
Parallel Logic Programs
on the HP Mayfly

John S. Conery

CIS-TR-90-22
December 7, 1990

Abstract

The Mayfly, a parallel processor being built at HP Labs in Palo Alto, has archi
tectural support for several import.ant. aspects of the OM virtual machine for parallel
logic programs. Each node has a coprocessor that is able to relieve the main pro
cessor of a significant amount oft.he "housekeeping" work of memory management ,
task switching, and message handling. This paper describes how the coprocessor
implements kernel level functions in OM, with particular attention to the opera
tions that support task switching . The paper includes detailed timing data from
a program with interleaved parallel threads to show that while the main processor
is busy in one thread the coprocessor can effectively build the context for the next
thread .

Department of Computer and Information Science
University of Oregon

1 Introduction

OPAL, the Oregon Parallel Logic language, is based on the AND/OR Process Model,
an abstract model for parallel logic programs with an operational semantics defined by
asynchronous objects that communicate solely via messages. This paper describes an
implementation of OPAL on the Mayfly, a parallel processor for symbolic computation
currently being developed at Hewlett-Packard Laboratories in Palo Alto [5,6]. Each node
of the machine contains special purpose hardware that provides significant support for
an object-oriented, message-passing style of computation, so the machine should provide
an ideal execution environment for OPAL programs.

A prototype Mayfly system with seven nodes (there will eventually be 19) inter
connected temporarily via an HP-IB bus is now running at HP Labs. The version of
0 PAL that runs on this system uses three different dynamic task allocation schemes. A
future paper will describe the task allocators and how well parallel programs run on the
Mayfly. The main focus of this paper is operations within a single node of the system
and how the hardware that supports fast task switching and efficient message handling
implements these low level operations in OPAL. Our main concern is in using one of the
two general purpose RISC chips in ca.ch node as a kernel coprocessor, offloading as much
of the message passing overhead as possible from the main logic program processor .

The first two sections of the pa.per provide some background information on OPAL
and on the Mayfly. Following that are some details on how this implementation of
OPAL takes advantage of Mayfly hardware structures. The paper concludes with some
timing data and a list of future projects.

2 The OPAL Language and Virtual Machine

2.1 Execution Model

OPAL programs are executed according to the AND/OR Process Model, an abstract
framework for parallel logic programs [2). Under this model, programs are collections of
asynchronous objects communicating via messages. A process will update its internal
state only when it receives a message from another process, and process updates are
nonpreemptible operations.

AND processes in this model are charged with finding the solution to a goal state
ment, which is a collection of one or more goals from the body of a clause. A computation
is started by creating a top level AND process for the user's query. If AND parallelism
is exploited by the system, an AND process may solve more than one of its goals at a
time by starting parallel descendant processes for those goals. The order in which goals
are solved is determined by the compiler, which generates a data dependency graph that

1

is used at runtime to coordinate the solution of body goals.
OR processes are created by AND processes to solve a single goal. An OR process

performs the unifications of the goal with the heads of candidate clauses. If no heads
unify, the goal fails. When a goal matches the head of a non unit clause (a clause with
one or more goals in the body), the OR process starts an AND process to solve the
body. If the goal matches the head of a unit clause (an assertion), the OR process can
send a success message to the calling AND process.

OPAL augments the basic AND/OR model through the use of continuations [4].
A process that is expecting a message from other processes is a continuation for that
message. For example, an AND process that starts an OR process to solve a goal is
a failure continuation that will be invoked by the OR if it fails to unify any its clause
heads with the goal. Continuations can be passed as arguments in messages to allow
processes to respond directly to processes other than their parents [9]. When an OR
process matches a call with the head of a nonunit clause and starts an AND process for
the body, the OR's own success continuation is passed to the new AND along with the
initial bindings for body variables and other parameters. When the AND finds a solution
and invokes its success continuation, the message is sent directly to the ancestor process
that made the original call. This use of success continuations allows the introduction
of last call optimization, a generalization of tail recursion optimization in systems that
use message passing control structures (see [10] for a description of tail recursion and
last call optimization in logic programs).

