
Edited by

Low Power Memory/
Memristor Devices
and Systems

Alex Serb and Adnan Mehonic

Printed Edition of the Special Issue Published in
 Journal of Low Power Electronics and Applications

www.mdpi.com/journal/jlpea

Low Power Memory/Memristor
Devices and Systems

Low Power Memory/Memristor
Devices and Systems

Editors

Alex Serb

Adnan Mehonic

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Alex Serb

University of Southampton

UK

Adnan Mehonic

University College London

UK

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Journal of Low Power Electronics and Applications (ISSN 2079-9268) (available at: https://www.mdpi.

com/journal/jlpea/special issues/Low Power Memory).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6185-1 (Hbk)

ISBN 978-3-0365-6186-8 (PDF)

Cover image courtesy of Themis Prodromakis.

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

Preface to ”Low Power Memory/Memristor Devices and Systems” vii

Diaaeldin Abdelrahman, Christopher Williams, Odile Liboiron-Ladouceur and Glenn E. R.

Cowan

A Novel Inductorless Design Technique for Linear Equalization in Optical Receivers
Reprinted from: J. Low Power Electron. Appl. 2022, 12, 19, doi:10.3390/jlpea12020019 1

Kévin Mambu, Henri-Pierre Charles, Maha Kooli and Julie Dumas

Towards Integration of a Dedicated Memory Controller and Its Instruction Set to Improve
Performance of Systems Containing Computational SRAM
Reprinted from: J. Low Power Electron. Appl. 2022, 12, 18, doi:10.3390/jlpea12010018 21

Maria N. Koryazhkina, Dmitry O. Filatov, Stanislav V. Tikhov, Alexey I. Belov, Dmitry

S. Korolev, Alexander V. Kruglov, Ruslan N. Kryukov, Sergey Yu. Zubkov, Vladislav

A. Vorontsov, Dmitry A. Pavlov, David I. Tetelbaum, Alexey N. Mikhaylov, Sergey A.

Shchanikov, Sungjun Kim and Bernardo Spagnolo

Silicon-Compatible Memristive Devices Tailored by Laser and Thermal Treatments
Reprinted from: J. Low Power Electron. Appl. 2022, 12, 14, doi:10.3390/jlpea12010014 33

John Reuben

Design of In-Memory Parallel-Prefix Adders
Reprinted from: J. Low Power Electron. Appl. 2021, 11, 45, doi:10.3390/jlpea11040045 55

Joseph Rabinowicz and Shlomo Greenberg

A New Physical Design Flow for a Selective State Retention Based Approach
Reprinted from: J. Low Power Electron. Appl. 2021, 11, 35, doi:10.3390/jlpea11030035 71

Tommaso Zanotti, Francesco Maria Puglisi and Paolo Pavan

Energy-Efficient Non-Von Neumann Computing Architecture Supporting Multiple Computing
Paradigms for Logic and Binarized Neural Networks
Reprinted from: J. Low Power Electron. Appl. 2021, 11, 29, doi:10.3390/jlpea11030029 87

Fernando Leonel Aguirre, Nicolás M. Gomez, Sebastián Matı́as Pazos, Félix Palumbo, Jordi

Suñé and Enrique Miranda

Minimization of the Line Resistance Impact on Memdiode-Based Simulations of Multilayer
Perceptron Arrays Applied to Pattern Recognition
Reprinted from: J. Low Power Electron. Appl. 2021, 11, 9, doi:10.3390/jlpea11010009 105

Mohammad Nasim Imtiaz Khan, Chak Yuen Cheng, Sung Hao Lin, Abdullah Ash-Saki and

Swaroop Ghosh

A Morphable Physically Unclonable Function and True Random Number Generator Using a
Commercial Magnetic Memory
Reprinted from: J. Low Power Electron. Appl. 2021, 11, 5, doi:10.3390/jlpea11010005 123

Brandon Rumberg, Spencer Clites, Haifa Abulaiha, Alexander Dilello and David Graham

Continuous-Time Programming of Floating-Gate Transistors for Nonvolatile Analog Memory
Arrays †

Reprinted from: J. Low Power Electron. Appl. 2021, 11, 4, doi:10.3390/jlpea11010004 139

Andrea Coluccio, Marco Vacca and Giovanna Turvani

Logic-in-Memory Computation: Is It Worth It? A Binary Neural Network Case Study
Reprinted from: J. Low Power Electron. Appl. 2020, 10, 7, doi:10.3390/jlpea10010007 161

v

John Reuben

Rediscovering Majority Logic in the Post-CMOS Era: A Perspective from In-Memory
Computing
Reprinted from: J. Low Power Electron. Appl. 2020, 10, 28, doi:10.3390/jlpea10030028 195

Alon Ascoli, Martin Weiher, Melanie Herzig, Stefan Slesazeck, Thomas Mikolajick and

Ronald Tetzlaff

Graph Coloring via Locally-Active Memristor Oscillatory Networks
Reprinted from: J. Low Power Electron. Appl. 2022, 12, 22, doi:10.3390/jlpea12020022 211

vi

Preface to ”Low Power Memory/Memristor Devices

and Systems”

Memristive technologies are slowly but steadily progressing towards maturity, driven by their

promise of cheap and extremely scalable memory. Indeed, over the years, a large body of research

has carefully investigated how the presence of memristors can lead to improvements beyond the

Pareto surface normally achievable using standard CMOS technology. In this booklet, we have

collected research that illustrates both the multifaceted nature of memristors and the extremely

diverse areas that are being reshaped by these emerging devices. We begin with a couple of

perspectives on how in-memory computing, a powerful design paradigm, is quickly becoming a

competitive approach as a result of the high-performance memory achievable only via memristive

devices. We then exhibit a series of articles spanning from how memristor manufacturing technology

is overcoming technological challenges, the construction of memristor-based neural networks, and

memristor-enhanced logic circuits, to random number generators relying on the inherent stochasticity

that some flavors of memristors exhibit. Simultaneously, a selection of articles illustrating work

in more conventional approaches (which may be seen as the main competitors of memristor-based

design) are also included. For example, an article on how floating-gate-based analogue memories

can be programmed exemplifies the challenges and solutions found as the field of floating-gate

electronics progresses. Finally, a tutorial paper showing how a non-trivial mathematical problem

can be resolved using memristive circuits closes the booklet. We hope that this collection provides

readers with an interesting overview of this field, some understanding of its place within the wider

context of electronics, and some inspiration on how it may be developed further in the most diverse

of application areas.

Alex Serb and Adnan Mehonic

Editors

vii

Citation: Abdelrahman, D.; Williams,

C.; Liboiron-Ladouceur, O.; Cowan,

G.E.R. A Novel Inductorless Design

Technique for Linear Equalization in

Optical Receivers. J. Low Power

Electron. Appl. 2022, 12, 19. https://

doi.org/10.3390/jlpea12020019

Academic Editor: Andrea

Acquaviva

Received: 27 December 2021

Accepted: 4 February 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

A Novel Inductorless Design Technique for Linear Equalization
in Optical Receivers

Diaaeldin Abdelrahman 1,2,*, Christopher Williams 3, Odile Liboiron-Ladouceur 4 and Glenn E. R. Cowan 2

1 Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71543, Egypt
2 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;

gcowan@ece.concordia.ca
3 Nokia, New York, NY 10016, USA; cwilliams.eng@gmail.com
4 Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0G4, Canada;

odile.liboiron-ladouceur@mcgill.ca
* Correspondence: diaaeldin@aun.edu.eg

Abstract: To mitigate the trade-off between gain and bandwidth of CMOS multistage amplifiers,
a receiver front-end (FE) that employs a high-gain narrowband transimpedance amplifier (TIA)
followed by an equalizing main amplifier (EMA) is proposed. The EMA provides a high-frequency
peaking to extend the FE’s bandwidth from 25% to 60% of the targeted data rate (fbit). The peaking
is realized by adding a pole in the feedback paths of an active feedback-based wideband amplifier.
By embedding the peaking in the main amplifier (MA), the front-end meets the sensitivity and gain
of conventional equalizer-based receivers with better energy efficiency by eliminating the equalizer
stages. Simulated in TSMC 65 nm CMOS technology, the proposed front-end achieves 7.4 dB and
6 dB higher gain at 10 Gb/s and 20 Gb/s, respectively, compared to a conventional front-end that
is designed for equal bandwidth and dissipates the same power. The higher gain demonstrates the
capability of the proposed technique in breaking the gain-bandwidth trade-off. The higher gain also
reduces the power penalty incurred by the decision circuit and improves the sensitivity by 1.5 dB
and 2.24 dB at 10 Gb/s and 20 Gb/s, respectively. Simulations also confirm that the proposed FE
exhibits a robust performance against process and temperature variations and can support large
input currents.

Keywords: low-bandwidth TIA; equalizer; multi-stage main amplifier; amplitude response; group
delay variation

1. Introduction

Traffic in data centers has grown rapidly over the past decade due to the rapid growth
of cloud computing and big data applications. This in turn drives the development of
robust, high-speed, and energy-efficient interconnects to transfer the data around the data
center. Several 100+ Gb/s optical links have recently been reported to satisfy the bandwidth
and reach requirements [1–3]. However, the associated cost and power dissipation prevent
their widespread adoption within the data center. In short-reach photonic links, the
transmitted optical modulation amplitude (OMA) must be sufficiently large that, in spite
of coupling and fiber losses, the received optical power exceeds the receiver’s sensitivity
limit. This sensitivity is a function of the input-referred noise current of the receiver as
well as the voltage amplitude requirements of the decision circuit driven by the receiver
front-end [4]. Therefore, an energy-efficient link design requires a low-noise as well as a
high-gain receiver.

As data rates increase, traditional approaches to receiver design dictate that the
bandwidth of the receiver also increases, which limits the maximum achievable gain [5].
This trade-off is less pronounced in SiGe BiCMOS technologies where the transistor has
higher intrinsic gain and transit frequency. Therefore, a reasonable gain is still achievable

J. Low Power Electron. Appl. 2022, 12, 19. https://doi.org/10.3390/jlpea12020019 https://www.mdpi.com/journal/jlpea
1

J. Low Power Electron. Appl. 2022, 12, 19

in wideband deigns. However, in CMOS, the trade-off limits the per-stage gain which
necessitates cascading several gain stages to achieve the targeted output voltage amplitude.
With increased number of stages, both noise and power dissipation increase.

This paper presents a novel inductorless design technique for high-gain optical receiver
front-ends. Figure 1 illustrates the operation of the proposed front-end (FE) in contrast
to the traditional wideband FE. Conventionally, the transimpedance amplifier (TIA) and
the follow-on main amplifier (MA) are designed to have bandwidths in the order of 0.6 fbit
and fbit, respectively, to achieve an overall bandwidth of approximately 0.5 fbit [4]. In
the proposed receiver, first, the TIA’s bandwidth is reduced to approximately 25 % of the
targeted data rate. The reduced TIA bandwidth allows for higher gain, lower input-referred
noise, and fewer follow-on gain stages. The reduction in bandwidth also introduces inter-
symbol interference (ISI) to the extent that the TIA’s output eye diagram is fully closed.
Unlike a bandlimited electrical channel which can introduce more than 30 dB of channel
loss at the Nyquist frequency (fN = 0.5 fbit), the low-bandwidth TIA introduces a moderate
frequency-dependent attenuation. Consequently, a few dBs of amplitude peaking at fN is
sufficient to restore the required bandwidth (for example, the equalizer in [6] introduces
only 7 dB of peaking). Therefore, in the second step of the proposed design technique,
a high-frequency peaking is intentionally introduced in the main amplifier’s amplitude
response without impairing its low-frequency gain. Various possible designs of active
feedback-based MA architectures [7–10] can introduce the required peaking by adding
a pole in their feedback loops. The amplitude peaking in the equalizing main amplifier
(EMA) is then used to compensate for the TIA’s limited bandwidth to restore an overall
bandwidth of approximately 0.5 fbit. Although Figure 1 shows only the magnitude response
of the TIA and EMA, group-delay variation must also be considered.

ipp

0.6fbit0.25fbit fbit0.5fbit 0.5fbit

Vout

Figure 1. The proposed and the conventional receivers are represented by the same block diagram
(top). The bottom graph illustrates the operation of the proposed receiver (black) in contrast to that
of the conventional receiver (gray).

In contrast to traditional continuous-time linear equalizer (CTLE)-based designs [6,11],
the proposed front-end attains the improved sensitivity and high-gain of these designs,
while achieving better energy efficiency due to the elimination of the standalone equalizer
stage(s). Traditional approaches to CTLE design, based on RC degenerated common-source
amplifiers, suffer from a limited bandwidth and consequently insufficient peaking at high
frequencies. When CTLEs are cascaded the reduction in overall bandwidth due to repeated
real poles follows the same trend as that of 1st-order gain cells. Further, a 1st-order CTLE
stage has a limited capability in equalizing a second-order TIA [6,12] which necessitates
cascading several equalizer stages, further increasing power and area overheads. On
the other hand, various inductorless feedback techniques can be used to design main
amplifiers with gain-bandwidth products (GBW) far superior to a cascade of first-order
stages [7–10]. The improvement is the result of poles moving away from the negative real
axis. A combination of poles with high- and low-quality factors gives better GBW for the
same pole magnitude. The proposed approach to design an EMA improves the overall

2

J. Low Power Electron. Appl. 2022, 12, 19

receiver performance by increasing the gain of the TIA and improving noise performance
as argued [6], but with the wideband performance of state-of-the-art MA designs.

The proposed design technique requires co-designing the TIA and the subsequent
equalizing amplifier. Therefore, both stages receive equal attention in the analysis. Section 2
in this paper provides a detailed analysis of the TIA, highlighting the trade-off between
its gain and bandwidth. Section 3 introduces the concept and the block diagram of the
proposed EMA. The performance of the overall FE (TIA/EMA) is studied in Section 4.
Section 5 shows the circuitry and simulation results of the proposed FE in comparison to
the conventional full bandwidth design. Finally, Section 6 concludes the work.

2. Transimpedance Amplifier

2.1. Small-Signal Model and Freuqency Response

The inverter-based TIA (Inv-TIA) is used in this work due to its superior noise perfor-
mance over its common-gate (CG) counterpart. Further, unlike the CG-TIA, the Inv-TIA
is a self-biased topology which decouples the gain from the transconductance of the
input device and allows for performance optimization without being limited by DC bi-
asing constraints. The circuitry and the small-signal model of the Inv-TIA are shown in
Figure 2. The CMOS inverter is modeled by its total transconductance gm and output
resistance RA. Therefore, the core voltage amplifier has an open-loop transfer function
of Acore(s) = −A0/(1 + sTA), where A0 = gmRA is the DC voltage gain and TA is the
time-constant formed by the output resistance RA and the total output capacitance CL. In
the model, CT is the total input capacitance, including both the photodiode capacitance
CD and the circuit’s input capacitance CI . Considering this model, the Inv-TIA exhibits a
second-order transfer function characterized by a natural oscillation frequency ω0, a pole
quality factor Q0, and a midband transimpedance gain of ZTIA,0

∼= RF [13]. The natural
oscillation frequency ω0 is converted to the corresponding TIA’s 3dB-bandwdith (fTIA)
through a coefficient ρ that depends on the shape of the TIA’s amplitude response (i.e., ρ is
a function of Q0). Detailed expressions for ω0, Q0, and ρ can be found in [14].

(a) (b)

Figure 2. Inverter-based TIA (a) circuit and (b) small-signal model with noise sources indicated.

In the Inv-TIA, A0 is constant for a given biasing condition, fixed ratio of Wp/Wn, and
technology node. For example, an inverter with VDD = 1 V, Wn = Wp, and simulated
in TSMC 65 nm CMOS technology achieves A0 of 6 V/V. Further, the gain-bandwidth
product of the core amplifier (GBWA = A0/(2πTA)) is also constant. The circuit’s input
capacitance (CI) is determined by the total transistor width and is usually chosen as a
fraction of the photodiode capacitance based on the noise and power constraints [14].
Therefore, for a given CD, once CI is fixed, the TIA’s performance is controllable only
through the feedback resistor. In this work, unless mentioned otherwise, A0, GBWA, and
CT are set to 6 V/V, 75 GHz, and 200 fF, respectively.

Figure 3a shows that both the 3 dB bandwidth and the pole quality factor Q0 de-
crease with larger feedback resistor RF. The bandwidth degrades almost linearly with
the feedback resistor. In fact, the bandwidth does not follow the square-law relation

3

J. Low Power Electron. Appl. 2022, 12, 19

(
RF α f−2

TIA

)
predicted by the Transimpedance Limit [13]. This discrepancy can be ex-

plained as follows: Unlike [13], the model in this work allows Q0 to change with RF(
Q0 =

√
(A0 + 1)RFCTTA/(RFCT + TA)

)
. For sufficiently large RF that makes RFCT � TA,

Q0 is proportional to R−0.5
F . Consequently, it is reasonable to assume that ρ is also propor-

tional to R−0.5
F with a percentage error of less than ±8%, as shown in Figure 3b. Using this

relation to rearrange the transimpedance limit from [13]:

f 2
TIA =

(A0 + 1)
A0

GBWA ρ2

2πRFCT
(1a)

which implies:

f 2
TIA ∼ 1

R2
F

→ fTIA ∼ 1
RF

(1b)

(a) (b)

Figure 3. (a) TIA’s 3dB bandwidth and pole Q0 as a function of the feedback resistor. (b) The exact
and the approximate calculations of ρ as a function of the feedback resistor along with the difference
between the two as a percentage error.

This means that changing RF changes both the pole magnitude (ω0) and the pole quality
factor (Q0) which modifies the bandwidth dependency on the feedback resistor from that
given in [13] where Q0 is assumed to be constant. Assuming a constant Q0 when RF is
increased by a factor of r requires both A0 and TA to scale up by a factor of

√
r. Practically,

this approach is not feasible since the voltage gain of a single-stage CMOS inverter is constant
for a given biasing and its maximum value is limited by the technology node.

2.2. Effective Gain

When fTIA is reduced far below fbit, severe ISI is introduced to the extent that the
output eye diagram is fully closed. Therefore, the DC value of ZTIA(s) becomes a deceptive
measure of the gain. The effective gain must be calculated from the transient response;
more precisely, from the pulse response [15]. The TIA’s pulse response is the response to an
isolated binary one transmitted in a long sequence of binary zeros. Assuming a linear time-
invariant (LTI) operation, if the TIA’s response to a step input with a peak-to-peak value of
ipp is defined as x(t), then its pulse response is calculated as y(t) = x(t)− x(t − UI), where
UI is the unit interval. The output pulse response of the Inv-TIA is plotted in Figure 4a for
a data rate of 10 Gb/s with ipp = 10 μApp and a bandwidth ranging from 0.2 fbit to 0.6 fbit.
To quantify the ISI, y(t) is sampled at the symbol rate relative to its peak (as shown by the
marker points in Figure 4a), resulting in a discrete-time sequence Vh,n given by:

Vh,n = y(nTb) − ∞ < n < ∞ (2)

4

J. Low Power Electron. Appl. 2022, 12, 19

(a) (b)

Figure 4. (a) Output pulse response for various values of fTIA/ fbit. The input current pulse has
a peak-to-peak value of 10 μApp and a unit interval of 100 ps. (b) Different gains as a function
of fTIA/ fbit. fbit are fixed at 10 Gb/s while fTIA is swept by varying RF. The labeled points in
(b) illustrate that linear equalization is favorable for applications that require high gain in the
receiver FE.

The sample at the peak of the pulse is denoted as the main-cursor sample (Vh,0). An
effective gain of Zh,0 can be interpreted as Vh,0/ipp if all ISI is cancelled. In the absence of
equalization, the ISI samples (Vh,n �=0) can be subtracted from Vh,0, closing the vertical eye
opening (VEO) to:

VEO = Vh,0 −
∞

∑
n=−∞

n �=0

∣∣Vh,n
∣∣ (3)

The effective gain is calculated based on the receiver architecture as follows: 1. The
VEO can be used to determine an effective gain of ZVEO = VEO/ipp for the case in which
the ISI is not removed or is only partially removed. The midband gain ZTIA,0 can also
be interpreted as an effective gain if an ideal unity-gain continuous-time linear equalizer
(CTLE) is employed. The CTLE compensates for the bandwidth limitation of the TIA and
restores an overall bandwidth on the order of 0.6 fbit without impairing the low-frequency
gain. Therefore, the TIA’s midband gain ZTIA,0 at the low bandwidth point can be used as
the effective gain for the combined (TIA/CTLE).

Figure 4b shows that linear equalization improves the effective gain over both full-
bandwidth and ISI canceller-based designs. For example, if the TIA’s bandwidth is reduced
from 0.6 fbit (point a) to 0.3 fbit and an ideal CTLE is employed (point b), the effective
gain improves by a factor of 1.86× compared to point a. The gain at 0.3 fbit (point b) is
also 1.23× larger than that where an ideal ISI-canceller is employed (point c). That is, ISI
cancellers have no bearing on the TIA’s bandwidth which means that the output pulse of a
limited-bandwidth TIA does not have enough time to settle at the voltage value

(
ippZTIA,0

)
.

Further, ideal cancelers that remove all pre- and post-cursor ISI are not implementable. For
example, decision feedback equalizers (DFEs) [12] cancel only the post-cursor ISI. DFEs also
suffer from a tight timing constraint where the feedback signal from the previously decided
bit must arrive within one unit interval (UI) to resolve the current bit. These limitations
make linear equalization a more attractive choice for applications that require high gain in
the receiver FE. DFEs, on the other hand, are favorable over CTLEs from the noise point
of view. That is, CTLEs extend the noise bandwidth to be a function of the bandwidth
of the combined TIA/CTLE instead of being a function of the bandwidth of the low-
bandwidth TIA as in the DFE-based receivers [15]. Therefore, a fair comparison between
different receiver architectures should consider more complete figures of merit, such as
OMA sensitivity and energy efficiency. The noise performance of the presented front-end
is carefully examined in Section 4.3 in the presence of the equalizing main amplifier.

5

J. Low Power Electron. Appl. 2022, 12, 19

3. Equalizing Main Amplifier

In addition to high-gain and broadband operation, adjustable high-frequency peaking
(HFP) is a desirable feature in MA design. The amplitude peaking at the Nyquist frequency
can mitigate the bandwidth limitation introduced by other components in the optical link.
For example, in [16], shunt and series passive inductors are employed between cascaded
stages of a programmable gain amplifier to realize an HFP. The HFP is then used to partially
compensate for the varying performance of the multi-mode fiber. In this work, passive
inductors are avoided because they consume significant silicon area and potentially increase
substrate coupling. The HFP is realized by introducing a pole in the feedback loop of an active
feedback-based MA architecture and used to compensate for the TIA’s limited bandwidth.

Equalizing MA Based on a Third-Order Gain Stage

The block diagrams of the conventional and proposed gain stages are shown in
Figure 5a,b, respectively. The conventional architecture is presented in [17], where a
third-order nested feedback technique achieves high-speed operation while maintaining
robust stability compared to the traditional third-order gain stage. In the block diagram in
Figure 5a, the first-order gain cell, A(s), is modeled by the transconductance of the input
device gm1, load resistance R1, and load capacitance C1. The adjustable active feedback
βcon(s) cell is modeled by the transconductance −gm f . Therefore, the transfer functions of
the first-order gain and feedback cells are given by:

A(s) =
A1

s
ω1

+ 1
, βcon(s) =

β1
s

ω1
+ 1

, (4)

where A1 = gm1R1 and ω1 = (R1C1)
−1 are the DC gain and cut-off frequency of the first-

order gain cell, respectively. β1 = gm f R1 is the DC feedback gain. The transfer function of
the overall architecture in Figure 5a is given by:

HMA(s) =
A3(s)

A2(s)βcon(s) + A(s)βcon(s) + 1
(5)

(a) (b)

Figure 5. Block diagram of (a) the third-order gain stage in [17] (b) the proposed EMA with a LPF
inserted in each feedback path.

In this work, two poles are introduced in the feedback loops to create an adjustable
HFP without impairing the low-frequency gain. The transfer function of the proposed
EMA is calculated using (5) by replacing βcon(s) by βPro given in (6):

βpro(s) =
β1(

s
ω1

+ 1
)(

s
ωZ

+ 1
) (6)

6

J. Low Power Electron. Appl. 2022, 12, 19

where ωZ = (RZCZ)
−1 is the cut-off frequency of the introduced low-pass filter which is

assumed to have negligible loading on the output node. Therefore, the transfer function of
the EMA in Figure 5b is given by:

HEMA(s) =
A3

1

(
s

ωZ
+ 1

)
(

s
ω1

+ 1
)3(s

ωZ
+ 1

)
+ A1β1

(
s

ω1
+ 1

)
+ A2

1β1

(7)

The pole-zero locations of (7) are plotted in Figure 6a in comparison with that of
(5) for β1, A1, and ω1, fixed at 0.25, 2.5, and 2π × 30 GHz, respectively. The poles of
the conventional architecture are indicated by black x-markers. For the proposed EMA,
ωZ is swept from 0.5ω1 to 5ω1. The insertion of the LPF in the feedback loops of the
proposed EMA creates a real zero at ωZ (shown in blue). It also increases the order of the
denominators of βpro(s) and HEMA(s) compared to their conventional counterparts. As a
result, for low values of ωZ, the proposed EMA has two sets of complex-conjugate poles
(PA and PB) (shown in red). As ωZ increases, PA travels toward the complex poles of (5)
while the damping factor of PB increases until the two poles become real and start traveling
in opposite directions. At sufficiently high ωZ, PB2 and the real zero cancel each other, PB1
reaches the real pole of (5) and the overall architecture degenerates to the third-order gain
stage in [17].

(a) (b)

Figure 6. (a) Pole-zero locations of the proposed EMA for various values of ωZ in comparison to
the conventional third-order gain stage where ωZ = ∞. The dashed arrows indicate the direction of
pole-zero movements as ωZ increases (b) amplitude response of the proposed EMA for various ratios
of ωZ/ω1. β1, A1, and ω1 are fixed at 0.25, 2.5, and 2π × 30 GHz, respectively.

The impact of varying ωZ on the amplitude response of the proposed EMA is depicted
in Figure 6b. For a given β1, HFP can be introduced independent from the low-frequency
gain. The peak of the amplitude response moves to a lower frequency as ωZ is reduced.
As a numerical example from Figure 6b, for ωZ = 0.1ω1, the EMA achieves amplitude
peaking of 6 dB at 5 GHz and increases to 10.5 dB at 11 GHz. In the presence of such high
amplitude peaking, it is not instructive to explore the bandwidth of the EMA. Instead, the
bandwidth extension ratio and the signal integrity are inspected in the following section
for the overall front-end which includes the limited-bandwidth TIA and the EMA.

4. Front-End Performance Analysis

4.1. Performance Requirements for the EMA

The noise-limited input signal produces a peak-to-peak voltage of
VPP

O = SNR irms
n,in ZTIA,0 AEMA,0 at the output of the front-end, assuming that the EMA

restores a wide overall bandwidth, where SNR is the required signal-to-noise ratio and is

7

J. Low Power Electron. Appl. 2022, 12, 19

equal to 14.07 for a BER of 10−12 [4], irms
n,in is the input-referred noise current, and AEMA,0 is

the DC gain of the EMA. VPP
O is sufficiently large to drive an ideal clock-and-data recovery

(CDR) circuit to achieve the desired BER. However, the decision circuit in a realistic CDR
has finite sensitivity and requires a minimum input voltage amplitude

(
VPP

CDR
)
. Therefore,

the FE’s output voltage needs to be increased by VPP
CDR to attain the same BER as an ideal

CDR. The finite sensitivity of the CDR incurs a power penalty (PP) of:

PP =
VPP

O + VPP
CDR

VPP
O

= 1 +
VPP

CDR
SNR irms

n,in ZTIA,0 AEMA,0
(8)

The optical power incident to the photodiode, the electrical current generated from
the photodiode, and the voltage produced at the output of the main amplifier are linearly
proportional. As a result, the amount of additional optical power required to overcome
any nonideality (power penalty) can be expressed in voltage terms as shown in (8). The
equation reveals that higher transimpedance gain relaxes the gain requirements for the
EMA for a given PP. Figure 4b shown earlier indicates that reducing the ratio fTIA/ fbit is
beneficial for the gain as long as the equalizer is able to recover an overall bandwidth of
approximately 50% to 60% of the targeted data rate. Therefore, the equalizer’s capability in
restoring the bandwidth determines how far the TIA’s bandwidth can be reduced below the
data rate. That is, excessive reduction of the TIA’s bandwidth would require the equalizer
to introduce a large amount of amplitude peaking which translates into large group delay
variation (GDV). The latter causes horizontal and vertical eye closure which reduces the
gain and noise improvements gained from equalization. In [6], it is concluded that the
equalizer can restore the bandwidth by a factor of approximately 2× while simultaneously
maintaining a good noise performance and a good quality of the equalized eye diagram.

For the conventional wideband TIA, a feedback resistor of 1.25 kΩ is chosen to achieve
a bandwidth of 0.57 fbit, sufficiently large to introduce no ISI. The TIA’s bandwidth drops
almost linearly with RF as observed in Figure 3a. Therefore, in the proposed design, the value
of the feedback resistor is doubled, leading to a bandwidth of 0.26 fbit. At this bandwidth,
the TIA achieves a ZTIA,0 of 66.6 dBΩ (2143 Ω) while introducing an attenuation of 7.2 dB
at the Nyquist frequency (fN = 0.5 fbit = 5 GHz). The EMA is now required to recover the
bandwidth by a factor ranging from 1.9× to 2.3× to achieve an overall bandwidth on the
order of 50% to 60% of fbit. For example, using the gain of the low-bandwidth TIA while
assuming VPP

CDR, SNR, and irms
n,in of 50 mVpp, 14.07, and 1 μArms, respectively, the PP defined

in (8) can be used to calculate the required gain of the EMA. In addition to recovering the
bandwidth, the EMA is required to amplify the TIA’s output by a low-frequency gain of
approximately 20 dB to reduce the PP to less than 0.67 dB (1.17). Practically, the EMA’s gain
is determined to reduce the PP to a pre-determined value obtained from link budget analysis.

4.2. Bandwidth Extension and Signal Integrity

Figure 7 shows the block diagram of the proposed front-end where the limited-
bandwidth TIA is followed by a two-stage EMA. The EMA’s second stage is added to relax
the gain requirements. The two-stage EMA is modified based on the two-stage MA pre-
sented in [10] by inserting low pass filters in the feedback loops of the second stage. There-
fore, the transfer function of the overall front-end (FE) is given by
ZFE(s) = ZTIA(s)H2−EMA(s), where H2−EMA(s) is the transfer function of the two-stage
EMA and given by:

H2−EMA(s) =
A5(s)

Den(s)
(9)

8

J. Low Power Electron. Appl. 2022, 12, 19

Figure 7. Block diagram of the proposed front-end. The two-stage EMA is modified based on the
two-stage MA in [10]. The grayed feedback cells indicate the locations of the inserted poles.

The denominator Den(s) is expressed as:

Den(s) = 1 + A(s)
[
βcon(s) + βpro(s)

]
+ A2(s)

[
βcon(s) + βpro(s) + βcon(s)βpro(s)

]
+A3(s)βcon(s)βpro(s)

(10)

Once the TIA’s feedback resistor is fixed, the full design space is reduced to only two
variables: ωZ and β1. These two variables are swept, and the following equations are
solved numerically to calculate the bandwidth (fFE), the low-frequency gain (ZFE,0), and
the peaking

(
Mp

)
of the overall FE:

|ZFE(2π fFE)| = 1√
2
|ZFE(jω)|ω=0 (11a)

ZFE,0 = 20 log10|ZFE(jω)|ω=0 (11b)

MP = 20 log10
max(|ZFE(jω)|)
|ZFE(jω)|ω=0

(11c)

Several combinations of β1 and ωz can achieve the required bandwidth extension but
with different noise performance. The noise analysis is presented in the following section.
The feedback gain β1 directly impacts the low-frequency gain of the EMA and is chosen
to satisfy the power penalty condition indicated earlier. Then, ωz is swept to achieve the
required bandwidth extension ratio defined as fFE/ fTIA. The pairing of ωz = 0.075ω1 and
β1 = 0.25 is chosen as it achieves a good noise performance as well as a good quality of
the output eye. The corresponding frequency response is plotted in Figure 8a, where the
EMA introduces 5 dB of peaking and extends the bandwidth by a factor of 2.2×. The gain
peaking in the overall frequency response is less than 0.1 dB. Figure 8b shows the pulse
response at the output of the FE. To quantify the vertical and horizontal eye openings, the
output pulse is sampled at a bit rate clock relative to its peak. The pulse is sampled at both
the rising and falling edges of the clock. The sum of the magnitude of the samples at the
even clock edges (filled markers for n �= 0) quantifies the ISI. The sum of the samples at the
odd clock edges (hollow markers) is considered as a jitter indicator (JI). Note that the falling
edges of the clock are the zero-crossing points of the data. Therefore, the defined JI includes
only the deterministic jitter caused by the residual ISI or ringing in the time domain [18].
The sum of ISI and JI samples is less than 6.5% of the main cursor sample which implies
that the eye has a wide internal opening area, as evident also from the eye diagram in
Figure 9a, obtained through simulation. Figure 9b shows the output eye diagram when
the limited bandwidth TIA is followed by a wideband MA. The comparison between the
two eyes in Figure 9 demonstrates the capability of the presented technique in restoring the
bandwidth without impairing the midband gain or increasing power dissipation.

9

J. Low Power Electron. Appl. 2022, 12, 19

(a) (b)

Figure 8. (a) Amplitude response (b) output response to an input current pulse with peak-to-peak
value of 15 μApp and width of 100 ps. The EMA parameters are ωZ/ω1 = 0.075 and β1 = 0.25.

(a) (b)

Figure 9. Matlab generated 10 Gb/s output eye diagrams when the limited-bandwidth TIA is
followed by (a) an EMA, and (b) a wideband MA. The peak-to-peak value of the input current is
fixed at 15 μApp.

4.3. Noise Analysis

Figure 10a shows the model used for noise analysis. The main noise sources in
the Inv-TIA are the channel and feedback thermal noise, shown in Figures 2 and 10 as
I2
n,ch and I2

n,RF, respectively. The power spectral densities of these two sources can be
expressed as: I2

n,ch = 4kTγgm and I2
n,RF = 4kT/RF where k is the Boltzmann constant,

T is the temperature in Kelvin, and γ is the excess noise factor. Under a constant gain-
bandwidth product constraint, the noise-optimum FET size is CI = 0.7CD [14]. Therefore,
the transconductance of the TIA’s input device can be calculated as gm = 2π fTCI , where
fT is the technology transit frequency at the selected bias point. In Figure 10a, the amplifier
following the TIA is modeled by Hpost(s) and its input-referred noise PSD is denoted by
V2

n,in = 4kT/gm,post. Hpost(s) is given by (9) and (10) for both the proposed and conventional
designs, using βpro(s) and βcon(s), respectively. In simulations that follow, gm,post, γ, and
fT are fixed at 10 mΩ−1, 2, and 150 GHz, respectively.

10

J. Low Power Electron. Appl. 2022, 12, 19

(a) (b)

Figure 10. (a) Circuit model used for noise analysis (b) Matlab simulated noise reduction in the
proposed FE compared to its conventional counterparts. The arrows indicate the amount of change
for each noise component.

Linear equalization extends both the signal and the noise bandwidths [15]. Therefore,
the integration of the noise power spectral density (PSD) must be performed at the receiver
output to take into consideration how the equalizer processes the noise. To do so, the
contribution to the output noise PSD from each noise source is first calculated. Because
all noise sources are uncorrelated, the total output noise PSD is constructed by adding up
all individual power spectra. The total output noise PSD is then integrated up to infinity
to calculate the integrated output-referred noise power

(
v2

n,total

)
having units of V2. The

total integrated input-referred noise power
(

i2n,total

)
in units of A2 is then determined by

dividing the v2
n,total by the squared effective gain

(
ZTIA,e f f

)2
calculated from the VEO

at the output of the FE. This gain calculation accounts for the residual ISI in the signal
presented to the decision circuit. The input-referred noise current is then calculated as
the square root of i2n,total . Further discussion about the noise analysis for equalizer-based
optical receivers is available in our previously published work [15].

4.4. Performance Comparison

To assess the improvement of the proposed FE versus its conventional counterpart,
both FEs are simulated in Matlab. The traditional FE has the same block diagram as in
Figure 7 without the pole insertion in the feedback loops. Therefore, its analysis is the same
as presented earlier, but replacing each βpro(s) in (10) with βcon(s). The value of the TIA’s
feedback resistor is tuned to set the ratio of fTIA/ fbit to 0.57 and 0.26 for the conventional
and the proposed FEs, respectively. In the latter, the values of β1 and ωZ are chosen to
achieve an overall bandwidth of fFE = 0.56 fbit. The power consumption and the DC gain
of the proposed EMA are kept equal to that of the conventional MA by fixing the values
of A1 and β1 in both circuits. The performance of the two FEs is summarized in Table 1.
Although the two FEs have approximately the same overall bandwidth, the proposed FE
achieves 6 dB higher gain compared to its conventional version. This improvement in the
transimpedance gain resulted from the increased value of RF for the limited-bandwidth
TIA. It is worth mentioning that this gain improvement comes without any additional
power dissipation because changing RF and ωZ does not affect the DC power dissipation
as will be shown in the practical implementation in the next section.

11

J. Low Power Electron. Appl. 2022, 12, 19

Table 1. Design parameters and performance summary of the proposed front-end in comparison to
its conventional counterpart.

MATLAB (1) Spectre (2)

10 Gb/s 10 Gb/s 20 Gb/s (4)

Conventional Proposed Conventional Proposed Conventional Proposed

T
IA

RF (kΩ) 1.25 2.5 0.7 1.6 0.4 0.8

fTIA/ fbit 0.57 0.26 0.64 0.27 0.68 0.3

M
A

/E
M

A

ωZ/2π
(GHz) ∞ 2.25 ∞ 5.25 ∞ 11.47

β1 0.25 0.25 0.14 0.14 0.15 0.15

Peaking (dB) @ fN 0 5.05 0 4.8 0 3.5

FE

ZVEO (dBΩ) 83.6 89.98 79.7 87.1 71.2 77.2

fFE/ fbit 0.57 0.56 0.6 0.61 0.59 0.54

Peaking (dB) 0 0.084 0 0 0 0

in,rms (μArms) 0.598 0.531 1.2 0.95 2.41 1.74

Sensitivity Improvement (dB)

Noise-based – 0.52 – 1 – 1.4

PP-based (3) – 0.61 – 0.5 – 0.84

Total – 1.125 – 1.5 – 2.24

(1) Simulations based on Figure 7. (2) Simulations based on Figure 11a. (3) For VPP
CDR = 50 mVpp. (4) The 20 Gb/s

simulations are discussed in Section 5.4.

Figure 11. (a) Block diagram and circuitry of the implemented front-end. Parameter values for
10 Gb/s operation are tabulated. (b) Simulated amplitude response. (c) Simulated group-delay.

The input-referred noise power of both FEs is compared in Figure 10b. In the proposed
FE, the feedback resistor and the post amplifier noise powers are improved compared to
their counterparts in the conventional design. That is, increasing the value of RF in the

12

J. Low Power Electron. Appl. 2022, 12, 19

proposed FE reduces its thermal noise contribution and increases the input-referral gain
which suppresses the noise from the follow-on amplifier. The channel noise is slightly
increased in the proposed FE due to HFP that amplifies the high-frequency noise. Overall,
the presented design technique reduces the input-referred noise current by 11.2%. The
lower noise and higher gain in the presented FE led to 0.52 dB and 0.61 dB improvements
in the noise-based sensitivity and the PP compared to the traditional design.

5. Circuitry and Layout of the Implemented Front-End

Figure 11a shows the block diagram and the circuitry of the implemented front-end.
A replica TIA is used to provide pseudodifferential power-supply noise rejection. The TIA
is followed by a three-stage EMA. A series resistor (RZ) is inserted in the feedback loops of
the second and third stages. This resistor, in combination with the parasitic capacitance
of the transistor in the feedback loops, creates the zero required for bandwidth extension.
Compared to Figure 7, the EMA’s third stage is added to relax the gain requirements and
assist in recovering the bandwidth. A low-pass feedback network (LPFN) is connected
between the output of the EMA and the input of the TIA. The LPFN amplifies the difference
between the DC levels at VOut and returns a feedback voltage of VF that is then converted
to a current Ios by the transconductance of Mos and subtracted from the input current
for offset compensation. The LPFN is a single-pole RC filter using a Miller-boosted 5 pF
capacitor and a 1.1 MΩ resistor. A low cut-off frequency of 1 MHz is achieved as a trade-off
between the on-chip area and the tolerable baseline wander for long runs of consecutive
identical digits. The low common-mode voltage at the TIA’s output prevents the use of a
tail current source for the first differential pair in the EMA’s first stage and therefore a poly
silicon resistor is used instead.

The FE is simulated in TSMC-65 nm using a Cadence Spectre simulator. The input
parasitics are modeled by a pad capacitance (CPad) of 45 fF, a photodiode capacitance (CD)
of 80 fF and a bondwire inductance (Lwire) of 0.5 nH. The loading from the subsequent
output buffer is modeled by a load capacitance of (CL = 150 fF) connected at the output of
the EMA. An additional 50 fF capacitance is added to all nodes to model the wiring and
layout parasitic. The receiver’s output stage (not shown in Figure 11a) is a conventional
differential amplifier with a load resistance of 100 Ω chosen as a trade-off between output
signal amplitude and compatibility with the off-chip 50 Ω environment.

Figure 12 shows the chip layout in TSMC 65 nm CMOS technology. The chip includes
two standalone FEs. One FE is the direct implementation of the circuit in Figure 11a
while the other is its conventional version (i.e., RZ is replaced by a short circuit). The
total size of the chip is 1 mm × 0.7 mm. Each front-end is pad limited and occupies
665 μm × 460 μm

(
0.31 mm2), including the I/O RF pads, while the active area, including

the offset compensation loop, is about 0.0114 mm2. The high-speed RF input and output
probing pads are differential G-S-G-S-G since each FE has differential inputs and outputs.
The TIA, the MA/EMA, and the output buffer are powered by different supplies.

Figure 12. Chip layout.

13

J. Low Power Electron. Appl. 2022, 12, 19

5.1. Validation of Bandwidth Extension

Similar to the previous section, both the proposed and the conventional FEs are
simulated and compared. The proposed FE’s TIA bandwidth is 27% of the targeted 10 Gb/s
data rate. The tail current source in the feedback pair IF sets the feedback gain β1 and
is chosen to satisfy the power penalty condition. The series resistor RZ is then chosen to
achieve the required bandwidth extension. The device dimensions and component values
are tabulated in Figure 11a for nominal 10 Gb/s operation. All transistors in the signal
and feedback paths use minimum length. Current sources, however, employ transistors
with longer than minimum length. The corresponding amplitude responses are shown in
Figure 11b. The EMA introduces a peaking of 4.8 dB at the Nyquist frequency and restores
the bandwidth by a factor of 2.28×, achieving an overall bandwidth of 6.1 GHz.

The simulated group-delay is also shown in Figure 11c where the GDV is within ±10%
of the unit interval over the frequency range of interest. Figure 13a,b shows the 10 Gb/s
eye diagrams at the output of the FE when the limited-bandwidth TIA is followed by a
wideband MA or by the EMA, respectively. The eye diagrams obtained through simulation
demonstrate the capability of the proposed peaking technique in restoring the bandwidth
without impairing the low-frequency gain. The bandwidth extension improves the VEO by
a factor of 1.7×. Figure 13c shows the eye diagram of the traditional FE. In this simulation,
RZ is shorted and RF is reduced to widen the TIA’s bandwidth while the current sources
(IF and IB) are unchanged. Comparing Figure 13b,c shows that the presented design
technique improves the effective gain by a factor of 2.34×. Interestingly, for the proposed
design, the gain is improved by almost the same amount as the TIA’s bandwidth is reduced.
This emphasizes the linear relation between the gain and the bandwidth in the single-stage
Inv-TIA. Table 1 summarizes the simulated performance of the two FEs where the presented
FE shows 1.5 dB better sensitivity compared to its conventionally designed counterpart.

(a) (b) (c)

Figure 13. Simulation results for the 10 Gb/s output eye diagrams when the limited-bandwidth TIA
is followed by (a) a wideband MA and (b) the proposed EMA. In (c), the TIA’s bandwidth is widened,
and a wideband MA is employed. The input current is fixed at 15 μApp for all simulations.

5.2. Sensitivity to Process and Temperature Variations

Figure 14 shows the simulated performance of the presented receiver under process
and temperature variations. Figure 14a shows that the EMA exhibits more peaking at a
lower temperature. For a given temperature, the peaking can vary by up to 6.5 dB over
different process corners. The FE gain and bandwidth in Figure 14b can vary up to 13.5 dB
and 3.4 GHz over different corners, respectively. The gain and bandwidth variations
relative to their values at room temperature reach up to 24.3% and 22.5%, respectively,
as the temperature varies from 20 °C to 80 °C. This performance variation is mainly
caused by the constant current sources used in this design and can be counteracted by
employing temperature-compensated or constant-gm biasing techniques [19]. Adaptation
techniques can be also employed to continuously monitor the output eye diagram and set
the circuit parameters accordingly to maintain the best quality for the equalized eye [20].
In the implemented prototype, the TIA’s feedback resistor and current sources in the
forward and feedback paths are made variable. This allows for post-fabrication control on
peaking frequency, peaking magnitude, and the TIA’s high-frequency roll-off. Therefore,

14

J. Low Power Electron. Appl. 2022, 12, 19

the amplitude responses of both the EMA and the TIA track each other to achieve the
targeted bandwidth with minimal GDV.

(a) (b)

Figure 14. Simulated performance under process and temperature variations: (a) EMA’s peaking at
Nyquist frequency; (b) gain and bandwidth of the overall FE.

To prove that the proposed technique works despite the PT variations, Figure 15
shows the simulated 10 Gb/s eye diagram at the SS process corner and −20 °C. The
uncompensated eye (left) shows a significant distortion. By carefully adjusting the circuit
parameters, a clean eye is obtained (right) with an internal opening similar to that obtained
under nominal operations. To generate the eye on the right, the circuit parameters are
changed as follows: IB is reduced from 2.5 mA to 1.65 mA, IF is increased from 0.325 mA
to 0.4 mA, and RZ is reduced from 0.575 kΩ to 0.445 kΩ. The tunability range of all
circuit parameters are limited to less than 35% of their nominal values which is feasible
for realization. Further, the capacitance introduced by the configurable current sources
appears at tail nodes and therefore does not alter the signal path.

Figure 15. Simulated 10 Gb/s eye diagrams under SS process corner and −20 °C (left) uncompen-
sated, (right) compensated.

5.3. Stability

In the presence of a complex feedback and high amplitude peaking in the EMA, the
stability of the presented FE becomes an important consideration. The pole-zero simulation
in Figure 6a shows that a pair of complex poles (PA) moves toward the y-axis as ωz is
reduced. ωz is the frequency of the introduced zero that ideally cancels the bandwidth-
limiting pole created by the low-bandwidth TIA. As a result, the TIA’s 3-dB bandwidth
cannot be made arbitrarily small to avoid the EMA’s pole pair travelling to the right-hand

15

J. Low Power Electron. Appl. 2022, 12, 19

plane (RHP). Further, for a given ωz, the poles PA may enter the RHP at excessively large
feedback gain β1. However, the values of β1 that lead to RHP poles are far from those in
the proposed design. For example, in the FE in Figure 7, when ωz is set to 2π fbit/4, the
poles PA do not travel to the RHP until after β1 > 6 and β1 > 5.5 for fbit of 10 Gb/s and
20 Gb/s, respectively, while β1 is typically limited to less than 0.3.

5.4. Discussion and Comparison to Prior Work

The performance of the proposed FE is compared to other 10 Gb/s high-gain receivers
in the literature as shown in Table 2. Although thorough circuit simulations are sufficient to
prove the concept behind our design, the absence of optical measurements complicates the
comparison with prior art. The work in [8] consists of an Inv-TIA followed by three stages
of an Inv-based Cherry-Hooper voltage amplifier. In this architecture, active interleaving
feedback and local positive feedback are applied to extend the bandwidth. The circuit is
implemented in a single-ended structure and measured with electrical and optical inputs
for various data rates. Only electrical measurements at 10 Gb/s are listed in Table 2. The
work in [8] is measured for two modes of operation denoted on Table 2 by best sensitivity
mode and lowest power mode (see Figure 18 in [8]). The average of these two modes
shows approximately 2× better sensitivity and 2.3× better energy efficiency compared
to the work presented here. The reason for this better performance is mainly because of
the single-ended structure in [8] that reduces the power dissipation and thermal noise
sources compared to the differential structure used in this work. Further, the single-ended
implementation enabled measurements at low supply voltages, which are not available
in this work due to the DC biasing requirements on differential amplifiers. The proposed
design has a much higher output peak-to-peak amplitude at the sensitivity level than [8],
which is not optimized for high-gain operation and incurs a significant PP when the receiver
is followed by a practical decision circuit.

Table 2. Performance comparison with published 10 Gb/s receivers.

Performance Parameter [9] [12]
[8]

[21] This Work (4)

Lowest Power Best Sens.

RX topology Diff. Diff. Sing. Sing. Diff. Diff.

Passive inductor No No No No Yes No

CMOS tech. (nm) 130 65 65 65 40 65

fT (GHz) 85 150 150 150 250 150

Data rate (Gb/s) 10 10 10 10 10 10

CPD (fF) NA 50 60 (2) 60 (2) 100 (1) 120

PRBS length 31 31 7 7 7 11

Sensistivity (μApp) – 13 – – 23.9 (3) 24.4

Output voltage (mVpp) 175 400 15.85 (4) 53.55 (3) 136 339

Energy efficiency (pJ/b) 18.9 2.3 0.6 1.6 7.5 2.4

(1) On-chip capacitor is added to consider the effect of the PD junction capacitance. (2) Calculated from the average
input-referred noise current. (3) Calculated from measured eye diagrams that are not shown in [8]. (4) Circuit
simulation with parasitic capacitances taken into consideration.

The presented receiver shows better energy efficiency than [21] which is implemented
in a more advanced technology node and a comparable energy efficiency to [12] which
is implemented in the same technology. The combination of multistage shunt-feedback
TIA and the noiseless DFE in [12] has resulted in an excellent sensitivity at the cost of
more complexity and power dissipation on the equalizer that consumes 74% of the total
power. Therefore, a design that incorporates the high-gain FE in [12] with our proposed
equalization technique with no additional power dissipation could lead to significant

16

J. Low Power Electron. Appl. 2022, 12, 19

improvement on the energy-efficiency of the receiver while maintaining a good sensitivity.
The work presented here shows comparable voltage sensitivity to the limiting amplifier
introduced in [9], built by applying an active interleaving feedback to third-order gain
cells. Finally, our work shows the largest output voltage amplitude for an input set to the
sensitivity limit which makes it suitable to drive the subsequent clock and data recovery
(CDR) circuit with negligible power penalty.

5.5. Operation at Higher Data Rate

The circuit in Figure 11a is also examined for 20 Gb/s operation with the same
simulation setups described in Section 5.1 First, the TIA’s bandwidth is set to 6 GHz (30%
of the targeted data rate) by employing a feedback resistor of 800 Ω. Then, the limited-
bandwidth TIA is followed by a wideband MA and the EMA, one at a time. Both amplifiers
have the same value of IB and I f and therefore they consume the same DC power. The
MA has a flat amplitude response with a bandwidth of 18.7 GHz. However, the overall
bandwidth of the combined TIA/MA is dominated by the TIA’s bandwidth. The EMA, on
the other hand, introduces 3.5 dB of amplitude peaking at 10 GHz that extends the overall
bandwidth of the combined TIA/EMA to 10.9 GHz. Figure 16a,b shows the simulation
results for the output eye diagram for both scenarios. The internal eye opening improves
by 1.6× when the EMA is employed compared to the case in which the wideband MA is
used, demonstrating the capability of the presented technique in restoring the targeted
bandwidth. The eye diagram in Figure 16c is obtained from the FE that includes TIA/MA
after extending the TIA’s bandwidth to 13.5 GHz by reducing its feedback resistor to 400 Ω,
achieving an overall bandwidth of 11.8 GHz. Comparing Figure 16b,c) emphasizes that the
presented design technique improves the effective gain compared to its conventional wide-
bandwidth counterpart. The performance of the proposed FE at 20 Gb/s in comparison to
its conventional counterpart is summarized in Table 1.

(a) (b) (c)

Figure 16. Simulation results for the 20 Gb/s output eye diagrams when the limited-bandwidth TIA
is followed by (a) a wideband MA and (b) the proposed EMA (b). In (c), the TIA’s bandwidth is
widened, and a wideband MA is employed. The input current is fixed at 25 μApp for all simulations.

5.6. Operation with Large Input Signal

The presented analysis assumes that the gain cells are in linear operation. In reality, the
circuit performance is strongly affected by the signal amplitude. As the signal propagates
through cascaded stages, the latter gain cells start to saturate as a result of the increased
voltage swing. Eventually, these cells act as unity-gain buffers and consequently the loop-
gain falls below unity due to the presence of the active feedback. This in turn reduces
the bandwidth. The impact of large input levels on the bandwidth of the active feedback-
based structure is observed in [9] and an inverse scaling technique [22] is proposed as
a potential solution for the problem. However, inverse scaling complicates the system
analysis especially in the presence of interleaving feedback.

17

J. Low Power Electron. Appl. 2022, 12, 19

Alternatively, a straightforward automatic gain control similar to that presented in [6]
can be employed. The technique has three steps: (1) aggressively reducing the TIA’s gain at
the cost of introducing a severe peaking in its amplitude response; (2) re-configure one of
the MA stages to act as a low-pass filter to suppress the TIA’s peaking and set the receiver
bandwidth; (3) increasing the transconductance of the active feedback cell in the remaining
MA stages to reduce their gain. In other words, at very high inputs, the TIA and the EMA
interchange their roles. That is, the TIA introduces a high-frequency peaking that is then
suppressed by the subsequent low-bandwidth amplifier. Figure 17 shows the simulation
results for output eye diagrams when the input is set to 1 mApp at 10 Gb/s and 20 Gb/s. To
generate these eyes, the TIA’s feedback resistor is reduced to 60 Ω and the LPFs are removed
from the EMA circuit. Despite the 7 dB of peaking in the TIA’s amplitude response, the
overall FE shows a flat amplitude response and a bandwidth of 12 GHz. The eye is fully
open at 10 Gb/s. At 20 Gb/s, the internal eye opening is better than 60% of the maximum
value. At both data rates, the eye opening is larger than it was at the sensitivity level. The
widened eyes demonstrate the capability of the circuit to handle large input signals.

(a) (b)

Figure 17. Simulation results for the output eye diagram when the input current is set to 1 mApp at
(a) 10 Gb/s and (b) 20 Gb/s.

6. Conclusions

A design technique that relaxes the trade-off between gain and bandwidth in CMOS
multi-stage amplifiers has been presented. To improve gain and reduce noise, the tran-
simpedance amplifier is designed with a larger feedback resistor and its bandwidth limita-
tion is compensated by a follow-on equalizing main amplifier (EMA). The EMA leverages
the improved performance of state-of-the-art active-feedback main amplifier designs, but
with the added benefit of high-frequency peaking. By embedding the equalizer stage in the
gain stage, the overall circuit attains the improved performance of traditional equalizer-
based designs, while achieving better energy efficiency due to the elimination of the
standalone equalizer stage. The proposed front-end outputs an eye diagram with vertical
openings of 338.9 mVpp and 180 mVpp at 10 Gb/s and 20 Gb/s, respectively. The vertical
eye openings are doubled compared those of the conventional wide band front-end that
operates at the same data rate and dissipates the same power, demonstrating the capability
of the proposed technique to drive a subsequent decision circuit with a negligible power
penalty. Simulation results also verify that the presented FE functions properly with large
input signals and exhibits a robust performance against process and temperature variations.

Author Contributions: Conceptualization, D.A.; methodology, D.A.; software, D.A.; validation, D.A.
and C.W.; formal analysis, D.A.; investigation, D.A.; resources, O.L.-L. and G.E.R.C.; writing—original
draft preparation, D.A.; writing—review and editing, O.L.-L. and G.E.R.C.; visualization, D.A.;
supervision, O.L.-L. and G.E.R.C.; project administration, O.L.-L. and G.E.R.C.; funding acquisition,
O.L.-L. and G.E.R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada through the Strategic Project Grant Program (Grant number is STPGP 494385-16) and in
part by the Faculty of Engineering and Computer Science at Concordia University.

18

J. Low Power Electron. Appl. 2022, 12, 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank CMC Microsystems for providing access to CAD
tools, fabrication, and test equipment. They would like to thank T. Obuchowicz for CAD support.
They would also like to thank A. I. Abbas and R. Priti for assistance in testing the receiver prototype.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, H.; Hsu, C.M.; Sharma, J.; Jaussi, J.; Balamurugan, G. A 100-Gb/s PAM-4 Optical Receiver With 2-Tap FFE and 2-Tap
Direct-Feedback DFE in 28-nm CMOS. IEEE J. Solid-State Circuits 2022, 57, 44–53. [CrossRef]

2. Li, H.; Sakib, M.; Dosunmu, O.; Liu, A.; Balamurugan, G.; Rong, H.; Jaussi, J.; Casper, B. A 112 Gb/s PAM4 CMOS Optical
Receiver with Sub-pJ/bit Energy Efficiency. In Proceedings of the IEEE Optical Interconnects Conference (OI), Santa Fe, NM,
USA, 24–26 April 2019.

3. Daneshgar, S.; Li, H.; Kim, T.; Balamurugan, G. A 128 Gb/s PAM4 Linear TIA with 12.6 pA/
√

Hz Noise Density in 22 nm FinFET
CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 7–9 June 2021.

4. Säckinger, E. Broadband Circuits for Optical Fiber Communication; John Wiley & Sons: Hoboken, NJ, USA, 2005.
5. Kim, J.; Buckwalter, J.F. Bandwidth Enhancement With Low Group-Delay Variation for a 40-Gb/s Transimpedance Amplifier.

IEEE Trans. Circuits Syst. I Reg. Pap. 2010, 57, 1964–1972.
6. Li, D.; Minoia, G.; Repossi, M.; Baldi, D.; Temporiti, E.; Mazzanti, A.; Svelto, F. A Low-Noise Design Technique for High-Speed

CMOS Optical Receivers. IEEE J. Solid-State Circuits 2014, 49, 1437–1447. [CrossRef]
7. Chen, T.; Chan, C.; Sheen, R.R. Transimpedance Limit Exploration and Inductor-Less Bandwidth Extension for Designing

Wideband Amplifiers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 348–352. [CrossRef]
8. Fard, M.M.P.; Liboiron-Ladouceur, O.; Cowan, G.E.R. 1.23-pJ/bit 25-Gb/s Inductor-Less Optical Receiver With Low-Voltage

Silicon Photodetector. IEEE J. Solid-State Circuits 2018, 53, 1793–1805. [CrossRef]
9. Huang, H.; Chien, J.; Lu, L. A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback.

IEEE J. Solid-State Circuits 2007, 42, 1111–1120. [CrossRef]
10. Ray, S.; Hella, M.M. A 53 dBΩ 7-GHz Inductorless Transimpedance Amplifier and a 1-THz + GBP Limiting Amplifier in 0.13-μm

CMOS. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 65, 2365–2377. [CrossRef]
11. Pan, Q.; Wang, Y.; Lu, Y.; Yue, C.P. An 18-Gb/s Fully Integrated Optical Receiver With Adaptive Cascaded Equalizer. IEEE J. Sel.

Top. Quantum Electron. 2016, 22, 361–369. [CrossRef]
12. Ahmed, M.; Talegaonkar, M.; Elkholy, A.; Shu, G.; Elmallah, A.; Rylyakov, A.; Rylyakov, P. A 12-Gb/s -16.8-dBm OMA Sensitivity

23-mW Optical Receiver in 65-nm CMOS. IEEE J. Solid-State Circuits 2018, 53, 445–457. [CrossRef]
13. Sackinger, E. The Transimpedance Limit. IEEE Trans. Circuits Syst. I Reg. Pap. 2010, 57, 1848–1856. [CrossRef]
14. Sackinger, E. On the Noise Optimum of FET Broadband Transimpedance Amplifiers. IEEE Trans. Circuits Syst. I Reg. Pap. 2012,

59, 2881–2889. [CrossRef]
15. Abdelrahman, D.; Cowan, G.E.R. Noise Analysis and Design Considerations for Equalizer-Based Optical Receivers. IEEE Trans.

Circuits Syst. I Reg. Pap. 2019, 66, 3201–3212. [CrossRef]
16. Radice, F.; Bruccoleri, M.; Mammei, E.; Bassi, M.; Mazzanti, A. A low-noise programmable-gain amplifier for 25 Gb/s multi-mode

fiber receivers in 28 nm CMOS FDSOI. In Proceedings of the 41st European Solid-State Circuits Conference (ESSCIRC), Graz,
Austria, 14–18 September 2015.

17. Ray, S.; Chowdhury, A.; Hella, M.M. Enhancing the Stability of Broadband Amplifiers Using Third Order Nested Feedback. In
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018.

18. Shahramian, S.; Yasotharan, H.; Carusone, A.C. Decision Feedback Equalizer Architectures With Multiple Continuous-Time
Infinite Impulse Response Filters. IEEE Trans. Circuits Sys. II Express Briefs 2012, 59, 326–330. [CrossRef]

19. Liu, C.; Yan, Y.; Goh, W.; Xiong, Y.; Zhang, L.; Madihian, M. A 5-Gb/s Automatic Gain Control Amplifier With Temperature
Compensation. IEEE J. Solid-State Circuits 2012, 47, 1323–1333. [CrossRef]

20. Kim, W.; Seong, C.; Choi, W. A 5.4-Gbit/s Adaptive Continuous-Time Linear Equalizer Using Asynchronous Undersampling
Histograms. IEEE Trans. Circuits Syst. II Express Briefs 2012, 59, 553–557. [CrossRef]

21. Chien, Y.; Fu, K.; Liu, S. A 3–25 Gb/s Four-Channel Receiver With Noise-Canceling TIA and Power-Scalable LA. IEEE Trans.
Circuits Syst. II Express Briefs 2014, 61, 845–849. [CrossRef]

22. Sackinger, E.; Fischer, W.C. A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers. IEEE J. Solid-State Circuits 2000,
35, 1884–1888. [CrossRef]

19

Citation: Mambu, K.; Charles, H.-P.;

Kooli, M.; Dumas, J. Towards

Integration of a Dedicated Memory

Controller and Its Instruction Set to

Improve Performance of Systems

Containing Computational SRAM. J.

Low Power Electron. Appl. 2022, 12, 18.

https://doi.org/10.3390/

jlpea12010018

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 15 December 2021

Accepted: 14 February 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Towards Integration of a Dedicated Memory Controller and Its
Instruction Set to Improve Performance of Systems Containing
Computational SRAM

Kévin Mambu *, Henri-Pierre Charles *, Maha Kooli * and Julie Dumas *

CEA, LIST, Université Grenoble Alpes, F-38000 Grenoble, France
* Correspondence: kevin.mambu@cea.fr (K.M.); henri-pierre.charles@cea.fr (H.-P.C.); maha.kooli@cea.fr (M.K.);

julie.dumas@cea.fr (J.D.)

Abstract: In-memory computing (IMC) aims to solve the performance gap between CPU and memo-
ries introduced by the memory wall. However, it does not address the energy wall problem caused
by data transfer over memory hierarchies. This paper proposes the data-locality management unit
(DMU) to efficiently transfer data from a DRAM memory to a computational SRAM (C-SRAM)
memory allowing IMC operations. The DMU is tightly coupled within the C-SRAM and allows
one to align the data structure in order to perform effective in-memory computation. We propose
a dedicated instruction set within the DMU to issue data transfers. The performance evaluation of
a system integrating C-SRAM within the DMU compared to a reference scalar system architecture
shows an increase from ×5.73 to ×11.01 in speed-up and from ×29.49 to ×46.67 in energy reduction,
versus a system integrating C-SRAM without any transfer mechanism compared to a reference scalar
system architecture.

Keywords: in-memory computing; energy modeling; non-von neumann; instruction set; compilation;
stencils; convolutions; sram; energy wall; memory wall

1. Introduction

Von Neumann architectures are limited by the performance bottleneck characterized
by the “memory wall”, i.e., the performance limitation of memory units compared to CPU,
and the “energy wall”, i.e., the gap between the energies consumed for computation and
data transfers between different system components.

Figure 1a exposes the energy discrepancy between each component of a standard von
Neumann architecture. We note that the energy increases by ×100 between the CPU and the
cache memory, and by ×10, 000 between the CPU and the DRAM memory [1]. In-memory
computing (IMC) is a solution to implement non-von Neumann architectures and mitigate
the memory wall by moving computation directly into memory units [2]. It allows the
reduction of data transfers and thus energy consumption. However, the efficiency of IMC
depends on the proper arrangement of data structures. Indeed, to be correctly computed in
the memory, data should be arranged to respect a precise order (e.g., aligned in memory
rows) imposed by IMC hardware design constraints.

While various state-of-the-art works propose IMC solutions, very few take into account
their integration to complete computer systems while describing efficient methods to
transfer data from IMC to high-latency memories or peripherals. This lack of consideration
can be explained by the majority of IMC architectures being currently specialized for a few
use cases, i.e., AI and big data, which limits their efficiency for general-purpose computing.
We propose a data-locality management unit (DMU), a transfer block presented in Figure 1b,
coupled to an SRAM-based IMC unit to generate efficient data transfer and reorganization
through a dedicated instruction set. As IMC architecture, we consider the computational
SRAM (C-SRAM), an SRAM-based bit-parallel IMC architecture detailed in [2–4], and able

J. Low Power Electron. Appl. 2022, 12, 18. https://doi.org/10.3390/jlpea12010018 https://www.mdpi.com/journal/jlpea
21

J. Low Power Electron. Appl. 2022, 12, 18

to perform logical and arithmetical operations in-parallel thanks to an arithmetic and logic
unit (ALU) in its periphery. We integrate it within a CPU and a DRAM as main memory.

Figure 1. (a) Performance bottlenecks of von Neumann architecture; energy costs are based on [1].
(b) Proposed architecture with IMC to mitigate the “memory wall” and a “DMU” block to mitigate
the “energy wall” between IMC and low-latency memory.

The system evaluation of C-SRAM and DMU on three applications—frame differenc-
ing, Sobel filter and matrix multiplication—versus a system integrating C-SRAM without
a dedicated transfer mechanism shows an increase from ×5.73 to ×11.01 in speed-up and
from ×29.49 to ×46.67 in energy reduction, according to a baseline scalar architecture.

The rest of this paper is organized as follows. Section 2 presents related works.
Section 3 details our proposed solution. Section 4 evaluates the DMU on three applications
and discusses the gains obtained through its integration. Finally, Section 5 concludes the
paper and exposes future works.

2. Related Work

2.1. In-Memory Computing (IMC)

IMC architectures of the state-of-the-art can be differentiated by their technology
and programming model [5]. Volatile memory-based IMC architectures include DRAM
and SRAM technologies. DRAM-based IMC architectures propose to enhance DRAM
memories with bulk-bitwise computation operators. These solutions offer cost and area
efficiency and large parallelism, although their arithmetic support is limited to logical or
specialized operators [6,7]. SRAM-based IMC architectures are less scalable than DRAM-
based solutions in terms of design, but they implement more elaborated computation
operators, either through strict IMC using bit-lines and sense amplifiers, or through near-
memory computing by using an arithmetic logic unit (ALU) in the periphery of the bit-
cell array [3,8,9]. Other approaches using emerging technologies such as MRAM or Re-
RAM [10,11] have been explored. They present interesting opportunities in terms of access
latency and nonvolatile capability, but have drawbacks in terms of cycle-to-cycle variability
and analog-to-digital conversion of input data.

22

J. Low Power Electron. Appl. 2022, 12, 18

Despite all these technological differences, a common challenge regarding system
integration is the specific memory management required to properly map data to be
able to perform effective computations. A study of the literature presents three main
mapping strategies of existing IMC architectures. First, bit-parallel mapping requires each
operand of a given operation to be aligned on the same bit-cells to be computed, which
induces the logical memory alignment of data [3,6]. Then, in bit-serial data mapping,
operands are aligned on the same rows, and all bits of a given operand are aligned on
the same bit-cell [8]. This requires data to be physically transposed in the array to be
effectively computed. Third, crossbar mapping is a 2D mapping scheme used to perform
computation in the form of convolutions between analog data driven through different
word-lines and data along each bit-line [11]. Bit-serial and crossbar mapping schemes
show advantages in terms of computation capabilities, but are difficult to integrate due to
their data management constraints (data transposing for bit-serial and digital-to-analog
conversion and rearrangement for crossbar) which conflict with the inherent bit-parallel
nature of modern computer systems.

