45 research outputs found

    Non-invasive Techniques Towards Recovering Highly Secure Unclonable Cryptographic Keys and Detecting Counterfeit Memory Chips

    Get PDF
    Due to the ubiquitous presence of memory components in all electronic computing systems, memory-based signatures are considered low-cost alternatives to generate unique device identifiers (IDs) and cryptographic keys. On the one hand, this unique device ID can potentially be used to identify major types of device counterfeitings such as remarked, overproduced, and cloned. On the other hand, memory-based cryptographic keys are commercially used in many cryptographic applications such as securing software IP, encrypting key vault, anchoring device root of trust, and device authentication for could services. As memory components generate this signature in runtime rather than storing them in memory, an attacker cannot clone/copy the signature and reuse them in malicious activity. However, to ensure the desired level of security, signatures generated from two different memory chips should be completely random and uncorrelated from each other. Traditionally, memory-based signatures are considered unique and uncorrelated due to the random variation in the manufacturing process. Unfortunately, in previous studies, many deterministic components of the manufacturing process, such as memory architecture, layout, systematic process variation, device package, are ignored. This dissertation shows that these deterministic factors can significantly correlate two memory signatures if those two memory chips share the same manufacturing resources (i.e., manufacturing facility, specification set, design file, etc.). We demonstrate that this signature correlation can be used to detect major counterfeit types in a non-invasive and low-cost manner. Furthermore, we use this signature correlation as side-channel information to attack memory-based cryptographic keys. We validate our contribution by collecting data from several commercially available off-the-shelf (COTS) memory chips/modules and considering different usage-case scenarios

    D2.1 - Report on Selected TRNG and PUF Principles

    Get PDF
    This report represents the final version of Deliverable 2.1 of the HECTOR work package WP2. It is a result of discussions and work on Task 2.1 of all HECTOR partners involved in WP2. The aim of the Deliverable 2.1 is to select principles of random number generators (RNGs) and physical unclonable functions (PUFs) that fulfill strict technology, design and security criteria. For example, the selected RNGs must be suitable for implementation in logic devices according to the German AIS20/31 standard. Correspondingly, the selected PUFs must be suitable for applying similar security approach. A standard PUF evaluation approach does not exist, yet, but it should be proposed in the framework of the project. Selected RNGs and PUFs should be then thoroughly evaluated from the point of view of security and the most suitable principles should be implemented in logic devices, such as Field Programmable Logic Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) during the next phases of the project

    Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things

    Get PDF
    Die moderne Gesellschaft strebt mehr denn je nach digitaler Konnektivität - überall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) führt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von Geräten werden in unserer täglichen Umgebung allgegenwärtig sein und über das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein Schlüsselelement für das IoE, indem sie neuartige Gerätetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. Darüber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengünstige und großflächige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergänzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftsträchtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener Geräte und Systeme eine der größten zu lösenden Herausforderungen. Komplexe Hochleistungsgeräte interagieren mit hochspezialisierten, leichtgewichtigen elektronischen Geräten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten Geräten oder in der Cloud ausgetauscht. Dabei wirft die Fülle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und Systemkomplexität erfordern, was sie wiederum für viele leichtgewichtige Geräte ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der Geräteidentifikation und -authentifizierung. Dabei hängt das Sicherheitslevel hauptsächlich von der Qualität der Entropiequelle und der Vertrauenswürdigkeit der abgeleiteten Schlüssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der Schlüssel sind von großer Bedeutung, um einzelne Entitäten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen für IoT-Geräte erlangt. PUFs verwenden ihre inhärenten Variationen, um gerätespezifische eindeutige Kennungen abzuleiten, die mit Fingerabdrücken in der Biometrie vergleichbar sind. Zu den größten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von Sicherheitsschlüsseln nach Bedarf sowie die inhärente Schlüsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische Geräte und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlässig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven für die Schlüsselgenerierung zur eindeutigen Geräteidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen für ressourcenbeschränkte gedruckte Geräte und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere Schlüssel für Sicherheitsanwendungen für ressourcenbeschränkte Geräte bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthält. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgeführt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte für die Uniqueness- und Reliability-Metriken aufweist. Darüber hinaus werden die Identifikationsfähigkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusätzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunächst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores für statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen überein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklärt werden kann. Die Untersuchung der Identifikationsfähigkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusätzliches Post-Processing nicht für kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur Geräteidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die Sicherheitsfähigkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgeführt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine Anfälligkeit für Angriffe auf Modellbasis hauptsächlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhängt. Darüber hinaus wird ein Angriffsmodell eingeführt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingeführt und mit häufig verwendeten Classifiers für überwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfällig für modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kürzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs übertreffen die ML-Algorithmen den Sortieralgorithmus