2.2 The OPAL Language

The OPAL programming language is little more than a pure Horn clause language
augmented with predicates for arithmetic and simple operations such as testing to see
if a term is an unbound variable or ta.king the functor of a term.1 A few more complex
operations, such as I/0, can be implemented on the front-end host machine, but they
are "cavalier" operations and no attempt is made to serialize programs through these
constructs (c.f. [7]).

Figure 1 shows three simple OPAL programs. The first is a trivial program that will
be used to illustrate the detailed interaction between components of a Mayfly processor
in section 5.2. The second is an OR-parallel program that searches for all even-length
paths in an acyclic graph. The parallelism is a form of pipelining, where the system is
searching for longer paths (via the second clause in the procedure for ep) while shorter
paths are being reported as solutions. The third is an AND-parallel program that
generates all possible colorings of a map with five regions and eight interior borders. The

1 Success and fail continuations are used only in the implementation, and are not constructs in the
programming language.

2

'I. Program 1: 11 small 11

goal<- foo(A,B).

foo(X,Y) <- p(X) & q(Y).

p(O).
p(1).

q(a).
q(b).

'I. Program 2: 11path 11
• There are 16 arcs, leading to 51 solutions,

'I. in the actual program (only 3 arcs are shown here).

goal<- epath(X,Y).

epath(A,C) <- arc(A,B) & arc(B,C).
epath(A,D) <- arc(A,B) & arc(B,C) & epath(C,D) .

arc(0,1).
arc(0,2).
arc(0,4).

'I. Program 3: 11 color 11
• There are 12 clauses for next/2 in the

'I. actual program (only 3 are shown here).

goal<- color(A,B,C,D,E) .

color(A,B,C,D,E) <-
next(A,B) & next(C,D) & next(A,C) & next(A,D) &
next(B,C) & next(B,E) & next(C,E) & next(D,E).

next(green,yellov) .
next(green,blue).
next(green,red).

Figure 1: Example OPAL Programs

3

parallelism comes from testing the validity of some colorings in parallel (the predicate
next colors a region if the name of the region is unbound in a call, and checks the
coloring of two regions if both parameters are bound). Since the tests are very simple,
there is actually very little parallelism here; this program is mainly used to test the
system's execution of nondeterministic AND-parallel programs.

The OPAL compiler automatically creates OR-parallel goals wherever it can. When
a procedure is called, the resulting OR process will attempt to unify the call with every
clause head. Each successful match with a nonunit clause leads to a new AND process
that will run in parallel with its siblings created for other clauses in this procedure.
The compiler also exploits AND parallelism automatically. It uses mode information
extracted from an abstract interpreter to order the goals in a data dependency graph
which will control the order of execution at run-time. The order may change if a goal
does not bind input variables to ground terms [11]. Since the procedures in the examples
presented here always bind their arguments to ground terms the programs have a fixed
execution order determined at compile time.

2.3 OM Virtual Machine

OPAL programs are compiled into instructions of a byte-coded virtual machine named
OM (for OPAL Machine). The compiler generates a code sequence for an AND process
from each clause body, and collects the heads of clauses in each procedure to generate
the code for OR processes. At the front of the block of code for a process is a set of port

instructions which act as branches into the rest of the body. When the system delivers
a message to a process, it installs the process state in the virtual machine registers and
branches to the port that handles that type of message (every process has the same type
of ports, in the same relative location, at the head of its code). The port instruction then
branches to a location that is a function of the contents of the message and the state of
the process. For example, the and_f ail_port instruction examines the message to find
out which body literal failed, and then branches to a section of code that determines
which predecessor(s) of the failed literal need to be sent redo messages in order to get
different bindings for the variables in the failed literal.

OM is faintly reminiscent of the Warren Abstract Machine for standard Prolog
implementations [12]. To solve a goal, arguments are loaded into argument registers
by put instructions. Unification is performed in the head of a clause by a series of
get instructions that compare an argument register with a constant or the value of
a variable. The main differences between OM and WAM are in the representation of
variable bindings and the control instructions.

Most logic programming systems, including WAM and OM, represent a logical vari
able by a cell that contains a pointer to (address of) the variable's value. Unbound

4

variables are pointers to themselves. When two unbound variables are unified, one is
bound to a pointer to the other.