In this paper, we focus on an SRAM-based bit-parallel architecture, which shows a
better compromise between computation capability, system integration and data compati-
bility [2–4].

2.2. Data Management Solutions for IMC

In this subsection, we focus on data management solutions devised by previous
works for IMC architectures. First, IMC architectures based on emerging technologies
evaluate their solutions while not considering the cost of external data transfers with high-
latency memories or peripherals, as their architectures are not yet mature for system
integration. We only retain two state-of-the-art solutions of data management when
focusing on conventional technologies, e.g., DRAM and SRAM-based.

“PIM-enabled instructions” [12] (PEI) establishes the specifications for a generic IMC
architecture while also defining its integration to the memory hierarchy. PEI computation
units (PCU) are integrated within a hybrid memory cube, each managing a DRAM module
to perform NMC on the main memory while a local PCU is coupled to the host CPU to
perform NMC at the cache-level, e.g., on SRAM. While the paper proposes hardware and
software mechanisms to ensure data coherency and locality management, the complexity of
this solution makes this architecture difficult to implement and program. Moreover, the cost
of data movements for PCUs computing on DRAM means that data management needs to
be statically scheduled to reduce dynamic rearrangement as often as possible. Finally, PEI
does not define specialized instructions for memory accesses, limiting the charge of data
management to the host CPU and extending it to DRAM memory.

The duality cache [8] is designed to be implemented in the last-level cache (LLC). Its
data management mechanism is based on the cache controller of the LLC to transfer data
to different data banks. Other mechanisms such as the transpose memory unit (TMU)
are implemented to transpose data from bit-parallel-in-DRAM to bit-serial-in-IMC. While
the hardware and software environment of the duality cache make for an effective data
management mechanism for its target applications (GPU kernels, especially AI), it is not
explicitly programmable and it is constraining for developers. This limitation implies
the static allocation and management of data before computation, and according to the
hardware mechanisms of the duality cache.

The transfer mechanism we describe in this paper proposes a dedicated instruction
set, integrated as an extension of the IMC ISA to offer explicit management on dynamically
allocated data to developers. Compared to previous solutions, our interest is compatibility
with general-purpose computing.

23

J. Low Power Electron. Appl. 2022, 12, 18

3. DMU Specification

3.1. Overview

In this section, we present a DMU, a memory controller architecture to provide memory
access instructions to IMC to efficiently transfer and reorganize data before computation.
We implement in the DMU the control of source and destination offsets to enable fine-grain
data reorganization in IMC as well as DRAM memory to address alignment constraints
necessary for certain applications, and the implementation of two different operating modes
makes online data padding available. Finally, the DMU implements a dedicated instruction
set to program data transfers in a single clock cycle, compared to classical DMA solutions.
This instruction set is implemented as a subset of the C-SRAM instruction set architecture.
The DMU controller is proposed to be tightly coupled in the periphery of the IMC unit, as
shown in Figure 2. This means that there is a direct interface between the DMU and IMC
without going through the system bus, which is one of the main difference compared to
existing DMA controllers.

Figure 2. The integration of DMU to IMC offers an instruction set for efficient data transfers as well
as a dedicated transfer bus with the main memory.

3.2. Instruction Set Architecture

Table 1 shows the proposed instructions defined for the DMU. All instructions are
nonblocking for the host architecture, and a BLOCKING_WAIT instruction is implemented
to ensure synchronization between it and the C-SRAM.

Table 1. Summary of DMU instructions.

Operation Parameters

SET_SRC_DRAM_REGION
(Nonblocking)

DRAM base address, region width,
element size

SET_DST_DRAM_REGION
(Nonblocking)

DRAM base address, region width,
element size

READ_TRANSFER
(MEM→IMC, nonblocking)

Source X position, source Y position, dest. IMC
address, length, source offset, dest offset,

operating mode

COPY
(IMC→IMC, nonblocking)

Source IMC address, dest IMC address, source
offset, dest offset, operating mode

WRITE_TRANSFER
(MEM→IMC, nonblocking)

Dest X position, dest Y position, source IMC
address, length, source offset, dest. offset,

operating mode

BLOCKING_WAIT None

SET_SRC_DRAM_REGION and SET_DST_DRAM_REGION take as parameters 2D regions
in DRAM memory space, characterized by: their base address A and their width and

24

J. Low Power Electron. Appl. 2022, 12, 18

height, respectively, W and H. The number of bits required for A is architecture-dependent
while the numbers of bits required to encode H and W are implementation-dependent. By
defining in advance the source and destination data structures in DRAM, READ_TRANSFER
and WRITE_TRANSFER instructions only require, respectively, the source and destination
positions (X, Y) in the target region, which can be encoded in log2(W) and log2(H) bits. This
indirect addressing effectively reduces the number of bits required for both instructions,
which are the most frequently called instructions of the instruction set. Figure 3 illustrates
this mechanism from the developer’s point of view.

Figure 3. Representation of a 2D region in the DRAM memory space, defined by SET_DRAM_REGION,
and a single element in said region. This decomposition allows reducing the number of bits required
in transfer instructions for DRAM address.

READ_TRANSFER, WRITE_TRANSFER and COPY can operate to transfer data and per-
form online reorganization. For example, the parameterizing of source and destination
offsets allow the data to be padded upon arrival in the C-SRAM. To cover most use-cases
induced with the configuration of the destination offset, we implement in the DMU two
operating modes through the transfer_start register, illustrated in Figure 4. A zero-
padding mode fills the blanks in between destination data with zeros to perform unsigned
byte extension, while an overwriting mode preserves the data present in the destination
C-SRAM row and updates only relevant bytes. The former is destructive but enables
online byte extension to perform higher-precision arithmetic for workloads such as image
processing or machine learning, while the latter is more suitable for nondestructive data
movements. Since most iterative codes such as convolutions induce strong data redun-
dancy, COPY can be used to duplicate data and mitigate accesses with the DRAM for better
energy efficiency.

Algorithm 1 describes the side effects generated by the READ_TRANSFER instruction,
according to its parameters and the offset mechanism described in Figure 4.

Algorithm 1: READ_TRANSFER description.
Data: x, y, dst_addr, length, src_off, dst_off, op_mode
src_addr = @DRAM[A + E × (src_y×W + src_x)];
forall i ∈ [0, length[do

for j ∈ [0, E[do
dst_addr[E × i ×dst_off+ j] = src_addr[E × i × src_off+ j];

end

if op_mode == DMU_ZERO_PAD then we overwrite the gaps between written data with zeroes
for j ∈ [1, dst_off[do

for k ∈ [0, E[do
dst_addr[E × (i ×dst_off+ j) + k] = 0;

end

end

else we preserve data in gaps between written data
continue;

end

end

25

J. Low Power Electron. Appl. 2022, 12, 18

(a)

(b)

Figure 4. DMU operating modes and their impact on destination memory, here an SRAM IMC
memory. (a) Zero-padding mode. (b) Overwriting mode.

4. Evaluation and Results

4.1. Experimental Methodology

Figure 5a,b present, respectively, the reference and the experimental architecture for
the evaluation. The reference architecture is a 1 GHz in-order scalar CPU with a single-level
cache hierarchy of 16 kB data and instruction caches, and a 512 MB LP-DDR main memory.
Our architecture substitutes the 16 kB data cache with an 8 kB data cache, an 8 kB C-SRAM
unit and our DMU controller. Both architectures are equivalent in terms of memory capacity
but differ by their computation capabilities and the usage of each of their memory units.
For each architecture, the cache memories implement a write-through policy to ensure that
the written output data are present in the main memory.

(a) (b)

Figure 5. Experimental memory architectures for the evaluation. All cache units have write-through
policy. Our proposed architecture substitutes the 16 kB L1 D with an 8 kB L1 D, an 8 kB C-SRAM and
a DMU. (a) Reference architecture; (b) proposed architecture.

26

J. Low Power Electron. Appl. 2022, 12, 18

Our simulation methodology is based on QEMU in order to perform system-level
modeling and evaluation while performing ISA exploration for IMC as well as our DMU
instruction [13]. We describe and generate events to model the energy and latency costs
of our architecture, from CPU and IMC to the main memory and the cache hierarchy.
Table 2 shows the memory parameters of, respectively, the reference architecture and our
proposed IMC architecture. These parameters were extracted using CACTI [14] and the
characterizations from [2]. Though the specifications of the C-SRAM architecture do not
define fixed dimensions, e.g., a fixed row size and number of rows, we consider a 128-bit
C-SRAM architecture for the rest of this paper.

Table 2. Memory parameters of the reference and proposed architecture, used for the experimental
evaluation.

Component Operational Latency Operational Energy Cost

Reference architecture (REF), using CACTI [14]:

16 kB L1 I/D 1 ns 7.01 pJ

512 MB LP-DDR 17 ns 1.067 nJ

Our evaluated architecture (IMC-DMU), using [2,14]:

16 kB L1 I 1 ns 7.01 pJ

8 kB L1 D 1 ns 4.93 pJ

8 kB L1 C-SRAM 3 ns 7.94 pJ

512 MB LP-DDR 17 ns 1.067 nJ

4.2. Applications

We consider three applications to evaluate our proposed architecture (IMC-DMU)
versus the reference scalar architecture (REF):

• Frame differencing is used in computer vision to perform motion detection [15], and
performs saturated subtraction between two (or more) consecutive frames in a video
stream to highlight pixel differences. It has linear complexity in both computing
and memory.

• A Sobel filter applies two 3× 3 convolution kernels on an input image to generate its
edge-highlighted output. It is a standard operator in Image processing as well as
computer vision to perform edge detection [16]. It has linear arithmetic complexity
and shows constant data redundancy (2× 9 reads per input pixel, on average).

• Matrix-matrix multiplication is used in various domains such as signal processing or
physics modeling, and is a standard of linear algebra as the gemm operator [17]. It has
cubic (O(n3)) complexity in computing and memory and shows quadratic (O(n2))
data redundancy.

4.3. DMU Programming and Data Optimization

Iterative codes using complex patterns such as convolution windows often require
streams of consecutive and redundant data to be transferred and aligned before compu-
tation according to the mapping scheme of IMC. To reduce the overall transfer latency to
populate IMC with said data, we use READ_TRANSFER to copy nonpresent data from the
DRAM to IMC and COPY to directly duplicate redundant data instead of accessing the
DRAM memory.

Figure 6 shows the memory access patterns performed for convolution windows at
stride 1, each element but the very first and last on each row of the image during the visit
is read from the DRAM only once. The rest at some point can be directly read from the
C-SRAM to reduce the overall transfer latency. Figure 7 implements the data management
described in Figure 6. This technique can be applied to other iterative codes such as
stencils, though the appropriate address generations require effort from developers. We are

27

J. Low Power Electron. Appl. 2022, 12, 18

currently developing a mechanism to automatically generate data transfers and duplication
from programmable memory access patterns to effortlessly achieve quasi-optimal energy
efficiency. We will soon publish our specifications and our results.

Figure 6. A stream of convolution windows, transferred row-major, shows opportunities of data
duplication to reduce transfer latency.

/*
* The following code transfers image data by eight convolution windows to C-SRAM,

* the convolution data are aligned in order to perform vector computation

*/
// CSRAM_NBYTES & CSRAM_ROW_NBYTES are implementation-specific
#define NB_UINT16_PER_ROW (CSRAM_ROW_NBYTES / sizeof(uint16_t))
#define KERN_STRIDE 1
// _csram_16b is the memory mapping of C-SRAM at 16-bit granularity
volatile uint16_t _csram_16b[CSRAM_NBYTES / CSRAM_ROW_NBYTES][NB_UINT16_PER_ROW];
for(int i = 1; i < img_height-1; i += 1)
{
for(int j = 1; j < img_width-1; j += NB_UINT16_PER_ROW)
{

int nrow = 0;
for(int iker = -1; iker <= 1; iker += 1)
{
READ_TRANSFER(i+iker, j-1, &_csram_16b[nrow], NB_UINT16_PER_ROW, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
COPY(&_csram_16b[nrow][1], &_csram_16b[nrow+1], NB_UINT16_PER_ROW-1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
READ_TRANSFER(i+iker, j , &_csram_16b[nrow+1][NB_UINT16_PER_ROW-1], 1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
COPY(&_csram_16b[nrow+1][1], &_csram_16b[nrow+2], NB_UINT16_PER_ROW-1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
READ_TRANSFER(i+iker, j+1, &_csram_16b[nrow+2][NB_UINT16_PER_ROW-1], 1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);

nrow += 3;
}

}
}

Figure 7. Example code transferring convolution windows to C-SRAM using our DMU instruction set.

4.4. Results and Discussion

We evaluated the performance of our proposed architecture, according to a reference
architecture, in terms of speed-ups and energy reductions. We considered three scenarios:
(1) using the C-SRAM without DMU (C-SRAM-only), (2) using the C-SRAM with the
proposed DMU controller to fetch input data strictly from the main memory and (C-
SRAM+DMU) and (3) using the C-SRAM with the proposed DMU controller to perform
data transfers and data reuse whenever possible. In case 1, the data are transferred from
the L1 data cache to the C-SRAM by the CPU, while in cases 2 and 3, the CPU issues
data transfers directly between the main memory and the C-SRAM using the DMU. Case
3 is particularly relevant to the Sobel filter, which presents data redundancy due to the
application of the convolution filters on the input images.

Figure 8 shows the energy reduction and speed-up for the three applications, compared
to the reference scalar architecture. The X-axis represents the size of the inputs, and Y-axis
represents the improvement factors evaluated for each application (higher is better). Table 3
shows the average of the maximum speed-up and energy reductions evaluated for each
implementation across all applications. While the C-SRAM-only implementation shows
improvement compared to the scalar system, the integration of the DMU to the C-SRAM
improves the speed-up and energy reduction, respectively, from ×5.73 and ×11.01 to ×29.49
and ×46.67.

28

J. Low Power Electron. Appl. 2022, 12, 18

Frame differencing Sobel filter Matrix-matrix multiplication

Speed-up
×

7.722797293

48.54398994

0

10

20

30

40

50

60

Image resolution (pixels)

C-SRAM

C-SRAM w/ DMU

C-SRAM w/ DMU & reuse

4.310369645

11.56943137

10.98297653

0

2

4

6

8

10

12

14

Image resolution (pixels)

5.177858163

7.354401233

0
1
2
3
4
5
6
7
8

256 B 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Matrix sizes (Kilobytes)

Energy
reduction
×

4. 31069590
4

073. 82456

.

4.

6.

1.

5.

0.

2.

Image resolution (pixels)

4.310610639

55.07463814

23.36878593

7

67

37

57

07

27

97

Image resolution (pixels)

14.42109865

30.93193954

0

5

10

15

20

25

30

35

256 B 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Matrix sizes (Kilobytes)

Figure 8. Energy reduction and speed-up for all applications compared to the reference scalar
architecture. The X and Y axes of the plots are, respectively, the data sizes and the improvement
factors, i.e., higher is better.

Table 3. Average maximum speed-up and energy reduction per evaluated implementation.

Average Maximum
Speed-Up

Average Maximum
Energy Reduction

C-SRAM-only ×5.73 ×11.01

C-SRAM + DMU ×29.49 ×46.67

4.4.1. Frame Differencing

We observe that both the speed-up and the energy reduction are similar without and
with the DMU for small resolutions, but are significantly improved by using the DMU
starting 100× 100 image resolution, with peak factors achieved of, respectively, ×48.54 and
×57.09, compared to ×7.72 and ×10.35 when using only the C-SRAM. Because the DMU
offers a direct transfer bus between the main memory and C-SRAM, the entirety of the
input data can be fetched directly from the C-SRAM without generating as much conflict
misses on the L1 data cache. Our hypothesis is supported by the performance gap between
the C-SRAM-only and the C-SRAM + DMU implementation getting wider as the images
get larger starting 100× 100 resolution. The input and output sizes become too large for the
L1 data cache.

4.4.2. Sobel Filter

Similar to frame differencing, the speed-up and energy consumption of the Sobel filter
is consistently improved by the DMU. In addition, the Sobel filter offers the opportunity
to perform data reuse between consecutive convolution windows by reading part of their
components directly from the C-SRAM instead of the main memory. By using the DMU
without reusing data, the peak speed-up and energy reduction compared to the reference
scalar architecture is ×11.57 and ×33.41, while the data reuse implementation shows factors
of ×10.98 and ×52.22, which shows a trade-off between the execution performance of C-
SRAM + DMU and its energy efficiency. This trade-off is explained by the overhead of
the address generation algorithm required for IMC data duplication. The overhead might
change depending on the implementation of the algorithm and the CPU performance.

29

J. Low Power Electron. Appl. 2022, 12, 18

4.4.3. Matrix-Matrix Multiplication

The overall performance of matrix-matrix multiplication is almost similar with and
without DMU on small matrices. However, for both implementations the speed-up and
energy reduction compared to the reference architecture improve significantly starting from
16 kB matrices, to, respectively, ×7.35 and ×30.93 for the C-SRAM + DMU implementation.
The improvement factors are higher for C-SRAM + DMU at this input size because only
one of the two operand matrices is transferred through the L1 data cache in this imple-
mentation, contrary to the C-SRAM-only implementation, which transfers all input and
output matrices through the L1 data cache. Furthermore, the performance drops for both
implementations at a 64 kB input size, because the capacity of the L1 data cache has been
attained on the experimental architecture to store the first operand matrix. The fact that
this drop is more significant for the C-SRAM + DMU implementation compared to the
C-SRAM-only variant shows the impact of the cache hierarchy on the performance of IMC
architectures without any dedicated transfer mechanism.

5. Conclusions

We presented the DMU, a programmable memory controller architecture to efficiently
transfer and reorganize data between the SRAM IMC memory and the main memory. We
integrated the DMU in a C-SRAM architecture and evaluated the energy reduction and
speed-up for three applications, compared to a reference scalar architecture. The integration
of the DMU to C-SRAM improved the speed-up and energy reduction, respectively, from
×5.73 and ×11.01 to ×29.49 and ×46.67.

Our future works include the physical implementation of the DMU on a test chip
for the validation of our experiments and the compiler support of its ISA to implement
an efficient programming model at the language level. We also plan to describe the
specifications of a more elaborate instruction set, able to transfer complex data structures
such as stencil kernels and convolution windows using pattern descriptors, in order to
automate transfer optimizations at the hardware level.

Author Contributions: Conceptualization, K.M., H.-P.C., M.K. and J.D.; methodology, all authors;
software, all authors; validation, all authors; formal analysis, all authors; investigation, all authots;
resources, all authors; data curation, all authots; writing—original, K.M.; writing—review and editing,
H.-P.C., M.K. and J.D.; visualization, all authors; supervision, H.-P.C. and M.K.; project administration,
H.-P.C. and M.K.; funding acquisition, H.-P.C. and M.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the EU H2020 project 955606 “DEEPSEA” – Software for
Exascale Architectures.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 10–14.

2. Noel, J.P.; Pezzin, M.; Gauchi, R.; Christmann, J.F.; Kooli, M.; Charles, H.P.; Ciampolini, L.; Diallo, M.; Lepin, F.; Blampey, B.;
et al. A 35.6 TOPS/W/mm2 3-Stage Pipelined Computational SRAM with Adjustable Form Factor for Highly Data-Centric
Applications. IEEE Solid-State Circuits Lett. 2020, 3, 286–289. [CrossRef]

3. Kooli, M.; Charles, H.P.; Touzet, C.; Giraud, B.; Noel, J.P. Smart Instruction Codes for In-Memory Computing Architectures
Compatible with Standard SRAM Interfaces. In Proceedings of the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 19–23 March 2018; p. 6.

4. Gauchi, R.; Egloff, V.; Kooli, M.; Noel, J.P.; Giraud, B.; Vivet, P.; Mitra, S.; Charles, H.P. Reconfigurable tiles of computing-in-
memory SRAM architecture for scalable vectorization. In Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, Boston, MA, USA, 10–12 August 2020; pp. 121–126.

5. Bavikadi, S.; Sutradhar, P.R.; Khasawneh, K.N.; Ganguly, A.; Pudukotai Dinakarrao, S.M. A Review of In-Memory Computing
Architectures for Machine Learning Applications. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, Virtual, China,
7–9 September 2020; pp. 89–94.

30

J. Low Power Electron. Appl. 2022, 12, 18

6. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C. Ambit:
In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology. In Proceedings of the 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Boston, MA, USA, 14–17 October 2017; pp. 273–287.

7. Deng, Q.; Zhang, Y.; Zhang, M.; Yang, J. LAcc: Exploiting Lookup Table-based Fast and Accurate Vector Multiplication in
DRAM-based CNN Accelerator. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June
2019; pp. 1–6.

8. Fujiki, D.; Mahlke, S.; Das, R. Duality Cache for Data Parallel Acceleration. In Proceedings of the 46th International Symposium
on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019; pp. 1–14.

9. Lee, K.; Jeong, J.; Cheon, S.; Choi, W.; Park, J. Bit Parallel 6T SRAM In-memory Computing with Reconfigurable Bit-Precision.
In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020;
pp. 1–6.

10. Bhattacharjee, D.; Devadoss, R.; Chattopadhyay, A. ReVAMP: ReRAM based VLIW architecture for in-memory computing. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March
2017; pp. 782–787.

11. Ezzadeen, M.; Bosch, D.; Giraud, B.; Barraud, S.; Noel, J.P.; Lattard, D.; Lacord, J.; Portal, J.M.; Andrieu, F. Ultrahigh-Density 3-D
Vertical RRAM with Stacked Junctionless Nanowires for In-Memory-Computing Applications. IEEE Trans. Electron Devices 2020,
67, 4626–4630. [CrossRef]

12. Ahn, J.; Yoo, S.; Mutlu, O.; Choi, K. Pim-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture.
In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), Portland, OR,
USA, 13–17 June 2015; pp. 336–348.

13. Mambu, K.; Charles, H.-P.; Dumas, J.; Kooli, M. Instruction Set Design Methodology for In-Memory Computing through
QEMU-Based System Emulator. 2021. Available online: https://hal.archives-ouvertes.fr/hal-03449840/document (accessed on
14 December 2021).

14. Muralimanohar, N.; Balasubramonian, R.; Jouppi, N.P. Cacti 6.0: A Tool to Model Large Caches; HP Laboratories: Palo Alto, CA,
USA, 2009.

15. Zhang, H.; Wu, K. A Vehicle Detection Algorithm Based on Three-Frame Differencing and Background Subtraction. In Proceedings
of the 2012 Fifth International Symposium on Computational Intelligence and Design, Hangzhou, China, 28–29 October 2012;
Volume 1, pp. 148–151.

16. Khronos Vision Working Group. The OpenVX Specification Version 1.2. Available online: https://www.google.co.th/url?sa=
t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjB65aM0sn2AhUkxzgGHa-sDlMQFnoECAgQAQ&
url=https%3A%2F%2Fwww.khronos.org%2Fregistry%2FOpenVX%2Fspecs%2F1.2%2FOpenVX_Specification_1_2.pdf&usg=
AOvVaw18k11o92s0PEjGw7rZ5Sm8 (accessed on 11 October 2017).

17. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard, Basic Linear Algebra Subprograms Technical
Forum. Available online: https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&
ved=2ahUKEwj6orG00sn2AhU_zjgGHcvDADoQFnoECAgQAQ&url=http%3A%2F%2Fwww.netlib.org%2Futk%2Fpeople%
2FJackDongarra%2FPAPERS%2F135_2002_basic-linear-algebra-subprograms-techinal-blas-forum-standard.pdf&usg=
AOvVaw3GQ_wyRmkgT9TG9mwuCS0I (accessed on 21 August 2001).

31

Citation: Koryazhkina, M.N.; Filatov,

D.O.; Tikhov, S.V.; Belov, A.I.;

Korolev, D.S.; Kruglov, A.V.; Kryukov,

R.N.; Zubkov, S.Y.; Vorontsov, V.A.;

Pavlov, D.A.; et al. Silicon-Compatible

Memristive Devices Tailored by Laser

and Thermal Treatments. J. Low Power

Electron. Appl. 2022, 12, 14. https://

doi.org/10.3390/jlpea12010014

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 21 October 2021

Accepted: 28 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Silicon-Compatible Memristive Devices Tailored by Laser and
Thermal Treatments

Maria N. Koryazhkina 1,*, Dmitry O. Filatov 1, Stanislav V. Tikhov 1, Alexey I. Belov 1, Dmitry S. Korolev 1,

Alexander V. Kruglov 1, Ruslan N. Kryukov 1, Sergey Yu. Zubkov 1, Vladislav A. Vorontsov 1, Dmitry A. Pavlov 1,

David I. Tetelbaum 1, Alexey N. Mikhaylov 1, Sergey A. Shchanikov 2, Sungjun Kim 3 and Bernardo Spagnolo 1,4

1 Research and Education Center “Physics of Solid State Nanostructures”, National Research Lobachevsky State
University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; dmitry_filatov@inbox.ru (D.O.F.);
tikhov@phys.unn.ru (S.V.T.); belov@nifti.unn.ru (A.I.B.); dmkorolev@phys.unn.ru (D.S.K.);
krualex@yandex.ru (A.V.K.); kriukov.ruslan@yandex.ru (R.N.K.); zubkov@phys.unn.ru (S.Y.Z.);
vladislav.vorontsov1@gmail.com (V.A.V.); pavlov@unn.ru (D.A.P.); tetelbaum@phys.unn.ru (D.I.T.);
mian@nifti.unn.ru (A.N.M.); bernardo.spagnolo@unipa.it (B.S.)

2 Department of Information Technologies, Vladimir State University, 600000 Vladimir, Russia; seach@inbox.ru
3 Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Korea;

sungjun@dongguk.edu
4 Dipartimento di Fisica e Chimica “Emilio Segrè”, Group of Interdisciplinary Theoretical Physics,

Università degli Studi di Palermo and CNISM, Unità di Palermo, I-90128 Palermo, Italy
* Correspondence: mahavenok@mail.ru

Abstract: Nowadays, memristors are of considerable interest to researchers and engineers due to the
promise they hold for the creation of power-efficient memristor-based information or computing
systems. In particular, this refers to memristive devices based on the resistive switching phenomenon,
which in most cases are fabricated in the form of metal–insulator–metal structures. At the same
time, the demand for compatibility with the standard fabrication process of complementary metal–
oxide semiconductors makes it relevant from a practical point of view to fabricate memristive
devices directly on a silicon or SOI (silicon on insulator) substrate. Here we have investigated the
electrical characteristics and resistive switching of SiOx- and SiNx-based memristors fabricated on
SOI substrates and subjected to additional laser treatment and thermal treatment. The investigated
memristors do not require electroforming and demonstrate a synaptic type of resistive switching.
It is found that the parameters of resistive switching of SiOx- and SiNx-based memristors on SOI
substrates are remarkably improved. In particular, the laser treatment gives rise to a significant
increase in the hysteresis loop in I–V curves of SiNx-based memristors. Moreover, for SiOx-based
memristors, the thermal treatment used after the laser treatment produces a notable decrease in the
resistive switching voltage.

Keywords: memristor; silicon oxide; silicon nitride; SOI technology; resistive switching; electrical
characteristics; laser treatment; thermal treatment

1. Introduction

A memristor is a two-terminal nanoelectronic element that changes and remembers
its resistance depending on the applied voltage and the charge flowing through it. Its
main difference from semiconductor memory elements, which implement a binary code
and two stable states, is the multilevel, synaptic nature of the conduction switching [1].
It is believed that this will make it possible to create next-generation computers (with a
non-von-Neumann architecture) and neuromorphic artificial intelligence systems on the
basis of memristors [2–12]. The main disadvantages of memristors fabricated in the form
of metal–insulator–metal (MIM) or metal–insulator–semiconductor (MIS) structures are the
reproducibility of resistive switching (RS) parameters, which is insufficient for practical

J. Low Power Electron. Appl. 2022, 12, 14. https://doi.org/10.3390/jlpea12010014 https://www.mdpi.com/journal/jlpea
33

J. Low Power Electron. Appl. 2022, 12, 14

use (stochasticity), high values of RS voltages, and the complexity of integration into a stan-
dard complementary metal–oxide–semiconductor (CMOS) fabrication process. Currently,
approaches to solving these problems are being developed: the use of new materials and
various interfaces [13–16], the use of signals with a special shape for RS [17], the use of
optical radiation [18] or noise [19–21] as parameters controlling the switching dynamics,
programming the amplitudes and durations of switching pulses [22,23], etc. Indeed, the
wider application of memristors is limited by their insufficient stability, the high variability
of RS parameters, and a lack of understanding of the drift–diffusion processes responsi-
ble [24]. One of the fundamental origins of the instability of the memristor parameters
is the essentially stochastic nature of RS [20]. Furthermore, the noise sources can induce
new ordered dynamical structures and cause new phase transition phenomena [25,26].
Therefore, of all these approaches, the one based on the constructive role of both internal
(thermal) and external noise sources is most promising due to the intrinsic stochastic nature
of resistive switching in memristor devices [19–21].

Transition metal oxides (e.g., HfOx [27,28], TaOx [29,30], ZrOx [31,32], TiOx [33,34],
and more complex compounds such as perovskites [35]), as well as SiOx, and GeOx, are
considered promising insulator materials for memristors. Recently, intensive research has
also been carried out on memristive structures based on SiNx [36,37]. This is of practical
interest due to their compatibility with the standard technology for creating modern
integrated circuits. The use of SiOx and SiNx insulator films involves a number of practical
advantages. For example, the authors of [38] carried out a comprehensive comparison of
the RS parameters of memristive structures based on HfOx and SiOx and showed a lower
variability in resistance in different states of SiOx-based memristors. In turn, the authors
of [39] demonstrated the absence of changes in the value of currents in resistive states
of SiNx-based memristors irradiated with As+ during 105 cycles of RS and the minimum
variability of switching voltages. It should be noted that SiOx- and SiNx-based memristors
have a filamentary resistive switching mechanism [40,41].

The use of a semiconductor as one of the electrodes of a memristive structure is also
important from the point of view of integrating memristors into a standard CMOS fabri-
cation process [42,43]. One of the electrodes is silicon, which simplifies the technological
process and allows the memory to be integrated monolithically on a single platform with
a transistor [44,45]. In these articles, bulk silicon was used as an electrode. However,
in the preparation of most semiconductor devices and microcircuits, preference is given
to “silicon-on-insulator” (SOI) substrates due to its advantages over bulk silicon: lower
power consumption and the higher performance and density of elements [46]. Therefore,
from a practical point of view, it is advisable to implement memristive structures on SOI
substrates. Despite the significant number of published studies of memristive structures
with a bulk silicon electrode, structures on SOI substrates must be studied independently
due to the peculiarities of morphology and structure of the latter. Thus, the development
and investigation of memristive structures, in which the SOI substrate acts as an electrode,
is of considerable theoretical and practical interest. However, such data are nearly absent
in the literature, except for several separate reports on the use of SOI in memristive devices
(see, for example, [47–50]).

Despite the practical advantages of using a semiconductor as an electrode in a mem-
ristive structure, one should not forget the presence of surface states (SS) at the insu-
lator/semiconductor interface, which is undesirable from the point of view of creating
memristive structures. These states make a significant contribution to the total serial
resistance of the structure [51]. A decrease in their density leads to a redistribution of
the external voltage, so that the electric field strength in the insulator increases, thereby
stimulating resistive switching. Thermal treatment (TT) is a widely used method of dealing
with such defects. Laser treatment (LT) can be used for the same purposes. In the latter
case, the effect is achieved due to heating of the substrate because of the absorption of laser
radiation in it. In addition, LT is used to modify the charge state of an insulator in a flash
memory device, which is used to completely erase information in memory elements [52].

34

J. Low Power Electron. Appl. 2022, 12, 14

Therefore, LT and TT can be effectively used to change the electrical characteristics of
memristive structures.

We propose a comprehensive approach to improving the parameters of RS: namely,
increasing the resistance ratio in extreme resistive states and decreasing the RS voltages
of memristive structures based on promising and accessible insulator layers—SiOx and
SiNx, fabricated under industrial conditions on SOI substrates. This approach is based
not only on the use of materials that are standard for the CMOS fabrication process, but
also on the use of LT and TT, which are widely used in the microelectronic industry to
control the electrical parameters of devices. In addition, the investigation of the frequency
dependences of electrical characteristics of memristive structures carried out in this work
makes it possible to obtain the necessary detailed information about the processes occurring
in the insulator film and about the state of insulator/semiconductor interfaces in different
resistive states [53]. Data in this paper are presented in the same order in which they were
obtained, so that the reader can unambiguously determine the contribution of LT and TT to
the change in resistive switching parameters.

To the best of our knowledge, such a comprehensive study of SiOx- and SiNx-based
memristive structures fabricated on SOI substrates, including the influence of LT and TT
on their electrical characteristics (RS parameters), has not been carried out previously.

2. Materials and Methods

SiOx and SiNx films (with a nominal thickness of 13 nm each) were deposited on
commercial SOI substrates with a device layer thickness of 360 nm by plasma-enhanced
chemical vapor deposition under the following conditions:

• SiOx—using 5% SiH4/N2 (160 sccm), N2O (1500 sccm) and N2 (240 sccm) at a pressure
of 550 mTorr and high frequency (HF) power of 60 W, with a deposition rate of
200 Å/min;

• SiNx—using 5% SiH4/N2 (800 sccm), NH3 (10 sccm) and N2 (1200 sccm) at a pressure
of 580 mTorr and HF-power 60 W, with a deposition rate of 100 Å/min.

Top Au electrodes (20 nm) with a Zr sublayer (8 nm) with an area of S~10−2 (in this
study) and 10−3 cm2 were deposited on the surface of insulators by magnetron sputtering
at a temperature of 473 K. A schematic representation of the fabricated structures is shown
in Figure 1. The devices were prepared in the form of a metal–insulator–semiconductor
sandwich with a common bottom electrode (SOI) and local top (Au with a Zr sublayer)
electrodes. Figure 2 is an optical image of a fragment of the device showing two top
electrodes of a small area and one of a larger area. The optical image was obtained using a
Leica DM 4000 M optical microscope (Wetzlar, Germany).

The electrical characteristics were measured using a semiconductor device parameter
analyzer, Agilent B1500A (Santa Rosa, CA, USA). The sign of voltage across the structures
corresponded to the potential of the top electrode relative to the potential of the bottom
electrode. I–V curves and the small-signal C–f, G–f, and R–f characteristics of memristors
were measured in parallel and series capacitor equivalent resistor–capacitor circuits (see
Figure 1 for explanation) [54] in the frequency range 103–2 × 106 Hz. The values of parallel
capacitance (Cp), parallel conductance loss (Gp/ω), dielectric loss tangent (tgδ), parallel
(Rp), and series (Rs) resistances were determined. The parameters of parallel capacitor
equivalent circuit are determined by the electronic phenomena in an insulator, while the
parameters featuring a serial capacitor equivalent circuit are determined by the resistance
of electrodes and that of the transition layer between the electrode and insulator film [54].

The information on relaxation processes in the insulator was obtained by analyzing
the Cole–Cole diagrams—the dependences of Gp/ω on Cp, which were obtained from
corresponding frequency dependences [55]. As shown below, the obtained diagrams were
either a circular arc or a semicircle. Thus, in the first case, the spectrum of SS at the
insulator/semiconductor interface was continuous, while the second case indicates the
presence of a mono-level of SS. An analysis of the Cole–Cole diagrams makes it possible

35

J. Low Power Electron. Appl. 2022, 12, 14

to estimate the effective density of SS at the Fermi level (Nss). In the case of a continuous
spectrum of SS, for such an estimate, one can use the following equation [56]:

Nss =
[Gp/ω]max

0.4q2S
, (1)

where [Gp/ω]max is the maximum value of parallel conductance loss, q is the electron charge,
and S is the structure area (i.e., the area of the top electrode). In the case of a mono-level of
SS, one can use the following equation [56]:

Nss =
8kT[Gp/ω]max

q2S
, (2)

where k is the Boltzmann constant and T is the temperature.
In addition, measurements of capacitance–voltage and conductance–voltage character-

istics were carried out in a parallel capacitor equivalent resistor–capacitor circuit at a small
test signal frequencies of 10 and 100 kHz.

It should be noted that the investigated memristive structures initially had a con-
ductive state. The investigations of the electrical characteristics of memristive structures
were carried out in initial state (IS), in low-resistance state (LRS), and in high-resistance
state (HRS).

Figure 1. Schematic representation of SiOx- and SiNx-based memristors and the simplest capacitor
equivalent resistor–capacitor circuits.

36

J. Low Power Electron. Appl. 2022, 12, 14

Figure 2. Optical image of a fragment of the device.

As mentioned above, LT can be used to change the electrical characteristics of mem-
ristive structures, which determine RS parameters. It is assumed that LT will make it
possible to reduce the built-in charge in insulator films and to lower the density of SS at the
insulator/semiconductor interface in memristive structures. Therefore, some memristive
structures were subjected to LT. For this, a semiconductor laser with a power of 1.5 W and
a wavelength of 460 nm, which corresponds to a photon energy of 2.7 eV, was used in
the continuous mode. Irradiation was carried out through the top electrode for 10 min. It
should be noted that the top Au electrodes with a thickness of 20 nm were semitransparent
for the laser wavelength used [57]. Under the influence of laser radiation, the structure
heats up to ≈473 K.

Thermal treatment is a widely used method for changing the density of SS at the
insulator/semiconductor interface. Therefore, in order to improve the state of this interface,
some of the SiOx-based memristive structures were subjected to TT. For this purpose,
memristive structures were placed in a hermetically closed metal thermostat, which was
slowly heated at a rate of 13.5 K/min using an electric heater or cooled with liquid nitro-
gen. Investigations of electrical characteristics were carried out in a temperature range of
77–600 K in an atmosphere dried with silica gel. The temperature was maintained with an
accuracy of 1 K.

Structural investigations of the SiOx and SiNx films and memristive structures based on
them were carried out by X-ray photoelectron spectroscopy (XPS) and transmission electron
microscopy (TEM). The profiling of samples using the XPS method implies the use of ion
etching. The question arises of the correct determination of the etching rate and the existence
of an error in determining the depth. If the rate can be determined using calibration samples,
then the error is determined for each sample separately. A large contribution to the error
when determining the depth is made by irregularities on the surface of the sample, due to
which shading occurs during the etching process [58]. For correct interpretation of the data,
information on the roughness obtained by atomic force microscopy (AFM) was used.

3. Results and Discussion

3.1. SiOx-Based Memristive Structures on SOI Substrates

According to the AFM data (Figure 3a), the root mean square roughness of the SiOx
film is 1.8 nm. Figure 3b presents XPS data for SiOx films before and after annealing at 550 K.
The stoichiometry of the SiOx film barely changes between before and after annealing, and
is x ≈ 1.8. One can also notice a transition layer at the SiOx/SOI interface, the thickness of
which is ~15 nm.

37

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 3. (a) AFM image of SiOx film surface; (b) distribution of chemical elements over depth of SiOx

film before and after annealing at 550 K. The origin of the coordinates along the abscissa coincides
with the SiOx/SOI interface.

Figure 4 shows TEM images of a cross section of a SiOx-based memristive structure
after LT and TT. According to Figure 4, the SiOx film has an amorphous structure. At the
same time, Si (area 4), ZrO (areas 1 and 3) and ZrO2 (area 2) nanocrystallites were found
in the Zr sublayer and at the interface with the insulator. The structure of the observed
nanocrystallites was determined by comparing the interplanar spacing in TEM images with
the literature data. This means partial oxidation of Zr electrode and silicon oxide reduction
in contact with this electrode during treatments.

Figure 4. High-resolution TEM images of two cross-sectional regions of a SiOx-based memristive
structure after LT and TT. The inset shows scaled images of the nanocrystallites (parts that were used
to determine the interplanar spacing are highlighted by yellow rectangles).

The SiOx-based memristive structures before LT and TT did not require electroform-
ing [59], since initially they had a conductive state (Figure 5a, curve 1). When a voltage
of −6 V was applied, the memristive structure switched from LRS to HRS (Figure 5a,
curve 2). Subsequent application of voltage of +6 V did not lead to switching of the struc-
ture (Figure 5a, curve 3). In the absence of switching (Figure 5a, curves 1 and 3), the values

38

J. Low Power Electron. Appl. 2022, 12, 14

of the current through the device in the forward and reverse directions of the voltage sweep
hardly differed.

(a) (b)

(c) (d)

Figure 5. I–V curves of SiOx-based memristive structure (a) before LT and TT, (b) after LT, (c) after
TT and (d) after multiple RS. In the absence of switching (Figure 5a, curves 1 and 3), the values of the
current through the device in the forward and reverse directions of the voltage sweep almost did not
differ. The direction of the voltage sweep is shown by arrows.

The frequency dependences of the parameters of equivalent circuit of memristive
structures in IS (i.e., for curve 1 in Figure 5a) and HRS (i.e., for curve 2 in Figure 5a) are
shown in Figure 6. The structure in IS is characterized by large ohmic losses at a low
frequencies (Figure 6, curves 2, 3) and a low parallel resistance Rp shunting the structure
(Figure 6, curve 5). After switching into HRS, the losses decreased by three orders of
magnitude (Figure 6, curves 7, 8), and the value of Rp, respectively, increased by three
orders of magnitude (Figure 6, curve 10).

Note that the values of the relative permittivity of SiOx films calculated from the value
of Cp by the equation for a parallel plate capacitor at a frequency of 1 kHz do not change
with RS, while the value of tgδ changes by three orders of magnitude. This behavior of
low-signal HF parameters indicates the filamentary mechanism of RS [60]. In this case, the
active part of the film impedance changes locally, i.e., on a small (compared to the total
electrode area) memristor area, while the resistance and dielectric losses remain almost
unchanged for the rest of the film under the electrode.

39

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 6. Frequency dependences of (a) Cp (1, 6), Gp/ω (2, 7), tgδ (3, 8) and (b) Rs (4, 9), Rp (5, 10)
obtained for memristive structure in IS (1–5) and HRS (6–10).

Dependences of Cp and Gp/ω on V (Figure 7) show that the semiconductor corre-
sponds to the n-type, since the capacitance at a frequency of 100 kHz (see inset in Figure 7b)
is in the form of a step with an increase towards the voltage V > 0 [56]. The concentra-
tion of equilibrium electrons in a silicon electrode can be estimated using the following
equation [61]:

ND =
2
(

2ϕ0 − kT
q

)
εsε0q

·
(Cox

Cmin
− 1

Cox

)−2

, (3)

where ND is the donor concentration in the semiconductor, ϕ0 is the height of the potential
barrier at the insulator/semiconductor interface, εs is the relative permittivity of the semi-
conductor, ε0 is the vacuum permittivity, Cox is the oxide capacity, equal to the maximum
value of capacity in Figure 7b in the dark, and Cmin is the minimum value of capacity in
Figure 7b in the dark. The obtained value varied in the range of ~3 × 1019–3 × 1020 cm−3.
This variation is associated with strong fluctuations in capacitance due to the nonuniform
distribution of impurities over the thickness of the silicon electrode.

(a) (b)

Figure 7. Dependences of Cp (1, 2) and Gp/ω (3, 4) on V measured at a frequency of a small test
signal (a) 10 and (b) 100 kHz and in the dark (1, 3) or under laser radiation (2, 4). Voltage sweep from
−5 V to +5 V and vice versa.

The maxima in the dependences of Gp/ω on V (Figure 7a, curve 4 and Figure 7b,
curves 3 and 4) in the theory of MIS structures are usually associated with SS at the

40

J. Low Power Electron. Appl. 2022, 12, 14

insulator/semiconductor interface. If one assumes a quasicontinuous SS distribution, the
Nss value can be estimated using Equation (1). The value of Nss is, under laser radiation,
−3.6·1012 cm−2eV−1 (at a frequency of 10 kHz) and 1.1 × 1012 cm−2eV−1 (at a frequency
of 100 kHz), and in the dark −1 × 1012 cm−2eV−1 (at a frequency of 100 kHz). Thus,
the density of SS on the conductive Si electrode is large and increases with decreasing
frequency and under laser radiation. The capture of carriers to these states should decrease
the response time of memristors in the same way as a large series resistance.

Figure 5b shows the I–V curves of a memristive structure after LT. It can be seen
that LT leads to a change in the polarity of RS: applying a negative voltage leads to the
switching of the structure in LRS, and applying a positive voltage leads to the switching of
the structure in HRS. Similar behavior was observed in AZO/CeO2/ITO/glass memory
devices [62]. The effect can be explained in terms of the change in the active electrode of
the structure, which plays the main role in the formation and oxidation of the filament;
however, this requires additional investigation. The obtained I–V curves demonstrate a
ratio of currents in LRS and HRS of more than 2 orders of magnitude.

The results of the effect of LT on electrical characteristics of memristive structure
are shown in Figure 8. Frequency dependences of the parameters of equivalent circuit
of the structure in LRS (i.e., after curve 1 in Figure 5b) and HRS (i.e., after curve 2 in
Figure 5b) are shown. These data also indicate a change in the polarity of RS after LT and an
almost unchanged value of the resistance of the bottom semiconductor electrode (~100 Ω).
In addition, higher values of tgδ in HRS at a low frequency, as compared to structures
before LT (Figure 6a), indicate incomplete oxidation of filaments.

(a) (b)

Figure 8. Frequency dependences of (a) Cp (1, 6), Gp/ω (2, 7), tgδ (3, 8) and (b) Rs (4, 9), Rp (5, 10)
obtained for memristive structure in LRS (1–5) and HRS (6–10). The data were obtained after LT.

TT in a dried atmosphere at 540 K in a hermetically closed metal thermostat also
changes the electrical characteristics of SiOx-based memristive structures. This is evidenced
by the frequency dependences of the parameters of equivalent circuit shown in Figure 9.
Nonstandard behavior of dielectric losses and the value of parallel resistance with an
increase in temperature from 77 to 540 K are noteworthy. Namely, usually, with an increase
in the temperature, the concentration of free carriers in the insulator increases, so the
values of tgδ [63] increase and those of Rp decrease. However, in this case, the values show
the opposite tendency. The observed behavior is unusual for insulators and is probably
associated with an irreversible change in the properties of the insulator because of TT. The
polarity of RS after TT corresponds to the polarity after LT (Figure 5c). It should be noted
that the RS voltage decreases after the TT of the structures.

41

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 9. Frequency dependences of (a) Cp, Gp/ω, tgδ and (b) Rs, Rp of memristive structure in HRS
obtained at a temperature of 77 (dashed line) and 540 K (solid line).

Figure 10 shows the results of studying the stability of the parameters of equivalent
circuit and RS parameters of memristive structures after TT under multiple switching in the
mode of I–V curve, shown in Figure 5c. The experiment was carried out as follows. After
switching the structure in LRS (i.e., for curve 1 in Figure 5c), the frequency dependences
of the parameters of equivalent circuit were measured. Furthermore, after switching the
structure in HRS (i.e., for curve 2 in Figure 5c), the frequency dependences of the param-
eters of equivalent circuit were measured again. Thus, multiple (within ~2 h) switching
of memristive structure from LRS to HRS and vice versa occurred, with sequential mea-
surement of the parameters of equivalent circuit. The times for which the parameters of
equivalent circuit were measured were significantly shorter than the time intervals between
switches. Therefore, changes in the parameters during the testing of structures could be
neglected. Thus, the observed changes in parameters occur due either to the stochasticity
of RS processes, or, less likely, to changes in structures in the intervals between switching.

Figure 10a,b shows that the parameters of equivalent circuit after switching into HRS
are relatively reproducible in comparison with the parameters obtained after switching
into LRS; this is indicated by the weak time dependence of Cp0, Rp0, and tgδ0 (Figure 10a,b,
curves 2, 4, 6). When switching into LRS, the time dependences of Cp0, Rp0, and tgδ0
are characterized by non-monotonic behavior, which is reflected in significant (by more
than two orders of magnitude for Rp0 and tgδ0) chaotic changes (Figure 10a,b, curves 1,
3, and 5). The last result can be interpreted as follows. The selected mode of switching
into HRS allows each time to destroy the active filament, and each switching into LRS
leads to the formation of different (in terms of shape and location) filaments. It should
be noted that, with multiple switching, regardless of the sign of the switching voltage
and the state of the memristive structure, a monotonic decrease in the series resistance
Rs∞ from ~650 Ω to ~160 Ω was observed (Figure 10b, curve 7). It should be recalled
that the value of series resistance is determined by the resistance of the semiconductor
electrode. The observed behavior indicates the occurrence of electrochemical reactions
on the semiconductor electrode and the accumulation of a positive charge on its surface
during the recharging of the memristive structure.

Figure 10c,d shows the results of a statistical study for 10 I–V curves of memristive
structures after TT. It can be seen that the currents through the structure in LRS and HRS
differ by at least one order of magnitude (Figure 10c), and the voltages for RESET (switching
from LRS to HRS, VRESET) and SET (switching from HRS to LRS, VSET) processes have a
value in the selected range (Figure 10d).

42

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

(c) (d)

Figure 10. (a,b) The parameters of equivalent circuit of memristive structure after TT and switching
into LRS (1, 3, 5) and HRS (2, 4, 6) obtained at a frequency of a small test signal of 1 kHz (Cp0, tgδ0,
Rp0) and 2 MHz (Rs∞); (c) dependences of the currents (at a reading voltage of +0.5 V) of memristive
structure in LRS (red) and HRS (blue) after TT on the number of RS cycles; (d) distribution of voltages
of SET (red) and RESET (blue) processes of memristive structure after TT.

Figure 5d shows the I–V curves of memristive structures after multiple RS. An increase
in the voltage values of RESET and SET processes is seen, which indicates a significant
change in electrical characteristics of the structure under multiple RS.

Figure 11 shows the frequency dependences of the parameters of equivalent circuit
obtained for the memristive structure in HRS (i.e., for curve 2 in Figure 5d) after multiple
switching. It should be emphasized that, in contrast to the dependencies shown above,
these data indicate the complete oxidation of filaments when the structure is switched in
HRS. This fact is seen, in particular, from a comparison with the frequency dependence of
the tgδ structure in HRS in a low-frequency region. An increase in the tgδ and Gp/ω of the
structures (Figure 11a) can be explained by the fact that there is no shunting of memristor
by the value of Rp and the implementation of a series connection of the capacitance Cp
and memristor electrodes. In this case, the losses at low frequencies are small, the parallel
capacitance is equal to the series capacitance, and the series resistance is determined by the
resistance of the semiconductor electrode (~170 Ω).

43

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 11. Frequency dependences of (a) Cp, Gp/ω, tgδ and (b) Rs, Rp of memristive structure in HRS
after multiple RS.

For a quantitative comparison, Table 1 shows the values of Cp, Gp/ω, tgδ, Rp, and Rs,
obtained at the frequencies of 1 and 100 kHz (indices 0 and ∞, respectively). Data were
obtained for the SiOx-based memristor in different resistive states before LT and TT, after
LT, during TT, and after multiple RS.

Table 1. SiOx-based memristor equivalent circuit parameters.

Treatment
Resistive

State
Cp0,
nF

Cp∞,
nF

Gp0/ω,
nF

Gp∞/ω,
nF

tgδ0 tgδ∞ Rp0, Ω Rp∞, Ω Rs0, Ω Rs∞, Ω

Before
LT and TT

IS 2.05 1.60 334 3.68 163 2.30 476 433 476 364

HRS 2.65 2.46 0.26 0.47 0.10 0.19 621,296 3400 5732 119

After LT
LRS 2.06 1.49 390 3.78 189 2.54 409 422 409 365

HRS 2.65 2.45 1.98 0.49 0.75 0.20 80,309 3253 28,806 125

During TT
HRS at 77 K 3.24 2.17 11 0.59 3.24 0.27 15,124 2701 13,812 179

HRS at 540 K 2.52 2.31 0.66 0.44 0.26 0.19 241,206 3637 15,457 126

After
multiple RS HRS 2.42 2.02 0.02 0.66 0.01 0.33 8,259,960 2396 525 234

Figure 12 shows the Cole–Cole diagrams obtained for SiOx-based memristive struc-
tures in HRS. The data were obtained from the frequency dependences of the Gp/ω and Cp
of memristive structure before LT and TT (see Figure 6a), after LT (see Figure 8a), and after
TT and multiple switching (Figure 11a). It can be seen that all diagrams have a circular
arc shape, i.e., the spectrum of SS at insulator/semiconductor interface is continuous in all
cases. The values of Nss were estimated using Equation (1) and are 1.9 × 1012, 1.8 × 1012,
and 1.5 × 1012 cm−2eV−1, respectively.

Thus, only the LT of the Au/Zr/SiOx/SOI memristive structures is not sufficient for a
significant change in the value of the density of SS. Additional use of TT leads to a decrease
in this value by a factor of ~1.3. Nevertheless, the combined effect of LT and TT on the
Au/Zr/SiOx/SOI memristive structures results in a decrease in RS voltages of almost
2-fold. The effect is probably associated with the annealing of SS, which, in turn, leads to
a decrease in the resistance of the structure. According to the model [64], the appearance
of SS is associated with the disordering of silicon subsurface near the interface with the
insulator. From this point of view, annealing promotes a decrease in the density of SS due to
the relaxation of this disorder. However, one should also consider that annealing can lead

44

J. Low Power Electron. Appl. 2022, 12, 14

to a change in the concentration of electrically active impurities in both the semiconductor
and the insulator. As a result, the Fermi level at the insulator/semiconductor interface can
shift towards a lower density of states.

Figure 12. The Cole–Cole diagrams obtained for SiOx-based memristive structures in HRS. The data
were obtained before LT and TT, after LT, and after TT and multiple RS.

It should be noted that, along with the abovementioned influence of treatments on
the density of SS, they can be responsible for the occurrence of RS. It can be assumed that
the nanocrystallites observed by TEM are responsible for the initial conductive state of
SiOx-based memristors. According to the estimates from TEM images, nanocrystallites
reach diameters of ~7 nm. Note that TEM studies were carried out after LT and TT. Thus,
probably, such treatments led to significant and irreversible oxidation of nanocrystallites
and, before treatments, the sizes of nanocrystallites could be comparable to the thickness
of the insulator film. The latter could lead to shunting the devices. This explanation is
indirectly confirmed by the unusual behavior of dielectric losses and the value of parallel
resistance, with an increase in temperature from 77 to 540 K.

3.2. SiNx-Based Memristive Structures on SOI Substrates

According to AFM data (Figure 13a), the root mean square roughness of the SiNx film
is 1.9 nm. In Figure 13b, XPS data for SiNx film before and after annealing at 550 K are
reported. It is shown that the stoichiometry of SiNx film before and after annealing hardly
changes and x ≈ 1.25. One can also notice the presence of a transition layer at the SiNx/SOI
interface, the thickness of which is ~18 nm.

In Figure 14, the TEM images of a cross section of SiNx-based memristive structures
after LT are shown. According to Figure 14, the SiNx film has an amorphous structure.
At the same time, the presence of ZrN (areas 1, 3, 5–7) and Si (area 4) nanocrystallites is
confirmed inside amorphous SiNx. ZrO2 (area 2), ZrO (area 8), and ZrN (area 9) nanocrys-
tallites are found in the Zr sublayer and at the interface with the insulator. The presence
of Si3N4 nanocrystallites should also be noted (area 10). The structure of the observed
nanocrystallites was determined by comparing the interplanar spacing in TEM images
with the literature data. Like for the SiOx-based memristive structures, the SiNx-based
structures considered in this section initially had a conductive state. It should be noted that
SiNx-based memristive structures did not demonstrate RS before LT (Figure 15a, curve 1).

45

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 13. (a) AFM image of SiNx film surface; (b) distribution of chemical elements over depth of
SiNx film before and after annealing at 550 K. The origin of coordinates along the abscissa coincided
with the SiNx/SOI interface.

Figure 14. High-resolution TEM images of two cross-sectional regions of SiNx-based memristive
structure after LT. The inset shows scaled images of the nanocrystallites (parts that were used to
determine the interplanar spacing are highlighted by yellow rectangles).

In Figure 16, the frequency dependences of the parameters of equivalent circuit of
memristive structure before LT are shown. The series resistance in the structure at a high
frequency, which, as determined by the resistance of memristor electrodes, is ~110 Ω.

In the theory of MIS structures, using high-frequency C–V, it is possible to determine
the type of dopant: as a DC sweep voltage is applied to the metal, a positive slope of 1/C2

vs. V indicates acceptors and a negative slope indicates donors [65,66]. The 1/C2 value
increases with increasing absolute voltage value (Figure 17), which indicates the n-type
conductivity of the semiconductor film. The nonlinearity of this dependence can be a
consequence of inhomogeneous doping of the semiconductor film.

46

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 15. (a) I–V curves of SiNx-based memristive structure before (solid line) and after (dotted line)
LT in semi-log plot. Curves 3 and 4 in linear plot (b). The direction of the voltage sweep is shown
by arrows.

(a) (b)

Figure 16. Frequency dependences of (a) Cp, Gp/ω, tgδ and (b) Rs, Rp obtained for memristive
structure before LT.

Figure 17. Dependence of nonequilibrium capacitance on voltage in coordinates 1/C2–V obtained
for memristive structure before LT. Data were measured at a small test signal frequency of 100 kHz.

47

J. Low Power Electron. Appl. 2022, 12, 14

The donor concentration ND can be estimated using the slope of the straight line,
which extrapolates the data in Figure 17, and the following equation [56]:

ND =
2

εsε0qS2
ΔV
Δ 1

C2

. (4)

The ND value is ~5 × 1018 cm−3. It should be noted that the obtained value is probably
underestimated due to the presence of horizontal areas in the dependence.

The frequency dependence of the parameters of the equivalent circuit shows almost no
changes when measured in the dark and under short-term laser radiation. This indicates the
presence of an electron-enriched layer at the insulator/semiconductor interface. Therefore,
like for the SiOx-based memristive structures considered above, the structures based on
SiNx were subjected to LT in air in order to change the charge state of the traps in SiNx.
Figure 15a (curves 2–4) shows I–V curves demonstrating a significant increase in the
hysteresis loop (change in the current by ~3 orders of magnitude) after LT of the structures.
It should be noted that the structures also demonstrated a synaptic nature of switching
(Figure 15b) [67,68]. After LT, memristive structures showed an increased value of the
relative permittivity (before LT, it was 4; after, it was −4.85). This value was calculated
using the equation for a parallel plate capacitor at a frequency of 1 kHz. This behavior
indicates the contribution of the space charge region in the semiconductor electrode to the
capacitance of the capacitor before LT.

The effect of LT on the electrical characteristics of the memristive structure is illustrated
in Figure 18. Frequency dependences of the parameters of equivalent circuit of the structure
in LRS (i.e., for curve 2 in Figure 15a) and in HRS (i.e., for curve 4 in Figure 15a) after LT
are shown.

(a) (b)

Figure 18. Frequency dependences of (a) Cp (1, 4), Gp/ω (2, 5), tgδ (3, 6) and (b) Rs (7, 9), Rp (8, 10)
obtained for memristive structure in LRS (4, 5, 6, 9, 10) and HRS (1, 2, 3, 7, 8). The data were obtained
after LT.

It is worth noting the presence of large losses in the structures after switching into
LRS with a voltage of −5 V, which is probably due to the presence of filaments; at the same
time, the losses in the structure were significantly reduced (at a low frequency up to two
orders of magnitude) after switching into HRS with a voltage of +4 V. However, there was
no complete destruction of filaments. This was indicated by the presence of losses at a
frequency of <104 Hz, which are characterized for losses due to leakage currents at low
frequencies [55]. Also, in the memristive structure in HRS at a low frequency, the parallel
resistance increased (up to 2 orders of magnitude), shunting it. In this case, the resistance
of the silicon electrode remained almost unchanged.

48

J. Low Power Electron. Appl. 2022, 12, 14

For a quantitative comparison, Table 2 shows the values of Cp, Gp/ω, tgδ, Rp, and Rs
obtained at the frequencies of 1 and 100 kHz (indices 0 and ∞, respectively). Data were
obtained for the SiNx-based memristor in different resistive states before and after LT.

Table 2. SiNx-based memristor equivalent circuit parameters.

Treatment
Resistive

State
Cp0,
nF

Cp∞,
nF

Gp0/ω,
nF

Gp∞/ω,
nF

tgδ0 tgδ∞ Rp0, Ω Rp∞, Ω Rs0, Ω Rs∞, Ω

Before LT IS 2.71 2.48 65 1.25 24 0.50 2436 1276 2432 258

After LT
LRS 2.30 1.64 236 2.86 102 1.74 675 558 675 419

HRS 3.26 2.61 0.48 0.90 0.15 0.35 334,200 1764 6992 188

Figure 19 shows the Cole–Cole diagrams obtained for SiNx-based memristive struc-
tures. The data were obtained from the frequency dependences of the Gp/ω and Cp of
memristive structure before LT (see Figure 16a) and after LT (see Figure 18a). Note that
the memristive structure did not demonstrate resistive switching before laser treatment;
therefore, the diagram for this case was obtained in the initial highly conductive state of
memristive structure. At the same time, after LT, the two resistive states of memristive
structure became distinguishable; therefore, the diagram for the second case was obtained
under the conditions of HRS of the memristive structure.

Figure 19. The Cole–Cole diagrams obtained for SiNx-based memristive structures. The data were
obtained before and after LT. Inset: same Cole–Cole diagram as before LT, but at full scale.

In the first case (before LT), the diagram had a circular arc shape, which indicates a
uniform spectrum of SS at the insulator/semiconductor interface. The value of Nss was
estimated using Equation (1) and is equal to 1.6 × 1012 cm−2eV−1. SS with such a high-
density value can reduce response times and contribute to the variability in RS voltage
values. The sharp increase in Gp/ω at high values of Cp is due to the presence of conductive
channels (see inset in Figure 19). In the second case (after LT), the shape of the diagram is
close to a semicircle, which indicates the presence of a mono-level of SS. The value of Nss,
estimated using Equation (2), was 1.5 × 1011 cm−2, which is an order of magnitude lower
than before LT.

Figure 20a,b shows the results of a statistical study for 10 I–V curves of memristive
structures after LT. It can be seen that the currents through the structure in LRS and HRS
differ by at least 8-fold (Figure 20a), and the voltages for RESET and SET processes have a
value in the selected range (Figure 20b).

49

J. Low Power Electron. Appl. 2022, 12, 14

(a) (b)

Figure 20. (a) Dependences of the currents (at a reading voltage of −0.5 V) of memristive structure in
LRS (red) and HRS (blue) after LT on the number of RS cycles; (b) distribution of voltages of VSET

(red) and VRESET (blue) processes of memristive structure after LT.

Thus, one can conclude that LT leads to a change in the spectrum of SS at the SiNx/SOI
interface. This is probably due to the more significant, in comparison with SiOx-based
structures, effect of LT on the charge state of traps in SiNx, which determine the conductivity
with the optical activation energy (for SiNx<4/3, this value is equal to 2.6 eV [69]). It was
reported in [70] that these traps can play a decisive role in the rupture and restoration of
filaments during switching in SiNx-based memristors. Therefore, LT is an effective method
for changing RS parameters in metal/SiNx/semiconductor memristive structures.

It should be noted that, along with the abovementioned influence of LT on the spec-
trum of SS, it can be responsible for the occurrence of RS. It can be assumed that the
nanocrystallites observed by TEM are responsible for the initial conductive state of SiNx-
based memristors. According to the estimates from TEM images, nanocrystallites reach
diameters of ~5–10 nm. Note that TEM studies were carried out after LT. Thus, probably,
such treatment led to significant and irreversible oxidation of nanocrystallites and, before
LT, the sizes of nanocrystallites could be comparable to the thickness of the insulator film.
The latter could lead to shunting the devices.

4. Conclusions

This work demonstrates the robustness of the memristive phenomenon in thin-film
structures based on promising and accessible insulator layers—SiOx and SiNx—fabricated
on SOI substrates and subjected to additional laser and thermal treatments. It was shown
that laser treatment leads to a significant increase in the hysteresis loop in I–V curves of
the Au/Zr/SiNx/SOI memristive structures. The effect was explained by the positive
charging of traps in the insulator and a decrease in the density of surface states at the
insulator/semiconductor interface (by an order of magnitude). Moreover, laser treatment
of the Au/Zr/SiOx/SOI memristive structures was not sufficient to produce a significant
change in the value of the density of the surface states. Additional use of thermal treatment
led to a decrease in this value by a factor of ~1.3. Furthermore, the combined effect
of laser treatment followed by thermal treatment on the Au/Zr/SiOx/SOI memristive
structures led to a near doubling of the resistive switching voltages. The effect was, probably,
associated with the annealing of surface states, which, in turn, led to a decrease in the
resistance of the structure.

The CMOS compatibility of memristive devices in our study was provided by two
factors. First, it is a SOI substrate, which is used in the technology of integrated circuits,
including radiation-resistant ones. Secondly, it is a switching layer material, which is also
fabricated using industrial technology. In this sense, the top electrode is of no fundamental

50

J. Low Power Electron. Appl. 2022, 12, 14

importance, since in the framework of BEOL (back-end-of-line) integration it does not affect
the basic FEOL (front-end-of-line) process. We chose a composite Au/Zr electrode, since it
had previously proven itself well in MIM devices based on SiOx [71] and is semitransparent,
which is important for laser treatment. However, as part of the further optimization of
these devices, other combinations of oxidizable and inert metals can be selected and tested.

It should be emphasized that the device layer of silicon in the SOI structure can differ
greatly from bulk silicon in terms of structure and surface quality. The latter significantly
affects the surface state, which can play an important role in the resistive switching mecha-
nism. Therefore, the use of a SOI substrate in combination with specific switching insulators
and additional treatment methods is of fundamental importance.

