt SytUm

(THESIS) is a hardware system design tool. By down loading it
with appropriate software, it can be customised to suit different
engineering applications. Tolerable size, improved real time per­
formance, ease of expansion and flexibility are its beneficial
characteristics.

Figure one illustrates the anatomy of THESIS. Basically, it
comprises five compulsory modules:
(1) the Host Processor (HF),
(2) Input/Output channels (1/0),
(3) the Inference Engine (IE).
(4) the Knowledge Base (KB), and
(5) the Cell Space (CS).

HP is the kernel of the system. It is the coordinator which
controls flow of informatioa between other parts and handles
mutual communications. Internally, it comprises the processing
unit and some primary memory (luap). For system expansion.
secondary storage devices could be incorporated. I/O supplies
communication paths with the external world. This could also be
stimuli such as electrical signals from transducers. The IE
encompasses rules and guidelines for heuristic deductions. The
KB is a massive database coataining facts. During reasoning.

3.1. Reasoning
Initially, the KB and tha IE are pre-programmed with

relevant information. When real world stimuli entnrs from th«
I/O, th« HP reacts promptly and monitors these stimuli. Infor­
mation frameworks are generated by applying tha ffi's rules to
tha KB. Tha received stimuli are compared against such frame­
works. Tha results are fed back into tha HP which will send s
response to soms intended recipient and create more tasks.
Effectively, the decision of the HP to made by applying hearisti-
cal inference techniques on past 'experience'. In such a fashtoa,
full system automation to established.

3.2. Adaption By Learning
In situations when a fatal error occurs, such as overvoltage

in the case of s power system monitor, which could cause mal­
functioning of the system, the HP would note such an error at
tha moment of break down. During bootstrapping , when the sys­
tem resumes, the error pattern would be passed on to the KB;
and from then on tagged as high priority. Moreover, the HP
could then self-generate a set of precaationry procedures, accord­
ing to existing 'experiences'. These procedures would be stored
ia the IE and would be invoked whenever the error recurs.
Theoretically, the informatioa stored ia the KB and the IE would
be ever increasing, thus providing the overall system with *dmp-
ttvt behaviour. Consequently, the concepts of banting and data
acquisition, which are major Al functional issues are realised.

3.3. Separation of the CS from the Heap
At first sight THESIS does not seem to be very different

from classical Al systems [3s). The contrast lies in the separa­
tion of the CS from the primary heap memory. In classical Al
systems, programs and data mingle together ia the heap. In so doing, they exhibit rtftrtntiml trauftrmcj, one of the unique
features of Al languages [3]. There to no difference between
program and data. Both are classed as symbols or objects. Each
object to constructed from one or more cells and has some pro­
perties associated with it. Properties can either be a collective
list of other objects or a list comprising of some functional
specifications. The actual constituents are only reviewed during
run time. Thousands of objects form a program environment and
new objects are created continuously whilst old ones are aug­
mented during program execution.

Because Al programs are generally large and complex, with
codes and data stored la one common area, system performance
can easily be degraded. For instance, if the memory to mostly
filled with program code, it would aot take long before memory
exhaustion occurred. Moreover, the frequent need for garbage
collection would cause (intolerable interruptions. In practice,
programs are mostly permanent objects which makes garbage col­
lection on them not worthwhile.

The reasoa for separating the CS from the heap to to facili­
tate the division of program and data. Programs are stored In
the heap within the HP. Since program codes are instructions to
direct the HP, this ensures direct access to Instructions from the
HP. Cache memory can be used to further increase the rate of
instruction fetching. For a large software environment, secon­
dary memories, with page scheduling, can be attached to the
heap. Data to restricted to the CS only. Tne dynamic memory
allocation process will create and release cells from this region.

Uafortmnattly, CS/heap separation has partially sacrificed
the characteristic of referential transparency. However, this to
not essential la aa engineering environment. This contrasts with
a development environment, where referential transparency to
crucial because every object to dynamic and may be subject to
changes. la engineering applications, programs are well defined

174

«tf moldy stntk.1t b MM worth including

wWeh•*''? we ?••• P«——— I MM program executio.
experience* wluck ere learned. tk* CS can transfer tke.to.
noa-temporary memory module* (tke IE and the KB)

ta d AJ .yttem. Ik. proe«. of reMonia b implicit

.

pct •
U te regarded a* part of tke HP*. responsibility. User. are vim"
•J «"P«-t» «ek proceese. until tke, ere interrupted by
ike wed for g arbe*. coUecdo. to reclaim re-«^k cell.. Hwtal
separated segment. for pro,™. «d dm, pro* idea more room
for tke HP to work on «d tke frequency of garbage coUeetioVu
reduced. AJ*o, tke rate of garbage collection is speeded uo due
to the fact tkat Ike eoUector Is dealing witk cells on^T/cell* are
generally temporary entities [4] and so they required less effort
torecyde To concentrate on the CS only. peatfy redt.ce. tke
HFi tearck paths and proc-at™ throughput is increased.

Corready. classical AI systems contain a limited amooat of
internal heap memory. Virtual memory techniques are often
employed to accommodate large software systems. As a side
effect of random dynamic cell allocation, non-contiguous cell dis­
tribution occurs. Inevitably, tkis would lead to frequent page
swapping and memory fragmentation. It is an expensive practice
to transfer information from secondary memory into the heap.
To do it frequently could be disastrous, even with large main­
frame systems as they could end up spending most of their time
swappiag pages.

This is a problem for the entire computer science commun­
ity rather than simply for AJ. To solve this problem, researchers
have developed algorithms, such as compaction, cdr-coding. etc.
The idea is to localise cell distribution and reduce thrashing. The
penalties paid witk these methods are the extra effort required
for ceO processing and prolonged garbage collections. However,
since the overall performance has been improved, the drawbacks
have to be accepted.

