

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Code Optimization and Scaling of the Astrophysics Software

Gadget on Intel Xeon Phi

P. Borovska
a
*, D. Ivanova

a

aNational Centre for Supercomputing Applications, Bulgaria

Abstract

The whitepaper reports our investigation into the porting, optimization and subsequent performance of the

astrophysics software package GADGET, on the Intel Xeon Phi. The GADGET code is intended for

cosmological N-body/SPH simulations to solve a wide range of astrophysical tasks. The test cases within the

project were simulations of galaxy systems. A performance analysis of the code was carried out and porting,

tuning and scaling of the GADGET code were completed. As a result, the hybrid MPI/OpenMP parallelization of

the code has been enabled and scalability tests on the Intel Xeon Phi processors, on the PRACE EURORA

system are reported.

Keywords: Gadget Software, Galaxy Data Set, Hybrid MPI/OpenMP Parallelization, High-Performance

Computing, Scalability Tests, Intel Xeon Phi

1. Introduction

Cosmic phenomena involve complex interactions between physical processes on a wide range of scales.

Simulations are of great importance in this area of research. The development of such models is supported by

rapid advances in computer technology, which provide a greater dynamic range of investigation in simulation

models.

The software code, GADGET, is a freely available code, widely used for cosmological N-body/SPH simulations

to solve a wide range of astrophysical tasks - colliding and merging galaxies, forming of large-scale structure in

the space, studying the dynamics of the gaseous intergalactic medium, forming of the stars and its regulation, etc.

The test case for within the project will be simulations of galaxy systems.

GADGET is written by Volker Springel to make possible the execution of cosmological N-body/SPH

simulations on massively parallel computers with distributed memory.

GADGET uses an explicit communication model and is parallelized by a MPI communication interface. The

cosmological code includes a tree-code module, a communication scheme for gravitational and SPH forces, a

domain decomposition strategy, a novel smooth particle hydrodynamics (SPH) formulation based on entropy as

an independent variable, and in addition of the “TreePM” functionality.

The objective of this project is to optimize the multithreading of GADGET along with developing the hybrid

MPI/OpenMP parallelization of the code to allow the code to exploit new hybrid computing, and to perform

scalability testing of the code on the Intel Xeon Phi processors on the EURORA system. This work is part of the

PRACE-1IP WP7 Extension project.

* Corresponding author. E-mail address: pborovska@tu-sofia.bg

* Corresponding author. E-mail address: d_ivanova@tu-sofia.bg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144821517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pborovska@tu-sofia.bg

Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

2

2. GADGET Code Structure

The main structure of the GADGET software package is the TreeSPH code (Hernquist & Katz 1989) [2], where

gravitational interactions are calculated by a hierarchical multipolar expansion and gas dynamics followed by a

SPH computation. Gas and dark matter are represented by particles in this method. In the calculations for this

method, collisions between the particles are not taken into account [1].

The Particle-Mesh (PM) methods, (eg Klypin & Shandarin 1983, White, Frenk & Davis 1983) is the fastest

scheme for the calculation of gravitational forces, but for scales under one or two cells, the forces are strongly

suppressed, as a result, this technique is not good at operations on data with a high spatial resolution. This

resolution can be increased significantly by adding the direct calculations of power over short distances

(Hockney & Eastwood 1981, Efstathiou et al., 1985), or using additional adaptive Fourier cells placed on areas

of particular interest (Couchman 1991). The cell mesh can also be adaptively refined, with the potential found in

real space using relaxation methods (Kravtsov, Klypin & Khokhlov 1997; Knebe, Green & Binney 2001) [2, 3,

4].

The Hierarchical Tree algorithm (Appel 1985, Barnes & Hut 1986, Dehnen 2000) is another method of

execution and presents no limit when it comes to resolution, especially for mass distribution in which there are

parts of the area with a low density of the tables, it can be considerably slower than the methods based on the

Fourier transform algorithm. Developing the TreePM hybrid algorithm tries to combine the advantages of both

methods by using tree algorithm calculations only at close distances and calculating forces over long distances

through the PM algorithm [5, 6].