When a variable is passed unbound through several levels of calls in a Prolog pro
gram, the resulting stack will contain a pointer from the top back to a cell nearer the
bottom. This leads to two problems in OR-parallel systems: first, OR-parallel calls may
try to bind the same cell to conflicting bindings (the shared ancestor variable problem),
and second, in nonshared memory multiprocessors there may be a situation where a
processor needs to refer to a value stored in another processor's memory. There are
many effective solutions to the first problem, based on giving each OR-parallel thread a
virtual copy of unbound variables deep in the stack. The second is finessed by using a
common memory space, as in a shared memory multiprocessor. A good example of such
a system is Aurora, an OR-parallel version of the WAM that has been implemented on
the Sequent Symmetry [l).

OM is based on a representation, known as closed environments, that addresses
both problems by copying nonground terms [3). When an unbound variable is passed
as a parameter, the parent's copy of the variable is bound to a "stub" that refers to an
argument register. Results are passed back as filled-in argument registers, and when the
parent dereferences the stub it will find the value created by the descendant that solved
the goal (see Figure 2). If a nonground complex ter_m, for example a list, is passed as
a parameter, descendant processes copy the terms, fill in their copies with results, and
pass the copies back to the calling goal. The called goal then extract bindings from the
returned copy. Although there is overhead from copying terms, there are benefits as
well: this scheme is easy to implement in nonshared memory systems with partitioned
address spaces, and since there is no need to maintain stacks (with concomittant worries
over buried goals [8]) we can use a heap-based memory allocator and let each node do
local garbage collection. Eventually we hope to demonstrate that the copying overhead
is not much worse than the overhead in Aurora and other systems that provide virtual
copies of unbound ancestor variables. Copying also simplifies garbage collection , which
will be a severe problem in large parallel programs.

The other major difference between OM and the WAM is that OM uses asynchronous
parallel control instructions. In the WAM, once the argument registers are filled with
parameters to a called procedure, a call instruction invokes the procedure. The called
procedure then adds structures to the stack, if required, and solves the goal; if it is
successful, control resumes in the calling procedure at the point where the call was
made. In OM, procedures are invoked by an asynchronous start_or instruction which
directs the system to create a new process object and send it a start message containing
the argument registers as parameters. Control remains with the AND process, however,
since it may want to start up several OR processes during an AND-parallel execution.
An AND process gives up control when it executes a check_sol ved instruction that

5

WAM stack

w

X

y

z @

<- p(W,a), s(W,X),

p(Y,Z) <- q(Y), .. .
p(Y,Z) <- r(Y),

q(a).

q(b).

r(C).

r(d).

OM heap

A simple program and the binding <'llvironments it creates in the WAM and OM. In
the WAM, pointers to argument.s are put in the A registers, and unification binds the
original variables. In OM, the origi11al variables are bound to "stubs" which are later
dereferenced to values that are returned in copies of the original argument registers.

Figure 2: WAM Stacks vs. Closed Environments

6

causes a task switch because its argument literals have not yet been solved.
Code blocks for OR processes also have asynchronous control instructions. The last

get instruction in the head of a nonunit clause is followed by a start_and instruction.
This creates a new AND process for the body of the clause, and a start message is added
to the system message queue. Execution resumes in the OR process, which sets up the
unification of the next clause. OR-parallelism will be exploited in programs that have
multiple matching heads.

The control instruction that follows the last argument of a unit clause is proceed,
which is analogous to the same instruction in the WAM since it invokes the current
success continuation. In OM, this is done by adiling the argument registers (which, if
they contained unbound variables at the beginning of the unification now have output
bindings) to the set of results being generated for this call. After the last clause head
has been tried, the OR process returns this set to its success continuation, which is an
AND process that will use the results one at a time.

Figure 3 shows part of the compiled code for the example program named small.
It shows the port instructions at the beginning of the code segment for two processes,
the asynchronous control instructions that start processes, and unification instructions
in the code for one of the OR processes.

