
Clemson University
TigerPrints

All Theses Theses

8-2018

Improving Security and Reliability of Physical
Unclonable Functions Using Machine Learning
Yuejiang Wen
Clemson University, yuejiaw@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Wen, Yuejiang, "Improving Security and Reliability of Physical Unclonable Functions Using Machine Learning" (2018). All Theses.
2902.
https://tigerprints.clemson.edu/all_theses/2902

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2902?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Improving Security and Reliability of Physical
Unclonable Functions using Machine Learning

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Yuejiang Wen

May 2018

Accepted by:

Dr. Yingjie Lao, Committee Chair

Dr. Rajendra Singh

Dr. William R. Harrell

Abstract

Physical Unclonable Functions (PUFs) are promising security primitives for device authenti-

cation and key generation. Due to the noise influence, reliability is an important performance metric

of PUF-based authentication. In the literature, lots of efforts have been devoted to enhancing PUF

reliability by using error correction methods such as error-correcting codes and fuzzy extractor. Ho-

wever, one property that most of these prior works overlooked is the non-uniform distribution of

PUF response across different bits.

This wok proposes a two-step methodology to improve the reliability of PUF under noisy

conditions. The first step involves acquiring the parameters of PUF models by using machine lear-

ning algorithms. The second step then utilizes these obtained parameters to improve the reliability

of PUFs by selectively choosing challenge-response pairs (CRPs) for authentication. Two distinct

algorithms for improving the reliability of multiplexer (MUX) PUF, i.e., total delay difference thres-

holding and sensitive bits grouping, are presented. It is important to note that the methodology

can be easily applied to other types of PUFs as well. Our experimental results show that the relia-

bility of PUF-based authentication can be significantly improved by the proposed approaches. For

example, in one experimental setting, the reliability of an MUX PUF is improved from 89.75% to

94.07% using total delay difference thresholding, while 89.30% of generated challenges are stored.

As opposed to total delay difference thresholding, sensitive bits grouping possesses higher efficiency,

as it can produce reliable CRPs directly. Our experimental results show that the reliability can be

improved to 96.91% under the same setting, when we group 12 bits in the challenge vector of a

128-stage MUX PUF.

Besides, because the actual noise varies greatly in different conditions, it is hard to predict

the error of of each individual PUF response bit. This wok proposes a novel methodology to improve

the efficiency of PUF response error correction based on error-rates. The proposed method first

ii

obtains the PUF model by using machine learning techniques, which is then used to predict the

error-rates. Intuitively, we are inclined to tolerate errors in PUF response bits with relatively higher

error-rates. Thus, we propose to treat different PUF response bits with different degrees of error

tolerance, according to their estimated error-rates. Specifically, by assigning optimized weights, i.e.,

0, 1, 2, 3, and infinity to PUF response bits, while a small portion of high error rates responses

are truncated; the other responses are duplicated to a limited number of bits according to error-

rates before error correction and a portion of low error-rates responses bypass the error correction as

direct keys. The hardware cost for error correction can also be reduced by employing these methods.

Response weighting is capable of reducing the false negative and false positive simultaneously. The

entropy can also be controlled. Our experimental results show that the response weighting algorithm

can reduce not only the false negative from 20.60% to 1.71%, but also the false positive rate from

1.26× 10−21 to 5.38× 10−22 for a PUF-based authentication with 127-bit response and 13-bit error

correction. Besides, three case studies about the applications of the proposed algorithm are also

discussed.

Along with the rapid development of hardware security techniques, the revolutionary gro-

wth of countermeasures or attacking methods developed by intelligent and adaptive adversaries have

significantly complicated the ability to create secure hardware systems. Thus, there is a critical need

to (re)evaluate existing or new hardware security techniques against these state-of-the-art attacking

methods. With this in mind, this wok presents a novel framework for incorporating active learning

techniques into hardware security field. We demonstrate that active learning can significantly im-

prove the learning efficiency of PUF modeling attack, which samples the least confident and the

most informative challenge-response pair (CRP) for training in each iteration. For example, our ex-

perimental results show that in order to obtain a prediction error below 4%, 2790 CRPs are required

in passive learning, while only 811 CRPs are required in active learning. The sampling strategies

and detailed applications of PUF modeling attack under various environmental conditions are also

discussed. When the environment is very noisy, active learning may sample a large number of mis-

labeled CRPs and hence result in high prediction error. We present two methods to mitigate the

contradiction between informative and noisy CRPs.

At last, it is critical to design secure PUF, which can mitigate the countermeasures or

modeling attacking from intelligent and adaptive adversaries. Previously, researchers devoted to

hiding PUF information by pre- or post processing of PUF challenge/response. However, these

iii

methods are still subject to side-channel analysis based hybrid attacks. Methods for increasing the

non-linearity of PUF structure, such as feedforward PUF, cascade PUF and subthreshold current

PUF, have also been proposed. However, these methods significantly degrade the reliability. Based

on the previous work, this work proposes a novel concept, noisy PUF, which achieves modeling

attack resistance while maintaining a high degree of reliability for selected CRPs. A possible design

of noisy PUF along with the corresponding experimental results is also presented.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Yingjie Lao, for his cardinal

and continuing encouragement, tremendous guidance, throughout my M.S. study at the Clemson

University. In my study and research, he has served as an incredible inspiration and talented mentor.

In my life and career development, he sincerely and continuously gives me a lot of guidance and

advice. As a student of him, I learned not only the expertise in my area of study and research , but

also some important skills in research and thinking. I achieved my study goal for pursuing a master

at Clemson University.

My sincere thank also goes to my research group. I am grateful to Xiaojia Wang, Joseph

Clements, Bingyin Zhao, Ling Qiu, Ankur Sharma, Weihang Tan, Sarah Fulmer at Clemson Univer-

sity, for their collaborations and valuable feedback to my research/study. I also would like to thank

Xiurui Zhao, Xingchen Shao, Yimin Lei, Zuo Zhou, Tingzhao Huang, Shengjie Xu for their support

during my life and study at Clemson University.

I also would like to thank Prof. Rajendra Singh, Prof. William Harrell at Clemson Uni-

versity, for their support as members of my M.S. committee and kind help throughout my graduate

study. I learned from their immense knowledge and experiences. I am fortunate to be a student of

them.

Last but not the least, I am forever grateful to my mother, father, sister, grandpa, grandma

for their deep love, for thoughtful care and continuous encouragement. Without the encourage and

support from them, I may not enter this program and get the degree.

v

Table of Contents

Title Page . i

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Physical Unclonable Functions . 1
1.2 Reliability of PUF . 2
1.3 Efficient Error Correction of PUF Responses . 3
1.4 Challenge from Attacker . 3

2 Enhancing PUF Reliability by Machine Learning 5
2.1 MUX PUF Model . 5
2.2 PUF Reliability Enhancement . 6
2.3 Proposed Methodology . 7
2.4 Results of PUF Reliability Enhancement . 10

3 Enhancement of PUF Response Error Correction Efficiency 13
3.1 Error-Rate Estimation . 17
3.2 Linear Approximation of Error Probability . 17
3.3 Response Processing . 18
3.4 Response Weighting . 20
3.5 Algorithm . 23
3.6 Experimental Results . 24

4 Modeling Attack PUF by Active Learning . 28
4.1 Active Learning . 29
4.2 PUF Modeling Attack Using Active Learning . 30
4.3 Experiments . 33

5 Noisy PUF . 37
5.1 PUF Security . 37
5.2 Methodology . 39
5.3 Case Study: Reconfigurable Delay-Compensation PUF 41

6 Conclusions and Discussion . 47
6.1 Future Work . 48

Bibliography . 48

vi

List of Tables

2.1 Reliability of PUF with different selection thresholds (under a large environmental variation) 11
2.2 Reliability of PUF before/after Algorithm 1, 2 with N = 64. 12

3.1 Notations Used in the Thesis . 14
3.2 False Negative Rates of PUF-based Authentication before and after Employing Response

Truncating . 23
3.3 False Negative Rates of PUF-based Authentication before and after Employing Response

Duplicating . 24
3.4 False negative/positive rates of PUF-based authentication before and after employing re-

sponse weighting with different weights . 25

4.1 Prediction error (%) of active learning with different sampling strategies (under dif-
ferent environmental variations) . 32

5.1 Prediction Error Rate of the normal PUF and the noisy PUF under the same environmental

conditions (N=64 bits) . 43

vii

List of Figures

2.1 A MUX PUF. 5
2.2 The flows of proposed methodology and algorithms. 8
2.3 The proposed algorithm 2: sensitive bits grouping. 9
2.4 Accuracy of simulated model of a 64-stage MUX PUF. 11
2.5 Total delay difference distributions of (a) before using the proposed algorithms, (b)

after using Algorithm 1, and (c) after using Algorithm 2. 12

3.1 Error rate versus log2(max(|rN |)|rN |). 18

3.2 An example for response truncating. 19
3.3 An example for duplicating algorithm. 20
3.4 An example for PUF response weighting. 21
3.5 The error rate distribution (under a same noise). 21
3.6 A detailed example of PUF response weighting. 22
3.7 False negative rate versus ECC correctability T . 25
3.8 False negative rate versus infinity weight (by-passing) Nw∞ (T = 20). 26
3.9 False negative rate versus weight 0 (truncating) Nw0. 26

4.1 Scenarios of active learning. 1) Membership query synthesis: the learner generates label to

query; 2) Stream-based selective sampling: the learner decides whether to query or discard

an instance after drawing it randomly from the distribution; 3) Pool-based sampling: queries

are selectively drawn from the pool by a model. 30
4.2 A MUX PUF total delay difference distribution. 32
4.3 Prediction error of different sampling strategies. 34
4.4 Prediction error of PUF response majority voting. 35
4.5 Prediction error of different threshold values. 35

5.1 The configuration flow of the proposed noisy PUF. 40
5.2 (a) The concept of noisy PUF: increase the intra-chip variation so that the data for modeling

attack are too noisy to form an accurate model, while only a small portion of the reliable

CRPs are used for authentication. (b) Situating the noisy PUFs. 40
5.3 The noisy PUF reliability vs modeling attack accuracy. 41
5.4 One reconfigurable feed-forward path of the proposed reconfigurable delay-compensation

PUF. 42
5.5 The delay distribution of proposed reconfigurable delay-compensation PUF. 44
5.6 The prediction error of the proposed delay-compensation PUF. 45
5.7 The prediction error of the proposed delay-compensation PUF. 46

viii

Chapter 1

Introduction

In recent years, semiconductor devices are becoming an essential part of everyday’s life,

which range across smart phone, intelligent vehicle, IoTs (Internet-of-Things), and healthcare sy-

stem. Personalized data stored on these devices should be protected from external theft, attacks or

falsification. As a result, security has emerged as a critical design challenge for integrated circuits

(ICs). Besides, due to the globalization of modern digital design and fabrication, more and more

counterfeit ICs are damaging the development of the semiconductor industry and threatening the

security of end-user systems. Therefore, robust hardware security mechanisms for IC design without

significant overheads in power and silicon area are highly desired.

1.1 Physical Unclonable Functions

Physical unclonable functions (PUFs) are promising security primitives that generate high-

entropy and tamper-resistant chip-unique signatures by exploiting the uncontrollable randomness

in the inherent process variations. Analogous to a human fingerprint, PUFs are powerful tools

for authentication and cryptographic applications. PUF provides an attractive alternative to con-

ventional security methods in standard digital system by extracting signatures from the complex

physical phenomenon rather than storing them in a non-volatile memory. These signatures can

then be used for many hardware security applications including authentication, IC metering and

obfuscation [1–3]. Various types of PUFs such as optical PUF, coating PUF, silicon PUF, butterfly

PUF, SRAM-PUF, and memristor PUF [4–8] have been invented. PUFs are powerful tools for chip

1

authentication and identification, as the PUF response is unique and unpredictable for each IC. In

the literature, authentication using PUF response bits as secret keys has been explored in many

previous works [9–12]. PUF or PUF-based application needs to be lightweight to keep it attractive

in resource-constrained systems. Various types of PUFs have been invented in the literature [4–7].

Among these PUFs, the MUX PUF [7] is of great interest, as it is simple and compact (O(2N) CRPs

for an N -stage PUF) and is ideal for area-constrained platforms. A MUX PUF, which consists of

N stages of MUX pairs and an arbiter. The response is generated according to the input challenge

vector and the delay difference of each MUX pair. The detail MUX PUF model is introduced in 2.1

1.2 Reliability of PUF

Reliability is an important metric of PUF performance, which is characterized by comparing

the Hamming distances of digital signatures generated by a same challenge, however, under different

environmental conditions. Ideally, a PUF should always be able to regenerate the same response

for a given challenge; otherwise, even the authentic device might fail to pass the authentication.

Unfortunately, the MUX PUF is not 100% stable, as temperature variations, voltage variations or

even aging effect could lead to inconsistent responses [13].