Program/Data partitioning in THESIS provides an alterna­
tive solution to the above problem, particularly suitable for small
system designs. Since the CS comprises data cells only, there
would be ample space for cell distribution. In most cases, the
heap would be sufficient even without secondary memory sup­
port. This means that localisation techniques are not required
any more. Without them process execution would resume after
garbage collection with no extra effort required for compaction
techniques etc.

In AI applications, cells are short-lived and a high percen­
tage of them are re-usable (4). Tke only trade-off is the fre­
quency of garbage collection, but the rate of this process has
already been increased since program codes which are permanent
objects need not be collected. In addition, if a garbage collector
which recycles useful cells and rejects 'garbage' [4] is used,
fewer cells have to be collected.

4. Tke Prototype of THESIS
A prototype of THESIS is under construction using a VME

multiprocessor bus system. VME is by far the most widely used
industrial interface for system designs. By adopting this de facto
standard, ease of maintenance, and design flexibility is accom­
plished. Tke overall system performance can be enhanced by
interfacing it witk dedicated coprocessor systems, e.g SUM : an
AI coprocessor for unification [5].

A garbage collection coprocessor (GC) system Is incor­
porated. The GC effectively sits between the HP and tke CS
which performs garbage collection in a incremental fashion. A
modified Hfwla't garbage collection scheme [4] is adopted in tke
GC. Physically, tke implementation is a direct microcoded
translation of tke algorithm. The microcodes control a iti-ilic*
machine with a dedicated architecture, specially tailored to
increase the rate of garbage collection. Architectural supports
include dynamic type checking, cell structured storage, head/tail
addressing and a flexible communication protocol with the host

proMasor. The flexibility of kit-tike technology [II km mnde H
suitable for tke design Cnrrentfy, a cell b a kits In size (24
for heed end 24 for tail) with only two kin for type tagging

The OC b responsible for the process of eefl allocation.
The HP will prompt it for a new cell and it will ensure tkat tke
CS b not exhausted before granting a cell. If tke CS b running
out of cells, garbage collection will be Initiated . As by products,
other cell manipulation primitives are also included, e.g. HEAD,
TAIL, etc. Therefore, this version of tke OC can ke considered
as a cell processing accelerator.

Hewitr's algorithm b originally based on Baler's (6). A
Baker type garbage collector b preferable because it ensures a
strict upper time limit oa the process. In engineering, where sys­
tem timing b a paramount design specification, unbounded pro­
cess cycles would render timing calculations virtually impossible.

In Hewitfs algorithm, garbage collection b performed
according to cells' lifetimes. Older cells are considered per­
manent Virtually, they are archived and so seldom require to
be collected. This maps exactly into tke idea of CS/keap separa­
tion of THESIS. However, real systems which based on [4] (e.g.
LM2 machine from LAMBDA) performs cell archiving during
run time. In THESIS, program code are regarded as permanent
cells thus archival b done at compile time. This b acceptable in
an engineering environment where application programs are well
defined.

The HP b an off-the-shelf CPU system with two serial I/O
ports based on a Motorola 68000. In the preprogrammed section
of the KB and the IE, Read Only Memory (ROM) devices are
used, for simplification and to reduce the design cost. The
remaining parts of the KB, the IE. and the CS are implemented
with low power CMOS Random Access Memory (RAM) devices
to reduce beat dissipation.

S. Conclusion
THESIS provides a flexible general purpose structure for

designing engineering applications. It provides a solution for
current AI sbortcominp in engineering areas. This b achieved
by using de facto industrial standards, e.g. VME bus, proper sys­
tem configuration and the incorporation of a parallel garbage col­
lector to take the problem of memory reclamation away from the
host processor. This leads to increased processor throughput and
improved real time response. Unfortunately, THESIS is still in
its developement stage. Its idea has yet to be justified by apply­
ing it to practical applications.

THESIS b, initially, designed for small scale systems. By
loading it with different applications software, THESIS could be
programmed to cope with various real world situations.
Nevertheless, the THESIS approach should not be limited to a
specific system size. The same design philosophy could be
applied to large multi-processor systems Integrated within a local
area network. Moving to the other extreme, miniature systems
could be implemented using a standard chip interface scheme,
inch as programmable Switch Matrix technology [7J. in a
tightly-coupled fashion.

t Readers are suggested to refer to [4| and [6] for details.

References
1. Dept. of Electrical Engineering: project proposal, unpub­

lished, internal document, Edinburgh University. Scotland.
2. Whittington.H.W., Coghill.G G.: 'Hand Held Digital Sonic

Pik Testing System*. 1983, Ibid.
3. BarrJ}-. Feigenbaua.E.A.: "The Handbook of Artificial

Intelligence*, vol.2, chapter?. Pitman. 1983.

175

>k of Artificial3*. Berr.B . FeiteabaMj.A.
bttlUgeace'. vol.2, chapter*. Pttmaa. 1943.

4. Ubemaa4* . Hcwitt.C.: •Qarbafe CoUoctic* Bated OB the

6.

7.

Lifetime* of Objects', MTT AT Meav> ao.5*9.
Massachtcns. 1911. Commmnkatioa* of the ACM. 1911.

5. -SUM: aa AI coprocessor'. Byte. April 1985.
BakerJ: BUst-procetsi»| i» Real-tfaM oa a Serial
pvier*, Coai»»akatioas of ACM. vol.21. ao.4. April 1971,
pp2SO-294.
Chea.W. : "?rofraBmabto Switch Matrix", unpublished, 1st
yr. Ph.D. report. Dept. of Electrical Eofioceriaf. Edia-
bar(h Uatrersity. Scotland.

I Mkk^.. BrickJ.: 'Bit-Slice Microprocessor Design",
McGrtw-Hill. 19SO.