Author Contributions: Conceptualization, S.V.T. and A.N.M.; methodology, S.V.T. and D.S.K.; soft-
ware, A.I.B.; validation, M.N.K., D.O.F., D.I.T., A.N.M., S.K. and B.S.; formal analysis, M.N.K., D.O.F.
and S.V.T.; investigation, S.V.T., A.I.B., A.V.K., R.N.K., S.Y.Z., V.A.V. and D.A.P.; resources, A.N.M.
and S.K.; data curation, M.N.K., D.O.F., S.V.T., A.I.B., D.I.T. and A.N.M.; writing—original draft
preparation, M.N.K., D.O.F., S.V.T. and A.I.B.; writing—review and editing, D.I.T., A.N.M., S.A.S., S.K.
and B.S.; visualization, M.N.K., S.V.T. and A.I.B.; supervision, D.O.F., D.I.T., A.N.M., S.A.S., S.K. and
B.S.; project administration, A.N.M. and S.A.S.; funding acquisition, A.N.M. and S.A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of Russian
Federation (Project No. 13.2251.21.0098) and a National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science and ICT (2021K1A3A1A49098073). The studies were performed
using the hardware resources of the shared use center: Research and Education Center “Physics of
Solid State Nanostructures”, Lobachevsky State University of Nizhny Novgorod.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, W.; Gao, B.; Tang, J.; Li, X.; Wu, W.; Qian, H.; Wu, H. Analog-type resistive switching devices for neuromorphic computing.
Phys. Status Solidi RRL 2019, 13, 1900204. [CrossRef]

2. Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive
dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [CrossRef] [PubMed]

3. Slipko, V.A.; Pershin, Y.V. Metastable memristive lines for signal transmission and information processing applications. Phys. Rev.
E 2017, 95, 042213. [CrossRef]

4. Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural
networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [CrossRef]

5. Pershin, Y.V.; Slipko, V.A. Dynamical attractors of memristors and their networks. Europhys. Lett. 2019, 125, 20002. [CrossRef]
6. Pershin, Y.V. A demonstration of implication logic based on volatile (diffusive) memristors. IEEE Trans. Circuits Syst. II Express

Briefs 2019, 66, 1033–1037. [CrossRef]
7. Mehonic, A.; Sebastian, A.; Rajendran, B.; Simeone, O.; Vasilaki, E.; Kenyon, A.J. Memristors—From in-memory computing, deep

learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst.
2020, 2, 2000085. [CrossRef]

8. Serb, A.; Corna, A.; George, R.; Khiat, A.; Rocchi, F.; Reato, M.; Maschietto, M.; Mayr, C.; Indiveri, G.; Vassanelli, S.; et al.
Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 2020, 10, 2590. [CrossRef]

9. Demin, V.A.; Nekhaev, D.V.; Surazhevsky, I.A.; Nikiruy, K.E.; Emelyanov, A.V.; Nikolaev, S.N.; Rylkov, V.V.; Kovalchuk, M.V.
Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network. Neural Netw. 2021,
134, 64–75. [CrossRef]

10. Johnson, B.A.; Brahim, K.; Balanov, A.G.; Savel’ev, S.; Borisov, P. Transition from noise-induced to self-sustained current spiking
generated by a NbOx thin film threshold switch. Appl. Phys. Lett. 2021, 118, 023502. [CrossRef]

11. Ushakov, Y.; Akther, A.; Borisov, P.; Pattnaik, D.; Savel’ev, S.; Balanov, A.G. Deterministic mechanisms of spiking in diffusive
memristors. Chaos Solitons Fractals 2021, 149, 110997. [CrossRef]

12. Du, N.; Zhao, X.; Chen, Z.; Choubey, B.; Di Ventra, M.; Skorupa, I.; Bürger, D.; Schmidt, H. Synaptic plasticity in memristive
artificial synapses and their robustness against noisy inputs. Front. Neurosci. 2021, 15, 696. [CrossRef] [PubMed]

51

J. Low Power Electron. Appl. 2022, 12, 14

13. Mikhaylov, A.; Belov, A.; Korolev, D.; Antonov, I.; Kotomina, V.; Kotina, A.; Gryaznov, E.; Sharapov, A.; Koryazhkina, M.;
Kryukov, R.; et al. Multilayer metal-oxide memristive device with stabilized resistive switching. Adv. Mater. Technol. 2020,
5, 1900607. [CrossRef]

14. Nikiruy, K.E.; Iliasov, A.I.; Emelyanov, A.V.; Sitnikov, A.V.; Rylkov, V.V.; Demin, V.A. Memristors based on nanoscale layers
LiNbO3 and (Co40Fe40B20)x(LiNbO3)100−x. Phys. Solid State 2020, 62, 1732–1735. [CrossRef]

15. Matsukatova, A.N.; Emelyanov, A.V.; Minnekhanov, A.A.; Sakharutov, D.A.; Vdovichenko, A.Y.; Kamyshinskii, R.A.; Demin,
V.A.; Rylkov, V.V.; Forsh, P.A.; Chvalun, S.N.; et al. Memristors based on poly(p-xylylene) with embedded silver nanoparticles.
Tech. Phys. Lett. 2020, 46, 73–76. [CrossRef]

16. Sun, K.; Chen, J.; Yan, X. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021,
31, 2006773. [CrossRef]

17. La Torre, C.; Fleck, K.; Starschich, S.; Linn, E.; Waser, R.; Menzel, S. Dependence of the SET switching variability on the initial
state in HfOx-based ReRAM. Phys. Status Solidi A 2016, 213, 316–319. [CrossRef]

18. Ungureanu, M.; Zazpe, R.; Golmar, F.; Stoliar, P.; Llopis, R.; Casanova, F.; Hueso, L.E. A light-controlled resistive switching
memory. Adv. Mater. 2012, 24, 2496–2500. [CrossRef]

19. Patterson, G.A.; Fierens, P.I.; Grosz, D.F. On the beneficial role of noise in resistive switching. Appl. Phys. Lett. 2013, 103, 074102.
[CrossRef]

20. Mikhaylov, A.N.; Guseinov, D.V.; Belov, A.I.; Korolev, D.S.; Shishmakova, V.A.; Koryazhkina, M.N.; Filatov, D.O.; Gorshkov, O.N.;
Maldonado, D.; Alonso, F.J.; et al. Stochastic resonance in a metal-oxide memristive device. Chaos Solitons Fractals 2021, 144, 110723.
[CrossRef]

21. Ntinas, V.; Rubio, A.; Sirakoulis, G.C.; Aguilera, E.S.; Pedro, M.; Crespo-Yepes, A.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.
Power-efficient noise-induced reduction of ReRAM cell’s temporal variability effects. IEEE Trans. Circuits Syst. II Express Briefs
2021, 68, 1378–1382. [CrossRef]

22. Ielmini, D.; Nardi, F.; Cagli, C. Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories.
Appl. Phys. Lett. 2010, 96, 053503. [CrossRef]

23. Marchewka, A.; Waser, R.; Menzel, S. Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact
barrier model. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
Washington, DC, USA, 9–11 September 2015; IEEE: New York, NY, USA, 2015; pp. 297–300. [CrossRef]

24. Strukov, D.B.; Alibart, F.; Stanley Williams, R. Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching
in metal-oxide-metal memristors. Appl. Phys. A 2012, 107, 509–518. [CrossRef]

25. Guarcello, C.; Valenti, D.; Spagnolo, B. Phase dynamics in graphene-based Josephson junctions in the presence of thermal and
correlated fluctuations. Phys. Rev. B 2015, 92, 174519. [CrossRef]

26. Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. Sci. Rep. 2018, 8, 9852. [CrossRef]
[PubMed]

27. Jiang, H.; Han, L.; Lin, P.; Wang, Z.; Jang, M.H.; Wu, Q.; Barnell, M.; Yang, J.J.; Xin, H.L.; Xia, Q. Sub-10 nm Ta channel responsible
for superior performance of a HfO2 memristor. Sci. Rep. 2016, 6, 28525. [CrossRef] [PubMed]

28. Lu, K.; Li, Y.; He, W.F.; Chen, J.; Zhou, Y.X.; Duan, N.; Jin, M.M.; Gu, W.; Xue, K.H.; Sun, H.J.; et al. Diverse spike-timing-dependent
plasticity based on multilevel HfOx memristor for neuromorphic computing. Appl. Phys. A 2018, 124, 438. [CrossRef]

29. Lian, X.; Wang, M.; Rao, M.; Yan, P.; Yang, J.J.; Miao, F. Characteristics and transport mechanisms of triple switching regimes of
TaOx memristor. Appl. Phys. Lett. 2017, 110, 173504. [CrossRef]

30. Choi, S.; Jang, S.; Moon, J.H.; Kim, J.C.; Jeong, H.Y.; Jang, P.; Lee, K.J.; Wang, G. A self-rectifying TaOy/nanoporous TaOx memristor
synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 2018, 10, 1097–1106. [CrossRef]

31. Abbas, Y.; Han, I.S.; Sokolov, A.S.; Jeon, Y.R.; Choi, C. Rapid thermal annealing on the atomic layer-deposited zirconia thin film to
enhance resistive switching characteristics. J. Mater. Sci. Mater. Electron. 2020, 31, 903–909. [CrossRef]

32. Upadhyay, N.K.; Sun, W.; Lin, P.; Joshi, S.; Midya, R.; Zhang, X.; Wang, Z.; Jiang, H.; Yoon, J.H.; Rao, M.; et al. A memristor with
low switching current and voltage for 1S1R integration and array operation. Adv. Electron. Mater. 2020, 6, 1901411. [CrossRef]

33. Gambuzza, L.V.; Samardzic, N.; Dautovic, S.; Xibilia, M.G.; Graziani, S.; Fortuna, L.; Stojanovic, G.; Frasca, M. A data driven
model of TiO2 printed memristors. In Proceedings of the 8th International Conference on Electrical and Electronics Engineering
(ELECO), Bursa, Turkey, 28–30 November 2013; pp. 1–4. [CrossRef]

34. Kim, M.; Yoo, K.; Jeon, S.P.; Park, S.K.; Kim, Y.H. The effect of multi-layer stacking sequence of TiOx active layers on the
resistive-switching characteristics of memristor devices. Micromachines 2020, 11, 154. [CrossRef] [PubMed]

35. Cvejin, K.; Mojić, B.; Samardžić, N.; Srdić, V.V.; Stojanović, G.M. Dielectric studies of barium bismuth titanate as a material for
application in temperature sensors. J. Mater. Sci. Mater. Electron. 2013, 24, 1243–1249. [CrossRef]

36. Vasileiadis, N.; Karakolis, P.; Mandylas, P.; Ioannou-Sougleridis, V.; Normand, P.; Perego, M.; Komninou, P.; Ntinas, V.;
Fyrigos, I.A.; Karafyllidis, I.; et al. Understanding the role of defects in silicon nitride-based resistive switching memories through
oxygen doping. IEEE Trans. Nanotechnol. 2021, 20, 356–364. [CrossRef]

37. Vasileiadis, N.; Ntinas, V.; Fyrigos, I.A.; Karamani, R.E.; Ioannou-Sougleridis, V.; Normand, P.; Karafyllidis, I.; Sirakoulis, G.C.;
Dimitrakis, P. A new 1P1R image sensor with in-memory computing properties based on silicon nitride devices. In Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; IEEE: New York, NY,
USA, 2021; pp. 1–5. [CrossRef]

52

J. Low Power Electron. Appl. 2022, 12, 14

38. Ambrosi, E.; Bricalli, A.; Laudato, M.; Ielmini, D. Impact of oxide and electrode materials on the switching characteristics of oxide
ReRAM devices. Faraday Discuss. 2019, 213, 87–98. [CrossRef]

39. Yen, T.-J.; Chin, A.; Gritsenko, V. Improved device distribution in high-performance SiNx Resistive Random Access Memory via
Arsenic ion implantation. Nanomaterials 2021, 11, 1401. [CrossRef]

40. Duchamp, M.; Migunov, V.; Tavabi, A.H.; Mehonic, A.; Buckwell, M.; Munde, M.; Kenyon, A.J.; Dunin-Borkowski, R.E. In situ
transmission electron microscopy of resistive switching in thin silicon oxide layers. Resolut. Discov. 2016, 1, 27–33. [CrossRef]

41. Jiang, X.; Ma, Z.; Yang, H.; Yu, J.; Wang, W.; Zhang, W.; Li, W.; Xu, J.; Xu, L.; Chen, K.; et al. Nanocrystalline Si pathway induced
unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers. J. Appl. Phys. 2014, 116, 123705. [CrossRef]

42. Islamov, D.R.; Gritsenko, V.A.; Chin, A. Charge transport in thin hafnium and zirconium oxide films. Optoelectron. Instrument.
Proc. 2017, 53, 184–189. [CrossRef]

43. Gismatulin, A.A.; Orlov, O.M.; Gritsenko, V.A.; Kruchinin, V.N.; Mizginov, D.S.; Krasnikov, G.Y. Charge transport mechanism in
the metal–nitride–oxide–silicon forming-free memristor structure. Appl. Phys. Lett. 2020, 116, 203502. [CrossRef]

44. Bishop, M.D.; Wong, H.S.P.; Mitra, S.; Shulaker, M.M. Monolithic 3-D integration. IEEE Micro 2019, 39, 16–27. [CrossRef]
45. Saylan, S.; Aldosari, H.M.; Humood, K.; Abi Jaoude, M.; Ravaux, F.; Mohammad, B. Effects of top electrode material in

hafnium-oxide-based memristive systems on highly-doped Si. Sci. Rep. 2020, 10, 19541. [CrossRef] [PubMed]
46. Popov, V.P.; Antonova, A.I.; Frantsuzov, A.A.; Safronov, L.N.; Feofanov, G.N.; Naumova, O.V.; Kilanov, D.V. Properties of

silicon-on-insulator structures and devices. Semiconductors 2001, 35, 1030–1037. [CrossRef]
47. Hoessbacher, C.; Fedoryshyn, Y.; Emboras, A.; Melikyan, A.; Kohl, M.; Hillerkuss, D.; Hafner, C.; Leuthold, J. The plasmonic

memristor: A latching optical switch. Optica 2014, 1, 198–202. [CrossRef]
48. Puppo, F.; Doucey, M.A.; Di Ventra, M.; De Micheli, G.; Carrara, S. Memristor-based devices for sensing. In Proceedings of the

IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; IEEE: New York, NY,
USA, 2014; pp. 2257–2260. [CrossRef]

49. Li, C.; Han, L.; Jiang, H.; Jang, M.-H.; Lin, P.; Wu, Q.; Barnell, M.; Yang, J.J.; Xin, H.L.; Xia, Q. Three-dimensional crossbar arrays
of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 2017, 8, 15666. [CrossRef]

50. Pragnya, P.; Pinkowitz, A.; Hull, R.; Gall, D. Electrochemical memristive devices based on submonolayer metal deposition. APL
Mater. 2019, 7, 101121. [CrossRef]

51. Baltakesmez, A. Improved barrier parameters and working stability of Au/p-GO/n-lnP/Au–Ge Schottky barrier diode with GO
interlayer showing resistive switching effect. Vacuum 2019, 168, 108825. [CrossRef]

52. Skorobogatov, S. Local heating attacks on flash memory devices. In Proceedings of the IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), San Francisco, CA, USA, 27 July 2009; IEEE: New York, NY, USA, 2009; pp. 1–6.
[CrossRef]

53. Kärkkänen, I.; Shkabko, A.; Heikkilä, M.; Vehkamäki, M.; Niinistö, J.; Aslam, N.; Meuffels, P.; Ritala, M.; Leskelä, M.; Waser, R.;
et al. Impedance spectroscopy study of the unipolar and bipolar resistive switching states of atomic layer deposited polycrystalline
ZrO2 thin films. Phys. Status Solidi A 2015, 212, 751–766. [CrossRef]

54. Epshtein, S.L. Measuring of Capacitor Characteristics; Energiya: Moscow, Russia, 1965; 236p. (In Russian)
55. Oreshkin, P.T. Physics of Semiconductors and Dielectrics; Vysshaya Shkola: Moscow, Russia, 1977; 448p. (In Russian)
56. Ovsyuk, V.N. Electronic Processes in Semiconductors with Space-Charge Regions; Nauka: Novosibirsk, Russia, 1984; 254p. (In Russian)
57. Antipov, A.; Arakelian, S.; Vartanyan, T.; Gerke, M.; Istratov, A.; Kutrovskaya, S.; Kucherik, A.; Osipov, A. Optical properties of

multilayer bimetallic films obtained by laser deposition of colloidal particles. Opt. Spectrosc. 2016, 121, 765–768. [CrossRef]
58. Hofmann, S. Auger- and X-ray Photoelectron Spectroscopy in Materials Science; Springer: Berlin/Heidelberg, Germany, 2013; 528p.

[CrossRef]
59. Wang, T.Y.; Meng, J.L.; Li, Q.X.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Forming-free flexible memristor with

multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 2021, 60, 21–26. [CrossRef]
60. Gorshkov, O.N.; Mikhaylov, A.N.; Kasatkin, A.P.; Tikhov, S.V.; Filatov, D.O.; Pavlov, D.A.; Belov, A.I.; Koryazhkina, M.N.;

Bobrov, A.I.; Malekhonova, N.V.; et al. Resistive switching in the Au/Zr/ZrO2-Y2O3/TiN/Ti memristive devices deposited by
magnetron sputtering. J. Phys. Conf. Ser. 2016, 741, 012174. [CrossRef]

61. Gurtov, V.A. Solid State Electronics; Tekhnosfera: Moscow, Russia, 2008; 512p. (In Russian)
62. Ismail, M.; Kim, S. Negative differential resistance effect and dual bipolar resistive switching properties in a transparent Ce-based

devices with opposite forming polarity. Appl. Surf. Sci. 2020, 530, 147284. [CrossRef]
63. Kumar, N.; Chand, S. Effects of temperature, bias and frequency on the dielectric properties and electrical conductivity of

Ni/SiO2/p-Si/Al MIS Schottky diodes. J. Alloys Compd. 2020, 817, 153294. [CrossRef]
64. Hasegawa, H.; Sawada, T. On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor

structures and the possible origin of interface states. Thin Solid Films 1983, 103, 119–140. [CrossRef]
65. Chaabouni, F.; Abaab, M.; Rezig, B. Characterization of n-ZnO/p-Si films grown by magnetron sputtering. Superlattices Microstruct.

2006, 39, 171–178. [CrossRef]
66. Hu, C. Modern Semiconductor Devices for Integrated Circuits; Pearson: London, UK, 2010; p. 351.
67. Wang, L.G.; Zhang, W.; Chen, Y.; Cao, Y.Q.; Li, A.D.; Wu, D. Synaptic plasticity and learning behaviors mimicked in single

inorganic synapses of Pt/HfOx/ZnOx/TiN memristive system. Nanoscale Res. Lett. 2017, 12, 65. [CrossRef] [PubMed]

53

J. Low Power Electron. Appl. 2022, 12, 14

68. Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Kalita, H.; Chung, H.S.; Aina, O.; Jung, Y.; Roy, T. Electronic synapses with
near-linear weight update using MoS2/graphene memristors. Appl. Phys. Lett. 2019, 115, 103104. [CrossRef]

69. Nasyrov, K.A.; Shaı̆meev, S.S.; Gritsenko, V.A.; Han, J.H.; Kim, C.W.; Lee, J.-W. Electron and hole injection in metal-oxide-nitride-
oxide-silicon structures. J. Exp. Theor. Phys. 2006, 102, 810–820. [CrossRef]

70. Gismatulin, A.A.; Gritsenko, V.A.; Yen, T.-J.; Chin, A. Charge transport mechanism in SiNx-based memristor. Appl. Phys. Lett.
2019, 115, 253502. [CrossRef]

71. Mikhaylov, A.N.; Belov, A.I.; Guseinov, D.V.; Korolev, D.S.; Antonov, I.N.; Efimovykh, D.V.; Tikhov, S.V.; Kasatkin, A.P.; Gorshkov,
O.N.; Tetelbaum, D.I.; et al. Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Eng. B 2015,
194, 48–54. [CrossRef]

54

Journal of

Low Power Electronics
and Applications

Article

Design of In-Memory Parallel-Prefix Adders

John Reuben

Citation: Reuben, J. Design of

In-Memory Parallel-Prefix Adders. J.

Low Power Electron. Appl. 2021, 11, 45.

https://doi.org/10.3390/

jlpea11040045

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 14 October 2021

Accepted: 17 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Chair of Computer Architecture, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
91058 Erlangen, Germany; johnreuben.prabahar@fau.de

Abstract: Computational methods in memory array are being researched in many emerging memory
technologies to conquer the ‘von Neumann bottleneck’. Resistive RAM (ReRAM) is a non-volatile
memory, which supports Boolean logic operation, and adders can be implemented as a sequence of
Boolean operations in the memory. While many in-memory adders have recently been proposed,
their latency is exorbitant for increasing bit-width (O(n)). Decades of research in computer arithmetic
have proven parallel-prefix technique to be the fastest addition technique in conventional CMOS-
based binary adders. This work endeavors to move parallel-prefix addition to the memory array
to significantly minimize the latency of in-memory addition. Majority logic was chosen as the
fundamental logic primitive and parallel-prefix adders synthesized in majority logic were mapped to
the memory array using the proposed algorithm. The proposed algorithm can be used to map any
parallel-prefix adder to a memory array and mapping is performed in such a way that the latency
of addition is minimized. The proposed algorithm enables addition in O(log(n)) latency in the
memory array.

Keywords: resistive RAM (ReRAM); non-volatile memory (NVM); majority logic; memristor;
1Transistor-1Resistor (1T–1R); in-memory computing; processing-in-memory; parallel-prefix adder;
logic-in-memory; memristive logic

1. Introduction

Conventional computer architecture is facing an acute problem—the ‘von Neumann
bottleneck’ or ‘memory wall’. The shuffling of data between processing and memory units
is energy-consuming and time-consuming and degrades the performance of contemporary
computing systems [1,2]. In other words, the energy needed to move data (between
memory and processing units) forms a significant portion of the computational energy.
To overcome the memory wall, the processor and memory unit must be brought closer to
each other. A 3D stacking of DRAM dies over logic die, often referred to as near-memory
computing [3], was pursued earlier to reduce the latency and energy for data movement
between processor and memory. The recent trend is to move computing to the location of
the data, i.e., in-memory computing.

In in-memory computing, the data are processed at their location (i.e., in the memory
array) and not moved out of the memory array to a separate processing unit. At present,
diverse operations from arithmetic operations to cognitive tasks such as machine learning
and pattern recognition are being explored in memory arrays [4]. This article focuses
on arithmetic operations and how adders can be implemented in memory. It should
be noted that in-memory computing is pursued in many memory technologies—both
conventional (SRAM, DRAM) and emerging non-volatile memories (Resistive RAM, STT-
MRAM, PCM, FeFET). However, in this article, we restrict our focus to Resistive RAM
technology to achieve a greater focus on the design of parallel-prefix adders. Resistive
RAM device is a two-terminal Metal–Insulator–Metal structure in which data can be
stored as resistance. A positive voltage across the structure forms a conductive filament
(low resistance state) and a negative voltage ruptures the filament (high resistance state),
leading to two stable resistances. Boolean gates can be implemented in the memory

J. Low Power Electron. Appl. 2021, 11, 45. https://doi.org/10.3390/jlpea11040045 https://www.mdpi.com/journal/jlpea
55

J. Low Power Electron. Appl. 2021, 11, 45

array by altering the structure of the memory array, the peripheral circuitry around the
array, or both. Arithmetic circuits such as adders can be implemented as a chain of such
Boolean operations.

Although different in-memory adders have been proposed in the literature, the latency
of in-memory adders is a severe disadvantage in in-memory computing, i.e., an addition
operation needs a long sequence of Boolean operations. A poorly optimized in-memory
adder may take longer to compute (add two n-bit numbers) than the combined time it takes
to fetch data from memory and add them in a CMOS-based processor. In a computing
system, adders constitute the basic computational unit. In-memory adders have not
had their latency studied and optimized for an increasing bit-width (n-bit operand). In
practice, 32-bit/64-bit in-memory adders require hundreds of cycles due to O(n) latency
requirements. It was originally proposed that parallel-prefix (PP) adders could bring down
the latency caused by the rippling of carry in CMOS-based adders. PP adders are the fastest
adders in conventional CMOS technology [5,6]. To improve the latency of in-memory
adders, it is necessary to learn lessons from the decades of research on CMOS adders and
adopt them for in-memory addition. Therefore, parallel-prefix adders were pursued in this
work to improve the latency of in-memory adders. More specifically, we propose a generic
methodology to design any PP adder in memory. As an example, we consider the Ladner–
Fischer type of PP adder and demonstrate how this can be implemented in-memory in
O(log(n) latency. The presented method requires no major modifications to the peripheral
circuitry of the memory array and is also energy-efficient.

The rest of the paper is organised as follows. Section 2 reviews the state-of-the-art
in-memory adders and classifies in-memory adders on the basis of state fullness, logic
primitive and architecture. The review identifies the exorbitant latency of adders with
increasing bit-width, as a significant issue that needs attention. Section 3 presents PP
adders as a solution to the long latency incurred by the rippling of carry. Section 4.1
reviews the in-memory majority gate, which is the fundamental logic gate used in this
work to implement the PP adder in the memory array. Section 4.2 elaborates how PP
adders can be synthesized using majority logic. Having synthesized PP adders in majority
logic, Section 4.3.3 elaborates how they can be mapped to the memory array. We present
the simulation methodology in Section 5.1. In Section 5.2, we analyse how the latency of
the proposed adder grows with increasing bit-width. Sections 5.3 and 5.4 analyse how the
energy and area of the proposed adder grow with increasing bit-width. In Section 5.5, we
compare the proposed adder with other adders reported in the literature, followed by the
Conclusion in Section 6.

2. In-Memory Adders: A Brief Review

Conventionally, adders were designed using logic gates built from CMOS transistors.
In contrast, an in-memory adder is designed using a ‘functionally complete’ Boolean
logic primitive. NOR, for example, is functionally complete, since any Boolean logic can
be expressed using NOR gates. Therefore, if an NOR gate can be implemented in the
memory array, any arithmetic circuit can be implemented in the memory array. NAND,
IMPLY + FALSE [7] and Majority + NOT [8] are other functionally complete logic primitives.
In the last 5 years, several in-memory adders have been proposed. They can be classified
as the following:

1. State variable used for computation—stateful or non-stateful;
2. Logic primitive used for computation—NAND or NOR or IMPLY or MAJORITY or

XOR or a combination of these;
3. Adder architecture—how is the carry propagated?

Stateful in-memory adders perform an addition by logic gates, where each gate is exe-
cuted by manipulating the resistance of a memristor (i.e., the internal state) rather than by a
mix of resistance and voltage [9]. If voltage is also used, in addition to resistance, the logic
gate and the adder are said to be non-stateful (Figure 1a). This is one of the characteristics
of in-memory adders that, with certain modifications to conventional memory, a particular

56

J. Low Power Electron. Appl. 2021, 11, 45

logic primitive can be realized and other logic primitives need to be realized in terms of this
logic primitive. The NOR-based memristive logic family (MAGIC), for example, requires
that all other gates (AND, OR, XOR) are expressed in terms of NOR gates and then used in
the memory array. Similarly, in the NAND-based adder reported in [10], an XOR gate is
implemented as NAND gates (one XOR requires four memory cycles). Figure 1b illustrates
a one-bit full adder expressed solely as NOR/NAND/Majority gates (expressing a circuit
using single logic primitive is preferred for in-memory implementation). Finally, an issue
that is often overlooked in this emerging area is the issue of carry-propagation. The manner
in which carry is propagated from LSB to MSB decides the speed of the in-memory adder.
In the in-memory community, different adder architectures, from ripple carry (slowest) to
parallel-prefix (fastest) adders, have been proposed.

(a) (b) (c)

Figure 1. (a) An in-memory logic gate (adder) is stateful if its only state variable is resistance.
Non-stateful logic gates (adder) also use voltage in conjunction with resistance. (b) In-memory
adder implementation favors homogeneity of logic primitives; 1-bit full adder in terms of NOR
gates [11], NAND gates [12] and majority gates [13]; (c) Different carry-propagation techniques result
in different adder architectures.

Table 1 lists different in-memory adders that have been reported recently and their
latency for 8-bit and n-bit. The adders are also classified based on the three characteristics
we reviewed—state variable, logic primitive and adder architecture. A key observation
is that logic primitive plays an important role in determining the latency. IMPLY is a
weak logic primitive, and generally incurs more latency than all other logic primitives.
XOR and the majority are generally stronger logic primitives than OR/AND/NOR. This is
evident from the fact that XOR-based and majority-based ripple-carry adders are faster than
NAND/NOR-based ripple-carry adders [13]. In other words, with the adder configuration
being the same (ripple-carry), logic primitive plays an important role in determining the
latency of in-memory addition. Another important finding is that the adder architecture
plays a key role in deciding the latency for increasing bit-width. This is evident from the
latency of OR + AND-based adders in Table 1. Both adders used the same logic primitive
(OR + AND), but [14] uses ripple-carry architecture, achieving a latency of 6n + 1 while [15]
uses a parallel-prefix configuration to achieve a latency of 8log2(n) + 13. As an example, a
32-bit adder based on OR + AND logic will require 193 cycles and 53 cycles for ripple-carry
and parallel-prefix architectures, respectively. Hence, for larger bit-widths, architecture
(carry propagation technique) plays an important role in latency. In summary, both adder
architecture and logic primitive influence the latency of in-memory adder. Therefore,
majority logic primitive and parallel-prefix adder architecture were chosen in this work to
drastically minimize the latency of in-memory adders.

57

J. Low Power Electron. Appl. 2021, 11, 45

Table 1. Latency of recently reported in-memory adders (8-bit and n-bit).

Stateful Primitive Architecture Latency (8 bit) Latency (n-bit) Ref.

Yes IMPLY Ripple carry 58 5n + 18 [7]

Yes IMPLY Parallel-serial 56 5n + 16 [16]

Yes IMPLY + OR Ripple carry 54 6n + 6 [17]

Yes IMPLY Semi-parallel 136 17n [18]

Yes NOR Ripple carry 83 10n + 3 [19]

Yes NOR Look-Ahead 48 5n + 8 [20]

No OR + AND Ripple carry 49 6n + 1 [14]

Yes ORNOR Parallel-clocking 31 2n + 15 [21]

Yes RIMP/NIMP∗ Pre-calculation 20 2n + 4 [22]

Yes XOR Ripple carry 18 2n + 2 [23]

No XOR + MAJ Ripple carry 18 2n + 2 [24]

Yes XNOR/XOR Carry-Select 9 – [25]

No OR + AND Parallel-prefix 37 8log2(n) + 13 [15]
In a Complementary Resistive Switch (CRS) adder, RIMP/NIMP∗ denotes reverse implication and inverse
implication.

3. Parallel-Prefix Adders: A Solution for the Carry-Propagation Problem

When two n-bit binary numbers A (an−1an−2 · a0) and B (bn−1bn−2 · b0) are added, the
sum bit Si at the ith bit position is computed as,

Si = Hi ⊕ Ci−1 (1)

where, Hi = Ai ⊕ Bi and Ci−1 is the carry computed in the previous bit position. To
compute the sum bits of the next significant bit position, the incoming carry Ci−1 is
propagated to the next position. This is accomplished using carry generate bits (Gi = Ai · Bi)
and carry propagate bits (Pi = Ai + Bi). The carry-out (Ci) of a particular bit position
is always a function of the carry from the previous bit (Ci−1), and they are expressed
as follows:

Ci = Gi + Pi · Ci−1 (2)

Thus, during the 8-bit addition of a7a6a5a4a3a2a1a0 and b7b6b5b4b3b2b1b0, sum bit
S6 = H6 ⊕ C5 and C5 is a function of a5, b5, C4 according to Equations (1) and (2). In other
words, S6 cannot be computed until C5 is computed, which recursively depends on the
carry-out of the lower significant bit. This is the decades old carry-propagation problem
and significantly affects the speed of n-bit addition as n grows. Ripple-carry adders
are extremely slow for 32-bit/64-bit addition due to this carry propagation. To improve
this situation, carry-skip adders were proposed, which allowed for carries to skip across
block of bits instead of rippling through them. This was followed by Carry-lookahead
adders, where carries were computed in parallel and achieved logarithmic logic depth [26].
Parallel-prefix (PP) adders improved on the carry-look ahead adder by expressing carry-
propagation as a prefix computation [27]. They are the fastest family of adders [5,6] in
conventional transistor-based implementations.

PP adders have a ‘carry-generate block’, followed by a ‘sum-generate block’ (Figure 2).
Internally, the carry-generate block has a pre-processing stage, which computes Gi, Pi, Hi
for every bit. Using them, carry bits CoutCn−1 · C1C0 are computed using the prefix com-
putation technique. This is followed by the sum-generate block, where Si = Hi ⊕ Ci−1
is computed. The reader is referred to [27,28] for a detailed explanation of the stages of
a parallel-prefix adder. Kogge–Stone, Ladner–Fischer, Brent–Kung, Sklansky, Ling, etc.,

58

J. Low Power Electron. Appl. 2021, 11, 45

are examples of PP adders. According to the taxonomy of PP adders [29], these adders
essentially form a compromise between logical depth, fan-out and wiring tracks. PP adders
can reduce the logical depth to O(log(n)), for n-bit adders [30].

Figure 2. Generic Structure of PP adders: A ‘carry-generate block’ calculates carry by prefix compu-
tation and is then followed by a ‘sum-generate block’ ([30]).

4. In-Memory Implementation of Parallel-Prefix Adders

4.1. In-Memory Majority Gate

Before their implementation in memory, the PP adders must first be synthesized in
terms of logic gates which can be implemented in memory. As stated, different logic
primitives require different modifications to the memory array or its peripheral circuitry (or
both). Therefore, for the in-memory implementation of adders, it is important to minimize
the different types of logic primitives used. Consequently, it is beneficial to express the
adder using one logic primitive, rather than four different logic primitives. Recently, an
in-memory majority gate was proposed in [31,32]. The three inputs to the majority gate are
the three resistances of the memory cells, and the output majority is computed as a READ
operation (Figure 3a). This majority gate does not necessitate any major modifications to the
peripheral circuitry of a regular memory array, and is also energy-efficient (access transistor
for each memory cell minimizes sneak currents, thus lowering energy consumption when
compared to other adders implemented in 1S–1R configuration). As depicted in Figure 3b,
multiple majority gates can be executed in array columns, which suits PP adders with a
similar structure.

4.2. Homogeneous Synthesis of Parallel-Prefix Adders

Conventionally, PP adders are synthesized in terms of AND, OR and XOR gates for
CMOS implementation. Figure 4a depicts an eight-bit PP adder of the Ladner–Fischer type.
Three different logic primitives are required—AND, OR and XOR. As stated, different logic
primitives require different modifications to the memory array and its peripheral circuitry.
If a particular Boolean logic gate cannot be implemented in the memory array, it has to
be re-formulated in terms of a logic gate that can be implemented in the memory array.
For example, in the NAND-based logic family reported in [10], the XOR gate cannot be
implemented; therefore, it is expressed as four NAND gates. As depicted in Figure 4a,
a single XOR becomes three levels of NAND logic, increasing its latency. In contrast, by
expressing a PP adder purely in terms of MAJORITY+NOT gates, the PP adder can be
efficiently implemented in the memory array. Furthermore, a majority-based PP adder
achieves a marginal reduction in logical depth compared to conventional AND-OR-XOR
implementation (Figure 4). This is due to the majority being a stronger logic primitive
than NAND/NOR/IMPLY [13]. To synthesize PP adders in terms of majority gates, logic
synthesis tools can be used. A logic synthesis tool is proposed in [8], which takes any
AND-OR-INVERT-based logic and synthesizes it purely in terms of majority and NOT
gates. Boolean logic minimization techniques such as re-shaping, push-up, node merging,
etc., are used to re-synthesize and optimize conventional AND-OR-INVERT logic in terms
of MAJORITY-INVERT [33–38]. Since the majority is the fundamental logic primitive for
many emerging nanotechnologies, there are also works which pioneered the synthesis of
PP adders solely in terms of majority gates. The reader is referred to [5,30,39] for such
works. Therefore, a variety of techniques can be used to transform PP adders in terms of

59

J. Low Power Electron. Appl. 2021, 11, 45

majority and NOT gates. Figure 4b depicts a 8-bit PP adder, synthesized solely in terms
of majority and NOT gates. In addition to achieving homogeneity, the majority-based PP
adder incurs one level of reduction in logical depth compared to the AND-OR-XOR-based
PP adder.

(a) (b)

Figure 3. (a) In-memory Implementation of majority gate [31,32]: In a 1T-1R array, the resistances
(RA, RB, RC) in the three rows will be parallel if three rows are selected at the same time. (Inputs of the
majority gate A, B, C are represented as resistances RA, RB, RC). During READ, the effective resistance
Re f f can accurately be sensed to implement an in-memory majority gate. (b) NOT operation can be
implemented by inverting the output of the SA. With a majority and NOT gate implemented as a
READ operation, the array can be used to execute multiple levels of logic by writing back the data,
simplifying computing to READ and WRITE operations.

(a) (b)

Figure 4. (a) Eight-bit PP adder of Ladner–Fischer type expressed in terms of AND, OR , XOR gates.
(b) Re-synthesized and optimized in terms of MAJORITY and NOT gates [5,30].

4.3. Mapping Methodology

Having synthesized the PP adder in terms of majority and NOT gates, they can be
implemented in memory using the in-memory majority gate described in Section 4.1. The
NOT gate can be implemented as a simple READ operation with the output inverted.
The design of in-memory PP adders presented in this paper is generic and can be used to

60

J. Low Power Electron. Appl. 2021, 11, 45

implement any PP adder. However, in this section, the Ladner–Fischer adder of Figure 4b
is chosen and the in-memory implementation (mapping) steps are elaborated.

4.3.1. In-Memory Mapping as an Optimization Problem: Objectives

The mapping of the majority-based PP adder to the memory array can be treated as
an optimization problem. Any optimization problem has objectives or goals, which should
be achieved in the presence of certain constraints. The objectives of in-memory mapping
are as follows:

1. Latency of in-memory PP adder must be minimized (O1);
2. Energy consumption during addition must be minimized (O2);
3. Area of the array used during computation must be minimized (O3).

The aforementioned objectives are no different from the objectives of any VLSI circuit.
All objectives cannot be met simultaneously in this mapping, and trade-offs must be made
between latency of addition (O1) and the area of array that is used (O3). Any arithmetic
circuit implemented in memory is bound to be very slow due to the high latency of in-
memory adders. The latency of in-memory adders reported in the literature grows, as O(n)
and 32-bit/64-bit in memory require hundreds of cycles [9]. Therefore, in this mapping, we
focus on and minimize the latency. Minimizing the latency might result in the array area
being compromised. However, latency is the more serious issue compared to array area in
in-memory addition, for the following reasons:

1. A conventional adder (in CMOS) is devoted to addition while we re-use the existing
memory array in in-memory computation. Hence, the increased array area required
during addition is not a disadvantage, as long as computation can be performed in
the memory array without an extra array;

2. ReRAM memory cell or memristor is a nano-device and does not significantly con-
tribute. For example, a single 1T-1R cell in 130 nm CMOS occupies 0.2 μm2 [40].

A significant portion of the energy consumed during in-memory addition is dissipated
in the memory array. This is predominantly due to sneak-currents in the 1S–1R array. In
contrast, our proposed PP adder is implemented in a transistor-accessed memory array
(1T–1R); therefore, the energy dissipation in the array is negligible. The major energy
consumption is the energy consumed while the cells switch states (WRITE) and the majority
operation (READ). Therefore, the energy consumed during addition is minimized if latency
is minimized. In other words, latency (O1) is the most important objective to be minimized.

4.3.2. In-Memory Mapping as an Optimization Problem: Constraints

The constraints are specific to this design methodology and can be summarized
as follows:

1. Majority operation must be executed at three consecutive rows (C1);
2. Due to the bounded endurance of ReRAM devices, the number of times a cell is

switched must be minimized. (C2).

C1 must be satisfied during mapping because, during majority operation, three rows must
simultaneously be selected. In principle, the three selected rows need not be contiguous
and can be in different locations in the memory array (e.g., row 5, 8, 15 of a 64 × 64 array).
However, row-decoding will become complicated. For practical in-memory implemen-
tation, the mapping must be ‘peripheral circuit friendly’. In [32], a triple-row decoder is
proposed for triple row-activation during majority operation. To implement this decoder,
multiple single-row decoders were interleaved. Furthermore, the same row-decoder must
be able to perform single-row decoding and triple-row decoding. This is because, during
normal memory operation, a single row must be selected and, during majority, three rows
must be selected. To this end, an address translator circuit is used in the row decoder,
which seamlessly switches between single-row activation and triple-row activation. The
triple-row decoder [32] is designed in such a way that only three consecutive rows can

61

J. Low Power Electron. Appl. 2021, 11, 45

be selected. Therefore, while mapping, the inputs of the majority gate (to be executed in
memory in the next step) must be written in three consecutive rows.

Constraint C2 is posed by a characteristic of non-volatile memories called endurance.
A memory device’s endurance refers to its ability to switch between two stable states while
maintaining a sufficient resistance ratio. Experimentally reported endurances vary from
106 to 1012. Due to this limited endurance, the number of times a memory cell is switched
during addition must be minimized.

4.3.3. Algorithm

Having identified the objectives and constraints, we formulate a generic methodology
to map any PP adder to the memory array. As stated, if the PP adder is available in terms
of AND-OR-XOR gates, they must be re-synthesized in terms of the majority and NOT
gates using logic synthesis techniques/tools. Given a majority-based PP adder, optimal
in-memory implementation is an optimization problem—minimize O1, while meeting C1
and C2.

The following steps implement the PP adder in the memory:

1. Start with Logic level 1;
2. Simultaneously execute all majority gates of a logic level in the columns of the

array (O1);
3. Write the outputs of the majority gates to the precise locations where they are needed

in the next logic level such that all the majority gates of the following level can be
executed simultaneously (O1);

4. During Step 3, write the outputs of the majority gates to a new location and do not
overwrite the existing data (C2);

5. During Step 3, write the outputs of the majority gates to contiguous locations in the
memory array (C1);

6. Repeat Steps 2–5 for the remaining logic levels.

Figure 5 illustrates the mapping of an 8-bit PP adder to the memory array. Majority
gates 1–8 of the first logic level are executed simultaneously in one memory cycle. Since
we know that, at the next level, majority gates 9, 10, 11, 12, 13, 14 need to be executed, we
write the outputs of the first logic level (m1, m2, m3, m4, m5, m6, m7, m8) to the exact location
where they will be needed. When we write the output of the majority gates back to the
array, they are written in consecutive rows (C1) and are not overwritten on existing data
(C2). The in-memory steps are highlighted in yellow in Figure 5. The in-memory steps
corresponding to logic levels 1 and 2 are:

1. Majority at col. (1, 9, 26, 33, 42, 49, 58, 65) rows 4–6 as a READ operation;
2. Write (m1m1m3m5m7) at col. (2, 10, 34, 50, 59) , row 4;
3. Write (m2m2m4m6m8) at col. (2, 10, 34, 50, 59), row 5;
4. Write (m3m4m3m4) at col. (2, 10, 17, 25) , row 6;
5. Majority at col. (2, 10, 17, 25, 59, 73) rows 4–6 as a READ operation.
6.

In this manner, the seven logic levels of an 8-bit adder can be executed in memory in
18 cycles. A detailed mapping of all seven logic levels is presented in Appendix A.

62

J. Low Power Electron. Appl. 2021, 11, 45

Figure 5. Illustration of mapping of the first two logic levels to a memory array. Since each majority
operation is executed as a READ operation, it can be written to the exact location it is needed
at the next logic level while satisfying C1 and C2. In the above mapping, eight columns share a
sense amplifier.

5. Performance of In-Memory Parallel-Prefix Adders

5.1. Simulation Methodology

To verify the proposed in-memory adder through simulation, the 1T-1R memory array
and its peripheral circuitry were designed in IHP’s 130 nm CMOS process. The memory
array was composed of 1T-1R cells in which the ReRAM is modelled using the Stanford-
PKU model with a 130 nm NMOS transistor as access transistor. A time-based sense
amplifier [9] was used to read from the array (majority operation) and an op-amp was used
to simultaneously write multiple bits into the array. A triple-row decoder was designed by
interleaving multiple single-row decoders. Detailed schematics of the peripheral circuitry
are given in [9]. A simultaneous reading (majority operations) and writing across columns
of the array was verified by simulation. As described in Section 4.3.3, the adder can be
executed in memory as a sequence of READ (majority) and WRITE operations, which
are orchestrated by the memory controller (the memory controller can be designed as a
finite-state machine and was not designed in this work).

63

J. Low Power Electron. Appl. 2021, 11, 45

5.2. Latency of In-Memory PP Adders with Increasing Bit-Width

The latency of PP adders grows as log (n). From Figure 6, one can observe that, from
8-bit to 16-bit, the number of logic levels increased by only a single level, i.e., from seven
levels to eight levels. The major advantage of the PP adder lies in this (O(log(n)) logic
levels), and we aim to extend this advantage to our in-memory implementation. For the
16-bit version, we have to add an extra level of logic to the carry-generate block to calculate
the carry (sum generate block remains at three logic levels; see Figure 6). In general, the
number of logic levels, l is given by

l = log2n + 4 (3)

for the n-bit PP adder (Ladner–Fischer type) synthesized in majority logic [30]. When
this 16-bit adder was mapped to the memory array following the procedure used for an
8-bit adder (Section 4.3.3), 22 cycles were incurred. As a result of the interconnections
between logic levels, the number of in-memory cycles is always higher than the number of
logic levels. For an 8-bit adder (Figure A1), a careful comparison of the in-memory cycles
indicated that every logic level is translated into at least two cycles, i.e., 2l in-memory cycles.
The first few logic levels of the carry–generate block required two more WRITE cycles in
addition to the aforementioned WRITE cycles. This additional requirement applies for
(l − 5) of the l levels. Consequently, the number of cycles required for l logic levels of an
n-bit PP adder can be calculated as follows:

Cyclesin−memory = (2l) + 2(l − 5)

= 4l − 10

= 4(log2n + 4)− 10

= 4 · log2n + 6

(4)

Therefore, any PP adder can be implemented in O(log2n) cycles, which is the fastest
in-memory adder reported to date (a detailed comparison is given in Section 5.5).

5.3. Energy of In-Memory PP Adders with Increasing Bit-Width

The energy consumed during in-memory addition is composed of the actual energy
consumed due to addition (switching ReRAM cells during writing; energy consumed
in the SA during majority operation) and the array leakage energy. The array leakage
energy is the inherent energy consumption due to sneak currents in transistor-less arrays
(e.g., some works, such as [41], used a diode to suppress these sneak currents). However,
the proposed adder is executed in a 1T–1R array where the sneak currents are negligible.
Hence, array leakage energy can be neglected. The energy used to write into an ReRAM
cell is EWRITE ≈ 12 pJ/bit for IHP’s ReRAM. The energy used for majority operation is the
energy consumed in the SA, and is given by, EMAJ ≈ 0.63 pJ/majority operation. As can be
seen in Figure A1, during eight-bit addition, there are 36 majority operations; 8 NOT and
85 bits are written to the array. Neglecting the energy of an NOT operation (which is only
0.13 pJ/bit), the energy needed for eight-bit in-memory addition is

Energy8−bit = 36 × EMAJ + 84 × EWRITE (5)

Observing that EWRITE is 20 × EMAJ , the in-memory addition energy is dominated by
the energy that is needed to write into the array.

Energy8−bit ≈ 84 × EWRITE (6)

64

J. Low Power Electron. Appl. 2021, 11, 45

where EWRITE is the energy that is needed to write to a single bit. Similarly, during 16-bit
addition in memory, 180 cells are written [9]. In general, for n-bit addition, (2n − 2) × 6
cells are written, making the energy for n-bit addition,

Energyn−bit ≈ (2n − 2)× 6 × EWRITE (7)

To summarize, the energy for the proposed in-memory adder grows as ≈ 12n times
the WRITE energy/bit.

Figure 6. Eight-bit and 16-bit PP adder (Ladner–Fischer type) expressed in majority logic [5,30]. From
8-bit to 16-bit, the number of logic levels increased from 7 to 8, i.e., (O(log(n)) latency in terms of
logic levels, before mapping to the memory array.

5.4. Area of In-Memory PP Adders with Increasing Bit-Width

In all in-memory adders, the peripheral circuitry of the array is modified to support
logic operations, resulting in an increase in the CMOS peripheral circuit area. This increase
is a significant factor to consider, since this increase in the silicon area is used solely to make
the array ‘computable’. Therefore, a holistic comparison between in-memory adders should
consider both the increase in the peripheral circuitry area and the array area (occupied
during addition), with the former being the more significant factor. In this work, the
triple-row decoder is the only change required, while all other parts of the peripheral
circuitry do not change, since computation is performed using normal memory operations
(READ and WRITE). The array area used during the addition is simple to calculate—only
six rows are needed, independent of the adder size (see Figure A1). In the of Figure A1
mapping, it is assumed that eight columns share a sense amplifier (this is the case when
considering pitch-matching, although there are works which assume a sense amplifier for
each column). For 8-bit addition, 80 columns are needed, and for n-bit addition, 8n + 16
columns are needed. Therefore, for n-bit addition, the required array area is 6 × (8n + 16).

65

J. Low Power Electron. Appl. 2021, 11, 45

5.5. Comparison with Other In-Memory Adders

In this section, we compare the presented in-memory PP adder design methodology
with other adders and evaluate the latency with increasing bit-width. In Table 2, the
latency of the proposed in-memory PP adder is compared with the latency of in-memory
adders summarized in Table 1. With the exception of the two PP adders, the latency of
all other adders is O(n). The sklansky PP adder of [15] incurs a delay of 8log2(n) + 13,
while the majority-based PP adder presented in this work incurs a latency of 4log2(n) + 6.
With a PP architecture, majority logic-based implementation outperforms the OR/AND
implementation of [15] in terms of latency. This proves that majority is a stronger logic
primitive than OR/AND. The issue of latency becomes more evident when we observe
the latency for increasing bit-width. For an 8-bit addition, the XOR-based ripple-carry
adders [23,24] incur a latency of 18, which is the same latency as that incurred by the
majority-based PP adder. A superficial observation may lead one to conclude that logic
primitive alone plays a key role, and both XOR and MAJ are equally good, irrespective
of the architecture used. However, the latency of XOR-based adders [23,24] grows to 2n
+ 2, while that of majority-based PP adder grows to 4log2(n) + 6. In other words, for a
32-bit addition, the XOR-based adders incurs 66 cycles, while the proposed majority-based
PP adder will incur only 26 cycles. This disparity further increases for 64-bit additions.
In Figure 7, the latency of in-memory adders is plotted for increasing bit-width to better
visualize this trend. As plotted in Figure 7, the proposed adder is one of the in-memory
adders with the least latency, since it logarithmically depends on n. This latency advantage
is obtained with only a minor modification to the row-decoder of a conventional memory. It
must be noted that most other in-memory adders, compared in Table 2, require significant
modifications to the peripheral circuitry. The energy consumption of the proposed in-
memory adder is mainly due to the HRS ↔ LRS switching energy of the cells during
addition. The leakage energy, due to sneak-path currents (which constitutes a significant
portion of the total addition energy in 1S–1R adders), is avoided by the access transistor.

Table 2. Latency comparison of in-memory adders (8-bit and n-bit).

Logic Primitive Architecture Latency (8 bit) Latency (n-bit) Ref.

IMPLY Ripple carry 58 5n + 18 [7]

IMPLY Parallel-serial 56 5n + 16 [16]

IMPLY + OR Ripple carry 54 6n + 6 [17]

IMPLY Semi-parallel 136 17n [18]

NOR Ripple carry 83 10n + 3 [19]

NOR Look-Ahead 48 5n + 8 [20]

OR + AND Ripple carry 49 6n + 1 [14]

ORNOR Parallel-clocking 31 2n + 15 [21]

RIMP/NIMP Pre-calculation 20 2n + 4 [22]

XOR Ripple carry 18 2n + 2 [23]

XOR + MAJ Ripple carry 18 2n + 2 [24]

XNOR/XOR Carry-Select 9 – [25]

OR + AND Parallel-prefix 37 8log2(n) + 13 [15]

Majority + NOT Parallel-prefix 18 4log2(n) + 6 This work

66

J. Low Power Electron. Appl. 2021, 11, 45

Figure 7. Latency of in-memory adders with increasing bit-width, n. An adder with O(log(n))
latency is required for 32-bit/64-bit addition to harness the power of in-memory computation.

6. Conclusions

The latency of in-memory adders is a severe disadvantage in in-memory comput-
ing, i.e., any adder is implemented in the memory array as a long sequence of Boolean
operations. A poorly optimized in-memory adder may take longer to compute than the
combined time it takes to fetch data from memory and compute in a CMOS processor.
In-memory adders have not had their latency analyzed and optimized for higher bit-width,
and consequently incur O(n) latency for n-bit addition (32-bit/64-bit adders, typically
used in microprocessors, will require hundreds of cycles). In this work, a design method-
ology is presented to tackle the exorbitant latency of in-memory adders. The strength
of the majority logic primitive is coupled with the parallel-prefix (PP) adder architecture
to achieve a latency of 4log2(n)+6 for parallel-prefix additions in the memory array. The
main contribution of this work is a generic mapping methodology, used to map a parallel-
prefix adder circuit (synthesized in majority logic) to the memory array with minimum
latency. Multiple majority operations can be performed simultaneously in the columns of
the array, and could achieve a O(log(n)) latency for any PP adder. Using the proposed
design methodology, 32-bit and 64-bit adders (used in processors) can be implemented in
26 and 30 memory cycles, respectively. This can pave the way for arithmetic and similar
computing tasks to be efficiently performed at the data location.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

67

J. Low Power Electron. Appl. 2021, 11, 45

Appendix A. Mapping of 8-Bit Ladner-Fischer Adder to Memory Array

Figure A1. Mapping of the eight-bit LF adder of Figure 5 to memory array. All the majority gates in
a level are simultaneously executed (red boxes). During parallel-prefix addition, mi represents the
output of the ith majority gate, and ci is the carry (denoted in green color, since it is read as a voltage
before being written into the array). 3 WRITE denotes writing cycles to 3 different rows, where more
than 1 bit may be written in each row.

References

1. Horowitz, M. Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 10–14.
[CrossRef]

2. Pedram, A.; Richardson, S.; Horowitz, M.; Galal, S.; Kvatinsky, S. Dark Memory and Accelerator-Rich System Optimization in
the Dark Silicon Era. IEEE Des. Test 2017, 34, 39–50. [CrossRef]

3. Singh, G.; Chelini, L.; Corda, S.; Awan, A.J.; Stuijk, S.; Jordans, R.; Corporaal, H.; Boonstra, A. A Review of Near-Memory
Computing Architectures: Opportunities and Challenges. In Proceedings of the 2018 21st Euromicro Conference on Digital
System Design (DSD), Prague, Czech Republic, 29–31 August 2018; pp. 608–617.

4. Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing.
Nat. Nanotechnol. 2020, 15, 529–544. [CrossRef] [PubMed]

5. Jaberipur, G.; Parhami, B.; Abedi, D. Adapting Computer Arithmetic Structures to Sustainable Supercomputing in Low-Power,
Majority-Logic Nanotechnologies. IEEE Trans. Sustain. Comput. 2018, 3, 262–273. [CrossRef]

6. Ziegler, M.; Stan, M. A unified design space for regular parallel prefix adders. In Proceedings of the Proceedings Design,
Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; Volume 2, pp. 1386–1387.
[CrossRef]

7. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066. [CrossRef]

8. Amarú, L.; Gaillardon, P.E.; Micheli, G.D. Majority-Inverter Graph: A New Paradigm for Logic Optimization. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2016, 35, 806–819. [CrossRef]

9. Reuben, J.; Pechmann, S. Accelerated Addition in Resistive RAM Array Using Parallel-Friendly Majority Gates. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2021, 29, 1108–1121. [CrossRef]

10. Shen, W.; Huang, P.; Fan, M.; Han, R.; Zhou, Z.; Gao, B.; Wu, H.; Qian, H.; Liu, L.; Liu, X.; et al. Stateful Logic Operations in
One-Transistor-One- Resistor Resistive Random Access Memory Array. IEEE Electron Device Lett. 2019, 40, 1538–1541. [CrossRef]

11. Ben-Hur, R.; Ronen, R.; Haj-Ali, A.; Bhattacharjee, D.; Eliahu, A.; Peled, N.; Kvatinsky, S. SIMPLER MAGIC: Synthesis and
Mapping of In-Memory Logic Executed in a Single Row to Improve Throughput. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 2019, 39, 2434–2447. [CrossRef]

68

J. Low Power Electron. Appl. 2021, 11, 45

12. Adam, G.C.; Hoskins, B.D.; Prezioso, M.; Strukov, D.B. Optimized stateful material implication logic for three- dimensional data
manipulation. Nano Res. 2016, 9, 3914–3923. [CrossRef]

13. Reuben, J. Rediscovering Majority Logic in the Post-CMOS Era: A Perspective from In-Memory Computing. J. Low Power Electron.
Appl. 2020, 10, 28. [CrossRef]

14. Ali, K.A.; Rizk, M.; Baghdadi, A.; Diguet, J.P.; Jomaah, J.; Onizawa, N.; Hanyu, T. Memristive Computational Memory Using
Memristor Overwrite Logic (MOL). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2370–2382. [CrossRef]

15. Siemon, A.; Menzel, S.; Bhattacharjee, D.; Waser, R.; Chattopadhyay, A.; Linn, E. Sklansky tree adder realization in 1S1R resistive
switching memory architecture. Eur. Phys. J. Spec. Top. 2019, 228, 2269–2285. [CrossRef]

16. Karimi, A.; Rezai, A. Novel design for a memristor-based full adder using a new IMPLY logic approach. J. Comput. Electron. 2018,
17, 11303–11314. [CrossRef]

17. Cheng, L.; Li, Y.; Yin, K.-S.; Hu, S.-Y.; Su, Y.-T.; Jin, M.-M.; Wang, Z.-R.; Chang, T.-C.; Miao, X.-S. Functional Demonstration of a
Memristive Arithmetic Logic Unit (MemALU) for In-Memory Computing. Adv. Funct. Mater. 2019, 29, 1905660. [CrossRef]

18. Ganjeheizadeh Rohani, S.; Taherinejad, N.; Radakovits, D. A Semiparallel Full-Adder in IMPLY Logic. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2020, 28, 297–301. [CrossRef]

19. Talati, N.; Gupta, S.; Mane, P.; Kvatinsky, S. Logic Design Within Memristive Memories Using Memristor-Aided loGIC (MAGIC).
IEEE Trans. Nanotechnol. 2016, 15, 635–650. [CrossRef]

20. Kim, Y.S.; Son, M.W.; Song, H.; Park, J.; An, J.; Jeon, J.B.; Kim, G.Y.; Son, S.; Kim, K.M. Stateful In-Memory Logic System and Its
Practical Implementation in a TaOx-Based Bipolar-Type Memristive Crossbar Array. Adv. Intell. Syst. 2020, 2, 1900156. [CrossRef]

21. Siemon, A.; Drabinski, R.; Schultis, M.J.; Hu, X.; Linn, E.; Heittmann, A.; Waser, R.; Querlioz, D.; Menzel, S.; Friedman, J.S.
Stateful Three-Input Logic with Memristive Switches. Sci. Rep. 2019, 9, 14618. [CrossRef] [PubMed]

22. Siemon, A.; Menzel, S.; Waser, R.; Linn, E. A Complementary Resistive Switch-Based Crossbar Array Adder. IEEE J. Emerg. Sel.
Top. Circuits Syst. 2015, 5, 64–74. [CrossRef]

23. TaheriNejad, N. SIXOR: Single-Cycle In-Memristor XOR. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 925–935.
[CrossRef]

24. Pinto, F.; Vourkas, I. Robust Circuit and System Design for General-Purpose Computational Resistive Memories. Electronics 2021,
10, 1074. [CrossRef]

25. Wang, Z.-R.; Li, Y. ; Su, Y.-T.; Zhou, Y.-X.; Cheng, L.; Chang, T.-C.; Xue, K.-H.; Sze, S.M.; Miao, X.-S. Efficient Implementation of
Boolean and Full-Adder Functions With 1T1R RRAMs for Beyond Von Neumann In-Memory Computing. IEEE Trans. Electron
Devices 2018, 65, 4659–4666. [CrossRef]

26. Dimitrakopoulos, G.; Papachatzopoulos, K.; Paliouras, V. Sum Propagate Adders. IEEE Trans. Emerg. Top. Comput. 2021,
9, 1479–1488. [CrossRef]

27. Knowles, S. A family of adders. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, Vail, CO,
USA, 11–13 June 2001; pp. 277–281. [CrossRef]

28. Dimitrakopoulos, G.; Nikolos, D. High-speed parallel-prefix VLSI Ling adders. IEEE Trans. Comput. 2005, 54, 225–231. [CrossRef]
29. Harris, D. A taxonomy of parallel prefix networks. In The Thirty-Seventh Asilomar Conference on Signals, Systems Computers; IEEE:

Pacific Grove, CA, USA, 2003; pp. 2213–2217. [CrossRef]
30. Pudi, V.; Sridharan, K.; Lombardi, F. Majority Logic Formulations for Parallel Adder Designs at Reduced Delay and Circuit

Complexity. IEEE Trans. Comput. 2017, 66, 1824–1830. [CrossRef]
31. Reuben, J. Binary Addition in Resistance Switching Memory Array by Sensing Majority. Micromachines 2020, 11, 496. [CrossRef]
32. Reuben, J.; Pechmann, S. A Parallel-friendly Majority Gate to Accelerate In-memory Computation. In Proceedings of the 2020

IEEE 31st International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Manchester, UK,
6–8 July 2020; pp. 93–100.

33. Wang, P.; Niamat, M.Y.; Vemuru, S.R.; Alam, M.; Killian, T. Synthesis of Majority/Minority Logic Networks. IEEE Trans.
Nanotechnol. 2015, 14, 473–483. [CrossRef]

34. Chung, C.C.; Chen, Y.C.; Wang, C.Y.; Wu, C.C. Majority logic circuits optimisation by node merging. In Proceedings of the
2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 714–719.
[CrossRef]

35. Riener, H.; Testa, E.; Amaru, L.; Soeken, M.; Micheli, G.D. Size Optimization of MIGs with an Application to QCA and STMG
Technologies. In Proceedings of the 2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH),
Athens, Greece, 17–19 July 2018; pp. 1–6.

36. Devadoss, R.; Paul, K.; Balakrishnan, M. Majority Logic: Prime Implicants and n-Input Majority Term Equivalence. In Proceedings
of the 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID),
Delhi, India, 5–9 January 2019; pp. 464–469. [CrossRef]

37. Neutzling, A.; Marranghello, F.S.; Matos, J.M.; Reis, A.; Ribas, R.P. maj-n Logic Synthesis for Emerging Technology. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 747–751. [CrossRef]

38. Kaneko, M. A Novel Framework for Procedural Construction of Parallel Prefix Adders. In Proceedings of the 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

39. Ayala, C.L.; Takeuchi, N.; Yamanashi, Y.; Ortlepp, T.; Yoshikawa, N. Majority-Logic-Optimized Parallel Prefix Carry Look-Ahead
Adder Families Using Adiabatic Quantum-Flux-Parametron Logic. IEEE Trans. Appl. Supercond. 2017, 27, 1–7. [CrossRef]

69

J. Low Power Electron. Appl. 2021, 11, 45

40. Levisse, A.; Giraud, B.; Noel, J.; Moreau, M.; Portal, J. RRAM Crossbar Arrays for Storage Class Memory Applications:
Throughput and Density Considerations. In Proceedings of the 2018 Conference on Design of Circuits and Integrated Systems
(DCIS), Lyon, France, 14–16 November 2018; pp. 1–6. [CrossRef]

41. Chang, Y.F.; Zhou, F.; Fowler, B.W.; Chen, Y.C.; Hsieh, C.C.; Guckert, L.; Swartzlander, E.E.; Lee, J.C. Memcomputing (Memristor
+ Computing) in Intrinsic SiOx-Based Resistive Switching Memory: Arithmetic Operations for Logic Applications. IEEE Trans.
Electron Devices 2017, 64, 2977–2983. [CrossRef]

70

Journal of

Low Power Electronics
and Applications

Article

A New Physical Design Flow for a Selective State Retention
Based Approach

Joseph Rabinowicz 1 and Shlomo Greenberg 1,2,*

Citation: Rabinowicz, J.; Greenberg,

S. A New Physical Design Flow for a

Selective State Retention Based

Approach. J. Low Power Electron. Appl.

2021, 11, 35. https://doi.org/

10.3390/jlpea11030035

Academic Editor: Alex Serb

Received: 28 July 2021

Accepted: 9 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Ben Gurion University, Beer-Sheva 84105, Israel;
rabinowi@post.bgu.ac.il

2 Department of Electrical Engineering, Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel
* Correspondence: shlomo.greenberg@gmail.com or shlomog@bgu.ac.il or shlomgr@sce.ac.il

Abstract: This research presents a novel approach for physical design implementation aimed for a
System on Chip (SoC) based on Selective State Retention techniques. Leakage current has become a
dominant factor in Very Large Scale Integration (VLSI) design. Power Gating (PG) techniques were
first developed to mitigate these leakage currents, but they result in longer SoC wake-up periods
due to loss of state. The common State Retention Power Gating (SRPG) approach was developed to
overcome the PG technique’s loss of state drawback. However, SRPG resulted in a costly expense of
die area overhead due to the additional state retention logic required to keep the design state when
power is gated. Moreover, the physical design implementation of SRPG presents additional wiring
due to the extra power supply network and power-gating controls for the state retention logic. This
results in increased implementation complexity for the physical design tools, and therefore increases
runtime and limits the ability to handle large designs. Recently published works on Selective State
Retention Power Gating (SSRPG) techniques allow reducing the total amount of retention logic
and their leakage currents. Although the SSRPG approach mitigates the overhead area and power
limitations of the conventional SRPG technique, still both SRPG and SSRPG approaches require a
similar extra power grid network for the retention cells, and the effect of the selective approach on
the complexity of the physical design has not been yet investigated. Therefore, this paper introduces
further analysis of the physical design flow for the SSRPG design, which is required for optimal cell
placement and power grid allocation. This significantly increases the potential routing area, which
directly improves the convergence time of the Place and Route tools.

Keywords: physical design; power grid; power-gating; SRPG; selective SRPG; floorplanning; place
and route

1. Introduction

Leakage currents during standby mode become more significant in mobile devices
as semiconductor processes continue to shrink [1]. These static leakage currents impact
the battery standby time of low-power mobile devices when they are in an idle state.
Therefore, to mitigate the static leakage currents, some Power-Gating (PG) techniques were
developed [2–6]. Power-gating eliminates the static leakage but with no intention to retain
the system state. As mobile devices are required to support many features and functions,
resulting in a wide range of multitasking, a minimum delay for the state restoration of
all active tasks is critical for user satisfaction [7]. Besides the additional delay, saving and
restoring the system state presents additional dynamic power overhead that may not be
acceptable for certain common applications.

Scan-based techniques, which are used for serially saving and restoring internal
retention cells, also suffer from latency and energy overhead [8]. The State Retention Power
Gating (SPRG) technique addresses the above-mentioned PG technique’s limitations [9–13].
This technique uses unique retention cells to retain the flip-flops (FFs) values during power
down (standby state). These cells have been widely adopted in standard library cells

J. Low Power Electron. Appl. 2021, 11, 35. https://doi.org/10.3390/jlpea11030035 https://www.mdpi.com/journal/jlpea
71

J. Low Power Electron. Appl. 2021, 11, 35

of major FAB vendors (such as TSMC). The SRPG approach aims to retain the systems
state during standby, thus eliminating the disadvantages of the power-gating technique.
However, common SRPG implementations require additional retention cells for all the FFs
in the design resulting in significant area overhead. Moreover, these retention cells need
to be connected to a dedicated power supply network and retention control signals. This
additional wiring increases the area overhead and also complicates the physical design
implementation in terms of tools runtime and the ability to handle large designs.

A more advanced approach, called Selective State Retention Power Gating (SSRPG),
dramatically reduces the SRPG area overhead and further decreases the static power
consumption. The main idea is to find a minimized set of FFs which are sufficient to
retain the system state during standby. Chiang et al. [14] propose an empirical nonformal
method for the selection of registers whose retention is unnecessary. Darbari et al. [15]
present a formal approach based on symbolic simulation for implementing selective state
retention. However, this method requires a formal representation of the entire design,
which is not always available, and also no automated techniques are proposed. The two
recently published SSRPG approaches introduced by [16,17] provide pure formal methods
for automatic selecting of all the FF’s, which require retention and are essential for a proper
system recovery upon power-up. Experimental results show a significant reduction of
about 80% of the retention cells area overhead. Recent SSRPG techniques can be efficiently
applied to new modern SoC designs for automatic selection and formal validation of
essential FFs requires retention. The current work is based on our previous formal SSRPG
approach presented in [17], which utilizes formal verification methods and therefore can
be easily implemented using the new proposed physical design flow.

Although the SSRPG approach mitigates the area and power overhead limitations of
the conventional SRPG technique, still both SRPG and SSRPG approaches require a similar
extra power supply network for the retention cells. The impact of the extra power supply
when applying the selective approach has not yet been investigated. Therefore, further
analysis of the physical design flow for SSRPG design is needed for optimal cell placement
and power grid allocation. This may significantly increase the routing area, which in turn
directly improves the convergence time of the place and route tools [18].

Furthermore, minimizing the number of retention FFs not only results in reducing
the area overhead but also reduces the additional wiring required in SRPG. Although it is
shown in [16] that a significant potential area reduction of about 9% of the chip area can
be achieved, the added wiring required in SRPG is ignored. In SSRPG, the retention cells
footprint can be simply deducted from the total cell area, but the wire-length deduction is
not straightforward since it can only be obtained after completing the physical design flow.
The wire-length overhead in the SRPG approach is derived from: (1) The connectivity of
the retention cells to a new non-gated power supply network [19], and (2) the addition of
retention control signals, which need to be connected to all FFs that are being preserved
during standby by using retention cells [20]. This wiring overhead complicates the place
and route physical design stages in SRPG. This work demonstrates the benefit of applying
the SSRPG approach in a real physical design implementation concerning area, power
saving, back-end runtime, and wire length.

Although some previous research works [16,17] try to estimate the area and power-
saving factor results from applying the SRPG selective approaches, none of them validate
it on real physical design implementation. Hence, one of the main objectives of this work is
to quantify the real area and power saving factors while using SSRPG comparing to SRPG.

This work also demonstrates the benefit of applying a new, improved localized physi-
cal design flow using unique placement rules. The proposed localized improved flow yields
significant power supply network area reduction in cases where selective state retention is
used. It is shown that by applying these placement rules, metal layers that were originally
used for power-supply distribution are freed up to be used for signal routing applied when
connecting the different logic gates in the physical design during the routing stage, and

72

J. Low Power Electron. Appl. 2021, 11, 35

therefore improving the routeability. This simplifies the implementation of selective state
retention in the physical design flow and significantly reduces the tools’ runtime.

Although the SSRPG approach [16,17] is not a new technique, the effect of the selective
approach on the complexity of the physical design has not been yet investigated. Therefore,
further analysis of the physical design flow for SSRPG design is needed for optimal cell
placement and power grid allocation. This may significantly increase the potential routing
area, which in turn directly improves the convergence time of the Place and Route tools.
This paper aims at the physical implementation aspect to facilitate the complexity of
the physical design suggesting a unique flow to efficiently address SoC design based on
SSRPG. Moreover, this is the first work related to SSRPG implementation, which accurately
quantifies the area, power, and tool runtime saving factors.

In this work, we provide a case study showing the accurate area, power, and tool
runtime savings when comparing the physical design implementation of SSRPG to SRPG.
Previous works provide area reduction estimations based on the percentage of FFs that does
not require retention [16,17]. These area estimations suffer from inaccuracies since they do
not take into account the additional wiring overhead required for connecting the retention
cells to the non-gated power supply and power-gating controls. To quantify the selective
state retention physical design flow benefits, a complete CMOS 28 nm physical design flow
was carried out on a typical Double Data Rate (DDR) memory interface controller design.