A number of methods have been employed to mitigate the errors in PUF response, which

include error correcting codes (ECC), fuzzy extractor, index -based sydrome (IBS) [14], and ring

weight algorithm (RWA) [15]. Most of these methods assume identical error-rate across different

bits in a PUF response and introduce redundancies to correct errors within a certain limit.

In the context of PUF reliability enhancement methods, one property that has been addres-

sed little attention entails the non-uniform error rate distribution of PUF responses across different

challenges. The probability that a response will differ is dependent not only on the selected challenge

but also on the underlying PUF model. For example, the response of a MUX PUF is determined

by the racing result between the top and the bottom paths that are generated by the challenge.

Intuitively, the output with a smaller total delay difference is more likely to flip. In this wok, we

take advantage of this property in developing algorithms for improving the reliability of PUF-based

authentication. We present two effective and cost-efficient algorithms by using machine learning

techniques.

2

1.3 Efficient Error Correction of PUF Responses

Indeed, a PUF response dependents on multiple factors, including physical property of the

PUF, the challenge, the manufacturing process variation, and the environmental noise. The manu-

facturing process variation is random during the process but is deterministic after fabrication, which

is also the reason that PUF can be used for establishing chip ID. However, the actual magnitudes of

the manufacturing process variation sampled by different challenges can vary. Thus, the error-rates

of the response bits generated by different challenges for a same PUF might also be different even

under a same environmental condition.

This wok considers the non-uniformity in PUF response in developing an algorithm for

improving the error-correcting methods of PUF-based authentication. Different from previous works,

this work treats different response bits with different degrees of error tolerance. For example, if a

bit has a relatively high error-rate, we will correct the error in this bit as the error is more likely to

come from the environmental noise instead of malicious attacks. However, if a bit in a PUF response

with a very low error-rate flips, the authentication should be failed since it has a high possibility

that the inquired PUF is not an authentic PUF. Taking these properties into considerations, we

present an algorithm to improve the PUF response error correction by using the predicted error-

rate of each PUF response bit, i.e., response weighting. Response weighting can simultaneously

reduce the false positive rate and the false negative rate of the PUF-based authentication. The main

concept is to minimize the error-rate variance of the weighted PUF response across all the bits. The

optimized weights can be solved by Generalized Reduced Gradient (GRG) algorithm. To the best

of our knowledge, this wok is the first work to utilize the non-uniform error-rate of response bits of

different PUFs to improve the efficiency of PUF response error correction.

1.4 Challenge from Attacker

Security and uniqueness are essential to a PUF’s performance against attacks. In the past

decades, numerous hardware security techniques have been proposed. A strong security management

for digital systems should encompass the entire lifecycle and all aspects given that adversaries can

exploit the weakest link to compromise the systems. The main challenge of protecting hardware

devices is the adversary may find ways to physically tamper with devices without leaving a trace,

misleading the user to believe that the hardware is authentic and trustworthy. In addition, the

3

embedded, distributed, unsupervised, and physically exposed nature of modern electronic systems,

such as Internet of Things (IoT) and cyber-physical systems (CPS), has made non-invasive or semi-

invasive attacks on hardware devices as critical threats. If an entry point can be found from the

hardware perspective, the adversary can easily cascade an attack down the whole system. Motivated

from these facts, numerous hardware security techniques have been proposed in past years. However,

the incentive for defeating them also increases.

4

Chapter 2

Enhancing PUF Reliability by

Machine Learning

2.1 MUX PUF Model

Figure 2.1. A MUX PUF.

Fig. 2.1 illustrates the design of a MUX PUF, which consists of N stages of MUX pairs

and an arbiter. The response is generated according to the input challenge vector and the delay

difference of each MUX pair. The model has been extensively studied in [16]. Each single MUX

can be expressed as an independent identically distributed (i.i.d.) random variable Di, modeled by

a Gaussian random variable N(µ, σ2), where µ represents the mean and σ represents the standard

deviation of the delay of each MUX. As a result, the total delay of the N stages is modeled by

N(Nµ,Nσ2
s). According to [16], the delay difference after the last stage can be expressed as

rN =

N∑
i=1

(−1)C
′
i∆i +

N∑
i=1

ni, (2.1)

5

where C ′i = ⊕Nj=i+1Cj , C
′
N = 0, and ∆i, ni represents the delay difference and environmental noise

of each stage, respectively. Finally, the output bit is generated by R = sign(rN). If rN ≥ 0, R is

equal to 1; otherwise, if rN < 0, R will be 0. Therefore, it can be concluded that smaller total delay

difference, i.e.,
∣∣∣∑N

i=1(−1)C
′
i∆i

∣∣∣, leads to higher error probability in the response.

2.2 PUF Reliability Enhancement

In the literature, conventional error-correcting codes such as BCH codes [13], index-based

syndrome coding [14], soft-decision decoding [17], and pattern matching [18] have been used to cor-

rect response errors in a PUF-based authentication scheme. However, these methods incur large

area/power overhead if implemented on hardware, which may inhibit the benefit of achieving light-

weight chip signature generation by using compact PUF circuits. Besides, a number of works have

been devoted to improving the reliability under certain conditions. For example, repetition test was

used to mitigate temperature and voltage variations in PUF responses [19]. A solution was presented

in [1] to improve PUF reliability by recognizing stable and unstable arbiters for a given challenge.

Recently, a probability based response generation scheme has been proposed [20], which can achieve

higher reliability of PUF-based authentication as well.

2.2.1 Estimating PUF Parameter

In the literature, several works that are related to obtaining parameters of PUF circuit

model have been proposed for PUF based applications. Modeling attack and parameter-based

authentication are two examples.

2.2.1.1 Modeling Attack on PUF

Since manufacturing process variation becomes deterministic after fabrication, it is pos-

sible to learn the PUF inner structure to compromise its security. Modeling attack and statis-

tical analysis show that PUFs can be mathematically modeled and replaced by a software pro-

gram to compute response for future challenges. We detail the modeling results of MUX PUFs

in [16]. The total delay difference before the arbiter of an N-stage MUX PUF can be expressed as

rN =
∑N
i=1(−1)C

′
i∆i +

∑N
i=1 ni, where C ′i = ⊕Nj=i+1Cj , C

′
N = 0, and ∆i and ni represent the delay

difference and environmental noise for each stage, respectively. The final output is generated by

6

R = sign(rN). If rN ≥ 0, R is equal to 1; otherwise, if rN < 0, R will be 0, when skew effect is not

considered, as shown in Fig. 2.1.

Modeling attack is a major threat to PUF security in which an adversary attempts to derive

a numerical model to predict responses to arbitrary challenges with a high probability after collecting

a subset of PUF CRPs. Machine learning methods have been used to perform modeling attacks to

learn the PUF circuit parameters [21,22]. Algorithms such as support vector machine (SVM), logistic

regression (LR), and evolution strategies (ES) all can successfully estimate the delay differences of

each stage (i.e., ∆i) of a MUX PUF after collecting a number of CRPs [21, 23]. Consequently, it

is feasible to use the model and parameters to predict the corresponding response with very high

accuracy for any future challenge.

2.2.1.2 Parameter-based Authentication

Parameter-based authentication is a new concept in server-based remote PUF authentica-

tion [10–12]. In a typical remote authentication protocol, a central server interrogates the remote

system by providing a challenge to the PUF and comparing the received response with CRPs stored

in its database. Based on the protocol, a new concept of parameter-based authentication has been

discussed in [10–12]. As opposed to prior works, the server only stores the parameters of a PUF

instead of a large number of CRPs during the enrollment phase of the parameter-based authenti-

cation scheme. Similar to modeling attacks, the parameters can be obtained by machine learning

algorithms, given the fact that the designer knows the PUF model. In the authentication phase,

the received PUF response is compared to the model outputs that are emulated according to the

challenge and pre-acquired parameters instead of stored CRPs. This method can significantly reduce

the memory requirement for server-based PUF authentication.

Similarly, it is also possible to estimate the error-rate of each PUF response bits through

PUF circuit model by using machine learning methods.

2.3 Proposed Methodology

We propose a novel two-step mechanism for selecting challenge that produces insensitive

response to enhance the reliability of PUF-based authentication: PUF parameters learning and

challenge selection. For a certain challenge, the response is determined by the physical PUF function.

7

However, the influence of environmental noise may cause inconsistencies in the expected CRPs. By

using the PUF model and parameters trained by machine learning, we will be able to predict the

error probability of a PUF response by incorporating noise into the PUF model. Consequently, if

we can eliminate the challenges that generate responses with relatively high error probabilities, the

reliability can obviously be improved. The general methodology is shown in Fig. 2.2(a). In this

work, we use MUX PUF to illustrate PUF reliability enhancement algorithms, which can also be

easily applied to other types of PUFs.

Fig. 2.1 illustrates the design of a MUX PUF. The delay difference after the last stage can

be expressed as Equation 2.1. And the output bit is generated by R = sign(rN). If rN ≥ 0, R is

equal to 1; otherwise, if rN < 0, R will be 0. Therefore, it can be concluded that smaller total delay

difference, i.e.,
∣∣∣∑N

i=1(−1)C
′
i∆i

∣∣∣, leads to higher error probability in the response.

2.3.1 Algorithm 1: Total Delay Different Thresholding

PUF
Challenge

select

Machine

Learning

PUF

Parameters

Reliable

challenge

Challenge

Response

(a) Methodology

Stored challenge

Challenge

PUF

parameters

Eliminated

challenge

No

Yes

Delay

Delay > Threshold

(b) Algorithm 1: total delay difference threshol-
ding

Figure 2.2. The flows of proposed methodology and algorithms.

This method improves the MUX PUF reliability by setting a total delay difference threshold

for selecting PUF challenges. We first estimate the parameters of a MUX PUF by using machine

learning algorithms. We then use the obtained parameters to calculate the expected total delay

difference for a given challenge. We will only use the challenges which generate total delay difference

of a MUX PUF that is greater than the preselected threshold (i.e.,
∣∣∣∑N

i=1(−1)C
′
i∆i

∣∣∣ > threshold) for

authentication, as shown in Fig. 2.2(b). A similar thresholding method is independently developed

in [24,25]. Algorithm 1 summarizes the detailed steps.

8

Algorithm 1 Total Delay Difference Thresholding

1. Obtain parameters of the MUX PUF, i.e., ∆i.
2. For a given challenge, calculate total delay difference (

∑N
i=1(−1)C

′
i∆i) based on the parameters obtained

from Step 1, and compare the total delay difference with pre-defined threshold.

3. If
∣∣∣∑N

i=1(−1)C
′
i∆i

∣∣∣ > threshold, store the challenge for authentication; otherwise, eliminate the challenge.

2.3.2 Algorithm 2: sensitive bits grouping

𝑠𝑖𝑔𝑛((−1)𝐶𝑖
′
∙ ∆𝑖) = 1

PUF Parameters 𝑠𝑖𝑔𝑛((−1)𝐶𝑖
′
∙ ∆𝑖) = 0

No

Yes

Top |∆𝑖| (M bits)

Random K bits

Generate N-K+1

random numbers

𝐾
𝑏
𝑖𝑡𝑠

𝐶
𝑖 ′

1-bit

random number

N-K

random numbers

1-bit

random number == 1
New

Challenge

Figure 2.3. The proposed algorithm 2: sensitive bits grouping.

An alternative approach for enhancing PUF reliability in the parameter-based authentica-

tion scenario is to group sensitive challenge bits, as shown in Fig. 2.3. For example, we can randomly

select K bits from top M bits with the largest absolute values of ∆i, i.e., |∆i|, where the length of

the challenge vector is N . We can then group these K challenge bits into 1-bit entropy. According

to the value of this 1-bit random number, we adjust the values of C ′ so that (−1)C
′
i∆i of these K

challenge bits are all positive or all negative. For example, we may assume the 1-bit random number

is 0 without loss of generality. In this case, C ′ will be 1 for stages with positive ∆i and 0 for stages

with negative ∆i; while if the 1-bit random number is 1, C ′ will be 0 for stages with positive ∆i and

1 for stages with negative ∆i, respectively. This method can be classified into 3 cases: 1) K = M

(i.e., select all top K bits); 2) K < M < N ; 3) K < M = N (i.e., randomly select K bits without

sorting). The full steps are described in Algorithm 2.

Total delay difference thresholding is a straightforward approach that post-processes the ge-

nerated challenges to eliminate the challenges that do not meet the threshold requirement. However,

sensitive bits grouping generates challenges that can produce reliable response directly, which can

be considered as a pre-processing method. Therefore, sensitive bits grouping is more efficient in

9

generating challenges for PUF-based authentication, since not all the challenges generated by total

delay difference thresholding will eventually be used. Note that both of these two methods would

not increase the false positive rate, i.e., the probability of false authentication of wrong PUFs.