K)
s

HP
1

cs

IE
a

Flgw* 1 : The Anotomy of

176

PROCEEDINGS

1986 ACM SIGSMALL/PC
Symposium on Small Systems

Sir Frances Drake Hotel • San Francisco, California

December 3-5,1986

Sponsored by ACM SIGSMALL/PC

-pages 198 to203-

ICMS: An Intelligent Cnll Memory System for Real-Time Engineering
Application

K.P.Wonf. O.O.Coghlll and I.M.Hannah

Department of Electrical EngiBcering.
Edinburgh University, The King's Buildlnp,

Mayfleld Road, Edinburgh, EH9 3JL, Scotland.

Abstract
There is a growing interest in the application of Artificial

Intelligence (AI) techniques In engineering. Existing AI systems
are not suitable for many applications because of their unaccept­
able real-time response and complexity. An intelligent cell
memory system (ICMS) is proposed which is capable of provid­
ing improved real-time performance. A prototype implementa­
tion of ICMS using dedicated bit-slice processors which perform
parallel garbage collection with bounded separation time is
described. The system uses an optimised implementation of
Baker's algorithm to give high speed performance. It is easy-
to-use, flexible, portable and suitable for engineering applica­
tions where fast response time is required.

1. Introduction
The potential of Artificial Intelligence (AI) is beginning to

be realised in many practical fields. Potential application areas
in engineering include fault diagnosis, process control, manufac­
turing, industrial automation, engineering consultancy and plan­
ning and design. Nevertheless, existing AI systems are not yet
suitable for many engineering applications due to
• their unacceptable real time system performance; and
• the bulk and complexity of system hardware.

The distinct nature of AI techniques demands software
with special features (1). List professing capability is one of the
fundamental requirements. The structure of lists naturally
resembles the idea of objects and their associated properties.
The elementary storage unit of lists is a cell which consists of a
HEAD and a TAIL with additional bits for various purposes.
HEADs and TAILs are either pointers to other cells or atoms,
i.e. numbers or literal strings. From these basic cells an ela­
borate information frame-work can be constructed. AH current
AI languages are capable of list manipulation. The one most
widely used is LISP [21. On top of list processing capability,
additional features are included in these languages Id enhance
their performance; for example, dynamic memory allocation.
Normally, cells are located in a free cell space and they are

u» copy •Mhoui foe aft or pan of this •Mcrial is framed |ne»idtd tk*l the
onp«> are ma m*k at dniribmcd for dinxi cmitiuetud •dvamite. ihc ACM copyright
•««T nd i he i*lr of ike pubktam art a» dMe appear, md Mine it (woi ihtf copying
K hy prnMMoa of the AssmMioB for CoMfMMMi MadtiMry. To copy otherwiK. or
M> itp»Muli. rcqiMm • fee and /of

*•) 1986 ACM 0*9791-211-4/86/12000168 75C

detached from the space only when an extra piece of information
requires storage. When a piece of information is no longer
valid, its associated cell win be discarded. Continuous ceO allo­
cation would eventually exhaust the cell space, if the discarded
cells were not recovered by Omrbmgt CotUctiam. In most sys­
tems, garbage collection is an expensive process. As the main
list processing tasks are suspended while garbage collection is
taking place, this results in long Interruptions between continu­
ous computation phases. Systems like this are unacceptable for
•any engineering applications where fast and predictable
response is demanded.

The uniqueness of list structures leads to inefficient pro­
cessing by conventional computers. Novel machines have been
designed to improve processing efficiency. Special architectural
features are incorporated in list processing machines to achieve
maximum system throughput. Some machines are also capable
of further expansion by adopting a standard interface, for exam­
ple NuBns for LAMBDA! (one of the most popular AI
machines). However, the high cost of these machines (e.g. ~
US $50,000 for LAMBDA2) and their large sixe, make
them only applicable to large scale engineering applications.
There have also been attempts to convert list processing into sil­
icon at chip level, such as the SCHEME project (3). These chip
systems offer their own instruction set but the inter-chip com­
munication depends on complicated interface schemes which
make them difficult to use.

1.1. Paper Outline
ID this paper a real time garbage collection system suitable

for inclusion in practical engineering designs is proposed. Fol­
lowing a brief overview of classical garbage collection schemes,
the distribution of garbage collection processing time is con­
sidered. A practical system is then described which offers an
attractive solution for applying intelligent processing to
engineering situations. The system performance is shown to
give a considerabk improvement over conventional garbage col­
lection systems. Finally, suggestions are made for possible
enhancements of the system.

2. Garbage Collection Systems
Garbage collection systems are generally based on three

classical methods [4]:
(I) reference counting
(TJ) marking and sweeping
(Iff, copying.
Systems based on (I) and (H) constantly maintain a special list of
unused ceOs - the free-list In (I) an extra word is added onto
each cell to record the number of constituent cells which are
pointing at the cell. When this count drops to sen. this implies
that the cell is isolated and h is returned to the free-list. For
(II) the extra storage required to less, only two or three addi­
tional bits per cell are necessary. When the free-list is

16S

•xhmated. garbage coOectiou to Invoked. The
to performed in two phnm. In the flnt phase, VMM lira an
traversed and all accessible osQs an tagged/marked. IB the next
P«*»«. »arked osOa an identified and returned to (he free-list.
Prior to resuming normal ttst processing , aO marked cells are
unmarked, in preparation for the next collection cyde.

There is a slight different m the organisation of the cell
tpnce In (TU). Initially the eeO space is divided into two regions:
OLD and NEW. Memory aUocetioa always operates upon cell*
Li the NEW region. Eventually, when there are no more cells
available in NEW. collection is initiated. The two regions are
now Interchanged. Useful euQs are then copied from the OLD
Into the NEW region untfl none are left in the former.