    Improving Security and Reliability of Physical Unclonable Functions Using Machine Learning

    Get PDF
    Physical Unclonable Functions (PUFs) are promising security primitives for device authenti-cation and key generation. Due to the noise influence, reliability is an important performance metric of PUF-based authentication. In the literature, lots of efforts have been devoted to enhancing PUF reliability by using error correction methods such as error-correcting codes and fuzzy extractor. Ho-wever, one property that most of these prior works overlooked is the non-uniform distribution of PUF response across different bits. This wok proposes a two-step methodology to improve the reliability of PUF under noisy conditions. The first step involves acquiring the parameters of PUF models by using machine lear-ning algorithms. The second step then utilizes these obtained parameters to improve the reliability of PUFs by selectively choosing challenge-response pairs (CRPs) for authentication. Two distinct algorithms for improving the reliability of multiplexer (MUX) PUF, i.e., total delay difference thresholding and sensitive bits grouping, are presented. It is important to note that the methodology can be easily applied to other types of PUFs as well. Our experimental results show that the relia-bility of PUF-based authentication can be significantly improved by the proposed approaches. For example, in one experimental setting, the reliability of an MUX PUF is improved from 89.75% to 94.07% using total delay difference thresholding, while 89.30% of generated challenges are stored. As opposed to total delay difference thresholding, sensitive bits grouping possesses higher efficiency, as it can produce reliable CRPs directly. Our experimental results show that the reliability can be improved to 96.91% under the same setting, when we group 12 bits in the challenge vector of a 128-stage MUX PUF. Besides, because the actual noise varies greatly in different conditions, it is hard to predict the error of of each individual PUF response bit. This wok proposes a novel methodology to improve the efficiency of PUF response error correction based on error-rates. The proposed method first obtains the PUF model by using machine learning techniques, which is then used to predict the error-rates. Intuitively, we are inclined to tolerate errors in PUF response bits with relatively higher error-rates. Thus, we propose to treat different PUF response bits with different degrees of error tolerance, according to their estimated error-rates. Specifically, by assigning optimized weights, i.e., 0, 1, 2, 3, and infinity to PUF response bits, while a small portion of high error rates responses are truncated; the other responses are duplicated to a limited number of bits according to error-rates before error correction and a portion of low error-rates responses bypass the error correction as direct keys. The hardware cost for error correction can also be reduced by employing these methods. Response weighting is capable of reducing the false negative and false positive simultaneously. The entropy can also be controlled. Our experimental results show that the response weighting algorithm can reduce not only the false negative from 20.60% to 1.71%, but also the false positive rate from 1.26 × 10−21 to 5.38 × 10−22 for a PUF-based authentication with 127-bit response and 13-bit error correction. Besides, three case studies about the applications of the proposed algorithm are also discussed. Along with the rapid development of hardware security techniques, the revolutionary gro-wth of countermeasures or attacking methods developed by intelligent and adaptive adversaries have significantly complicated the ability to create secure hardware systems. Thus, there is a critical need to (re)evaluate existing or new hardware security techniques against these state-of-the-art attacking methods. With this in mind, this wok presents a novel framework for incorporating active learning techniques into hardware security field. We demonstrate that active learning can significantly im-prove the learning efficiency of PUF modeling attack, which samples the least confident and the most informative challenge-response pair (CRP) for training in each iteration. For example, our ex-perimental results show that in order to obtain a prediction error below 4%, 2790 CRPs are required in passive learning, while only 811 CRPs are required in active learning. The sampling strategies and detailed applications of PUF modeling attack under various environmental conditions are also discussed. When the environment is very noisy, active learning may sample a large number of mis-labeled CRPs and hence result in high prediction error. We present two methods to mitigate the contradiction between informative and noisy CRPs. At last, it is critical to design secure PUF, which can mitigate the countermeasures or modeling attacking from intelligent and adaptive adversaries. Previously, researchers devoted to hiding PUF information by pre- or post processing of PUF challenge/response. However, these methods are still subject to side-channel analysis based hybrid attacks. Methods for increasing the non-linearity of PUF structure, such as feedforward PUF, cascade PUF and subthreshold current PUF, have also been proposed. However, these methods significantly degrade the reliability. Based on the previous work, this work proposes a novel concept, noisy PUF, which achieves modeling attack resistance while maintaining a high degree of reliability for selected CRPs. A possible design of noisy PUF along with the corresponding experimental results is also presented