Algorithm 2 Sensitive Bits Grouping

1. Obtain parameters of the MUX PUF, ∆i.
2. Sort the absolute values of all the stage delay differences of the MUX PUF, |∆i|.
3. Randomly group K bits from the top M bits with largest |∆i| (K < M ≤ N).
4. Generate N −K + 1 random numbers.
5. Use N − K bit random numbers directly as the challenges of the un-grouped challenges and the rest
1-bit random number as the entropy for the grouped K bits from Step 3 that if 1-bit random number is 1,
sign((−1)C

′
i∆i) will be 1 (i.e., C′ will be 0 for stages with positive ∆i and 1 for stages with negative ∆i);

while 1-bit random number is 0, sign((−1)C
′
i∆i) will be 0 for all the grouped stages.

2.4 Results of PUF Reliability Enhancement

2.4.1 Experimental Setup

In our experiment, we simulate parameters and manufacturing process variations in the

MUX PUF model according to prior theoretical and experimental results in [1,16,26]. We vary the

environmental variations to examine the performances of the proposed algorithms.

2.4.2 Results

2.4.2.1 Parameters Modeling

Fig. 2.4 presents the accuracy of simulated model of a 64-stage MUX PUF by using linear

SVM. It can be seen that the accuracy increases as the increase of the number of samples used for

training. Furthermore, the magnitude of noise will also affect the accuracy of machine learning. For

example, more samples are needed to achieve a 95% accuracy under a larger environmental variation.

2.4.2.2 Total delay difference thresholding

We compare the PUF reliability of before and after using total delay difference thresholding

systematically. Our experimental results show that the method can effectively improve the reliability.

Meanwhile, we can maintain a considerably high selection ratio of challenge subsets. For example,

10

Figure 2.4. Accuracy of simulated model of a 64-stage MUX PUF.

the reliability is improved from 89.75% to 94.07%, while 89.30% of generated challenges are stored,

as shown in Fig. 2.5(a) and Fig. 2.5(b). We can further improve the reliability to 99.60% by setting

a larger threshold. However, in this case, the percentage of stored challenges is reduced to 76.65%.

Table 2.1 presents the results under a relatively large environmental variation. It can be seen that

the method can still achieve significant improvement of the PUF-based authentication. However,

due to the large noise, challenge selection ratios will be low.

Table 2.1. Reliability of PUF with different selection thresholds (under a large environmental variation)

Stages
Original Threshold 0.13 ∗

√
Nσs Threshold

√
Nσs

Reliability Selection Ratio Reliability Selection Ratio Reliability Selection Ratio
64 72.41% 100% 80.29% 81.47% 95.23% 27.22%
128 73.03% 100% 80.22% 79.80% 95.30% 23.37%
192 72.38% 100% 80.33% 78.09% 94.55% 27.28%
256 71.88% 100% 80.25% 80.17% 95.28% 29.37%

2.4.2.3 Sensitive bits grouping

Fig. 2.5(c) presents the total delay difference distribution after using Algorithm 2 with K =

12, M = 16, and N = 128. Results show that sensitive bits grouping can also significantly improve

the PUF reliability from 89.75% to 96.91%. In addition, sensitive bits grouping provides more

configurability than total delay difference threshold, as we can adjust the parameters (i.e., K and

M) appropriately based on the reliability requirement of a specific application. Table 2.2 presents

the performances of sensitive bits grouping with different values of K and M , where N = 64.

For case 1 that we always select the top K challenge bits with the largest |∆i| (i.e., K = M <

N), it can be seen from Table 2.2 that the reliability increases with the increase of K. For example,

the reliability of the 64-bit PUF can be improved to over 99% from 72.25% when K = M = 32. Note

11

that in this case, the number of possible challenges will be reduced from 2N to 2N−K+1. For case

3 that we randomly select K challenge bits without sorting (i.e., K < M = N), the reliability also

increases with the increase of K. Furthermore, for a same K, case 1 can achieve higher reliability,

while case 3 will have more possible challenges. The reliability enhancement of case 2 is in between

the performances of case 1 and case 3. Therefore, we can conclude that reliability increases as K

increases for a certain M and decreases as M increases for a certain K, where K ≤ M . Note that

the number of possible challenges has the opposite trends.

Table 2.2. Reliability of PUF before/after Algorithm 1, 2 with N = 64.

Algorithms Reliability

Original 72.25%

Algorithm 2, case 1
K = M = 8 77.10%
K = M = 16 80.52%
K = M = 32 99.01%

Algorithm 2, case 2

K = 8 M = 12 74.61 %
K = 12 M = 16 78.86 %
K = 24 M = 32 96.08%
K = 32 M = 48 100%

Algorithm 2, case 3
K = 8 M = 64 73.50%
K = 16 M = 64 75.57%
K = 32 M = 64 100%

Figure 2.5. Total delay difference distributions of (a) before using the proposed algorithms, (b) after
using Algorithm 1, and (c) after using Algorithm 2.

12

Chapter 3

Enhancement of PUF Response

Error Correction Efficiency

We propose a novel error-rate based methodology to enhance the efficiency of PUF-based

authentication, which is consist of two main steps, i.e., PUF response error-rate estimation and PUF

response processing. The method for PUF response processing is presented in this section, which

can be applied on either the enrollment phase or the authentication phase. PUF response error-rate

estimation should be performed on the enrollment by using machine learning methods. Based on

the estimated error-rate, the information required for PUF response processing can be sent to the

PUF along with the challenge or can be used on the server after collecting the raw PUF response

from the chip. The proposed methodology is extremely suitable for parameter-based authentication,

as the parameters for the PUF model have already been computed which can be directly used to

estimate the response error-rate given a certain PUF challenge. The syndrome or helper data of the

error-correcting methods should be computed based on the sequence after PUF response processing.

The notations used in this work are listed in Table 3.1.

3.0.1 PUF Response Error Correction

One major issue for these PUF-based applications is the reliability, since environmental vari-

ations may fluctuate the PUF response. Conventional error-correcting codes such as BCH codes [13]

and low-density parity check (LDPC) codes, and fuzzy extractors have been employed to improve

13

Table 3.1. Notations Used in the Thesis

Notation Explanation

N bit-length of the PUF response
T maximum number of correctable bits in the error-correcting method
Nt number of bits truncated
Nd number of bits duplicated by
Nb number of bits that bypass the error-correcting method
w weight of each PUF response bit
Nwi number of bits whose weights are equal to i

the reliability of PUFs. The main concept of these techniques is to introduce redundancy into the

PUF response by generating a syndrome or helper data based on an authentic response. In a typical

PUF error correction setting, the error correcting syndrome or helper data is computed based on

this response during the enrollment stage. The syndrome or helper data is public information which

is later sent to the PUF along with the challenges. To re-generate the same PUF output during

the authentication step, the PUF first produces a response from the circuit and then uses the syn-

drome or helper data to correct the errors in the circuit output, if the number of errors is within

the tolerable range. In such as way that the PUF can consistently reproduce the output as in the

initialization step if the device is authentic.

Besides of using ECC or fuzzy extractor, other error-correcting methods for PUF-based au-

thentication have also been exploited in the prior literature. The method of utilizing majority voting

on reducing errors has been demonstrated in [27]. The use of repetition codes along with conven-

tional syndrome generation using XOR masking has been proposed for PUFs in [28]. Soft-decision

encoders and decoders have also been employed to correct PUF response errors [14]. Furthermore,

IBS [14], RWA [15] and pattern matching [29] have also introduced to improve reliability of PUF.

3.0.2 Limitations of Prior Works

In fact, the idea of using ECC for PUF based authentication is adopted from communication

systems where ECC is used for transmitting digital data over unreliable communication channels.

Many communication channels are subject to channel noise that has a certain error probability or

signal-to-noise ratio (SNR), and thus ECC can help correct the errors introduced during transmission

from the source to a receiver. In most of these applications, each bit among the encoded message

is assumed to have a same error-rate. In other words, the error tolerance for each individual bit is

identical. ECC will be able to correct noisy message whose number of errors is less than a certain

14

threshold.

However, for the PUF based authentication, the assumption that each response bit has the

identical error-rate is no longer valid. In practice, the actual PUF response is generated based on both

the sample of manufacturing process variation and the sample of environmental noise. It is important

to note that the sample of the manufacturing process variation is deterministic after fabrication,

which is dependent on the challenge and physical characteristics of the PUF circuit. Thus, even if

we assume the effect of environmental noise on each PUF response bit is consistent, the error-rate

still varies since the sample of manufacturing process variation is different. It is desired to increase

manufacturing process variation to improve the uniqueness, as well as to reduce the environmental

noise to improve the reliability. In fact, several works have been developed to improve PUF reliability

by enhancing the effect of manufacturing process variation. For example, we can select ring oscillator

pairs with large count differences to generate response in a ring oscillator PUF [13] or we can only

use stable memory cells for signature generation in a SRAM PUF [8, 30–32]. These methods lead

to challenge-response pairs (CRPs) with very low error-rate essentially by choosing samples with

large magnitude samples of manufacturing process variation. It can also be proved from another

perspective that the error-rate or the reliability of each PUF response bit is different.

What worth to be noticed from the previous methods is that, we overlooked some important

properties that can be potentially leverage, to improve the efficiency of PUF response error correction

by directly employing the existing ECC to correct errors in PUF response. For example, it is

meaningless to correct very noisy (close to random) bits in a PUF response. Furthermore, applying

error correction mechanism to stable PUF response bits obviously incurs unnecessary overheads.

Other error-correcting methods proposed for PUF based applications in the literature, such as fuzzy

extractor, pattern matching, IBS and RWA [15], also assign identical error tolerance to each PUF

response bit, which do not take the non-uniformity of PUF response bit error-rate into consideration

as well. Additionally, hardware implementations of these methods often incur significant area, power,

and delay overheads, which scale up quickly as the number of bits of correction increases [16].

Therefore, it is possible to improve the performance by treating each PUF response bit

differently based on the error-rate [33]. Intuitively, we can discard or assign a large degree of error

tolerance to a PUF response bit if its error-rate is very high (i.e., the sampled magnitude of the

manufacturing process variation is very small), so that the reliability can be improved. At the same

time, we can assign low or even zero error tolerance to a PUF response bit with a very low error

15

rate which should be stable under different environmental conditions if the PUF is authentic.

3.0.3 False Negative/Positive Rate

The objective of error-correcting techniques for PUF based authentication is to mitigate

the intra-chip variation of an authentic PUF response during the authentication step. However, by

accepting the responses whose Hamming distant to the enrolled PUF response are below a certain

threshold, the number of responses that can pass the authentication is also increased, which will

degrade the security. For instance, number of responses that can be authenticated is increased to

N+1 if one error is allowed for an N -bit PUF response. Basically, the application of error-correcting

techniques for PUF-based authentication exhibits trade-offs between the false negative rate and the

false negative rate, which are defined below:

False negative rate (FN): the possibility of a trustable chip fails the authentication

process due to environmental variation.

False positive rate (FP): the possibility of a untrustable chip is wrongly authenticated

or a random guess attack passes the authentication.

Note that the relationship of the false negative rate and the reliability of a PUF based

authentication can be given by

FN = 1−Reliability (3.1)

We need to reduce the value of FN to improve the reliability. FP is also a measurement related

to the security of PUF-based authentication. Ideally, we would like to achieve very low values for

both FN and FP to improve the performance of the authentication. The value of FN will decrease

as the increase of the error-correcting capability. However, FP will increase, if more errors can be

corrected. The value of FP for an N -bit PUF response with T -bit error correction can be given by

FP =

∑T
i=0

(
N
i

)
− 1

2N
(3.2)

.

16

3.1 Error-Rate Estimation

The extracted response of a PUF is determined by the physical PUF function and the

applied challenge. However, the environment and measurement noise may cause inconsistencies in

the expected CRPs. Further, the noise varies greatly in different conditions. It is hard to accurately

predict the actual error of each PUF response. By using the PUF model and parameters obtained

through the similar procedures in modeling attack and parameter-based authentication, we will

be able to predict the error-rate ranking of each PUF response bit under a certain environmental

variation.

We demonstrate the basic idea by use of the multiplexer (MUX) PUF. The same concept

can be easily adopted to other types of PUFs as well.

3.2 Linear Approximation of Error Probability

3.2.1 MUX PUF Response Error-Rate Estimation

The extracted response of a PUF is determined by the physical PUF function and the

applied challenge. The environmental noise also leads to inconsistencies in PUF response. However,

since the noise could vary significantly under different environmental conditions, it is impossible to

predict the actual error of each PUF response bit precisely. Instead, we will be able to predict the

error-rate ranking of each PUF response bit by using the PUF parameters obtained through the

similar procedures as in modeling attack and parameter-based authentication.

We demonstrate the basic idea with the multiplexer (MUX) PUF, which can also be applied

to other PUFs with slight modifications. A MUX PUF is presented in 2.1. The key observation

from Equation 2.1 is that a larger |rN | leads to a smaller error rate if environmental noise is stable.