This paper is organized as follows: Section 2 provides an improved physical design
flow for an Application-Specific Integrated Circuit (ASIC) supporting state-retention. Sec-
tion 3 describes the experiment and shows the comparison results for the four different
physical design flows: no retention, full retention using SRPG, SSRPG without special
placement rules, and an improved physical design flow for SSRPG. Finally, Section 4
summarizes the paper and states the conclusions.

2. An Improved SSRPG Physical Design Flow

We propose a new approach to the common SRPG technique, based on automatic
classification of each of the design’s FFs into one of two types: essential or non-essential.
The flow begins with gathering the libraries and floor planning, followed by place and
routing, and ends with verification of the physical design. Figure 1 depicts the five main
stages of a typical physical design flow. Each stage is described in detail in the following
section considering the specific additional requirements for state-retention. Two different
physical SSRPG design flows are considered concerning the placement stage: distributed
flow and improved localized SSRPG flow. Some unique placement rules are proposed for
the implementation of the new localized SSRPG physical design approach.

Figure 1. High-level stages of the physical design flow.

Although some physical implementation steps can be controlled by the common UPF and
CPF industrial tools for power-aware content, those tools do not provide any specific placing
rules except for limiting the logic cells placement to the appropriate power-domain (PDN).

2.1. Gathering Libraries

The libraries’ physical design flow contains the list of basic cells and their attributes,
such as physical layout abstractions, timing delay models, functional models, and transistor-
level circuit descriptions [21].

To implement state retention, the libraries should contain special retention FFs. Such
FFs are divided into different types that can be categorized by the two following criteria:
(1) the transistors threshold voltages (low, high, or multi-threshold) (2) Using an additional
latch (referred to as balloon latch) or rather than using the FF slave latch (in a common

73

J. Low Power Electron. Appl. 2021, 11, 35

master-slave FF) for retention. Table 1 depicts the different types of retention FFs that are
used in state retention approaches and their impact on low power, propagation delay, and
physical design flow [13,22,23].

Table 1. Retention FFs types and tradeoffs.

FF Type VTH Extra Latch Low Power
Propagation

Delay Impact
SoC Physical Design

Flow Impact

1 Low No Week Negligible Need clock and reset
gating during standby.

2 Low Yes Medium Negligible Additional area impact
of the balloon latch.

3 High No Good High Need clock and reset
gating during standby.

4 Multi Yes Good Negligible Extra balloon latch and
extra power supply.

Retention FF’s implemented with low threshold voltage transistors have less impact
on the propagation delay since the low voltage threshold allows fast switching between
off and on states. However, since the leakage increases exponentially when decreasing the
threshold voltage, the efficiency of reducing the static leakage is limited for this type of FF.
The static leakage is given by the following equation:

Pleakage = Vdd·Ileakage = Vdd·I0· exp
{
[(VGS − VTH)/VT]/[1 − exp

(−VDS
VT

)
]

}
(1)

where VTH is the threshold voltage of the transistor, VT is the thermal voltage, VGS is the
voltage between gate and source, and VDS is the voltage between drain and source of a
MOSFET transistor. Some improvement in static leakage reduction can be achieved by adding
a specific balloon latch, as shown in Figure 2. This additional latch is designed to consume less
power during standby since it does not affect the master-slave functional path and therefore
supports higher frequencies compared to FFs that use the slave latch for retention.

Figure 2. Retention FF implementation using a balloon latch.

Retention FFs that are implemented with high threshold voltage transistors, perform
better with respect to static leakage reduction. A high voltage threshold leads to a better
closure of the source/drain channels and thus preventing leakage currents when the transistor
is in its off state. However, a high voltage threshold also impacts the propagation delay and
therefore limits the clock frequency rates. Using both multi-voltage threshold transistors
and an additional retention balloon latch allows better static leakage reduction and higher
clock frequencies. However, this is at the expense of additional area overhead and extra
external SoC power supply, which requires dedicated supply pads and balls, complicating the
design [22]. Therefore, while choosing the physical design libraries in case of state retention,
the SoC designer should consider the following factors and their tradeoffs: clock frequency,
static leakage reduction, area overhead, and implementation complexity.

74

J. Low Power Electron. Appl. 2021, 11, 35

2.2. Floorplanning

A well-thought-out floor plan leads to a design with higher performance and optimum
area [21]. In this stage, the physical designer determines the size of the macro instance, which
includes the physical representation of the design. Additionally, the structure and placement
of the power and ground strips referred to as power-supply networks are determined.

Some industrial SoCs may contain several power-gated domains and, therefore, many
power switches to reduce IR drop [24]. This work aimed specifically at low power de-
signs and referred to the hard macro level of implementation using only one or two
power switches (as illustrated in Figure 3). To maintain minimum voltage drop and to
prevent performance degradation, the power and ground strips should be as dense as
possible. The following section refers to specific floorplanning adjustments required for
state-retention-based designs. State-retention approaches require some modifications to
the typical floorplan with respect to the power supply network. Specifically, two kinds of
floorplan modifications are required: (1) adding an extra retention power supply network
and (2) integration of dedicated sleep transistors for disconnecting the main power supply
on standby. Figure 3 illustrates two power grids networks with a single power switch. The
extra power grid uses a significant portion of the metal layers, which are actually needed
for routing the logic gate connections (routeability) [13]. Although the strips of the extra
power supply network are thinner compared to those of the main power supply, since
there is no need to support full clock rate in standby, they should be spread over the entire
macro instance.

Figure 3. Power grids networks for State Retention-based SoC.

Any power gating implementation, including SRPG, requires a dedicated sleep tran-
sistor per gated power supply. The sleep transistors are based on high voltage threshold
transistors and are responsible for disconnecting both the power supply source and the
ground in standby, as shown in Figure 4. Unique SLEEP signals are used to control the
sleep transistors and define two control modes: active and standby modes (SLEEP is driven
to 1 during standby and 0 during active modes). The active mode utilizes the low voltage
threshold transistors to operate at higher frequencies. In Standby mode, the SLEEP signals
are activated to turn off the sleep transistors. Since the sleep transistors are based on high
voltage threshold transistors, their static leakage is very small during standby. The size of
the sleep transistor is critical in terms of performance, area, and leakage current [19]. While

75

J. Low Power Electron. Appl. 2021, 11, 35

the sleep transistor should be large enough to drive sufficient current to meet frequency
performance, it should not cause excessive leakage.

Figure 4. Sleep transistors.

2.3. Place and Route

The placement stage is responsible for placing the overall standard logic gates in
a given macro instance and inserting buffer cells along with the clock and reset signal
paths. Since the long wiring induces different propagation delays between different FFs,
a clock balancing process is required. The buffer cells are used both for clock balancing
and to support high fan-out and long wiring. This process of buffer insertion is commonly
referred to as Clock Tree Synthesis (CTS) and has a significant impact on timing closure. In
addition to the clock and reset signals, the CTS process is also applied to the retention FFs’
control signals. This wiring and buffering overhead to support the additional retention
control signals is significant in designs that include many sequential elements and might
be similar to the overhead of the clock network [20]. Since the additional buffers should
be connected to the retention power supply network, they have a significant impact on
the routing to support the distributed retention controls signal paths. Power-supply
network optimization is usually carried out after placement and before signal routing. The
objective is to reserve more chip area for signal routing and, at the same time, maintain
the performance of the power supply network. However, it is difficult to fully utilize
the reserved chip-routing resource [25], especially in the case of a design that requires
a dedicated power supply for the retention cells. Therefore, minimizing the area of the
retention power supply network will lead a better routing utilization. The routeability in an
SSRPG design can be further improved due to the small number of the required retention
cells compared to SRPG. The routeability improvement can be achieved by making some
appropriate adjustments both in the floorplan and the placement stages.

This work considers two different flows for SSRPG: the more straightforward dis-
tributed flow and a unique localized flow. In the distributed flow, the retention FFs are
distributed all over the hard macro, while in the localized flow, the retention FFs are placed
in a limited area using some placement constraints. Therefore, the region of the PDN of the
always-on domain becomes smaller and requires less routing overhead. Furthermore, the
proposed physical design flow is implemented within a hard macro level and applied to a
specific functional design module. Therefore, since each hard macro commonly contains
only one or two power domains, it is feasible to place all the retention FFs, connected to
the always-on domain of the specific PDN, within a localized concentrated area.

We propose a unique physical design approach that is based on the assumption that
the retention cells can be placed all together in a localized and relatively small area within
the entire macro instance. This will lead to a reduced retention power supply network area.
Figure 5 depicts placement results for two different physical design flows carried out on

76

J. Low Power Electron. Appl. 2021, 11, 35

the proposed DDR controller design using the Cadence Encounter tool. Figure 5a shows
the placement results for the distributed SSRPG flow in which the retention power grid (i.e.,
power supply network) is distributed throughout the entire macro instance area without
any placement constraints as in the common SRPG flow. The figure depicts the spreading
of the retention FFs. Figure 5b shows the placement results for the new proposed localized
flow. It can be noticed that the retention FFs are now located together in a relatively small
localized area.

Figure 5. (a) Placement of the distributed retention FFs (mark in red and spread mostly on the
mid-left-hand side). (b) Placement for the proposed flow where retention FFs are placed in a localized
area (red square on the mid-left-hand side).

Two modifications were applied to the localized physical design flow based on the
distributed flow placement results and using the common SRPG flow. First, the power
grid was limited to a specific and localized area in the floorplan stage. Then, some specific
placement constraints were provided to the Encounter tool, forcing all retention cells to be
placed in a limited minimized localized area within the retention power grid region. The
results show that the retention cells and the relevant retention power grid were successfully
placed in a minimized area enabling better routeability compared to the common approach.
Since the extra power grid utilizes only a small part (about 1/16) of the metal layer used
for the retention power supply network (Figure 5b), more metal area is freed up for routing.
To further reduce wire-length and additional buffers, the external retention control input
ports are also placed in the same selected area close to the retention power grid. Applying
such constraints to the placement tool may result in timing violations since the interconnect
length between FFs may significantly increase. However, since the number of retention
cells in SSRPG is relatively small, and most of the retention FFs are not part of the data path,
the timing violations are not critical [26]. In the next stage, the routing process is carried
out. Routing is becoming more difficult, especially for state retention-based designs, like
SRPG, since the design is getting more complex due to the additional retention cells and
the required extra wiring. Therefore, SSRPG facilitates the routing process by significantly
reducing the amount of routing and hence decreasing the route runtime.

2.4. Verification

The final stage of any physical design flow is verification. This stage focuses on
functional testing and design manufacturability. A comprehensive design verification
process consists of three categories: functional, timing, and physical. The functional
verification includes logic simulations, formality checks, simulation randomization, in-
circuit emulation, and hardware/software co-verification [27]. The timing closure is carried
out using Static Timing Analysis (STA) to verify the timing of a digital design [28]. The
physical verification checks the design layout against the specific process rules and includes
Layout Versus Schematic (LVS) and Design Rule Check (DRC) [21]. In the case of state

77

J. Low Power Electron. Appl. 2021, 11, 35

retention, some additional logic simulations scenarios should be considered. For example,
entering standby and then restoring the design state upon power resumption and verifying
the selection of the appropriate FF’s which required retention.

3. Experiment and Results

In this section, we compare four different approaches in respect to the physical design
flow: no retention, full retention using SRPG, SSRPG with no specific placement rules,
and an improved SSRPG flow. All the flows were applied to a typical DDR controller
design as a test case. The synthesis was carried out using the Cadence RTL compiler, and
then a common full PD flow was applied using Cadence Encounter to each of the four
approaches. One of the main purposes of this work was to quantify the efficiency of the
selective approaches with respect to area and power saving. Additionally, this research
compares the four different PD flows in respect to the ability of the tools to converge, tools
runtime, total wiring length, static leakage, and area-saving factors. Figure 6 depicts the
block diagram of the selected DDR controller design. The DDR controller contains about
62,000 FFs. The design contains a DDR control unit, a DDR PHY adaptor, and two ARM
AXI bus interfaces. The control unit is used to configure the DDR controller and monitor
the status registers. The DDR PHY interface is connected directly to the DDR PHY, while
the AXI bus interfaces between the DDR PHY adaptor and the internal memories. The AXI
bus is used to store and retrieve data to/from the internal memory using a First-in-First-out
(FIFO) memory within the AXI interface. A clock generator is used to provide an accurate
clock signal to the external DDR memory. The DDR controller has two different operating
modes: consecutive and interleaving memory addressing. The DDR interleave mux selects
the desired operating mode and supports data interleaving from two channels to one
memory device, reducing the external memory access time. The chosen DDR controller is
used in many common VLSI applications and is large enough to represent a typical macro
instance. Moreover, the design has a significant amount of non-essential FFs and, therefore,
can be efficiently implemented using the SSRPG flow. In addition, the working frequency
of the DDR controller is relatively high (533 MHz) and makes the comparison qualify for
high-frequency designs as well.

Figure 6. DDR Controller—block diagram.

78

J. Low Power Electron. Appl. 2021, 11, 35

3.1. Basic Synthesis
Physical Design Flow Implementation

The design was first synthesized using the Cadence RTL compiler (RC). The synthesis
results provide the physical designer with the following data: (1) a standard library cell design
representation referred to as netlist, (2) the total cell area estimation needed for floorplanning,
and (3) critical timing paths that should be addressed in the synthesis stage. For timing
closure, the clock frequencies and some specific timing constraints should be defined in the
synthesis stage. In our test case, two frequencies were applied: 533 MHz for the AXI bus and
DDR PHY interfaces and a lower frequency of 133 MHz for the control logic.

The delay constraints take into consideration 30% of the clock period for output
ports and 70% for input ports. Some more delay adjustments were needed for certain
ports according to specific timing issues. In order to extract the essential FFs for the DDR
controller test case, we have used the SSRPG approach described in [16]. This approach is
based on a gate-level analysis and suggests a fully automatic algorithm to classify the FFs
in a typical design into two categories essential and non-essential FFs. Results show that
only 2522 FFs (out of the total 61,944 FFs) were classified as essential FFs, and therefore
only 4.1% of the FFs require retention cells. The netlist was updated accordingly with the
additional retention cells.

3.2. Floorplanning

An important step in floor planning is to specify the appropriate area to place macros
and standard cells. In general, the floorplan can be determined according to the dimensions
of the total macro area, Utilization Factor (UF), and die area. The utilization factor is
defined as follows [29].

Utilization Factor =
Area o f Standard cells

Total Physical Design Area
(2)

This means that a larger area of 1/UF multiplied by the standard cell area is allocated
for the Encounter tool to place the standard cells and to permit enough routing resources
for the cells’ interconnections. Selection of the UF should both provide the Encounter tool
with enough space to place the cells and route between them and still meet timing. As
the UF decreases, the area to place cells increases, and therefore the Encounter tool has
a better ability to successfully route the cells. The effects of choosing a Utilization Factor
on total wire length, congestion, and DRC (Design Rule Constraints) violations have been
explored (studied) in [21]. It was observed that a Utilization Factor of 0.5 to 0.7 is appropriate
depending on the metal layers in which the Power and Ground planning is done.

The Cadence Encounter tool was used to determine the size of the macro instance for
the chosen DDR Controller design. The total cell area (including FFs and logic gates) was
extracted from the synthesis results for the four different physical designs. The utilization
factor’s selection should be considered a tradeoff between the motivation to minimize the
macro instance area and the need to reduce the place and route complexity.

An initial recommended utilization factor of 0.7 was examined in the floor planning
stage. Then a unique utilization factor was chosen for each of the four different proposed
physical design flows according to congestion and DRC violations which directly affect the
Encounter tool runtime.

For the no-retention physical design flow, the initial recommended utilization factor
of 0.7 was found to be appropriate and did not have much effect on congestion, placement
run time, and tool convergence compared to lower utilization factors. However, while
applying this initial utilization factor for the SRPG and SSRPG physical design flows, the
runtime was significantly higher (a factor of 5) compared to lower utilization factors.

Figure 7 shows the empiric place and route tool’s runtime versus the utilization factor
for various examined flows. The utilization factor (UF) is given in Equation (2). The
available area for placing the cells increases as the UF factor decreases, and therefore the
Encounter tool has a better ability to successfully route the cells.

79

J. Low Power Electron. Appl. 2021, 11, 35

Figure 7. Place and Route runtime versus UF.

The effects of choosing a utilization factor on total wire length, congestion, and DRC
(Design Rule Constraints) violations have been explored in [21]. The authors show that
by using fewer number of metals to route between the standard cells spread across the
core area (which is equivalent to the scenario of less available routing area), the tool has
to do complex de-tour routing to avoid DRC violations. It was also observed that with
fewer metals (a higher UF), the tool has fewer routing tracks to route between all the cells,
introducing more congestion. Therefore, the number of available routing tracks available
also decreases.

From Figure 7, we observe that the optimal UF factors are: 0.7, 0.65, and 0.67 for the no-
retention, SRPG, and both SSRPG flows accordingly. Any attempt to increase those chosen
utilization factors resulted in the divergence of the Encounter tool. In all our experiments,
the convergence time limit was defined to be 72 h. The relatively lower UF factor achieved
for the SRPG and SSRPG can be explained due to the additional extra power grid and its
connections to the retention cells buffers required for the CTS process and the additional
route connectivity. We observed that the UF for the SSRPG flow is higher than the UF
obtained in the case of SRPG. This means that the SSRPG physical implementation required
less area compared to SRPG.

As a part of the floor planning, certain physical elements, such as antenna and latch-up
cells, were added to maintain the integrity of the macro instance [30]. Then, pin placement
was done according to the SoC constraints. Finally, the appropriate power grid was defined
according to the specific physical design flow. While in the case of no-retention flow, only
one power grid is required and is spread out uniformly across the macro instance area,
the SRPG and SSRPG flow require an extra power grid which should be connected to the
additional retention cells.

Figure 8 shows a snapshot, taken from the floorplanning tool, of the two power grids
required in SRPG and SSRPG. The common VDD grid is represented by the thick purple
line wrapped by two thin red lines. The extra VDDG power grid is represented by two
closely placed thin red lines. Since the VDDG supplies power only to the retention cells, it
can be composed of fewer gridlines compared to VDD. It can be observed that the VDDG
strips are less dense and are placed in a 1.8 μm interval once every second VDD strip. The
distance between the VDD and VDDG grid lines was set to 0.125μm. These power grid
configurations were validated using the Cadence encounter power analysis tool.

As discussed in Section 2.3, the power grid distribution in the localized SSRPG flow
can be limited to a localized area in the floorplan. The exact flow used to determine the
localized area in which the retention cells are located is described as follows. First, the
floorplan with a uniform distributed power grid is used as an input to the placement stage.
Then the results of this placement (location of the retention cells) are used to create a new
floorplan in which the power grid is limited to a specific area. Finally, the retention control

80

J. Low Power Electron. Appl. 2021, 11, 35

signals (RETN) which should be connected to all the retention cells, are placed close to this
specific region to reduce routing.

Figure 8. VDD and VDDG power grid floorplanning.

3.3. Placement and Routing

The placement stage was carried out the same way for the four physical design flows.
The Cadence Encounter was used as the placement tool in order to meet timing and area
constraints as derived from the floorplanning stage. The same clock tree methodology
was used for the four examined flows using the CTS Cadence tool with the same timing
constraints. In the case of SRPG and SSRPG flows, the additional RETN control signals
used for retention purposes were also balanced in the clock tree process. The routing for the
three-state retention flows also included the additional connections of the state-retention
cells to the extra VDDG power grid.

3.4. Results

During the implementation of the four physical design flows DRC checks were carried
out according to the 28 nm library requirements. The timing analysis implemented by the
STA tool also included exhaustive signal integrity checks [28]. The difference in timing
closure between all four physical design flows was less than 11 ps, which is less than 0.6%
of the clock period. All flows were executed on a 64 bit Linux server (64 bit, 2.8 GHz with
64 GB RAM).

This section shows the comparison results for the four examined flows in terms
of area, wire-length, static leakage, and runtime. First, we demonstrate the benefit of
using the proposed improved SSRPG flow in terms of runtime. Then, we compare the
proposed flow with the common SRPG and the no-retention flows. Table 2 depicts the
comparison between the improved localized SSRPG flow, which uses the unique placement
constraint rules, the common SRPG, and the distributed SSRPG physical design flows. It is
shown that applying the extra placement rules, with regards to the selected retention FF’s,
improves the place and route Encounter tools’ runtime by 11% compared to the distributed
SSRPG and by 23% compared to the conventional SRPG flow. This is a considerable
improvement compared to the runtime of the distributed flow, which does not apply
any specific placement rules regarding the retention cells. The major improvement is
achieved in the placement stage, in which the runtime is decreased by 29% compared
to the distributed SSRPG flow. This is a significant result since the placement stage is
an iterative stage due to the floorplan area estimation process. Moreover, the improved
localized proposed flow outperforms the conventional SRPG by 63% in terms of placement
runtime. The runtime for the routing stage is improved by 8% and 9% compared to the

81

J. Low Power Electron. Appl. 2021, 11, 35

distributed SSRPG and SRPG, respectively. The runtime for the CTS stage is improved by
13% compared to the SRPG flow. Table 3 depicts the comparison between the four examined
flows in terms of area, design density, number of library cells, wire-length, static leakage,
and back-end tools runtime. As expected, the required area for SRPG implementation is
20% larger compared to the no-retention case. The implementation of the SSRPG approach
results in a 16% area saving factor compared to SRPG. Moreover, almost no extra area is
required for implementing the SSRPG flow compared to the no-retention case. While the
wire length for SRPG is significantly larger compared to the no-retention flow, with about
a 12% wiring increase, both SSRPG flows require only about 4% extra wiring compared
to the no-retention case. This additional wiring overhead is required for connecting the
retention cells to the non-gated power supply and power-gating controls. The increased
wire-length induced by gathering all retention flip-FFs in a localized region is less than 1%
compared to the distributed SSRPG.

Table 2. Place and Runtime Routing Comparison.

Run-Time
(Hours)

No Retention SRPG
Distributed

SSRPG
Localized
SSRPG

Placement 9.11 11.42 6.02 4.27
CTS 9.85 6.15 5.53 5.32

Routing 14.75 27.13 26.83 24.63
Total 33.71 44.7 38.38 34.22

Table 3. Physical design flow Comparison.

Physical Design Parameter No Retention SRPG
Distributed

SSRPG
Localized
SSRPG

Macro area (mm2) 0.594 0.716 0.600 0.600
Design density (%) 72.2% 69.7% 72.3% 70.0%
Total library cells 315,837 318,052 313,679 309,369
Wire-length (m) 6.561 7.319 6.833 6.887

Static leakage (mW) 34.62 2.213 0.085 0.085
Backend Run-time (Hours) 33.72 44.7 38.38 34.22

Retained FFs 0 61,944 2522 2522

The increasing wiring can explain this since the retention FFs are associated along
with other non-retention FFs. However, this wire-length is compensated due to the reduced
distance between the retention cells to the always-on PDN and to the retention controls in
the improved SSRPG flow. Table 3 shows that although the macro area is the same for both
SSRPG flows, the design density (as measured by the Encounter Cadence tool) is reduced
by 2.3% for the improved localized SSRPG compared to the distributed SSRPG. The lower
density hints towards a lower crosstalk, though this still needs to be proved using bespoke
benchmarks. Therefore, a better immune to crosstalk effects might be achieved using the
localized PD approach. Spice simulations show that for both PD flows, the used gridlines
meet the IR drop worst-case conditions (according to TSMC 28 nm library).

This can be explained due to the better routeability achieved by limiting the retention
power grid to a specific localized region and therefore reducing the area occupied by
both the always-on PDN and the retention control wiring. A significant improvement is
also demonstrated for the static power leakage. Although SRPG reduces the static power
leakage by 94% compared to the no-retention flow (whereas the supplies are always on),
both SSRPG flows reduce the static power leakage by 99.7%. It is also important to notice
that SSRPG outperforms the SRPG flow by 96% in terms of static leakage.

82

J. Low Power Electron. Appl. 2021, 11, 35

The efficiency of the improved SSRPG approach is expressed by the significant im-
provement in terms of back-end runtime. The required runtime for implementing the place
and route stages is compared. While SRPG increases the runtime by a significant factor of
33%, the improved SSRPG flow can be implemented with a negligible overhead of only 3%
compared to the non-retention flow. Moreover, the speed up comparing to the distributed
SSRPG flow is about 11%. It should be noted that the improved SSRPG outperforms the
distributed SSRPG in terms of back-end runtime in spite of the slightly increased wire
length. This can be explained by the lower design density in the case of improved SSRPG
due to the reduced buffers (as indicated by the total library cells) required to support the
specific clock-tree for the retention controls compared to the distributed SSRPG flow.

4. Summary and Conclusions

This work presents a novel approach for SoC physical design implementation based
on Selective State Retention techniques. The additional wiring required for the extra power
grid network for the retention cells and power-gating controls for the state retention logic
increases the complexity of the physical design and directly affects the tools’ runtime and
the ability to converge for large designs. Therefore, this work investigates the effect of the
selective approach on the complexity of the physical design implementation and proposes a
unique flow to efficiently address SoC design based on selective state retention techniques.
We demonstrate a significant reduction of the metal area required for the extra power supply
network using the proposed approach. This is done by applying some unique placement
rules to the physical design implementation flow utilizing the selectivity feature. This
results in optimal cell placement and power grid allocation, which significantly increase the
potential routing area, directly improving the convergence time of the Place and Route tools.
Furthermore, it is shown that reducing the extra power supply network area also leads to a
significant reduction of the runtime required for the placement tools.

We also compare the SRPG and SSRPG physical design implementations in terms
of power, area, wire-length, and physical design tools runtime and quantify the area and
runtime saving factors result from selectivity. Experimental results show that implementing
the SSRPG approach using the proposed physical design flow yields an area-saving factor
of 16% compared to SRPG, which is in accordance with the previously estimated factor
reported in recent publications. Furthermore, the static leakage is decreased by 96%
compared to SRPG and is negligible compared to no retention. Tool complexity overhead
was also reduced as such that the runtime overhead was negligible compared to the no
retention physical design flow. Finally, by applying certain placement rules for the retention
cells, the tool runtime for the improved SSRPG was further reduced by 11% compared to
the common SSRPG and by 23% compared to SRPG.

The proposed improved localized SSRPG flow facilitates the complexity of the physical
design implementation for retention-based design. This approach leads to both reducing
the number of metal layers used for the always-on power distribution and therefore
facilitates the signals routing, and reducing the wiring used for retention control signals as
well as simplifying the isolation of the always-on domain from the power-gated domain.
As a result, the runtime of the place and route tools is significantly reduced due to the
wiring complexity reduction.

Moreover, to the best of our knowledge, this is the first work that demonstrates and
quantifies the benefit of applying the SSRPG approach in real physical design implementa-
tion and demonstrating actual area, power, and tools runtime saving factor.

Author Contributions: Both authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

83

J. Low Power Electron. Appl. 2021, 11, 35

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.; Kandemir, M.; Narayanan, V. Leakage current: Moore’s law
meets static power. IEEE J. Comput. 2003, 36, 68–75.

2. Horiguchi, M.; Sakata, T.; Itoh, K. Switched-source-impedance CMOS circuit for low standby sub-threshold current giga-scale
LSI’s, Solid-State Circuits. IEEE J. 1993, 28, 1131–1135.

3. Zhigang, H.; Buyuktosunoglu, A.; Srinivasan, V.; Zyuban, V.; Jacobson, H.; Bose, P. Micro architectural techniques for power
gating of execution units. In Proceedings of the International Symposium on Low Power Electronics and Design, ISPLED,
Newport Beach, CA, USA, 9–11 August 2004; pp. 32–37.

4. Henry, M.B. Emerging Power-Gating Techniques for Low Power Digital Circuits; Virginia Polytechnic Institute and State University:
Blacksburg, VA, USA, 2011.

5. Weihan, W.; Ohta, Y.; Ishii, Y.; Usami, K.; Amano, H. Tradeoff analysis of fine-grained power gating methods for functional units
in a CPU. In Proceedings of the Cool Chips XV (COOL Chips), Yokohama, Japan, 18–20 April 2012; pp. 1–3.

6. Henry, M.B.; Nazhandali, L. Design techniques for functional-unit power gating in the Ultra-Low-Voltage region. In Proceedings
of the Design Automation Conference (ASP-DAC), Sydney, NSW, Australia, 30 January–2 February 2013; Association for
Computing Machinery: New York, NY, USA, 2012; pp. 609–614.

7. Dasnurkar, S.; Datta, A.; Abu-Rahma, M.; Nguyen, H.; Villafana, M.; Rasouli, H.; Tamjidi, S.; Cai, M.; Sengupta, S.; Chidambaram,
P.R.; et al. Experiments and analysis to characterize logic state retention limitations in 28 nm process node. In Proceedings of the
IEEE 31st VLSI Test Symposium, VTS, Berkeley, CA, USA, 29 April–2 May 2013; pp. 1–6.

8. Henzler, S.; Nirschi, T.; Pacha, C.; Spindler, P.; Teichmann, P.; Fulde, M.; Fischer, J.; Eireiner, M.; Fischer, T.; Georgakos, J.; et al.
Dynamic state-retention flip flop for fine-grained sleep-transistor scheme. In Proceedings of the European Solid-State Circuits
Conference, ESSCIRC, Grenoble, France, 12–16 September 2005; pp. 145–148.

9. Shigematsu, S.; Mutoh, S.; Matsuya, Y.; Tanabe, Y.; Yamada, J. A 1-V high-speed MTCMOS circuit scheme for power-down
application circuits. IEEE J. Solid-State Circ. 1997, 32, 861–869. [CrossRef]

10. Le-Coz, J.; Flatresse, P.; Clerc, S.; Belleville, M.; Valentian, A. 65 nm PD-SOI glitch-free Retention Flip-Flop for MTCMOS power
switch applications. In Proceedings of the IEEE International Conference on IC Design & Technology, ICICDT, Kaohsiung,
Taiwan, 2–4 May 2011; pp. 1–4.

11. Chul-Moon, J.; Kwan-Hee, J.; Eun-Sub, L.; Minh, V.H.; Kyeong-Sik, M. Zero-Sleep-Leakage Flip-Flop Circuit with Conditional-
Storing Memristor Retention Latch. IEEE Trans. Nanotechnol. 2011, 11, 360–366.

12. Kyungho, R.; Jisu, K.; Jiwan, J.; Kim, J.P.; Kang, S.H.; Seong-Ook, J. A Magnetic Tunnel Junction Based Zero Standby Leakage
Current Retention Flip-Flop. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 20, 2044–2053.

13. Jung-Hyun, P.; Heechai, K.; Dong-Hoon, J.; Kyungho, R.; Seong-Ook, J. Level-Converting Retention Flip-Flop for Reducing
Standby Power in ZigBee SoCs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 23, 413–421.

14. Ting-Wei Chiang, C.; Kai-Hui Chang, C.; Yen-Ting, L.; Jiang, J.-H.R. Scalable sequence-constrained retention register minimization
in power gating design. In Proceedings of the Design Automation Conference, DAC, San Francisco, CA, USA, 7–11 June 2015;
Association for Computing Machinery: New York, NY, USA; pp. 1–6.

15. Darbari, A.; Hashimi, B.M.A.; Flynn, D.; Biggs, J. Selective state retention design using symbolic simulation. In Proceedings of the
2009 Design, Automation and Test in Europe Conference and Exhibition, Nice, France, 20 April 2009; IEEE: Piscataway, NJ, USA;
pp. 1644–1649.

16. Greenberg, S.; Rabinowicz, J.; Tsechanski, R.; Paperno, E. Selective State Retention Power Gating Based on Gate-Level Analysis.
IEEE Trans. Circ. Syst. I 2013, 61, 1095–1104. [CrossRef]

17. Greenberg, S.; Rabinowicz, J.; Manor, E. Selective State Retention Power Gating Based on Formal Verification. IEEE Trans. Circ.
Syst. I 2014, 62, 807–815. [CrossRef]

18. Wen-Hsiang, C.; Chao, M.C.-T.; Shi-Hao, C. Practical Routability-Driven Design Flow for Multilayer Power Networks Using
Aluminum-Pad Layer. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 22, 1069–1081.

19. Hyung-Ock, K.; Youngsoo, S. Semicustom Design Methodology of Power Gated Circuits for Low Leakage Applications.
IEEE Trans. Circ. Syst. II Express Briefs 2007, 54, 512–516.

20. Seomun, J.; Youngsoo, S. Design and Optimization of Power-Gated Circuits with Autonomous Data Retention. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2009, 19, 227–236. [CrossRef]

21. Golshan, K. Physical Design Essentials. In An ASIC Design Implementation Perspective, 1st ed.; Springer: New York, NY, USA, 2007.
22. Flynn, D.; Aitken, R.; Gibbons, A.; Kaijian, S. Low Power Methodology Manual. In For System-on-Chip Design, 1st ed.; Springer:

New York, NY, USA, 2007.
23. Mahmoodi-Meimand, H.; Roy, K. Data-retention flip-flops for power-down applications. In Proceedings of the 2004 IEEE

International Symposium on Circuits and Systems, Vancouver, BC, Canada, 23–26 May 2004; pp. 1–4.
24. Henry, M.B.; Nazhandali, L. NEMS-Based Functional Unit Power-Gating: Design, Analysis, and Optimization. IEEE Trans. Circ.

Syst. I 2013, 60, 290–302. [CrossRef]

84

J. Low Power Electron. Appl. 2021, 11, 35

25. Wang, K.; Marek-Sadowska, M. On-chip power-supply network optimization using multigrid-based technique. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 2005, 24, 407–417. [CrossRef]

26. Ye, T.T.; de Micheli, G. Data path placement with regularity. In Proceedings of the ACM/IEEE Computer Aided Design, ICCAD;
San Jose, CA, USA, 5–9 November 2000, IEEE: Piscataway, NJ, USA; pp. 264–270.

27. Zhaohui, H.; Pierres, A.; Hu, S.; Chen, F.; Royannez, P.; Pek, S.E.; Ling, H.Y. Practical and efficient SOC verification flow by reusing
IP testcase and testbench. In Proceedings of the SoC Design Conference, ISOCC, Jeju, Korea, 4–7 November 2012; pp. 175–178.
Available online: http://www.isocc.org (accessed on 26 July 2021).

28. Bhasker, J.; Chadha, R. Static Timing Analysis for Nanometer Designs. In A Practical Approach, 1st ed.; Springer: New York, NY, USA,
2009.

29. Gunnala, V. Choosing Appropriate Utilization Factor and Metal Layer Numbers for an Efficient Floor Plan in VLSI Physical
Design. Int. J. Eng. Res. Appl. IJERA 2012, 2, 456–462.

30. Voldman, S.H. Latchup, 1st ed.; Wiley: West Sussex, UK, 2007.

85

Journal of

Low Power Electronics
and Applications

Article

Energy-Efficient Non-Von Neumann Computing Architecture
Supporting Multiple Computing Paradigms for Logic and
Binarized Neural Networks

Tommaso Zanotti 1,*, Francesco Maria Puglisi 1 and Paolo Pavan 1

Citation: Zanotti, T.; Puglisi, F.M.;

Pavan, P. Energy-Efficient Non-Von

Neumann Computing Architecture

Supporting Multiple Computing

Paradigms for Logic and Binarized

Neural Networks. J. Low Power

Electron. Appl. 2021, 11, 29. https://

doi.org/10.3390/jlpea11030029

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 31 May 2021

Accepted: 30 June 2021

Published: 6 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10/1,
41125 Modena, Italy; francescomaria.puglisi@unimore.it (F.M.P.); paolo.pavan@unimore.it (P.P.)
* Correspondence: tommaso.zanotti@unimore.it

Abstract: Different in-memory computing paradigms enabled by emerging non-volatile memory
technologies are promising solutions for the development of ultra-low-power hardware for edge com-
puting. Among these, SIMPLY, a smart logic-in-memory architecture, provides high reconfigurability
and enables the in-memory computation of both logic operations and binarized neural networks
(BNNs) inference. However, operation-specific hardware accelerators can result in better performance
for a particular task, such as the analog computation of the multiply and accumulate operation for
BNN inference, but lack reconfigurability. Nonetheless, a solution providing the flexibility of SIMPLY
while also achieving the high performance of BNN-specific analog hardware accelerators is missing.
In this work, we propose a novel in-memory architecture based on 1T1R crossbar arrays, which
enables the coexistence on the same crossbar array of both SIMPLY computing paradigm and the
analog acceleration of the multiply and accumulate operation for BNN inference. We also highlight
the main design tradeoffs and opportunities enabled by different emerging non-volatile memory
technologies. Finally, by using a physics-based Resistive Random Access Memory (RRAM) compact
model calibrated on data from the literature, we show that the proposed architecture improves
the energy delay product by >103 times when performing a BNN inference task with respect to a
SIMPLY implementation.

Keywords: BNN; logic-in-memory; RRAM; SIMPLY

1. Introduction

The demand for more ubiquitous edge computing promoted by the rapidly growing
volume of data exchanged over the communication network by devices for the Internet
of Things (IoT) requires the development of more energy-efficient computing architec-
tures [1,2]. Accordingly, several new computing paradigms [3–10] have been proposed,
encouraging a departure from the traditional von Neumann architecture. All these new
computing approaches aim at performing computation directly inside the memory by
exploiting novel emerging non-volatile memory (ENVM) technologies, therefore bypass-
ing the main performance bottleneck of traditional von Neumann architectures, i.e., the
communication between the memory and the processing unit over a slow bus. While
operation specific hardware accelerators can achieve very high performance when ex-
ecuting a specific task, the possibility to reconfigure the type of operations computed
in-memory may benefit resource-constrained devices for edge computing applications [11].
Among in-memory computing paradigms providing reconfigurability [4,12–16], architec-
tures based on resistive memory devices and the material implication (IMPLY) logic are a
promising solution [13]. Also, a smart IMPLY (SIMPLY) [17] architecture was proposed
for solving the reliability issues of conventional IMPLY-based architectures demonstrating
high reliability and high energy efficiency when implementing logic operations. Recently,
a binarized neural network (BNN) [18] implementation based on the SIMPLY architecture

J. Low Power Electron. Appl. 2021, 11, 29. https://doi.org/10.3390/jlpea11030029 https://www.mdpi.com/journal/jlpea
87

J. Low Power Electron. Appl. 2021, 11, 29

was proposed [19,20] and shown to improve energy efficiency with respect to conventional
embedded system implementations. Nevertheless, specific BNN hardware accelerators
based on resistive memory technologies [21–25] which accelerate in analog the multiply and
accumulate (MAC) operation can achieve higher performance if properly designed, lacking,
however, reconfigurability options. Thus, a solution enabling the coexistence of both com-
puting approaches on the same resources would enable the development of reconfigurable
ultra-low-power edge computing hardware, but such a solution is still missing.

In this work, we design a new in-memory computing architecture enabling the coex-
istence on the same 1T1R crossbar array of both the SIMPLY logic-in-memory paradigm
and the analog acceleration of the multiply and accumulate operation for BNN inference
applications. We analyze the design tradeoffs of the proposed architecture and indicate
the opportunities and limitations introduced using different emerging non-volatile mem-
ory technologies. Finally, exploiting a physics-based Resistive Random Access Memory
(RRAM) compact model calibrated on a TiN/HfOx/AlOx/Pt RRAM technology from the
literature [26], we benchmark with respect to a SIMPLY implementation the performance
improvements for an inference task on a BNN provided by the novel architecture.

2. Results

2.1. Logic-in-Memory and the SIMPLY Architecture
2.1.1. Material Implication Logic

The IMPLY logic is based on two logic operations, i.e., the IMPLY, the truth table
of which is shown in Figure 1c, and the FALSE which always results in a logic zero.
These two operations can be implemented with RRAM devices and the circuit shown in
Figure 1a, which comprises a resistor (i.e., RG in Figure 1a), a control logic and analog
tri-state buffers to deliver appropriate voltages to RRAM devices. Since the IMPLY and
the FALSE form a complete logic group, all logic operations can be implemented with a
sequence of these two operations [27]. In this framework, logic bits are mapped to RRAM
devices resistances, and a logic 0 and a logic 1 are encoded into a high-resistive state
(HRS) or low-resistive state (LRS), respectively. When performing computations RRAMs
act at the same time both as the inputs and the outputs of computation. In particular, to
perform an IMPLY operation between two bits (i.e., P and Q in Figure 1b,c), the control logic
simultaneously drives the top electrodes of the two input RRAM devices with two voltage
pulses with amplitudes VCOND and VSET (see Figure 1b) on the two devices, respectively.
By determining an appropriate value for VSET and VCOND voltages, which must satisfy
all the different requirements for each input combinations reported in Figure 1c, the state
of the device receiving VCOND (i.e., P in Figure 1b,c) never changes while the state of
the other device (i.e., Q in Figure 1b,c) changes according to the IMPLY truth table (see
Figure 1c, where Q’ is the state of Q after the IMPLY operation execution). The FALSE
operation is executed by applying a negative voltage pulse with amplitude VFALSE to a
single device to reset it into a HRS (see Figure 1d). However, this IMPLY scheme is affected
by several reliability challenges, such as logic state degradation and small tolerance to
voltage variations, which hinder its implementation [28,29].

2.1.2. SIMPLY

A solution to the reliability issues affecting the conventional IMPLY architecture is the
SIMPLY architecture [17]. In SIMPLY, the computation of the IMPLY operation is split into
two steps, i.e., a read step and a conditional write step. As shown in the IMPLY truth table
(see Figure 1c), the state of Q, which is the device storing the result of the IMPLY operation,
changes only when both P and Q (i.e., the inputs of the IMPLY operation) are in HRS. This
condition can be detected by applying two simultaneous small read voltage pulses with
amplitude VREAD to P and Q and comparing the voltage across RG (VN) with a threshold
(VTH) using a comparator, as shown in Figure 2a. In fact, VN is lower when both inputs are
zero than in all the other cases (see Figure 2b), providing a sufficient read margin (RM) for
the comparator. The output of the comparator is fed to a control logic which then pulses

88

J. Low Power Electron. Appl. 2021, 11, 29

VSET on Q only when necessary. By using a sufficiently low VREAD voltage the problem
of logic state degradation is effectively solved [17]. Also, the drivers in the peripheral
circuitry of the array can be simplified, as VCOND is no longer required. In addition, the
high VSET voltage pulse is applied only in the first case of the truth table, while in the
other three cases the main energy consumption is due to the small VREAD pulses and the
comparator. As described in previous works [19,20], the latter can be implemented with
the voltage sense amplifier (VSA) in Figure 2d, which is fast and energy efficient (i.e., the
VSA implemented with a 45 nm technology from [30], and a VDD of 2V dissipated just 8 fJ
per comparison on average). Therefore, SIMPLY considerably improves the energy per
IMPLY operation in three out of four cases of the truth table compared to the conventional
IMPLY architecture [17,19].

(a) (b)

Input
Combination

Output
(Q’)

Requirements

P=0 Q=0 1 High VSET, Low VCOND
P=0 Q=1 1 Low|VCOND-VSET|
P=1 Q=0 0 Low|VSET-VCOND|
P=1 Q=1 1 -

(c) (d)

Figure 1. (a) Circuit implementing the elementary IMPLY logic gate. (b) Driving voltage scheme
implementing the P IMPLY Q operation. (c) IMPLY operation truth table highlighting the contrasting
requirements on VSET and VCOND for a reliable gate functionality. Q’ represents the state of Q after
the IMPLY operation execution. (d) Driving voltage scheme implementing the FALSE Q operation.

(a) (b) (c) (d)

Figure 2. (a) Circuit implementation of the elementary IMPLY gate in the SIMPLY framework. (b) Driving voltage scheme
used to implement the P IMPLY Q operation. The control logic pulses VSET on Q only when the comparator detects P = Q = 0
(green lines) while the drivers are kept in high impedance (Hi-Z) in all other cases (dashed black lines). (c) Driving voltage
scheme used to implement the FALSE Q operation in the SIMPLY framework. The comparator detects when Q = 1 (black
lines) and pulses VFALSE accordingly. (d) Voltage sense amplifier implemented and simulated with a 45nm technology [30].
All FETs have minimum size (i.e., L = 50 nm W = 90 nm).

89

J. Low Power Electron. Appl. 2021, 11, 29

To further improve the energy efficiency, the same approach can be used for the FALSE
operation [19,20]. When a device is in HRS the high VFALSE voltage results in unnecessary
energy dissipation. This can be prevented by first reading the state of the device and then
applying the VFALSE only when the device is in LRS (see Figure 2c). The effectiveness in
reducing the energy per operation depends on the employed RRAM technology [19]. In
fact, the achieved energy reduction with RRAM technology characterized by very high
HRS is limited, while it is relevant for technologies with relatively low HRS.

The RM is the most important reliability metric, and enough RM must be ensured
even in presence of resistive state variability and random telegraph noise (RTN). While a
higher RM can be achieved by slightly increasing VREAD (see Figure 3a), a higher RM is
also obtained by using the optimal value for RG (see Figure 3b) that is determined using
equation (1) from [31], where RHRS,MAX and RHRS,MIN are the ±3σ values of the RHRS
distribution, while RLRS,MAX is the +3σ value of the RLRS distribution.

RG =

√√√√ 1
1

RHRSMAX
+ 1

RLRSMAX

· R HRSMIN
2

, (1)

The SIMPLY framework can be implemented also on crossbar arrays [19]. Specifically,
to implement SIMPLY on the 1T1R crossbar array the architecture shown in Figure 4 is
needed. Additional field effect transistor (FET) devices in the array periphery are used
to connect adjacent rows of the crossbar to perform IMPLY operations between devices
on the same column but different rows, and to select specific rows. Also, the degree of
parallelism in the SIMPLY architecture can be increased by adding more VSAs in the array
periphery, as shown in Figure 4. Using multiple VSAs enables the realization of single
instruction multiple data (SIMD) architectures, in which the IMPLY and FALSE operations
can be performed in parallel on data stored in different rows but aligned on the same
columns. For instance, to perform IMPLY operations in parallel, two columns are driven
with the read voltage, then only the FETs implementing RG and those enabling the selected
rows are enabled, therefore routing each active row to the specific VSA. The control logic
receives in input the results of all the comparisons and activates only the rows where
an RRAM device should be switched during the device SET step. As shown in previous
works [19,31], the use of SIMPLY-based SIMD architectures results in high computing
efficiency and throughput.

(a) (b)

Figure 3. (a) Distribution of the comparator input voltage (VN) for increasing VREAD considering the TiN/HfOx/AlOx/Pt
RRAM devices from [26], when considering a suboptimal RG in (a) and the optimal RGopt in (b), which maximize the
read margin (RM). The distributions for P = Q = 0 (grey bands) and P �= Q (green bands) are reported together with the
read margins (RM—blue arrows) and associated threshold voltages (VTH—violet line) for the comparator. The effects of
cycle-to-cycle, device-to-device variability, and random telegraph noise (RTN) are considered by repeating the simulations
50. The extreme points of the distributions are indicated with black whiskers, and outliers due to RTN with red crosses.

90

J. Low Power Electron. Appl. 2021, 11, 29

Figure 4. SIMPLY implementation on a 1T1R crossbar array. FET devices are used to implement RG,
select specific rows, and to connect adjacent columns.

2.2. Binarized Neural Networks (BNNs) Hardware Accelerator Architectures
2.2.1. Binarized Neural Networks with SIMPLY

BNNs are an effective solution that enables the implementation of neural networks at
a lower computational cost, while retaining sufficiently high accuracies [18], as compared
to full-precision neural networks. In fact, by using 1-bit weights and activations only
logic operations are required to perform an inference task. Thanks to this simplification,
previous works [19,20] showed how BNN inference can be implemented in the SIMPLY
computing framework. The network parameters are trained offline using for example
the DoReFa-Net algorithm [32] (see Section 4.2) and directly mapped to the resistance
of RRAM devices in the crossbar array, as shown in Figure 5b where a single crossbar
row is reported. In BNNs, the multiply and accumulate (MAC) can be implemented
with bitwise XNOR operations between each neuron weights and input activations, the
accumulation with the popcount operation, and each neuron activation by performing a
comparison with a trained threshold. Finally, the output class is predicted by using the
hardmax function, which selects the class corresponding to the neuron with the highest
output activation. By enabling the realization of SIMD architectures, the resulting SIMPLY
implementation exploits the intrinsic parallelism in BNN computations, to efficiently
compute in parallel the operations in each neural network layer. Also, thanks to its
reconfigurability, SIMPLY enables the possibility to easily implement different neural
networks topologies. However, the high degree of reconfigurability comes at the price
of a high number of computing steps, which limits the latency performance. Specifically,
among the different operations, the computation of MAC operations is the main limitation
in SIMPLY-based BNN implementations, and accounts for almost all the computing steps
of a network layer when considering a layer with 1000 input activations, as shown in
Figure 5a. While each bitwise XNOR requires nine computing steps (see Figure 5c), the
number per accumulation operations for the implemented accumulator rapidly rises as
the number of inputs to a network layer increases. In fact, to implement the accumulator,
a chain of half-adders (HAs) is used where the first HA is fed its current output and
the bit to be accumulated, while the following HAs are fed their current output and
the carry-out from the previous HA in the chain [19,20], as shown in Figure 5e. Each
HA requires 13 computing steps to accumulate a single bit (see Figure 5d). Thus, the
whole accumulation operation is computed in ∑m

i=113i·2(i−1). This is because each HA is
activated only after a number of input bits equal to two to the power of their respective
bit position has been accumulated, since the carry-out bits from the preceding HA stage
is necessarily zero when fewer bits have been accumulated. Therefore, the latency for
computing the accumulation operation rises exponentially when the size of a neural

91

J. Low Power Electron. Appl. 2021, 11, 29

network layer increases, thus suggesting that BNN SIMPLY implementations are more
suitable for small neural network implementations, while the implementation of larger
networks would require more efficient MAC execution.

(a) (b) (c)

(d) (e)

Step
Numb. Operation

1-3
4
5
6
7
8
9

XNOR(A, W)

1-bit Half Adder
Step

Numb. Operation

1-4
5
6
7
8
9

10
11
12
13

Accumulator

Figure 5. (a) Breakdown of the percentage number of computing steps performed in a binarized neural network (BNN)
layer with 1000 input activations. (b) Example of SIMPLY implementation of the multiply and accumulate (MAC) operation
for a single neuron. Devices storing the neural network weights (W), their complement (W), the results of the bitwise XNOR
(O), the result of the accumulation (S), the carry-out (C0), and supporting intermediate computations (M1, M2, M3) are
reported. (c) Sequence of IMPLY and FALSE operations implementing a two input XNOR [19]. (d) SIMPLY-based half-adder
(HA) implementation. (e) SIMPLY-based accumulator operation implementing the popcount operation.

2.2.2. Binarized Neural Networks with Analog Vector Matrix Multiplication

The computation in the analog domain of the vector matrix multiplication with
resistive memory devices has been shown to be a promising solution for accelerating
in hardware the execution of deep neural networks. In this framework, the weights of
the neural network are mapped into the analog non-volatile resistance of RRAM devices
of a crossbar array [3], while the input activations to a neuron are mapped to voltage
pulses with amplitude or duration proportional to the input value. By applying such input
activations to the rows of the crossbar and by providing a virtual ground to the end of each
crossbar column, the current flowing in each crossbar column is linearly proportional to the
result of the vector matrix multiplication, that is computed in a single step thanks to Ohm’s
and Kirchhoff’s current laws. However, such architecture presents some challenges due to
resistive memory devices non-idealities such as the resistive state variability, which limits
the number of bits that can be reliably encoded into a single RRAM device. Furthermore,
providing a virtual ground at each crossbar column comes at the expense of a large chip
area occupied by the peripheral circuitry due to the need of operational amplifiers [33]
and analog to digital converters (ADCs) which limit the area efficiency especially when
many rows are read in parallel. Thus, the need for the virtual ground becomes the main
bottleneck for such architecture, introducing a tradeoff between crossbar density and

92

J. Low Power Electron. Appl. 2021, 11, 29

latency (i.e., the same operational amplifier and ADC pair can be shared among multiple
crossbar columns; however, reducing the maximum throughput). A more robust solution
to RRAM variability, which is also more efficient in terms of chip area occupancy, are
BNNs. In fact, binary weights can be reliably stored in a crossbar array using a pair of
RRAM devices in the same column, as shown in Figure 6b. To store a +1 weight, the
two RRAM devices are programmed into an LRS/HRS configuration, while to store a −1
the opposite configuration is used (see Figure 6b). When computing the binary vector
matrix multiplication, which is equivalent to the combined bitwise XNOR and popcount
operations, the two FETs in series with the RRAMs representing a single weight are driven
with complementary signals that encode the +1/-1 input activations so that only one FET is
active at time. As a result, the current flowing through each crossbar column is proportional
to the sum of all the positive results of the products between the input activations and each
neuron’s weights. Using this approach, the operational amplifier and ADC can be replaced
by a much more compact voltage sense amplifiers (VSAs) circuit [21,22], implementing the
architecture shown in Figure 6a, thus reducing the required chip area and improving the
throughput and the energy efficiency. Instead of voltage sensing, the same approach could
also be implemented by using current mode sense amplifiers [34], however resulting in
lower energy efficiency [35]. Nevertheless, when using a sense amplifier, no virtual ground
is available at the end of the crossbar columns. Thus, a FET implementing a pull-up or
pull-down resistor must be used, thereby realizing a voltage divider between the equivalent
parallel resistance of the active 1T1R devices in a column and the pull-up or pull-down
resistor. Due to the use of a voltage divider, the linear relation between the number of
active devices and the input to the VSA is lost. Nevertheless, He et al. [21] showed that the
method is robust and that the output activation can be reliably determined by comparing
the voltage from the voltage divider with an appropriate threshold using the VSA, retaining
high inference accuracy also when process variations are considered. However, the number
of devices that can be reliably read in parallel to compute the MAC operation is limited and
strictly dependent on RHRS, RLRS, the pull-down resistance (RPD) and the VSA threshold
voltage. As shown in Figure 7a, considering the case with 15 devices read in parallel during
each MAC, increasing RPD changes the required VSA threshold voltage. Ideally, a linear
relation between VN and the number of positive products is desirable. However, to achieve
such linearity very low RPD values should be used, resulting in a considerable reduction of
the dynamic range at the input of the comparator thus increasing the probability of errors
due to the effect of resistive state variability. On the other hand, a too high RPD value causes
the input voltage (i.e., VN) to the VSA to rapidly saturate to VREAD. While, considering a
fixed VTH and lowering RPD increases the number of devices that can be read in parallel
during each MAC operation, as shown in Figure 7b. However, too low RPD values would
require large FET devices and the effect of line parasitic resistances may affect the circuit
reliability making the circuit more susceptible to noise. Thus, in this framework, MAC
operations are split into multiple computing steps using the input split method [21,36], so
that partial MAC operations are computed using the maximum parallelism enabled by the
designed architecture. These partial results need to be accumulated and the result of the
accumulation is compared to a trained threshold to produce the neuron output activation.

Compared to the SIMPLY implementation of the BNN MAC operation, this approach
is considerably faster, as it requires fewer computing steps, and more energy efficient since
no RRAM device is switched during computations. However efficient, this approach is
specialized for BNNs and do not provide the reconfigurability of the kind of operations
computed in-memory enabled by SIMPLY. Thus, the crossbar array can only be used for
BNN inferencing and storage applications.

93

J. Low Power Electron. Appl. 2021, 11, 29

(a) (b)

Figure 6. (a) Example of an in-memory computing architecture based on a 1T1R crossbar array
enabling the analog BNN vector matrix multiplication acceleration using voltage sense amplifiers
(VSAs). (b) Implemented binary multiplication between the input activation and the neuron weight.
A pair of 1T1R devices with complementary resistive states is used to map the neuron weights. The
input activation is realized with two complementary signals driving the two selector transistors of
each weight.

(a) (b)

Figure 7. (a) Qualitative trends of the voltage at the input of the comparator for different RPD

values at increasing number of +1 products results with a VREAD = 0.2V. The comparator commute
when the #positive products greater or equal than 8, thus the voltage threshold, the trend and slope
change with RPD. (b) Optimal RPD values at increasing number of devices read in parallel for a
fixed threshold voltage VTH (i.e., the same used for SIMPLY). Increasing the computation parallelism
requires lowering RPD, thus leading to a tradeoff between area (i.e., lower RPD require a larger FET
area) and parallelism. In all cases, the nominal RHRS and RLRS for a TiN/HfOx/AlOx/Pt RRAM
technology from the literature [26], are considered.

2.3. Merging SIMPLY and BNN Analog Vector Matrix Multiplication Accelerator

As discussed in the previous sections, both the SIMPLY computing paradigm and the
BNN analog vector matrix multiplication (AVMM) accelerator are promising solution for
IoT and edge computing devices and applications, as they provide considerable energy sav-
ings when computing different kinds of operations. While using multiple crossbar arrays
specialized for different applications would be a solution to implement both computing
paradigms on the same chip, it would result in an inefficient exploitation of the already
scarce resources available to low-power devices. A better solution would be introducing the

94

J. Low Power Electron. Appl. 2021, 11, 29

possibility to reconfigure the available resources to implement both computing paradigms
on the same crossbar, provided that the additional flexibility must not determine the need
for a much more complex, large, and inefficient peripheral circuitry. As it can be noted from
Figures 4 and 6a, the circuit architecture used to implement both computing paradigms
are indeed similar, relying on some FET devices used to implement RG in the SIMPLY
paradigm and RPD in the BNN AVMM acceleration, VSAs and corresponding voltage
thresholds. However, when considering the same 1T1R crossbar array, there are some dif-
ferences between the two architectures and in their respective control signals management.
Specifically, when performing a read step in the SIMPLY computing paradigm the select
line corresponding to the row where the devices are located is activated, the read voltages
are applied to the crossbar columns and the output is read from the appropriate crossbar
row by means of the VSA and of a threshold. This holds true both when performing an
IMPLY between devices located in the same row and when the devices are located in the
same column.

On the other hand, to execute a MAC operation in the analog BNN AVMM accelerator
the select lines encode the neurons input activations, and each select line must be shared
among the neuron in the same neural network layer. Thus, read voltages need to be applied
to the crossbar rows while the voltages encoding the result of the MAC operations are read
out from the crossbar columns using VSAs with appropriate thresholds.

Therefore, to merge the two approaches the peripheral circuitry comprising the VSAs
and pull-down resistance needs to be repeated both at the columns and the rows of the
crossbar with limited additional complexity, resulting in the architecture shown in Figure 8.
While the need of additional VSAs increases the chip area, it enables the coexistence of the
two in-memory computing paradigms on the same crossbar. In addition, it improves the
SIMPLY architecture by increasing achievable parallelism when performing operations
on devices on the same columns but different rows, thus accelerating the copy of data
between the rows of the crossbar array. In fact, only one IMPLY operation between devices
on the same column using the SIMPLY architecture in Figure 4 can be executed in one
computing step due to the lack of SA at the crossbar columns. Instead, the addition of SAs
at each crossbar column enables the parallel execution of IMPLY operation on multiple
columns, by applying VREAD to the crossbar rows and comparing the VN voltage with the
appropriate threshold at each column. Since IMPLY operations can be performed both on
devices on the same row or column by applying VREAD at the crossbar columns and rows,
respectively, the selector transistor in series with each RRAM device is subject to different
source-bulk voltages. Nevertheless, since VREAD is small, the influence of the body effect
can be minimized by driving these transistors with sufficiently high gate voltages. Also,
using the same VSA threshold voltage for the two computing paradigms translates to
different optimal RG and RPD values, requiring appropriate control of the gate voltage of
the FET devices implementing such resistances. In fact, RPD is much lower than RG since
more devices are read in parallel compared to SIMPLY. A too high RPD would let the input
of the VSA saturate at VREAD with only a few active devices in LRS, thus hindering the
correct circuit operation.

A specific advantage of the proposed architecture is the possibility to exploit both
the SIMPLY and BNN AVMM computing paradigms on the same crossbar array, which is
particularly useful for some applications. For instance, when implementing a complete
BNN exploiting the AVMM in-memory acceleration the MAC operations are computed
in multiple steps, using the input split strategy [21]. Thus, the computation of logic
operations is required to determine each neuron output activation, and consist in the
accumulation of the intermediate MAC results and a comparison with a trained threshold.
While as discussed in Section 2.2.1 the cost for performing accumulations with SIMPLY
rapidly increases with the number of bits to be added, the use of the BNN AVMM for
computing intermediate MAC results drastically reduces the number of bits that needs
to be accumulated with SIMPLY. Thus, while intermediate computations could also be
executed on task-specific CMOS digital circuits, merging the two computing approaches

95

J. Low Power Electron. Appl. 2021, 11, 29

enables achieving high performance by exploiting the intrinsic high degree of parallelism
in the computation, without requiring additional circuits complexity. Also, this approach
is particularly advantageous for large neural network implementations that require storing
the network parameters over multiple chips thus incurring in the inter-chip communication
penalty that can exceed the RRAM programming time and energy. Overall, the proposed
architecture is an extremely flexible solution for ultra low-power applications.

Figure 8. Proposed architecture, enabling the coexistence of the SIMPLY and BNN analog vector
matrix multiplication computing paradigms on the same 1T1R crossbar array.

2.4. Circuit Design Tradeoffs for Performance and Reliability

The circuit design of the proposed architecture is directly connected to the specific
requirements of possible use case applications [3,10], which may require the use of different
resistive memory technologies to meet specific requirements. Thus, the correct selection
of the most appropriate resistive memory technology becomes very important and is
governed by the existing design tradeoffs that are aimed at providing low operation energy,
fast speed, high integration density, and high reliability, as discussed in this section.

Specifically, to minimize the energy consumption different approaches are possible.
The most effective solution is to employ resistive memory technologies with low current
compliance (IC), and therefore higher RLRS. Firstly, the use of lower IC leads to lower energy
dissipation when programming a device, thus tackling the main energy limitation associ-
ated to the SIMPLY paradigm, largely improving the energy efficiency. Secondly, higher
RLRS values also lower the energy required for each parallel read both when computing
an IMPLY in the SIMPLY paradigm and when implementing the BNN AVMM. Further-
more, this strategy results in additional advantages on the overall area consumption and
speed. By lowering IC, the required size of the FET devices used as selector devices and
in the array periphery is reduced, thus reducing the chip area. Also, using higher RLRS
increases the parallelism of the BNN AVMM implementation, since more rows can be
read in parallel when using the same RPD resistance. However, cycle-to-cycle (C2C) and
device-to-device (D2D) variability is inversely proportional to IC [31,37], thus too low IC
values may affect the circuit reliability depending on the memory technology employed.
The energy efficiency is also improved by reducing VREAD, which in turns reduces the
energy consumption during the read operations performed both in the SIMPLY and in the
BNN AVMM computing paradigms. Also, in this case the reliability issue may arise, since
too low read voltages would reduce the RM and the SNR at the input of the VSAs.

96

J. Low Power Electron. Appl. 2021, 11, 29

Limiting the overall chip area is indeed very important to reduce the fabrication costs.
Thus, higher crossbar array densities are beneficial. To this end, two main technology
features are prominently relevant, namely the memory cell feature size and the possibility
to implement dense 3D structures. While the use of a selector transistor effectively solves
the sneak-path problem, it increases the chip area, due to the larger feature size of the
1T1R device (i.e., 8F2) with respect to a passive 1R device [38] (i.e., 4F2), and requires a
higher number of control signals and interconnections. Other passive selector devices could
introduce the required high non-linearity to solve the sneak-path issue while retaining
the 4F2 [39] device feature size and could be also used with the proposed architecture by
changing the driving voltage scheme. Also, the equivalent number of memory devices per
chip area can be increased by fabricating 3D array structures. These can be implemented
by stacking horizontal crossbars arrays, and even more efficiently by realizing a 3D vertical
structure that would lead to the highest densities and costs reduction [40].

Also, crossbar line parasitic effects, such as line resistance and coupling capacitance,
influence the maximum attainable computing speed. In fact, these effects together with
the resistance of RRAM devices introduce propagation delays that grow as the size of the
crossbar arrays is increased [41], therefore introducing a tradeoff between computing speed
and maximum array size.

Finally, to ensure high circuit reliability, in addition to providing a sufficient RM at
the input of the VSA, memory technologies with high endurance and retention should be
preferred. In particular, endurance is a key parameter for the SIMPLY paradigm. In fact,
while the analog BNN VMM only requires reading the state of RRAM devices, the SIMPLY
principle of operations relies on the conditional programming of RRAM devices to perform
computation. Long retention, on the other hand, is required to prevent periodic memory
refresh cycles that would degrade the architecture’s efficiency.

3. Discussion

While SIMPLY was shown in previous works to be an effective solution for the in-
memory computation of logic operations (e.g., XNOR [19], full adders [31]), its effectiveness
for the computation of the set of logic operations required to implement a BNN inference
task was limited due to the large number of computing steps required to implement the
multiply and accumulate (MAC) operation. In fact, as previously mentioned, the number
of computing steps needed for a MAC operation grows exponentially with the number of
inputs to a BNN layer [19] making SIMPLY suitable only for smaller networks. As shown
in Table 1, the energy reduction (i.e., ≈400 times lower) with respect to a conventional
embedded system implementation reported in a previous work [19] is much larger than the
latency improvement (i.e., ≈26 times lower), which would further reduce as the network
size increases. By enabling the coexistence on the same crossbar array of both the SIMPLY
and AVMM computing paradigms at the cost of a limited complexity increase, the proposed
in-memory computing architecture achieves substantial performance improvements when
considering a BNN inference task, while retaining the hardware reconfigurability feature
that is required by edge computing devices and applications. This is clearly reported in
Table 1, where we show, considering the ideal case both for SIMPLY and the proposed
architectures where all the network parameters and computing devices are stored in a
single crossbar, that also in the worst-case the proposed architecture drastically reduces the
latency and energy consumption compared to the SIMPLY architecture when computing
the same inference task, achieving an energy delay product (EDP) improvement larger
than 103.

97

J. Low Power Electron. Appl. 2021, 11, 29

Table 1. Benchmark of the performance of the proposed architecture on a classification task of black and white 20 × 20
pixels images from the MNIST dataset performed with a shallow multilayer perceptron neural network with 1 hidden layer
of 1000 neurons and 10 output neurons.

Implementation 1 Average Energy Latency Average EDP EDP Improvement

Embedded system [42] 5.37 mJ 17.35 ms 9.3 × 10−5 Js 1
SIMPLY parallel 1, 2 [19] 11.4 μJ 663 μs 7.6 × 10−9 Js 1.2 × 104

SIMPLY parallel 1 w RG, Opt 78.9 μJ 663 μs 5.2 × 10−9 Js 1.8 × 104

This work 1 w RG, Opt 231 nJ 31.6 μs 7.3 × 10−12 Js 1.3 × 107

1 Estimates were determined considering the RRAM technology from [26], and the ideal case where all the network parameters can be
stored in a single crossbar. Only the worst-case estimates for RRAM variability are reported. The energy estimates do not include the
decoder and driver energy overhead. 2 In [19], a suboptimal RG = 10 kΩ was used.

As discussed in Section 2.4, the performance, reliability, and target application for the
proposed computing architecture strongly depend on the resistive memory technology
employed. While the device endurance does not impact on the AVMM implementation, it
is a very important discriminant for SIMPLY. Applications performing intensive compu-
tations require very high endurance (i.e., >1014). Thus, for this application spin-transfer
torque magnetic RAM (STT-MRAM) devices are more suitable candidate, thanks to their
high retention (>10 years), endurance (>1014) and switching speed (~ns) [43]. However,
STT-MRAM devices have usually small tunnel magneto resistance (TMR) which leads to a
very small memory window that can affect the circuit reliability if not address properly,
especially when implementing the AVMM. For instance, Gao et al. [44] showed that STT-
MRAM can indeed be used to accelerate the AVMM for BNNs, however at the cost of
additional in-hardware calibration steps and more complex peripheral circuitry, which in-
clude operational amplifiers to implement the virtual ground, thus limiting the throughput,
energy efficiency, and chip density. Conversely, devices characterized by lower endurance
are better suited for applications requiring less frequent burst operations, such as smart
sensors. For instance, to provide a reliable device operation over a 10-year period with
a memory technology providing a 108 endurance would limit the computing speed to
20 inferences per minute without introducing mitigation strategies, such as periodically
changing devices used for computations. Currently, several emerging non-volatile memory
(NVM) technologies were shown to achieve endurance >108

. Among these technologies,
phase change memory (PCM) devices are the most mature and offer long retention, high en-
durance (>1012) [45–47], but require higher switching currents compared to other ENVMs,
therefore limiting the integration density. Also, ferroelectric tunnel junction (FTJ) devices
are a promising candidate for the development of ultra-low-power in-memory computing
architectures thanks to low programming energy and fast speed. However, high endurance,
retention, and scalability still need to be fully demonstrated [45,47]. At the state of the
art, RRAM technologies provide the best overall characteristics. Depending on the used
stack of materials, RRAMs can achieve endurance up to 1010 [48], long retention, large
memory window (≈10), and can be used to realize vertical 3D structures similar to flash
memory technology, leading to ultra-dense arrays. However, two main technology-related
challenges remain to be solved. Specifically, C2C and D2D variability lead to random
resistance distributions which spread when lowering IC [31,37] thus introducing a tradeoff
between energy efficiency, reliability, and throughput when performing the AVMM. Also,
to achieve ultra-dense vertical 3D arrays while preventing the sneak path issue, a particular
research focus must be directed to the development of compatible selector devices with a
strongly non-linear conduction behavior [39,49].