In the code of the software package GADGET2, both dark matter and gaseous fluid are represented by particles

along for the two components to be calculated by the method of N-bodies. The basic method, which Gadget

software package used to achieve spatial adaptively is hierarchically multipolar expansion, often called a tree

algorithm. This method classifies remote particles in even bigger cells, allowing their gravity can be measured

by a single multipolar power. Instead needed the N-1 interactions of particles - for each particle, as required in

the method of direct summation gravitational forces on a particle can be calculated with only O (logN)

interactions [6].

In practice, a hierarchical clustering, this forms the basis of a multi-extension, most often obtained by recursively

partitioning the space. In the method used in hierarchical tree algorithm cubic node covering the entire mass of

the problem, many times multiple of 8 knots subsidiaries each of which has its sides equal to half of the parental

unit until they reach a "leaf" nodes each of which contains only one piece. The forces are calculated by browsing

the tree, and deciding whether a multi-polar expansion of the unit will provide a sufficiently accurate force

(which usually happens when the nodes are small and at a great distance from each other). If this is true, the

power of a multi- use and crawling on the branch of the tree is terminated, and if this is not true, the daughter

nodes are redrawn line by making the same check on each of them. We should pay attention to the fact that the

end result of the tree algorithm will be approximately equal to the actual result. However, the error can be very

easily reduced to acceptable levels by changing the criteria for crawling nodes of the tree, because the greater

accuracy is achieved - it goes through the tree in greater depth.

3. GADGET Parallelization Strategy

The GADGET software package is a massively parallel simulation code. It uses MPI communication

instructions. The code is written in the C programming language and uses the GSL and FFTW libraries, which

are open source. As a result, this software package can be used on a wide variety of UNIX based machines,

without having to use special features of proprietary compilers.

The software package, GADGET, uses a domain decomposition scheme ensuring that the results of forces will

depend on the number of used processors, which is usually obtained by using orthogonal bisection in domain

decomposition. It also addresses shortcomings of bisection. This scheme uses spatial filling fractal curve Peano-

Hilbert to become three-dimensional space in the one-dimensional curve. This is then simply divided into parts

that define the different domains. This scheme has several advantages, such as the fact that points that are close

to one-dimensional curve usually close in three-dimensional space [6].

 Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

3

Figure 1: Space-filling curve Peano-Hilbert two (lower) and three (top) dimensions

4. Dynamic Analysis of the GADGET Code

A performance analysis of the code was necessary to determine the functions that needed to be optimized for

Intel Xeon Phi. The software package chosen for the dynamic analysis of the GADGET code was the Tuning and

Analysis Utilities (TAU) profiling tool [10]. The profiling tool, TAU, is a software package for analysis of high

performance parallel and distributed computer systems. TAU provides a set of tools for static and dynamic

analysis of programs written in C, C++, Fortran 77/90, High Performance Fortran and Java.

TAU implementation focuses on the requirements of the toolkit DOE ACTS and computer platforms ASCI. This

forces the software package TAU to face the challenge of working with the constantly evolving standards of

languages, large software frameworks and many different machine platforms, as well as libraries for real-time

compilers. As a result, TAU provides one of the most portable and robust systems for the analysis of parallel

scientific applications that currently exist. The heart of the software package TAU is its environment for

profiling and tracking. It is an integrated set of tools for performance measurement and analysis of parallel

multithreaded programs. The software package TAU supports integrated structure analysis, which can be

expanded by a modular design of components, and also through the disclosed formats and programs for coupling

to other tools. This software package allows be redirecting to a new language, development environment and

system contexts and also extending with new features for analysis [10].

The dynamic analysis of the GADGET code with TAU requires some changes of the GADGET code Makefile.

The first thing to do was to replace the compiler that is used with the appropriate TAU shell script. In the case of

the GADGET code, which is entirely written in the C programming language with MPI for inter-processor

communication, instead of the standard mpicc compiler we used tau_cc.sh. The compilation of GADGET code

with TAU required to be set two variables of the Linux environment. The first environment variable is

TAU_MAKEFILE. It is usually located in the lib subdirectory of the installation directory of the package and is

there beginning with "Makefile." followed by the libraries that are included in the program. This file contains

paths to dynamic libraries needed to compile software applications with the software package TAU. The second

environment variable is TAU_OPTIONS. It is set options of the software package TAU. In this case, the

following options are: -optVerbose, -optCompInst and -optMpi. The first shows that the package displays

additional information when compiling. The second tells the package to instrument code using the compiler. The

third package indicates that the code will use MPI communication.