2.4 The Kernel and System Layers

Figure 4 shows the layers of abstraction in an OPAL implementation. The top layer
is the OM virtual machine. The registers, instructions, and other aspects of this layer
are all concerned with execution of a single process, known as the "current process."
The bottom two layers are the "OS" and kernel, which implement inter-process interac
tions. The distinction between the OS and kernel is that the OS implements machine
independent functions. For example, when an OR process starts a new descendant , it
executes a trap to the kernel layer which creates the "seed" of a new AND process.
This is a kernel function because seeds may be transferred to other processors in the
system, and there are hooks in this function that call host-dependent task mapping
procedures. When the seed is scheduled for execution, the first instruction it executes is
and_start_port, which will initialize a state vector for the new process. This operation
is implemented by a trap to the OS layer, since the new state is machine independent.

Perhaps the most important set of functions implemented in the OS and kernel are
concerned with task switching. Processes are the fundamental building blocks in OM,
and for it to be anywhere near as efficient as a Prolog implementation the system must
be able to switch from one process to another about as quickly as Prolog can make a
procedure call. Consider the operations that take place between the call to p and the
execution of the first step in the body of the procedure in this example:

7

foo2a1: and_f ail_port
and_redo_port foo2a1_Redo
and_success_port
and_start_port 3
make_args 1, 1
put_val 1, 1
start_or p1, p1_SC07, p1_FC08
check_indep_else [1, 2] , 0, foo2a1_L09
make_args 2, 1
put_val 2, 1
start_or q1, q1_SCOB, q1_FCOC
check_solved [1, 2]

q1_SCOB: cget_val 2, 1
set_solved 2
check_solved [1, 2]
succeed 1

q1: or _f ail_port
or_redo_port
or_success_port
or _start_port

q1o2: next_alternative q1o1
store_args
get_const b, 1
proceed

q1o1: last_alternative
restore_args
get_const a, 1
proceed

Part of the compiled code for small. The first two sections are part of the ''forward
execution" code for the AND process for the body of foo. The last section is the OR
process for q.

Figure 3: Code Block and Resulting Process Tree

8

OM

OS I
Kerne 1

Figure 4: Modules in an OPAL Implementation

?- p(a,X) t s(X)

p(U,V) <- q(U,W)
p(X,Y) <- r(X,Z)

A Prolog system executes a procedure call instruction, which builds a choice point (since
there are two alternatives for p) and then continues execution in the body of the first
clause. When the last goal in the body of that clause is solved, execution resumes in the
top level goal where the system sets up the call to s using the values for X created during
the call top. OM must build an OR process and then execute a task switch instruction
to invoke it. The OR process performs both unifications and creates two new AND
processes for the bodies. Next there is another task switch to begin execution of the
body in one of the new AND processes. Finally, before execution resumes in the body
of the first AND process, there is a third task switch, and the value of X returned by the
call is extracted from the argument registers. Thus where Prolog does one procedure
call OM must do up to three task switches. There are several ways to address this extra.
overhead. This paper reports on two of them: efficient representations of tasks and using
a coprocessor to implement the kernel level functions involved in building and switching
among tasks. Other ways to reduce overhead are through better compilation and by
using more efficient message passing patterns. An example of a compiler improvement
is one we are now working on. If the compiler knows there will be no choice point in the
called procedure, there is no need to create an OR process, and the goal can be solved
by a Prolog-style procedure call. Tail recursion and last call optimization are examples
of more efficient message passing patterns; we hope to come up with additional creative
uses of success and fail continuations.

The remainder of this section describes the representation of tasks and the task
switching algorithm implemented in the OS layer. Following a brief overview of the

9

Mayfly in the next section will be a description of multiprocessor task switching functions
implemented in the Mayfly version of the OPAL kernel.

The key to fast task switching in OM is to use the local address of a process state
vector as one field in its process ID. When a message M is being sent to a process P ,
the OS uses the address portion of the receiver field of M to locate the state vector of
P. The code address of the port in P that will process the message is a simple function
of the type of the message and the beginning of the code block for P, which is stored
in the state vector. The algorithm for a task switch is:

M = next_message();
P = M.to.addr;
PC= M.kind + P.codeloc;

Y. trap to OS to get message from queue
Y. get process state vector from receiver ID
Y. set address of port instruction

When the fetch-decode loop resumes, the next instruction executed will be the port
instruction that will restore other registers and resume execution in the receiving pro
cess.