    Trusted and Privacy-preserving Embedded Systems: Advances in Design, Analysis and Application of Lightweight Privacy-preserving Authentication and Physical Security Primitives

    Get PDF
    Radio Frequency Identification (RFID) enables RFID readers to perform fully automatic wireless identification of objects labeled with RFID tags and is widely deployed to many applications, such as access control, electronic tickets and payment as well as electronic passports. This prevalence of RFID technology introduces various risks, in particular concerning the privacy of its users and holders. Despite the privacy risk, classical threats to authentication and identification systems must be considered to prevent the adversary from impersonating or copying (cloning) a tag. This thesis summarizes the state of the art in secure and privacy-preserving authentication for RFID tags with a particular focus on solutions based on Physically Unclonable Functions (PUFs). It presents advancements in the design, analysis and evaluation of secure and privacy-preserving authentication protocols for RFID systems and PUFs. Formalizing the security and privacy requirements on RFID systems is essential for the design of provably secure and privacy-preserving RFID protocols. However, existing RFID security and privacy models in the literature are often incomparable and in part do not reflect the capabilities of real-world adversaries. We investigate subtle issues such as tag corruption aspects that lead to the impossibility of achieving both mutual authentication and any reasonable notion of privacy in one of the most comprehensive security and privacy models, which is the basis of many subsequent works. Our results led to the refinement of this privacy model and were considered in subsequent works on privacy-preserving RFID systems. A promising approach to enhance the privacy in RFID systems without lifting the computational requirements on the tags are anonymizers. These are special devices that take off the computational workload from the tags. While existing anonymizer-based protocols are subject to impersonation and denial-of-service attacks, existing RFID security and privacy models do not include anonymizers. We present the first security and privacy framework for anonymizer-enabled RFID systems and two privacy-preserving RFID authentication schemes using anonymizers. Both schemes achieve several appealing features that were not simultaneously achieved by any previous proposal. The first protocol is very efficient for all involved entities, achieves privacy under tag corruption. It is secure against impersonation attacks and forgeries even if the adversary can corrupt the anonymizers. The second scheme provides for the first time anonymity and untraceability of tags against readers as well as secure tag authentication against collisions of malicious readers and anonymizers using tags that cannot perform public-key cryptography (i.e., modular exponentiations). The RFID tags commonly used in practice are cost-efficient tokens without expensive hardware protection mechanisms. Physically Unclonable Functions (PUFs) promise to provide an effective security mechanism for RFID tags to protect against basic hardware attacks. However, existing PUF-based RFID authentication schemes are not scalable, allow only for a limited number of authentications and are subject to replay, denial-of-service and emulation attacks. We present two scalable PUF-based authentication schemes that overcome these problems. The first protocol supports tag and reader authentication, is resistant to emulation attacks and highly scalable. The second protocol uses a PUF-based key storage and addresses an open question on the feasibility of destructive privacy, i.e., the privacy of tags that are destroyed during tag corruption. The security of PUFs relies on assumptions on physical properties and is still under investigation. PUF evaluation results in the literature are difficult to compare due to varying test conditions and different analysis methods. We present the first large-scale security analysis of ASIC implementations of the five most popular electronic PUF types, including Arbiter, Ring Oscillator, SRAM, Flip-Flop and Latch PUFs. We present a new PUF evaluation methodology that allows a more precise assessment of the unpredictability properties than previous approaches and we quantify the most important properties of PUFs for their use in cryptographic schemes. PUFs have been proposed for various applications, including anti-counterfeiting and authentication schemes. However, only rudimentary PUF security models exist, limiting the confidence in the security claims of PUF-based security mechanisms. We present a formal security framework for PUF-based primitives, which has been used in subsequent works to capture the properties of image-based PUFs and in the design of anti-counterfeiting mechanisms and physical hash functions