4. Materials and Methods

4.1. Circuit Simulations
4.1.1. RRAM Physics-Based Compact Model

The performance of the proposed architecture was estimated by means of circuit simu-
lation performed on Cadence Virtuoso® software, using the RRAM physics-based compact

98

J. Low Power Electron. Appl. 2021, 11, 29

model from [50] available on nanoHub, that was calibrated on a TiN/HfOx/AlOx/Pt
RRAM technology from [26] that is programmed with an IC of 100 μA. A sketch of the
compact model is reported in Figure 9a,b. While other general-purpose memristors [51–54]
and physics-based RRAM compact models [55–60] exist in the literature, the used RRAM
physics-based compact model is particularly suited for estimating the circuit performance
and reliability, as it includes all the relevant RRAM devices’ characteristics and non-
idealities (e.g., dynamic temperature modelling, resistive state variability, and RTN) which
only a few other physics-based compact models [56,57] consider, as discussed in [28].
Specifically, the compact model approximates the device resistance as the sum of a con-
ductive filament (CF) and a dielectric barrier component (see Figure 9a,b). Differential
equations model the field-activated and temperature-accelerated bond breaking during set,
and the field-driven oxygen ions’ drift and recombination during reset, thus reproducing
the dielectric barrier thickness dynamics. Thermal effects are also modeled with differential
equation, leading to accurate results also when ultra-fast pulses are considered. As shown
in Figure 9c,d, the compact model well reproduces with a single set of parameters both
the DC IV and the response to fast reset pulses. Additionally, the compact model includes
all the RRAM non-idealities that are relevant to accurately estimate circuit performance
and reliability, specifically RTN and variability [28,50]. The complete list of calibrated
parameters is available in [20].

(a) (b)

(c) (d)

Figure 9. Sketch of an RRAM device in (a) high-resistive state (HRS) and in (b) low-resistive state (LRS) as represented in the
compact model. (c) Experimental (square symbols) and simulated (dotted line) IV characteristic of the RRAM technology
from [26]. (d) Experimental (boxes) and simulated (lines) response to 50 ns reset voltage pulses at different reset voltages
(VRESET) data from [26].

4.1.2. SIMPLY Simulations

The performance of the proposed architecture when operating as SIMPLY were es-
timated considering 1ns read and write pulses which result in a 4 ns execution time of a
single IMPLY or FALSE operation. The RG resistors were simulated using planar NMOS
devices in a 45 nm technology [30] with a channel width of 250 nm and a channel length

99

J. Low Power Electron. Appl. 2021, 11, 29

of 50 nm. Also, the energy contribution of the SA is considered by simulating the circuit
shown in Figure 4 in the same 45 nm technology, which results in an average energy
consumption of 8 fJ when operated with a 2 V VDD over a temperature range from 0 ◦C
to 85 ◦C, as reported in [20]. The device SET and RESET operations are achieved using
1 ns voltage pulses with amplitudes 3 V and –2.9 V, respectively. The SET and RESET
amplitudes were determined using the physics-based compact model to ensure that a
memory window larger than 10 is achieved also for very short voltage pulses, as discussed
in [19]. The read margin (RM) and performance for both IMPLY and FALSE operations
reported in Tables 2 and 3 were estimated including the effect of variability and RTN
during the read operation by repeating the simulations (i.e., 50 trials) and reseeding the
random sources. Additional information regarding SIMPLY circuit simulations and the list
of variability and RTN model parameters are available in [20,50], respectively.

Table 2. Performance estimates of the IMPLY operation implemented on the SIMPLY architecture
using RG,opt.

Input Configuration
Energy 1

(min-avg-max)

0 0 139 – 429 – 509 fJ
0 1 6.18 – 6.183 – 6.185 fJ
1 0 6.18 – 6.183 – 6.185 fJ
1 1 6.184 – 6.184 – 6.185 fJ

1 Device-to-device (D2D) and cycle-to-cycle (C2C) variability are included by repeating the circuit simulations
with different seed for the random noise sources (50 trials).

Table 3. Performance estimates of the FALSE operation implemented on the SIMPLY architecture
using RG,opt.

Input Configuration
Energy 1

(min-avg-max)

0 9.6 – 11.2 – 12 fJ
1 100 – 145 – 190 fJ

1 D2D and C2C variability are included by repeating the circuit simulations with different seed for the random
noise sources (50 trials).

4.2. Implemented Neural Network

To benchmark the performance of the proposed architecture against the SIMPLY
implementation, the same BNN from [19,42] was implemented. The network consists
of a single hidden layer with 1000 neurons, and classify the digits 0–9 from the MNIST
handwritten digits dataset [61]. The 20 × 20 pixels images are binarized to black and white
images before training. The training was performed on 9500 images using the DoReFa-Net
algorithm [32] considering one bit for weights and activations and 32 bits for the gradients.
2500 and 2000 images were used for validation and testing, respectively. The trained
network achieves an accuracy of 91.4% [19].

4.3. BNN Performance Estimates

The trained network parameters were mapped to RRAM devices’ resistance values
including the effect of resistive state variability. The performance of the proposed architec-
ture was estimated on an inference task by means of circuit simulation, where the AVMM
is used to compute intermediate results of the MAC operations while SIMPLY is used to
accumulate intermediate results and to compute each layer output activations. Intermedi-
ate MAC operations are needed to preserve the same NMOS size for implementing both
RPD and RG by just adjusting VGS (i.e., VGS is 1.48 V and 2.9 V when operating the crossbar
array as SIMPLY or BNN AVMM accelerator, respectively). With the considered RRAM
technology, a maximum of 15 crossbar rows can be reliably read in parallel during the

100

J. Low Power Electron. Appl. 2021, 11, 29

AVMM. Thus, as an example, 27 (i.e., 400/15) computing steps are needed to compute all
the intermediate MAC operations in the first layer. After each parallel read operation, the
intermediate MAC results are stored in RRAM devices in the crossbar array and accumu-
lated using the SIMPLY accumulator implementation shown in Figure 5e [20]. The results of
the accumulations are compared with a threshold to produce each layer output activations
using the SIMPLY comparator implementation from [19], which requires 9 · m + m(m+1)

2
where m is the number of compared bits. Finally, the output layer computes the predicted
class using the hardmax SIMPLY implementation reported in [19] which accounts for 1457
computing steps on the proposed architecture and determines the predicted class as the
class with the highest activation value. Thus, a total of 7902 computing steps are required
for each inference, resulting in a 31.6 μs inference latency when 1 ns voltage pulses are
used, as reported in Table 1. The worst-case energy for an inference task reported in Table 1
is estimated by running the neural network on the complete test set and considering only
the worst-case energy for each IMPLY, SET, and FALSE operations for each specific input
combination. The VSA energy contribution is included when performing both SIMPLY and
BNN MAC operations. By considering the worst-case energy for each SIMPLY operation,
which is the main contribution to the overall energy consumption, the energy assessments
are indeed slightly overestimated, and roughly account for additional energy contributions
possibly introduced by the peripheral circuitry. Nevertheless, even when increasing by 20%
the energy consumption to account for the decoders and drivers considering the power
breakdown reported by He at al. [21], the results (see Table 1) underline the remarkable
energy efficiency in comparison with conventional embedded system implementations.

5. Conclusions

In this work, we proposed a novel in-memory computing architecture that enables
the coexistence on the same crossbar array of the SIMPLY logic-in-memory computing ap-
proach and of the BNN AVMM. Design tradeoffs and requirements for circuit performance
and reliability were analyzed in depth. The performance of the proposed architecture on an
inference task were benchmarked against a pure SIMPLY implementation by means of cir-
cuit simulations enabled by a calibrated RRAM physics-based compact model. The results
show that the proposed approach drastically improves the EDP by a factor >103, indicating
that the proposed architecture is a viable solution for the realization of reconfigurable
ultra-low-power hardware accelerators for edge computing applications.

Author Contributions: Conceptualization, T.Z. and F.M.P.; methodology, T.Z.; software, T.Z., F.M.P.
and P.P.; validation, T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, T.Z.,
F.M.P. and P.P.; supervision, F.M.P. and P.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available within the article.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-Inspired Computing Chips. Nat.
Electron. 2020, 3, 371–382. [CrossRef]

2. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

3. Pedretti, G.; Ielmini, D. In-Memory Computing with Resistive Memory Circuits: Status and Outlook. Electronics 2021, 10, 1063.
[CrossRef]

4. Kvatinsky, S.; Belousov, D.; Liman, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. MAGIC—Memristor-Aided
Logic. IEEE Trans. Circuits Syst. II: Express Briefs 2014, 61, 895–899. [CrossRef]

5. Ziegler, T.; Waser, R.; Wouters, D.J.; Menzel, S. In-Memory Binary Vector–Matrix Multiplication Based on Complementary
Resistive Switches. Adv. Intell. Syst. 2020, 2, 2000134. [CrossRef]

101

J. Low Power Electron. Appl. 2021, 11, 29

6. Kingra, S.K.; Parmar, V.; Chang, C.-C.; Hudec, B.; Hou, T.-H.; Suri, M. SLIM: Simultaneous Logic-in-Memory Computing
Exploiting Bilayer Analog OxRAM Devices. Sci. Rep. 2020, 10. [CrossRef]

7. Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards Artificial General
Intelligence with Hybrid Tianjic Chip Architecture. Nature 2019, 572, 106–111. [CrossRef] [PubMed]

8. Xiao, T.P.; Bennett, C.H.; Feinberg, B.; Agarwal, S.; Marinella, M.J. Analog Architectures for Neural Network Acceleration Based
on Non-Volatile Memory. Appl. Phys. Rev. 2020, 7, 031301. [CrossRef]

9. Saxena, V. Neuromorphic Computing: From Devices to Integrated Circuits. J. Vac. Sci. Technol. B 2021, 39, 010801. [CrossRef]
10. Berggren, K.; Xia, Q.; Likharev, K.K.; Strukov, D.B.; Jiang, H.; Mikolajick, T.; Querlioz, D.; Salinga, M.; Erickson, J.R.; Pi, S.; et al.

Roadmap on Emerging Hardware and Technology for Machine Learning. Nanotechnology 2020, 32, 012002. [CrossRef]
11. Benoit, P.; Dalmasso, L.; Patrigeon, G.; Gil, T.; Bruguier, F.; Torres, L. Edge-Computing Perspectives with Reconfigurable Hardware.

In Proceedings of the 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC);
York, UK, 1–3 July 2019; pp. 51–58.

12. Yu, J.; Du Nguyen, H.A.; Abu Lebdeh, M.; Taouil, M.; Hamdioui, S. Enhanced Scouting Logic: A Robust Memristive Logic Design
Scheme. In Proceedings of the 2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Qingdao,
China, 17−19 July 2019; pp. 1–6.

13. Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’ Switches Enable ‘Stateful’ Logic
Operations via Material Implication. Nature 2010, 464, 873–876. [CrossRef]

14. Siemon, A.; Menzel, S.; Waser, R.; Linn, E. A Complementary Resistive Switch-Based Crossbar Array Adder. IEEE J. Emerg. Sel.
Top. Circuits Syst. 2015, 5, 64–74. [CrossRef]

15. Siemon, A.; Drabinski, R.; Schultis, M.J.; Hu, X.; Linn, E.; Heittmann, A.; Waser, R.; Querlioz, D.; Menzel, S.; Friedman, J.S. Stateful
Three-Input Logic with Memristive Switches. Sci. Rep. 2019, 9, 1–13. [CrossRef] [PubMed]

16. Hu, S.-Y.; Li, Y.; Cheng, L.; Wang, Z.-R.; Chang, T.-C.; Sze, S.M.; Miao, X. Reconfigurable Boolean Logic in Memristive Crossbar:
The Principle and Implementation. IEEE Electron Device Lett. 2019, 40, 200–203. [CrossRef]

17. Puglisi, F.M.; Zanotti, T.; Pavan, P. SIMPLY: Design of a RRAM-Based Smart Logic-in-Memory Architecture Using RRAM
Compact Model. In Proceedings of the ESSDERC 2019—49th European Solid-State Device Research Conference (ESSDERC),
Krakow, Poland, 23−26 September 2019; pp. 130–133.

18. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained To+ 1 or-1. arXiv 2016, arXiv:1602.02830.

19. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reliability and Performance Analysis of Logic-in-Memory Based Binarized Neural Networks.
IEEE Trans. Device Mater. Reliab. 2021, 1. [CrossRef]

20. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reconfigurable Smart In-Memory Computing Platform Supporting Logic and Binarized Neural
Networks for Low-Power Edge Devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 1. [CrossRef]

21. He, W.; Yin, S.; Kim, Y.; Sun, X.; Kim, J.-J.; Yu, S.; Seo, J.-S. 2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-/Energy-
Efficient Deep Learning. IEEE Solid State Circuits Lett. 2020, 3, 194–197. [CrossRef]

22. Sun, X.; Peng, X.; Chen, P.; Liu, R.; Seo, J.; Yu, S. Fully Parallel RRAM Synaptic Array for Implementing Binary Neural Network
with (+1, −1) Weights and (+1, 0) Neurons. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC), Jeju, Korea, 22−25 January 2018; pp. 574–579.

23. Vieira, J.; Giacomin, E.; Qureshi, Y.; Zapater, M.; Tang, X.; Kvatinsky, S.; Atienza, D.; Gaillardon, P.-E. A Product Engine for
Energy-Efficient Execution of Binary Neural Networks Using Resistive Memories. In Proceedings of the 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC), Cuzco, Peru, 6−9 October 2019; pp. 160–165.

24. Yi, W.; Kim, Y.; Kim, J.-J. Effect of Device Variation on Mapping Binary Neural Network to Memristor Crossbar Array. In
Proceedings of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25−29 March 2019; pp.
320–323.

25. Qin, Y.-F.; Kuang, R.; Huang, X.-D.; Li, Y.; Chen, J.; Miao, X.-S. Design of High Robustness BNN Inference Accelerator Based on
Binary Memristors. IEEE Trans. Electron Devices 2020, 67, 3435–3441. [CrossRef]

26. Yu, S.; Wu, Y.; Chai, Y.; Provine, J.; Wong, H.-S.P. Characterization of Switching Parameters and Multilevel Capability in
HfOx/AlOx Bi-Layer RRAM Devices. In Proceedings of the 2011 International Symposium on VLSI Technology, Systems and
Applications, Hsinchu, Taiwan, 25−27 April 2011; pp. 1–2.

27. Lehtonen, E.; Poikonen, J.H.; Laiho, M. Two Memristors Suffice to Compute All Boolean Functions. Electron. Lett. 2010, 46,
239–240. [CrossRef]

28. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reliability-Aware Design Strategies for Stateful Logic-in-Memory Architectures. IEEE Trans.
Device Mater. Reliab. 2020, 20, 278–285. [CrossRef]

29. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066. [CrossRef]

30. Stine, J.E.; Castellanos, I.; Wood, M.; Henson, J.; Love, F.; Davis, W.R.; Franzon, P.D.; Bucher, M.; Basavarajaiah, S.; Oh, J.;
et al. FreePDK: An Open-Source Variation-Aware Design Kit. In Proceedings of the 2007 IEEE International Conference on
Microelectronic Systems Education (MSE’07), San Diego, CA, USA, 3−4 June 2007; pp. 173–174.

31. Zanotti, T.; Zambelli, C.; Puglisi, F.M.; Milo, V.; Pérez, E.; Mahadevaiah, M.K.; Ossorio, O.G.; Wenger, C.; Pavan, P.; Olivo, P.; et al.
Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays. IEEE Trans. Electron Devices 2020, 67, 4611–4615. [CrossRef]

102

J. Low Power Electron. Appl. 2021, 11, 29

32. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients. arXiv 2018, arXiv:1606.06160.

33. Krestinskaya, O.; Otaniyozov, O.; James, A.P. Binarized Neural Network with Stochastic Memristors. In Proceedings of the 2019
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18−20 March 2019; pp.
274–275.

34. Chen, W.-H.; Dou, C.; Li, K.-X.; Lin, W.-Y.; Li, P.-Y.; Huang, J.-H.; Wang, J.-H.; Wei, W.-C.; Xue, C.-X.; Chiu, Y.-C.; et al.
CMOS-Integrated Memristive Non-Volatile Computing-in-Memory for AI Edge Processors. Nat. Electron 2019, 2, 420–428.
[CrossRef]

35. Wan, W.; Kubendran, R.; Gao, B.; Joshi, S.; Raina, P.; Wu, H.; Cauwenberghs, G.; Wong, H.S.P. A Voltage-Mode Sensing Scheme
with Differential-Row Weight Mapping for Energy-Efficient RRAM-Based In-Memory Computing. In Proceedings of the 2020
IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2.

36. Yin, S.; Kim, Y.; Han, X.; Barnaby, H.; Yu, S.; Luo, Y.; He, W.; Sun, X.; Kim, J.-J.; Seo, J. Monolithically Integrated RRAM- and
CMOS-Based In-Memory Computing Optimizations for Efficient Deep Learning. IEEE Micro. 2019, 39, 54–63. [CrossRef]

37. Grossi, A.; Nowak, E.; Zambelli, C.; Pellissier, C.; Bernasconi, S.; Cibrario, G.; El Hajjam, K.; Crochemore, R.; Nodin, J.F.; Olivo, P.;
et al. Fundamental Variability Limits of Filament-Based RRAM. In Proceedings of the 2016 IEEE International Electron Devices
Meeting (IEDM), San Francisco, CA, USA, 3−7 December 2016.

38. Mahmoodi, M.R.; Vincent, A.F.; Nili, H.; Strukov, D.B. Intrinsic Bounds for Computing Precision in Memristor-Based Vector-by-
Matrix Multipliers. IEEE Trans. Nanotechnol. 2020, 19, 429–435. [CrossRef]

39. Xia, Q.; Yang, J.J. Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater. 2019, 18, 309–323. [CrossRef]
40. Yu, M.; Cai, Y.; Wang, Z.; Fang, Y.; Liu, Y.; Yu, Z.; Pan, Y.; Zhang, Z.; Tan, J.; Yang, X.; et al. Novel Vertical 3D Structure of

TaOx-Based RRAM with Self-Localized Switching Region by Sidewall Electrode Oxidation. Sci. Rep. 2016, 6, 21020. [CrossRef]
41. Fouda, M.E.; Eltawil, A.M.; Kurdahi, F. Modeling and Analysis of Passive Switching Crossbar Arrays. IEEE Trans. Circuits Syst. I:

Regul. Pap. 2018, 65, 270–282. [CrossRef]
42. McDanel, B.; Teerapittayanon, S.; Kung, H.T. Embedded Binarized Neural Networks. In Proceedings of the 2017 International

Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20−22 February 2017; pp. 168–173.
43. Kim, C.-H.; Lim, S.; Woo, S.Y.; Kang, W.-M.; Seo, Y.-T.; Lee, S.-T.; Lee, S.; Kwon, D.; Oh, S.; Noh, Y.; et al. Emerging Memory

Technologies for Neuromorphic Computing. Nanotechnology 2019, 30, 032001. [CrossRef]
44. Gao, S.; Chen, B.; Qu, Y.; Zhao, Y. MRAM Acceleration Core for Vector Matrix Multiplication and XNOR-Binarized Neural

Network Inference. In Proceedings of the 2020 International Symposium on VLSI Technology, Systems and Applications
(VLSI-TSA), Hsinchu, Taiwan, 10−13 August 2020; pp. 153–154.

45. Slesazeck, S.; Mikolajick, T. Nanoscale Resistive Switching Memory Devices: A Review. Nanotechnology 2019, 30, 352003.
[CrossRef] [PubMed]

46. Ielmini, D.; Wong, H.-S.P. In-Memory Computing with Resistive Switching Devices. Nat. Electron. 2018, 1, 333–343. [CrossRef]
47. Chen, A. A Review of Emerging Non-Volatile Memory (NVM) Technologies and Applications. Solid State Electron. 2016, 125,

25–38. [CrossRef]
48. Nail, C.; Molas, G.; Blaise, P.; Piccolboni, G.; Sklenard, B.; Cagli, C.; Bernard, M.; Roule, A.; Azzaz, M.; Vianello, E.; et al.

Understanding RRAM Endurance, Retention and Window Margin Trade-off Using Experimental Results and Simulations. In
Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3−7 December 2016.

49. Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C. Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar
Arrays. Nanoscale Adv. 2020, 2, 1811–1827. [CrossRef]

50. Puglisi, F.M.; Zanotti, T.; Pavan, P. Unimore Resistive Random Access Memory (RRAM) Verilog-A Model. nanoHUB 2019.
[CrossRef]

51. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S. A Memristor Device Model. IEEE Electron Device Lett. 2011, 32,
1436–1438. [CrossRef]

52. Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst.
I: Regul. Pap. 2013, 60, 211–221. [CrossRef]

53. Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors. IEEE
Trans. Circuits Syst. II: Express Briefs 2015, 62, 786–790. [CrossRef]

54. Messaris, I.; Serb, A.; Stathopoulos, S.; Khiat, A.; Nikolaidis, S.; Prodromakis, T. A Data-Driven Verilog-A ReRAM Model. IEEE
Trans. Comput-Aided Des. Integr. Circuits Syst. 2018, 37, 3151–3162. [CrossRef]

55. La Torre, C.; Zurhelle, A.F.; Breuer, T.; Waser, R.; Menzel, S. Compact Modeling of Complementary Switching in Oxide-Based
ReRAM Devices. IEEE Trans. Electron Devices 2019, 66, 1268–1275. [CrossRef]

56. Wiefels, S.; Bengel, C.; Kopperberg, N.; Zhang, K.; Waser, R.; Menzel, S. HRS Instability in Oxide-Based Bipolar Resistive
Switching Cells. IEEE Trans. Electron Devices 2020, 67, 4208–4215. [CrossRef]

57. González-Cordero, G.; González, M.B.; Campabadal, F.; Jiménez-Molinos, F.; Roldán, J.B. A Physically Based SPICE Model for
RRAMs Including RTN. In Proceedings of the 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS),
Segovia, Spain, 18−20 November 2020; pp. 1–6.

103

J. Low Power Electron. Appl. 2021, 11, 29

58. Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.-P. A Neuromorphic Visual System Using RRAM Synaptic Devices with
Sub-PJ Energy and Tolerance to Variability: Experimental Characterization and Large-Scale Modeling. In Proceedings of the 2012
International Electron Devices Meeting, San Francisco, CA, USA, 10−13 December 2012.

59. Jiang, Z.; Yu, S.; Wu, Y.; Engel, J.H.; Guan, X.; Wong, H.-P. Verilog-A Compact Model for Oxide-Based Resistive Random Access
Memory (RRAM). In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), Yokohama, Japan, 9−11 September 2014; pp. 41–44.

60. Li, H.; Jiang, Z.; Huang, P.; Wu, Y.; Chen, H.-; Gao, B.; Liu, X.Y.; Kang, J.F.; Wong, H.-P. Variation-Aware, Reliability-Emphasized
Design and Optimization of RRAM Using SPICE Model. In Proceedings of the 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), Grenoble, France, 9−13 March 2015; pp. 1425–1430.

61. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

104

Journal of

Low Power Electronics
and Applications

Article

Minimization of the Line Resistance Impact on
Memdiode-Based Simulations of Multilayer Perceptron Arrays
Applied to Pattern Recognition

Fernando Leonel Aguirre 1,2,3,*, Nicolás M. Gomez 4, Sebastián Matías Pazos 1,2, Félix Palumbo 1,2, Jordi Suñé 3

and Enrique Miranda 3,*

Citation: Aguirre, F.L.; Gomez, N.M.;

Pazos, S.M.; Palumbo, F.; Suñé, J.;

Miranda, E. Minimization of the Line

Resistance Impact on

Memdiode-Based Simulations of

Multilayer Perceptron Arrays

Applied to Pattern Recognition. J.

Low Power Electron. Appl. 2021, 11, 9.

https://doi.org/10.3390/jlpea11010009

Academic Editor: Alex Serb

Received: 4 January 2021

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unidad de Investigación y Desarrollo de las Ingenierías (UIDI), Facultad Regional Buenos Aires,
Universidad Tecnológica Nacional (UTN-FRBA), Buenos Aires C1179AAQ, Argentina;
spazos@frba.utn.edu.ar (S.M.P.); felix.palumbo@conicet.gov.ar (F.P.)

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
3 Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona (UAB),

08193 Cerdanyola del Vallès, Spain; jordi.sune@uab.cat
4 Departamento de Ingeniería Electrónica, Facultad Regional Buenos Aires, Universidad Tecnológica

Nacional (UTN-FRBA), Buenos Aires C1179AAQ, Argentina; nigomez@est.frba.utn.edu.ar
* Correspondence: aguirref@ieee.org (F.L.A.); enrique.miranda@uab.cat (E.M.)

Abstract: In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic
SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for
large dataset pattern recognition. By considering ex-situ training and the classification of the hand-
written characters of the MNIST database, we evaluate the degradation of the inference accuracy
due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two
approaches to reduce the impact of the line resistance are considered and implemented in our
simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the
synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the
line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact
of high line resistance values.

Keywords: RRAM; resistive-switching; cross-point; memory; memristor; neuromorphic; pattern
recognition; multilayer perceptron

1. Introduction

In-memory-computation [1] has been recently proposed as an alternative approach to
overcome the inherent bottleneck that limits the performance improvement of traditional
Von-Neuman architectures, while also allowing significant energy saving. The key elements
to enable the further maturing of this technology are the memory cells, which are required
to be nonvolatile (nonvolatile memory, NVM) and to operate at low power [2]. Resistive
memories (RRAM) [1] were found to meet these requirements as well as allowing dense
memory integration (up to 4F2, F being the feature size of the technology node [3]) via
architectures such as memristor cross-bar arrays (MCA see Figure 1a). In particular, MCAs
are of great interest for the development of hardware-based deep neural networks (DNN,
Figure 1b) as they are suitable for implementing the matrix-vector-multiplication (MVM)
method necessary to perform operations and propagate signals through the neural layers [2]
with reduced power consumption. Such applications have been extensively studied in
previous works [4–8] considering various MCA architectures as well as different memristor
models. For instance, Li et al. reported in [9] the case of character classification using an
MCA-based multilayer perceptron (MLP) of 64 × 54 × 10 neurons with a single layer of
hidden neurons.

J. Low Power Electron. Appl. 2021, 11, 9. https://doi.org/10.3390/jlpea11010009 https://www.mdpi.com/journal/jlpea
105

J. Low Power Electron. Appl. 2021, 11, 9

Figure 1. (a) Sketch of the MCA structure. Red and blue arrows show currents from the top (word lines—WL) to the bottom
lines (bit lines—BL). Different resistance states are represented (high (HRS) to low (LRS) resistance states). The dashed blue
line depicts the sneak path problem. The parasitic RL is indicated for WLi and BLi. Two MCAs are depicted, representing
two layers of synapses. (b) Sketch of a DNN with two hidden layers.

However, despite these promising studies, the development of in-memory compu-
tation is still hindered by the many practical limitations faced by MCAs, such as the line
or wire resistances (RL), the limited resistance window of the devices (RON and ROFF) as
well as the inherent features associated with the integration of memristors in an MCA
such as the so-called sneakpath problem (see Figure 1a). While the former are mainly a
consequence of the RL increase as the fabrication technology node scales down [8,10] and
which in combination with a reduced resistance window or low RON causes a significant
voltage drop across the MCA lines, the latter refers to the non-negligible current flowing
through the unselected devices. This causes errors in the read and write processes [10]. Al-
though hardware-based techniques were proposed to address these challenges, they are in
general both time, power and cost demanding [9]. Instead, software solutions [4–8,10–14]
allow a more systematic study and thus different approaches have been proposed. Among
them, SPICE simulation appears to be the most suitable approach as it allows studying
the full system, i.e., the MCA and the control electronics necessary to operate the network.
However, this approach is normally constrained to the limitations of the memristor model
considered and to the size of the memristor-based MLP given the high computational
requirements [15,16].

In this regard, the results presented by Aguirre et al. in [17] represent a step forward
in the realistic circuital modeling of MCA-based single-layer perceptrons (SLP) involving
thousands of devices intended for the classifications of large pattern datasets. A key
element in that study is the Quasi-Static Memdiode Model (QMM), a memristor model
originally proposed by Miranda in [18,19], that provides high simulation accuracy at
reduced computational cost. The closed-form expression for the transport equation, i.e.,
the current-voltage (I-V) curve (continuous and differentiable) and the recursive nature
of the state variable computation, makes the QMM suitable for dealing with arbitrary
input signals (continuous or discontinuous, differentiable or nondifferentiable). This
is a significant advantage when compared to other widely explored memristor models
such as the general phenomenological models (Yakopcic [20], TEAM [21], VTEAM [22],
Eshraghian [23], etc.) that although capable of successfully fitting experimental data,
rely on various internal equations or artificial window functions (commonly used for
modeling the SET/RESET transitions) in the memory equation (ME, a first order differential
equation that links the current flowing through or the voltage applied to the structure
with its internal memory state) that can seriously affect the model’s convergence [24,25].
Nevertheless, the extension of the results obtained for the SLP test structures to more
practical implementations such as MLPs considering the aforementioned line parasitics is
still to be addressed.

It is worth pointing out that other memristor device nonidealities threaten the perfor-
mance of MCA DNNs and are currently the focus of intense research: nonlinearity in the
I-V characteristics [26], retention failures [27–29], nonuniformity [17,30], Device-to-Device
(D2D) and Cycle-to-Cycle (C2C) variability are some of the most representative challenges.

106

J. Low Power Electron. Appl. 2021, 11, 9

However, nonlinearity factors well below 10 have been obtained by optimizing the device
fabrication process [31,32] and have also been addressed through specific training [33,34]
and voltage mapping [26] methodologies. Additionally, the use of devices with a higher
ROFF/RON ratio has been shown to reduce the impact of the D2D variability [17]. Moreover,
for the specific case of on-line training, nonlinear weight update [35–37] is another relevant
source of inaccuracy. In this regard, it has been shown that activation function engineering
and threshold weight update schemes effectively suppress training noise [36]. Particularly,
the write–verify approach, as the one described in [17,38], allows to mitigate the impact
of this effect while also providing robustness against C2C and D2D variability [39]. Line
resistance (RL) is another nonideal factor that worsens as the technology scales down [8,10].
Therefore, the realistic simulation and optimization of DNNs considering the impact of
line resistance is of utmost importance to enable robust implementation of neuromorphic
circuits independently of the technology node and RRAM device optimization.

In this paper, we demonstrate the applicability of the QMM to SPICE simulations
of MCA-based MLPs and evaluate the inference accuracy degradation as a function of
RL. Ex-situ training is considered and the classification of the grayscale images from the
MNIST dataset [40] is assumed for benchmarking purposes. The simulation workflow
presented in [17] was modified so as to account for multiple synaptic layers and hidden
neural layers. In order to minimize the impact of RL, two approaches were evaluated,
they are the divisions of each synaptic layer into smaller partitions and the inclusion of
a calibration procedure that compensates the effects associated with RL. The rest of this
paper is organized as follows: the fundamentals (I-V and ME characteristics) of the QMM
are presented in Section 2. Section 3 explains the MCA-based MLP training and simulation
procedures, including the MCA partitioning and RL-dependent calibration. In Section
4, the obtained simulation results in terms of the aforementioned features are discussed.
Finally, in Section 5, the general conclusions of this paper are presented. To the best of the
authors knowledge, the study of MLPs including the parasitic effects by means of SPICE
simulations and considering a realistic memristor model has not been published before.

2. Quasi-Static Memdiode Model

The resistive switching (RS) mechanism is the fundamental phenomenon behind
RRAM devices. In the particular cases of CBRAMs and OxRAMs, RS relies on the displace-
ment of metal ions/oxygen vacancies within the dielectric film in a metal–insulator–metal
(MIM) structure originated from the application of an external electrical stimulus, current or
voltage [41–44]. Such migration of ions causes the alternate completion and destruction of a
conductive filament (CF) spanning across the insulating film. For a ruptured CF, the device
is in the high resistance state (HRS), often characterized by an exponential I-V relationship,
while the completion of the CF leads to the low resistance state (LRS), which often exhibits
a linear I-V curve [45,46]. In between these two extreme situations, the modulation of the
CF transport properties renders intermediate states by voltage-controlled redox reactions.
From the modeling viewpoint, the compact model originally proposed by Miranda in [18]
and later extended by Patterson et al. in [19] is able to describe the major and minor I-V
loops and the gradual transitions in bipolar resistive switches. This is accomplished, as
shown in the inset of Figure 2a, by considering a nonlinear transport equation based on two
identical opposite-biased diodes in series with a resistor. The I-V relationship resembles a
diode with memory and that is why this device was termed memdiode. Notice that the
antiparallel connected diodes allow the bidirectional current flow through the memdiode
device, as for both positive and negative polarities there will be a forward biased diode.
For the sake of completeness, the QMM is succinctly reviewed in the next paragraphs.

107

J. Low Power Electron. Appl. 2021, 11, 9

Figure 2. (a) Hysteron model with logistic ridge functions Γ+ (Equation (3)) and Γ− (Equation (4)). Ω is the space of
feasible states S. The red thick faded line superimposed to the hysteron model indicates the trajectory of the state variable
λ inside Ω from an initial S1 to a final S2 state. The inset in the right shows the equivalent circuit model for the current
equation (Equation (1)) including the series resistance. The diodes are driven by the memory state of the device and one
diode is activated at a time. Typical I-V characteristic for a memdiode obtained via simulation of the proposed model are
superimposed. Current evolution is indicated by the blue arrows. (b) I-V characteristics of the memdiode showing the
exponential (HRS) to lineal (LRS) transition by varying λ. The red shaded region indicates the possible voltages applied
to the device as the read margin reduces. IHRS and ILRS currents are pinpointed at nominal Vread with the grey and white
circle markers, respectively. Overestimation of IHRS may occur when considering a linear model for the HRS regime and
lower effective Vread voltages as indicated by the cyan, blue and black ball markers. (c) Experimental I-V loops of different
materials reported in the literature fitted with the QMM model: Al2O3 [47] and TaOX [46].

Physically, the memdiode is associated with a potential barrier that controls the
electron flow in the CF. The conduction properties of this nonlinear device change according
to the variation of this barrier. Due to the uncertainty in the area of the CF, instead of
the potential barrier height, the diode current amplitude is used as the reference variable.
Following Chua’s memristive device theory, the proposed model comprises two equations,
one for the electron transport and a second equation for the memory state of the device
(ME), which is controlled by a hysteresis operator. The equation for the I-V characteristic
of a memdiode is given by the expression:

I = sgn(V)

⎧⎨
⎩

W
(
αRI0(λ)eα(abs(V)+RI0(λ))

)
αR

− I0(λ)

⎫⎬
⎭ (1)

108

J. Low Power Electron. Appl. 2021, 11, 9

where I0(λ) = Imin(1 − λ) + Imaxλ is the diode current amplitude, α a fitting constant, and
R a series resistance. Equation (1) is the solution of a diode with series resistance and
W is the Lambert function. Imin and Imax are the minimum and maximum values of the
current amplitude, respectively. abs(V) is the absolute value of the applied bias and sgn()
the sign function. As I0 increases in Equation (1), the I-V curve changes its shape from
exponential to linear through a continuum of states as experimentally observed for this
kind of device. λ is a control parameter that runs between 0 (HRS) and 1 (LRS) and is given
by the recursive operator (Equation (2)):

λ(V) = min
{

Γ−(V), max
[

λ

(
↼
V
)

, Γ+(V)

]}
(2)

where min() and max() are the minimum and maximum functions, respectively, and
↼
V is the

voltage a timestep before V. The positive and negative ridge functions in Equation (2), Γ+(V)
and Γ−(V) represent the transitions from HRS to LRS (SET) and vice versa (RESET) and
can be physically linked to the completion and destruction of the CF [45,46], respectively.
They are defined by Equations (3) and (4)

Γ+(V) =
{

1 + e−η+(V−V+)
}−1

(3)

Γ−(V) =
{

1 + e−η−(V−V−)
}−1

(4)

where η+ and η− are the transition rates and V+ and V− the threshold voltages for SET
and RESET, respectively. λ(V) defines the so-called logistic hysteron or memory map of the
device and keeps track of the history of the device as a function of the applied voltage (see
Figure 2a). λ calculated from Equation (2) yields the transition from HRS to LRS and vice
versa through a change in the properties of the diodes depicted in the inset of Figure 2a.
The combination of Equations (1) and (2) results in a I-V loop such as that superimposed
to the hysteron loop in Figure 2a, which starts in HRS (λ = 0) and evolves as indicated by
the blue arrows. The name quasi-static comes from the fact that the characteristic time
of the ions/vacancies responsible of the switching phenomenon is assumed to be infinite
for a state within the hysteron structure. This implies that for a state located inside the
hysteron loop no changes occur in the conduction characteristics, unless it reaches the
ridge functions Γ+(V) or Γ−(V). The QMM can be transformed into a dynamic model by
incorporating the time module described in [19].

Figure 2b shows the HRS (exponential) to LRS (linear) transition, altogether with
some intermediate states (solid blue lines). Note that the memdiode model can successfully
describe both HRS and LRS curves by solely changing a single parameter in the transport
equation. As λ is swept from 10−7 to 1, I0 in Equation (1) varies between Imin and Imax,
causing the I-V curve to gradually change its shape from linear-exponential (HRS regime)
to linear (LRS regime). This is a consequence of the potential drop in the series resistance
which linearizes the transport equation. In a neuromorphic application such as the one
discussed in this paper, the intermediate conductance states are achieved by means of a
Write–Verify iterative loop approach. In such method, pulses of incremental amplitude are
applied to the devices (Write) until the required conductance is reached (Verify) [17,38]. If
the target conductance is exceeded, then increasing pulses with the opposite polarity are
applied in a similar fashion to gradually reduce the conductance value (within an error
margin). This writing methodology implies a transition as the one depicted in Figure 2a
by the red-thick faded line, where the incremental pulses cause the system to evolve
from the initial state S1 up to the final state S2 following Γ+. If the conductance target is
exceeded, then the system moves down along Γ− by the application of voltage pulses with
the appropriate polarity. Another relevant feature of the proposed model is that it can be
described by a simple SPICE script as shown in [17]. Finally, the accuracy of the model
is reported in Figure 2c by fitting experimental data extracted from different published

109

J. Low Power Electron. Appl. 2021, 11, 9

works. In particular, results obtained for Al2O3 [47] and TaOx [46] structures at room
temperature under DC voltage sweeps are presented. In summary, the proposed QMM not
only provides a simple SPICE-compatible implementation for the resistive memory devices
but also a versatile one, as it can accurately fit the major and minor I-V loops measured in
a wide variety of RRAM devices

3. MCA-Based MLP Modeling and RL Calibration

Based on the procedure previously reported in [17] to create and simulate realistic
circuital MCA-based SLPs intended for large dataset pattern recognition tasks, a novel
procedure is derived here to account for a more practical case such as the MLP. For
simplicity, ex-situ (off-line) supervised learning will remain as the training method of
choice. To evaluate the MLP performance, the recognition of patterns from the MNIST [40]
database (see Figure 3a,b) will be considered. Besides the extension to MLP classifiers, this
modified workflow also involves an iterative calibration algorithm intended to minimize
the RL-induced degradation of the inference accuracy. The chart depicted in Figure 3c
summarizes the workflow. The tasks can be split into three parts: the first one comprises
a set of MATLAB subroutines for creating, training, and writing the SPICE netlist for an
ideal feed-forward MLP. The second part creates an idealized fully linear model of the
MCA-based artificial neural networks (ANNs) in Python to calibrate the synaptic weights
obtained during the training to account for the parasitic line resistances (the details can be
seen in Figure 3d). Last but not least, the third part relates to the SPICE simulation of the
proposed circuit during the inference phase.

Figure 3. (a) Samples of the MNIST database considered in this article. In all cases images are represented in 28 × 28
px. Pixel brightness (or intensity) is codified in 256 levels ranging from 0 (fully OFF, black) to 1 (fully ON, white). (b)
Readability loss as the resolution decreases from 28 × 28 px (case I) to 8 × 8 (case VII). (c) Flowchart diagram for the
simulation procedure. Starting with the image size specification, RL, Vread, and connection scheme, the routine creates
the dataset, trains the MLP, translates it into an MCA, performs the simulations and processes the results. (d) Flowchart
diagram of the calibration method to minimize the impact of RL. It is included in block 5 from (c).

110

J. Low Power Electron. Appl. 2021, 11, 9

3.1. Simulation Flow

Regarding the MATLAB-implemented part of the procedure, the first step consists
in creating the image (n × n pixels) database. This includes rescaling each image of the
original database (item (1) in the flowchart shown in Figure 3c). The MNIST (Modified
National Institute of Standards and Technology) is a large database of handwritten digits
from 0 to 9 commonly used for training and testing image processing systems including
ANNs in the field of machine learning. This database contains 60,000 training images and
10,000 testing images, both in grayscale and with a 28 × 28 pixels resolution [40]. A few
examples of these images can be seen in Figure 3a where the x and y axes stand for the
pixel index. Pixel brightness is codified into 256 gray levels between 0 (fully OFF, black)
and 1 (fully ON, white). Resizing to different resolutions can be seen in Figure 3b.

Then, a software-based SLP or MLP with n2 inputs, 10 outputs and a number N of
hidden neural layers (each of them comprising mi neurons) is created (2) and trained (3)
using the previously rescaled database of training images (4). The MLP (or SLP) is ex-situ
trained considering the scaled conjugate gradient (SCG) [48] as the training algorithm, as
proposed in [17]. Further details concerning the training function are beyond the scope of
this work, as we focus on the MCA-based implementation of the MLP. This produces N + 1
weight matrices WMk ∈ R, with k ∈ {1, 2, . . . , N + 1} (5) (for instance for two hidden layers
with m1 and m2 neurons each, three weight matrices WM1 , WM2 and WM3 are obtained, with
sizes n2 × m1, m1 × m2 and m2 × 10, respectively). To allow rendering both the positive
and negative elements of WMk with the always positive conductance of the MCA, each
synaptic weight is implemented using two memdiodes as suggested in [49–51] resulting in
two MCAs per synaptic layer. Thereby, each WMK matrix is split into two matrices W+

Mk

and W−
Mk

as:

w+
Mki,j

=

⎧⎨
⎩

wMki,j
,wMi,j > 0

0,wMi,j ≤ 0
(5)

w−
Mki,j

=

⎧⎨
⎩
−wMki,j

,wMi,j < 0

0,wMi,j ≥ 0
(6)

each of them containing only positive weights, so that WMK = W+
Mk

− W−
Mk

. In the next
step, the conductance matrices G+

Mk
and G−

Mk
((6) and(7)) to be mapped onto the MCAs are

calculated by the linear transformation [52]:

G+,−
M =

Gmax − Gmin

max
{

WMk

}− min
{

WMk

}W+,−
Mk

+

[
Gmax − (Gmax − Gmin)max

{
WMk

}
max

{
WMk

}− min
{

WMk

}] (7)

where [Gmin, Gmax] is a selected conductance range for a linear computation in matrix-vector
calculations. For simplicity, we consider Gmax = GLRS = 1

RON
and Gmin = GHRS = 1

ROFF
,

where max
{

WMK

}
and min

{
WMK

}
are the maximum and minimum synaptic weight

values in the software obtained WMK . In this way, the synaptic weights in the W+
Mk

and
W−

Mk
matrices are converted to conductance values within the range [GHRS, GLRS].
The subsequent subroutines generate the circuit netlist for the dual-n2x mi, mi x mi+1,

. . . , mN × 10 memdiode MCA-based MLP (8), adding the parasitic wire resistance, con-
nection scheme, and control logic necessary to perform the inference phase. As reported
in [17], a single MCA is not efficient for implementing large matrices. Given that both
RL and RON/ROFF are normally defined by the selected fabrication node and RS mecha-
nism, respectively, a widely accepted [51,53] alternative design consists of dividing the
large matrices into smaller partitions, whose reduced size improves the voltage effectively
delivered to the memristive cell. Figure 4a shows the simplified circuit schematic of the
partitioned MCA and the interconnections required to realize the complete matrix-vector
multiplication (MVM) in the 1st synaptic layer. Exploding the integrability of the MCA

111

J. Low Power Electron. Appl. 2021, 11, 9

with CMOS circuitry, vertical interconnects used to connect the outputs of the vertical MCA
partitions may be placed under the partitioned structure, as well as the analogue sensing
electronics, allowing the partitioned MCA to maintain a similar area consumption than
the original nonpartitioned case [51]. The vertical interconnects are grounded through the
sensing circuit to absorb the currents within the same vertical wire.

Figure 4. (a) Simplified equivalent circuit schematic for a partitioned MCA-based MLP. Each MCA in the 1st synaptic layer
is subdivided into N identically sized partitions to minimize the parasitic voltage drops. Partial output current vectors
are indicated in the output of each partition. (b) Equivalent circuit schematic for an MCA based SLP. Red and blue arrows
exemplify the electron flow through the memdiodes connecting the top (word lines—WL) and bottom lines (bit lines—BL).
The dashed blue line depicts the so-called sneakpath problem. (c) Individual RRAM cell with the associated RL resistors.

Each memdiode in the MCAs is set to the corresponding conductance value from the
G+

Mk
and G−

Mk
matrices by adjusting the control parameter λ. The required value of λ is

obtained by solving Equation (1), I = g+(−)
k1,j

V, g+(−)
k1,j

being each of the elements of G+
Mk

(G−
Mk

). As in this work we focus on the artificial synapses modeling using the memdiode
model, hidden neurons in the kth hidden neural layer connecting the two adjacent layers
of synapses k − 1 and k + 1 are implemented in terms of a behavioral SPICE model. The
model for each neuron involves a trans-impedance amplifier (TIA) that translates the

112

J. Low Power Electron. Appl. 2021, 11, 9

output current in the associated bitline on the i − 1 synaptic layer to a voltage which is fed
to a nonlinear activation function and then propagated to the corresponding wordline in
the i + 1 synaptic layer. In this paper, we consider a log-sigmoidal (1/(1 + e−x)) activation
function, though a tan-sigmoidal activation function could be used as well. The input
stimulus in each synaptic layer is delivered following a dual side connection (DSC) scheme,
as shown in the simplified equivalent circuit in Figure 4a. Despite the increased peripheral
circuitry complexity, this scheme improves the voltage delivery to each synapse [10] by
connecting the two wordline terminals to the same input stimuli. The input stimuli of the
1st synaptic layer is obtained by unrolling each of the rescaled grayscale n × n images of
the test database (9) into an equivalent n2 × 1 vector and scaling it by a voltage Vread. Vread
is chosen such as to prevent altering the memdiode states during the inference simulation.
In this way, during the inference process each of the test images is presented to the MLP
as a vector of analogue voltages in the range [0, Vread]. Once the circuit netlist has been
generated, it is passed to the HSPICE simulator (10) which evaluates the voltage and
current distributions in the MCA-based MLP circuit while it processes and classifies the
input images (11) and then passes the resulting waveforms back to the MATLAB routine
for metrics extraction (12).

3.2. Calibration Tool Workflow

In an ideal case scenario, that is with RL negligible, the output current for a column
(or bitline) in a MCA of the kth synaptic layer of a MLP or SLP is given by Equation (8),
where the g+(−)

ki,j
elements are the junction conductances along one bitline and Vki,app

the
wordline voltages. Note that the voltage applied to each artificial synapse (conductances)
is independent of the device location within the MCA provided that no voltage drops occur
in the interconnection lines. Instead, in a real case scenario, the voltage applied across each
junction depends on the device location in the MCA partition as indicated by Equation (9).
This happens because a significant IR-drop occurs in the line resistances. Consequently, the
voltage applied across each junction is always lower than the applied wordline voltage,
and so it is the resulting output current Ireal

kj

I jk+(−)
ideal = g+(−)

k1,j
Vk1,app + g+(−)

k2,j
Vk2,app + g+(−)

k3,j
Vk3,app + . . . + g+(−)

kN,j
Vk1,app (8)

I jk+(−)
real = g+(−)

k1,j
Vk1,j

+ g+(−)
k2,j

Vk2,j
+ g+(−)

k3,j
Vk3,j

+ . . . + g+(−)
kN,j

Vk1,j
(9)

An interesting approach to compensate for the smaller currents was presented by
Lee et al. in [13]. In their study, the authors propose to increase the conductance level of
each individual memory cell proportionally to the voltage reduction. Let us then consider

a calibration factor c+(−)
ki,j

=
Vki,app

Vki,j
≥ 1 for each element in the MCA. Then the compensated

conductance of each memristive device is calculated as g
′+(−)
ki,j

= g+(−)
ki,j

c+(−)
ki,j

. Since the

calibrated conductances (g
′+(−)
ki,j

) are higher than the previous ones (g+(−)
ki,j

), the overall
current increases and consequently so does the IR-drops along the word and bitlines.
Thereby, this method implies multiple iterations until convergence is reached.

To speed-up the iterative calibration process, a parametric fully linear model of the
MCA-based MLP was developed. In this scenario each memristor is represented as a
resistor of fixed value and the overall MCA model (see Figure 4b) is expressed in terms
of a system of coupled equations arising from considering the Current Kirchhoff Law at
each junction of the MCA (see Figure 4c). The details of such modeling approach first
considered in [10] are included in Appendix A. This method avoids calculating the required
values of λ for each memdiode in each iteration, which significantly reduces the calibration
time, especially for large networks. The simulation code was implemented in Python,
taking advantage of the object oriented programming characteristic of such language. In

113

J. Low Power Electron. Appl. 2021, 11, 9

this context, each MCA in a partitioned multilayer perceptron can be easily created as an
instance of a unique class that describes the properties and behavior of a single MCA.

The details of the iterative calibration process (block (5) in the flowchart of Figure 3c)
are illustrated in Figure 3d and Algorithm 1. First, the synaptic weight matrices WMK ,
delivered from the training process (block (4) in the flowchart of Figure 3c) are mapped onto
each MCA of the complete MLP (block (C2) in the flowchart of Figure 3d). The input stimuli
feed to each MCA during calibration consists of a vector of analogue voltages obtained
from averaging the brightness of each pixel from the images of the training set (C3). By
solving the system of coupled equations, the effective voltage delivered to each memristor

is calculated and used to compute the required calibration factor c+(−)
ki,j

=
Vki,app

Vki,j
(C4). Then,

the absolute distances to the values calculated in the previous loop are compared against
a predefined target, which represents a termination criterion for the process (C5). If the
distance to the target exceeds the criterion, the conductance matrices are calculated as

g
′+(−)
ki,j

= g+(−)
ki,j

c+(−)
ki,j

(C6) and remapped onto the MCA object (C7) and the voltages at the
nodes recalculated (C3). The iterative loop from (C3)–(C7) is then repeated until the termi-
nation criterion is met. The results of this iterative calibration process are the 2k matrices of
calibrated conductance values G+

Mk
, G−

Mk
, (blocks (6) and (7) in the flowchart of Figure 3c).

Algorithm 1: Iterative calibration algorithm

Input: GMk+()(i,j)
Output: GMk+()calibrated(i,j)

1 Define cal_vector as the average brightness of each pixel
2 finish_calibration==false
3 while finish_calibration==false do
4 finish_calibration=true
5 get_WL_voltages(cal_vector)
6 for i in row_numbers do
7 for j in column_numbers do
8 prev_Cij=Cij
9 Cij=WL_voltage[I,j]/V_app[i]
10 if abs(Cij-prev_Cij)>criterion_value then
11 Finish_calibration==false
12 GMk+()(i,j)=GMk+()(i,j)*Cij
13 else
14 end
15 end
16 end
17 GMk+()calibrated(i,j)= GMk+()(i,j)

4. Simulation Results and Discussion

The line resistance between adjacent cells can be calculated as RL = ρ · L/(W · T),
where L and W are the wire length between adjacent cells and wire width, respectively.
For simplicity, they are taken equal to the feature size F. T is the metal thickness which is
assumed >10 nm. In this context, RL ranges from 1 to 10 Ω, as the resistivity of conventional
metal wires (ρ) ranges from 10−8 to 10−7 Ω·m. Thereby, RL can be estimated to be ≈4.53,
2.97, and 1.55 Ω for the 16, 22, and 32 nm technology nodes, respectively [13]. However, in
Cu-wires there is a non-negligible size-dependent resistivity for technology nodes below the
10 nm limit, caused by the surface and grain boundary scattering as the mean free path of
electrons becomes comparable to the wire dimensions. According to the Fuchs–Sondheimer
(FS) and the Mayadas–Shatzkes (MS) models [53], RL for highly scaled nodes can be as
large as ≈100 kΩ. Considering the QMM model, the influence of the line resistance is

114

J. Low Power Electron. Appl. 2021, 11, 9

evaluated in the following Sections 4.1 and 4.2, assuming a different number of hidden
layers and two alternative approaches to minimize the parasitic voltage drop, respectively.

4.1. Influence of the Number of Hidden Layers

Unlike the case of SLP, where the network size (in terms of the number of devices) is
fixed by the pattern features and possible output classes, in case of MLP, the introduction
of hidden neural layers results in multiple possible networks for the classification of a
given pattern dataset [54]. In this regard, it is known that as the number of hidden layers
increases, so does the overall network accuracy. Nevertheless, when considering a realistic
memristor-based implementation as done in this paper, there is a degradation of the signals
propagated across each synaptic layer due to the line resistance in combination with the
sneakpath effect. Consequently, the hidden neurons are prone to propagate erroneous
signals, thus threatening the accuracy of the MLP. To shed light on this issue, five MLPs
comprising different numbers of hidden layers and neurons per layer were simulated.
The obtained results are summarized in Table 1, considering for all cases the MNIST
images resized to 8 × 8 px, dual-side-connection, no partitioning of the MCA used for
each synaptic layer, Vread = 300 mV and RL swept from 100 mΩ to 1 kΩ. The synaptic
connections are modeled with the QMM SPICE subcircuit described in [17] and considering
the following set of parameters: Imin = 85 nA, Imax = 52 μA, αmin = 4.5, αmax = 2.5, Rmin = Rmin
= 110 Ω, and β = 0.5. This combination of values renders (at the nominal Vread) resistances
ROFF ≈ 577 kΩ and RON ≈ 7.5 kΩ (approx. an ROFF/RON ratio in the order of 100).

Table 1. Structures of the MLPs considered in the simulations of this section. In all cases the MNIST images resized to 8 × 8
px are considered as the input pattern.

Hidden
Layers

Code Network Structure
Number of

Memristive Sys.
Accuracy at RL→0 Ω

Accuracy (Soft.
Case)

0 SLP 64 × 10 1280 sys. 89.6% 91.14%

1
MLP-2a 64 × 54 × 10 7992 sys. 92.3% 95.95%

MLP-2b 64 × 100 × 10 14,800 sys. 92.7% 96.89%

2
MLP-3a 64 × 54 × 34 × 10 11,263 sys. 95.2% 96.30%

MLP-3b 64 × 100 × 50 × 10 23,800 sys. 96% 96.92%

3 MLP-4 64 × 54 × 34 × 24 × 10 12,696 sys. 94.3% 95.81%

The simulation results are graphically reported in Figure 5, where the inference
accuracy as function of RL is shown normalized against the inference accuracy for RL→0 Ω.
A central point to highlight here is the notorious increase of the MLP sensitivity to RL
when compared against the reference SLP, regardless of the number of hidden layers and
neurons per layer. This could be explained by taking into account the larger size of the
synaptic layers involved for the MLPs cases (the MCAs used for the SLP has a maximum
size of 64 × 10 while for the MLP-#a it increases up to 64 × 54). The use of larger MCAs
with no partitions to implement the synaptic connections degrades the effective voltage
delivered to the synapses located away from the driving ports of the MCA. The ratio
between the effective voltage delivered to each synapse and the nominal applied voltage is
known as the read margin, and it has been shown in [17] that for a given value of RL, it
decreases as the size of the MCA grows, directly degrading the inference accuracy. This
interpretation is also supported by the results obtained for the set of MLPs named MLP-#b.
For these simulations, the RL sensitivity further increases as it could be expected given
the bigger size of the largest MCA involved in the network (64 × 100 for the set MLP-#b
against 64 × 54 for MLP-#a). It is also worth noting that both the MLP-#a and MLP-#b
sets follow unique decreasing trends with RL regardless of the number of layers. Thereby
the increase in the number of hidden layers does not significantly compromise the RL
sensitivity but allows a non-negligible increase in the inference accuracy, as shown in the

115

J. Low Power Electron. Appl. 2021, 11, 9

inset of Figure 5. Instead, the number of neurons per layer causes a sensible increase of the
inference accuracy degradation caused by RL, as it implies changes in the MCAs used to
implement the MLP.

Figure 5. Inference accuracy vs. RL, normalized against the inference accuracy obtained for RL→0 Ω.
Two different sets of MLP (#a and #b, see Table 1 for details) are considered as well as a SLP for
comparison purposes. The inset in the lower left shows the inference accuracy at RL→0 Ω for the
different cases considered. Note that the RL dependency of the inference accuracy is determined by
the size of the largest MLP layer, and it presents a very shallow dependence on the number of hidden
layers. In fact, the increase in the number of hidden layers allows boosting the inference accuracy as
RL decreases without compromising the MLP sensitivity to RL variations.

4.2. Techniques to Minimize the Impact of the Line Resistance (RL)

As mentioned in the previous subsection, the voltage drop occurring across the
parasitic line resistances imposes a serious limitation to the number of neurons that can be
included in each neural layer without causing a major reduction of the inference accuracy.
Methods to minimize this problem are thereby mandatory to allow rendering MLPs capable
of dealing with large input patterns. For instance, in [55], Truong et al. proposed a circuit to
compensate the voltage drop across the interconnections. Although capable of improving
the inference metrics, the proposed method implies a significant circuit overhead and
might be not suitable for networks involving a large number of neurons. Therefore, the
search for alternative solutions requiring lesser additional circuitry is encouraged. Two of
them were discussed in Sections 3.1 and 3.2, namely the MCA partitioning and the iterative
calibration of the synaptic weights. Although tested in [13,17], their applicability in MLP
has not yet been addressed considering realistic electrical simulations. Thus, in this section
the capability of such techniques to mitigate the line resistance impact on MLP is studied
based on the framework defined in Section 3.1 and using the same values for the QMM
as in Section 4.1. Only one hidden layer is considered as it was shown in Section 4.1 that
the number of layers does not significantly alter the RL dependency. Instead two different
MNIST representation sizes are considered: 8 × 8 px. (64 × 54 × 10 as reported in [9]) and
14 × 14 px. (196 × 20 × 10 as reported in [38]) to account for the MCA size dependency.

116

J. Low Power Electron. Appl. 2021, 11, 9

For comparison purposes we also report the case of pattern classification with SLPs (of
sizes 64 × 10 and 196 × 10).

Let us first consider the nonpartitioned (NP = 1), uncalibrated cases (blue empty
markers). As it can be seen in Figure 6, in all cases (MLP and SLP for 8 × 8 px. and
14 × 14 px. images) the inference accuracy approaches the ideal case as RL tends to zero.
Nonetheless, when considering the 14 × 14 px. images (Figure 6b,d) a higher accuracy
degradation is observed, as expected for the use of a larger MCA as the first synaptic layer.
This can be seen as a left-shift of the accuracy vs. RL curves when the image size is increased
and occurs both for the SLP (see the displacement of the trend from Figure 6a,b) and the
MLP (Figure 6c,d) cases. Note that for the 14 × 14 px. images there is a significant accuracy
loss even for low values of the line resistance (see Figure 6d for instance, where a value
of RL of approx. 5 Ω obtained for a feature size of 16 nm causes the inference accuracy to
drop from approx. 96% to 73%). It is also worth mentioning that the steeper decrease of
the inference accuracy vs. RL observed in MLPs vs. SLP trained to classify the 8 × 8 px.
images in Figure 5 is also present for the 14 × 14 px. images (see Figure 6b,d).

Figure 6. Inference accuracy plotted against the line resistance (RL) for four different scenarios: SLPs considering (a)
8 × 8 px. images (the SLP structure is 64 × 10) and (b) 14 × 14 px. (196 × 10) and MLP considering (c) 8 × 8 px. images
(64 × 54 × 10) and (d) 14 × 14 px. images (196 × 20 × 10). The ideal results considering software implementation of
the same networks is added in each subfigure by a red dash-dotted line. For (a,b) both the calibration and partitioned
implementations are superimposed for comparison. Instead for (c,d) only the partitioned scenario is shown as no relevant
improvement was found by the calibration procedure. The inset in (a) shows the optimal calibration factor as function of RL.

To improve the metrics discussed in the previous paragraph, the post-training iterative
calibration of the synaptic weights is first performed on the nonpartitioned SLP (filled

117

J. Low Power Electron. Appl. 2021, 11, 9

blue lines). This process has two different outcomes: on one hand when considering the
SLP case, a clear improvement of up to approx. 30% for the 8 × 8 px images (Figure 6a)
can be observed for RL values approaching 100 Ω in highly scaled fabrication nodes [53].
Beyond this limit, the capability of the calibration method to reduce the voltage drop in the
interconnections is not enough and thereby the accuracy improvement becomes smaller. A
very similar behavior is shown in Figure 6b for the 14 × 14 px images. However, given
the larger size of the MCAs involved, the improvement is smaller (not bigger than 20%).
As the target calibration factor passed to the calibration routine is defined by the user, in
this paper we performed an iterative loop to automatically determine the calibration factor
that allows maximizing the inference accuracy. The resulting factors are plotted against
the inference accuracy in the inset of Figure 6a for the 8 × 8 px. images. Note that for
low RL values, the calibration factor plays no role as no calibration is indeed required (the
parasitic voltage drop due to the line resistance is negligible). Then the factor is tightened
and progressively relaxed as the line resistance increases, as if the calibration factor is too
exigent the calibration cannot yield a real accuracy improvement.

When addressing the case of the MLPs with different sizes, it was found that the
calibration process produces a marginal improvement, resulting in identical inference vs.
RL trends as in the noncalibrated cases (and thereby not plotted in Figure 6c,d as they
would coincide with the noncalibrated trends). Instead, the use of partitioned schemes for
the realization of the complete MCA-based synaptic layers is shown to be efficient both
for SLPs and MLPs. For instance, when the 64 × 10 SLP shown in Figure 6a is partitioned
into four blocks of 16 × 10 the inference accuracy notably increases (note the empty red
markers). The same effect is observed for the 196 × 10 MCA (partitioned into four blocks
of 49 × 10) from which the results presented in Figure 6b were extracted. Furthermore, the
inference accuracy of the partitioned SLP can also be improved by using the calibration
algorithm (filled red markers in Figure 6a,b). For the MLP, the enhancement achieved with
the partitioning is seen as a right shift in the accuracy vs. RL trends. Note that in these
cases, the first layer in the 64 × 54 × 10 MLP (Figure 6c) was implemented with 12 blocks
of 16 × 18 and the second layer with three blocks of 18 × 10 and for the 196 × 20 × 10
MLP (Figure 6d), the first layer was implemented using four partitions of 49 × 20 and the
second layer was not partitioned (20 × 10).

5. Conclusions

In this paper we extended the use of the Quasi-static Memdiode Model (QMM) previ-
ously proven for single-layer perceptrons (SLPs) to the SPICE modeling and simulation of
multilayer perceptrons (MLPs) intended for large dataset pattern recognition. The versatil-
ity and reduced computational cost of this model allow performing electrical simulations
without losing accuracy. The inference performance was tested considering the MNIST
dataset of grey-scale handwritten digits, rescaled to different resolutions to test MLPs of
different sizes. Two aspects were analyzed: the impact of the MLP structure (number
of layers and neurons per layer) on the inference accuracy and alternative techniques to
mitigate the impact of the line resistance. Concerning the first point, it was found that the
number of hidden layers does not cause major variations in the line resistance dependence
of the inference accuracy. Instead, it is the size of the largest synaptic layer what acts as a
bottleneck, severely limiting the overall accuracy. Thereby the addition of memristive-based
synaptic layers helps improving the accuracy without inducing further RL-related degrada-
tion. Concerning the second point, the use of partitioned schemes was shown to provide the
best performance results both in SLP and MLP when compared to the calibration technique.
In fact, the calibration technique resulted in no gain in terms of accuracy when applied to
MLP networks. This should be taken into account by circuit designers.

Author Contributions: Conceptualization, F.L.A. and E.M.; methodology, F.L.A., N.M.G. and E.M.;
software, F.L.A., N.M.G. and E.M.; validation, F.L.A., N.M.G., S.M.P., F.P., J.S. E.M.; formal analysis,
F.L.A., E.M.; investigation, F.L.A., N.M.G., S.M.P., F.P., J.S. E.M.; resources, F.P, J.S and E.M.; data
curation, F.L.A.; writing—original draft preparation, F.L.A., N.M.G. and E.M.; writing—review and

118

J. Low Power Electron. Appl. 2021, 11, 9

editing, F.L.A., N.M.G., S.M.P., F.P., J.S. and E.M.; visualization, F.A, E.M.; supervision, E.M.; project
administration, F.P., J.S. and E.M; funding acquisition, F.P., J.S. and E.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been funded by both Argentinean and European institutions. Argentine
funding was provided by MINCyT (Contracts PICT2013/1210, PICT 2016/0579 and PME 2015-0196),
CONICET (Project PIP-11220130100077CO) and UTN.BA (Projects PID-UTN EIUTIBA4395TC3,
CCUTIBA4764TC, MATUNBA4936, CCUTNBA5182 and CCUTNBA6615). E.M. and J. S. acknowl-
edge the support from TEC2017-84321-C4-4-R and WAKeMeUP 783176 projects, cofunded by grants
from the Spanish Ministerio de Ciencia e Innovación and the ECSEL-EU Joint Undertaking.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Each MCA is described using the equivalent circuit schematic represented in Figure 4b,
by considering the 2nd Kirchhoff’s law on the terminals of each memristive device (see
Figure 4c), which will have the form of any of the Equations (A1)–(A6) depending on the
device location within the MCA. GL is the line conductance (1/RL), GBL

i,in = GWL
i,in are the word-

line and bitline access conductances (resistance in the BL/WL terminals) (GWL
i,in = 1/RWL

i,in
and GBL

i,in = 1/RBL
i,in), VWL

i,app are the applied voltages in the WL terminals, corresponding to

the MNIST images and VBL
j,app are grounded through a sensing resistor. Node voltages in

the WLs are indicated as VWL
i,j and, in the same way, VBL

i,j refers to node voltages in the
BLs. Six different equations arise as they account for the elements located at the BL/WL
terminals (Equations (A2), (A3), (A5) and A6) or somewhere in between (Equations (A1)
and (A4)).

(WL, (i, j)) : GL

(
VWL

i,j − VWL
i,i−1

)
− Gi,j

(
VBL

i,j − VWL
i,i

)
− GL

(
VWL

i,j+1 − VWL
i,j

)
= 0 (A1)

(WL, j = 1) : GWL
i,in

(
VWL

i,1 − VWL
i,app

)
− Gi,j

(
VBL

i,1 − VWL
i,1

)
− GL

(
VWL

i,2 − VWL
i,1

)
= 0 (A2)

(WL, j = n) : GL

(
VWL

i,n − VWL
i,n−1

)
− Gi,n

(
VBL

i,n − VWL
i,n

)
= 0 (A3)

(BL, (i, j)) : GL

(
VBL

i+1,j − VBL
i,i

)
− Gi,j

(
VBL

i,j − VWL
i,j

)
− GL

(
VBL

i,j − VBL
i−1,j

)
= 0 (A4)

(BL, i = m) : GBL
in,j

(
VWL

i,j − VWL
i,i−1

)
− Gi,j

(
VBL

i,j − VWL
i,i

)
− GL

(
VBL

i,j+1 − VBL
i,j

)
= 0 (A5)

(BL, i = 1) : GL

(
VBL

2,j − VBL
1,j

)
− Gi,j

(
VBL

1,j − VWL
1,j

)
= 0 (A6)

This results in a system of 2 mn coupled equations, with 2mn unknown voltages corre-

sponding to the WL (VWL =
[
VWL

1,1 , VWL
1,2 , . . . , VWL

1,n , VWL
2,1 , . . . , VWL

n,m

]T
) and

BL (VBL =
[
VBL

1,1 , VBL
1,2 , . . . , VBL

1,n , VBL
2,1 , . . . , VBL

n,m

]T
) voltages. By defining the column vectors

EWL and EBL as
[

GWL
1,inVWL

1,in , 0, . . . , GWL
2,inVWL

2,in , 0, . . . , GWL
m,inVWL

m,in

]
and[

GBL
1,inVBL

1,in, 0, . . . , GBL
2,inVBL

2,in, 0, . . . , GBL
n,inVBL

n,in

]
respectively, Equations (A1)–(A6) can be rep-

resented following a matrix formulation as in Equation (A7):[
A B
C D

][
VWL
VBL

]
=

[
EWL
EBL

]
(A7)

where all A, B, C, and D matrix are m × n. Further details regarding the structure of these
matrices can be found in [10]. Then the output of the m × n MCA is a row vector of 1 × n
currents, defined as IOut = VBL

n,j GL, with 1 ≤ j ≤ m, obtained by solving Equation (A7). It
should be noted that the system of coupled equations presented in the matrix formulation

119

J. Low Power Electron. Appl. 2021, 11, 9

of Equation (A7) allow representing both the case of the input voltage being applied from
one single side or from both sides of WLs.