In order to use memory addresses in process IDs, the system must assure that
processes are not relocated, either within the memory space of the processor that created
the process or to another node, once it has started. This constraint is enforced by the
task allocation functions and by the OS functions that deallocate process states (we
must be careful not to deallocate a process if there are any other processes that might
still send it a message).

3 A Language lmple1uenter's View of the HP Mayfly

Figure 5 shows the data path of a single processing element (PE) in the Mayfly. 19 PEs
are connected via their post office chips in a hexagonal toroidal mesh to form an "E3 pro
cessing surface," several of which may be connected to form larger multiprocessors [5].

The interconnection topology and other physical attributes of message routing are
hidden from the language implementer. The primitive functions that transmit messages
are procedures that send and receive fixed length (32-word) packets. OPAL messages are
packed into message buffers and then transmitted one packet at a time to the receiving
PE. The lower levels of the system guarantee delivery of a packet, but not their arrival
order. When the receiving PE has assembled a complete message, it is installed in the
local heap.

The most interesting aspect of the Mayfly as far as the OPAL project is concerned
is the fact that there are two independent HP-PA RISC processor chips per PE. The
PEs are known as the execution processor (EP) and message processor (MP). The MP

10

E

FPU

I-cache

Context
Cache

D-cache

Main Memory

MP

Post Office

I-cache HP-IB

The main components and data path within a single PE of the Mayfly (from {5}).

Figure 5: Structure of a Mayfly PE

is not involved in inter-PE packet routing; all low-level packet handling is done by the
"post office" processor. The MP is interrupted to handle a packet only when this PE is
the final destination for that packet.

The EP and MP communicate with each other through a dual-ported memory known
as the context cache. This cache contains 32 256-word contexts, each identified by a
unique 5-bit tag. A processor has access to one context at a time, which is at a fixed
location in its address space. Addresses in the range designated for use by the context
cache are combined with the ID of the current context to form a reference to the actual
context cache word. As long as the MP and EP have different current contexts, they can
be operating on blocks in the cache simultaneously, without fear of collisions. Memory
accesses to the current context are very fast - one cycle, with no wait states from
arbitration.

The context cache has two FIFOs which are used in inter-processor communication
within the PE. The EP pushes context IDs into one FIFO, and the MP pushes IDs into
the other. A processor can build a data structure in its current context, put the ID of
the context into its FIFO, and go off to another task. When it wants information from
the other processor, it checks to see if there is a context in the other FIFO. Pushing
and popping contexts are atomic operations implemented by the context cache itself,

11

activated by reads from a processor to a control register of the cache.
The EP and MP also share a local memory of 8MB dynamic RAM. On occasions

when data structures located in this memory must be shared, simple spin-locks can
block one processor while the other is accessing the shared structure.

4 Implementing OP AL on the Mayfly

The division of labor used to implement OPAL on the Mayfly is to use the EP as the
processor that executes user programs, performing unifications and control instructions
in OM, and to use the MP as a kernel co-processor which tries to offload the low level
overhead. What is described in this section is a version that removes a minimal amount
of work to the kernel coprocessor. As the data in the next section will show, there is
room for several more functions to be moved to the MP; later we will describe some
of the parts of the virtual machine that can be moved over to the MP and issues we
need to take into account. If too much work is done by the kernel processor, it may end
up being the bottleneck in a larger parallel machine when it is handling more inter-PE
traffic.

When OPAL is running on the Mayfly, the EP is in a perpetual loop that waits for
a context to appear in its input FIFO. The context contains the values of four virtual
machine registers:

P points to the state vector of the process that will be updated in this step.

M points to the message that triggered this update.

PC is the address of the port instruction that will start the update.

CP is the continuation pointer, the address of another instruction in the current pro-
cess (irrelvent for this paper).

As the EP executes the instructions that carry out the process transformation , it modi
fies data structures in the shared memory. The process state vector is updated in place
in the DRAM, and new process and message blocks are allocated from the heap. For
each new message generated, the EP puts a pointer to the message into the output
context. When the process step is done, the context is enqueued, and the EP goes back
into a busy-wait for the next context.