    MEMS-based Gyroscopes as Physical Unclonable Functions

    Get PDF
    We are at the dawn of a hyper connectivity age otherwise known as the Internet of Things (IoT). It is widely accepted that to be able to reap all benefits from the IoT promise, device security will be of paramount importance. A key requirement for most security solutions is the ability to provide secure cryptographic key storage in a way that will easily scale in the IoT age. In this paper, we focus on providing such a solution based on Physical Unclonable Functions (PUFs). To this end, we focus on microelectromechanical systems (MEMS)-based gyroscopes and show via wafer-level measurements and simulations, that it is feasible to use the physical and electrical properties of these sensors for cryptographic key generation. After identifying the most promising features, we propose a novel quantization scheme to extract bit strings from the MEMS analog measurements. We provide upper and lower bounds for the minimum entropy of the bit strings derived from the measurements and fully analyze the intra- and inter-class distributions across the operation range of the MEMS device. We complement these measurements via Monte-Carlo simulations based on the distributions of the parameters measured on actual devices. We also propose and evaluate a key derivation procedure based on fuzzy extractors for Hamming distance, using the min-entropy estimates obtained to derive a full entropy 128-bit key, requiring 1219-bits of helper data with an (authentication) failure probability of 4x10^-7. Thereby, we present a complete cryptographic key generation chain. In addition, we propose a dedicated MEMS-PUF design, which is superior to our measured sensor, in terms of chip area, quality and quantity of key seed features

    Lightweight Protocols and Applications for Memory-Based Intrinsic Physically Unclonable Functions on Commercial Off-The-Shelve Devices

    Get PDF
    We are currently living in the era in which through the ever-increasing dissemination of inter-connected embedded devices, the Internet-of-Things manifests. Although such end-point devices are commonly labeled as ``smart gadgets'' and hence they suggest to implement some sort of intelligence, from a cyber-security point of view, more then often the opposite holds. The market force in the branch of commercial embedded devices leads to minimizing production costs and time-to-market. This widespread trend has a direct, disastrous impact on the security properties of such devices. The majority of currently used devices or those that will be produced in the future do not implement any or insufficient security mechanisms. Foremost the lack of secure hardware components often mitigates the application of secure protocols and applications. This work is dedicated to a fundamental solution statement, which allows to retroactively secure commercial off-the-shelf devices, which otherwise are exposed to various attacks due to the lack of secure hardware components. In particular, we leverage the concept of Physically Unclonable Functions (PUFs), to create hardware-based security anchors in standard hardware components. For this purpose, we exploit manufacturing variations in Static Random-Access Memory (SRAM) and Dynamic Random-Access Memory modules to extract intrinsic memory-based PUF instances and building on that, to develop secure and lightweight protocols and applications. For this purpose, we empirically evaluate selected and representative device types towards their PUF characteristics. In a further step, we use those device types, which qualify due to the existence of desired PUF instances for subsequent development of security applications and protocols. Subsequently, we present various software-based security solutions which are specially tailored towards to the characteristic properties of embedded devices. More precisely, the proposed solutions comprise a secure boot architecture as well as an approach to protect the integrity of the firmware by binding it to the underlying hardware. Furthermore, we present a lightweight authentication protocol which leverages a novel DRAM-based PUF type. Finally, we propose a protocol, which allows to securely verify the software state of remote embedded devices