As a result, we will be able to rank the error rate of each PUF response bit by using the values of

|rN |.

We plot the relationship between error rate and log2(max(|rN |)|rN |) under different environmen-

tal conditions, as shown in Fig. 3.1. It can be seen that the error rate is linearly proportional to

log2(max(|rN |)|rN |), when error rate is in the range of [5%, 40%]. Since i) using highly unreliable PUF

response bits for authentication is meaningless and ii) applying error correction mechanism to stable

PUF response bits obviously incurs unnecessary overheads, the PUF response bits with error rates

17

in the medium range are exactly the ones we want to correct errors. In fact, in the proposed method,

highly unreliable bits are eliminated and stable bits are directly used for authentication, which will

be discussed in next section. Therefore, we can use the linear property to estimate the relative values

of error rates for different response bits by using log2(max(|rN |)|rN |).

Figure 3.1. Error rate versus log2(max(|rN |)|rN |).

3.3 Response Processing

3.3.1 Response Truncating

As far as we know, if errors in a PUF response exceed the capability of the error-correcting

method, the chip would not pass authenticated. Thus, it is neither efficient nor desirable to use PUF

response bits with very high error-rates for authentication, which will significantly increase the false

negative rate and the design overhead due to the requirement of a stronger error correction technique.

Meanwhile, the false positive rate will also be increased, if we increase the error-correcting capability.

These high error-rate bits can be discarded by using the methods such as challenge selection [34] to

preselect only stable bits for authentication. However, we could still exclude these response bits for

authentication to improve the false negative rate by PUF response processing.

Response truncating method utilizes the pre-obtained error-rate rankings and truncates the

response bits with very high error-rates before error correction. Fig. 3.2 shows an example. Without

loss of generality, we rank the response bits in descending order with respect to the estimated error-

rate. In this example, we only truncate the bit with the highest error-rate, i.e., b10. As a result,

the remaining response bits will have relatively low error-rates, which could reduce the overall false

negative rate. Consequently, a simpler error-correcting method can be applied before authentication

to reduce the design complexity, i.e., the parameters (input length, maximum number of correctable

bits) of the error-correcting method (N,T) can be reduced to (N −Nw0, T). Note that the cost of

most error-correcting methods decreases with the decrease of both N and T . For example, the area

is linearly proportional to the number of tolerated error bits for the design of the BCH codes in [35].

18

Furthermore, we can also reduce T in the error-correcting method to further reduce the cost of the

hardware complexity, while maintaining a similar value of the false negative rate. However, this

method may waste several PUF response bits and increase the false positive rate. The expression of

FP for the case (N −Nw0, T) can be given by

FP =
2Nw0

∑T
i=1

(
N−Nw0

i

)
2N

, (3.3)

which can be shown to be greater than the original value of FP without response truncating. It can

be derived that FP will increase as the increase of Nw0, which exhibit a trade-off between the false

positive rate and the false negative rate.

Figure 3.2. An example for response truncating.

3.3.2 Response Duplicating

If a PUF response bit with a very low estimated error-rate flips, we would suspect that the

received PUF response might come from malicious adversaries. Therefore, we need to assign low

degrees of error-tolerance to these bits.

The main idea of the response duplicating method is to increase the input length to the

error-correcting block by duplicating low error-rate bits, as illustrated by the example in Fig. 3.3. In

this example, two bits with lowest error-rates out of the eight PUF response bits are duplicated. As

a result, each error in the two bits with lowest error-rates will lead to two errors in the input of the

error-correcting block. Thus, the false positive rate can be reduced, if the error-correcting capability

remains the same. The value of FP (false positive) after response duplicating can be expressed as:

FP =

∑Nw2

i=0

∑T−2i
j=0

(
Nw2

i

)(
N−Nw2

j

)
− 1

2N
(3.4)

For example, by duplicating 2 bits with lowest error as shown in Fig. 3.3, with 2-bit error

contestability, the value of FP can be reduced from 0.0537 to 0.0371.

19

Figure 3.3. An example for duplicating algorithm.

3.4 Response Weighting

As we described above, response truncating can reduce the false negative rate, while response

duplicating can lower the false positive rate. It is possible to combine these two methods to reduce

FN and FP simultaneously while achieving an efficiently and reliable error-correcting scheme for

PUF based authentication.

In fact, both of these two methods are equivalent to assigning weights to different PUF

response bits according to the estimated error-rate ranking. Response truncating gives zero weights

to bits with highest error-rates, as these bits are dropped before error correction and eliminated

for authentication. Response duplicating doubles the weight of each duplicated low error-rate bits.

We can also duplicate the bits with low error-rates multiple times, i.e., assign different integral

weights. Higher weights should be applied to bits with lower estimated error-rates. Furthermore,

it is also not necessary to input very reliable response bits which almost never flip under normal

environmental condition to the error-correcting block. If the error-rates of these bits are no longer

negligible under a very noisy environment, the original PUF authentication with all the response

bits would also fail as the number of errors should surpass the error-correcting capability. Therefore,

the false negative would not increase if we use these very reliable bits for authentication directly.

This property also means we can simplify the error-correcting method by reducing the length of

the input by Nw∞ (assume the input length still satisfies the minimum requirement for a certain

T), while these low estimated error-rate bits can bypass the error-correcting method to be directly

used for authentication. In fact, this method is also equivalent to assigning infinite weights to PUF

response bits with extremely low error-rate. Thus, it can be noted that Nw0, Nw2, and Nw∞ are

the same as Nw0, Nw2, and Nw∞, respectively.

We generalize these methods to a so-called response weighting approach. Specifically, each

response bit is assigned a weight according to the estimated error-rate ranking in the PUF response,

ranging from 0, 1, 2, 3, . . ., to ∞. A simple example is shown in Fig. 3.4. The first step is to select

very high error-rate response bit(s) to truncate, i.e., b8 in this example, and very low error-rate

response bit(s) to bypass the error-correcting block, i.e., b0. Then, we assign different weights to the

20

remaining bits, according to the estimated error-rate ranking of these bits. Higher weights will be

assigned to bits with lower error-rates. We can maintain a same input length of the error-correcting

block by choosing the weights appropriately. In this example, we assign weight of 2 to b2 and b1 ,

which have the lowest error-rates in the remaining bits. The length of the resulting sequence is still

9. Therefore, no modification to the error-correcting block is needed in this case.

Figure 3.4. An example for PUF response weighting.

Clearly, the manufacturing process variation of the PUFs will be more significant than the

environmental variation, under a normal condition; otherwise, PUFs would not be considered as

promising security primitives for chip-unique ID generation. In other words, it is safe to say that

most of the PUF response bits will have relatively low error-rates, while there might be only a few

bits have considerable high error-rates in a PUF response. This property can also be verified by our

experimental results as shown in Fig. 3.5. For this 127-bit PUF response, even the noise is increased

to 15% correspondingly, there are still 43 bits that are very stable, i.e., error rates are less than

0.3%, where there are only 11 bits with error rates larger than 20%. Thus, we should use a higher

value of Nb, compared to Nt.

Figure 3.5. The error rate distribution (under a same noise).

A detailed example is illustrated in Fig. 3.6, where N = 127, T = 13, Nt = 4, Nw1 = 95,

Nw2 = 16 Nb = 12. Note that Nt + Nw1 + Nw2 + Nb should be equal to N . The length of the

sequence after the response weighting is Nw1 + 2Nw2 = 127, which is the same as original PUF

response length. For the 127-bits PUF, only 4 PUF response bits with the highest error-rates are

truncated (Nt = 4); 12 bits with the lowest error-rates are directly used for authentication without

any error correction (Nb = 12), while the next 16 bits with relatively low error-rates are duplicated

21

and combined with the rest of PUF response bits for error correction (Nw2 = 16). Our experimental

results show that the false negative can be reduced from 6.5% to 1.5% by using the proposed method.

The expression for the value of FP for this method is shown in Equation 3.5:

FP =
2Nw0

∑Nw2

i=0

∑T−2i
j=0

(
Nw2

i

)(
Nw1

j

)
− 1

2N
(3.5)

It can be calculated that the false positive rate can be reduced from 12.59 × 10−22 to

9.15× 10−22 as well by employing the proposed response weighting.

Figure 3.6. A detailed example of PUF response weighting.

The objective is to assign weights to different PUF response bits so that each weighted bit has

similar error-rate. Therefore, the resulting sequence will have similar characteristics as the messages

transmitted over a communication channel ,which can fully utilize the computational power provided

by the error-correcting methods. However, since we can only assign integral or infinite weights which

is indeed an integer linear programming (ILP) problem, the solution cannot guarantee that all the

weighted response bits will have the exact same weighted error-rate. The objective of the problem

is equivalent to minimize the variance of the weighted error-rate, i.e., V ar(wiei), where wi and ei

represent the weight and the estimated error-rated of response bit i, respectively. Note that the

error-rate for each PUF response bit can be estimated under a certain environmental condition and

can be scaled with the variance of the noise, as solution is only dependent on the relative values or

orders of the error-rate. The ILP problem can be formulated as:

22

{w1, w2, w3...} = arg min
wi

{V ar(wi ∗ ei)}

subject to

N∑
i=1

wi = N

wi ≥ 0

wi ∈ Z or ∞

Since ILP falls into the category of NP-hard, we can use heuristic algorithms such as tabu

search [36], hill climbing [37], and simulated annealing [38] to solve the problem to obtain the

optimized weights. Theoretically, we can assign arbitrary weights to different PUF response bits

according the error-rate ranking. However, a large integral weight would significantly reduce the

entropy. Therefore, we should set an upper bound U to the weight. Weights in the solution exceed

U will be set as infinite.

3.5 Algorithm

The overall algorithm can be summarized in Algorithm 3.

Algorithm 3 Efficient PUF Error Correction through Error-Rate Prediction

1. Obtain PUF parameters through machine learning techniques.
2. Calculate the error-rate for every response bit based on the PUF model and the obtained PUF parameters.
3. Assign weights to the PUF response bits according to the estimated error-rates. Optimized weights can
be solved by an ILP problem.
4. Process the PUF response based on the weights.
5. Compute the syndrome or helper data of the error-correcting block based on the resulting sequence
from Step 4, which will later be used to correct errors during the authentication phase. Store the resulting
sequence for authentication.

Table 3.2. False Negative Rates of PUF-based Authentication before and after Employing Response Trun-
cating

N T Nw0
False Negative Rate

Vintra=5.5% Vintra=7.8% Vintra=8.6%

127 13
0 2.97% 20.60% 31.46%
5 0.21% 6.22% 11.29%

127 12
0 5.76% 30.25% 41.78%
5 1.21% 10.03% 17.27%

127 11
0 10.59% 40.02% 53.63%
5 2.52% 15.26% 25.91%

127 10
0 18.08% 52.08% 65.51%
5 3.53% 23.37% 36.02%

23

Table 3.3. False Negative Rates of PUF-based Authentication before and after Employing Response Dupli-
cating

N +Nw2 T
False Negative Rate

Vintra=5.5% 7.8% 8.6% 10.2% 12.1% 15.0%

127 + 0 13 2.98% 20.89% 31.31% 51.64% 74.21% 92.95%
127 + 8 13 2.98% 20.89% 31.31% 51.64% 74.21% 92.95%

3.6 Experimental Results

We continue to use MUX PUFs in our experiments. We simulate parameters and manu-

facturing process variations in the MUX PUF model based on prior theoretical and experimental

results in [1, 16, 26]. We use linear regression (LR) to estimate the delay difference of each MUX

stage. According to Equation (2), we can calculate the total delay difference for a given challenge,

i.e., rN . Then, we can rank the error rates of the PUF response bits by using the reverse order of the

absolute values of rN , i.e., |rN |. We vary the environment variations and parameters in the propo-

sed method to examine the performances of the proposed algorithms under different environmental

conditions, which are characterized by the PUF intra-chip variations.

We examine the performances of different weight assignments, which are summarized in

Table 1. Here, we set the weight limit U = 3 so that only 5 possible weights can be assigned, i.e.,

0 (truncate), 1 (keep same), 2 (duplicate once), 3 (duplicate twice) and . . . ∞ (no correction and

directly used as key). The weights obtained by solving the optimization problem (i.e., Nw0 = 9,

Nw2 = 7, Nw3 = 14, Nw∞ = 26) are also included.

It can be concluded from Table 1 that the false negative rate can be significantly reduced

by using the proposed methods. In addition, it can be observed that the optimal weights lead

to the lowest false negative rate. It can also be seen from Fig. 3.7 that the false negative rate

decreases as the increase of error correctability, T . We plot the relationship between false negative

rate and T as shown in Fig. 3.7. However, the area complexity of the error-correction also increases,

since the costs of most error-correcting methods increase with the increase of both N and T . For

example, the area is linearly proportional to the number of tolerated error bits for the design of the

BCH codes in [35]. Therefore, we will be able to reduce the cost of the error-correction hardware

implementation by employing the proposed method. According to our experimental results, we can

reduce the error-correctability from 13 to 8 to save the hardware cost, while maintaining similar

false negative rates.