The MP is also in a perpetual loop, but it is looking for incoming packets from other
PEs and the host as well as output contexts from the EP. Incoming packets can be
control packets (stop the machine, reboot, report runtime stats, etc) or data packets
containing part of a message that is being routed to this PE (the MP is not involved

12

in routing messages to other PEs; that is handled at lower levels, by the post office).
When all packets of an incoming message have arrived, the message is stored in the
local heap, and enqueued in the local message queue.

When the MP receives an output context from the EP, it examines each message
generated in the recently completed step. If the message is to a process that resides on
another PE, it is broken into packets and mailed to that PE. Otherwise it is stored in
the local queue.

The local message queue is implemented by the FIFO that connects the MP to the
EP. The MP keeps track of which contexts are free (the EP never uses a context that
was not sent via the FIFO; the MP is the only processor that creates contexts). To
enqueue a message, it writes the values of the four registers (P, M, PC, and CP) into
the context and inserts the context into the FIFO. If all 32 contexts are in use, then a
pointer to the message is put in a linked list which implements an overflow queue.

Clearly, as long as there is only one execution thread this scheme will not speed
things up very much; in fact, as a result of the overhead of loading a state into the
context buffer it might even slow down the overall execution. However, when there are
two or more threads in the local PE, they can be overlapped, with the MP setting up
information for one thread while the EP executes a process step in another thread. This
situation occurs early in the execution of the demo program named small, and data
that shows faster task switching between parallel threads is given in the next section.

An important aspect of the closed environment representation for binding environ
ments should be mentioned at this point. Since all bindings required by a process are
localized when the process is created, the only variables modified by the EP during a
process step are those that occur in frames owned by the process. There are no chain s
of variable references that lead to a frame that is currently in DRAM (or on another
PE), and thus there is no danger that the EP could be making bindings to variables
that have already been loaded into a context by the MP. The closed environment model
was designed to allow a process step to be executed by any processor at any place in
the system. As a result, we can have the EP working with one environment while the
MP is loading others into contexts.

There is one place in the system where the EP and MP need to coordinate access
to shared data structures in DRAM. Both processors need to be able to allocate new
data blocks in memory. The EP needs to be able to allocate new binding environments,
message structures, and fields of the process state as it executes a process step. The MP
has to be able to allocate messages and frames when it receives them as parameters in
messages from other PEs; for example, if a call top (X) is mapped to another PE, and
that PE returns a success message, the binding for X that is part of the success message
must be allocated locally. Also, we want the MP to be in charge of deallocating unused
blocks. For these reasons, the data structures used by the memory allocation module

13

are shared, and access to them is protected by a spin lock. An atomic instruction tests
the state of a memory word while setting it to a nonzero value. When a processor needs
to allocate or deallocate a block, it cycles until the lock has a nonzero value, proceeds
with its operation, and then clears the lock.

5 Preliminary Performance Data

Two sets of timings are presented in this section. The first compares OM running on an
HP 9000/835 workstation with SICStus Prolog running in the same environment. The
second is a detailed analysis of operations within a single PE, to see how well the EP
and MP are working together on OPAL programs.

5.1 OPAL Compared to SICStus

As a "reality check" to see how close OPAL comes to state of the art Prolog systems ,
we compared our OM programs with similar Prolog programs running compiled under
SICStus Prolog. We chose to compare to SICStus because it uses the same basic im
plementation technology - byte-code interpreter written in C - and because it is widely
acknowledged to be the best such Prolog system available.

The small program was too short to measure accurately with either system (the
clock on this workstation has a 10 msec resolution). To find all 51 solutions to the path
program required an average of .078 seconds in OPAL and .020 seconds in SICStus. To
find all 72 solutions of the color program took an average of .224 seconds in OPAL
compared to .044 seconds for SICStus.2

The difference in speed comes from several sources. SICStus is much more mature
than OPAL, and is a more efficient program as a result. One example is in the way the
systems select candidate clauses for unifications during procedure calls. We have not
yet implemented clause indexing in OPAL, which by itself will improve our performance
on these two programs since the alternatives can be distinguised by examining the first
argument register. SICStus uses sophisticated "try chains", below the level of the virtual
machine, since compiled Prolog programs can call interpreted procedures or procedures
written in C.