S. A Practical System for Time Critical Application*
la practice, •sing conventional computers, garbage collec­

tion can only be perform serially. Classical collectors are
invoked when the cefl memory to *r*f"tttr4 This results in a
timing pattern described in figure In. The actual time required
for garbage collection depends on the size of the useful lists.
With urge systems, this activity could weO take hours. The
long interruption between list processing implies sluggish system
response. This is unsuitable for real-time applications. Improve­
ments have been made to minimise the idle time. One idea to to
deceive the list processor that garbage collection is always fin­
ished. Effectively, both garbage collection and list processing
are divided into small operational bunts (figure Ib). which are
interleaved. This type of incremental collector is most suitable
for interactive systems where collection can occur transparently
in between commands. No matter how serial garbage collection
is performed, processing efficiency can never be greater than
50%.

An alternative approach is to carry out garbage coDection
concurrently with list processing in a multiprocessor environ­
ment. Ideally, the system should be configured in such a way
that garbage collection and list processing have no interaction -
they should be mutually exclusive. In reality, this can never be
completely achieved. Misalignments between them create idle
intervals in continuous list processing (tj, tj and tj in figure
Ic). Parallel systems ensure that the list processor to doing use­
ful work most of the time. Machine productivity to thus higher
(>50%) than for serial collectors. However, existing implemen­
tations have two disadvantages which make them unattractive in
engineering applications :
(0 Complexity - special architectures with complex interfacing

are adopted
(ii) variable separation times - inconsistent separations cause

unpredictable timing performance making engineering
design difficult.
From the foregoing discussion, it can be seen that a practi­

cal garbage collection system should exhibit the best features of
the incremental and the parallel schemes. These are :
• Maximum garbage collection and list processing overlap in

order to increase the host productivity.
• Minimum separation times which should be bounded.
• simple system architecture - ideally, it should be tran­

sparent to the host processor. (In particular the communi­
cation link between the host and the collector should be
straightforward.)

4. ICMS - The Intelligent Cell Memory System
A system which exhibits the desirable features described

above is shown in block form in figure 2. It consists of an Intel­
ligent Cell Memory Controller (ICMQ which acts as an inter­
face between the cell memory (CM) and the host processor.
The overall system (ICMS) has been designed to be suitable for
engineering applications with time critical requirements.

Normally, the controller to constantly performing garbage
collection over the cell memory ia parallel with the list sin rasa
ing by the host. Effectively, nc host processor to totally
unaware of the existence of garbage collection. However, when
the host requests a cell, a hardware interrupt to generated to) the
controller. The latter finishes off the carreat coUectioa bant
before servicing the requested operation. This approach pro-
Tides overlap between garbage collection end ttst processiag.

A suitable choice for garbage coQectioa to Baker's algo­
rithm [5J sad tail to adopted in the ICMS. Baker's collector to a
copying type which to normally used in an incremental mode.
The algorithm to simple to use and provides the desired bounded
separation time. Special architectural features of the
also reduce the garbage coUectioa time thus a short
to ensured.

The time distribution diagram of the ICMS to as shown ia
figure Id. Separation times "r* are consistent aad the overall
machine time M (for the same task) to much shorter than the
two serial cases. This means that the host to not responsible for
garbage collection and more of its time contributes to useful fist
processing.

The ICMS host interface to based on a standard system bus
and a memory mapped register structure which provide a simple
link between the host and the controller. This interface scheme
provides easy-to-use communication protocol* which simplifies
system design.

4.1. Design Features
Baker's algorithm was initially verified ia software aad

preliminary studies of the generated code revealed some degree
of hidden parallelism in die algorithm. It was realised that
implementing these ia hardware could provide a decrease ia
garbage collection time.

The definition of die cell storage structure to complicated
but to access s cell many time consuming addressing iastrac-
tions are required - over 50% of die generated code. A solution
to the problem is to abandon the orthodox byte/word storage
convention and treat a cell as an elemental storage entity.
Addressing a cell then would be much more natural and require
less time and effort. In addition, on average, up to two titirds of
die cell address instructions are conditional. The cell to be
addressed mostly depends on either die state of die coQectioa
process or die region to which the cell pointer belongs. Paral­
lelism can be exploited by overlapping die testing and the eeO
addressing instructions. Since die testing instructions are sim­
ple, they can be realised using dedicated hardware, making them
independent from cell addressing. Thus both instructions could
be executed concurrently.

There are two pointers which are frequently used in
Baker's algorithm, namely B and S. The B pointer always points
to the next available cell. Functionally, whenever a cell to allo­
cated, the B pointer to read and it to incremented afterwards.
The job of the S pointer to to point at die cell which to next to)
turn to be collected. Similarly, its value to read during each col­
lection burst aad tubsequendy incremented. Some degree of
speed up can be achieved by implementing die B aad S pointers
ia hardware, incorporating an auto-increment capability.

In addition to Baker's algorithm six list processing primi­
tives are catered for by die ICMS to give improved perfor-
mancer . They are CONS. CAR, CDR. ATOM, REPLACA aad
REPLACD [2]. These primitives operate on one or two param­
eters aad the function of tite controller to to ensure that tite
parameters are correct and to garbage collect diem if necessary.

t a through explanation of why special attention has to
be paid to these primitives to given in (5).

169

-2. Bagiaaeriag Feature

< 2.1. Simplicity
The ICMS to aa ladepeadeat functional module. Prom the•ost processor, it to seea at a pasitvt storage device, accessible by writiag or readiag a beak of regtoten. Each ragtotar to responsible for a USP primitive aad to assigned with aa address. Effectively, writiag iato a regtoaw to equivaleat to aassiag a parameter aad iavokiag the corraapoartlag list operatioa at the same time. At the cad of tha faactioa, rctara values arc read from the same address.