24

Figure 3.7. False negative rate versus ECC correctability T .

The false positive rate will also be affected by using the proposed method. For example,

when Nw0 = 4, Nw2 = 10, Nw3 = 3, Nw∞ = 12), both the false negative rate and the false positive

rate will be reduced, compared to the conventional error-correction. However, the optimal weights

lead to slightly larger false positive rates, as the objective of the optimization problem is to minimize

the false negative rate instead of the false positive rate. As a result, the specific weight assignment

strategy should be chosen carefully based on the application requirement.

Table 3.4. False negative/positive rates of PUF-based authentication before and after employing response
weighting with different weights

N T Nw0 Nw2 Nw3 Nw∞
False Negative Rate

False Positive Rate
Vintra = 5.5% 7.8% 8.6%

127 13

0 0 0 0 2.97% 20.60% 31.46% 1.26×10−21

5 5 0 0 0.36% 5.72% 11.73% 1.42×10−20

4 16 0 12 0.50% 8.26% 14.59% 5.38×10−22

4 10 3 12 0.56% 7.72% 14.59% 1.08×10−21

4 6 5 12 0.16% 6.72% 12.60% 1.70×10−21

9 7 14 26 0.04% 1.71% 4.14% 3.42×10−21

127 10

0 0 0 0 18.08% 52.08% 65.51% 1.34×10−24

5 5 0 0 3.73% 22.77% 35.32% 1.92×10−23

4 16 0 12 5.19% 28.51% 41.45% 1.28×10−24

4 10 3 12 5.25% 28.58% 41.74% 2.24×10−24

9 7 14 26 0.61% 9.42% 16.98% 1.22×10−23

127 8

0 0 0 0 40.76% 75.96% 83.49% 8.44×10−27

5 5 0 0 12.52% 46.10% 59.51% 1.41×10−25

4 16 0 12 16.17% 52.79% 64.57% 1.40×10−26

4 10 3 12 16.35% 51.94% 65.02% 2.21×10−26

9 7 14 26 3.41% 22.47% 36.73% 1.73×10−25

It can be concluded from Equation (4) that the false positive rate decreases with the increase

of Nw∞, since the security will be improved if more bits are assigned zero error-tolerance. Fig. 3.8

shows the relationship between the false negative and Nw∞ when T = 20. It can be seen that the

25

false negative rate remains the same when the Nw∞ is less than 10 for a 127-bit PUF response. This

is due to the fact that these bits are very stable so that use these bits directly as the key would

not fail the authentication. However, false negative rate could increase when the value of Nw∞

becomes relatively large, e.g., 40, which will affect the performance of the PUF-based authentication

adversely.

Figure 3.8. False negative rate versus infinity weight (by-passing) Nw∞ (T = 20).

We also plot the relationship between the false negative rate and the value of Nw0, as shown

in Fig. 3.9. Note that Nw2 needs to be increased by Nw0 to maintain the same PUF response length.

We can see that the false negative rate can be significantly reduced by increasing Nw0, as more

unreliable bits are eliminated. However, the total combinations of the weighted PUF response will

decrease.

Figure 3.9. False negative rate versus weight 0 (truncating) Nw0.

In summary, by using the proposed response weighting, the false negative rate and the false

positive rate can simultaneously be reduced by assigning the weights to different PUF response bits

26

appropriately, while the lowest false negative rate can be obtained by solving the integer quadratic

programming problem as formulated in Equation (3).

27

Chapter 4

Modeling Attack PUF by Active

Learning

Security and uniqueness are essential to a PUF’s performance against attacks. In the past

decades, numerous hardware security techniques have been proposed, which include authentication

based hardware protection approaches [39], logic obfuscation [40], secure manufacturing and tes-

ting [41, 42], side-channel countermeasures [43, 44], and methods for detecting malicious hardware

Trojan insertions [45,46]. Of these, PUF is a promising security primitive that extracts secrets from

complex properties of a physical material rather than storing them in a non-volatile memory.

With the rapid advancement of hardware security techniques, however, the incentive for

defeating them also increases. Various effective countermeasures or attacking methods targeting

these hardware protection methods have also been developed [26, 47–50]. The main challenge of

hardware protection is that the adversary may access to the devices physically, which has made

non-invasive or semi-invasive attacks on hardware devices as critical threats [51]. On the other

hand, machine learning has been quite pervasive in a wide range of applications in recent years,

such as robotics, natural language processing, healthcare, economics, and marketing [52]. Although

such algorithms have already been applied to the security field, mostly as a means of attack [21,23].

Unsurprisingly, they are quite powerful making them particularly threatening to existing hardware

security techniques. Modeling attack using machine learning algorithms on PUFs for example can

compromise most PUFs that previously were deemed ”strong” [21].

28

To maintain the competitive edge requires retooling hardware security techniques with these

start-of-the-art attacking methods. In this work, we study the applications of active learning, a

subfield of machine learning, on PUF modeling attacks. While active learning is well established

in software or network security [53–56], it is rarely used in hardware security, with IC camoufla-

ging [57] and SAT-based deobfuscation [58] the only hardware security related applications. Even

though various machine learning methods have been applied to attack different types of PUFs in

the literature, modeling attack by active learning remains unexploited. We argue that passive le-

arning methods might fail to capture the true costs of attacks on PUF carried out by intelligent

and adaptive adversaries. The main contribution of this wok is to leverage the advantages of active

learning to improve the efficiency of modeling attacks, which is of great importance in practice if

modeling attack requires a cost that is proportional to the number of test vectors (i.e., PUF CRPs).

Besides, we also describe the strategies for selecting parameters employed in active learning, which

are specific to the applications of PUF modeling attacks under different environmental conditions.

4.1 Active Learning

Active learning is a subfield of machine learning in which data with the highest uncertainty

are trained, while avoiding sampling data with labels implicitly determined, as opposed to passive

learning that selects samples randomly [53, 56]. Uncertainty sampling and query-by-committee are

two popular query strategies. Uncertainty sampling [56] measures the confidence of the classifier on

candidate instances, which adaptively selects the instances with the least confidence for training.

Query-by-committee [56] measures the agreement among a committee of classifiers and then selects

the instances with the highest disagreement, it is very effective in reducing the amount of training

data required by having highly uncertain instances annotated as training samples. For example,

active learning techniques can reduce the annotation costs of parse selection by 73% [59]. Active

learning is also well motivated in security applications where data are abundant but labels are few

or expensive to obtain (e.g., intrusion detection/spam filter) [54,59,60]. Companies such as Google

are already using active learning approaches to minimize the instance for tasks such as labeling

malicious advertisements and phishing pages [61].

29

4.2 PUF Modeling Attack Using Active Learning

The modeling of each response bit can be considered as a multi-input binary classification

problem. For a MUX PUF, the output label is determined by the sign of the total delay difference

rN before the arbiter. Therefore, rN = 0 or the sign() function ideally should be modeled as the

class boundary by a modeling attack. Each challenge essentially corresponds to a sample in the

distribution of total delay difference. In other words, each CRP has different entropy, e.g., challenge

with a smaller absolute value of total delay difference is closer to the arbiter boundaries and is more

informative. As a result, we can leverage the advantages of active learning to improve the efficiency

of PUF modeling attacks, as opposed to using passive sampling with randomly selected CRPs.

4.2.1 Active Learning Scenarios

Membership Query Synthesis
Model generates

a query

Stream-based Selective Sampling

Pool-based Sampling
Model selects
the best query

 Instance
space or input

distribution
sample an instance

sample a pool of instances

Model decides
to query or discard

Train the
labeled
query

Figure 4.1. Scenarios of active learning. 1) Membership query synthesis: the learner generates label to
query; 2) Stream-based selective sampling: the learner decides whether to query or discard an instance after
drawing it randomly from the distribution; 3) Pool-based sampling: queries are selectively drawn from the
pool by a model.

In the context of PUF modeling attack, we usually consider the adversarial threat model

that the adversary can query the PUF oracle for response to a challenge c ∈ Q, where Q is a

pool of candidate challenges and is polynomially bounded. The adversary then needs to predict

the response for a future challenge that is not in Q. This threat model fits in a scenario where an

adversary can only eavesdrop the CRPs being used for authentication and try to use the collected

CRPs to reconstruct the PUF model. In this case, the challenges used for training are usually

assumed given or randomly selected in prior works. However, if we consider a stronger adversarial

threat model that the adversary can query arbitrarily, randomly selecting the CRPs for training

obviously is not optimal. An intelligent and adaptive adversary would use the current information

in each iteration to obtain a lower prediction error with a bounded number of CRPs. We can also

consider the scenario that the number of query is unbounded but each query requires a cost. In this

30

case, it is important to improve the efficiency of modeling attacks.

Fig. 4.1 shows the three most common scenarios. The scenarios of stream-based selective

sampling and pool-based sampling fit the threat model of PUF modeling attack perfectly, as respon-

ses are usually difficult or expensive to obtain, but challenges are ample. In this work, we consider

the pool-based sampling active learning scenario for PUF modeling attack. The adversary tries to

sample the most informative or efficient instances from a given pool of challenges to query for the

response and then use them for training.

4.2.2 Sampling Strategies

4.2.2.1 Uncertainty Sampling

The simplest and most commonly used query framework in active learning is uncertainty

sampling. In this framework, an active learner queries the instances whose labels are the least certain.

Various heuristic uncertainty metrics have been proposed to select the samples in active learning.

Since PUF modeling attack only involves binary classification problems, most of these uncertainty

metrics (e.g., least confidence, marginal sampling, and entropy) may have a similar performance.

In this work, we use marginal sampling to perform the uncertainty sampling. The score for each

challenge c is computed by CM = arg min
c
{|Pθ(R0|c) − Pθ(R1|c)|}, where Pθ(R0|c) and Pθ(R1|c)

represent the probabilities of the response bit (0 or 1) for challenge c according to the current PUF

model. In each iteration, we always select the CRP with the highest score among the remaining

candidates in the pool.

4.2.2.2 Estimated Error-Rate as the Uncertainty Metric

We can also develop a PUF-specific uncertainty metric for active learning. For example, by

using machine learning algorithms, we can estimate the delay difference of each stage of MUX PUF

after collecting a number of CRPs. Then we will be able to rank the error-rate (i.e., 1−Reliability)

of each sample according to the estimated total delay difference, |rN |. The error-rate of each PUF

response bit is similar to the uncertainty metric, which can be used for selecting samples in active

learning. Essentially, a challenge leads to a smaller |rN | would have a higher value of the uncertainty

metric.

31

4.2.2.3 Query-by-Committee

An alternative yet more theoretically-motivated sampling strategy framework is query-by-

committee (QBC) [62]. The QBC approach involves maintaining a committee of models on the

same labeled set, but represent competing hypotheses. Each committee member then votes on the

labelings of the candidates. The most informative query is considered to be the instance which they

most disagree. In the literature, various ensemble learning methods have also been invented [63].

In this work, we examine the performance of QBC strategy with entropy query-by-bagging (EQB)

learning method [64], which combines entropy sampling and query-by-bagging.

Figure 4.2. A MUX PUF total delay difference distribution.

4.2.3 Noisy PUFs

Noisy PUFs are similar to noisy oracles, which may present in both adversarial and non-

adversarial settings. More details about noisy PUF are studied in Chapter 5. Intuitively, conven-

tional active learning is not advantageous for learning noisy PUFs. As shown in Fig. 4.2, CRPs in

the regions that are more informative also have higher error rates. Thus, active learning tends to

select a large amount of mislabeled CRPs in a noisy condition, which consequently leads to high

prediction error. Therefore, it is important to study the implications between informative instances

and mislabeled instances.

Table 4.1. Prediction error (%) of active learning with different sampling strategies (under different
environmental variations)

Sampling strategy
V arintra: 3.5% V arintra: 13.5%

Number of CRPs in training set Number of CRPs in training set
350 550 1250 1750 6000 350 550 1250 1750 6000

Random 11.50 8.10 6.12 5.90 4.30 17.62 15.18 12.42 11.70 11.12
Marginal 8.85 6.30 4.77 4.62 4.53 16.53 13.60 12.00 11.85 11.80

EQB 9.35 5.90 4.75 4.33 4.20 15.37 13.12 12.10 11.59 11.98
Error rate-based 7.28 5.52 4.07 3.43 2.70 11.60 10.85 10.27 10.32 10.38

We describe two query strategies for noisy PUFs.