Most of the difference is undoubtedly accounted for by the different execution mod
els: the fact that OM builds a new OR process for each procedure call and a new A I D
process for each clause body, and that each OR process makes a copy of the inpu t
argument register set when putting it in closed form after each successful unification.

2 Both systems were 1/0 bound and ran at roughly the same speed when measurements were first
taken. The numbers reported here were obtained by turning off 1/0 in OPAL and having Prolog time
the final failure of a top level goal of the form epath(X, Y), fail.

14

A current project is investigating the possibility of postponing the environment closing
operation until we know the descendant will actually run on another PE. The cost of
building a choice point will be similar to the cost of building the OR process, but we
will avoid copying nonground terms until we know the copies will be sent to another
PE.

Given these differences and other places we hope to improve OM, we are close to
our goal of making a single task switch roughly equivalent to a complex procedure call
in Prolog.

5.2 OPAL Operations within a Mayfly PE

Figure 6 shows a Gantt chart of the first few steps in the execution of the small program .

The top line is for the MP, and the bottom line is for the EP. Dark sections of the time
line represent periods when the corresponding processor is active.

The first event in the plot is when the MP receives a start message from the host.
The MP builds a context for the top level goal, enqueues it for the EP, and goes into its
busy-wait loop. Since the EP is waiting for a context, it is activated almost immediately.
The first step in the top level call builds a call to the procedure f oo and then switches
out.

The first three events in each processor show the execution of a single thread. The
first step is the AND process step for the top level goal. The second step is the OR
process that unifies the call, and the third step is the AND process for the body off oo.
Since this an AND-parallel goal (because X and Y are unbound in the call, p (X) and
q (Y) can be solved in parallel), the third step in the EP makes two OR processes, one
for p and one for q.

At this point, approximately 6.3ms into the program, we can see a small bit of
overlap in the Gantt chart. The EP resumes with the OR process for the call to p
while the MP is building the context for the call to q. When the EP is done with the
unifications in the call to p (its fourth step), the context for the call to q is waiting ,
and the EP switches immediately to this next thread. While the EP is executing the
instructions for the head of q (its fifth step) the MP is checking the output context from
the call top; there aren't any, so this MP step is over quickly. The last two steps of the
EP are for the AND process for the body of foo, as it gets success messages from both
the calls . The last event shown in the figure is the MP building a success message to
send to the host.

The chart shows what we expected to see. During periods when the machine had
just one thread to execute, EP and MP events were ''interlocked" where an event in
one processor enabled just one step in the other. The EP was idle an average of 220
microseconds between steps during this phase. As soon as two execution threads were

15

- - - - -- -MP
EP

--- ---- ---- ---■------

The tick marks represent intervals of one millisecond. Times were recorded by calling
a procedure that returned a time stamp (contents of an internal processor register) at
the beginning and end of each event. MP events are the processing of an incoming data
packet or a context from the EP. EP events correspond to a single OPAL process step .

Figure 6: Gantt Chart for small

available, the EP was able to work on one thread while the MP built the next message
for the other thread. The EP was idle an average of 45 microseconds between steps in
this phase.

The chart also illustrates the fact that the EP is doing most of the work , and the
MP is idle a significant amount of time in between process steps. The chart distorts
the true situation a little, since later on in the computation EP events are shorter and
MP events are longer. By the end of the small program, the EP and MP were active
roughly the same amount of time. For the color and path programs, where there is a
lot of work done at the start of each new OR process, the EP does roughly three times
as much work as the MP overall.

In a parallel system, with more than one Mayfly PE, the MP will be interrupted
to handle incoming packets from other PEs, and the MP time line will show events
triggered externally in what are now fairly large gaps. The challenge for fut ure versions
of OPAL will be to migrate just enough work from the EP to the MP, but leaving ample
free time to handle inter-PE packets . The main goal for the task allocators will be to
create several threads on each PE, and keep inter-PE messages to a minimum during
periods of high activity.

6 Future Work

One of the most time consuming functions in the virtual machine is dealing with the
possibility that a goal can be canceled. Again , we are exploring two approaches. One ,
we can try to get the compiler to tell us when a goal is speculative and subject to
cancelation. If a goal is not speculative, then we can avoid the overhead associated

16

with connecting these goals to their parents. The other approach is to move the cancel
operation and the housekeeping that links speculative children to their parents to the
kernel coprocessor.