4.2.2. Fast Response
Although the throughput of the host processor will be reduced by the frequent requirement for garbage collection bunts, the desiga of ICMS ensures that these take place at an acceptable speed by adopting several architectural features (see figure 3) :

i) Cell Uait-addressiag - Two hit slice ALUs are employed, oae to responsible for the maaipulatioa of the HEAD pointer and the other to dedicated to the TAIL. The opera­ tional speed for list functions on the cell to therefore enhanced. Moreover, this architecture does not exclude the possibility of either only one ALU or one address/data being required. Ia such circumstances, the unnecessary device may be made redundant by disabling it using the appropriate micro control bits.
U) Hardware Testing - Five tests are performed in hardware concurrently with die bit slice ALUs. namely

to X a cefl pointer;
does ceD ponter X exist in the OLD

does cell pointer X exist in the NEW

• CELUZ)
• OLD(T)

region;
• NEW(T)

region;
• CC has garbage coDection finished ? and
• CMEND has the cefl memory been exhausted ?

iii) Content Prefetching - This idea derives from "instruction prefetch" in computer architecture desifn. Running in parallel with hardware testing, h ensures the correct address at the memory address port at the end of a condi­ tional fetch instruction. Thus test aad fetch instruction* are executed in oae machine cycle which otherwise would be two or more.
iv) Auto-incrementable Potaten - Special cell pointers B and S are constructed ia hardware using flip-flop counters. They are incremented after being ased for ceD addressing.
4.2.3. Flexible aad Portable

The ICMS interface uses a popular industrial bus standard,
namely IEEE P1014 [6] or tike VMEbns. Therefore, unlike sys­ tems such as [7,8] the ICMS to aot restricted to a particular type
of processor. Theoretically, because the bus standard has been
conformed to, it should be compatible with any host system.

S. Syaatm Patfacai
The ICMS atufcxjpe system to embedded ia a

eavLroamaat, kaowa as simpleUSP. This to • tiaipUflad versioa of para USP. hat it does include all the bask US? primitives. The moat time coaaaming primitive implemented to CONS(X.Y) which demands a acw cell, checks the regions ia which X aad Y are located, performs collections oa X aad/or Y whea •aeasiary aad finally places X aad Y Into the HEAD aad TAIL of the new otU, respectively. Normally, there to ao problem for cefl aOoca- tioa uatU ao fraa cells ramaia ia the NEW rafioa. At this poiat, garbage coOecdoa to initiated. This ladudes the coOectiag of ROOT registers aad interchanging NEW/OLD regioas which farther axteads the iaterruptioa to list processing. Aa analysis shows that the wont case of CONS to the most time consuming operation ia the overall system. For the M6SOOO CPU with a f MHx clock, the calculated time to l.S ms. Writiag the algorithm in micro-code aad running the operation oa the ICMS gives a wont case CONS time of 8 J o>s.
Compared with the software implementation m the host, the ICMS to obviously much superior giving a greater thaa two orders of magaitade improvemeat ia the wont case perfor­ mance. Similar comparisons for other LISP primitives have been carried oat aad their results are shown ia table 1. These results five a food indication of the improvemeat to) overall sys­ tem performance because application programs are mainly coa- stracted from these primitives. In practice, the actual overall improvement factor will vary somewhat depending on the appli­ cation.

6. Conclusions
The ICMS to a hardware system which has been built for garbage collection for use in engineering applications. Its func­ tional characteristics are a mixture of the incremental and paral­ lel schemes. It to simple to use with a bounded response time, offers flexible expansion and portable. Although the primary objective of the ICMS to to improve garbage collection perfor­ mance, it also caters for five list primitives : CAR, CDR. REPLACA. REPLACD and CONS. la practice, the ICMS may be regarded as a coprocessor system responsible for accelerating list manipulation.
The size of the cell memory to expandable with extension cell memory boards being added via the local bus. Abo for designs which are limited by the available physical memory vir­ tual memory techniques could be adopted by conacctiag the required management unit between the controller aad the cefl memory. However, the size of the cell memory required ia many engineering applications to usually reasonably small, there­ fore, the virtual memory approach would rarely be employed.
Another possible enhancement to the current system to the concept of collection according to "objects' life-times" [9,10]. Once a ceD had wngnised to have persisted for a number of farbafe coDectioa cycles, it would be considered permanent. All permanent ceQs would then be transported out of the cell memory into some other memory area for archiving. Thto

LISP

Primitives
CAR, CDR
REPLACA.
REPLACD
CONS

The worst case
ao. of OC

bursts
1
2

11

68K machiae
times

(» *•««)
165.8
453.8

1815.0

ICMS machiae
times

(y»see)
6.2
7J

8J

Improvcmeat
Factors

(«/y)
31.9
60J

220

tabU J: lm»nr**m*»t I* Ptrfermtmct fir Vvitmt USF

170

for garbage conectioe

aetga ef ICMJ sapper* oe phUoaoahy of hardware
•odulariry. fa aay VMEbaa eaviroameat, a eoaveatioaal pro-
«««*or. aot deeigaed for Al applications, could be transformed
l»to a reaeoaablely powerful AI machiae jast simply by 'plug-
giag" ia the ICMS coprocessor moduk. Moreover, the system is
capable of iastgratioa oa sflieoa to produce a low cost design
thus expaadlag the raage of eagiaeeriag application* for AI
techniques.

Refereacea

1.

2.

3.

4.

A. Bart aad A.E. Peigenbaum, Tk* Hmndboot of Artificial
f«tt/Ut«ac« Voi. n, William Kanfman, Menlo Park, Carii-
foraia (19S2).
J. McCarthy aad et al., USF U ProgrmmMtr't Haxmtl,
MIT Praa. Cambridge. Mass.. USA (1962).
G.J. Sassmaa, J. HoUoway. G.L. SteeJe, aad A. Bell.
Scbemc79 • Lisp oa a chip." IEEE Computer 14 pp. 10-21

(July 19il).
J. Cohea. 'Garbage Collection of Linked Data Structures.*
ComrmO*! Smrvfft 13(3) pp. 341-367 The Association of
Compatiag Machinery. (Sept. 1981).