References

1. Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; et al. In-Memory Computing with
Memristor Arrays. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13–16 May 2018; pp.
1–4.

2. Upadhyay, N.K.; Joshi, S.; Yang, J.J. Synaptic electronics and neuromorphic computing. Sci. China Inf. Sci. 2016, 59, 1–26.
[CrossRef]

3. Sasago, Y.; Kinoshita, M.; Morikawa, T.; Kurotsuchi, K.; Hanzawa, S.; Mine, T.; Shima, A.; Fujisaki, Y.; Kume, H.; Moriya, H.; et al.
Cross-Point Phase Change Memory with 4F2 Cell Size Driven by Low-Contact-Resistivity Poly-Si Diode. In Proceedings of the
Digest of Technical Papers-Symposium on VLSI Technology, Kyoto, Japan, 16–18 June 2009; pp. 24–25.

4. Truong, S.N.; Ham, S.-J.; Min, K.-S. Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for
speech recognition. Nanoscale Res. Lett. 2014, 9, 629. [CrossRef] [PubMed]

5. Truong, S.N.; Min, K.-S. New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving
for Matrix-Vector Multiplication of Analog Neuromorphic Computing. J. Semicond. Technol. Sci. 2014, 14, 356–363. [CrossRef]

6. Truong, S.N.; Shin, S.; Byeon, S.-D.; Song, J.; Min, K.-S. New Twin Crossbar Architecture of Binary Memristors for Low-Power
Image Recognition with Discrete Cosine Transform. IEEE Trans. Nanotechnol. 2015, 14, 1104–1111. [CrossRef]

7. Hu, M.; Li, H.; Chen, Y.; Wu, Q.; Rose, G.S.; Linderman, R.W. Memristor Crossbar-Based Neuromorphic Computing System: A
Case Study. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1864–1878. [CrossRef]

8. Liu, B.; Li, H.; Chen, Y.; Li, X.; Huang, T.; Wu, Q.; Barnell, M. Reduction and IR-drop compensations techniques for reliable
neuromorphic computing systems. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 63–70. [CrossRef]

9. Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; et al. Efficient and self-adaptive
in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 1–8. [CrossRef]

10. Chen, A. A Comprehensive Crossbar Array Model with Solutions for Line Resistance and Nonlinear Device Characteristics. IEEE
Trans. Electron Devices 2013, 60, 1318–1326. [CrossRef]

11. Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W.; et al. RRAM-based synapse for
neuromorphic system with pattern recognition function. In Proceedings of the 2012 International Electron Devices Meeting, San
Francisco, CL, USA, 10–13 December 2012; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2012; pp.
10.2.1–10.2.4.

12. Ham, S.-J.; Mo, H.-S.; Min, K.-S. Low-Power VDD/3 Write Scheme with Inversion Coding Circuit for Complementary Memristor
Array. IEEE Trans. Nanotechnol. 2013, 12, 851–857. [CrossRef]

13. Lee, Y.K.; Jeon, J.W.; Park, E.-S.; Yoo, C.; Kim, W.; Ha, M.; Hwang, C.S. Matrix Mapping on Crossbar Memory Arrays with
Resistive Interconnects and Its Use in In-Memory Compression of Biosignals. Micromachines 2019, 10, 306. [CrossRef]

14. Han, R.; Huang, P.; Zhao, Y.; Cui, X.; Liu, X.; Jin-Feng, K. Efficient evaluation model including interconnect resistance effect for
large scale RRAM crossbar array matrix computing. Sci. China Inf. Sci. 2018, 62, 22401. [CrossRef]

15. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E. Memristor SPICE Modeling. In Advances in Neuromorphic Memristor Science
and Applications; Springer Nature: London, UK, 2012; pp. 211–244.

16. Yakopcic, C.; Hasan, R.; Taha, T.; McLean, M.; Palmer, D. Memristor-based neuron circuit and method for applying learning
algorithm in SPICE. Electron. Lett. 2014, 50, 492–494. [CrossRef]

17. Aguirre, F.L.; Pazos, S.M.; Palumbo, F.; Sune, J.; Miranda, E. Application of the Quasi-Static Memdiode Model in Cross-Point
Arrays for Large Dataset Pattern Recognition. IEEE Access 2020, 8, 202174–202193. [CrossRef]

18. Miranda, E. Compact Model for the Major and Minor Hysteretic I–V Loops in Nonlinear Memristive Devices. IEEE Trans.
Nanotechnol. 2015, 14, 787–789. [CrossRef]

19. Patterson, G.; Sune, J.; Miranda, E. Voltage-Driven Hysteresis Model for Resistive Switching: SPICE Modeling and Circuit
Applications. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2017, 36, 2044–2051. [CrossRef]

20. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E. Generalized Memristive Device SPICE Model and its Application in
Circuit Design. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2013, 32, 1201–1214. [CrossRef]

21. Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst.
I Regul. Pap. 2013, 60, 211–221. [CrossRef]

22. Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors. IEEE
Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [CrossRef]

23. Eshraghian, K.; Kavehei, O.; Cho, K.R.; Chappell, J.M.; Iqbal, A.; Al-Sarawi, S.F.; Abbott, D. Memristive device fundamentals and
modeling: Applications to circuits and systems simulation. Proc. IEEE 2012, 100, 1991–2007. [CrossRef]

24. Biolek, D.; Biolek, Z.; Biolková, V.; Kolka, Z. Modeling of TiO2 memristor: From analytic to numerical analyses. Semicond. Sci.
Technol. 2014, 29, 125008. [CrossRef]

25. Biolek, Z.; Biolek, D.; Biolkova, V.; Kolka, Z. Reliable Modeling of Ideal Generic Memristors via State-Space Transformation.
Radioengineering 2015, 24, 393–407. [CrossRef]

120

J. Low Power Electron. Appl. 2021, 11, 9

26. Kim, T.; Kim, H.; Kim, J.; Kim, J.-J. Input Voltage Mapping Optimized for Resistive Memory-Based Deep Neural Network
Hardware. IEEE Electron Device Lett. 2017, 38, 1228–1231. [CrossRef]

27. Choi, S.; Lee, J.; Kim, S.; Lu, W.D. Retention failure analysis of metal-oxide based resistive memory. Appl. Phys. Lett. 2014, 105,
113510. [CrossRef]

28. Raghavan, N.; Frey, D.D.; Bosman, M.; Pey, K.L. Statistics of retention failure in the low resistance state for hafnium oxide RRAM
using a Kinetic Monte Carlo approach. Microelectron. Reliab. 2015, 55, 1422–1426. [CrossRef]

29. Lin, Y.-D.; Chen, P.S.; Lee, H.-Y.; Chen, Y.-S.; Rahaman, S.Z.; Tsai, K.-H.; Hsu, C.-H.; Chen, W.-S.; Wang, P.-H.; King, Y.-C.; et al.
Retention Model of TaO/HfOX and TaO/AlOX RRAM with Self-Rectifying Switch Characteristics. Nanoscale Res. Lett. 2017, 12,
407. [CrossRef] [PubMed]

30. Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal–oxide RRAM. Proc. IEEE 2012,
100, 1951–1970. [CrossRef]

31. Wu, W.; Wu, H.; Gao, B.; Yao, P.; Zhang, X.; Peng, X.; Yu, S.; Qian, H. A methodology to improve linearity of analog RRAM for
neuromorphic computing. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp.
103–104.

32. Kim, S.; Park, B.-G. Nonlinear and multilevel resistive switching memory in Ni/Si3N4/Al2O3/TiN structures. Appl. Phys. Lett.
2016, 108, 212103. [CrossRef]

33. Ciprut, A.; Friedman, E.G. Energy-Efficient Write Scheme for Nonvolatile Resistive Crossbar Arrays with Selectors. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2018, 26, 711–719. [CrossRef]

34. Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional
neural network. Nat. Cell Biol. 2020, 577, 641–646. [CrossRef]

35. Wang, C.; Feng, D.; Tong, W.; Liu, J.; Li, Z.; Chang, J.; Zhang, Y.; Wu, B.; Xu, J.; Zhao, W.; et al. Cross-point Resistive Memory.
ACM Trans. Des. Autom. Electron. Syst. 2019, 24, 1–37. [CrossRef]

36. Chang, C.-C.; Chen, P.-C.; Chou, T.; Wang, I.-T.; Hudec, B.; Chang, C.-C.; Tsai, C.-M.; Chang, T.-S.; Hou, T.-H. Mitigating
Asymmetric Nonlinear Weight Update Effects in Hardware Neural Network Based on Analog Resistive Synapse. IEEE J. Emerg.
Sel. Top. Circuits Syst. 2018, 8, 116–124. [CrossRef]

37. Wang, W.; Song, W.; Yao, P.; Li, Y.; Van Nostrand, J.; Qiu, Q.; Ielmini, D.; Yang, J.J. Integration and Co-design of Memristive
Devices and Algorithms for Artificial Intelligence. iScience 2020, 23, 101809. [CrossRef]

38. Milo, V.; Zambelli, C.; Olivo, P.; Perez, E.; Mahadevaiah, M.K.; Ossorio, O.G.; Wenger, C.; Ielmini, D. Multilevel HfO2-based
RRAM devices for low-power neuromorphic networks. APL Mater. 2019, 7, 081120. [CrossRef]

39. Tuli, S.; Rios, M.; Levisse, A.; Esl, D.A.; Tuli, S.; Rios, M.; Levisse, A. Rram-vac: A variability-aware controller for rram-based
memory architectures. In Proceedings of the 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing,
China, 13–16 January 2020; pp. 181–186.

40. LeCun, Y.; Cortes, C.; Burges, C.J.C. MNIST Handwritten Digit Database. Available online: http://yann.lecun.com/exdb/mnist/
(accessed on 28 January 2021).

41. Lee, A.R.; Bae, Y.C.; Im, H.S.; Hong, J.P. Complementary resistive switching mechanism in Ti-based triple TiOX/TiN/TiOX and
TiOx/TiOxNy/TiOx matrix. Appl. Surf. Sci. 2013, 274, 85–88. [CrossRef]

42. Duan, W.J.; Song, H.; Li, B.; Wang, J.-B.; Zhong, X. Complementary resistive switching in single sandwich structure for crossbar
memory arrays. J. Appl. Phys. 2016, 120, 084502. [CrossRef]

43. Yang, M.; Wang, H.; Ma, X.; Gao, H.; Hao, Y. Voltage-amplitude-controlled complementary and self-compliance bipolar resistive
switching of slender filaments in Pt/HfO2/HfOx/Pt memory devices. J. Vac. Sci. Technol. B 2017, 35, 032203. [CrossRef]

44. Chen, C.; Gao, S.; Tang, G.; Fu, H.; Wang, G.; Song, C.; Zeng, F.; Pan, F. Effect of Electrode Materials on AlN-Based Bipolar and
Complementary Resistive Switching. ACS Appl. Mater. Interfaces 2013, 5, 1793–1799. [CrossRef]

45. Aguirre, F.; Rodriguez, A.; Pazos, S.; Sune, J.; Miranda, E.; Palumbo, F. Study on the Connection Between the Set Transient in
RRAMs and the Progressive Breakdown of Thin Oxides. IEEE Trans. Electron Devices 2019, 66, 3349–3355. [CrossRef]

46. Frohlich, K.; Kundrata, I.; Blaho, M.; Precner, M.; Ťapajna, M.; Klimo, M.; Šuch, O.; Skvarek, O. Hafnium oxide and tantalum
oxide based resistive switching structures for realization of minimum and maximum functions. J. Appl. Phys. 2018, 124, 152109.
[CrossRef]

47. Lin, C.-Y.; Wu, C.-Y.; Wu, C.-Y.; Hu, C.; Tseng, T.-Y. Bistable Resistive Switching in Al2O3 Memory Thin Films. J. Electrochem. Soc.
2007, 154, G189–G192. [CrossRef]

48. Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [CrossRef]
49. Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nat. Cell Biol. 2015, 521, 61–64. [CrossRef]
50. Hu, M.; Li, H.; Wu, Q.; Rose, G.S.; Chen, Y. Memristor Crossbar Based Hardware Realization of BSB Recall Function. In

Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp.
1–7.

51. Fouda, M.E.; Lee, S.; Lee, J.; Eltawi, A.M.; Kurdahi, F. Mask Technique for Fast and Efficient Training of Binary Resistive Crossbar
Arrays. IEEE Trans. Nanotechnol. 2019, 18, 704–716. [CrossRef]

121

J. Low Power Electron. Appl. 2021, 11, 9

52. Hu, M.; Strachan, J.P.; Li, Z.; Grafals, E.M.; Davila, N.; Graves, C.; Lam, S.; Ge, N.; Yang, J.J.; Williams, R.S. Dot-Product Engine for
Neuromorphic Computing. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June 2016;
pp. 1–6.

53. Liang, J.; Yeh, S.; Wong, S.S.; Wong, H.-S.P. Effect of Wordline/Bitline Scaling on the Performance, Energy Consumption, and
Reliability of Cross-Point Memory Array. ACM J. Emerg. Technol. Comput. Syst. 2013, 9, 1–14. [CrossRef]

54. Hagan, M.; Demuth, H.; Beale, M.; De Jesús, O. Neural Network Design, 2nd ed.; Hagan, M., Ed.; Oklahoma State University:
Stillwater, OK, USA, 2014; ISBN 978-0971732117, 0971732116.

55. Truong, S.N. Compensating Circuit to Reduce the Impact of Wire Resistance in a Memristor Crossbar-Based Perceptron Neural
Network. Micromachines 2019, 10, 671. [CrossRef] [PubMed]

122

Journal of

Low Power Electronics
and Applications

Article

A Morphable Physically Unclonable Function and True Random
Number Generator Using a Commercial Magnetic Memory

Mohammad Nasim Imtiaz Khan 1,*, Chak Yuen Cheng 1,2, Sung Hao Lin 1, Abdullah Ash-Saki 1

and Swaroop Ghosh 1

Citation: Khan, M.N.I.; Cheng, C.Y.;

Lin, S.H.; Ash-Saki, A.; Ghosh, S. A

Morphable Physically Unclonable

Function and True Random Number

Generator Using a Commercial

Magnetic Memory. J. Low Power

Electron. Appl. 2021, 11, 5. https://

doi.org/10.3390/jlpea11010005

Received: 23 December 2020

Accepted: 11 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Pennsylvania State University, State College, PA 16801, USA;
chakyuec@alumni.cmu.edu (C.Y.C.); frank19940124@gmail.com (S.H.L.); axs1251@psu.edu (A.A.-S.);
szg212@psu.edu (S.G.)

2 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
* Correspondence: mohammad.nasim.imtiaz.khan@intel.com

Abstract: We use commercial magnetic memory to realize morphable security primitives, a Physically
Unclonable Function (PUF) and a True Random Number Generator (TRNG). The PUF realized by
manipulating the write time and the TRNG is realized by tweaking the number of write pulses. Our
analysis indicates that more than 75% bits in the PUF are unusable without any correction due to
their inability to exhibit any randomness. We exploit temporal randomness of working columns
to fix the unusable columns and write latency to fix the unusable rows during the enrollment. The
intra-HD, inter-HD, energy, bandwidth and area of the proposed PUF are found to be 0, 46.25%,
0.14 pJ/bit, 0.34 Gbit/s and 0.385 μm2/bit (including peripherals) respectively. The proposed TRNG
provides all possible outcomes with a standard deviation of 0.0062, correlation coefficient of 0.05 and
an entropy of 0.95. The energy, bandwidth and area of the proposed TRNG is found to be 0.41 pJ/bit,
0.12 Gbit/s and 0.769 μm2/bit (including peripherals). The performance of the proposed TRNG has
also been tested with NIST test suite. The proposed designs are compared with other magnetic PUFs
and TRNGs from other literature.

Keywords: MRAM; TRNG; PUF; morphable security primitive; hardware security primitive

1. Introduction

There has been a proliferation of Internet-of-Things (IoTs) edge devices, and cyberse-
curity aspects of such devices are becoming a concern. Cybersecurity techniques, securing
only the upper layer of software stack, are not sufficient anymore as underlying hardware
faces a plethora of security and trust issues such as cloning, reverse engineering, Trojan
insertion, side channel attack [1], recycling/counterfeiting, and so on. Therefore, many
techniques and countermeasures are explored to ensure security and trust of hardware
systems at various levels. For example, security primitives like recycling sensor [2], Phys-
ically Unclonable Functions (PUF) [3,4], True Random Number Generator (TRNG) [5],
tamper sensor [6], encryption engines [7], Trojan detection [8–10], etc., are proposed to
secure hardware. The security solutions are mostly driven by CMOS -based technologies.
However, the CMOS-based solutions can be limited by the small set of features that can
be leveraged to develop security primitives such as process-variation (PV) and thermal
noise. In this regard, emerging technologies can be promising. They offer new sources of
randomness and noise that can be harnessed to design robust security primitives. Besides,
the solutions can achieve low power, high density, and high speed.

Prior Work on PUF: PUF is one of the widely accepted hardware security primitives
that finds application in authentication. A PUF exploits differences between two chips due
to intrinsic variation during the manufacturing process [4] to generate chip-specific and
unique signatures. Several conventional and emerging technologies such as CMOS [3,4],
memristor [11] and spintronic technologies [12,13] are explored to design PUFs. The CMOS

J. Low Power Electron. Appl. 2021, 11, 5. https://doi.org/10.3390/jlpea11010005 https://www.mdpi.com/journal/jlpea
123

J. Low Power Electron. Appl. 2021, 11, 5

PUFs include Static RAM (SRAM) based memory PUF, arbiter PUF and ring oscillator
based PUFs [3]. Emerging technology based PUFs include memristor, spintronic memory,
Resistive RAM (RRAM) [14,15], Domain Wall Memory (DWM), Magnetoresistive RAM
(MRAM), etc. For example, DWM is used to design arbiter PUFs with exponential Chal-
lenge Response Pairs (CRP) which are resilient to machine learning attack [16]. Several
PUFs based on Magnetoresistive RAM (MRAM) are also proposed [17–19]. In [17], the
authors utilize unique energy-tilt of a Magnetic Tunnel Junction (MTJ) which stems from
random geometric variations in the MRAM cells to generate PUF responses. The work
in [18] identified the unreliable cells in a PUF to devise a zero bit-error-rate PUF. In Ref. [19],
a strong PUF is proposed based on combining the resistances of a group of cells and gener-
ating their digital signature. The work exploits nano-scale analog disorders of MRAM, and
this technique can be extended to other memory technologies.

Prior Work on TRNG: TRNGs exploit a source of randomness such as thermal noise,
dynamic variations, etc. to generate random numbers. Ideally, the outputs of a TRNG must
have high entropy and zero correlation. Several TRNGs are proposed using spintronic
devices in prior work [20–23]. In [20,21], TRNG is implemented by manipulating the
amplitude of the programming pulse. However, Ref. [20] requires controlling current in the
order of μAs which is hard to achieve and Ref. [21] requires integration of analog circuit
which is very sensitive to noise. A stochastic programming by current-driven STT using a
Complementary Polarizer Spin Dice (CPSD) proposed in [22]. In [23], algorithms for PUF
(based on read current) and TRNG (based on pulse width/amplitude manipulation) are
proposed using MRAM. However, implementation details and results are not provided.

Proposed morphable PUF and TRNG: We propose a morphable security primitive
using commercial magnetic RAM which can be used as both a PUF and a TRNG. To run it
in the PUF mode, write time is controlled, and to run it in the TRNG mode, the number of
write pulses is manipulated. Thus, it is named as morphable.

The magnetic tunnel junctions (MTJs) in the MRAM exhibit different write latencies
owing to intrinsic and extrinsic PVs. For the same write time a bit may (or may not) flip
in two different chips (extrinsic variation). This observation can be exploited to generate
unique signatures from different chips which is useful for designing a PUF. We also notice
that the same bit in a chip will randomly flip (intrinsic variation) if written multiple times
with the same data. This is useful for designing a TRNG. The Figure 1 schematically shows
the concept of re-purposing the MRAM in two different modes, i.e., PUF and TRNG. Thus,
a 128 KB commercial MRAM chip can be converted to work solely as a 128 KB PUF or a
128 KB TRNG, or it can cohabitate a 64 KB PUF and a 64 KB TRNG.

Figure 1. Morphable security primitive using Magnetoresistive RAM (MRAM).

124

J. Low Power Electron. Appl. 2021, 11, 5

Note that the data width of the MRAM chips we used for this work is 8-bit. Therefore,
we call each address as a row and number the rows with the corresponding address. Each
row produces 8 bit and we number them as column 0 to 7 from Most Significant Bit (MSB)
to Least Significant Bit (LSB). We summarize our methodology to realize PUF and TRNG
from the MRAM chip below.

Working principle of proposed PUF (wPUF): First, we flush the bits of the PUF (write
with 0s). Then, we try writing 1 in all the bits. The write time of the pulse is set to 50%
switching probability so that 50% of the bits flip. However, due to stochastic nature of the
bitcell and process variation, each chip will be written with different data which can be
used as the signature of the chip. However, our analysis shows that 4 columns of all rows of
the chips are stuck to 0 (2 columns)/1 (2 columns) and do not show probabilistic switching
as expected. Remaining 4 columns show the probabilistic switching and therefore, overall
switching probability is around 50%. These severely limits PUF variation from chip to
chip. We noted that the 4 columns are stuck because either they are very strong (stuck
to 0, requires more write time) or weak (stuck to 1, requires less write time and always
gets written to 1). We expect that the PUFs based on real memory chip implementation
of any emerging NVMs might exhibit this type of behavior. Therefore, some of the bits
of each address could be unusable for PUF. In this work, we propose techniques to fix
these bad columns by exploiting the temporal randomness of good columns. Note that
this is in contrast to MRAM and STT-MRAM PUFs presented in literature [17–19] that are
specifically and carefully designed (bits, access transistor and peripherals) to amplify and
capture the variability and to achieve high inter-HD and low intra-HD.

Working principle of proposed TRNG: Our analysis show that just biasing an ad-
dress with 50% switching probability does not provide all possible outcomes. For example,
the number of possible outcomes for a 4-bit TRNG is 16. However, we observed less
number of outcomes due to strong/weak bits which limits the scope of the TRNG and
makes it Pseudo Random Number Generator (PRNG). Therefore, we propose the following
technique for TRNG: first, we write all 0 s in the cells of TRNG; then we write all bits to
1 s by selecting the write time to flip 75% of the bits (i.e., 75% switching probability) to
extract the first random number. For generating the second and third random number
from the same address, we propose to repeat the above steps with the write time to flip
50% of the bits (i.e., 50% switching probability) and with the write time to flip 25% of the
bits (i.e., 25% switching probability) respectively. This way we get all 16 possible outcomes
from the 4 good columns with tolerable standard deviation. For example, 75% switching
probability will mainly generate 4’b0111, 4’b1011, 4’b1101 and 4’b1110, 50% will mainly
generate 4’b0011, 4’b0101, 4’b1001, 4’b0110, 4’b1010 and 4’b1100 and 25% will mainly
generate 4’b0001, 4’b0010, 4’b0100 and 4’b1000. The remaining ones (4’b0000/4’b1111) are
also generated (with lower recurrence number) mainly with 25%/75% probability if all the
four bits are either very strong or weak respectively. Note that we did not fix the 4 bad
columns with the good ones in case of TRNG. This is to prevent machine learning attacks
that can profile the TRNG outcomes with fewer iterations (since the fixing can make the
bits correlated).

Morphable Security Primitive: To use the MRAM in the TRNG mode (i.e., to generate
unique true random numbers), the MRAM needs to be re-written every time. On the other
hand, to use it as a PUF, the MRAM needs to be written only once (during the enrollment
phase). The data that get written to PUF addresses depends on the PV which cannot be
replicated by a malicious entity. It should be noted that PUF can be morphed to TRNG if
written multiple times as proposed for TRNG.

To the best of our knowledge, this is the first experimental demonstration of a PUF and TRNG
using commercial MRAM chip. A work-in-progress version of this work has been published
in [24] where the methodology is discussed and initial data were presented. However, this work
explains the design and results in detail. In summary, we make the following contributions:

125

J. Low Power Electron. Appl. 2021, 11, 5

• We characterize the MRAM bit-to-bit write latency under voltage and temperature
variations.

• We characterize the MRAM response under multiple write disturbs which can be
useful for TRNG.

• We propose a write PUF (wPUF) by biasing the MRAM with a write latency with 50%
switching probability. The proposed PUF exhibits excellent stability and uniqueness.

• We show that 75% of the bits could be unresponsive to a challenge and propose tech-
niques to convert them into useful bits avoiding expensive row and columns masking.

• We propose a TRNG by exploiting random MRAM responses under multiple write disturbs.
• We benchmark the proposed PUF and TRNG with existing designs.

The rest of the paper is organized as follows: Section 2 provides the background of
MRAM technology, details of the experimental setup and analysis of the MRAM responses
to write latency and number of writes. Sections 3 and 4 describe the proposed PUF and
TRNG. Section 5 presents discussion and Section 6 draws conclusions.

2. Background on MRAM and Its Variation

In this section, we present basics of the toggle MRAM and characterize its statistical
and temporal behavior.

2.1. Basics of MRAM

MRAM bitcell (Figure 2) contains one MTJ and one NMOS access transistor. The MTJ
lies between a pair of metal-lines named digit-line and bit-line to facilitate write operation.
The metal-lines are parallel to the cell plane and placed orthogonal to each other. An
induced magnetic field is created with appropriate polarity by passing current through the
lines during write operation. The field exerts a torque on the free layer magnetic orientation,
causing it to flip. During read operation, the access transistor is turned ON, and a fixed
voltage is applied across the cell to sense the equivalent resistance.

Figure 2. Toggle MRAM bitcell containing one Magnetic Tunnel Junction (MTJ) and one access transistor.

A commercial toggle MRAM chip (MR4A08B) with 2 million rows and 8 columns is
used in this work to validate the proposed morphable security primitive. Table 1 captures
the key features of the MRAM chip. It should be noted that we have used the first 128 KB
(1 Mbit) out of 16 Mbit of the chip. Figures 3 and 4 presents the timing diagram of the write
and read operations of the MRAM chip. From the data sheet, it is evident that the chip
requires maximum of 15 ns of write enable (low) signal for successful write and data is
valid after 25 ns of read enable signal. In this work, we modified the specified read and
write times to realize the proposed PUF and TRNG.

126

J. Low Power Electron. Appl. 2021, 11, 5

Table 1. Characteristic of the MRAM Chip.

Parameter Value

Capacity 16 Mbit
Read/Write Cycle 35 ns

Address/Data Bus Length 21/8
Retention Time >20 years

AC stand by Current 9–14 mA
AC Active Current (Read/Write) 60–68 mA/152–180 mA

Figure 3. Write cycle of MRAM chip. Note that the chip requires maximum of 15 ns of write enable
(low) signal for successful write.

Figure 4. Read cycle of MRAM chip.

2.2. Experimental Setup

A four-layer PCB is designed to interface the MRAM chip with a logic analyzer and
Digilent Basys3 [25]. The PCB is designed with minimum wire resistance, inductance and
capacitance to stabilize the supply current for PUF power measurement. A 1 Ω thick film
current sensing resistor is connected between the ground of the PCB and the MRAM chip
to sense the MRAM current during read/write. A heat gun is used to change the ambient
temperature. We have analyzed a total of 10 chips.

First, we interfaced the MRAM chip with logic analyzer and wrote all addresses
at faster than 15 ns write time@VDD = 3.3 V, 25 ◦C. We found that the data is written
successfully for all chips at 12 ns (Figure 5). Therefore, the write time should be less than
12 ns at nominal operating condition to bias the cells with 50% write probability. We read
the data at 30 ns in order to avoid read failures. Next, we interfaced the MRAM chip
with the FPGA. The writing is done at much higher frequency to achieve partial write
and reading is done at 25 MHz (40 ns). The read/write traces are captured by Keysight
DSOS-804A Oscilloscope [26] with sampling frequency of 20 GSa/s and Bandwidth of
8 GHz. The experimental setup is shown in Figure 6. Data is sent to a PC using UART
(baud rate 9600 bps) for MATLAB analysis.

127

J. Low Power Electron. Appl. 2021, 11, 5

(a)

(b)

Figure 5. MRAM (a) write and (b) read waveforms. Note that with 12 ns of write enable (low) signal, data (0x0C) is written
successfully (to address 0x00 0180).

Figure 6. Experimental setup. The MRAM PCB (inset) is mounted on top of Basys3 for noise reduction.

2.3. Switching Variation of MRAM

We swept the write time of each of the 10 chips to identify the Cumulative Distribution
Function (CDF) of write time for 0 → 1 switching. Figure 7 shows the CDFs of three chips
that are found to possess highest/median/lowest write times. To realize PUF, the write
latency of each chip should be chosen to write 50% of the bits to get uniform 0/1 distribution.
From Figure 7 it is obvious that write time varies from chip to chip. This could be useful
for TRNG application. From the experimental results and analysis, we note the following:

128

J. Low Power Electron. Appl. 2021, 11, 5

(a) The write latency can be arranged in increasing order as, 0 → 0, 1 → 0, 0 → 1,
1 → 1 (i.e., writing 0 → 0 takes shortest time and 1 → 1 takes longest time (T(1→1))).

(b) For writing 1 → 1 with twrite < 10 ns and 10 ns< twrite < T1→1, the stored data
becomes 0 and stochastic respectively. From this observation we conclude that the chip
initializes the data to 0 before writing a 0 or 1. We believe that, this observation is rooted at
the toggle MRAM implementation which toggles the bit (irrespective of the existing state)
during write.

(c) Consecutive writes of 1 s with the same short write time reduces number of 1 s in
the data (consequence of (b)). For example, if the addresses are flushed with all 0 s and
then written with all 1 s with write time to flip 75% bits (which is < T1→1) and the writing
is repeated with same time (without flushing in between), the number of 1 s in the data
reduces to ≈49%, ≈34% and then remains fairly constant (Figure 8). This can be useful for
TRNG (further explained in Section 4).

(d) Columns 0 and 7 are biased to data 0, columns 1 and 2 are biased to data 1 and
column 3–6 mainly shows 50% switching probability (Figure 9) although we select the
write time to flip 50% of the bits for the entire memory array. Therefore, columns 0, 1, 2
and 7 cannot be used for PUF and TRNG. If every cell needs to be biased at their own 50%
switching probability, then write time for each cell in a row/column needs to be controlled
individually which is practically impossible.

(e) Error-free read can be performed with 23.3 ns under 3.0 V–3.6 V and 25 C–60 C.
The highest read latency is 23.3 ns@3.0 V, 60 C and lowest read latency is 22.47 ns@3.6 V,
25 C.

Figure 7. Cumulative Distribution Function (CDF) of write success of 3 chips (out of 10). These 3
chips exhibit maximum write time variation.

Figure 8. Number of consecutive writes vs. percentage of 1s in the data.

129

J. Low Power Electron. Appl. 2021, 11, 5

Figure 9. Switching probability distribution of 16 KB MRAM. First 16384 rows are grouped to 16 blocks
(1024 rows/block).

3. PUF

Memory PUFs exploit random initialization of the memory bits due to PV. The address
bits are used as challenge and the bits read from the memory array with the address is
the response of the PUF. In this section, we present the proposed wPUF and analyze its
performance using experimental results.

3.1. Proposed wPUF

The principle of the proposed wPUF is explained in algorithm (Figure 10). The wPUF
will have two phases:

(a) Enrollment phase (b) Authentication phase

Figure 10. Two phases of wPUF, (a) Enrollment phase; (b) Authentication phase.

(a) Enrollment phase (Figure 10a): In this phase, unique signature from a chip is
extracted using the method described below. First, the manufacturer prepares the memory
in an initial state by writing all bits with 0 s (flushing of the MRAM). Next, the manufacturer
try writing all 1 s with a write time T50% to switch 50% bits to 1. Note that, T50% is supply
voltage (VDD) and temperature dependent. As the manufacturer has access to a controlled-
environment, managing target VDD and temperature will not be an issue. Finally, the entire
address space is read to extract unique signatures. The steps are repeated for several chips
to create a pool of data for statistical analysis and subsequent correctional measures. Then,
all chip responses will be compared to separate the unresponsive columns/rows (that show
no variation) for all chips and which gives highest uniqueness for different chips. Based on
this observation, the unresponsive columns and rows need further processing (discussed
in Section 3.3).

130

J. Low Power Electron. Appl. 2021, 11, 5

(b) Authentication phase (Figure 10b): This phase involves sending challenges (memory
addresses) to the PUF and getting back responses (data stored in those addresses). Sufficient
number of CRPs should be matched so that a chip can be distinguished as unique and
authenticate. If there are reasonable mismatch in the CRP pairs, authentication should fail.

It should be noted that the enrollment phase for a chip is just a one-time operation.
Once enrollment phase is performed by the manufacturer, only authentication phase
(involves read operation) needs to be performed in real time.

3.2. Performance Analysis

PUF performance is evaluated with mainly three parameters:

3.2.1. Uniqueness (Inter-Die HD)

Uniqueness (measured by inter-die HD) in the PUF response enables the identification
of different chips uniquely. A 50% inter-die HD is desirable. In this work, the inter-die
HD is calculated for 10 chips and the average is found to be only 22.5% which is very low.
The reason for getting the low inter-HD is attributed to, (i) a smaller number of bits per
challenge (4 bits) to compare the responses of different chips (only 16 combinations), and,
(ii) inability to bias each bit at their 50% switching probability individually. The inter-die
HD is improved in the next subsection.

3.2.2. Reliability (Intra-Die HD)

Reliability (measured by intra-die HD) is the measure of the dependency of PUF re-
sponse to the intra chip voltage and temperature variations. A 0% intra-die HD is desirable.
Intra-die HD is measured by XORing the responses of the PUF at various voltages and
temperatures. In this work, we capture the responses of all chips for VDD ranging 3.0 V to
3.6 V and temperature ranging from 25 ◦C to 60 ◦C with read time of 23.3 ns which gives
intra-die HD = 0%. A perfect intra-die HD is achieved by relaxing the read time. System
throughput can be increased by reducing the read time which incurs a non-zero intra-die HD
for some operation condition. We propose to implement relaxed read time and compromise
system throughput since achieving 0% intra-die HD is critical.

3.2.3. Uniformity

For uniformity in the PUF response, the probability of 1’s and 0’s in the response for
possible challenges should be 50%. We evaluate the uniformity by the frequency metric in
the NIST benchmark for all the possible 16 CRPs of 4 MRAM bits of the PUF and found
it to be ≈48% with block frequency test. Entropy test on the responses show satisfactory
p-value (>0.01) which ensures randomness.

3.3. Improving Inter-HD

Figure 11 shows the average inter-HD of all 10 chips for first 80 rows (8 rows per row
block). From the result, we observe that inter-HD of Col 0, 1, 2 and 7 are poor as they are
stuck to either 0 or 1. Furthermore, we also observe that certain address rows provide good
inter-HD (green/blue) whereas other rows provide very poor inter-HD (red). We propose
the following techniques to improve the inter-HD.

3.3.1. Improving Column Performance

We propose writing the same address twice with write time corresponding to 75%
switching probability. The first/second response will have 75%/50% number of 1s. Since
the two responses are purely random, we propose using first response of columns 3–6
as the response of bad columns (i.e., columns 0, 1, 2 and 7) and the second response of
columns 3–6 as their own response. Therefore, we avoid masking of unusable columns
and restore the PUF bandwidth to 8 bits per challenge. The response obtained for bad
columns are enforced on them with relaxed write latency for subsequent authentication.

131

J. Low Power Electron. Appl. 2021, 11, 5

This technique exploits the fact that each bit of MRAM can produce more than one random
bit of information.

3.3.2. Improving Row Performance

By improving column performance, inter-die HD of stuck columns improves by 1.7X-
4X (individually). However, total inter-HD remains poor (≈28%) due to poor performance
of some rows that exhibit 0% inter-HD. Further, we observe that the rows with poor
inter-HD are mainly stuck to either all 0s or all 1s. The rows stuck to 0s (perhaps due to
higher thermal stability) are fixed by re-writing them with higher write time to trigger
statistical flipping. The row stuck to all 1s (perhaps due to low thermal stability) are fixed
by re-writing them with lower write time.

After improving row/column performances, we obtain inter-HD of 46.25% which
is close to the ideal value. The proposed improvement technique incurs one-time energy
(≈2.7X) and computational overhead during the enrollment phase. Furthermore, it should
be noted that, alternative improvement technique of masking the rows/blocks of rows
incurs significant area overhead. For the case of Figure 11, 75% bits are lost if masking is
implemented. The energy, bandwidth and area of the wPUF are 0.14 pJ/bit, 0.34 Gbit/s,
0.385 μm2/bit (including all peripheral circuits). Table 2 benchmarks proposed wPUF with
existing MRAM/STTRAM PUFs. We can observe that the proposed PUF is comparable to
prior works. It should be noted that (i) the proposed PUF is based on a commercial chip
which gives practical process variation; and, (ii) the data bus is 8 bit long, therefore the
bandwidth is comparatively low.

Figure 11. Average inter-HD of 10 chips for first 80 rows (8 rows/block).

Table 2. Performance comparison of different MRAM/STTRAM PUFs with the proposed wPUF.

PUFs
Inter-Die HD

(%)
Inter-Die HD

(%)
Entropy

Area (MTJ)
(μm2)

Bandwidth
(Gbit/s)

Energy/bit
(pJ)

Experimental

[15] - 50.1 0.985 0.046 6.4 - No

[17] 0.02 47 0.99 6.74
(64 bit) 12.8 - Yes

[27] 7.76 60.6 - 0.065 6.4 2.42 No

[28] - 49.89 0.95 0.005 6.4 0.001 No

wPUF
(This Work) 0 22.5 (before)

46.26 (after) 0.95 0.385 1 0.34 0.14 1 Yes

1 includes decoder, sense amp, and other peripheral circuitry and considers 100 mil × 100 mil of die size for TSOP-II IC package.

132

J. Low Power Electron. Appl. 2021, 11, 5

4. TRNG

TRNG generates true random number based on some random inherent noise. For
memory-based TRNG, the memory bitcell is biased at the 50% switching probability
point at which the bit stabilizes to either 1 or 0 depending on the noise. Therefore, the
written value is highly unpredictable, varies from chip to chip and strongly depends on
the operating conditions and noise. In this section, we present the proposed TRNG and
analyze its performance using experimental results.

4.1. Proposed TRNG

Figure 12 presents the algorithm to realize TRNG from the MRAM chip. First, the memory
address is flushed, i.e., 0 s are written to all bits. Next, the write time is set to 75% switching
probability and 1 s are written to the addresses. The 75% switching probability means the ratio
of 1 s to 0 s will be 75%. The data written is considered as the first random number. Then, the
same address is written again with all 1 s with the same write time. We notice that the ratio of
1 s to 0 s reduces to ≈50% (observation (b), Section 2) on the second write. This is the second
random number. Similarly, when we write for the 3rd time the 1 s to 0 s ratio drops to ≈35%
which gives out the 3rd random number. By repeating the same process for different write
times and different addresses, we can generate more random numbers.

Figure 12. Algorithm of the proposed True Random Number Generator (TRNG).

Since it is impossible to bias individual MRAM bits to their 50% switching proba-
bility using a common write latency, we bias the MRAM using three different switching
probabilities and extract all possible outcomes from n-bits. For example, biasing 4 bits
at 50% switching probability means that on an average, 2 bits out of 4 will be set to ‘1’.
This will produce 6 outcomes out of 16 possibilities (i.e., 1100, 0110, 0011, 1010, 1001 and
0101). Biasing at 75% switching probabilities mean 3 bits will be set to 1s producing 4 new
outcomes (1110, 0111, 1011 and 1101). Biasing at 35% switching probabilities mean 1 bit will
be set to 1s producing 4 new outcomes (0001, 0010, 0100 and 1000). Note that the remaining
two outcomes (0000/1111) are also produced by TRNG but with lower frequency.

Write operation of any spintronic memory suffers due to temperature and VDD variation.
Therefore, TRNG can be biased to some preferential values and behaves as Pseudo Random
Number Generator (PRNG). Tracking of VDD and temperature are needed for magnetic TRNG
to change the biasing conditions accordingly and achieve desired switching probability.

133

J. Low Power Electron. Appl. 2021, 11, 5

We assume that the processor can track VDD and temperature to select appropriate write
time. Figure 13a shows the proposed circuit and Figure 13b shows the timing waveform
to implement variable write time. For this example, we have assumed that the processor
runs at 1 GHz (time period 1 ns) and write time can vary from 9 ns to 13 ns depending on
operating condition. Therefore, from this circuit we can select write time with a step size of
0.5 ns in that range (by asserting WR_ENABLE and any of the other 8 pulses). If finer step
size is required, more pulses can be generated with less duty cycle. However, in that case,
the MUX will have more inputs (4:1 MUX (16 pulses in total) for 0.25 ns granularity).

(a)

(b)
Figure 13. (a) Circuit and (b) timing waveform to implement specific write time selection for achieving
desired switching probability.

4.2. Performance Analysis

(a) Entropy: Entropy of TRNG defines the randomness of the generated data. Entropy
can be calculated with the following equation [29]:

E = −∑2
i=2 pilog2(pi) (1)

where p1 and p2 are probability of 1 s and 0 s respectively in a n-bit long data stream. For
an ideal TRNG, the entropy is 1. We have calculated entropy of all chips column-wise and
the average entropy is shown in Figure 14a. It is evident that, columns 0, 1, 2, and 7 show
poor randomness (explained in previous section) and therefore needs to be masked. After
masking, the proposed TRNG offers an entropy of 0.95.

(b) Repeatability: Repeatability is another important metric to evaluate TRNG per-
formance. Ideally, a TRNG should only repeat when all other possible cases are already
covered. For example, for a 4-bit TRNG, the generated value should only repeat when all
the 16 possible values are generated. However, practically this is very difficult to achieve.
In the proposed TRNG algorithm, we are able to get all possible outcomes with small
standard deviation (0.0062) and the correlation coefficient is calculated as 0.05. Figure 14b
shows the outcomes of 10,000 cases for the proposed TRNG.

134

J. Low Power Electron. Appl. 2021, 11, 5

(a)

(b)

Figure 14. (a) Average entropy of all chips measured column-wise; (b) repeatability of TRNG outcomes
out of 10,000 responses.

The energy, bandwidth and area of the proposed TRNG are found to be 0.41 pJ/bit,
0.12 Gbit/s and 0.769 μm2/bit (including all peripheral circuits). We have also tested our
TRNG outputs with NIST STS randomness test (summarized in Table 3). It is evident from
the results that the proposed TRNG achieves excellent quality. Table 4 benchmarks the
proposed TRNG with existing MRAM/STTRAM TRNG. We can observe that the proposed
PUF is comparable to prior works and its energy (bandwidth) is significantly lower (higher)
than others.

Table 3. Summary of NIST Suite Statistical Result.

NIST Statistical Test p-Value Proportion Result

Frequency 0.349865 199/200 Pass
Block Frequency 0.257217 199/200 Pass

Cumulative Sums 0.393322 199/200 Pass
Discrete Fourier Transform 0.476393 199/200 Pass

Approximate Entropy 0.844361 200/200 Pass

135

J. Low Power Electron. Appl. 2021, 11, 5

Table 4. Performance comparison of different MRAM/STTRAM TRNG with proposed TRNG.

TRNG Correlation Entropy
Area (MTJ)

(μm2)
Bandwidth

(Gbit/s)
Energy/bit

(pJ)
Experimental

[20] 0.003 - 0.014 0.0005 14.97 Yes

[21] - - 0.0085 1 0.0833 1 0.3386 1 Yes

This Work 0.05 0.95 0.769 2 0.12 0.41 2 Yes
1 Considering 3 ns of read time; 2 Includes all peripheral circuitry and considers only 4 bits of each row. Thus, area is 2× of wPUF.

5. Discussions

VDD and temperature tracking: Any biasing technique to achieve a particular switch-
ing probability (pulse width/duration) is susceptible to VDD/temperature. Therefore,
VDD/temperature tracking is required to select appropriate biasing condition which can be
designed based on statistical data.

Considerations to other magnetic memory architecture: Consecutive writes of 1 s
with less than T1→1 write time gives 75%, 50% and 35% of number of 1 s in the data (observa-
tion (c)) for the toggle MRAM chip. However, three different write times (T75%/T50%/T35%)
can be implemented for other memory (that does not show this behavior).

Novelty of this work: Prior works consider bitwise normal distribution of switching
probability. However, there are several practical challenges with the real memory imple-
mentation. First, it offers a narrow distribution with some columns/rows stuck at 0/1.
Besides, the real memory chip does not provide granular access to each individual bits and
for that biasing of the bits cannot be bitwise tailored. Even custom biasing for each row
is impractical. To the best of our knowledge, we make the first attempt to systematically
understand and address these practical challenges in this paper.

Note that we have selected MRAM since it is very promising due to its low static and
read power consumption. However, the proposed post-processing techniques to improve
the inter-HD of PUF and entropy of TRNG are applicable to other memory technologies.

TRNG robustness to Machine Learning Attack: Random Number Generator (RNG)
can be vulnerable to machine learning attack [30]. However, an RNG can be robust against
such attack if the non-linearity is very high (i.e., no repetitive patterns in outcomes of RNG).
Since the response of the proposed TRNG is non-linearly dependent on numerous parameters,
e.g., write pulse width, write voltage and temperature due to non-linear magnetization
dynamics of MRAM free layer, the proposed MRAM TRNG is expected to be robust against
machine learning attack.

6. Conclusions

We have investigated TRNG and PUF implementation using magnetic memory and
manipulation of write time and number of writes. We have analyzed the practical implica-
tions of designing TRNG/PUF using commercial MRAM and addressed these issues to
achieve high quality.

Author Contributions: Conceptualization, M.N.I.K. and S.G.; methodology, M.N.I.K.; software, A.A.-S.;
validation, M.N.I.K., C.Y.C., S.H.L. and A.A.-S.; formal analysis, M.N.I.K.; investigation, M.N.I.K.; re-
sources, S.G.; data curation, C.Y.C. and S.H.L.; writing—M.N.I.K., A.A.-S. and S.G.; original draft
preparation, M.N.I.K. and A.A.-S.; writing—review and editing, M.N.I.K., A.A.-S. and S.G.; visual-
ization, M.N.I.K.; supervision, M.N.I.K. and S.G.; project administration, M.N.I.K. and S.G.; funding
acquisition, S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Semiconductor Research Corporation (2847.001 and 3011.001) and
National Science Foundation (CNS-1722557, CCF-1718474, DGE-1723687, OIA-2040667 and DGE-1821766).

Conflicts of Interest: The authors declare no conflict of interest.

136

J. Low Power Electron. Appl. 2021, 11, 5

References

1. Khan, M.N.I.; Bhasin, S.; Yuan, A.; Chattopadhyay, A.; Ghosh, S. Side-Channel Attack on STTRAM Based Cache for Cryptographic Ap-
plication. In Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston, MA, USA, 5–8 November 2017;
pp. 33–40.

2. Lin, C.W.; Ghosh, S. Novel self-calibrating recycling sensor using Schmitt-Trigger and voltage boosting for fine-grained detection.
In Proceedings of the Sixteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015;
pp. 465–469.

3. Herder, C.; Yu, M.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014, 102,
1126–1141. [CrossRef]

4. Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation. In Proceedings of
the 2007 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June 2007; pp. 9–14.

5. Tsoi, K.H.; Leung, K.H.; Leong, P.H.W. Compact FPGA-based true and pseudo random number generators. In Proceedings of the
11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2003, Napa, CA, USA, 9–11 April 2003;
pp. 51–61.

6. Magnetic Tamper Detection Using Low-PowerHall Effect Sensors. Available online: http://www.ti.com/lit/ug/tidub69/tidub6
9.pdf (accessed on 12 January 2021).

7. Miura, N.; Fujimoto, D.; Tanaka, D.; Hayashi, Y.-I.; Homma, N.; Aoki, T.; Nagata, M. A local EM-analysis attack resistant
cryptographic engine with fully-digital oscillator-based tamper-access sensor. In Proceedings of the 2014 Symposium on VLSI
Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13 June 2014; pp. 1–2.

8. Ghosh, S.; Basak, A.; Bhunia, S. How Secure Are Printed Circuit Boards Against Trojan Attacks? IEEE Design Test 2015, 32, 7–16.
[CrossRef]

9. Khan, M.N.I.; Nagarajan, K.; Ghosh, S. Hardware Trojans in Emerging Non-Volatile Memories. In Proceedings of the 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 396–401.

10. Khan, M.N.I.; De, A.; Ghosh, S. Cache-Out: Leaking Cache Memory Using Hardware Trojan. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2020, 28, 1461–1470. [CrossRef]

11. Mazady, A.; Rahman, M.T.; Forte, D.; Anwar, M. Memristor PUF—A Security Primitive: Theory and Experiment. IEEE J. Emerg.
Sel. Top. Circuits Syst. 2015, 5, 222–229. [CrossRef]

12. Iyengar, A.; Ghosh, S.; Ramclam, K.; Jang, J.-W.; Lin, C.-W. Spintronic PUFs for Security, Trust, and Authentication. J. Emerg.
Technol. Comput. Syst. 2016, 13, 1–5. [CrossRef]

13. Ghosh, S.; Govindaraj, R. Spintronics for associative computation and hardware security. In Proceedings of the 2015 IEEE 58th
International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4.

14. Chen, A. Utilizing the Variability of Resistive Random Access Memory to Implement Reconfigurable Physical Unclonable
Functions. IEEE Electron Device Lett. 2015, 36, 138–140. [CrossRef]

15. Zhang, L.; Fong, X.; Chang, C.; Kong, Z.H.; Roy, K. Highly reliable memory-based Physical Unclonable Function using Spin-
Transfer Torque MRAM. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne,
VIC, Australia, 1–5 June 2014; pp. 2169–2172.

16. Chen, A.; Hu, X.S.; Jin, Y.; Niemier, M.; Yin, X. Using emerging technologies for hardware security beyond PUFs. In Proceedings
of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March 2016;
pp. 1544–1549.

17. Das, J.; Scott, K.; Rajaram, S.; Burgett, D.; Bhanja, S. MRAM PUF: A Novel Geometry Based Magnetic PUF With Integrated CMOS.
IEEE Trans. Nanotechnol. 2015, 14, 436–443. [CrossRef]

18. Vatajelu, E.I.; Natale, G.D.; Prinetto, P. Zero bit-error-rate weak PUF based on Spin-Transfer-Torque MRAM memories. In Proceedings
of the 2017 IEEE 2nd International Verification and Security Workshop (IVSW), Thessaloniki, Greece, 3–5 July 2017; pp. 128–133.

19. Khaleghi, S.; Vinella, P.; Banerjee, S.; Rao, W. An STT-MRAM based strong PUF. In Proceedings of the 2016 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), Beijing, China, 18–20 July 2016; pp. 129–134.

20. Seki, A.F.T.; Kubota, K.Y.H.; Imamura, H.; Yuasa, S.; Ando, K. Spin dice: A scalable truly random number generator based on
spintronics. Appl. Phys. Express 2014, 7, 083001.

21. Oosawa, S.; Konishi, T.; Onizawa, N.; Hanyu, T. Design of an STT-MTJ based true random number generator using digitally
controlled probability-locked loop. In Proceedings of the 2015 IEEE 13th International New Circuits and Systems Conference
(NEWCAS), Grenoble, France, 7–10 June 2015; pp. 1–4.

22. Fong, X.; Chen, M.; Roy, K. Generating true random numbers using on-chip complementary polarizer spin-transfer torque
magnetic tunnel junctions. In Proceedings of the 72nd Device Research Conference, Santa Barbara, CA, USA, 22–25 June 2014;
pp. 103–104.

23. Vatajelu, E.I.; Natale, G.D.; Prinetto, P. Security primitives (PUF and TRNG) with STT-MRAM. In Proceedings of the 2016 IEEE
34th VLSI Test Symposium (VTS), Las Vegas, NV, USA, 25–27 April 2016; pp. 1–4.

24. Khan, M.N.I.; Cheng, C.Y.; Lin, S.H.; Ash-Saki, A.; Ghosh, S. A Morphable Physically Unclonable Function and True Random
Number Generator using a Commercial Magnetic Memory. In Proceedings of the 2020 21st International Symposium on Quality
Electronic Design (ISQED), Santa Clara, CA, USA, 25–26 March 2020; p. 197.

137

J. Low Power Electron. Appl. 2021, 11, 5

25. Basys3TM FPGA Board Reference Manual. Available online: reference.digilentinc.com/_media/basys3:basys3_rm.pdf (accessed
on 12 January 2021).

26. The Standard for Superior Measurements. Available online: https://www.keysight.com/us/en/assets/7018-04261/data-sheets/
5991-3904.pdf (accessed on 12 January 2021).

27. Zhang, X.; Sun, G.; Zhang, Y.; Chen, Y.; Li, H.; Wen, W.; Di, J. A novel PUF based on cell error rate distribution of STT-RAM. In
Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau, China, 25–28 January
2016; pp. 342–347.

28. Zhang, L.; Fong, X.; Chang, C.; Kong, Z.H.; Roy, K. Optimizating Emerging Nonvolatile Memories for Dual-Mode Applications:
Data Storage and Key Generator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1176–1187. [CrossRef]

29. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
30. Kim, J.; Nili, H.; Truong, N.D.; Ahmed, T.; Yang, J.; Jeong, D.S.; Sriram, S.; Ranasinghe, D.C.; Ippolito, S.; Chun, H.; et al.

Nano-Intrinsic True Random Number Generation: A Device to Data Study. IEEE Trans. Circuits Syst. Regul. Pap. 2019, 66, 2615–2626.

138

Journal of

Low Power Electronics
and Applications

Article

Continuous-Time Programming of Floating-Gate Transistors for
Nonvolatile Analog Memory Arrays †

Brandon Rumberg, Spencer Clites, Haifa Abulaiha, Alexander DiLello and David Graham *

Citation: Rumberg, B.; Clites, S.;

Abulaiha, H.; Dilello, A.; Graham, D.

Continuous-Time Programming of

Floating-Gate Transistors for

Nonvolatile Analog Memory Arrays.

J. Low Power Electron. Appl. 2021, 11,

4. https://doi.org/

10.3390/jlpea11010004

Received: 13 November 2020

Accepted: 11 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Lane Department of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV 26506, USA; brandon@aspinity.com (B.R.); sclites@mix.wvu.edu (S.C.);
hmabulaiha@mix.wvu.edu (H.A.); adilello@mix.wvu.edu (A.D.)
* Correspondence: david.graham@mail.wvu.edu; Tel.: +1-304-293-9692
† This paper is an extended version of our paper published in Rumberg, B.; Graham, D. A floating-gate memory

cell for continuous-time programming. In Proceedings of the IEEE Midwest Symposium on Circuits and
Systems, Boise, ID, USA, 5–8 August 2012; pp. 214–217.

Abstract: Floating-gate (FG) transistors are a primary means of providing nonvolatile digital memory
in standard CMOS processes, but they are also key enablers for large-scale programmable analog
systems, as well. Such programmable analog systems are often designed for battery-powered and
resource-constrained applications, which require the memory cells to program quickly and with
low infrastructural overhead. To meet these needs, we present a four-transistor analog floating-gate
memory cell that offers both voltage and current outputs and has linear programming characteristics.
Furthermore, we present a simple programming circuit that forces the memory cell to converge to
targets with 13.0 bit resolution. Finally, we demonstrate how to use the FG memory cell and the
programmer circuit in array configurations. We show how to program an array in either a serial or
parallel fashion and demonstrate the effectiveness of the array programming with an application of a
bandpass filter array.

Keywords: floating-gate transistor; nonvolatile memory; continuous-time programming; floating-
gate memory array; FPAA; reconfigurable

1. Introduction

In an effort to reduce the power consumption of battery-powered devices, analog sig-
nal processing is being reinvestigated to supplement and/or replace digital systems for
making early decisions regarding incoming sensor information. However, analog systems
are extremely sensitive to biasing conditions and, thus, need accurate control over their pa-
rameters to achieve the desired performance. Particularly in systems consisting of arrays of
analog elements, such as field-programmable analog arrays [1–3] and other programmable
analog arrays [4–6], a large number of analog parameters must be precisely established to
achieve the desired performance.

Floating-gate (FG) transistors can serve as key enabling devices for such low-power
analog systems. An FG transistor is a MOSFET that has no resistive connection to its gate;
instead, a “control gate” couples capacitively onto the transistor’s “floating gate.” As a
result, the charge on the FG is held fixed under nominal conditions but can be modified
via Fowler-Nordheim tunneling and hot-electron injection, which both require elevated
voltages. Because of its nonvolatile memory characteristics, FG transistors are ubiquitous
in digital systems in the form of EEPROM and Flash memory. However, the ability to
finely tune the amount of programmed charge on the FG allows these devices to be used
as nonvolatile analog memory elements, as well. Consequently, FG transistors have found
applications as variable threshold-voltage devices, programmable voltage/current sources,
analog trimming for device matching, and within adaptive/learning circuits [7].

J. Low Power Electron. Appl. 2021, 11, 4. https://doi.org/10.3390/jlpea11010004 https://www.mdpi.com/journal/jlpea
139

J. Low Power Electron. Appl. 2021, 11, 4

Modifying the stored charge on an FG transistor, which is often referred to as “pro-
gramming” the FG, requires large voltages (typically 2–3 times greater than the rated
Vdd of the process) to be applied to the FG transistor terminals in a controlled manner.
Figure 1 depicts the two primary methods for programming an FG transistor—pulsed and
continuous methods. Pulsed methods operate by iteratively applying short, high-voltage
pulses to modify the charge and then measuring the FG after each pulse, repeating until
a desired target is reached. Continuous methods, on the other hand, apply a constant
high voltage and leverage feedback to ensure that the FG charge converges to the desired
value. Pulse-based methods have dominated analog applications (e.g., [8]) because of the
simplicity of design and high accuracy that has been demonstrated. However, continuous
programming promises to be faster and require less peripheral circuitry than pulse-based
programming, which are critical features in resource-constrained systems that need to save
power and area.

�A
Is

Vs

Vd
Vd

Vs

Vtun

Vtun

Vfg
Vfg

Vcg
Vcg

Pulsed
Programming

Continuous
Programming

Read

Program

Vsd

Is

() ()

Figure 1. Pulsed programming and continuous programming. (a) In pulsed programming, the source-
to-drain potential is alternately pulsed high for injection, and then placed at a nominal value to
measure the floating gate’s performance. (b) In continuous programming, injection occurs constantly,
and a terminal (in this case the source current) is adjusted to decrease—and eventually shut off—
injection as the target is approached.

In this paper, we describe a compact FG cell for continuous programming, which
when combined with our simple programmer circuit, converges to target voltages with
13.0 bit resolution. This FG cell/programmer combination is primarily designed to work
with battery-powered applications. This work is an extension of our early results in [9]
in which the circuit was constructed using custom discrete elements and achieved far
lower accuracy. Here, we present a fully integrated solution with far better programming
accuracy and resolution. We also extend the results of a single memory cell in [9] to array
applications. We describe how to build and program FG arrays in a serial (i.e., one at
a time) fashion as well as present a method for parallelizing the programming of FG
cells in an FG memory array to improve overall programming speed (first described in
Masters Thesis [10]). This paper serves to provide a description on how to build easy-to-use
programmable arrays of analog non-volatile memory for low-power applications.

Our basic memory cell uses an FG transistor in a source-follower configuration and
linearizes injection via negative feedback to the control gate, as shown in Figure 1b. Such lin-
ear source-feedback injection has been used previously in [11], but we accomplish the same
characteristics with the smaller current conveyor circuit. In addition to being smaller,

140

J. Low Power Electron. Appl. 2021, 11, 4

this current conveyor memory cell also offers more flexible control over the injection rate
since the FG source voltage, Vs, can be modified using either a voltage or a current input.

We describe the development of this system in the remainder of this paper.
Section 2 provides an overview of FG programming. Section 3 describes various methods
of continuous-time FG programming. Section 4 discusses our current-conveyor-based
memory cell. Section 5 then describes the programmer circuit that is used to achieve
specific target values. Section 6 discusses the two major methodologies to program an FG
array—serial and parallel programming. Section 7 demonstrates the use of an FG array to
precisely establish the corner frequencies of a programmable bandpass filter bank. Finally,
Section 8 provides concluding remarks.

2. Overview of Floating-Gate Programming

Two phenomena are typically used to program FG transistors: hot-electron injection
and Fowler-Nordheim tunneling. Injection occurs when a large source-to-drain potential
(typically Vsd > Vdd) is applied to a PMOS FG transistor, thus causing high-energy carriers
to impact-ionize at the drain. A fraction of the resulting ionized electrons disperse toward
the surface with enough energy to overcome the oxide barrier and inject onto the FG. In the
subthreshold region, which is our target operational region for low-power applications
and high injection efficiency, the injection current from Vf g to Vd can be approximated as

Iinj ≈ βIs
αeVsd/Vinj (1)

where β, α, and Vinj are device-dependent fits [12]. Tunneling, on the other hand, requires
high voltages (typically Vox > 2Vdd). To avoid write disturbs during tunneling, unselected
array elements must either be disconnected from the tunneling voltage using high-voltage
switches or the FGs of the unselected elements must be raised to a sufficient voltage that
tunneling does not occur. Due to this difficulty in isolating tunneling within an array,
tunneling is typically used only for global erasure in analog memory arrays, while injection
is used to write to individual elements. Consequently, we focus mainly on injection in
this paper.

Due to their ability to provide dense, low-power, analog biases, FGs are elemen-
tal in large-scale programmable analog systems—such as filter banks [4], classifiers [5],
and field-programmable analog arrays [1,13]. In these systems, circuit parameters (e.g.,
corner frequencies) are controlled by the charge on the FGs; as a result, system performance
depends strongly on the programming accuracy. Prior pulse-based programming tech-
niques have achieved high accuracy [8,11]. One advantage that pulse-based techniques
have in terms of accuracy is that the FG is measured in a state that is similar to run-mode:
with no high programming voltages applied to the cell, and with the same current levels
that will be used in run-mode. Unfortunately, pulsing is inherently slow due to the time
spent reading, during which the high programming voltages are stepped down and the FG
is allowed to settle before the measurement is taken; if measuring low currents, which is
necessary in low-power applications, then the read time further increases due to the long
integration time that is necessary for accurate measurement. Methods to increase the pro-
gramming speed with pulse-based programming rely on precise knowledge of each FG’s
characteristics, so that each pulse can move more aggressively toward the target [8], but this
adds to the complexity. Additionally, pulsing techniques require high-precision data con-
version and pulse timing, and possibly large-range current measurement [14], all of which
complicate the inclusion of analog FG memory in simple, resource-constrained systems.
Thus, there is a need for fast, compact, low-overhead, and accurate programming: we posit
that continuous-time programming is more appropriate for resource-constrained systems.

3. Continuous-Time Floating Gate Programming

Continuous-time FG programming is accomplished by using feedback to stop pro-
gramming when the memory cell reaches its target value. A variety of continuous pro-
gramming circuits have been presented, ranging from a single-transistor circuit [12] that

141

J. Low Power Electron. Appl. 2021, 11, 4

self-converges due to the negative feedback of injection current from the FG to the drain,
to more complex circuits with improved speed and accuracy. Figure 2 shows the two
primary types of FG cells for self-converging, continuous programming that use the inher-
ent feedback in MOSFETs undergoing hot-electron injection to converge to a final value.
For both the circuits, as electrons are injected onto the FG, the FG voltage, Vf g, decreases.
As a result, the source-to-drain potential also decreases, and, according to Equation (1),
the injection current decreases and will eventually shut off. The circuit in Figure 2a, which
was presented in [12], provides repeatable results and can be programmed to different
targets either by using different values of I1 for a constant Vcg, or by using different values
of Vcg for a constant I1. However, the convergence time depends on the initial conditions;
if the initial charge on the FG is too high, then the device cannot initially produce I1. As
a result, injection starts very slowly, and the total time to converge can be long (even
though the final stages of convergence occur quickly). While the circuit of Figure 2b will
typically start injecting quickly, it will slowly converge to its final value, often on the order
of minutes to converge. Whereas the circuit of Figure 2a starts slow and finishes quickly,
the circuit of Figure 2b starts quickly and finishes slowly. Both circuits suffer from potential
long convergence times because they only rely on internal feedback to converge.

Vfg

Vd

Mfg

I1

Vcg

Vtun

(aa)

Vtun

Vfg
Mfg

Vcg

Vs

I1

(bb)

Figure 2. Programming cells without explicit feedback to keep all of the terminals of Mf g constant,
thereby resulting in situations that have slow injection. (a) Programming cell with constant current
applied to the drain. (b) Programming cell with constant current applied to the source.

External feedback, on the other hand, can be used to linearize the injection and
tunneling processes to ensure that the FG charge is programmed to the desired value in
a reasonable and predictable amount of time. External feedback can be used to keep the
drain, source, and floating-gate potentials at constant values during the programming
process so that injection and/or tunneling occur at a constant rate. As a result, the external
feedback can prevent the FG cell from entering a region in which its conditions are not
amenable to programming, which would lengthen the programming duration. However,
linearizing the programming process means that the FG cell no longer self converges.
Instead, systems that linearize the programming rates require additional external circuitry
to stop the injection and/or tunneling at the appropriate time.

Several previous circuits were presented that use feedback to linearize the program-
ming process, including memory cells that use a comparator to terminate programming
when a target has been reached [15,16], memory cells that use differential amplifiers to
linearize programming [17], and a system that uses both hot-electron and hot-hole injection
to bidirectionally converge on a target [18]. In each of these systems, the programming rate
is held constant until the target value is reached, and then the programming is abruptly
stopped. Such programming faces a severe tradeoff between programming speed and

142

J. Low Power Electron. Appl. 2021, 11, 4

accuracy [16]. In contrast, the programming circuitry that we present in this work adjusts
the FG transistor’s channel current in order to reduce the programming rate as the target
value is approached; this adaptation of the current in the FG transistor allows our pro-
grammer and FG memory cell to achieve a better tradeoff between programming speed
and accuracy.

Figure 3 depicts the two primary concepts behind using negative feedback to Vcg to
keep all the terminals of Mf g constant through the programming process, and thus keep
injection and/or tunneling rates constant. However, as previously mentioned, these mem-
ory cells no longer converge on their own, but require additional programming circuitry.
In both of these circuits, Vf g is constant and Vcg ramps linearly up during injection, or down
during tunneling, to compensate for the change in charge on the FG—see Figure 4. Vcg
thus provides our measure of the charge on the FG. We found the high gain around the
loop of the circuit in Figure 3a to cause stability problems, and so we will not consider it
any further. The source follower circuit in Figure 3b is the same configuration that has been
used in pulse-based source-feedback injection to achieve 13-bit precision with program
times on the order of 50 s/200 mV [11]. This circuit has good stability and offers good
control over injection and tunneling through the manipulation of both VsT (which sets Vs)
and I1. Our memory cell has the same basic characteristics as this circuit, but is smaller,
which is important for large array applications.

Vtun

MfgVfg

VdT I1

Vd

Vcg

(aa)

Vtun

VsT

Vcg

I1

Vs

Mfg

Vfg

(bb)

Figure 3. Programming cells that employ negative feedback to the gate to hold the terminals and
current of Mf g constant, thus resulting in linear injection and tunneling. (a) Programming cell
with constant current applied to the drain. (b) Programming cell with constant current applied to
the source.

143

J. Low Power Electron. Appl. 2021, 11, 4

Tunneling

Injection

Time (s)

V c
g

0 0.04 0.08 0.12 0.16 0.2

0 0.04 0.08 0.12 0.16 0.2

0

0.5

1.5

1

V c
g

4.5

5

6

5.5

Time (s)

(V
)

(V
)

Figure 4. Demonstration of the linear programming characteristics of the circuit in Figure 3b.