Execution profiles show that cleaning up after failed processes is also fairly time
consuming. The low level block allocator and deallocator are efficient enough. In the
map coloring program, over 3600 blocks are allocated and all are eventually deallocated.
The allocator accounted for roughly 1 % of the execution time, and the deallocator was
too short to measure (it didn't show up in the execution graph). However, deallocating
processes and messages often requires traversing complex structures. Together these
operations account for almost 5% of the execution time.

The most likely next step will be to have the MP implement all port instructions,
so that the EP starts right in at the instruction branched to from the port. Among
the advantages of this scheme are the fact that some steps are done in a single port
instruction, i.e. the machine does a task switch at the end of the port instruction.
These steps will be done entirely in the MP, leaving the EP free for more complex
operations. A disadvantage is that this might mean more context for the EP to load
into its internal registers from the context buffer.

The most difficult question to answer will be how much of the context of the new
process should be put into the context buffer by the MP. The more that is there, the
easier it will be to access, but the longer it will take to load into the buffer. We are
considering putting the top level of the argument registers and probably the local stack
frame of an AND process into the context. Even if the values are not loaded into the
context, it may be worthwhile to "preload" the D-cache for the EP by having the MP
traverse structures and periodically touch terms so they are read into the cache. We
know from the constraints of the closed environment model that no value loaded into
the cache by the MP can be changed while the EP is busy in other execution threads,
so the effort will not be wasted, and this might dramatically improve the cache hit ratio
in the EP.

Acknowledgements

Early development of the OM virtual machine was supported by NSF grant CCR-
8707177. The project was also supported by a generous equipment donation from
Hewlett-Packard and a research grant from Motorola. Implementation of OM on the
Mayfly would not have been possible without the patient support of Al Davis, Robin
Hodgson and the other members of the Mayfly group at HP Labs.

17

References

[1] CARLSSON, M. Design and Implementation of an OR-Parallel Prolog Engine. PhD

thesis, Royal Institute of Technology, Stockholm, Sweden, 1990. Report TRITA

CS-9003.

[2] CONERY , J. S. Parallel Execution of L<Xjic Progmms. Kluwer Academic Publish

ers, Boston, MA, 1987.

[3] Co NERY, J. S. Binding environments for parallel logic programs in non-shared
memory multiprocessors. Int. J. Parallel Programming 17, 2 (Apr. 1988), 125-152.

[4] CONERY, J. S. Task switching in OPAL. In Proceedings of the Workshop on
Parallel Implementation of Languages for Symbolic Computation (July 1990) , Tech.
Rep . CIS-TR-90-15, Univ. of Oregon.

[5] DAVIS , A. Mayfly: A general-purpose, scalable, parallel processing architecture.
Hewlett-Packard Company, December, 1990.

[6] DAVIS, A. L., COATES, B. , HODGSON, R., SCHEDIWY, R., AND STEVENS , K.
Mayfly System Hardware. Technical Report HPL-SAL-89-23, Hewlett-Packard

Laboratories, April 1989.

[7] HAUSMAN, B. Pruning and Speculative Work in OR-Pamllel Prolog. PhD thesis,

Royal Institute of Technology, Stockholm, Sweden, 1990. Report TRITA-CS-9002.

[8) HERMENEGILDO, M. An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel.
PhD thesis, University of Texas, Austin, TX, 1986.

[9] HEWITT, C. E., ATTARDI , G. , AND LIEBERMAN, H. Specifying and proving prop
erties of guardians for distributed systems. In Semantics of Concurrent Computa
tion, G. Kahn, Ed., no. 70 in Lecture Notes in Computer Science. Springer-Verlag,
New York, NY, 1979, pp. 316-336.

[10] KoGGE, P. M. The Architecture of Symbolic Computers. McGraw-Hill, New York,
NY, 1991.

[11) MEYER, D. M., AND CONERY, J. S. Architected failure handling for AND-parallel
logic programs. In Proceedings of the Seventh International Conference on Logic
Programming (1990), pp. 633-653.

[12] WARREN, D. H. D . An abstract Prolog instruction set. Tech. Note 309, SRI

International, Oct. 1983.

18