32

4.2.3.1 PUF response Majority Voting

The first method is to use majority voting to improve the quality of PUF CRPs under a

noisy condition, before employing the active learning. The label is determined by the majority after

querying the same instance K times. However, this method would increase the number of queries

per CRP from 1 to K. In other words, if the total number of queries are bounded, the number of

CRPs will be reduced to 1
K of the original number. Therefore, the value of K needs to be selected

appropriately to guarantee sufficient samples as well as high quality data.

4.2.3.2 Eliminate Unreliable CRPs by thresholding

Instead of always using the least confident CRP (also with the highest error rate) for training,

we can use the T -th least confident CRP to reduce the impact of mislabeled responses. In this case,

the most (T − 1) unreliable CRPs will be excluded from training, where the reliability or the error

rate is predicted by the current learned PUF model, which is similar to several prior works on

improving PUF reliability [31, 32]. For example, a machine learning based method was proposed

in [22] to enhance the PUF reliability by setting a lower-bound threshold of estimated |rN | for the

CRPs. Similar methods can be applied to eliminate unreliable CRPs as a pre-processing step. As

a result, the prediction error can be reduced. By using the estimated error rate as the uncertainty

metric, we can establish an absolute value of threshold T for the estimated total delay difference,

i.e., only the CRPs with |rN | > T will be used for training. We can also use a percentage threshold

T% in eliminating unreliable CRPs if given a pool (assume the candidate CRPs in the pool are

randomly drawn). We can always select the dT%× SP e-th least confident CRP to query and train

in each iteration, where SP is the size of the remaining candidate pool.

4.3 Experiments

In this section, we present the experimental results of incorporating active learning techni-

ques into modeling attack on a 64 stage MUX PUF. In addition, the proposed methods can also be

applied to other kinds of PUFs. We employ the pool-based active learning scenario and randomly

generate a sufficient number of CRPs as the sampling pool. Among them, 200 CRPs are randomly

selected as the initial training set, while 6000 CRPs are used for testing. We examine the perfor-

mance of marginal sampling (MS), entropy query-by-bagging (EQB), error-rate based sampling (ER)

33

under different environmental conditions (intra-chip variations V arintra = 3.5% and 13.5%) along

with the proposed strategies for noisy PUFs. We use support vector machine (SVM) to train the

instances with an iteration step of 20, i.e., the PUF model and the uncertainty metric are updated

after every 20 CRPs.

Figure 4.3. Prediction error of different sampling strategies.

4.3.1 Sampling Strategies

The performances of different methods with cross-validation are shown in Fig. 4.3. It can

be seen that the prediction errors of modeling attack on a MUX PUF vary with different sampling

strategies. All of these active sampling strategies show superior performance compared to random

(passive) sampling. For example, after trained with 1250 CRPs, the prediction error of random

sampling is only 6.12%, while the prediction errors of MS, EQB, and ER are 4.77%, 4.75%, 4.07%,

respectively. To obtain a prediction error of 5% (V arintra = 3.5%), 2790 CRPs are required in passive

learning, while only 811 CRPs are required in active learning. The random sampling performs better

compared to MS for large datasets, as MS could be negatively influenced by information overlap [65]

and noisy information. The prediction errors at several data points are summarized in Table 4.1.

4.3.2 Active Learning under Noisy Conditions

As we discussed above, the performance of active learning will be degraded if the oracle is too

noisy. Our experiments show consistent results. When the noise is large (e.g., V arintra = 13.5%),

the EQB actually perform poorer than the random sampling, as shown in the inset of Fig. 4.3.

We investigate the trade-offs between active learning efficiency and prediction error by using the

proposed approaches.

34

4.3.2.1 PUF Response Majority Voting

We use the PUF response voting approach to pre-process the CRPs and then employ EQB

as the active learning sampling strategy. Fig. 4.4 shows the results under V arintra = 3.5% with

K = 1, 3, and 5. It can be seen that the prediction error is improved after implementing majority

voting on CRPs. If we consider a same number of queries (number of queries = number of CRPs ×

K), the majority voting pre-processing step still exhibit advantages when number of queries is 3000,

i.e., the prediction errors are 4.37%, 4.30% and 3.26% for K = 1, 3, and 5, respectively. Note that

the performance of majority voting will be degraded, if the number of CRPs is too small. Thus,

the value of K should be chosen according to the environmental conditions and the limit of query

numbers.

Figure 4.4. Prediction error of PUF response majority voting.

Figure 4.5. Prediction error of different threshold values.

4.3.2.2 Eliminate Unreliable CRPs by Thresholding

An alternative method is to delete the least confident CRPs in the candidate pool by using

the proposed thresholding methods to improve data quality. The confidence is computed by the

uncertainty metric in different sampling strategies or by using the estimated total delay difference.

35

The results for V arintra = 3.5%, which is a typical error rate of PUF applications, are shown

in Fig. 4.5. It can be observed from Fig. 4.5 that the prediction error reduces from 4.42% to 2.43%

after deleting 1.7% CRPs with the least confidence in the candidate pool. In this case, most of the

mislabeled data are deleted. However, if we further increase the threshold, the final prediction error

will increase, as the most informative CRPs are also deleted. Therefore, when using active learning

for PUF modeling attack under noisy environmental conditions, the threshold T should be selected

appropriately. On one hand, if the threshold is too large, the remaining CRPs will not be very

informative which would lead to poorer learning performance. On the other hand, if the threshold

is too low, there are still a large number of error-injected CRPs in the candidate pool, which would

reduce the learning efficiency as well as the modeling accuracy. The value of T should increase with

the environmental noise.

36

Chapter 5

Noisy PUF

5.1 PUF Security

With the rapid advancement of hardware security techniques, however, the incentive for

defeating them also increases. Various effective countermeasures or attacking methods targeting

these hardware protection methods have also been developed [26,47–50]. On the other hand, machine

learning has been quite pervasive in a wide range of applications in recent years, such as robotics,

natural language processing, healthcare, economics, and marketing [52]. Many modeling attack

techniques were developed, as presented in 2.2.1.1, including some state-of-art modeling attack

techniques. For example, the active learning can be used to modeling attack MUX PUF with

limited resources [66]. Unsurprisingly, they are quite powerful making them particularly threatening

to existing hardware security techniques. As we discussed in previous chapters, modeling attack using

machine learning algorithms on PUFs for example can compromise most PUFs that previously were

deemed ”strong” [21].

Along with these attacking methods, various countermeasures have also been developed

in recent years to improve the resistance of PUF against modeling attacks: 1) The first approach

is to increase the learning complexity by adding non-linearity, including feed-forward PUF (FF-

PUF) [67], XOR PUFs [5,13,68–70], non-linear mirror current based PUF [71], subthreshold current

array PUF [72], double-layer strong PUF [73], coin flipping PUF [74], etc. However, these methods

would significantly degrade the reliability under noise environmental conditions. 2) The second cate-

gory uses the concept of obfuscation, which masks the challenge, response or some other information

37

of a PUF to improve its resistance against modeling attacks [75, 76]. Protocol-level access control

techniques that limit the direct exposure of CRP information have also been proposed, such as con-

trolled PUF [26] and server-managed CRP lockdown protocol [77]. 3) Recently, several methods for

developing cryptographically-secure PUFs have been proposed, which integrates emerging crypto-

graphic techniques such as learning parity with noise (LPN) and learning with errors (LWE) [78,79].

However, these methods suffer from very significant overhead.

Besides machine learning techniques, side-channel attack (SCA) has also been utilized to

infer the secret information of a PUF. For example, SCA can directly infer the value of each path

before the XOR operation in a parallel XOR PUF [80]. Consequently, modeling attack can be

applied to each PUF and hence the overall XOR PUF is compromised. Furthermore, this hybrid

SCA/ML attack is also extremely effective in compromising obfuscation based techniques, since it

could obtain the internal values of these PUF circuit so that the original PUF is isolated from

pre/post processing components [26,80–82].

Researchers have developed several methods to protect PUF from side-channel attacks by

reducing the correlation coefficient between data and physical signal variations. A masked advanced

encryption standard PUF was proposed for hardware authentication against hybrid SCA [83]. In [84]

a logic style that has constant power consumption and a place and route approach have been used to

protect IC. The lightweight PUF unitizes parallel PUF structures to make PUF resistant to circuit

faults, reverse engineering and other security attacks.

5.1.1 Contribution

According to the discussion above, one promising direction for developing efficient yet secure

PUFs entails increasing the complexity of the underlying PUF circuit (i.e., the first category).

However, most of these prior methods essentially trade reliability for security. For instance, the noise

on each branch of a parallel XOR PUF contributes to the overall reliability, which makes the PUF

extremely sensitive to environmental conditions. Furthermore, a small hamming distance between

multiple PUF evaluations may result in very large Hamming distance after pre/post-processing

(e.g., Hash function). Theoretically, if we further increase the nonlinearity or the effect of noise

(i.e., approaching to a true random number generator), the challenge-response behavior would not

be possible modeled, since it is dependent on the unpredictable environmental noise. However, these

outputs are not consistent under different evaluations, which cannot be used as chip signature.

38

In this section, we propose a novel concept, noisy PUF, which achieves high security and

high reliability simultaneously. The concept is based on observations that only a small subset of

reliable CRPs are required in most applications and the reliability varies among different CRPs. In

other words, a modeling attack resistant yet unreliable PUF is still usable, if the designer can find

out which CRPs have sufficient degrees of reliability. The proposed methodology is extended from

prior works on reconfigurable PUFs [85], which have mechanism to update the challenge-response

pairs unpredictably.

5.2 Methodology

The overall methodology for the proposed noisy PUF is summarized in Fig. 5.1. We utilize

the one-time-programmable (OTP) memory [86] to control the configure data of a reconfigurable

PUF. After fabrication, the default values of the OTP memory configure the PUF into a reliable

PUF, which is similar to conventional PUFs that are reliable but easy to model. The PUF is modeled

using machine learning based on our previous works [22, 66]. The parameters of the reliable PUF

circuit are obtained. In most cases, the modeling attack can achieve nearly 100% accuracy with a

small number of CRPs under a stable test environment, especially with the help of active learning

as we described in [66].

Then, the PUF is reconfigured using the OTP by the designer or though a trusted vendor.

It has been reported in prior works that if certain randomness properties can be met, PUFs can

be impervious to general machine learning attacks [5, 73, 75, 78]. Therefore, reconfigurable PUF

designs that can configure a conventional reliable PUF to one of these structures with sufficient

randomness can be adopted in the proposed methodology. The objective is to create sufficient

amount of inherent randomness and produce highly nonlinear model to prevent modeling attacks

from deriving the model precisely with a reasonable number of CRPs. For example, we can configure

a linear MUX PUF to highly nonlinear feedforward PUFs with a large number of feedforward paths

by using the reconfigurable blocks developed in [85]. Most of the CRPs generated by the reconfigured

PUF will be unstable, which could make the modeling attack much different to perform. Thus, the

reconfigured PUF could achieve high resistance to modeling attacks during application.

However, in the proposed scheme, it is still feasible for the designer to obtain several reliable

CRPs by using the circuit parameters from the reliable CRPs before configuration. Note these

39

PUF

Noisy
PUF

CRPs

Programming

Machine
Learning

One-time program

PUF
parameters

User
CRPs

Select
CRPs

For Security For Reliabilty

 Modeling

Figure 5.1. The configuration flow of the proposed noisy PUF.

information are not public, which are extremely difficult to infer during application as the adversary

can only access to the noisy PUF. The OTP prevents the adversary from configuring the PUF

to the reliable PUF again. In the proposed methodology, only these reliable CRPs are used for

authentication. Although the environmental noise can vary significantly, it is fair to assume a

similar noise level as common TRNGs. Therefore, it is essential to analyze the underlying model to

obtain a lower boundary of the required inherent randomness under this assumption. The modeling

attack resistance should relate to the number of non-linear components in a PUF design (e.g., ways

of XOR PUF or number of reconfigurable components). In this work, we use the delay based arbiter

PUFs as an example to illustrate the proposed methodology. For example, as shown in Fig. 5.2

that the delay difference of different CRPs in an arbiter PUF follows a nonuniform distribution, the

reliability of each CRP varies. Therefore, although the overall reliability of the reconfigured noisy

PUF will be very low, the selected reliable CRPs (e.g., CRPs that are far away from the decision

boundary in this case) can still maintain a high degree of reliability.

(a)

(b)

Figure 5.2. (a) The concept of noisy PUF: increase the intra-chip variation so that the data for modeling
attack are too noisy to form an accurate model, while only a small portion of the reliable CRPs are used for
authentication. (b) Situating the noisy PUFs.

We situate the proposed noisy PUF in Fig. 5.3.

40

Noisy PUF

Accuracy
R

e
li
a

b
il
it

y
Unknown

Normal PUF

low high
h

ig
h

Figure 5.3. The noisy PUF reliability vs modeling attack accuracy.