4. Current-Conveyor-Based Memory Cell

To achieve the good characteristics of the circuit of Figure 3b but reduce the size, we
developed the circuit in Figure 5. For simplicity, current sources are shown for I1 and I2,
but in the actual implementation, each current source is implemented by a single transistor.
In this memory cell, the inverting amplifier M1–I2 replaces the op-amp in Figure 3b. The
resulting circuit structure is the current-controlled current conveyor, the details of which
can be found in [19]. In this circuit, the negative feedback adjusts Vcg in order to force both
Vf g and Vs to fixed voltages. The equilibrium point for Vs is controlled by both the voltage
VX and the current I2. The equilibrium point of Vf g depends on both Vs and I1. Thus, we
maintain independent control of the source current and drain-to-source potential (the two
main injection parameters) with this four-transistor circuit.

V

Vfg

Vs

Mfg

I1

Vcg

I2

Vx

M1

tun

Figure 5. Our floating-gate memory cell, which is based on the current-controlled current conveyor
circuit.

This memory cell offers three control terminals for modifying injection: two currents
(I1 and I2) and one voltage (VX). Using the subthreshold injection approximation in

144

J. Low Power Electron. Appl. 2021, 11, 4

Equation (1), we can solve for the injection current as a function of the control terminals in
subthreshold operation as

Iinj ≈ βI1
α

(
I2

I0

)− UT
κVinj

e
Vx−(1−κ)Vdd

κVinj (2)

where I0 is the pre-exponential current scaler for M1, κ is related to the subthreshold
slope for M1, and UT = kT/q is the thermal voltage. Figure 6 shows measured injection
rates as a function of each of these control terminals. The injection rate was measured by
determining the slope of Vcg during injection experiments that were similar to the injection
pane in Figure 4; this slope is equal to the injection current normalized by the control-
gate capacitance. When not being swept, VX, I1, and I2 were held fixed at 5 V, 860 nA,
and 2 nA, respectively. Additionally, since the feedback holds Vf g constant, this cell has
linear tunneling characteristics. Figure 7 shows the dependence of the tunneling current on
VX while all other terminals were held fixed.

The experiments shown in Figures 6 and 7 demonstrate the ability to adjust the cell’s
programming rate over a large range using either voltage or current inputs. Additionally,
the weak dependence on I2—approximately an inverse fifth root dependence—makes I2
appropriate for fine rate adjustment. Furthermore, the cell works well in the subthreshold
region, where power consumption is low and Equation (2) holds true.

��� ��� ��� ��� ���

�	

��
�

��

��

 ��
�
�
�
�

�� �������
��

����������
����������

��
�

��
�

��

��

 ��
�
�
�
�

�� �� �� ��

Figure 6. Measured dependence of the injection current on the three control terminals of the circuit: (a) VX , (b) I1, and I2.

��� � ��� ��� ��� ���
��

 �
�
�
�
�
�

��
�

��
�

��

Figure 7. Measured dependence of tunneling current on terminal VX .

5. Programmer Circuit

The combination of control terminals makes the memory cell very flexible in terms
of creating a “programming circuit” to inject the memory cell to a desired value. Figure 8
illustrates one possible programming circuit that uses I1 as the control terminal, and

145

J. Low Power Electron. Appl. 2021, 11, 4

we will use this programmer circuit throughout the rest of this work. This programmer
circuit consists of an operational transconductance amplifier (OTA) and a current mirror.
In program mode, the programmer circuit is connected to the FG memory cell in the
configuration shown in Figure 8. The OTA converts the difference between Vcg and a target
value, Vtarg, into a current. This current is rectified by the current mirror M2–M3 and is
forced into the source terminal of the FG transistor. Accordingly, this current is able to
precisely control the programming of the FG memory cell.

Vtun

Vfg

Vs

Mfg

I1

Vcg

I2

M1

Vtarg

M2 M3

FG Memory Cell Programmer

Figure 8. Our memory cell programming circuit.

Figure 9 illustrates the programming procedure with measured data from an inte-
grated circuit fabricated in a standard 0.5 μm CMOS process. Prior to “writing” a value
to the FG memory cell, the memory cell is erased by tunneling the FG transistor—a large
voltage is applied to Vtun until the control-gate voltage, Vcg, of the FG memory cell drops
to a voltage near ground. With Vtun reduced to its run-time voltage and with Vdd held at
the nominal supply voltage, the value of Vcg maintains a low (near-ground) voltage. This is
the “erased” state of the FG memory cell.

Vtarg

Vcg

Figure 9. Timing diagram of the FG cell and programmer circuit. While Vtarg > Vcg, injection takes
place, and Vcg rises linearly.

To initiate injection, the supply voltage is ramped up to an elevated value, Vdd, f g,
which pulls Vcg up to a non-zero value. The exact value of Vdd, f g necessary for injection is

146

J. Low Power Electron. Appl. 2021, 11, 4

process-dependent, and [20] provides details on how this voltage changes with technology
nodes. While Vcg is well below the target value, the OTA output current is saturated,
and the injection rate is constant because the current through the FG transistor is constant,
while also maintaining constant voltages on the source, drain, and floating gate. As Vcg
approaches Vtarg, the OTA enters its linear input range, and the current in the FG transistor
becomes proportional to the difference between Vcg and Vtarg. Consequently, as the target
is approached, the injection rate is reduced, and eventually stopped, by the reducing I1.
When I1 shuts off, the current conveyor structure stops operating, and Vcg is pulled high.
At this point, injection no longer occurs. The FG memory cell and programmer have their
supply voltage lowered to the nominal Vdd, and programming of the FG memory cell has
been completed.

After injecting the FG memory cell, it is placed in read mode by disconnecting it
from the programmer OTA and current mirror—i.e., it is configured as Figure 5. The cell’s
voltage output is read from Vcg while constant currents are applied to I1 and 12.

Alternatively, the FG transistor can be disconnected from the rest of the memory cell
for current readout mode. In current readout mode, Vcg is connected to a fixed potential,
the source of Mf g is connected to Vdd, and the drain is connected directly to the circuit that
it biases. In short, Mf g is configured as a current source, with the exact value of current
dependent on the charge programmed on the FG.

The combination of this programmer circuit and the FG memory cell is able to provide
a linear mapping between the target voltages (Vtarg) and the output voltages (Vcg) of
the memory cell after being programmed. Figure 10 shows the measured relationship
between the target voltages and the corresponding output voltages after the FG memory
cell has been disconnected from the programmer and the supply voltage has returned to
the nominal Vdd. These measurements were taken from an integrated circuit fabricated in a
standard 0.35 μm CMOS process. As can be seen, linearly spaced target voltages result in
linearly spaced output voltages. The bottom pane shows the deviation from a straight line
with a slope of 1.0025 (the linear fit to the data). Over a target range of 0.9 V–2.1 V (1.2 V
total), the worst-case deviation from the straight line was only 0.49 mV.

��� ��� ��� ��� ��� ���
	

�

�

	

�

�
�
�
��

��

��� ��� ��� ��� ��� ���

������ ����

�
�
��
��
�
�
�
�
�
�
��
�
��

�

������ ���

Figure 10. Measured programming accuracy.

The programmer/memory-cell combination is capable of programming to a larger
range of voltages, but the relationship begins to deviate slightly from a straight line with
a larger Vtarg range. Figure 11 shows the Vtarg to Vcg relationship for a voltage range of
2.2 V. The Vcg values deviate as much as 7 mV from the ideal straight line. However,
a simple calibration step can be used to correct for these deviations from the straight line.

147

J. Low Power Electron. Appl. 2021, 11, 4

The curvature of the output Vcg values has an approximately third-order relationship.
Therefore, using a third-order polynomial to calibrate the Vtarg to Vcg relationship results in
a worst-case deviation of 0.9 mV from a straight line, as is shown in Figure 11.

��� � ��� �

������ ���

	

	��

�

���

�

���

	

�

�
�
�
�
�

�
�

��������	
���	���

��� � ��� �

������ ���

	

	��

�

���

�

���

	

�

�
�
�
�
�

�
�

������	
���	���

��� � ��� �

������ ���

�
�
�
��
��
�
�
��
�
�
��
��
�
��
�

�

��� � ��� �

������ ���

�
�
�
��
��
�
�
��
�
�
��
��
�
��
�

�

Figure 11. Measured programming accuracy before and after calibration.

To verify the repeatability and precision of the programming process, the memory cell
was programmed using the programmer circuit for linearly spaced values of Vtarg. The FG
memory cell was programmed 100 times to each target value ranging from 1.24 V−3.56 V
(2.32 V total range), with a full erasure after each write/measurement. Each program-
ming cycle was 100 ms in duration and used Vdd, f g = 6 V. Figure 12 shows the standard
deviation of the 100 measurements of Vcg for each Vtarg, which had a worst-case value of
280 μV. Using the worst-case standard deviation of the repeatability measurements as the
minimum detectable change that can be distinguished over the 2.32 V range, then this FG
cell/programmer combination is capable of 13.0 bits of resolution when programming.

148

J. Low Power Electron. Appl. 2021, 11, 4

��� � ��� � ���

������ ���

� 	

�!	

�		

��	

�"	

� 	

�!	

�		

#
��
�
�
�
�
��
�
�
��
��
�
�
��
��

�
�
��

�

Figure 12. Measured programming precision.

Previous work in similar technology nodes has shown that charge retention after pro-
gramming is very good (e.g., [21–23]), with results indicating that 10-year lifespans can
be achieved from FG memory for analog applications with little charge loss. For example,
ref. [23] has shown drift of less than 0.5 μV over 10 years at room temperature, which is suffi-
cient for maintaining the 13.0 bit resolution in our system. One item that should be pointed
out is that high fields through the oxide due to tunneling and injection can cause some
damage to the oxide and also result in charge trapped in the oxide. However, in contrast
to digital systems in which nonvolatile memory undergoes frequent write/erase cycles,
nonvolatile analog memory write/erase cycling is often quite sporadic in comparison—
with nonvolatile analog memory having a spectrum of needs in terms of the frequency of
write/erase cycles. At one end of the spectrum of nonvolatile analog memory applications,
the FG device only needs to be programmed once to account for process variations, bias-
ing conditions, and/or mismatch compensation. In these cases, the nonvolatile memory
does not need to undergo any extra write/erase cycles, so damage to the oxide will be
inconsequential. Even at the other end of the spectrum where applications require more
write/erase cycles, the frequency of write/erase cycling is still likely dramatically less than
in digital systems, so it is likely that these systems will not undergo significant stresses
either. However, if they do suffer some effects of oxide degradation and/or charge trapping,
then the calibration curve from Figure 11 can be retaken periodically to reassess the target
values needed to achieve the desired accuracy from the system. Analysis of long-term
retention and effects of charge trapping in nonvolatile analog memory is ongoing research
work and will continue to be studied in further detail. Because of the varied needs of
programming nonvolatile analog memory in terms of how fast and how often they need to
be programmed, we provide two methods for programming arrays of FG transistors in
the next Section—(1) serial programming for area-constrained systems that do not need
frequent re-writes and (2) parallel programming for systems that either need frequent
re-writes or cannot handle long outage times during write/erase cycling.

Since the main application of the FG memory cell introduced here is to be used in
low-power analog systems, the power dissipation of the memory cell in run mode should
be small. In voltage readout mode, the cell in Figure 5 was biased with I1 = 20 nA and
I2 = 2 nA, yielding a low power consumption of 66 nW/cell. If the FG transistor is
configured for current readout, then the current is part of the circuit that it is biasing and
does not contribute any additional power consumption beyond that of the circuit.

149

J. Low Power Electron. Appl. 2021, 11, 4

6. FG Array Programming

Since a benefit of FG transistors is that they allow for dense memory arrays, we em-
ployed our FG memory in several analog memory arrays. In an array configuration,
FG memory cells are arranged in M rows by N columns, depending on the size of the
application. Multiplexing circuitry at each of the FG memory-cell terminals is used to
select/deselect cells and to apply the required voltages for the read/program processes.

The two main methodologies for programming an array of FGs are serial and parallel
programming. As their names imply, serial programming involves programming one
floating gate at a time, while parallel programming involves programming multiple floating
gates simultaneously. Serial programming is suitable for applications where the chip area
is constrained, since only one programmer circuit is required for the entire chip. On the
other hand, parallel programming is preferable for analog applications that require faster
write times for a large number of FGs; however, parallel programming requires larger area
overhead for additional programming circuitry. We will discuss these two programming
methodologies in the following subsections.

6.1. Serial Programming of FG Arrays

In serial programming, FGs are programmed one transistor at a time. Therefore,
only one programmer circuit is needed per chip, which helps to keep the infrastructural
circuitry compact. During injection, one specific FG cell is selected and connected directly
to the programmer circuit of Figure 8. When the supply voltage is elevated to a voltage
large enough to induce injection, which we will denote as Vdd, f g, injection starts, and only
the selected FG memory cell is injected. All unselected FG memory cells are configured
to prevent injection by pulling the unselected cells’ Vcg to Vdd, f g and by setting the drain-
to-source voltage, Vsd, of the FG transistor to be low (∼0 V) by connecting the source and
drain to ground. Once the selected FG memory cell is injected to the desired target, it is
disconnected from the programmer and a new FG memory cell is selected and connected
to the programmer circuit. The process is repeated for each of the FG memory cells needing
to be injected.

Since only one programmer circuit is used in serial programming, M × N program-
ming cycles are required to program an M × N array. For large arrays, the M × N pro-
gramming cycles could cause a significant unwanted down-time in which the system is
not operational while it is being programmed, which could also be impractical for large
arrays that require frequent reprogramming. However, not all applications require constant
up-time or frequent rewrites. For example, in [1], the serial programming method was
used to program the FG transistors on a reconfigurable analog processor. A die photograph
of this programmable analog system is shown in Figure 13.

A signal-flow block diagram of the serial programming method is shown in Figure 14.
A serial peripheral interface (SPI) is used to select the particular FG memory cell to be
programmed, connect the programmer circuit to the appropriate cell, enable read/write
mode, and control a voltage scaling digital-to-analog converter (DAC) to apply the desired
target voltage. The programming process for this scheme operates as follows:

1. Globally erase all floating gates using tunneling
2. Raise the supply voltage to its elevated injection level Vdd, f g

3. Set the DAC output voltage (Vtarg) and select a specific row/column combination
4. Connect the programmer circuit to the corresponding FG memory cell
5. Programming starts immediately—hold for approximiately 100 ms to ensure that

injection completes—injection will automatically shut off when the FG memory cell
reaches the desired target

6. Repeat steps 3–5 for all FG memory cells in the array that need to be injected, one at
a time

7. Lower the supply voltage to Vdd when all FG cells have been programmed

150

J. Low Power Electron. Appl. 2021, 11, 4

Figure 13. A die photograph of a large-scale programmable analog system chip employing serial
programming.

P
ro

g
ra

m
m

e
r

M
u

x

Figure 14. Signal flow diagram of the presented serial programming architecture.

6.2. Parallel Programming of FG Arrays

To accelerate the process of programming a large number of FG cells, a parallel
programming technique can be used. In parallel programming, more than one cell is
programmed at a time. Consequently, multiple programmer circuits are required per chip
to accomplish parallel programming and will result in faster programming, since one
programming cycle is able to program multiple FGs in the array. However, in order to
program X floating gates in parallel, there must be X programmer circuits available—one
for each FG that will be programmed simultaneously. In this subsection, we present an FG
array with a parallel programmer scheme. In this particular system for an M × N array,
N programmer circuits are used—one for each column.

A block diagram of the whole parallel programming system is shown in Figure 15.
Like with the serial programming system, a digital interface for programming via SPI
is used to set all parameters needed for programming. Consequently, only four digital
input signals are required to program the full array of FG memory cells, which minimizes
the number of pins required to interface with the chip, reduces programming overhead,
and removes some of the programming details from the end user.

A voltage-scaling DAC is again used to generate analog target voltages. However,
differently from the serial programming scheme, the output of the DAC is sampled by an
array of sample-and-hold (S/H) circuits which provide the actual target voltages that are
applied to the array of FG memory cell circuits to perform programming. This array of S/H
circuits permits one single DAC to be used instead of N DACs for each FG memory cell
being programmed in parallel. The DAC is stepped through N different values, and each
of the N outputs are sampled—one output by each S/H circuit. These N voltages are held

151

J. Low Power Electron. Appl. 2021, 11, 4

at the outputs of the S/H circuits (i.e., Vtarg values of each of the N programmer circuits)
until all N FG memory cells are programmed.

#
$
% �
&
'

#
(
)
�&

�
*

$
�
�
�
�
�
�
�
&

�
*

+
,
-
.
#
�&

�
*

'
�
�
�
��
�&

�
*

&���//�0�/

�&1&

'�2

'#

�&1')

Figure 15. Signal flow diagram of the presented parallel programming architecture.

The requirements of the S/H circuits used in this application are that they must have
long hold times to reliably maintain a constant target voltage while all N FG memory cells
are programmed in parallel. Additionally, the S/H should have low pedestal error so as to
not introduce offset between the DAC and the individual Vtarg values.

To achieve the long hold times and low pedestal error, we employed a S/H topol-
ogy based on [24]. This S/H employs Miller feedback in its hold-mode configuration to
increase the effective hold capacitance, Chold, without requiring larger drawn capacitors.
This configuration reduces the droop rate of the S/H. A simplified version of the S/H
schematic is shown in Figure 16a. The two switches, S1 and S2, are comprised of trans-
mission gates which include half-sized dummy transmission-gate switches on each node
except for Vin, since this charge injection error gets absorbed by the input source and
does not affect Vout. Also, note that switch S1 is clocked using Φ1d, a delayed version of Φ1.
Consequently, S2 opens slightly before S1 when transitioning to hold mode, further reducing
charge injection [25].

Vin

Vref

Vdd Vdd,fg

Vout

C1 C2

Gm1 Gm2

(aa)

Vdd,fg

Gm2

S1

S2

(bb)

0 1 2 3 4 5 6 7 8 9 10

4.0

4.5

5.0

5.5

6.0

S
/H

In
p

u
t

&
O

u
tp

u
t

(V
)

Time (s)
0 1 2 3 4 5 6 7 8 9 10

0

1

S
a

m
p

le
C

L
K

(B
it
s
)Vin

Vout

CLK

Vin

Vref

VddC1 C2

Gm1

S1

S2

�1

�1d

Sample & HoldSample & Hold ufferBuffer

Figure 16. (a) Schematic of the sample-and-hold circuit with Miller hold capacitance. (b) Transient
response to a sinusoidal waveform.

152

J. Low Power Electron. Appl. 2021, 11, 4

In sample mode, the S/H OTA, Gm1, is connected as a unity-gain buffer, forcing its
inverting input to equal Vre f as C1 and C2 are charged to Vin. In hold mode, S1 and S2 are
opened, and Miller feedback through C1 and C2 forces the capacitance on the hold node
to be Chold ≈ C2(1 + A), where A is the open-loop gain of the S/H OTA, Gm1. Figure 16b
demonstrates the S/H’s operation by showing a transient plot of the S/H sampling a sine
wave. The time scale is large, illustrating the long duration of hold times achievable by this
circuit (hold time of 500 ms in this example).

The addition of the S/H array necessitates extra considerations to initiate injection in
each device. Before programming, the output of the DAC is forced to ∼0 V. Each S/H is
sequentially selected, and ∼0 V is sampled onto each of them. Next, the supply voltage
of the buffer OTA, Gm2, is raised to Vdd, f g (note that Gm1 does not need to be raised up
to the higher supply voltage), and each FG in row M is connected to its corresponding
programmer. Since a low Vtarg was set for each programmer, all of the FG memory cells
connected to the programmers have their Vcg latched to a high voltage, and no FG memory
cell undergoes injection. The DAC then sequentially applies the desired Vtarg for each FG
memory cell. However, injection still does not happen because Vcg is still latched high.
To initiate injection, an extra switch is connected to the output of the programmer OTAs of
Figure 8. A short-duration “start” pulse briefly shorts the output of the OTAs to ground,
causing current to flow in the current mirrors biasing the FG transistors. This current resets
the Vcg values of the memory cells to a low value. At the conclusion of the start pulse,
the FG memory cells inject to the targets. Once the last programmer has started injecting
its FG memory cell, the supply voltage is left at a high value of Vdd, f g for a set period of
time to ensure that all FGs have reached their targets.

Figure 17 shows the die photograph of an example system employing parallel pro-
gramming of an array of FG memory cells. This integrated circuit was fabricated on a
standard 0.5 μm CMOS process, and system-level results from this integrated circuit will
be shown in the following Section. Figure 18 shows two FG memory cells on this chip
being programmed in parallel using our programmer. Note that while 8 memory cells are
programmed in parallel on this chip, the voltage outputs of only two cells were observable
at any time—one was observable via selection by the the SPI, and another was hard-wired
to output pins for debugging purposes. In this Figure at 100 ms, the first S/H is clocked,
sampling the DAC output to set Vtarg1. Shortly after, the start pulse is applied to initiate
injection. Then, the next column is selected, and the process is repeated. A very long
programming time-scale is shown in this example to illustrate the long hold times available
by the S/H circuitry. However, typical programming hold times are 100 ms.

���

����	
�
��

��������

�����������
����

��
����
�������

�������

�������

��� ��

�
��

�
�

Figure 17. Die photograph of a programmable bandpass array chip using parallel programming.

153

J. Low Power Electron. Appl. 2021, 11, 4

Figure 18. Transient response of node Vcg on two FG memory cells being programmed in parallel
using our parallel programmer.

A summary of the parallel programming procedure is as follows:

1. Globally erase all floating gates using tunneling
2. Sample ∼0 V on each of the S/H circuits
3. Raise the supply voltage to its elevated injection level, Vdd, f g

4. Set the DAC output voltage and select a specific row/column combination
5. Sample the target voltage from the DAC to set Vtarg
6. Initiate injection with the start pulse
7. Repeat steps 4–6 for each subsequent FG memory cell in the column
8. Repeat steps 4–7 for each row in the array
9. Lower the supply voltage to Vdd when all FG cells have been programmed

6.3. Serial vs. Parallel Programming

As a comparison between the two methods for programming arrays, Figure 19 demon-
strates the programming time for serial and parallel programming. As the Figure illustrates,
to program an array of FGs serially, one FG is programmed at a time, which makes the
programming process linearly proportional to the overall size of the array. Using the serial
method for programming results in overall programming time of:

ttot,serial = M × N × (ts + ti) (3)

where M is the number of rows, N is the number of columns, ti is the injection time, and ts
is pre-injection time (time to select the FG cell, connect the programmer, and apply the
start pulse if needed) which is very short compared to ti. On the other hand, our parallel
programming method dramatically reduces the overall programming time by staggering
FG programming through time, as shown in Figure 19. To program an N × M array using
our parallel programming method, the overall programming time is:

ttot,parallel = M × (N × ts + ti) (4)

Generally, comparing the two methods, our parallel programming compromises
between minimizing die area (by using a programmer circuit per each column) and pro-
gramming time, which makes it the most appropriate programming method for FG-dense

154

J. Low Power Electron. Appl. 2021, 11, 4

analog applications. Serial programming is most appropriate for systems that are size-
constrained and/or can handle longer down times between write cycles.

row�
tttt

Serial Programming

Parallel Programming

row�

tttt

row�

Timing DiagramProgramming Type

FG�

FG�

FG�FG�

FG�

FG� FG�FG� FG�

FG�

FG�

FGm

row�

FG�

FG�

FG�

FGm

row�

FG�

FG�

FG�

FG�

FGm

row�

FGm FGm

FG�

Figure 19. Serial vs. parallel programming.

7. System Application

FG transistors have a wide range of analog applications that require a large number of
FGs to be integrated on a single die. These applications range from simple filter banks to
more complicated field-programmable analog arrays (FPAAs). FGs are used to provide
biasing voltages/currents for those analog applications. A proof-of-concept system was
fabricated in a standard 0.5 μm CMOS process, and it consists of a programmable filter array
employing our parallel programmer. This chip contains 8 sample-and-holds, 8 programmer
circuits, a 2 × 8 array of floating-gate transistors (16 total), and 8 bandpass filters. This chip
also contains the SPI, DAC, and miscellaneous peripheral circuitry. Each bandpass filter
requires two FGs for biasing—one for the low corner frequency and one for the high
corner frequency. The FGs are distributed in an array of 2 rows and 8 columns. In this
configuration, the chip allows for one row of FGs to be programmed in parallel. Thus,
two programming sequences, one for each row, are required to program the full chip. A die
photograph of the chip is shown in Figure 17.

To demonstrate the programmer’s ability to directly tune circuit parameters, we use
the capacitively-coupled current conveyor (C4) presented in [4] and shown in Figure 20a.
The C4 is a transconductance-capacitance (Gm-C) filter whose corner frequencies are pro-
portional to the transconductances of two OTAs—Gm,L and Gm,H in Figure 20a. Since these
transconductances are directly proportional to the bias currents of each OTA, the corner fre-
quencies can be directly tuned using the FG memory cell as a current reference to bias them.
Figure 20b shows how the FG transistors are configured as current sources and are con-
nected to the OTAs. Figure 21a shows the effect on frequency response holding Gm,H
constant and programming different values of Gm,L; Figure 21b shows the effect of increas-
ing Gm,H . As can be seen, the two corner frequencies can be tuned orthogonally, so that
the current in one OTA does not impact the corner frequency set by the other OTA. In this
example system, the biases providing the low corner frequencies for each of the bandpass
filters were contained on one row (and programmed simultaneously), and all the biases for
the high corner frequency were on the other row.

155

J. Low Power Electron. Appl. 2021, 11, 4

Gm,L

Gm,HVref

Vin Vout

C1

C2

CW CL

(aa)

M4

M8M7

V+ V-

Iout

Vcg

M3

M6

M1 M2

M10

M9

M11

Vtun

Mfg

Transconductor Floating Gate Biasing

M5

(bb)

Figure 20. (a) Schematic of the OTA-based C4. (b) Schematic of the OTA used for both Gm,L and Gm,H .

����

�
�
��
��
	
�

�

��
�
��

�

�

�����������

�
�� �

��������������

�

��
�
��

�
�
��
��
	
�

����������

�
�� �

��������������

����

Figure 21. (a) Independent tuning of the low corner frequency. (b) Independent tuning of the high
corner frequency.

Figure 22 demonstrates the capability of accurately programming the parameters of a
filter array using the parallel programming structure presented in this paper. Three filter
spacings are demonstrated: full-octave spacing, half-octave spacing, and third-octave
spacing. The value of the quality factor, Q, for each of these configurations was chosen
according to fractional-octave spacing rules, such that the filters cross at their −3 dB
points. Therefore, Q∼1.4 for octave spacing, Q∼2.9 for half-octave spacing, and Q∼4.3 for
third-octave spacing. Figure 22 (top) shows the results of programming the C4s to octave
spacing starting at fc = 88 Hz, Figure 22 (middle) shows half-octave spacing beginning at
fc = 300 Hz, and Figure 22 (bottom) shows third-octave spacing beginning at fc = 445 Hz.

156

J. Low Power Electron. Appl. 2021, 11, 4

As can be seen from Figure 22, the programming structure presented in this paper is able
to precisely tune the circuit parameters to achieve exponentially spaced center frequencies.
Additionally, the use of FG transistors provides a mechanism to tune the circuit’s operation
for multiple conditions (e.g., different center frequency spacings, bandwidths, etc.).

�

�
�

�

�
�

�

��������������

�

�
�

�

�
�

�

!
"
��

�
#��
�
�
�
�
��
��
	
�

�

�
�

�

�
�

�

$�%�&�

��#'($�%�&�

)*���($�%�&�

!
"
��

�
#��
�
�
�
�
��
��
	
�

!
"
��

�
#��
�
�
�
�
��
��
	
�

�

�

�

Figure 22. Programmed C4 array frequency responses. (Top) octave spacing starting at fc = 88 Hz,
(Middle) half-octave spacing starting at fc = 300 Hz, and (Bottom) third-octave spacing starting at
fc = 445 Hz.

8. Conclusions

We presented a compact analog FG memory cell that uses a continuous-time program-
ming technique. Two different integrated circuits with memory cells and the programmer
have been fabricated to characterize the design—one in standard 0.35 μm CMOS with serial
array programming and the other in standard 0.5 μm CMOS with parallel programming.
The FG memory cell and the programmer circuit were characterized and tested for repeat-
able programming. We demonstrated that the FG memory cell could be programmed to
have a linear relationship with a target voltage over a range of 2.32 V with a resolution of
13.0 bits, all while being programmed in under 100 ms.

157

J. Low Power Electron. Appl. 2021, 11, 4

The FG memory cell was used to build a memory array that can be used in analog
applications. A parallel programming technique was presented that significantly reduces the
time required to inject all FG cells in the array. Finally, as a proof of concept, the FG memory
array was used as programmable current sources to program a C4 bandpass filter array.

Arrays of this FG memory cell are ideally suited to low-power applications that
require analog processing of information—particularly applications that pre-process sensor
information to make early classification and detection of events, such as [26]. Either a
serial or parallel programming paradigm, as described in this paper, could be used, and
the determination between the two should be made based on area constraints, allowable
duration of down-time while reprogramming, and frequency of write/erase cycles. Future
work in the area of programmable non-volatile analog memory will include (1) circuits to
linearize the Vtarg to Vcg transfer function better to reduce the need for a calibration phase,
(2) circuitry to permit negative voltages to be used in the injection process to eliminate the
need for a voltage ramp-up phase for injection (early work has been presented in [27]),
(3) infrastructural circuits to support generating the write/erase cycles, (4) demonstration
of performance in newer technology nodes, etc.

Author Contributions: Conceptualization, B.R. and D.G.; Data curation, D.G.; Funding acquisition,
D.G.; Investigation, B.R., S.C., H.A. and A.D.; Methodology, B.R., S.C., H.A., A.D. and D.G.; Supervi-
sion, D.G.; Writing—original draft, B.R., S.C. and D.G.; Writing—review and editing, H.A. and D.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This material is based on work supported by the National Science Foundation under Award
No. 1148815 and by the United States Army Research Laboratory under Contract W911NF-10-2-0109.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rumberg, B.; Graham, D.; Clites, S.; Kelly, B.; Navidi, M.; Dilello, A.; Kulathumani, V. RAMP: Accelerating wireless sensor
hardware design with a reconfigurable analog/mixed-signal platform. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks, Seattle, WA, USA, 13–17 April 2015; pp. 47–58.

2. Hasler, J. Large-Scale Field-Programmable Analog Arrays. Proc. IEEE 2020, 108, 1283–1302. [CrossRef]
3. Becker, J.; Henrici, F.; Trendelenburg, S.; Ortmanns, M.; Manoli, Y. A Field-Programmable Analog Array of 55 Digitally Tunable

OTAs in a Hexagonal Lattice. IEEE J. Solid-State Circuits 2008, 43, 2759–2768. [CrossRef]
4. Rumberg, B.; Graham, D. A Low-Power and High-Precision Programmable Analog Filter Bank. IEEE Trans. Circuits Syst. II

Exp. Briefs 2012, 59, 234–238. [CrossRef]
5. Lu, J.; Young, S.; Arel, I.; Holleman, J. A 1 TOPS/W Analog Deep Machine-Learning Engine with Floating-Gate Storage in

0.13 μm CMOS. IEEE J. Solid-State Circuits 2015, 50, 270–281. [CrossRef]
6. Shah, S.; Töreyin, H.; Güngör, C.B.; Hasler, J. A Real-Time Vital-Sign Monitoring in the Physical Domain on a Mixed-Signal

Reconfigurable Platform. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1690–1699. [CrossRef] [PubMed]
7. Hasler, P.; Minch, B.; Diorio, C. Floating-gate devices: They are not just for digital memories anymore. In Proceedings of the 1999

IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; pp. 388–391.
8. Bandyopadhyay, A.; Serrano, G.; Hasler, P. Adaptive Algorithm Using Hot-Electron Injection for Programming Analog

Computational Memory Elements Within 0.2% of Accuracy Over 3.5 Decades. IEEE J. Solid-State Circuits 2006, 41, 2107–2114.
[CrossRef]

9. Rumberg, B.; Graham, D.W. A floating-gate memory cell for continuous-time programming. In Proceedings of the 2012 IEEE
55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 214–217.

10. Clites, S. A Parallel Programmer for Non-Volatile Analog Memory Arrays. Master’s Thesis, West Virginia University, Morgantown,
WV, USA, 2015.

11. Huang, C.; Sarkar, P.; Chakrabartty, S. Rail-to-Rail, Linear Hot-Electron Injection Programming of Floating-Gate Voltage Bias
Generators at 13-Bit Resolution. IEEE J. Solid-State Circuits 2011, 46, 2685–2692. [CrossRef]

12. Diorio, C. A p-Channel MOS Synapse Transistor with Self-Convergent Memory Writes. IEEE Trans. Electron Dev. 2000, 47, 464–472.
[CrossRef]

13. Wunderlich, R.; Adil, F.; Hasler, P. Floating Gate-Based Field Programmable Mixed-Signal Array. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2013, 21, 1496–1505. [CrossRef]

14. Basu, A.; Hasler, P.E. A Fully Integrated Architecture for Fast and Accurate Programming of Floating Gates Over Six Decades of
Current. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 953–962. [CrossRef]

158

J. Low Power Electron. Appl. 2021, 11, 4

15. Diorio, C.; Mahajan, S.; Hasler, P.; Minch, B.; Mead, C. A high-resolution nonvolatile analog memory cell. In Proceedings of the
Proceedings of ISCAS’95-International Symposium on Circuits and Systems, Seattle, WA, USA, 30 April–3 May 1995; Volume 3,
pp. 2233–2236.

16. Román, H.; Serrano, G. A system architecture for automated charge modifications of analog memories. In Proceedings of the
2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 1069–1072.

17. Kim, K.H.; Lee, K.; Jung, T.S.; Suh, K.D. An 8-Bit-Resolution, 360-μs Write Time Nonvolatile Analog Memory Based on
Differentially Balanced Constant-Tunneling-Current Scheme (DBCS). IEEE J. Solid-State Circuits 1998, 33, 1758–1762.

18. Wu, Y.D.; Cheng, K.C.; Lu, C.C.; Chen, H. Embedded Analog Nonvolatile Memory With Bidirectional and Linear Programmability.
IEEE Trans. Circuits Syst. II 2012, 59, 88–92. [CrossRef]

19. Andreou, A.; Boahen, K.; Pouliquen, P.; Pavasović, A.; Jenkins, R.; Strohbehn, K. Current-Mode Subthreshold MOS Circuits for
Analog VLSI Neural Systems. IEEE Trans. Neural Netw. 1991, 2, 205–213. [CrossRef]

20. Navidi, M.; Graham, D. A regulated charge pump for injecting floating-gate transistors. In Proceedings of the 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 2270–2273.

21. Ma, Y.; Gilliland, T.; Wang, B.; Paulsen, R.; Pesavento, A.; Wang, C.-H.; Nguyen, H.; Humes, T.; Diorio, C. Reliability of pFET
EEPROM with 70-Angstrom tunnel oxide manufactured in generic logic CMOS processes. IEEE Trans. Device Mater. Reliab. 2004,
4, 353–358. [CrossRef]

22. St. John, I.; Fox, R. Leakage effects in metal-connected floating-gate circuits. IEEE Trans. Circuits Syst. II 2006, 53, 577–579.
[CrossRef]

23. Srinivasan, V.; Serrano, G.; Gray, J.; Hasler, P. A Precision CMOS Amplifier Using Floating-Gate Transistors for Offset Cancellation
IEEE J. Solid-State Circuits 2007, 42, 280–291. [CrossRef]

24. Lim, P.; Wooley, B. A High-Speed Sample-and-Hold Technique Using a Miller Hold Capacitance. IEEE J. Solid-State Circuits 1991,
26, 643–651. [CrossRef]

25. Carusone, T.; Johns, D.; Martin, K. Analog Integrated Circuit Design, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
26. Bhattacharyya, S.; Andryzcik, S.; Graham, D. An Acoustic Vehicle Detector and Classifier Using a Reconfigurable Analog/Mixed-

Signal Platform. J. Low Power Electron. Appl. 2020, 10, 6. [CrossRef]
27. Navidi, M.; Graham, D.; Rumberg, B. Below-Ground Injection of Floating-Gate Transistors for Programmable Analog Circuits.

In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017;
pp. 1–4.

159

Journal of

Low Power Electronics
and Applications

Article

Logic-in-Memory Computation: Is It Worth It?
A Binary Neural Network Case Study

Andrea Coluccio *, Marco Vacca and Giovanna Turvani

Department of electronics and telecommunication (DET), Politecnico di Torino, Corso Castelfidardo 39,
10129 Torino, Italy; marco.vacca@polito.it (M.V.); giovanna.turvani@polito.it (G.T.)
* Correspondence: andrea.coluccio@polito.it

Received: 23 December 2019; Accepted: 4 February 2020; Published: 22 February 2020

Abstract: Recently, the Logic-in-Memory (LiM) concept has been widely studied in the literature.
This paradigm represents one of the most efficient ways to solve the limitations of a Von Neumann’s
architecture: by placing simple logic circuits inside or near a memory element, it is possible to obtain
a local computation without the need to fetch data from the main memory. Although this concept
introduces a lot of advantages from a theoretical point of view, its implementation could introduce
an increasing complexity overhead of the memory itself, leading to a more sophisticated design
flow. As a case study, Binary Neural Networks (BNNs) have been chosen. BNNs binarize both
weights and inputs, transforming multiply-and-accumulate into a simpler bitwise logical operation
while maintaining high accuracy, making them well-suited for a LiM implementation. In this paper,
we present two circuits implementing a BNN model in CMOS technology. The first one, called
Out-Of-Memory (OOM) architecture, is implemented following a standard Von Neumann structure.
The same architecture was redesigned to adapt the critical part of the algorithm for a modified
memory, which is also capable of executing logic calculations. By comparing both OOM and LiM
architectures we aim to evaluate if Logic-in-Memory paradigm is worth it. The results highlight that
LiM architectures have a clear advantage over Von Neumann architectures, allowing a reduction in
energy consumption while increasing the overall speed of the circuit.

Keywords: Logic-in-Memory (LiM); Von Neumann’s bottleneck; memory-wall

1. Introduction

Nowadays Logic-in-Memory (LiM) architectures are widely studied in order to solve the
memory-wall problem, which is a bottleneck due to the communication between processing units and
memories. A LiM implementation consists of very small computational units placed near a memory
element. This enables a distributed computation instead of a classical Von-Neumann one. The big
advantage of this design procedure is the reduction of the Von Neumann bottlenecks (such as fetching
latency and the wasted power due to the communication between CPU-Memory), which enables also
a very fast and energy-efficient structure. From a theoretical perspective, they bring many advantages,
but are they worth it?

To answer to this important question, we have to consider implementing a LiM architecture by
modifying the original structure of the memory, creating a structure that merges computation and
memory Figure 1. As a natural consequence, the overall complexity of the customized design flow
increases. To explore the features of a LiM implementation more in depth, two architectures have been
designed, an Out-Of-Memory (OOM) that follows a classical Von Neumann approach and the derived
LiM novel alternative. The performance obtained in both cases is subsequently compared.

J. Low Power Electron. Appl. 2020, 10, 7; doi:10.3390/jlpea10010007 www.mdpi.com/journal/jlpea

161

J. Low Power Electron. Appl. 2020, 10, 7

CPU Memory

Von Neumann(a)

LiMM

(b)

Figure 1. Von Neumann’s classical architecture (a) composed of CPU and memory. Logic-in-Memory
(LiM) novel architecture (b) that merges computation and memory.

As a case study, a memory-intensive application, a Neural Network (NN), was chosen, since it is
a good candidate to demonstrate the benefits of a LiM architecture. NNs are used to perform very
complex tasks such as speech and image recognition in a very efficient and accurate way. Convolutional
Neural Network (CNN) and Multi-Layer Perceptron (MLP) models are employed and both can achieve
very high accuracy. In literature, many CNNs have been proposed: they can be distinguished by
their task, complexity and achieved accuracy. Considering image classification applications, the most
common CNNs are LeNet-5[1] and AlexNet [2]. LeNet-5 is a very small network which is able to
achieve a TOP-1 error rate of 0.35% on the Modified National Institute of Standards and Technology
dataset (MNIST dataset). AlexNet is a more complex structure largely used for recognizing RGB
images, which achieves a TOP-5 error rate of 16.4% on the ImageNet dataset. Also GoogLeNet [3],
VGG-Net [4] and ResNet-152 [5] can be used on the same dataset and achieve 6.67%, 7.3% and 3.6%
TOP-5 error rates respectively. In general, these models require a lot of computational resources
implying very high energy consumption, thus making them inoperable in low energy contexts like
embedded applications.

In this work, a binarized NN is chosen. Binary Neural Network (BNN) approximations have
been proposed in several works like BinaryConnect (BC) [6], Binary-Weight Network (BWN) and
XNOR-Net [7], in order to reduce the computational complexity by changing the weight-inputs
precision, by means of a binarization process. Weights, and eventually inputs, are approximated with
only two values (−1,+1), that can be represented on a single bit, ’0’ indicates −1 and ’1’ indicates +1.
The chosen approximation for this work is the XNOR-Net [7]. The XNOR-Net reaches high accuracy
rates compared to the original floating-point model and is particularly well suited for a LiM solution,
since the binary multiplication can be performed by a simple XNOR gate. While a specific Neural
Network model was chosen, the architectures were developed with reconfigurability in mind, meaning
that most NNs can be implemented by the hardware. Our goal is to demonstrate the effectiveness of a
LiM design, so our contributions in this work can be summarized as:

1. Realization of a reconfigurable OOM architecture implementing the XNOR-Net model and
proposal of a possible design approach for a LiM alternative.

2. Identification of strong and weak points of a LiM solution with many NN models of different
sizes and complexities.

3. Detailed performance evaluations with 45 nm @ 1.1 V CMOS technology. The estimations are
performed with a synthesis and .vcd-based post place and route simulations for two models: a
CNN and an MLP network respectively. The tools involved in this step are Synopsys Design
Compiler for the synthesis, Mentor Modelsim for the simulation and Cadence Innovus for the
place and route phase.

4. Generalized performance estimations for both architectures by means of parametric sweeps
obtained from several synthesis processes with 45 nm @ 1.1 V technology. The aim is to compare
the implementations with several different parameters and to identify the main differences.
Discussion of the obtained results are provided and a qualitative comparison between the
implementations are reported in Section 6.3.1.

162

J. Low Power Electron. Appl. 2020, 10, 7

5. A state-of-the-art comparison between our LiM and the Content addressable memory based
implementation proposed in [8]. In our designs, memories are implemented as register files
and each memory cell is a flip flop, since we didn’t have the possibility to implement a custom
memory. Consequently, the performance values obtained represent an overestimation of a real
case. To determine how a real memory model impacts the results obtained, parameters from [8]
are taken into account. Reference [8] implements a XNOR-Net LiM design with 65 nm CMOS
technology, so in our synthesis procedure we used CMOS 65 nm technology @ 1.0 V to have a
fair comparison.

6. Conclusions and discussions for future work.

The rest of the paper is organized as follows: Section 2 gives a brief explanation on what a LiM
architecture is and recalls a useful classification from [9]. Section 3 discusses briefly NN background,
giving an overview on what its main components are; binary approximations are compared and
explained in more details. Section 4 reports the detailed design flow adopted for both OOM and
LiM architectures and Section 5 makes an initial qualitative comparison between them. In Section 6,
performance evaluations are reported, firstly taking two NN models as a case study and then by
performing parametric sweeps. Lastly, Section 7 presents conclusions and future work.

2. LiM Background

A Quick Overview

LiM concept is widely discussed in the literature and a lot of different approaches have been
adopted. In [9] an interesting classification of the various types of LiM paradigms is presented.
Four possible typologies can be found.

1. Computation near Memory [9] where part of the computing blocks are moved in the memory
proximity proposing solutions such as WIDE-IO2, which is a 3D stacked DRAM memory [10]
with a logical layer placed at the bottom of the stack. Data are moved from the DRAM layers to
the logical one employing Through-Silicon Vias (TSVs) and the result is then written back to one
of the available DRAM layers. 3D stacked DRAM combined with TSVs allow to shorten the paths’
lengths that data have to travel to reach the computational core, reducing the Von Neumann
bottlenecks and improving efficiency.

2. Computation in Memory [9] paradigm is used in solutions with resistive arrays, based on
technologies such as Magnetic Tunnel Junction (MTJ) devices [11]. MTJ is a component that
can have two discrete resistance values, according to the direction of the magnetizations of its
ferromagnets: if they are parallel, the MTJ is in low resistance state (RP) meaning more current
flowing through it, otherwise, they are in antiparallel configuration (RAP) with highest resistance.
These resistance states can be mapped in a logic fashion as logic ’0’ if they are antiparallel, logic
’1’ otherwise. By arranging multiple MTJs in a matrix configuration, both memory and logic
operations can be performed analogically. Several works use MTJ devices. In [12], Generative
Adversarial Network (GAN) implementation has been proposed. This Neural Network consists
of a discriminator (D), that works as a detective in the training process, and a generator (G) as a
deceiver in a semi-supervised fashion. In these networks, training is a critical issue so hardware
accelerators are demanded. Reference [12] improves the so-called adversarial training process by
using an array made of MTJs which simplifies the calculation of multiply-accumulate operations
with ternary weights (W ∈ {−1, 0, 1}), transforming them into bulk In-Memory additions and
subtractions. This work achieves remarkable results in term of efficiency and processing speed
with respect to GPUs and ASICs. In [13], authors have developed a MTJ-based convolution
accelerator in which the memory array is capable of performing bulk AND operations. They have
included a small external logic which is in charge of computing the accumulations. Based on a
similar working principle, Resistive Random-Access-Memory (RRAM) [14] are devices in which
the logic data is encoded in two or multiple resistive states. Differently from MTJs, resistance is

163

J. Low Power Electron. Appl. 2020, 10, 7

determined by the conductivity of a conduction path that can be broken (high resistance state) or
reformed (low resistance state). Sometimes it is used in a 1 transistor 1 RRAM (1T1R) configuration,
to avoid unwanted or sneak current paths. In [15], authors have presented a memristor-based
implementation of a BNN able to achieve both high accuracy on MNIST and IRIS dataset and
low power consumption. In some others, improvements in memristor architectures have been
proposed that enable multiple bits per cell. Reference [16] has exploited the frequency dependence
of GeSeSn-W memristor devices to obtain multiple conductance values representing different
weights. In [17], the memory array has been modified, including up to 4 memristors arranged
in parallel in the same cell, in order to have multiple resistance values and so higher precision
weights. Based on a similar approach to [12], a GAN training accelerator has been discussed in
[18] which is able to efficiently perform approximated add/sub operations in a memristor array,
achieving both speed-up and high energy efficiency.

3. Computation with Memory [9] concept consists of memory arrays that intrinsically perform
calculations. Possible examples can be Content Addressable Memories (CAM) and Look-up tables.

4. Logic-in-Memory [9] is the concept that we are analyzing in this work, in which small
computational units are placed inside or near a memory cell, to perform distributed computation.

As can be deducted, LiM is a widely studied and heterogeneous topic, and it is becoming
increasingly important over the years. A lot of works presented in literature implement an
application-specific LiM solution. The discussed emerging technologies are very promising, especially
in Neural Networks applications, because of their high efficiency to compute multiply-accumulate
operations [16]. In our work, we concentrated on CMOS technology because, while it is not the best
available, RRAM and MTJ devices are still under development. As future task, we will focus our
attention on them once these circuits are optimized.

3. Neural Networks: An Introduction

3.1. Neuron’s Model

A NN is a computational model that is able to perform very complex tasks. It is composed of
“neurons”, which are the basic building blocks. By organizing them in an interconnected network, the
NN can take decisions and learn when these decisions are wrong [19].

In Figure 2 a neuron structure example is depicted. As it is possible to see, it is made of two
main parts which are net, which is in charge of weighted sum computation, and f (net), which is an
activation function applied to the neuron’s output. In general, net expression can be written as:

net =
N

∑
i=0

Xi × Wi + Bias (1)

where Xi is the input value, Wi is the corresponding weight and Bias is an additive term.
Neurons’ weights and biases can be adjusted to achieve the desired output with a procedure called
training.

164

J. Low Power Electron. Appl. 2020, 10, 7

net f(net)

W0

X0

W1

X1

W2X2

Bias

out = f(net)

f(net): activation function

net =
∑N=2

i=0 Xi ×WiWW +Bias

Figure 2. Schematic of a neuron, representing its structure. Three inputs example [19].

In Figure 2, it is indicated another part which is the activation function f (net). Usually, this
is a nonlinear function. The most important activation functions are Rectified Linear Unit (ReLU),
hyperbolic tangent (tanh) and sigmoid function, which are discussed in great details in [20].

3.2. Neural Network’s Structure

Usually, NNs are made up by layers, which are composed of a set of arranged neurons. The most
common structures are Convolutional Neural Network and Multi-Layer Perceptron.

In Figure 3 it is reported the LeNet5 CNN as example. The network is composed of 2 convolutional,
2 pooling and 3 fully connected (FC) layers. Each of them is discussed in detail:

• Convolutional layers perform the convolution operation of the input feature map (IFMAP) with a
set of weights called kernel. An example of a convolution computation is depicted in Figure 4.
The parameter taken into account are the kernel’s weights, the input feature map and the stride.
After the first convolution is finished, the kernel window is moved by a step equal to stride, and
a new convolution can start. In this example, the convolution computation match perfectly the
neuron’s equation reported in Equation (1), in fact after a convolutional layer is usually used an
activation function to normalize the results. In the LeNet 5 CNN [1] example in Figure 3, all the
convolutional layers have the same 5 × 5 kernel sizes. The first one produces six output feature
maps (OFMAPs), meaning that the same IFMAP has been convolved with six different kernels.
The second convolutional layer instead produces 16 OFMAPs, starting from 6 IFMAPs: for each
input, there are 16 kernels that produce 16 outputs, so 16 from the first IFMAP, 16 for the second
IFMAP and so on. This implies a total number of OFMAPs equals to

#OFMAPs = 6 × 16 (2)

To obtain 16 OFMAPs indicated by LeNet 5 scheme, the obtained OFMAPs of each layer are
added together.

These considerations bring to the following formula for a convolutional layer, derived from [21]:

yo(j, i) = Biaso +
#Cin−1

∑
cin=0

Wy−1

∑
k=0

Wx−1

∑
p=0

ko,cin(k, p)× Xo,cin(j × stride + k, i × stride + p) (3)

where i, j are the indexes for the OFMAP corresponding pixel, cin is the input channel index,
#Cin the total number of input channels, Wx, Wy are the kernel’s matrix size indicating number
of rows and columns respectively, o subscript refers to the OFMAP considered and p, k are the
kernel’s indexes.

• Pooling layers have a similar behavior to convolutional layers. In the literature, different kind
of poolings are used such as average or max pooling [22]. They perform the maximum (or
the average) of the selected input pixels and returns only one value, performing the so-called

165

J. Low Power Electron. Appl. 2020, 10, 7

subsampling operation. Pooling, and more specifically max pooling, is widely used to reduce the
size and the complexity of the CNN. In Figure 3, the kernel size is 2 × 2 for all the cases.

• FC layers are MLP subnetworks included in the CNN to perform the classification operation.
They are made of layers of fully interconnected neurons, as shown in Figure 3.

14× 14× 6

10× 10× 16

LeNet5 CNN example

Fully Connected

32× 32

Input image

Convolutional layer

28× 28× 6

Pooling layer

5× 5× 16

1
2
0

84 1
0

Figure 3. Structure of LeNet 5 Convolutional Neural Network (CNN) [1], composed of 2 convolutional,
2 pooling and 3 fully connected layers and their sizes are indicated in the model.

Xn Xn+1

X0 X1

Xn+2

X2

Xn Xn+1

X0 X1

w2

w0

w3

w1

Kernel

conv = X0w0 +X1w1 +Xnw2 +Xn+1w3

stride

In
p
u
t
fe
a
tu
re

m
a
p

Figure 4. Convolution computation example with a 2×2 kernel.

There are also normalization layers (not reported in Figure 4). One of the most used is the Batch
Normalization (BatchNorm) [23] that is very useful in BNNs to recover a portion of the accuracy lost
from the binarization [24]. BatchNorm equation is reported from [23]:

X̃ =
X − μ√
σ2 + ε

× γ + β (4)

166

J. Low Power Electron. Appl. 2020, 10, 7

where μ, σ are the batch mean and variance, while γ, β are correction values. These four variables are
trainable, meaning that during training procedure they are modified in order to increase the accuracy.
ε is usually added to the variance to avoid 0 division if the variance is 0. ε is a very small number, so
the following approximation for non-zero variance can be made:

X̃ ≈ X − μ

σ
× γ + β = X × γ

σ
+

(
−μ × γ

σ
+ β

)
= X × A + B (5)

3.3. Binary Approximation

Since NN are very complex models, they can be very power hungry and implementing them on
low energy budget systems, like in embedded application, can be challenging [25]. For this reason,
a BNN approximation is chosen, trying to reach a good trade-off between complexity and accuracy.
In [7] is presented an interesting comparison between some BNN approximations, introducing also
XNOR-Net. The values are recalled in Figure 5. In the plot, TOP5 is intended as the accuracy
classification rate to hit one out of five most probable classes. In the plot, TOP5 is intended as the
accuracy rate to hit 1 out of 5 most probable classes. The BNNs accuracy are compared with the
original floating-point implementation (FP) of AlexNet neural network [2].

FP
(r
ef
er
en
ce
)

B
W
N

X
N
O
R
-N
et B

C
0

20

40

60

80

100

))

800.2 799.4

699.2

500.4

Binary approximations

T
O
P
5
A
cc
u
ra
cy

[%
]

Accuracy comparison of different approximations

AlexNet model

Figure 5. TOP5 accuracy comparison between different binary approximations [7].

In the considered approximation, all the weights are in binary format, meaning that w ≈ wb ∈
{−1, 1} where wb is the binary weight value. The binarization techniques are now briefly summarized
from [7].

• BWN [7] binarizes only weights of the NN, keeping at full precision the activations and the inputs.
By binarizing only weights, the convolution operation can be performed only with adds and
subtractions, avoiding multiplication as reported in Equation (6) [7].

Convout,BWN = X ∗ w + Bias ≈ α(X ∗ wb) + Bias (6)

An extra factor α is multiplied to the convolution result, in order to compensate precision losses [7]:

α =
∑N

i=0 ‖wi‖
N

(7)

167

J. Low Power Electron. Appl. 2020, 10, 7

where wi is the considered full precision weight and N is the number of weights. BWN is a very
good alternative useful to reduce CNN’s complexity. However it requires full precision inputs
and activations.

• XNOR-Net [7] binarizes both weights and inputs. The convolution result is obtained by
performing the binary convolution and multiplying by a correction factor α (the same in Equation
(7)) and a matrix K. K is defined in Equation (8).

K =

First term︷ ︸︸ ︷
∑#Cin−1

cin=0 |X(:, :, cin)|
#Cin

∗

Second term︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎣

1
Wx × Wy

1
Wx × Wy

...

1
Wx × Wy

1
Wx × Wy

...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ (8)

In Equation (8), the first term indicates the absolute punctual sum of the multiple IFMAPs divided
by the number of input channels, thus the number of IFMAPs. The second term is a regular matrix
of Wx × Wy size, which contains 1

WxWy
in all positions. Finally, the XNOR-Net convolution can be

rewritten as [7]:
Convout,XNOR−Net ≈ (Xb � wb) · K × α (9)

where Xb is the binarized input, � is the binary convolution, · is punctual multiplication and × is
a simple product. In [7] the binary convolution is performed considering the XNOR pop-counting
of binary inputs/weights. XNOR truth table matches to the multiplication if -1 is mapped to logic
’0’ and +1 is logic ’1’. Pop-counting computes the difference between the number of 1s and the
number of 0s of the input sample.

• BC [6] binarizes both inputs and weights, without applying any correction factor to the final
convolutional equation. This implies less recognition accuracy as shown in Figure 5. Taking into
account all the considerations on the binarization techniques, we chose XNOR-Net [7] as reference
model since it represents a very good trade-off between accuracy and complexity.

3.4. NN Implementations Based on LiM Concept

The LiM approach is often applied in NNs’ implementations. Some of them are considering
the binary approximations, choosing an implementation based on emerging technologies.
Some works [12,13,26,27] are based on MTJ technology while [15–18,28,29] have used RRAM. In each of
these works the resistive element is used to perform simple logical operations based on current sensing
technique. In [26,27,30,31] several Binary Convolutional Neural Networks (BCNNs) implementations
are discussed: they achieve very good results in terms of energy and power, thanks to the intrinsic
low power nature of the MTJ and RRAM devices. Reference [28] proposes a BNN design based on
SRAM array. The logic parts perform the computations and are disposed below the memory array.
The memory parts enable to store the required parameters for the NN computation (like weights and
biases) and the logic parts compute the results for the next layer, forming an alternation between
memory-logic. This architecture achieves very good performance in terms of energy and speed, thanks
to its pipelined-like structure. In [29], the NN has been mapped in a Wide-IO2 DRAM, using TSVs as
high speed communication link obtaining remarkable results in terms of execution time.

4. OOM and LiM Architectures

Here we discuss the adopted processing flow more in detail. The goal of a LiM architecture is
to move part of the computation inside a memory array, which already contains the needed logical
elements to complete the calculations. Using as a case study the XNOR-Net, we can derive that the
main part of the algorithm is the calculation of the XNOR products combined with pop-counting to
determine the result of the binary convolution. The adopted design flow is the following:

168

J. Low Power Electron. Appl. 2020, 10, 7

• Design of a classical architecture, called OOM, capable of implementing the XNOR-Net model;
• Derive a LiM alternative, defining what are the building blocks inside a memory cell;
• Qualitative comparison of the architectures, describing the advantages and disadvantages of both

of them;
• Performance estimation and comparison by means of synthesis and place and route procedures of

two NN models;
• Performance estimation of different NN models.

4.1. OOM Architecture Design

4.1.1. Single Input/Multiple Output Channels Design

By looking at Equation (9) and Figure 6, the core part of the OOM architecture is composed of a set
of XNOR gates and a pop-counter. In Figure 6, a tiny example of a 2 × 2 convolution is reported: since
the dimension of the kernel is 4, the total number of XNOR gates required are 4, because each of them
performs a multiplication. In general, their number must be at least equal to Wx × Wy. NNs’ kernel
sizes depend on the model chosen, for example in AlexNet the maximum kernel size is 11 × 11 [2] or
in LeNet5 is 5 × 5 [1]. The flexibility of the hardware circuit depends strictly on how big the kernel
size is considered, so a worst-case analysis must be taken into account. To best of our knowledge,
kernel sizes higher than 11 × 11 are very seldom, since accuracy usually decreases with bigger filter
sizes. Binarized inputs/weights are fed directly to XNOR inputs from a memory implemented as
a register file (RF) in the design, named Binary Input RF in Figure 7. In Binary Input RF, each row
contains all the input elements required for a convolutional window computation, implying a bitwidth
size equals to Wx × Wy bits. Regarding the number of rows, they have to be at least equal to the total
number of convolutional windows D2

out required, which is also the dimension of the OFMAP. Dout can
be computed considering kernel, IFMAP sizes (Din) and the stride.

Dout =
Din − Wx

stride
+ 1 (10)

Also in this case, the number of memory rows D2
out has to consider the maximum OFMAP size of

the NN model considered. When a different OFMAP has to be computed, the weight set is simply
switched by using a multiplexer. The total number of multiplexer is equal to the maximum number of
OFMAPs, called number of output channels (#Cout) of the NN. In Equation (10), it is indicated only
Wx, since usually the kernels are regular matrices with Wx = Wy.

Regarding the pop-counting computation, handling many parallel inputs requires too many
hardware resources. For this reason, the outputs of the XNOR gates are multiplexed and only one
of them is processed per clock cycle. A pop-counter can be simply implemented with an adder, a
NOT gate and a register as shown in Figure 8. Together with the pop-counting circuit, the main
computational part has been called XNOR-Pop Unit, as shown in Figure 7.

169

J. Low Power Electron. Appl. 2020, 10, 7

Xb(0, 0)wb(0, 0)
0

Xb(0, 1)wb(0, 1)
1

Xb(1, 0)wb(1, 0)
1

Xb(1, 1)wb(1, 1)
1

POP #1s−#0s

-1

Xb

1

11

1

wb

1
= 3− 1 = 2

11
*

Figure 6. Example of Binary convolution based on XNOR-Pop procedure.

Counter

D
ec
o
d
er

W
L

Binary
Input RF

Wx ×Wy

Binary weights

W
C

o
u
t
(1

)

W
C

o
u
t
(2

)

W
C

o
u
t
(3

)

W
C

o
u
t
(4

)

..
.

Cout

0

1

2

3

...

...
P
op

-c
o
u
n
ti
n
g

Incoming bitXNOR-Pop Unit

Figure 7. Out-Of-Memory (OOM) main computational part. Each Binary Input RF’s row holds the
binary inputs required for a convolutional window computation, while weights are provided by an
external memory. The outputs of the XNOR gates have been multiplexed to reduce the computational
overhead of the pop-counting part.

170

J. Low Power Electron. Appl. 2020, 10, 7

+

Incoming bit

4

Figure 8. Four bits example of a pop-counter circuit.

4.1.2. Multiple Input Channels Design

Many CNNs have multiple IFMAPs in input. Each convolutional window must be computed
separately and, in the end, summed together to get the resulting OFMAP. This can be obtained by
increasing the level of parallelism of the architecture, having multiple XNOR-Pop Units working at
the same time. As can be seen in Figure 9, a Cin number of XNOR-Pop Units are required and a final
accumulation circuit computes the sum of the single channels. XNOR-Pop Units are multiplexed to
reduce the hardware complexity for bigger networks.

Counter

D
ec
o
d
er

W
L

XNOR-Pop Unit

Cin

A
cc
u
m
u
la
ti
o
n

Figure 9. Multiple input channels OOM design.

4.1.3. FC Layer Integration

Until this point, the convolution algorithm has been mapped on the hardware architecture
described so far. To implement the fully connected layer the same circuit can be reused by simply
inverting weights and inputs sources. To better understand this concept, the example reported in
Figure 10 is considere. The weights values for each input neuron are w0

0, w0
1, w0

2 for X0, w1
0, w1

1, w1
2 for

X1 and w2
0, w2

1, w2
2 for X2. The output O0 can be computed considering Equation (11).

O0 = pop-count(X0 ⊕ w0
0, X1 ⊕ w1

0, X2 ⊕ w2
0) (11)

171

J. Low Power Electron. Appl. 2020, 10, 7

X1X2

X0

X1

X2

O0

O1

O2

w0
0 w1

0

Binary Input RF

w2
0

X0

X0 ⊕ w0
i

w2
1

X1 ⊕ w1
i

w1
1w0

1

w0
2 w1

2 w2
2

X2 ⊕ w2
i

X0

X1

X2

O0

w0
0

w1
0

w2
0

Figure 10. Example of a 3-3 FC network mapping.

As depicted in Figure 10, the Binary Input Register File (RF) contain the binary weights instead of
the inputs, in fact by addressing each line the multiplication of the weights with inputs is performed,
and then pop-counted.

The size of the Binary Input RF is also bounded to the FC network’s characteristics, so the relations
of width-height of the Binary Input RF are the following:

{
Memory sizex = max(Wx × Wy, #input neuronsFC)

Memory sizey = max(Dout, #output neuronsFC)
(12)

Although this is the straight forward way to map an FC algorithm on the architecture, this can be
very complex with a high number of input neurons. Considering LeNet5 [1] depicted in Figure 3, the
first FC layer has 120 output neurons, that can be acceptable, but for more sophisticated algorithms like
AlexNet [2], which has 4096 input neurons, makes this kind of scheduling very inefficient. A generic
output neuron’s equation Oi is given by

Oi =
4095

∑
j=0

Xj × wj
i + Bias = X0 × w0

i + X1 × w1
i + ... + X4095 × w4095

i + Bias (13)

this sum can be computed by performing fewer number of adds per each clock cycle. The partial result
is stored and added in each clock cycle. The algorithm steps become:

Store temp(0) = 0

Store temp(1) =
n

∑
j=0

Xj × wj
i + Store temp(0)

Store temp(2) =
2n

∑
j=n+1

Xj × wj
i + Store temp(1)

...

(14)

where n is the total number of considered terms for each summation and Store temp holds temporary
additions partial results.

Figure 11 shows an example of serialization of 2 input neurons per cycle, meaning that only a
subset of weights (highlighted by the dashed lines in the figure) are stored inside the Binary Input RF.

172

J. Low Power Electron. Appl. 2020, 10, 7

The partial result is computed and then temporarily stored in each algorithmic step. In Equation (14),
n is 2 and consequently the Memory size values can be rewritten as

{
Memory sizex = max(Wx × Wy, n)

Memory sizey = max(Dout, #output neuronsFC)
(15)

X0

X1

X2

X3

O0

O1

O2

O3

X0

X1

X2

X3

O0

O1

O2

O3

w0

Step 1

Binary Input RF

w1
0

w1 w1
1

w2 w1
2

X
N
O
R

P
o
p
-c
o
u
n
t

S
to
re

te
m
p

w3 w1
3

.

w2
0

Step 2

Binary Input RF

w3
0

w2
1 w3

1

w2
2 w3

2

X
N
O
R

P
o
p
-c
o
u
n
t

S
to
re

te
m
p

w2
3 w3

3

.

Figure 11. Example of serialization of the FC computation.

4.1.4. OOM Convolution-FC Unit

A scheme of the complete OOM architecture is now provided in Figure 12 and each element’s
functionality is reported in details.

Counter

D
ec
o
d
er

W
L

XNOR-Pop Unit

Bin. inputs Bin. weights Cin

A
cc
u
m
u
la
ti
o
n

+
Store
temp

Convolution
Compu-
tation
Unit
(CCU)

O
u
tP

o
p

α
unit

K
unit

K
register
file

α K A

A = γ/σ

B

B = μ
σ × γ − β

F
C
P
op

T
o
ex
te
rn
a
l
ci
rc
u
it

Weights

Inputs
SurroundingLogic unit

Figure 12. Complete OOM architecture. The thicker red dashed line frames the units which are the
main components of the SurroundingLogic unit. Inputs are provided to the SurroundingLogic unit
from the external world. Outputs are processed and saved outside in the testbench.

173

J. Low Power Electron. Appl. 2020, 10, 7

• XNOR-Pop Unit is the block described before, which takes Binarized weights/inputs and
computes the resulting binary convolution;

• Store temp is a register file that holds the partial FC values, resulting from the scheduling described
in Section 4.1.3. As the XNOR-Pop Unit’s Binary Input RF, which is depicted in Figure 7, it is
addressed by the same counter, since only one neuron is processed per time. Only the output
coming from the first XNOR-Pop Unit is taken, because FC requires only one input channel to
be executed;

• K and α units are in charge of computing K and α values, as required by XNOR-Net convolution
approximation expressed in Equation (9). Since K are matricial values, a register file has been
inserted in the design to hold them;

• Convolution Computation Unit (CCU) performs the final calculation to provide the convolutional
result, which is the formula reported in Equation (9). Moreover, it applies BatchNorm, if required
by the algorithm: its coefficients are computed offline and provided by the external testbench.

4.2. LiM Architecture

4.2.1. XNOR-Pop LiM Unit

The design driving concept of a LiM architecture is to increase as much as possible the level
of parallelism. Starting from the OOM standard implementation, we designed two LiM arrays that
perform XNOR bitwise and pop-counting operations. Since we didn’t have the possibility to implement
a custom memory, we used as memory element a flip flop and a static CMOS based logical part.

These choices imply a higher power and area estimation in the synthesis phase, that will be
discussed more in details in Section 6. Regarding the XNOR part, the idea is to put a XNOR gate inside
each memory cell and to perform the binary product between the content of the cell and an external
binary input. An example is depicted in Figure 13, in which is shown how a simple 2 × 2 convolution
is mapped inside a LiM array. In order to perform the bitwise multiplication between the binary input
and the corresponding weight, as we can see from the example in Figure 13 the highlighted portion of
IFMAP has to be convolved with the kernel in the following way:

Incoming bit0 = pop-count(X0 ⊕ w0, X1 ⊕ w1, X4 ⊕ w3, X5 ⊕ w3) (16)

Since one of the XNOR inputs is hardwired to an external connection, it is sufficient to store
inside the memory array the input required to perform the convolution. The same for the following
row line: the convolution is performed with the same kernel, so each memory row corresponds to a
convolutional window.

Regarding pop-counting procedure, in order to reduce the complexity of the memory cell, we can
simplify the pop-count equation in the following way:

pop-count = #1s − #0s = 2 × #1s − length(word) (17)

where length(word) is intended as the size of the array entering in the pop-counter, which is 4 in
Figure 13. A ones counter is simply made of half adders (HA) connected as depicted in Figure 14, so in
the pop-counting part there will be a HA for each memory cell. Figure 15 provides an overview of the
entire LiM implementation. It is possible to distinguish between LiM XNOR part and the LiM ones
counter whose detailed architectures are depicted in Figures 13 and 14 respectively. Together, with the
multiplexer depicted in Figure 15, they form the LiM XNOR-Pop unit.