5. H.O. Bekar. 'Uat Proeaaaiag ia Raal TlM oa a Serial
Cosmpaav/ CtmmmmirmHm of ato ACM 21(4) pa. 2M>>293
(April. 197I).

6. W. Pbcher. 'IEEE P1014 - A Standard foe tac Hlga-
Perfomance VME Bos/ Micro 5(2) pp. 31-41 IEEE.
(Feb.. 1985).

7. G.L. Steel*. 'Mutiprocessiag Compactifying Garbage Cot-
lection.* CommMlco,tlomi of ACM ll(9)(Sept., 1975).

8. E.W. Dijkstra, L. Lamport. AJ. Maria. C.S. Scaoiiea.
and E.P.M. Steffens. *On-the-Fly Garbage Collecdo: Aa
exercise ia Cooperatioa,* Commmnicotiotu of ACM
21(11) pp. 966-974 (No-/.. 1978).

9. H. Ubernaa and C. Hevitt. *A Real Time Garbage Col­
lector Based oa the Lifetimes of Objects/ CommMmicotiom
of tkt ACM 26(6) pp. 419-429 (Jmna. 1983).

10. D. Ungar. 'Generation Scavenging: A Non-disruptive High
Performance Storage Reclamation Algorithm," frocood-
i*gt of Softwtrt EmgUutrimg Symfotlumt om frmcticoA
Softwtrt Development Environment!, pp. 157-167 ACM.
(1984).

(o) M

=111=|||=HI=tn=|||=ni=in=

(c)
M

Bar pi'uoaaa'ncj Ima

flgmro 1 : Time Dlstrlimtio* Dlagrtmi of Garbtgt CotUction SjgUmt,
a) «?tM*k*l:
b) incremental;
e) parallel; aad
d) 1CMS scheme.

171

HOST 0)

ICMS

(CMC CM

0)
(2) Local BM

figmrt 2 : Tht GU+*l Block Dlmgrmm «/ On KMS;

toed
/

. .N

v

'. . * J
/ _____>

MEMORY
HEAD

/>i J

^

< . . >

MEMORY
TAIL

N

^

'

Hgnre 3 : The Detuled Schematic Block Diagram of the ICMS Architecmre.

172

Bibliography

1. R. Moore, "AI Must Cater to Nonexperts," Computer Design, p. 68, 15 Feb.,
1986.

2. D.R. Brown, "R & D Plan for Army Applications of AI/Robotics," Stanford
Research Institute Project 3736, SRI International, Stanford, USA, 1982.

3. J. Alty, "The Current States and Future Possibilities of Expert Systems," IEE
Symposium on "Current Trends in the Application of Expert Systems", Strath-

clyde University, Glasgow, Scotland, April 1986.

4. P. Winston, Artificial Intelligence, Addison-Wesley, Reading, Massachusetts,

USA, 1977.

5. W.B. Gevarter, Artificial Intelligence, Expert systems, Computer Vision and
Natural Language Processing, Noyes Publication, N.J., 1984.

6. N.J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company,

Palo Alto, California, 1982.

7. A. Barr and A.E. Feigenbaum, The Handbook of Artificial Intelligence Vol. II,
William Kaufman, Menlo Park, Carlifornia, 1982.

8. Institution of Electrical Engineers, IEE Symposium on "Current Trends in the
Application of Expert Systems", whole issue, Strathclyde University, Glas­

gow, Scotland, April, 1986.

9. T. Moto-oka, Fifth Generation Computer Systems, North-Holland, Amsterdam,

1982.

10. A. Burns, "Information Technology - for Better or Worse," in New Informa­
tion Technology, ed. A. Burns, pp. 187-215, Ellis Horwood, England, 1984.

-204-

11. R.W. Milne and B. Chandrasekaran, "Fault Diagnosis and Expert Systems,"

IEE Symposium on "Current Trends in the Application of Expert Systems",

Strathclyde University, Glasgow, Scotland, April 1986.

12. M. Merry, "APEX3: An Expert System Shell for Fault Diagnosis," GEC

Research Journal, vol. 1, no. 1, pp. 39-47, 1983.

13. N. Swindell and RJ. Swindell, "System for Engineering Materials Selection,"

/. of Metals and Materials, pp. 301-303, May 1985.

14. M.S. Fox and S.E. Smith, "ISIS - A Knowledge Based System for Factory

Scheduling. Expert Systems," International J. of Knowledge Engineering, vol.

1, no. 1, 1984.

15. T. Crawford, IEE Symposium on "Current Trends in the Application of Expert

Systems", Strathclyde University, Glasgow, Scotland, April, 1986.

16. J.C. Francis and R.R. Leitch, "Knowledge-Based Process Control," Proceed­

ings of IEE International Conference on Control'85 , pp. 483-488, 1985.

17. G. Hetherington, "Expert Systems in VLSI Design," IEE Symposium on

"Current Trends in the Application of Expert Systems", Strathclyde University,

Glasgow, Scotland, April, 1986.

18. P.W. Horstmann, "Expert Systems and Logic Programming for CAD," VLSI

Design, pp. 37-46, Nov., 1983.

19. F. Hayes-Roth, "The Knowledge-Based Expert System : A Tutorial," IEEE

Computer, pp. 11-28, Sept., 1984.

20. E. Rich, Artificial Intelligence, MacGraw-Hill, 1983.

21. D.G. Bobrow and B. Raphael, "New Programming Languages for Artificial

Intelligence Research," Computing Surveys, vol. 6, no. 3, pp. 153-174, Sept.,

1974.

-205-

22. L.D. Ennan, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy, "Hearsay-n Speech

-Understanding System: Integrating Knowledge to Resolve Uncertainty," Com­

puting Surveys, vol. 12, no. 2, pp. 213-253, Feb., 1980.

23. D.S. Nau, *'Special Feature: Expert Computer Systems," IEEE Computer, pp.

63-85, February, 1983.

24. R.A. Corlett, "Features of Artificial Intelligence Languages and Their Environ­

ment," IEE Software Engineering Journal, pp. 159-164, July, 1986.

25. J. McCarthy and et al., LISP 15 Programmer's Manual, MIT Press, Cam­

bridge, Mass., USA, 1962.