5.3 Case Study: Reconfigurable Delay-Compensation PUF

A possible method for increasing the inherent randomness of a PUF is to compensate the

total delay difference of aa arbiter PUF under a specific challenge. In particular, we propose to

build the delay compensation scheme based on the design of reconfigurable feed-forward PUF, as

shown in Fig. 5.4. The delay difference of each stage can be estimated by using machine learning

techniques on the reliable linear arbiter before the reconfigurable. Then, the designer can configure

each reconfigurable feed-forward path accordingly to reduce the magnitude of total delay difference,

i.e., reduce the reliability under the same environmental condition. For example as shown in Fig. 5.4,

if the accumulated delay difference from the 0 -th to the f -th stages is positive/negative (i.e., the

top path faster/slower than the bottom path), a feed-forward path is used as the path selection

bit of the (f+d)-th stage, which selects the paths such that the top path between the (f+1)-th

and the (f+d)-th stages is the slower/faster than the bottom path. Consequently, the total delay

difference is compensated. This method not only introduces non-linearity by adding feed-forward

path, but also amplifies the effect of noise by reducing the magnitude of total delay difference. A

considerable number of reconfigurable feed-forward paths needs to be inserted into the original arbiter

PUF to meet the randomness requirement. The starting and ending stages of each reconfigurable

feed-forward path can be chosen arbitrarily by the designer. In our experiment, we always use

reconfigurable feed-forward paths with length d.

41

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

Challenge
C[0] C[f] C[N-1]C[f+2]

1

1

0

0

1

1

0

0

Arbiter

OPT2 = Sign (△f+d)

Stage △f+d

…

C[f+1] C[f+d]

…
A

rb
ite

r
…

XNOR

10

OTP1

(default 0)

Figure 5.4. One reconfigurable feed-forward path of the proposed reconfigurable delay-compensation
PUF.

5.3.1 Reconfiguration

There are two phases of the reconfigurable PUF: designer phase and user phase, which

correspond to reliable PUF and noisy PUF, respectively. The proposed reconfigurable algorithm is

shown below. We continue to take the reconfigurable feed-forward path in Fig. 5.4 as the example.

In the designer phase, both OTP1 and OTP2 are in the default state, 0, which configure the PUF

as a linear arbiter PUF. Based on the estimated delay difference of each stage by using machine

learning, the designer can estimate the total delay difference after each stage for a given challenge.

In the proposed scheme, we program the OTP memory such that OTP1 = 1, OTP2 = sign(∆f+d).

Thus, in the user phase, the PUF is reconfigured into a noisy feed-forward PUF, with the path

selection bit of the (f+d)-th stage equals to sign(rf)� sign(∆f+d).

Algorithm 4 Delay-compensation PUF Configuration

Designer Phase:
1. Default the values of all the one-time-programable (OTP) memories as 0;
2. Obtain parameters of the MUX PUF, ∆i;
3. Select reliable CRPs;
4. Program OTP memory OTP1 = 1, OTP2 = sign(∆f+d), accordingly;
User Phase:
1. Reliable CRPs are used for authentication.

After reconfiguration, since the delay difference of each stage is unchanged, the designer can

still use these parameters but with the updated model to estimate the overall total delay difference

for a given challenge. We will only use the challenges which generate the magnitude of total delay

difference that is greater than a preselected threshold for authentication.

42

5.3.2 Experimental Results

Fig. 5.5(a) and Fig. 5.5(b) show the delay difference distribution in the designer phase and

the user phase of a reconfigurable delay-compensation PUF with 64 stages and 4 reconfigurable

feed-forward paths. It can be seen that the reliability is decreased from 97.2% to 82.4% after

reconfiguration. However, if we only use reliable CRPs, we can still achieve a very high reliability

of 98.8% as shown in Fig. 5.5(c).

5.3.3 Attack using Random CRPs of Delay-compensation PUF

Table 5.1. Prediction Error Rate of the normal PUF and the noisy PUF under the same environmental
conditions (N=64 bits)

Phase d (Distance) Attack
Prediction Error Rate

Reliability
450 1000 2000 5000

Designer NA Active Learning 7.4% 5.2% 4.6% 4.5% 97.2%

Attacker
4 Active Learning 27.8% 24.8% 23.3% 23.8% 98.8%
6 Active Learning 12.6% 10.4% 10.1% 10.0% 99.0%

To verify the the effectiveness of the proposed reconfigurable delay-compensation PUF, both

conventional passive learning and active learning techniques mentioned in Chapter 4 are employed.

Fig. 5.6(a), Fig. 5.6(b), and Fig. 5.6(c) show the accuracy of modeling attack on the reliable PUF,

noisy PUF compensated every 4 and 6 stages, respectively. It can be seen that the resistance to

modeling attack is significantly increased by the noisy PUF, while reliable CRPs still yield high

reliability. We also test the accuracy of the estimated model with only reliable CRPs. In our expe-

riments, we use random/reliable CRPs as the training set, while other reliable CRPs are considered

as the test set. Fig. 5.7(a) and Fig. 5.7(b) show the modeling attack accuracies using random CRPs

and reliable CRPs, respectively. It can be seen that the accuracy is still relatively low. Under this

circumstance, for example, an ECC with 5% ∼ 10% error-correcting capability can be integrated

into the authentication. Thus, the authentic noisy PUF with the reliable CRPs can pass the au-

thentication, while the modeled PUF would fail. Therefore, we can conclude that this PUF is secure

yet functional.

43

(a) Delay difference distribution for the reliable PUF

(b) Delay difference distribution for the noisy PUF (d = 4)

(c) Delay difference distribution for the noisy PUF (d = 4)
with only reliable CRPs

Figure 5.5. The delay distribution of proposed reconfigurable delay-compensation PUF.

44

0 2000 4000

Number of CRPs in Training Set

5

10

15

P
re

d
ic

ti
o

n
 E

rr
o

r
[p

c
t]

Passive Learning
Active Learning

(a) Normal PUF

0 2000 4000

Number of CRPs in Training Set

20

22

24

26

28

P
re

d
ic

ti
o

n
 E

rr
o

r
[p

c
t]

Passive Learning
Active Learning

(b) Delay-compensation PUF (compensated every 4 stages)

0 2000 4000

Number of CRPs in Training Set

9

10

11

12

13

P
re

d
ic

ti
o

n
 E

rr
o

r
[p

c
t]

Passive Learning
Active Learning

(c) Delay-compensation PUF (compensated every 6 stages)

Figure 5.6. The prediction error of the proposed delay-compensation PUF.

45

0 2000 4000

Number of CRPs in Training Set

19

20

21

22

23
P

re
d
ic

ti
o
n
 E

rr
o
r

[p
c
t]

Passive Learning
Active Learning

(a) Model trained by random CRPs and tested by selected
reliable CRPs (delay compensated every 4 stages)

0 2000 4000

Number of CRPs in Training Set

19

20

21

22

23

24

P
re

d
ic

ti
o
n
 E

rr
o
r

[p
c
t]

Passive Learning
Active Learning

(b) Model trained by reliable CRPs and tested by reliable
CRPs (delay compensated every 4 stages)

Figure 5.7. The prediction error of the proposed delay-compensation PUF.

46

Chapter 6

Conclusions and Discussion

Physical Unclonable Functions (PUFs) are promising physical security primitives. This the-

sis focuses on the improvement of reliability of PUF-based authentication, efficient error correction

on PUF responses, using active learning on PUF modeling attack, and the design of a novel concept

of secure PUF.

This thesis has presented a novel methodology to improve PUF reliability by using machine

learning. The methodology has demonstrated on MUX PUF. And two algorithms are developed,

i.e., total delay difference thresholding and sensitive challenge grouping, to enhance MUX PUF re-

liability. Experimental results have been presented to validate the effectiveness of the proposed

algorithms. Then, a novel methodology is proposed to incorporate the non-uniformity of PUF

response error-rates across different bits into PUF response error correction to improve the per-

formance of PUF-based authentication. The error-rate of each individual response bit is obtained

through PUF model parameter estimation by using machine learning techniques. Several methods

have been proposed, i.e., response truncating, response duplicating, and response weighting. The per-

formances of the proposed methods have been studied. We have shown that the response weighting

would be able to reduce both false positive rate and false negative rate for a PUF-based authentica-

tion scheme, compared to conventional error-correcting method. We have also demonstrated several

examples of integrating the estimated error-rate consideration into the design of the error-correcting

block, which could enhance the overall security and reliability of PUF-based authentication as well.

This thesis has also presented a novel framework for incorporating active learning techniques into

hardware security field. The active learning techniques is evaluated by modeling attack the PUF un-

47

der different environment conditions. We demonstrate that active learning can significantly improve

the learning efficiency of PUF modeling attack. The sampling strategies and detailed applications

of PUF modeling attack under various environmental conditions are also discussed. The proposed

framework leverage the advantages of active learning to improve the efficiency of modeling attacks,

which is of great importance in developing secure PUFs.

Finally, this work has presented a novel concept of secure PUF, the noisy PUF. Based on

the circuit parameters obtained from PUF modeling, we reconfigure PUFs using the OTP before

configuration, which makes PUF relatively unstable and hard to model. Meanwhile, it is feasible for

the designer/user to obtain several reliable CRPs by using the circuit parameters from the reliable

CRPs before configuration, thus, the reliability of PUF-based authentication is still relatively high.

A possible case, delay-compensation PUF is presented. The results show that delay-compensation

PUF has good resistance to passive/active learning, and it still has relatively high reliability.

6.1 Future Work

Better reliability and security with low overhead are the goals of PUF design. Future work

will focus on exploring new designs of the proposed noisy PUF. One possible design is to add highly

non-linear blocks into the reconfigurable PUF, which will be bypassed before reconfiguration. In

addition, theoretically-proved secure cryptography such as learning-with-error (LWE) can also be

incorporated into the proposed noisy PUF methodology.

48

Bibliography

[1] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Identification and authentication
of integrated circuits,” Concurrency and Computation: Practice and Experience, vol. 16, no. 11,
pp. 1077–1098, 2004.

[2] F. Koushanfar, “Hardware metering: A survey,” in Introduction to Hardware Security and
Trust. Springer, 2012, pp. 103–122.

[3] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using PUF-based logic,” in Proceedings
of the 2014 IEEE/ACM International Conference on Computer-Aided Design. IEEE Press,
2014, pp. 270–277.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random functions,” in
Proceedings of ACM Conference on Computer and Communications Security, 2002, pp. 148–160.

[5] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure PUFs,” in Proceedings of
the 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 670–673.

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and their use
for IP protection,” in Proceedings of Cryptographic Hardware and Embedded Systems (CHES
2007), 2007, pp. 10–13.

[7] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “Extracting secret
keys from integrated circuits,” IEEE Transaction on Very Large Scale Integration Systems, vol.
13(10), pp. 1200–1205, 2005.

[8] P. Koeberl, Ü. Kocabaş, and A.-R. Sadeghi, “Memristor PUFs: a new generation of memory-
based physically unclonable functions,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2013, pp. 428–431.

[9] K. B. Frikken, M. Blanton, and M. J. Atallah, “Robust authentication using physically unclo-
nable functions,” in Proceedings of Information Security Conference (ISC), 2009.

[10] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas, “Robust and reverse-
engineering resilient puf authentication and key-exchange by substring matching,” IEEE Tran-
sactions on Emerging Topics in Computing, vol. 2, no. 1, pp. 37–49, 2014.

[11] M.-D. Yu, D. M’Räıhi, I. Verbauwhede, and S. Devadas, “A noise bifurcation architecture
for linear additive physical functions,” in Proceedings of IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2014, pp. 124–129.

[12] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas, “Slender PUF pro-
tocol: A lightweight, robust, and secure authentication by substring matching,” in Proceedings
of IEEE Symposium on Security and Privacy Workshops (SPW), 2012, pp. 33–44.

49

[13] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret
key generation,” in Proceedings of the 44th annual Design Automation Conference, 2007, pp.
9–14.

[14] M.-D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functi-
ons,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 48–65, 2010.

[15] W. Yan, F. Tehranipoor, and J. A. Chandy, “PUF-based fuzzy authentication without error
correcting codes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2016.

[16] Y. Lao and K. K. Parhi, “Statistical analysis of MUX-based physical unclonable functions,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 5, pp. 649–662, 2014.

[17] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data algorithm for sram pufs,”
in 2009 IEEE International Symposium on Information Theory, 2009, pp. 2101–2105.

[18] Z. Paral and S. Devadas, “Reliable and efficient puf-based key generation using pattern mat-
ching,” in Proceedings of International Symposium on Hardware-Oriented Security and Trust
(HOST), 2011, pp. 128–133.

[19] L. Lin, S. Srivathsa, D. K. Krishnappa, P. Shabadi, and W. Burleson, “Design and validation
of arbiter-based pufs for sub-45-nm low-power security applications,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 4, pp. 1394–1403, 2012.