The data set galaxy of the GADGET code is a simulation of a two galaxies collision. To obtain the best dynamic

analysis results the code is necessary to be well optimized for standard processors. To get highly optimized code

for the data set galaxy, the code was compiled with the following options:

 #OPT += -DPERIODIC

 OPT += -DUNEQUALSOFTENINGS

 #OPT += -DPMGRID=128

 OPT += -DHAVE_HDF5

 #OPT += -DDOUBLEPRECISION

 #OPT += -DDOUBLEPRECISION_FFTW

The simulation results can be visualized with the command paraprog, which invokes the GUI analyser of

software package TAU.

Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

4

Figure 2: Dynamic analysis of the GADGET code with TAU

The dynamic analysis of the GADGET code shows that the most time-consuming function was

force_treeevaluate, followed by the domain_determineTopTree, peano_hilbert_order and force_treebuild_single

functions. The execution time of the force_treeevaluate function takes 1398 sec. and it is 15 times more than the

next most time-consuming function. In order to execute the GADGET code on the EURORA supercomputer and

to enable the GADGET code on Intel Xeon Phi processors we had to rewrite these parts of the code with hybrid

MPI/OpenMP parallelization.

5. Experimental Framework

EURORA (EURopean many integrated cORe Architecture) is a heterogeneous cluster based system, located at

the CINECA facility in Bologna, Italy. It was used to obtain the results presented in this paper.

The system is made up of 64 Intel compute nodes. Half of the compute nodes comprise two eight-core Intel

Xeon E5-2658 processors the other half comprise two eight-core Intel Xeon E5-2678W processors [9].

58 of the nodes have 16 GB of memory but only 14 GB of this can be safely allocated by the application due to

system overheads. The remaining 6 nodes have 32 GB of memory. 32 of the EURORA compute nodes have two

NVIDIA Tesla K20 (Kepler) GPU cards attached with the remaining 32 compute nodes having two Intel Xeon

Phi 5110P co-processors instead [9].

Each Xeon Phi card contains 60 physical cores running 4 virtual threads per core giving access to a total of 240

threads per card. For more details on the hardware specifications please see [8, 9].

For the case of scalability testing on Intel Xeon Phi processors, galaxy data set of the software package
GADGET is used.

6. Hybrid Code Implementation on Intel Xeon Phi

The original GADGET code is written in standard ANSI C and uses an explicit communication model,

parallelized by the MPI communication interface. The code execution required some external libraries [6, 7, 8]:

 GSL is a library provides a wide range of mathematical routines such as random number generators,

special functions and least-squares fitting. There are over 1000 functions in total with an extensive test

suite.

CC=mpiicc CFLAGS="-O3 -mmic -mt_mpi" ./configure --host=x86_64 --

prefix=/gpfs/scratch/userexternal/pborovsk/install/gsl_mic

make

make install

 ZLIB is a software library used for data compression. Zlib compressed data is typically written with a

gzip or a zlib wrapper. The wrapper encapsulates the raw DEFLATE data by adding a header and

trailer. This provides stream identification and error detection that are not provided by the raw

DEFLATE data.

CC=mpiicc CFLAGS="-O3 -mmic -mt_mpi" ./configure --

prefix=/gpfs/scratch/userexternal/pborovsk/install/zlib_mic

make

 Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

5

 SZIB is compression software, providing lossless compression of scientific data, has been provided

with HDF software products.

CC=mpiicc CFLAGS="-O3 -mmic -mt_mpi" CXX=mpiicpc CXXFLAGS="-O3 -mmic -

mt_mpi" ./configure --host=x86_64 --

prefix=/gpfs/scratch/userexternal/pborovsk/install/szip_mic

make

make install

 HDF5 is a data model, library, and file format for storing and managing data. It supports an unlimited

variety of data types, and is designed for flexible and efficient I/O and for high volume and complex

data. HDF5 is portable and is extensible, allowing applications to evolve in their use of HDF5.

 FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more

dimensions, of arbitrary input size, and of both real and complex data.

CC=mpiicc CFLAGS="-O3 -mmic -mt_mpi" ./configure --host=x86_64 --disable-fortran --

enable-mpi --enable-type-prefix --prefix=/gpfs/scratch/userexternal/pborovsk/install/fftw_mic

make

make install

make clean

CC=mpiicc CFLAGS="-O3 -mmic -mt_mpi" ./configure --host=x86_64 --disable-fortran --

enable-mpi --enable-type-prefix --enable-float --

prefix=/gpfs/scratch/userexternal/pborovsk/install/fftw_mic

make

make install

The dynamic analysis of the GADGET code identified the most time-consuming function, force_treeevaluate.

The code review of this function shows that the function receives an integer variable called target and

calculates the gravitational forces of the particle index target, and depending on the variable mode - or the

particle is local to the CPU or the communication buffer (the function is called twice in the function gravity_tree

- once for mode 0 in which the calculations are made to the local processor for particles, and then to mode 1 in

which the calculations are made of the particles in the communications buffer). The GADGET code

implementation on Intel MIC requires hybrid granularity of parallelization.

7. Scalability Testing

The goal of this project is to optimize the multithreading of GADGET software with developing the hybrid

MPI/OpenMP parallelization of the code and to perform the scalability testing of the code on the Intel Xeon Phi

processors on the EURORA system.

The executions are performed on Intel MIC using different MPI/OpenMP configurations with maximum 240

threads on the MIC in native mode. The results are shown in Table 1.

Number MIC Total thread

number per

MIC

MPI tasks

per MIC

Threads per

MPI per

MIC

Test

(Data Set)

Total execution

time [s]

Speed

up

1 1 60 1 60 galaxy 1750 1

2 1 120 1 120 galaxy 1490 1.17

3 1 180 1 180 galaxy 1450 1.21

4 1 240 1 240 galaxy 1490 1.17

5 1 60 2 30 galaxy 1420 1.00

6 1 120 2 60 galaxy 1190 1.19

7 1 180 2 90 galaxy 1160 1.22

8 1 240 2 120 galaxy 1200 1.18

9 1 60 3 20 galaxy 1570 1.00

Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

6

10 1 120 3 40 galaxy 1300 1.21

11 1 180 3 60 galaxy 1200 1.31

12 1 240 3 80 galaxy 1300 1.21

13 1 60 4 15 galaxy 1690 1.00

14 1 120 4 30 galaxy 1390 1.22

15 1 180 4 45 galaxy 1360 1.24

16 1 240 4 60 galaxy 1410 1.20

17 1 56 8 7 galaxy 1700 1.00

18 1 120 8 15 galaxy 1410 1.21

19 1 176 8 22 galaxy 1380 1.23

20 1 240 8 30 galaxy 1360 1.25

21 1 48 16 3 galaxy 1640 1.00

22 1 112 16 7 galaxy 1360 1.21

23 1 176 16 11 galaxy 1310 1.25

24 1 240 16 15 galaxy 1240 1.32

25 2 60 2 30 galaxy 1390 1.00

26 2 120 2 60 galaxy 1140 1.22

27 2 180 2 90 galaxy 1060 1.31

28 2 240 2 120 galaxy 1010 1.38

Table 1: Execution times in [s] for a galaxy data set of the software package GADGET with vary number of

MPI tasks and threads per Intel MIC

In all the experimental tests, the thread scatter affinity is used. Scatter affinity means that threads are placed on

cores in a round-robin fashion. The process continues until all threads are mapped to a core. This process results

in a balanced amount of threads on each core which mostly removes the situation in which one or a small

amount of cores are working while the rest are idle.

Some experiments have been carried out utilizing the hybrid parallel program implementation of GADGET

code. Galaxy has been used as experimental data. The objective of the experiments was to measure parallel

performance parameters of the specified parallel application for cosmological N-body/SPH simulations.

The speedup is evaluated as a ratio of the execution time running within 60 threads relative to the execution time

on 120, 180 and 240 threats per MIC with different number of MPI processes respectively. The experimental

results for the speedup of GADGET code on Intel MICs using various numbers of threads and MPI processes are

shown in Table 1 and Figure 4.