26. J.K. Foderaro and K.E. Sklower, "The Franz LISP Manual," in 42 UNIX on

line manual, Berkeley University, California, USA, 1980.

27. W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag,

1984. (2nded.)

28. B. Ivan, Programming for Artificial Intelligence, International Computer Series,

Wokingham Addison-Wesly, 1986.

29. D. Warren, D. Bowen, and L. Pereira, "C-PROLOG Manual Version 1.4.edai,"

in Unix On-Line Manual at uk.ac.ed.edisg, ed. F. Pereira, 1985.

30. F. Hayes-Roth, "Knowledge-Based Expert Systems," IEEE Computer, pp.

263-273, Oct., 1984.

31. W.EJr. Suydam, "AI Becomes the Soul of the New Machines," Computer

Design, pp. 55-70,15 Feb., 1986.

32. M.F. Deering, "Architectures for AI," Byte, pp. 193-206, April, 1985.

33. D.A. Patterson, "Reduced Instruction Set computers," Communications of the

ACM, vol. 28, no. 1, pp. 8-21, Jan., 1985.

34. G.J. Sussman, J. Holloway, G.L. Steele, and A. Bell, "Scheme79 - Lisp on a

-206-

chip," IEEE Computer, vol. 14, pp. 10-21, July 1981.

35. J. Batali, E. Goodhue, C. Hanson, H. Shrobe, and GJ. Sussman, "The

SCHEME-81 Architecture - System and Chip," Proceedings of Conference on

Advanced Research in VLSI, pp. 69-77, MIT Press, Cambridge, Massachusetts,

USA, Jan., 1982.

36. R. Blau, P. Foley, D. Patterson, D. Simples, and D. Ungar, "Architecture of

SOAR: Smalltalk on a RISC," Proceedings of the llth symposiums on Com­

puter Architecture, pp. 188-197, ACM/IEEE, Ann Arbor, Michigan, June,

1984.

37. D. Ungar, "Generation Scavenging: A Non-disruptive High Performance

Storage Reclamation Algorithm," Proceedings of Software Engineering Sym­

posiums on Practical Software Development Environments, pp. 157-167, ACM,

Pittsburgh, USA, 1984.

38. J.R. Lineback, "Lisp Processor Chips Point to Desktop AI," Electronics Week,

p. 17, 31, March, 1986.

39. Texas Instruments, Explorer Technical Summary, Texas Instruments Inc., Aus­

tin, Texas, USA, 1984.

40. "Brighter Future For DEC's AI Vaxstation," Expert Systems User, vol. 2, no.

6, p. 7, Sept., 1986. (advertisement)

41. A. Bawden, R. Greenblatt, R. Hoolloway, J. Knight, D. Moon, and D. Weinreb,

"Lisp Machine Progress Report," AI Lab. Memo 444, MIT, Cambridge, Mas­

sachusetts, USA, Aug., 1977.

42. D.W. Clark and C.C. Green, "An Empirical Study of List Structure in Lisp,"

Communications of the ACM, vol. 20, no. 2, pp. 78-87, Feb, 1977.

43. D. Bobrow and D. Clark, "Compact Encoding of List Structures," in Technical

Report CSL-79-7, Xerox Palo Alto Research Center, June, 1979.

-207-

44. Symbolics Inc., Symbolics 3600 Technical Summary, California, USA, 1983.

45. Symbolics Inc., "Low-Cost Work Station Aims to Move AI Out of the Lab,"

Electronics Week, pp. 55-56, 21, April, 1986.

46. M. Amundsen, B. Kastner, S. Krueger, G. Manuel, G. Mathews, R. Prentice,

and M. Watson, "Compact Lisp Machine," TI Engineering Journal, vol. 3, no.

1, pp. 116-121, Texas, USA, Jan.-Feb., 1986.

47. Unknown, "Technology Newsletter : Bell Labs Develops Fuzzy-Logic Chip,"

Electronics Week, p. 11,9, December, 1985.

48. C. Arthur, "Alvey Effort Gives Rise to Memory Chip," Computer Weekly,

1986.

49. S.R. Vegdahl, "A Survey of Proposed Architectures for Execution of Func­

tional Languages," Transactions on Computers, vol. C33, no. 12, pp. 1050-

1071, IEEE, Dec., 1984.

50. P.C. Treleaven, D.A. Brownbridge, and R.P. Hopkins, "Data-Driven and

Demand-Driven Computer Architecture," Computing Surveys, vol. 14, no. 1,

March, 1982.

51. P. Walker, "The Transputer," Byte, pp. 219-235, May, 1985.

52. J. Darlington and M. Reeve, "ALICE : A Multiple-Processor Reduction

Machine For the Parallel Evaluation of Applicative Languages," Proceedings

of the 2981 conference on Functional Programming Languages and Computer

Architecture, pp. 65-75, Portsmouth, New Hampshire, 18-22, Oct., 1981.

53. K. Smith, "Probing The News : Britain makes Major Bid to Build commercial

Fifth Generation Machine," Electronics Week, pp. 26-27, 8 July, 1985.

54. G.G. Coghill, "PLEIADES : A Multi-Microprocessor system for Knowledge

Manipulation," PhD thesis, University of Kent of Canterbury, Kent, England,

-208-

1980.

55. R. Collett, "Dataflow Computers Encroach On von Neumann Territory," Digi­

tal design, pp. 25.90-25.94, Morgan-Grampian Publishing Co., Dec., 1984.

56. D.E. Knuth, The Art of Computer Programming Vol. I: Fundamental Algo­

rithms, Addison-Wesley, Reading, Mass., 1973.

57. T.A. Standish, Data Structure Techniques, Addison-Wesley, Reading, Mas­

sachusetts, USA, 1980.

58. J. Cohen, "Garbage Collection of Linked Data Structures," Computing Sur­

veys, vol. 13, no. 3, pp. 341-367, The Association of Computing Machinery,

Sept. 1981.