[20] C. Zhou, S. Satapathy, Y. Lao, K. K. Parhi, and C. H. Kim, “Soft response generation and
thresholding strategies for linear and feed-forward MUX PUFs,” in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, 2016, pp. 124–129.

[21] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber,
W. Burleson, and S. Devadas, “PUF modeling attacks on simulated and silicon data,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[22] Y. Wen and Y. Lao, “Enhancing PUF reliability by machine learning,” in Procedings of 2017
International Symposium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[23] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning attacks on 65nm arbiter PUFs:
Accurate modeling poses strict bounds on usability,” in Procedings of 2012 International Works-
hop on Information Forensics and Security (WIFS). IEEE, 2012, pp. 37–42.

[24] X. Xu, W. Burleson, and D. E. Holcomb, “Using statistical models to improve the reliability of
delay-based pufs,” in Proceedings of 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2016, pp. 547–552.

[25] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms for PUF-
based key generation: Overview and analysis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2015.

[26] G. T. Becker and R. Kumar, “Active and passive side-channel attacks on delay based PUF
designs,” IACR Cryptology ePrint Archive, vol. 2014, p. 287, 2014.

[27] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using programmable delay lines,”
in Proceedings of 2010 IEEE International Workshop on Information Forensics and Security
(WIFS). IEEE, 2010, pp. 1–6.

50

[28] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient helper data key
extractor on FPGAs.” Springer, 2008, pp. 181–197.

[29] Z. Paral and S. Devadas, “Reliable and efficient PUF-based key generation using pattern ma-
tching,” in Proceedings of 4th IEEE International Conference on Hardware-Oriented Security
and Trust (HOST), 2011.

[30] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. de Groot, V. van der Leest, G.-J.
Schrijen, M. van Hulst, and P. Tuyls, “Evaluation of 90nm 6t-SRAM as physical unclona-
ble function for secure key generation in wireless sensor nodes,” in Proceedings of 2011 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2011, pp. 567–570.

[31] M. Hiller, M.-D. Yu, and G. Sigl, “Cherry-picking reliable PUF bits with differential sequence
coding,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 9, pp. 2065–
2076, 2016.

[32] M. Hofer and C. Boehm, “An alternative to error correction for SRAM-like PUFs,” Crypto-
graphic Hardware and Embedded Systems, CHES 2010, pp. 335–350, 2010.

[33] Y. Wen and Y. Lao, “Efficient puf error correction through response weighting,” in 61th IEEE
International Midwest Symposium on Circuits and Systems, MWSCAS 2017. IEEE, 2017.

[34] Y. Gao, H. Ma, G. Li, S. Zeitouni, S. F. Al-Sarawi, D. Abbott, A.-R. Sadeghi, and D. C.
Ranasinghe, “Exploiting PUF models for error free response generation,” arXiv preprint
arXiv:1701.08241, 2017.

[35] Y.-M. Lin, H.-C. Chang, and C.-Y. Lee, “Improved high code-rate soft BCH decoder architec-
tures with one extra error compensation,” IEEE Transactions on very large scale integration
(VLSI) systems, vol. 21, no. 11, pp. 2160–2164, 2013.

[36] F. Glover and M. Laguna, Tabu Search. Springer, 2013.

[37] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing bayesian network
structure learning algorithm,” Machine learning, vol. 65, no. 1, pp. 31–78, 2006.

[38] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[39] R. S. Chakraborty and S. Bhunia, “Hardware protection and authentication through netlist level
obfuscation,” in Proceedings of the 2008 International Conference on Computer-Aided Design.
IEEE Press, 2008, pp. 674–677.

[40] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic obfuscation,” in
Proceedings of the 49th Annual Design Automation Conference. ACM, 2012, pp. 83–89.

[41] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split manufacturing via obfus-
cated built-in self-authentication,” in Procedings of 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2015, pp. 14–19.

[42] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing secure?” in Proceedings
of the Conference on Design, Automation and Test in Europe. EDA Consortium, 2013, pp.
1259–1264.

[43] T. Güneysu and A. Moradi, “Generic side-channel countermeasures for reconfigurable devices,”
in Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems
CHES. Springer, 2011, pp. 33–48.

51

[44] A. Cui, Y. Luo, and C.-H. Chang, “Static and dynamic obfuscations of scan data against scan-
based side-channel attacks,” IEEE Transactions on Information Forensics and Security, vol. 12,
no. 2, pp. 363–376, 2017.

[45] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and detection,”
IEEE design & Test of Computers, vol. 27, no. 1, 2010.

[46] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” in Procedings
of International Workshop on Hardware-Oriented Security and Trust (HOST). IEEE, 2008,
pp. 51–57.

[47] H. Eldib, C. Wang, M. Taha, and P. Schaumont, “Quantitative masking strength: quantifying
the power side-channel resistance of software code,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1558–1568, 2015.

[48] U. Guin, M. Tehranipoor, D. DiMase, and M. Megrdichian, “Counterfeit ic detection and
challenges ahead,” ACM Special Interest Group on Design Automation (SIGDA), vol. 43, no. 3,
pp. 1–5, 2013.

[49] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Analyzing the efficiency of biased-fault based
attacks,” IEEE Embedded Systems Letters, vol. 8, no. 2, pp. 33–36, 2016.

[50] J. Delvaux and I. Verbauwhede, “Fault injection modeling attacks on 65 nm arbiter and RO
sum PUFs via environmental changes,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 61, no. 6, pp. 1701–1713, 2014.

[51] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive PUF analysis,” in Procedings
of Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2013, pp.
30–38.

[52] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2016.

[53] S. Tong and D. Koller, “Support vector machine active learning with applications to text
classification,” Journal of machine learning research, vol. 2, no. Nov, pp. 45–66, 2001.

[54] M. Ghassemi, A. D. Sarwate, and R. N. Wright, “Differentially private online active learning
with applications to anomaly detection,” in Proceedings of the 2016 Workshop on Artificial
Intelligence and Security. ACM, 2016, pp. 117–128.

[55] Y. Li and L. Guo, “An active learning based TCM-KNN algorithm for supervised network
intrusion detection,” Computers & security, vol. 26, no. 7, pp. 459–467, 2007.

[56] S. Tong, Active learning: theory and applications. Stanford University, 2001.

[57] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Provably secure ca-
mouflaging strategy for IC protection,” Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2017.

[58] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat: Approximately de-
obfuscating integrated circuits,” in Procedings of 2017 International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 2017, pp. 95–100.

[59] J. Baldridge and M. Osborne, “Active learning and the total cost of annotation.” in Procedings
of Empirical Methods in Natural Language Processing (EMNLP), 2004, pp. 9–16.

52

[60] W. Liu and T. Wang, “Online active multi-field learning for efficient email spam filtering,”
Knowledge and Information Systems, vol. 33, no. 1, pp. 117–136, 2012.

[61] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou, “Detecting ad-
versarial advertisements in the wild,” in Proceedings of the 17th International Conference on
Knowledge Discovery and Data Mining. ACM, 2011, pp. 274–282.

[62] P. Melville and R. J. Mooney, “Diverse ensembles for active learning,” in Proceedings of the
21th International Conference on Machine Learning. ACM, 2004, p. 74.

[63] B. Settles, “Active learning literature survey,” University of Wisconsin, Madison, vol. 52, no.
55-66, p. 11, 2010.

[64] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, “Active learning methods for
remote sensing image classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 47, no. 7, pp. 2218–2232, 2009.

[65] S. Chakraborty, V. Balasubramanian, and S. Panchanathan, “Generalized batch mode active
learning for face-based biometric recognition,” Pattern Recognition, vol. 46, no. 2, pp. 497–508,
2013.

[66] Y. Wen and Y. Lao, “PUF modeling attack using active learning,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[67] Y. Lao and K. K. Parhi, “Reconfigurable architectures for silicon physical unclonable functions,”
in Proceedings of IEEE International Conference on Electro Information Technology, 2011, pp.
1–7.

[68] M.-D. M. Yu, D. MRaihi, R. Sowell, and S. Devadas, “Lightweight and secure PUF key storage
using limits of machine learning,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2011, pp. 358–373.

[69] Q. Ma, C. Gu, N. Hanley, C. Wang, W. Liu, and M. O’Neill, “A machine learning attack
resistant multi-PUF design on FPGA,” in Design Automation Conference (ASP-DAC), 2018
23rd Asia and South Pacific. IEEE, 2018, pp. 97–104.

[70] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “Implementation of double arbiter
PUF and its performance evaluation on FPGA,” in Design Automation Conference (ASP-DAC),
2015 20th Asia and South Pacific. IEEE, 2015, pp. 6–7.

[71] R. Kumar and W. Burleson, “On design of a highly secure PUF based on non-linear current mir-
rors,” in Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium
on. IEEE, 2014, pp. 38–43.

[72] M. M. Kalyanaraman, “Highly secure strong PUF based on nonlinearity of MOSFET subthres-
hold operation,” 2012.

[73] Y. Pang, H. Wu, B. Gao, D. Wu, A. Chen, and H. Qian, “A novel PUF against machine learning
attack: Implementation on a 16 Mb RRAM chip,” in Electron Devices Meeting (IEDM), 2017
IEEE International. IEEE, 2017, pp. 12–2.

[74] Y. Tanaka, S. Bian, M. Hiromoto, and T. Sato, “Coin flipping puf: A novel PUF with improved
resistance against machine learning attacks,” IEEE Transactions on Circuits and Systems II:
Express Briefs, 2018.

53

[75] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine learning resistant strong
PUF: Possible or a pipe dream?” in Hardware Oriented Security and Trust (HOST), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 19–24.

[76] L. Santiago, V. C. Patil, C. B. Prado, T. A. Alves, L. A. Marzulo, F. M. França, and S. Kundu,
“Realizing strong PUF from weak PUF via neural computing,” in Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2017 IEEE International Symposium on. IEEE,
2017, pp. 1–6.

[77] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Verbauwhede, “A lockdown
technique to prevent machine learning on PUFs for lightweight authentication,” IEEE Tran-
sactions on Multi-Scale Computing Systems, vol. 2, no. 3, pp. 146–159, 2016.

[78] C. Jin, C. Herder, L. Ren, P. H. Nguyen, B. Fuller, S. Devadas, and M. van Dijk, “FPGA
implementation of a cryptographically-secure PUF based on learning parity with noise,” Cryp-
tography, vol. 1, no. 3, p. 23, 2017.

[79] C. Herder, L. Ren, M. van Dijk, M.-D. Yu, and S. Devadas, “Trapdoor computational fuzzy
extractors and stateless cryptographically-secure physical unclonable functions,” IEEE Tran-
sactions on Dependable and Secure Computing, vol. 14, no. 1, pp. 65–82, 2017.

[80] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar, “Combined modeling and side
channel attacks on strong PUFs.” IACR Cryptology ePrint Archive, vol. 2013, p. 632, 2013.

[81] X. Xu and W. Burleson, “Hybrid side-channel/machine-learning attacks on PUFs: A new
threat?” in Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014.
IEEE, 2014, pp. 1–6.

[82] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks on 65nm arbiter pufs exploiting
cmos device noise,” in IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 2013, pp. 137–142.

[83] W. Yu and J. Chen, “Masked aes puf: a new PUF against hybrid SCA/MLAs,” Electronics
Letters, vol. 54, no. 10, pp. 618–620, 2018.

[84] K. Tiri and I. Verbauwhede, “A VLSI design flow for secure side-channel attack resistant ICs,”
in Design, Automation and Test in Europe, 2005. Proceedings. IEEE, 2005, pp. 58–63.

[85] Y. Lao and K. K. Parhi, “Reconfigurable architectures for silicon physical unclonable functions,”
in Electro/Information Technology (EIT), 2011 IEEE International Conference on. IEEE,
2011, pp. 1–7.

[86] E. Terzioglu, G. I. Winograd, and M. C. Afghahi, “One-time-programmable memory,” Mar. 24
2009, uS Patent 7,508,694.

54

	Clemson University
	TigerPrints
	8-2018

	Improving Security and Reliability of Physical Unclonable Functions Using Machine Learning
	Yuejiang Wen
	Recommended Citation

	Title Page
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Physical Unclonable Functions
	Reliability of PUF
	Efficient Error Correction of PUF Responses
	Challenge from Attacker

	Enhancing PUF Reliability by Machine Learning
	 MUX PUF Model
	 PUF Reliability Enhancement
	Proposed Methodology
	Results of PUF Reliability Enhancement

	Enhancement of PUF Response Error Correction Efficiency
	 Error-Rate Estimation
	 Linear Approximation of Error Probability
	 Response Processing
	 Response Weighting
	Algorithm
	Experimental Results

	Modeling Attack PUF by Active Learning
	Active Learning
	PUF Modeling Attack Using Active Learning
	Experiments

	Noisy PUF
	PUF Security
	Methodology
	Case Study: Reconfigurable Delay-Compensation PUF

	Conclusions and Discussion
	Future Work

	Bibliography