In all the tests above the GADET code was compiled with the optimization level O3, which for MIC accelerators

means the compiler’s auto vectorization is enabled. Better results might be achieved with manual adjustments to

the code for better vectorization but the amount of work and necessary time to require for it compared to the

possible gain in speedup did not warrant and attempt.

The speedup results are shown and illustrated in Table 1 and Figures 4 and 5.

 Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

7

Figure 3: Execution time of GADGET code on Intel Xeon Phi

Figure 4: Speedup of GADGET code on Intel Xeon Phi

Figure 5: Speedup of GADGET code on multiple Intel Xeon Phi with 2 MPI tasks per co-processor

The hybrid MPI/OpenMP implementations on multiple MICs achieve reduction in execution time. The speedup

results show that the parallel system scales on the multiple co-processors. The higher scales are for the cases up

to 120 treads. The experimental part on Intel Xeon Phi is part of the project 2010PA1487, Type C, part of

PRACE 1IP - WP7 Extension.

Code Optimization and Scaling of Astrophysics Software Gadget on Intel Xeon Phi

8

 8. Conclusion and Future Work

The hybrid MPI/OpenMP parallelization of the GADGET code for cosmological N-body/SPH simulations has

been developed and investigated. It is best suited to work in homogenous native Xeon Phi MPI mode in a

combination of MPI tasks and threads. Porting the developed hybrid parallel code of GADGET software is very

straightforward as Intel support a wide range of programming models, including the widely use MPI and

OpenMP as well as Intel-specific models like TBB, Cilk+ and others. The future work is to provide additional

tests in offload mode.

Performance metrics, such execution time and speedup, have been measured. The performance measurements

for the galaxy data sets of the GADGET code show that the hybrid parallel implementation utilizing MPI and

OpenMP of the software scales as the number of the cores increases. The future work is to demonstrate the

experimental results of GADGET code for different data sets on Intel Xeon Phi in order to provide a complete

scalability analysis.

The hybrid GADGET code can be apply for other similar research projects and experiments in the field of

cosmological N-body/SPH simulations and will allow researchers to conduct their experiments on even more

powerful supercomputers. They will be able to perform cosmological simulations with very large amounts of

data.

The code can be found at http://81.161.243.12/bgmoodle/course/index.php?categoryid=46. Registration is

required for download.

References

[1] Volker Springel, The cosmological simulation code GADGET-2, Mon.Not.Roy.Astron.Soc. 364 (2005)
1105-1134

[2] Hernquist, Lars; Katz, Neal, TREESPH - A unification of SPH with the hierarchical tree method,
Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 70, June 1989, p. 419-446.

[3] Klypin A. A., Shandarin S. F., 1983, MNRAS, 204, 891
[4] White S. D. M., Frenk C. S., Davis M., 1983, ApJ, 274, L1
[5] GADGET-2 Best Practices, HPC Advisory Council http://www.hpcadvisorycouncil.com/pdf/GADGET-

2_Best_Practices.pdf
[6] http://www.mpa-garching.mpg.de/gadget/
[7] James Jeffers, James Reinders, Intel Xeon Phi Coprocessor High Performance Programming, ISBN-13: 978-

0-12-410414-3, Morgan Kaufmann Publisher, Feb 2013
[8] http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
[9] http://www.cineca.it/en/content/EURORA
[10] http://www.cs.uoregon.edu/research/tau/home.php

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-261557. The project was realized using the

EURORA System at CINECA, Italy.

http://81.161.243.12/bgmoodle/course/index.php?categoryid=46
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hernquist,+L&fullauthor=Hernquist,%20Lars&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Katz,+N&fullauthor=Katz,%20Neal&charset=UTF-8&db_key=AST
http://www.hpcadvisorycouncil.com/pdf/GADGET-2_Best_Practices.pdf
http://www.hpcadvisorycouncil.com/pdf/GADGET-2_Best_Practices.pdf
http://www.mpa-garching.mpg.de/gadget/
http://www.cineca.it/en/content/eurora
http://www.cs.uoregon.edu/research/tau/home.php