59. P.H. Winston and B.K.P. Horn, LJSP, Addison-Wesley, Reading, Mas­

sachusetts, USA, 1981.

60. H. Schorr and W. Waite, "An Efficient Machine Independent Procedure for

Garbage Collection in Various List Structures," Communication of the ACM,

vol. 10, no. 8, pp. 501-506, Aug., 1967.

61. E.W. Dijkstra, L. Lamport, AJ. Martin, C.S. Scholten, and E.F.M. Steffens,

"On-the-Fly Garbage Collection: An exercise in Cooperation," Communica­

tions of ACM, vol. 21, no. 11, pp. 966-974, Nov., 1978.

62. H.T. Kung and S.W. Song, An Efficient Garbage Collection System and its

Correctness Proof, Department of Computer Science, CMU, Pittsburgh, 1977.

63. H.G. Baker, "List Processing in Real Time on a Serial Computer," Communi­

cation of the ACM, vol. 21, no. 4, pp. 280-293, April, 1978.

64. H. Lieberman and C. Hewitt, "A Real Time Garbage Collector Based on the

Lifetimes of Objects," Communication of the ACM, vol. 26, no. 6, pp. 419-429,

June, 1983.

-209-

65. R.FL Fenichel and J.C. Yochelson, "A USP Garbage Collection For Virtual

Memory Computer Systems," Communication of the ACM, vol. 12, no. 11, pp.

611-612, Nov., 1969.

66. CJ. Cheney, "A Non-Recursive List Compacting Algorithm ," Communica­

tion of the ACM, vol. 13, no. 11, pp. 677-678, Nov., 1970.

67. S. Arnborg, "Storage Administration in a Virtual Memory SIMULA system,"

BIT, no. 12, pp. 125-141, 1972.

68. T. Hichey and J. Cohen, "Performance Analysis of On-the-Fly Garbage collec­

tion," Communication of the ACM, vol. 27, no. 11, pp. 1143-1154, Nov., 1984.

69. L. Lamport, "Garbage Collection with Multiple Processes : An Exercise in

Parallelism," Proceedings of the IEEE Conference in Parallel Processing, pp.

50-54, Aug., 1976.

70. G.L. Steele, "Multiprocessing Compactifying Garbage Collection," Communi­

cations of ACM, vol. 18, no. 9, Sept., 1975.

71. K.F. Wong, G.G. Coghill , and J.M. Hannah, "ICMS: Intelligent Cell Memory

System," Proceedings of the 86 Conference on Personal & Small Computers ,

pp. 168-172, ACM SIGSMALL/PC, San Francisco, U.S.A., 2-5 Dec., 1986.

72. W. Fischer, "IEEE P1014 - A Standard for the High-Performance VME Bus,"

Micro, vol. 5, no. 2, pp. 31-41, IEEE, Feb., 1985.

73. K.F. Wong, G.G. Coghill , and J.M. Hannah, "A Specialised Microcomputer

System for the Application of Artificial Intelligence Techniques to Engineer­

ing," 10th Annual Workshop on Microcomputer Applications, Strathclyde

University, Glasgow, Scotland, 8-10 Sept., 1986.

74. K.F. Wong, G.G. Coghill , and J.M. Hannah, "THESIS : The Hardware

Environment for Small Intelligent Systems," Proceedings of the 86 Confer­

ence on Personal & Small Computers , pp. 173-176, ACM SIGSMALL/PC,

-210-

San Francisco, U.S.A., 2-5 Dec., 1986.

75. J. Mick and J. Brick, Bit-Slice Microprocessor Design, McGraw-Hill, 1980.

76. K.F. Wong, "The Feasibility of Expert Systems in Engineering Applications,"

in Internal Document, Department of Electrical Engineering, Edinburgh

University, Scotland, March, 1984.

77. Microsystems Co., VMEbus Specification Manual Revision C, Motorola Sem­

iconductor Product Inc., Arizona, U.S.A., Feb., 1985.

78. D.A. Patterson, "STRUM: Structured Programming System for Correct

Firmware," IEEE Transactions on Computer, vol. C-25, no. 10, pp. 974-985,

Oct., 1976.

79. S. Dasgupta, "Some Aspects Of High-Level Microprogramming," ACM Com­

puter Surveys, vol. 12, no. 3, pp. 295-323, Sept., 1980.

80. M.V. Powers and J.H. Hernandez, "Microprogram Assemblers for Bit-Sliced

Microprocessors," IEEE Computer, vol. 11, no. 7, pp. 108-120, July, 1978.

81. P.W. Kernighan and PJ. Plauger, Software Tools in Pascal, Addison-Wesley,

Reading, Massachusetts, 1981.

82. "YACC - Yet Another Compiler Compiler," in UNIX Programmer's Manual,

vol. 2B.

83. I. Hansen, "Computer Structures 1983-84 : Microprogram Exercise," in Third

Year Computer Science Lecture Notes, Department of Computer Science, Edin­

burgh University, 1983.

84. W. Chen, "Programmable Switch Matrix," PhD. project, Dept. of Electrical

Engineering, Edindurgh University, Jan., 1984. (to be finished in Dec., 1986)

85. M.E. Lesk and E. Scmidt, Lex - A Lexical Analyzer Generator, Bell Laboratory,

Murray Hill, NJ 07974.

-211-

86. S.C. Johnson, Yacc: Yet Another Compiler-Compiler, Bell Laboratory, Murray

Hill, NJ 07974.

87. W. Kernighan and D.M. Ritchie, The M4 Macro Processor, Bell Laboratory,

Murray Hill, NJ 07974,1979.

88. P. Henderson, Functional Programming: Application and Implementation,

Prentice-Hall internation series in computer science, 1980.

89. Hewlett Parkard, "Graphics/9000: Device Independent Graphics Library," in

HP9000 Reference Manual, U.S.A., 1983.

-212-