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Cryptographic Primitives from Physical Variables

    Get PDF
    In this dissertation we explore a new paradigm emerging from the subtleties of cryptographic implementations and relating to theoretical aspects of cryptography. This new paradigm, namely physical variables (PVs), simply describes properties of physical objects designed to be identical but are not due to manufacturing variability. In the first part of this dissertation, we focus our attention on scenarios which require the unique identification of physical objects and we show how Gaussian PVs can be used to fulfill such a requirement. Using this framework we present and analyze a new technique for fingerprinting compact discs (CDs) using the manufacturing variability found in the length of the CDs\u27 lands and pits. Although the variability measured is on the order of 20 nm, the technique does not require the use of microscopes or any advanced equipment. Instead, the electrical signal produced by the photo-detector inside the CD reader will be sufficient to measure the desired variability. We thoroughly investigate the new technique by analyzing data collected from 100 identical CDs and show how to extract a unique fingerprint for each CD. In the second part, we shift our attention to physically parameterized functions (PPFs). Although all the constructions we provide are centered around delay-based physically unclonable functions (PUFs), we stress that the use of the term PUF could be misleading as most circuits labeled with the term PUF are in reality clonable on the protocol level. We argue that using a term like PPFs to describe functions parameterized by a PV is a more accurate description. Herein, we thoroughly analyze delay-PUFs and use a mathematical framework to construct two authentication protocols labeled PUF-HB and HB+PUF. Both these protocols merge the known HB authentication family with delay-based PUFs. The new protocols enjoy the security reduction put forth by the HB portion of the protocol and at the same time maintain a level of hardware security provided by the use of PUFs. We present a proof of concept implementation for HB+PUF which takes advantage of the PUF circuit in order to produce the random bits typically needed for an HB-based authentication scheme. The overall circuit is shown to occupy a few thousand gates. Finally, we present a new authentication protocol that uses 2-level PUF circuits and enables a security reduction which, unlike the previous two protocols, stems naturally from the usage of PVs

    Securing Systems with Scarce Entropy: LWE-Based Lossless Computational Fuzzy Extractor for the IoT

    Get PDF
    With the advent of the Internet of Things, lightweight devices necessitate secure and cost-efficient key storage. Since traditional secure key storage is expensive, novel solutions have been developed based on the idea of deriving the key from noisy entropy sources. Such sources when combined with fuzzy extractors allow cryptographically strong key derivation. Information theoretic fuzzy extractors require large amounts of input entropy to account for entropy loss in the key extraction process. It has been shown by Fuller \textit{et al.}~(ASIACRYPT\u2713) that the entropy loss can be reduced if the requirement is relaxed to computational security based on the hardness of the Learning with Errors problem. Using this computational fuzzy extractor, we show how to construct a device-server authentication system providing outsider chosen perturbation security and pre-application robustness. We present the first implementation of a \emph{lossless} computational fuzzy extractor where the entropy of the source equals the entropy of the key on a constrained device. The implementation needs only 1.45KB of SRAM and 9.8KB of Flash memory on an 8-bit microcontroller. Furthermore, we also show how a device-server authentication system can be constructed and efficiently implemented in our system. We compare our implementation to existing work in terms of security, while achieving no entropy loss
    corecore