174

J. Low Power Electron. Appl. 2020, 10, 7

WL0

BL0
w0 w1 w2 w3

WL1

WL2

X1

IFMAP

X2 X3

X7X6X5X4

X8 X9 X10 X11

X15X14X13X12

w0

Weights

w1

w3w2

X0 X1

BL1

X4

BL2

X5

BL3

In
co
m
in
g
b
it
0

X1 X2 X5 X6

In
co
m
in
g
b
it
1

Interface decoder

X2 X3 X6 X7

In
co
m
in
g
b
it
2

...

X0

Figure 13. XNOR part of the XNOR-Pop Unit LiM implementation: example of 2 × 2 kernel and 4 × 4
IFMAP sizes with stride 1.

WL0

WL1

M

BL0

HA
Ci Co

O

M

BL1

HA
Ci Co

O

M

BL2

HA
Ci Co

O

M

BL3

HA
Ci Co

O

In
co
m
in
g
b
it
0

o
n
es
(0
)

M

HA
Ci Co

O

M

HA
Ci Co

O

M

HA
Ci Co

O

M

HA
Ci Co

O

In
co
m
in
g
b
it
1

o
n
es
(1
)

. . .
Figure 14. Example of a 4 bits ones counter LiM implementation.

4.2.2. LiM convolution-FC Unit

From the previous considerations, the entire LiM architecture can be designed as shown in
Figure 15.

175

J. Low Power Electron. Appl. 2020, 10, 7

>
>
1

>
>
1

>
>
1

>
>
1

>
>
1

>
>
1

LiM

XNOR
part

In
te
rf
a
ce

D
ec
o
d
er

LiM ones
counter

o
n
es

C
i
n

>
>
1

-

length(word)

SurroundingLogic unit

Figure 15. LiM entire architecture. The main blocks of the LiM implementation are the LiM XNOR part,
interface decoder, LiM one-counter, and shifters-subtractors for the pop-counting computation, that are
replicated for Cin number of times. The surrounding logic is the same as the OOM case reported in
Figure 12.

The Surrounding logic unit remains the same, since the interface has been kept between OOM-LiM
XNOR-Pop units. The other units are replicated #Cin times, depending on the total number of input
channels required by the algorithm. The LiM alternative can achieve a higher level of parallelism,
because XNOR-ones counter parts can perform the operations in parallel. In Figure 15, there are also
“<< 1” blocks: they perform the shift by 1 position, corresponding to multiplication by 2.

4.3. Top-Level Entity

The top-level entity contains both the Convolution-FC, Pooling circuits. Pooling is simply made
of a multiplexed comparator that takes the maximum out of Wx × Wy number of inputs. The top-level
entity contains also an Interface, which is in charge of dispatching the inputs coming from the testbench
and to provide the results of Pooling/Convolution-FC to the outside. The top-level entity can be
schematized in Figure 16.

Pooling Convolution-FC

Control unit

Interface

Inputs Outputs

top-level entity

Figure 16. Top-level entity of both LiM and OOM architectures.

176

J. Low Power Electron. Appl. 2020, 10, 7

5. Qualitative Comparison OOM-LiM Architectures

In order to make a qualitative comparison, algorithm execution time was considered as a
benchmark parameter. We can distinguish between convolution, fully connected and max pooling
execution times, since they are completely different. The computation is based on a CNN, since it
generally contains all of those layers. The CNN’s parameters are not specified, since we are doing a
parametric estimation.

5.1. OOM Execution Time

5.1.1. Pooling Layer

In our analysis we start from Pooling layer. As said in Section 4.3, Pooling is made of a simple
multiplexed comparator. The input scanning ends when all them have been considered, so after an
entire pooling window content is evaluated. This value is multiplied by the total number of pixels of
the resulting OFMAP obtaining

Pooltime ≈ D2
out(pool) × (Wx(pool) × Wy(pool))× tck = D2

out(pool) × (W2
x(pool))× tck (18)

where D2
out(pool) is the pooled OFMAP size. The worst-case filter dimension is set to W2

x for both
convolutional and pooling.

5.1.2. Convolutional Layer

At the beginning of the convolution algorithm, the binary inputs are precharged inside the Binary
Input RF and K matrix is computed in the meanwhile, meaning that for each input set are required
W2

x clock cycles. Since an entire OFMAP has a number of pixels equals to D2
out(conv), the total number

of cycles required in this step are D2
out(conv) × W2

x clock cycles. After that, convolution is performed:
considering Figure 7, an entire convolutional window is computed when all the XNOR outputs have
been scanned. The number of XNOR gates is equal to the Binary Input RF’s word length, which is
W2

x . By multiplying the time required by a convolutional window computation with the total number
of convolutional windows D2

out(conv), we get the total convolution time which is Convolutiontime,OOM.
The last contribution set is the BatchNorm, that can applied after each convolutional window and α

computation together with results’ storing. Each of them takes only 1 clock cycle. We can derive the
equation for the convolutional layer execution time with 1 input/output feature map as follows.

Convolutiontime,OOM ≈

⎛
⎜⎜⎝

Store inputs & K computation︷ ︸︸ ︷
D2

out(conv) × W2
x +

Convolution & BatchNorm︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1) +

α - Store results︷ ︸︸ ︷
(1 + 1)

⎞
⎟⎟⎠× tck (19)

When multiple output channels are considered, the convolution windows computation has to be
repeated for each of the OFMAP:

Convolutiontime,OOM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) × W2

x ×tck+

+ Cout ×

⎛
⎜⎝

Convolution & BatchNorm︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1) +

α - Store results︷ ︸︸ ︷
(1 + 1)

⎞
⎟⎠× tck

(20)

the last situation is the multiple input/output channels case. Since the convolution operation is
parallelized, the convolutional windows coming from each XNOR-Pop Unit is added in a serial fashion.

177

J. Low Power Electron. Appl. 2020, 10, 7

This means that to achieve the final convolution value, each contribution has to be added together
before executing the BatchNorm. The final Convolutiontime expression is the following.

Convolutiontime,OOM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) × W2

x ×tck+

+ Cout ×

⎛
⎜⎜⎝

Convolution & BatchNorm multiple Cin︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1 + Cin) +

α - Store results︷ ︸︸ ︷
(1 + 1)

⎞
⎟⎟⎠× tck

(21)

5.1.3. FC Layer

For the FC computation, we have to consider the scheduling explained in Section 4.1.3. As the
convolution case, the algorithm starts precharging the inputs inside the array, taking Dout(FC) clock
cycles, where Dout(FC) is the total number of output neurons. Since the dimension of the Binary Input
RF is Memory sizex, only Memory sizex input neurons are considered per time, so as performed for
the convolutional layer, the time required for a FC output is equal to Dout(FC) × Memory sizex that
has to be added to the previous contribution. FC results have to be stored, and this can be made by
scanning the content of Store temp register (depicted in Figure 12), taking Dout(FC) clock cycles. The
execution time for a single step of the FC scheduling is given by:

FCtime,OOM ≈

⎛
⎜⎝

Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Dout(FC) × Memory sizex +

Store temp scanning︷ ︸︸ ︷
Dout(FC)

⎞
⎟⎠× tck (22)

this partial result has to be repeated by the total number of iterations (niter) required to calculate the
FC layer. The final FC execution time expression is:

FCtime,OOM ≈

⎡
⎢⎣niter ×

⎛
⎜⎝

Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Dout(FC) × Memory sizex

⎞
⎟⎠+

Store temp scanning︷ ︸︸ ︷
Dout(FC)

⎤
⎥⎦× tck (23)

5.2. LiM Execution Time

Similarly to the OOM case, Pooling, Convolution and FC execution times are provided and
explained. Since Pooling layer is the same in both cases, it is not analyzed in this part.

5.2.1. Convolutional Layer

As already done in OOM, the array has to be precharged taking D2
out(conv) clock cycles. After that,

all the XNOR gates inside the XNOR part work together at the same time, and the Interface Decoder,
which is depicted in Figure 13, takes one by one each XNOR result and provide it to the ones counter.
When all XNORs’ output have been scanned after W2

x clock cycles, the ones counter results are stored
inside the LiM ones counter reported in Figure 15. At this point, all the LiM ones counter values must
be fetched for each input channel, requiring Cin × D2

out clock cycles to perform the residual part of the
algorithm. The final formula for the LiM convolution execution time is

Convolutiontime,LiM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) × W2

x ×tck+

+ Cout ×

⎡
⎢⎢⎣

Convolution & BatchNorm multiple Cin︷ ︸︸ ︷
W2

x + D2
out(conv) × (1 + #Cin) +

α - Store results︷ ︸︸ ︷
(1 + 1)

⎤
⎥⎥⎦× tck

(24)

178

J. Low Power Electron. Appl. 2020, 10, 7

5.2.2. FC Layer

Similarly to the OOM case, we have scheduled the algorithm to reduce the complexity.
After Dout(FC) clock cycles required to store the values inside the LiM array, an entire FC step is
computed in Memory sizex clock cycles and the final results are scanned from the LiM ones counter in
Dout(FC) cycles. In LiM architecture, the Store temp register file is not required since the pop-count
values are already stored in the LiM part. By iterating the entire algorithm niter times, we get the final
FC execution time:

FCtime,LiM ≈

⎡
⎢⎣niter ×

⎛
⎜⎝

Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Memory sizex

⎞
⎟⎠+

Store temp scanning︷ ︸︸ ︷
Dout(FC)

⎤
⎥⎦× tck (25)

5.3. Comparison Results

The results obtained by performing the ratio between OOM/LiM execution times are now
provided. The previous part, and in particular Sections 5.1 and 5.2 take into account an approximate
computation of the execution time, since the overheads of idle/dummy states were not considered
for sake of simplicity. In this part, we show the real estimations that consider all the contributions.
Considering Figure 17, it is possible to see how delay ratio (obtained as execution time OOM/execution
time LiM) changes in different cases. A series of sweeps were made, considering the most important
variables, in particular #Cin, #Cout, Wx, Din, Dout(f c), niter. On the vertical axes, there is Delay ratio in
all plots. Some of the estimations were performed considering the convolution timing equations
reported in Equations (21) and (24). These plots are are labelled with “Convolution computation” flag
in Figure 17. The remaining one consider FC delay expressions reported in Equations (23) and (25).

Delay ratios (OOM/LiM)

Convolution estimation

1005
10

1.5

#Cin
Wx

D
el
ay

ra
ti
o

#Cin & Wx

50 100 150

1.2
1.4
1.6
1.8

#Cin

D
el
ay

ra
ti
o

X-Z plane

2 4 6 8 10

1.2
1.4
1.6
1.8

Wx

D
el
ay

ra
ti
o

Y-Z plane

100100

1.5
2

#Cin#Cout

#Cin & #Cout

50 100 150

1.5

2

#Cin

X-Z plane

50 100 150

1.5

2

#Cout

Y-Z plane

5
10100

1.5

2

Wx#Cout

Wx & #Cout

2 4 6 8 10

1.5

2

Wx

X-Z plane

50 100 150

1.5

2

#Cout

Y-Z plane

1000
500

1,000

50
100

Dout(FC)niter

Dout(FC) & niter

50 100 150

50

100

Dout(FC)

X-Z plane

20
0
40
0
60
0
80
0

1,
00
0

50

100

niter

Y-Z plane

100
200100

1.2

1.4

Din#Cin

Din & #Cin

50 100 150 200

1.2

1.4

Din

X-Z plane

50 100 150

1.2

1.4

#Cin

Y-Z plane

Figure 17. Delay ratio obtained as OOM/LiM for different parameters, in order to see how the two
architectures behave for different cases.

• Delay ratio vs #Cin & Wx: the Delay ratio with respect to #Cin has a decreasing trend because, as
shown in Figure 15, the Interface Decoder, the multiplexers placed after the LiM ones counter and
the serial accumulation of the values of each channel represent a bottleneck for LiM architecture.

179

J. Low Power Electron. Appl. 2020, 10, 7

As a result a higher execution time for higher values of #Cin is observed. In general, for high
values of Wx, the Delay ratio increases, because of the parallelization in LiM architecture.

• Delay ratio vs #Cin & #Cout: the trend for #Cin is the same as the previous case. For high values of
#Cout, we can expect a very good Delay ratio efficiency, because LiM already has the values stored
inside the array and it is sufficient to change the weights set by simply selecting it, following the
same principle of the OOM case depicted in Figure 7.

• Delay ratio vs Wx & #Cout: in general, by increasing both #Cout and Wx we have a higher Delay
ratio. By looking to X-Z plane, it is possible to see that for higher #Cout the curve becomes steeper.
It is a very good trend for very deep NNs, because usually output channels and filter sizes are high.

• Delay ratio vs Din & #Cin: Din is the IFMAP size, which indirectly determines the OFMAP size
as reported in Equation (10). High values of Din imply much more complex NN but the Delay
ratio remains almost constant, showing that LiM architecture latency is not degraded by the
IFMAP’s complexity.

• Delay ratio vs Dout(FC) & niter: this last plot set reports an FC layer estimation. In this case the
formula for the FC execution time of OOM and LiM is considered. As it can be seen, a higher
Dout(FC) could be beneficial for a LiM architecture, which has a small increasing trend, because the
LiM array performs all the computations in parallel, so there is no need to fetch each data from
the memory, compute the result and store inside the Store temp register file as in the OOM case.
The predominant variable is niter, because by looking at Figure 7, the OOM architecture has the
important drawback that everytime an FC step terminates, the entire Binary Input RF has to be
scanned to perform the FC computation, requiring niter × Dout(FC) × Memory sizex clock cycles.
If the number of output neurons is huge (Dout(FC)),niter × Dout(FC) × Memory sizex becomes very
large compared to the LiM case.

From these considerations, it is evident that LiM architecture introduces a gain in terms of
execution time, because by increasing the level of parallelism in the architecture, multiple operations
can be performed at the same time. The LiM bottlenecks are the Interface Decoder and the multiplexers
depicted in Figure 15, that introduce both higher delay and power consumption, but they are required
to interface the design blocks.

6. Perfomance Evaluation

In this part, the evaluation steps will be explained. In this work the memories were implemented
as register files and each memory cell is a flip flop, so the results obtained are an overestimation
(especially for the LiM case). The real performance values can be obtained with a more precise memory
model. The performance evaluation is made of three parts:

1. For both OOM and LiM implementations, two NN models were chosen and used as cases of
study. These models were implemented, trained and validated by Keras framework [32] and
a Matlab script respectively. Then, the architectures were synthesized with Synopsys Design
Compiler with 45 nm CMOS technology @ 1.1 V, providing the values of power, area, Critical
Path Delay (CPD), execution time and energy consumption. Regarding the power consumption,
two kind of estimations are provided: the first is very straight forward and consists of a report
power from Synopsys with worst case scenario of switching activity equals to 1 in all the nodes.
The second, a post place&route power estimation with Cadence Innovus, using backannotation
with .vcd file provided by Modelsim, in order to evaluate the effect of both switching activity
and interconnections.

2. Parametric sweeps are performed in order to evaluate the trend of the performance parameters
in different cases. Power, Area, CPD and Energy ratios are computed between the OOM and
LiM values, that are particularly useful to determine the main contributions of both architectures.
To perform such procedure, a series of scripts are used to perform several synthesis processes
with Synopsys Design Compiler and, everytime a synthesis ends, the performance values are
stored in external files. Also in this case, the technology used is 45 nm CMOS @ 1.1 V.

180

J. Low Power Electron. Appl. 2020, 10, 7

3. An analysis of the differences between our LiM, where memory elements are flip flops, and a LiM
circuit with a custom memory is performed. In [8], a very similar XNOR-Net implementation
has been implemented with a CAM memory-based XNOR-Pop procedure. Some useful results
are provided, since authors have implemented a modified memory array with 65 nm CMOS
technology. For this reason, a synthesis with 65 nm CMOS technology @ 1.0 V is performed,
trying to use the same metrics as [8] to evaluate how a more real memory model can influence the
results obtained.

6.1. Two NN Models Examined

6.1.1. Fashion-MNIST CNN Results

The first NN model is able to classify with an accuracy of 81% a Fashion-MNIST image [33], which
is a greyscale picture of 28 × 28 pixels that can belong to one of 10 different categories such as T-shits,
trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags and ankle boots. The NN model
is reported in Table 1. The parameters listed in Table 1 give an indication on the dimensions of the
hardware implementations, such as the dimensions Memory sizex and Memory sizey of the Binary
Input RF/LiM arrays in order to perform an ad-hoc synthesis optimized for that NN model. Binary
Input RF, LiM XNOR part and LiM ones counter have Memory sizey = 24 × 24 = 576 rows with a
bitwidth of Memory sizex = 32 bits to host both convolution and FC algorithms. Since there are a
maximum number of input channels equals to 6 as reported in Table 1, the XNOR-Pop Unit for both
OOM and LiM has been replicated 6 times.

Table 1. Fashion-MNIST CNN under test parameters.

Layer Number Type IFMAP Size Kernel Size Cin Cout Stride

1 Convolutional 28 × 28 × 1 5 × 5 1 6 1
2 Max Pooling 24 × 24 × 6 2 × 2 6 6 1
3 Convolutional 12 × 12 × 6 5 × 5 6 6 1
4 Max Pooling 8 × 8 × 6 2 × 2 6 6 1
5 FC 96 - - - -
6 BatchNorm - - - - -
7 FC 120 - - - -
8 BatchNorm - - - - -
9 FC 84 - - - -
10 BatchNorm - - - - -
11 FC 10 - - - -
12 BatchNorm - - - - -
13 ReLU - - - - -

The number of bits used to perform the extra calculations required (such as multiplications,
BatchNorm etc) are 18 expressed in fixed point format. After performing the synthesis with Synopsys
Design Compiler, the results obtained for area, CPD and power are reported in Table 2.

Table 2. Synthesis results for the Fashion-MNIST CNN model.

Type Area (mm2) Power (mW) CPD (ns)

LiM 1.68 254.50 4.11
OOM 1.10 193.30 4.14

A preliminary analysis of the results listed in Table 2, highlights a higher area and power
consumption in LiM with respect to the OOM alternative, since the LiM implementation is highly
parallellized and, consequently, a higher number of logic elements are required. The CPD is slightly
higher in the OOM case because of a more complicated FC scheduling handling circuit (depicted

181

J. Low Power Electron. Appl. 2020, 10, 7

in Figure 12), which requires the Store temp register file. From these results, a simple comparison
between power, area and CPD is not enough to determine which is the best architecture between the
two proposed ones. For this reason we estimate also the execution time and the energy estimation
obtained as Power × Execution time, as shown in Table 3.

Table 3. Power-Execution time-Energy results for Fashion-MNIST CNN model.

Type Power (mW) Execution Time (ms) Energy (μJ)

LiM 254.50 0.21 53.44
OOM 193.30 0.92 178.41

From Table 3, we can derive two very important values which are the Energy ratio and Delay
ratio as follows

Delay ratio =
Execution timeOOM
Execution timeLiM

=
0.92 ms
0.21 ms

� 4.38 (26)

Energy ratio =
EnergyOOM
EnergyLiM

=
178.41 μJ
53.44 μJ

� 3.34 (27)

Energy and delay ratio give very important indications on LiM strong points: it consumes less
energy and it’s faster, although has a higher power value. From an energetic point of view, LiM
architecture is more efficient for that particular NN model. In Figure 18 and Table 4 are reported the
results obtained from a post place&route estimation with .vcd backannotation. Considering both
switching activity and interconnections, the resulting power of the LiM architecture is increased by
∼ 22%, bringing a lower energy ratio, but still promoting LiM as an energy efficient architecture.

Energy ratiopost place and route =
130.91 μJ

68.9 μJ
� 1.9 (28)

LiM implementation OOM implementation

Figure 18. Snapshot of the chips obtained after a post place and route procedure for
Fashion-MNIST CNN.

Table 4. Post place and route estimation of Fashion-MNIST CNN implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (μJ)

LiM 1.70 328.3 4.11 0.21 68.9
OOM 1.07 142.3 4.14 0.92 130.91

182

J. Low Power Electron. Appl. 2020, 10, 7

6.2. MNIST-MLP Network

Another NN model is evaluated, in order to verify the behavior of both LiM and OOM
architectures with different computational models. The realized MLP network is made of a set
of FC layers organized as 784-196-196-10 neurons and it is able to achieve up to ∼90% of accuracy on
MNIST dataset. Further details on MLP structure are presented in Table 5. Dropout layers indicated in
Table 5 are useful in training procedure, since they prevent the network from overfitting by simply
“turning off” neurons with a given probability [34]. As already done in Section 6.1.1, the results that
will be presented are the ones obtained by the synthesis and the estimated value of energy, based on
the execution time. The chosen dimensions of the implementation are Memory sizex = 14, #Cin = 1
while the memory arrays have 196 rows because the maximum number of output neurons (Dout(FC))
is 196.

Table 5. MNIST MLP under test parameters.

Layer Number Type IFMAP Size Kernel Size Cin Cout Stride

1 Dropout 28 × 28 × 1 - - - -
2 FC 784 - - - -
3 BatchNorm 196 - - - -
4 ReLU 196 - - - -
5 Dropout 196 - - - -
6 FC 196 - - - -
7 BatchNorm 196 - - - -
8 ReLU 196 - - - -
9 Dropout 196 - - - -
10 FC 196 - - - -
11 BatchNorm 10 - - - -

In Table 6, the architectures have a similar power consumption, because in OOM it is required
a Store temp register file that has 196 rows. The hardware complexity of the LiM implementation is
not so different from the OOM’s one, because the memory arrays have a very small size of 196 × 14.
Since it is an MLP network, niter parameter becomes very important, because it gives an indication on
how many times the FC scheduling has to be executed for each layer: niter changes for each FC layer
and can be obtained as niter = Din(FC)/Memory sizex. From the energy and execution time results in
Table 6, it is evident that OOM is not competitive with respect to the LiM version. This is due to the
much more inefficient FC handling, since the whole Binary Input RF has to be scanned, while the LiM
version performs all the calculations directly inside the array.

Delay ratio =
1.62 ms
0.132 ms

� 12.27 (29)

Energy ratio =
23.20 μJ
1.99 μJ

� 11.7 (30)

After performing post place and route estimation, the results obtained are reported in Figure 19
and in Table 7.

Table 6. Perfomance parameters of MLP implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (μJ)

LiM 0.11 15.10 4.22 0.132 1.99
OOM 0.09 14.32 4.32 1.62 23.20

183

J. Low Power Electron. Appl. 2020, 10, 7

LiM implementation OOM implementation

Figure 19. Snapshot of the chips obtained after a post place and route procedure for MLP NN.

Table 7. Post place and route estimation of MLP implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (μJ)

LiM 0.1033 13.06 4.22 0.132 1.72
OOM 0.086 10.68 4.32 1.62 17.30

In Table 7, the power results are slightly lower than the synthesis ones, since the .vcd file and the
switching activity information have relevant roles, giving a more precise power estimation, instead
of the worst case reported in Table 6. The energy ratio results to be equal to ∼10× compared to the
previous one equal to ∼11.7× provided by the synthesis.

6.3. Parametric Sweeps

The meaningful parameters of the designs such as #Cin and memory arrays dimensions (Memory
sizex,Memory sizey) were varied to determine the differences between the two architectures in terms
of performance. Two parameters are chosen per time and a sweep is executed on them, while the
remaining are kept constant. For sake of clarity, from now on the following substitution is considered:

{
H = Memory size2

y

Wa = Memory sizex

(31)

In Figures 20 and 21 are depicted the Power, Area and CPD for different values of #Cin, Wa and√
H. By increasing the Wa, power and area increase almost quadratically since Wa directly influences

the bitwidth of the memories. Also, the trends depending by
√

H behave quadratically, meaning
that a the memory complexities influence a lot the performance of both architectures. In general,
the power and area for LiM case are slightly higher than the OOM ones, since the total number of
logic elements required by the LiM implementation is greater than OOM. CPD remains almost the
same, even for more complex implementations. To better understand the differences of the obtained
parameters for both architectures, a ratio was computed for all the cases: the results obtained are
reported in Figure 22, where in general for an increasing size of #Cin, Wa and

√
H the power and area

ratios decreases, confirming the bigger grade of complexity of the LiM. Another useful estimation can
be performed on the energy ratios for the various cases.

184

J. Low Power Electron. Appl. 2020, 10, 7

LiM Case

2
4

6
5

10

100

200

#CinWa

P
ow

er
[m

W
]

2 4 6

100

200

#Cin

P
ow

er
[m

W
]

X-Z plane

2 4 6 8 10

100

200

Wa

P
ow

er
[m

W
]

Y-Z plane

2
4

6
5

10

1

#CinWa

A
re
a
[m

m
2
]

Power[mW], Area [mm
2
], CPD[ns] vs #Cin & Wa

2 4 6

0.5

1

1.5

#Cin

A
re
a
[m

m
2
]

X-Z plane

2 4 6 8 10

0.5

1

1.5

Wa

A
re
a
[m

m
2
]

Y-Z plane

2
4

6
5

10

4.15

4.2

#CinWa

C
P
D

[n
s]

2 4 6
4.12

4.14

4.16

4.18

4.2

4.22

#Cin

C
P
D

[n
s]

X-Z plane

2 4 6 8 10
4.12

4.14

4.16

4.18

4.2

4.22

Wa

C
P
D

[n
s]

Y-Z plane

1
2

3
10

20

50

#Cin
√
H size

P
ow

er
[m

W
]

1 1.5 2 2.5 3

20

40

60

#Cin

P
ow

er
[m

W
]

X-Z plane

10 20

20

40

60

√
H size

P
ow

er
[m

W
]

Y-Z plane

1
2

3
10

20

0.2

0.4

#Cin
√
H size

A
re
a
[m

m
2
]

Power[mW], Area [mm
2
], CPD[ns] vs #Cin &

√
H size

1 1.5 2 2.5 3

0.2

0.4

#Cin

A
re
a
[m

m
2
]

X-Z plane

10 20

0.2

0.4

√
H size

A
re
a
[m

m
2
]

Y-Z plane

1
2

3
10

20

4.15

4.2

#Cin
√
H size

C
P
D

[n
s]

1 1.5 2 2.5 3
4.12

4.14

4.16

4.18

4.2

4.22

#Cin

C
P
D

[n
s]

X-Z plane

10 20
4.12

4.14

4.16

4.18

4.2

4.22

√
H size

C
P
D

[n
s]

Y-Z plane

Figure 20. Power, Area and CPD results for different values of #Cin, Wa and
√

H considering
LiM implementation.

185

J. Low Power Electron. Appl. 2020, 10, 7

OOM Case

2
4

6
5

10

100

200

#CinWa

P
ow

er
[m

W
]

2 4 6

50

100

150

200

#Cin

P
ow

er
[m

W
]

X-Z plane

2 4 6 8 10

50

100

150

200

Wa

P
ow

er
[m

W
]

Y-Z plane

2
4

6
5

10

0.5

1

#CinWa

A
re
a
[m

m
2
]

Power[mW], Area [mm
2
], CPD[ns] vs #Cin & Wa

2 4 6

0.5

1

#Cin

A
re
a
[m

m
2
]

X-Z plane

2 4 6 8 10

0.5

1

Wa

A
re
a
[m

m
2
]

Y-Z plane

2
4

6
5

10

4.1

4.2

#CinWa

C
P
D

[n
s]

2 4 6

4.1

4.15

4.2

#Cin

C
P
D

[n
s]

X-Z plane

2 4 6 8 10

4.1

4.15

4.2

Wa

C
P
D

[n
s]

Y-Z plane

1
2

3
10

20

20

40

#Cin
√
H size

P
ow

er
[m

W
]

1 1.5 2 2.5 3

10

20

30

40

#Cin

P
ow

er
[m

W
]

X-Z plane

10 20

10

20

30

40

√
H size

P
ow

er
[m

W
]

Y-Z plane

1
2

3
10

20

0.1

0.2

#Cin
√
H size

A
re
a
[m

m
2
]

Power[mW], Area [mm
2
] CPD[ns] vs #Cin &

√
H size

1 1.5 2 2.5 3

0.1

0.2

#Cin

A
re
a
[m

m
2
]

X-Z plane

10 20

0.1

0.2

√
H size

A
re
a
[m

m
2
]

Y-Z plane

1
2

3
10

20

4.1

4.2

#Cin
√
H size

C
P
D

[n
s]

1 1.5 2 2.5 3

4.1

4.15

4.2

#Cin

C
P
D

[n
s]

X-Z plane

10 20

4.1

4.15

4.2

√
H size

C
P
D

[n
s]

Y-Z plane

Figure 21. Power, Area and CPD results for different values of #Cin, Wa and
√

H considering
OOM implementation.

186

J. Low Power Electron. Appl. 2020, 10, 7

2
4

6
5

10

0.6

0.8

#CinWa

P
ow

er
ra
ti
o

2 4 6
0.5

0.6

0.7

0.8

#Cin

P
ow

er
ra
ti
o

X-Z plane

2 4 6 8 10
0.5

0.6

0.7

0.8

Wa

P
ow

er
ra
ti
o

Y-Z plane

2
4

6
5

10

0.6

#CinWa

A
re
a
ra
ti
o

Power, Area, CPD ratios vs #Cin & Wa

2 4 6

0.5

0.6

0.7

#Cin

A
re
a
ra
ti
o

X-Z plane

2 4 6 8 10

0.5

0.6

0.7

Wa

A
re
a
ra
ti
o

Y-Z plane

2
4

6
5

10

1

1.02

#CinWa

C
P

D
el
ay

ra
ti
o

2 4 6

1

1.01

1.02

#Cin

C
P

D
el
ay

ra
ti
o

X-Z plane

2 4 6 8 10

1

1.01

1.02

Wa

C
P

D
el
ay

ra
ti
o

Y-Z plane

1
2

3
10

20

0.6

0.8

1

#Cin
√
H size

P
ow

er
ra
ti
o

1 1.5 2 2.5 3

0.6

0.8

1

#Cin

P
ow

er
ra
ti
o

X-Z plane

10 20

0.6

0.8

1

√
H size

P
ow

er
ra
ti
o

Y-Z plane

1
2

3
10

20

0.6

0.8

1

#Cin
√
H size

A
re
a
ra
ti
o

Power, Area, CPD ratios vs #Cin &
√
H size

1 1.5 2 2.5 3

0.6

0.8

1

#Cin

A
re
a
ra
ti
o

X-Z plane

10 20

0.6

0.8

1

√
H size

A
re
a
ra
ti
o

Y-Z plane

1
2

3
10

20

1

1.02

#Cin
√
H size

C
P

D
el
ay

ra
ti
o

1 1.5 2 2.5 3

1

1.01

1.02

#Cin

C
P

D
el
ay

ra
ti
o

X-Z plane

10 20

1

1.01

1.02

√
H size

C
P

D
el
ay

ra
ti
o

Y-Z plane

Figure 22. Power, Area and CPD ratios with respect to #Cin, Wa and
√

H.

Those values are obtained as EnergyOOM/EnergyLiM, as shown in Figure 23, decrease for higher
memory dimensions, since power of the LiM architecture starts to assume a predominant contribution
in the energy equation. It is important to keep in mind that these are very pessimistic estimations,
and they can be improved by employing more realistic memory cells. The pessimistic case, which is

187

J. Low Power Electron. Appl. 2020, 10, 7

reported in Figure 23 in #Cin &
√

H size plot, is to have a very long (
√

H big) and narrow (Wa very
small) memory structure, which is replicated a lot of times (#Cin big): these set of conditions describes
an improbable situation, because the driving force for a memory design is to have a regular squared
shape array. The last energy estimation reported in Figure 23 flagged by FC #Cin &

√
H size, takes into

account an FC algorithm mapped on the implementations considering the worst case of big
√

H and
#Cin. By varying

√
H, the trend for the energy ratio is increasing, meaning that the more complex is

the FC algorithm the lower is the energy for the LiM implementation compared to OOM one.

Energy ratios

2
4

6
5

10

1

1.5

#CinWa

E
n
er
g
y
ra
ti
o

#Cin & Wa

2 4 6

1

1.5

#Cin

E
n
er
g
y
ra
ti
o

X-Z plane

2 4 6 8 10

1

1.5

Wa

E
n
er
g
y
ra
ti
o

Y-Z plane

1
2

3
10

20

1

#Cin
√
H size

E
n
er
g
y
ra
ti
o

#Cin &
√
H size

1 1.5 2 2.5 3
0.8

1

1.2

1.4

#Cin

E
n
er
g
y
ra
ti
o

X-Z plane

10 20
0.8

1

1.2

1.4

√
H size

E
n
er
g
y
ra
ti
o

Y-Z plane

1
2

3
10

20

10

#Cin
√
H size

E
n
er
g
y
ra
ti
o

FC #Cin &
√
H size

1 1.5 2 2.5 3

5

10

15

#Cin

E
n
er
g
y
ra
ti
o

X-Z plane

10 20

5

10

15

√
H size

E
n
er
g
y
ra
ti
o

Y-Z plane

Figure 23. Energy ratio values obtained by varying #Cin, Wa and
√

H.

6.3.1. Qualitative Estimation

To give a definitive answer on which architecture performs better, a qualitative estimation is
performed, considering the mean values of all the cases explained before.

A ratio obtained as OOM/LiM between each parameter is proposed, which clarify the main points
of both implementations. As shown in Figure 24, the values of area and power ratios are below 1,
meaning that in general the LiM architecture behaves worse than OOM for the motivations explained
before. On the other hand, execution time and energy ratios are equal to ∼6× and ∼4× respectively,
implying that a very good improvement can be achieved by the LiM implementation on these two
quantities. These trends confirm our expectations on LiM and further improvements can be achieved
by having a more precise LiM array model.

188

J. Low Power Electron. Appl. 2020, 10, 7

0

2

4

6 5.68

0.76 0.68
1

3.73

R
a
ti
o
va
lu
e

Mean performance ratios

Delay ratio
Power ratio
Area ratio
Timing ratio
Energy ratio

Figure 24. Mean performance ratios obtained as an average of all the cases analyzed from the previously
discussed results.

6.3.2. LiM Array Estimation: Impact on Perfomance

In order to estimate the performance of the LiM array, several synthesis estimations were
performed with different arrays dimensions. Taking into account the system’s structure depicted in
Figure 15, the LiM values of power and area are compared with the ones obtained from the same process
applied only to the SurroundingLogic unit, in order to understand what are the main performance
contributions. In Figure 25 are shown the performance values obtained by sweeping both

√
H, Wa,

while #Cin is kept equal to 1, in order to estimate how the array sizes impact the overall performance.
As it is possible to see, area and power increases almost quadratically, because of a more complex
LiM structure. In Figure 26 it is reported an estimation of the SurroundingLogic unit by varying the
same parameters as in Figure 25. The CPD bottleneck is located in the SurroundingLogic unit rather
than LiM parts, because of the multipliers/adders employed to perform the final convolution result.
Higher values of Wa implies a constant power/area, since there is no correlation between the LiM
Memory sizex and the complexity of the SurroundingLogic unit. By increasing

√
H, power and area

increase because of the higher complexity required, for example a bigger dimension of the K register
file (Figure 12). By comparing the performance in terms of power obtained in Figures 25 and 26, it is
possible to see that the highest contribution comes from LiM parts, as shown in the breakdown plot
depicted in Figure 27. The percentage values are obtained following a rough approach, starting with
computing the total power/area, given by the sum of the results obtained in Figures 25 and 26 and by
dividing the LiM power/area by the total ones. As it is possible to see, for bigger arrays, LiM parts
will assume a predominant contribution on the power/area performance. This behavior recalls the
need of employing a more accurate LiM model, instead of the discussed one based on flip flops and
static logic gates.

189

J. Low Power Electron. Appl. 2020, 10, 7

2
4

6
10

20

0

20

Wa
√
H size

P
ow

er
[m

W
]

Power [mW] vs Wa &
√
H size

2 4 6

10

20

30

Wa

P
ow

er
[m

W
]

X-Z plane

10 20

10

20

30

√
H size

P
ow

er
[m

W
]

Y-Z plane

2
4

6
10

20

0.2

0.4

Wa
√
H size

A
re
a
[m

m
2
]

Area [mm
2
] vs Wa &

√
H size

2 4 6

0.2

0.4

Wa

A
re
a
[m

m
2
]

X-Z plane

10 20

0.2

0.4

√
H size

A
re
a
[m

m
2
]

Y-Z plane

2
4

6
10

20

1

1.2

Wa
√
H size

C
P
D

[n
s]

CPD [ns] vs Wa &
√
H size

2 4 6

1

1.2

Wa

C
P
D

[n
s]

X-Z plane

10 20

1

1.2

√
H size

C
P
D

[n
s]

Y-Z plane

Figure 25. LiM performance estimations by varying Wa and
√

H sizes. #Cin is kept equal to 1.

2
4

6
10

20

5

Wa
√

H size

P
ow

er
[m

W
]

Power [mW] vs Wa &
√

H size

2 4 6

2

4

6

8

Wa

P
ow

er
[m

W
]

X-Z plane

10 20

2

4

6

8

√
H size

P
ow

er
[m

W
]

Y-Z plane

2
4

6
10

20

0.
1

Wa
√

H size

A
re
a
[m

m
2
]

Area [mm
2
] vs Wa &

√
H size

2 4 6

5
·1

0−
2

0.
1

Wa

A
re
a
[m

m
2
]

X-Z plane

10 20

5
·1

0−
2

0.
1

√
H size

A
re
a
[m

m
2
]

Y-Z plane

2
4

6
10

20

4.06

4.08

4.1

4.12

Wa
√

H size

C
P
D

[n
s]

CPD [ns] vs Wa &
√

H size

2 4 6
4.06

4.08

4.1

4.12

Wa

C
P
D

[n
s]

X-Z plane

10 20
4.06

4.08

4.1

4.12

√
H size

C
P
D

[n
s]

Y-Z plane

Figure 26. SurroundingLogic unit performance estimations by varying Wa and
√

H sizes. #Cin is kept
equal to 1.

190

J. Low Power Electron. Appl. 2020, 10, 7

2
4

6
10

20

50

Wa
√

H size

L
iM

p
ow

er
v
s
to
ta
l[
%
]LiM power contribution[%] vs Wa &

√
H size

2 4 6

20

40

60

Wa

L
iM

p
ow

er
v
s
to
ta
l[
%
] X-Z plane

10 20

20

40

60

√
H size

L
iM

p
ow

er
v
s
to
ta
l[
%
] Y-Z plane

2
4

6
10

20

50

Wa
√

H size

L
iM

a
re
a
v
s
to
ta
l[
%
]

LiM area contribution[%] vs Wa &
√

H size

2 4 6

20

40

60

Wa

L
iM

ar
ea

v
s
to
ta
l[
%
]

X-Z plane

10 20

20

40

60

√
H size

L
iM

ar
ea

v
s
to
ta
l[
%
]

Y-Z plane

Figure 27. Power and area breakdown of LiM parts.

6.4. A More Detailed LiM Model

Reference [8] proposes a very similar approach, but it performs a Content Addressable Memory
(CAM)-based XNOR-Pop procedure, implementing the second convolutional layer of LeNet5 NN
model [1], which is depicted in Figure 3. Five arrays are realized and their dimensions are 30 × 10.
They have been implemented with 65nm CMOS technology: the performance results are reported in
Table 8. To have a fair comparison with [8], the same conditions have been applied to our LiM design:
only the XNOR-Pop part, reported in Figure 15, is synthesized with 65nm technology with a dimension
of 30 × 10 for LiM XNOR part array. To obtain the energy estimation, we started from the power result
given by Synopsys and we have mapped the second convolutional layer of LeNet5 CNN, obtaining
the corresponding execution time called Convolutiontime,II-LeNet5 using the more precise version of
Equation (24).

Convolutiontime,II-LeNet5 = 15852 × tck (32)

The power obtained by Synopsys is for only 1 LiM array, so the this value has to be multiplied
by five:

Power5-arrays = 0.2473 mW × 5 ≈ 1.24 mW (33)

From the synthesis, CPD for the LiM array is equal to 1.91 ns, so the total energy is:

EnergyI I−LeNet5 = Power5-arrays × Convolutiontime,II-LeNet5 ≈ 38 nJ (34)

We can perform a comparison between our less LiM model based on flip flops with the case
described in Table 8: the energy ratio between our work and the reference one is about 4.22 while the
Bank Area ratio is almost equal to 4.92. This means that, if we design a custom memory, instead of
relying on flip flops the performance of our architetcure can be greatly improved. But even considering
this fact, the results here presented highlight that LiM architetcures have a huge advantage over
traditional Von Neumann circuit, in terms of energy and overall execution speed.

191

J. Low Power Electron. Appl. 2020, 10, 7

Table 8. CAM-based XNOR-Pop [8] and our LiM architectures performance parameters comparison.

Design Technology Bank Size # of Banks Bank Area (μm2) Energy (nJ)

[8] 65 nm 30 × 10 5 2456.6 ∼ 9
This work (LiM) 65 nm 30 × 10 5 12090.6 ∼ 38

7. Conclusions and Future Works

In this work LiM and OOM architectures have been designed to demonstrate if a logic-in-memory
approach is effectively better than a Von Neumann one in designing architectures for memory-intensive
applications. From the results here highlighted, LiM design obtains remarkable results in terms of
energy dissipation, because of a higher degree of parallel execution of the algorithm. Since the memory
part of our designs was synthesized with Synopsys, the results that we obtained are overestimated,
meaning that the energy can be significantly smaller with a proper memory design. We can conclude
therefore that Logic-In-Memory architectures are worth it. Even considering the increased complexity
of the memory design, they provide significant advantages over Von-Neumann architectures.

As a future work we are designing custom memories, based both and CMOS and eventually on
emerging technologies, to further improve our analysis.

Author Contributions: Conceptualization, A.C, M.V. and G.T.; methodology, A.C.; software, A.C.; validation,
A.C.; formal analysis, A.C.; investigation, A.C.; resources, A.C.; data curation, A.C.; writing—original draft
preparation, A.C.; writing—review and editing, G.T. and M.V.; visualization, M.V.; supervision, M.V.; project
administration, M.V. and G.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LiM Logic-in-Memory
OOM Out-Of-Memory
RF Register File

References

1. LeNet-5, Convolutional Neural Networks. Available online: http://yann.lecun.com/exdb/lenet (accessed
on 10 January 2020).

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation,
Inc.: San Diego, CA, USA, 2012; pp. 1097–1105.

3. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

4. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

6. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights
during propagations. In Advances in Neural Information Processing Systems; Neural Information Processing
Systems Foundation, Inc.: San Diego, CA, USA, 2015; pp.3123–3131.

7. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on Computer Vision; Springer: Berlin, Germany,
2016; pp. 525–542.

192

J. Low Power Electron. Appl. 2020, 10, 7

8. Choi, W.; Jeong, K.; Choi, K.; Lee, K.; Park, J. Content Addressable Memory Based Binarized Neural Network
Accelerator Using Time-domain Signal Processing. In Proceedings of the 55th Annual Design Automation
Conference (DAC ’18); ACM: New York, NY, USA, 2018; pp. 138:1–138:6, doi:10.1145/3195970.3196014.
[CrossRef]

9. Santoro, G.; Turvani, G.; Graziano, M. New Logic-In-Memory Paradigms: An Architectural and
Technological Perspective. Micromachines 2019, 10, 368. [CrossRef] [PubMed]

10. Akin, B.; Franchetti, F.; Hoe, J.C. Data reorganization in memory using 3D-stacked DRAM. ACM SIGARCH
Comput. Architect. News 2015, 43, 131–143, doi:10.1145/2749469.2750397. [CrossRef]

11. Durlam, M.; Naji, P.; DeHerrera, M.; Tehrani, S.; Kerszykowski, G.; Kyler, K. Nonvolatile RAM based
on magnetic tunnel junction elements. In Proceedings of the 2000 IEEE International Solid-State Circuits
Conference, San Francisco, CA, USA, 9 February 2000; pp. 130–131, doi:10.1109/ISSCC.2000.839718.
[CrossRef]

12. Rakin, A.S.; Angizi, S.; He, Z.; Fan, D. Pim-tgan: A processing-in-memory accelerator for ternary generative
adversarial networks. In Proceedings of the 2018 IEEE 36th International Conference on Computer Design
(ICCD), Orlando, FL, USA, 7–10 October 2018; pp. 266–273.

13. Roohi, A.; Angizi, S.; Fan, D.; DeMara, R.F. Processing-In-Memory Acceleration of Convolutional Neural
Networks for Energy-Efficiency, and Power-Intermittency Resilience. In Proceedings of the 20th International
Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 March 2019; pp. 8–13.

14. Wang, H.; Yan, X. Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms,
Performance Optimization, and Prospects. Phys. Status Solidi (RRL) Rapid Res. Lett. 2019, 13, 1900073,
doi:10.1002/pssr.201900073. [CrossRef]

15. Krestinskaya, O.; James, A.P. Binary weighted memristive analog deep neural network for near-sensor
edge processing. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology
(IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–4.

16. Eshraghian, J.K.; Kang, S.M.; Baek, S.; Orchard, G.; Iu, H.H.C.; Lei, W. Analog weights in ReRAM DNN
accelerators. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Hsinchu, Taiwan, 18–20 March 2019; pp. 267–271.

17. Lee, J.; Eshraghian, J.K.; Cho, K.; Eshraghian, K. Adaptive precision cnn accelerator using radix-x parallel
connected memristor crossbars. arXiv 2019, arXiv:1906.09395.

18. Roohi, A.; Sheikhfaal, S.; Angizi, S.; Fan, D.; DeMara, R.F. ApGAN: Approximate GAN for Robust Low
Energy Learning from Imprecise Components. IEEE Trans. Comput. 2019. [CrossRef]

19. Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its
application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [CrossRef]

20. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice
and research for deep learning. arXiv 2018, arXiv:1811.03378.

21. Wang, Y.; Lin, J.; Wang, Z. An Energy-Efficient Architecture for Binary Weight Convolutional Neural
Networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 280–293, doi:10.1109/TVLSI.2017.2767624.
[CrossRef]

22. Scherer, D.; Müller, A.; Behnke, S. Evaluation of pooling operations in convolutional architectures for object
recognition. In International Conference on Artificial Neural Networks; Springer: Berlin, Germany, 2010; pp.
92–101.

23. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

24. Sari, E.; Belbahri, M.; Nia, V.P. How Does Batch Normalization Help Binary Training? Available online:
http://xxx.lanl.gov/abs/1909.09139 (accessed on 20 December 2019).

25. Whatmough, P.N.; Lee, S.K.; Wei, G.; Brooks, D. Sub-uJ deep neural networks for embedded applications.
In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, USA, 29 October–1 November 2017; pp. 1912–1915, doi:10.1109/ACSSC.2017.8335697. [CrossRef]

26. Pan, Y.; Ouyang, P.; Zhao, Y.; Kang, W.; Yin, S.; Zhang, Y.; Zhao, W.; Wei, S. A Multilevel Cell
STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network. IEEE
Trans. Magnet. 2018, 54, 1–5, doi:10.1109/TMAG.2018.2848625. [CrossRef]

193

J. Low Power Electron. Appl. 2020, 10, 7

27. Fan, D.; Angizi, S. Energy Efficient In-Memory Binary Deep Neural Network Accelerator with Dual-Mode
SOT-MRAM. In Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston,
MA, USA, 5–8 November 2017; pp. 609–612. doi:10.1109/ICCD.2017.107. [CrossRef]

28. Yonekawa, H.; Sato, S.; Nakahara, H.; Ando, K.; Ueyoshi, K.; Hirose, K.; Orimo, K.; Takamaeda-Yamazaki, S.;
Ikebe, M.; Asai, T.; et al. In-memory area-efficient signal streaming processor design for binary neural
networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 116–119, doi:10.1109/MWSCAS.2017.8052874.
[CrossRef]

29. Jiang, L.; Kim, M.; Wen, W.; Wang, D. XNOR-POP: A processing-in-memory architecture for binary
Convolutional Neural Networks in Wide-IO2 DRAMs. In Proceedings of the 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6,
doi:10.1109/ISLPED.2017.8009163. [CrossRef]

30. Sun, X.; Yin, S.; Peng, X.; Liu, R.; Seo, J.; Yu, S. XNOR-RRAM: A scalable and parallel resistive
synaptic architecture for binary neural networks. In Proceedings of the 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1423–1428,
doi:10.23919/DATE.2018.8342235. [CrossRef]

31. Wang, W.; Li, Y.; Wang, M.; Wang, L.; Liu, Q.; Banerjee, W.; Li, L.; Liu, M. A hardware neural network
for handwritten digits recognition using binary RRAM as synaptic weight element. In Proceedings of the
2016 IEEE Silicon Nanoelectronics Workshop (SNW), Dresden, Germany, 19–23 March 2016; pp. 50–51,
doi:10.1109/SNW.2016.7577980. [CrossRef]

32. Keras. Available online: https://github.com/fchollet/keras (accessed on 20 December 2019).
33. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning

Algorithms. arXiv 2017, arXiv:1708.07747.
34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to

Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

194

Journal of

Low Power Electronics
and Applications

Review

Rediscovering Majority Logic in the Post-CMOS Era:
A Perspective from In-Memory Computing

John Reuben

Chair of Computer Science 3—Computer Architecture, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; johnreuben.prabahar@fau.de

Received: 5 August 2020; Accepted: 2 September 2020; Published: 4 September 2020

Abstract: As we approach the end of Moore’s law, many alternative devices are being explored to
satisfy the performance requirements of modern integrated circuits. At the same time, the movement
of data between processing and memory units in contemporary computing systems (‘von Neumann
bottleneck’ or ‘memory wall’) necessitates a paradigm shift in the way data is processed. Emerging
resistance switching memories (memristors) show promising signs to overcome the ‘memory wall’ by
enabling computation in the memory array. Majority logic is a type of Boolean logic which has been
found to be an efficient logic primitive due to its expressive power. In this review, the efficiency of
majority logic is analyzed from the perspective of in-memory computing. Recently reported methods
to implement majority gate in Resistive RAM array are reviewed and compared. Conventional CMOS
implementation accommodated heterogeneity of logic gates (NAND, NOR, XOR) while in-memory
implementation usually accommodates homogeneity of gates (only IMPLY or only NAND or only
MAJORITY). In view of this, memristive logic families which can implement MAJORITY gate and
NOT (to make it functionally complete) are to be favored for in-memory computing. One-bit full
adders implemented in memory array using different logic primitives are compared and the efficiency
of majority-based implementation is underscored. To investigate if the efficiency of majority-based
implementation extends to n-bit adders, eight-bit adders implemented in memory array using
different logic primitives are compared. Parallel-prefix adders implemented in majority logic can
reduce latency of in-memory adders by 50–70% when compared to IMPLY, NAND, NOR and other
similar logic primitives.

Keywords: memristor; memristive logic; Non-Volatile Memory (NVM); Resistive RAM; in-memory
computing; majority logic; adder; Boolean logic; parallel-prefix adder

1. Introduction

Extraordinary innovation in the field of Integrated circuits is the last 50 years was based on
Moore’s law scaling and predominantly the Complementary Metal Oxide Semiconductor (CMOS)
technology. Whether we have reached the end of Moore’s law or approaching it in the near future
(an issue being debated), it is evident that some signs are clear. The processor clock frequency, a key
measure of performance has plateaued [1], the regular doubling of integration density has slowed
down in 14 nm and 10 nm CMOS [2] and 2D lithography has reached its limits [3]. Beyond-CMOS
research has been underway in the last decade to find an alternative device which is better than
CMOS in its characteristics. This includes CMOS-like devices (tunnel FET, GaN TFET, Graphene
ribbon pn junction, Ferroelectric FET) [4], quantum-dot cellular automata (QCA), nanomagnet logic,
resistance-switching devices (Resistive RAM, Phase Change Memory, conductive bridge RAM),
spin-based devices, and plasmonic-based devices [5]. Although some of these post-CMOS devices
possessed valuable features like low-voltage operation and non-volatility, recent bench-marking efforts
seem to suggest that none of these devices could outperform CMOS in the most critical aspects of

J. Low Power Electron. Appl. 2020, 10, 28; doi:10.3390/jlpea10030028 www.mdpi.com/journal/jlpea

195

J. Low Power Electron. Appl. 2020, 10, 28

computing (energy, latency and area) [4,6]. Hence it is envisaged that post-CMOS devices will augment
and enhance CMOS-based computational fabrics and will not completely replace CMOS technology.

Majority logic, a type of Boolean logic, is defined to be true if more than half of the n inputs are
true, where n is odd. Hence, a majority gate is a democratic gate and, it can be expressed in terms
of Boolean AND/OR as MAJ(a, b, c) = a.b + b.c + a.c, where a, b, c are Boolean variables. Although
majority logic was known since 1960, there has been a rediscovery in using it for computation in many
post-CMOS devices. A majority gate based on spin waves [7], Quantum-Dot cellular automata [8],
nano magnetic logic [9], and Single Electron Tunneling [10] have been demonstrated and in some
of these technologies, it is more efficient to implement a majority gate [11] than other other logic
primitives (NAND, NOR, XOR). Recent research [6,12–14] has confirmed that majority logic is to be
preferred not only because a particular nanotechnology can realize it, but also because of its ability
to implement arithmetic-intensive circuits with less gates, i.e., in a compact manner. For arithmetic
intensive benchmarks, it has been proved that Majority-Invert Graphs (MIGs) can achieve up to 33%
reduction in logical depth compared to And-Invert Graphs (AIGs) produced by Berkeley’s ABC
synthesis tool [12]. Such findings from research in logic synthesis implies that circuits implemented
using majority logic will be better regardless of the post-CMOS device used. In this review, we limit
our discussion to how majority logic could be implemented using RRAM technology since in-memory
computing is the focus of this review. A review of how a majority gate could be implemented using
other post-CMOS devices is presented in [15,16].

The movement of data between processing and memory units is the major cause for the degraded
performance of contemporary computing systems, often referred to as the ‘von Neumann bottleneck’
or ‘memory wall’ [17,18]. ‘Computation energy’ is dominated by ‘data movement energy’ since the
energy for memory access grows exponentially along the memory hierarchy (from cache to off-chip
DRAM). There has been an ongoing effort (for 10-15 years) to combat the memory wall by bringing
the processor and memory unit closer to each other. Resistive RAMs are two terminal devices
(usually a Metal-Insulator-Metal structure [19]) capable of storing data as resistance. Although RRAM
(memristor) was initially experimented as a non-volatile memory technology, it was later discovered
that certain Boolean logic operations (IMPLY logic [20,21] and NOR [22] were the first logic gates
that were explored) can be implemented in the memory array. Boolean gates were implemented by
modifying the structure of the memory array or modifying the peripheral circuitry or a combination
of these. In-memory computing (also called ‘processing-in-memory’) refers to any effort to process
data at the residence of data (i.e., in the memory array) without moving it out to a separate processing
unit. ‘Processing/computing’ could mean a wide variety of operations from arithmetic operations
to cognitive tasks like machine learning and pattern recognition [23]. In this review, the focus is on
arithmetic operations and how majority logic can enable efficient in-memory computing.

The rest of this review is structured as follows. In Section 2, we first give a brief overview on
‘memristive logic’, the methodology of designing logic circuits using memristors. This is followed by a
discussion on how majority gate is implemented in RRAM array in Section 3. Three possible ways
are discussed. In Section 4, we analyse the latency of in-memory one-bit adder using different logic
primitives and highlight the latency reduction obtained by majority logic. To investigate if majority
logic can be efficient for n-bit adders, 8-bit adders implemented using different logic primitives and
different types (ripple carry, carry look-ahead, parallel-prefix) are analysed and compared, followed
by conclusion in Section 6

2. Memristive Logic

A short introduction to memristors and different array configurations of such non-volatile
memories is appropriate before the introduction of memristive logic. Memristors are a class of
emerging Non-Volatile Memories (NVMs) which store data as resistance. Under voltage/current
stress, the resistance can be switched between a Low Resistance State (LRS) and a High Resistance
State (HRS). The word ‘memristor’ is used because such a device is basically a ‘resistor’ with a

196

J. Low Power Electron. Appl. 2020, 10, 28

‘memory’. Depending on what causes the change in resistance, a memristor can be classified as follows:
Resistive Random Access Memory (RRAM) where the change in resistance is due to the formation and
rupture of a conductive filament [24]; Phase Change Memory (PCM) where the change in resistance is
due to the amorphous or crystalline state of the chalcogenide phase-change material; Spin Transfer
Torque-Magnetic RAM (STT-MRAM) where the change in resistance is due to the magnetic polarization.
To construct a memory array using such devices, two configurations are common: 1Transistor-1 Resistor
(1T–1R) and 1Selector-1 Resistor (1S–1R), as illustrated in Figure 1a. The 1T–1R configuration uses a
transistor as an access device for each memory cell, allowing one to access a particular cell without
interfering with its neighbours in the array [25,26]. The 1S–1R configuration uses a two-terminal device
called a ‘selector’ which has a diode-like characteristic. The selector is assembled in series with the
memristive device. Different types of selectors have been experimentally demonstrated in [27–30].
The 1S–1R is area-efficient, but suffers from sneak–path problem because it is not possible to program
(read or write to a cell) a cell without interfering with its neighbours [22].

(a) (b) (c)

Figure 1. (a) 1S–1R and 1T–1R configuration of memristive memory array (b) If resistance is the only
state variable, a memristive logic is said to be stateful. If voltage is also used in addition to resistance,
it is said to be non-stateful (c) 1-bit full adder in terms of NOR gates [31], NAND gates [32,33] and
majority gates [34]; Majority logic achieves less logical depth than NAND/NOR for 1-bit full adder.

Memristive logic is the art of designing logic circuits using memristors [17,18]. Conventionally,
arithmetic circuits have been implemented using logic gates built from CMOS transistors. In contrast,
a memristive logic family formulates a ‘functionally complete’ Boolean logic using a memristive device
(RRAM/PCM/STT-MRAM) as the primary switching device (CMOS circuitry may also be used, but in
a peripheral manner). For example, NOR is ‘functionally complete’ since any Boolean logic can be
expressed in terms of NOR gates. Therefore, if a NOR gate can be designed using memristive devices,
any Boolean logic can be implemented using memristive devices. Furthermore, most researchers
try to make their logic gates executable in an array configuration so that they can be exploited for
in-memory computing. NAND, IMPLY+FALSE [35] and Majority+NOT [12] are also functionally
complete. From the perspective of the state variable used for computation, memristive logic family
can be classified as either stateful or non-stateful. A memristive logic family is said to be stateful
if the Boolean variable is represented only as the internal state of the memristor (i.e., its resistance)
and computation is performed by manipulating this state [36]. If voltage is also used in addition to
resistance, the logic family is said to be non-stateful (Figure 1b). Some logic families are classified on
this criteria in [18].

A characteristic of memristive logic families is that, with certain modifications to the conventional
memory, a particular logic primitive can be implemented and, other logic primitives have to be realized

197

J. Low Power Electron. Appl. 2020, 10, 28

in terms of that logic primitive. For example, in the NOR-based memristive family (MAGIC [31]),
all other gates (AND, OR, XOR) have to be expressed in terms of NOR gates and then mapped to the
memory array. It must be noted that even the NOR logic primitive is implemented with modifications
to the peripheral circuitry of the conventional memory array, namely the row decoder (modified
to bias the rows at ‘isolation voltage’ to prevent unintended NOR operation in those rows) and
the WRITE circuitry (modified to apply the MAGIC execution voltage which is twice the WRITE
voltage). Similarly, in the NAND-based logic family reported in [37], XOR gate is implemented
as a sequence of four NAND operations. This implies that if the fundamental logic primitive of a
memristive logic family is weak, all in-memory computation performed using that logic family will
be in-efficient (requiring long sequences of operations). To illustrate, Figure 1c depicts a 1-bit full
adder expressed in terms of a particular logic primitive (NOR/NAND/Majority), as required for
in-memory implementation. For a 1-bit adder, majority logic (together with NOT gates) can achieve
33–43% reduction in logic levels compared to NAND/NOR, while for bigger circuits, this percentage
may vary. Research in logic synthesis suggests that circuits synthesized in terms of majority and
NOT gates (Majority-Invert-Graphs) can achieve up to 33% reduction in logical depth compared to
And-Invert-Graphs (AIGs) for arithmetic intensive circuits [12]. It must be emphasized that for any
memristive logic, the number of cycles/steps to execute a circuit in-memory will be larger than the
number of logic levels, i.e, n levels of Boolean logic will require n + x cycles in-memory, where x
depends on the memristive logic family and its capability to execute gates in parallel. Therefore,
it is evident that to reduce the latency of in-memory computing, the synthesized logic must be latency
optimized (before mapping to CMOS or a post-CMOS device). Stronger logic primitives like majority
can minimize latency and the purpose of this review is to highlight the efficiency of memristive logic
family with majority as the fundamental logic primitive (complemented with NOT since majority as a
sole logic primitive is functionally incomplete).

3. In-Memory Majority Logic

In literature, there are two viable ways in which a majority gate is implemented in Resistive
RAM array. Both are non-stateful logic families. Following the naming convention introduced in [38]
(‘input state variable-output state variable’ logic), a non-stateful logic family can be V–R logic (input
state variable is voltage and the output is resistance) or R–V logic (input state variable is resistance
and output is voltage), as illustrated in Figure1b. In this section, the principle of implementing a
in-memory majority gate in V–R and R–V logic is reviewed and the advantages and disadvantages are
analysed. In addition to the aforementioned methods, a in-memory minority gate (inverse of majority
gate) is also theoretically proposed in [39]. The minority gate is realized by exploiting voltage division
between three RRAMs (which store the inputs) and an output RRAM. However, the correct functioning
of such a gate is not guaranteed since recent research has shown that variability is intrinsic to RRAM
technology and cannot be completely eradicated [40,41]. In the presence of variations (in RRAM’s
switching voltages and resistive states), such a minority gate is not feasible in RRAM array, and hence
it is not discussed in detail in this review.

3.1. V–R Majority Logic

In [42–44], majority gate is implemented in RRAM array (1S–1R) by applying two inputs of the
majority gate as voltages at WL and BL of the array (the third input being the initial state of the RRAM)
and the output is the new non-volatile state of the device. Hence this way of implementing majority
can be called V–R logic, though in the strict sense, it should be VandR–R logic since the third input is
resistance (initial state of the RRAM). However, it can be justified to be simply called V–R logic since
the output (switching of resistance) is triggered on the applications of voltages. The fourth column
of Table 1 depicts M3(A, B, C), the 3-input majority function of the first three columns. Note that
M3(A, B, C) = AB + BC + AC. To understand how a Resistive RAM cell can implement the majority
function, consider a situation in which the Boolean variable C of Table 1 is the initial state of a memory

198

J. Low Power Electron. Appl. 2020, 10, 28

cell (following the convention used in this field, logic 0 is HRS and logic 1 is LRS). Let us assume that
the RRAM cell holding C has a symmetric switching characteristic, i.e., its internal resistance value
changes from HRS to LRS when a voltage VSET is applied across its terminals and from LRS to HRS
when -VSET is applied. As in the CMOS realm, logic 1 is a high voltage, which we will fix as VSET ,
and logic 0 corresponds to ground.

Table 1. Establishing the link between the majority function and Resistive RAM.

A B C M3(A, B, C) B M3(A, B, C) RM3(A, B, C)

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 1 1 1 1 1
1 1 0 1 0 0 0
1 1 1 1 0 1 1

If A and B are applied across the two terminals of the RRAM cell, its state will either switch or
remain the same in accordance with the initial state. Figure 2 illustrates the different combinations of
(A, B, C) on a RRAM cell. When A is logic 1 and B is logic 0, the applied voltage across the RRAM
cell is VSET , triggering a transition from HRS to LRS and vice versa. When both A and B are (0,0)
or (1,1), the state of the memristor will not change. This specific behavior can be captured as a new
functionally complete Boolean function, called ‘Resistive Majority’, RM3(A, B, C), which describes the
new nonvolatile state of the cell as a function of an initial internal state C and the voltages A and B
applied across the terminals of the device. Note that RM3(A, B, C) = M3(A, B, C), as listed in Table 1.
Complex functions can be easily expressed and manipulated as RM3 operators using Majority-Inverter
Graphs (MIG), a recently introduced logic manipulation structure consisting of three input majority
nodes and regular/complemented edges [12]. In [18], the authors elaborate how an eight-bit adder
is expressed in MIGs and then mapped to the memristive memory array using the aforementioned
resistive majority function.

Figure 2. Illustration of V–R majority logic. Arrow indicates the state transition, which depends on the
initial state of the RRAM cell C and the voltage applied across its terminals (A, B); dotted lines indicate
the state variable of C, which is resistance, while A and B are voltages [18].

3.2. R–V Majority Logic

In [45,46], a majority gate is implemented while reading from a 1T–1R array, i.e., the inputs of
the majority gate are the resistances of the cells and the output is sensed as a voltage, a R–V logic.
Consider an array of RRAM cells arranged in a 1T-1R configuration, as depicted in Figure 3. Each cell
can be individually read/written into by activating the corresponding wordline (WL) and applying
appropriate voltage across the cell (BL and SL). Now, if three rows are activated simultaneously
during read operation (Rows 1 to 3 in Figure 3a, the resistances in column 1 are in parallel (neglecting

199

J. Low Power Electron. Appl. 2020, 10, 28

the parasitic resistance of BL and SL). The effective resistance between BL and SL will therefore
be Re f f = (RA + rDS)||(RB + rDS)||(RC + rDS) ≈ (RA||RB||RC), if the drain-to-source resistance of
transistor (rDS) is small compared to LRS. A Sense Amplifier (SA) which can accurately sense the
effective resistance implements a ‘in-memory’ majority gate. Table 2 lists the truth table of a 3-input
majority gate (M3(A, B, C)) and the effective resistance for all the eight possibilities. If we assume a
LRS and HRS of 10 kΩ and 133 kΩ, respectively (IHP’s RRAM), the crucial aspect of the proposed gate
is to be able to differentiate between R001

e f f (two LRS and one HRS) and R110
e f f (two HRS and one LRS).

In other words, resistance ≤ 4.8 kΩ must be sensed as ‘0’ and resistance ≥ 8.7 kΩ must be sensed as
‘1’ (shaded grey in Table 2). If we call the resistance to be differentiated as sensing window (8.7 kΩ
− 4.8 kΩ = 3.9 kΩ), any sense amplifier which can differentiate this sensing window can be used to
implement the majority gate. A current-mode SA is used in [45] and a time-based SA is used in [46] to
verify the correct functioning of majority gate, even in the presence of reasonable RRAM variations.
It must be noted unlike NAND and NOR, majority as a logic primitive is not functionally complete.
However, it forms a functionally complete logic when used together with NOT, i.e., any Boolean logic
can be expressed in terms of majority and NOT gates [12]. Therefore, a NOT gate is implemented by
latching the inverted output of the SA, as illustrated in Figure 3b.

(a) (b)

Figure 3. (a) In-memory majority gate proposed in [45,46]: When three rows are activated (WL1−3)
simultaneously in a 1T-1R array, the three resistances RA, RB, RC will be in parallel (Inputs of the
majority gate A, B, C are represented as resistances RA, RB, RC). An ‘in-memory’ majority gate can
be implemented by accurately sensing the effective resistance Re f f during READ. (b) NOT operation
implemented with a 2:1 multiplexer at the output of the SA. With majority and NOT gate implemented
as READ, multiple levels of logic can be executed by writing the data back to the array, simplifying
computing to READ and WRITE operations in memory. Multiple majority gates can be executed in
parallel in the memory array, thereby reducing latency of in-memory computation.

200

J. Low Power Electron. Appl. 2020, 10, 28

Table 2. Precisely sensing Re f f results in majority: Logic ‘0’ is LRS (10 kΩ) and logic ‘1’ is HRS
(133.3 kΩ). Sense amplifier distinguishes between rows shaded grey and those that are not.

A B C M3(A, B, C) Re f f Re f f

0 0 0 0 LRS
3 3.3 kΩ

0 0 1 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

0 1 0 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

0 1 1 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 0 0 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

1 0 1 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 1 0 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 1 1 1 HRS
3 44.4 kΩ

A comparison between V–R logic and R–V logic is presented pictorially in Figure 4.
In the V–R implementation [42–44] in memory, the inputs of the majority gate are applied as voltages
at WL/BL. This manner of computation complicates the row/column decoders of the memory array,
which were conventionally used to select rows/columns. Thus the peripheral circuitry will get
complicated, i.e., the row/column decoders have to be significantly modified to do row selection
(during memory operation) and apply inputs (during majority operation). In contrast, in the R–V
implementation [45,46], the row/column decoders retain their functionality as in a conventional
memory, with a minor modification (the row decoder must be enhanced to select three rows during
majority operation, which can be achieved by interleaving decoders [46]). Furthermore, the R–V
implementation [45,46] is conducive for parallel-processing since multiple gates can be mapped to
the same set of rows, as illustrated in in Figure 4. This will aid the implementation of in-memory
parallel-prefix adders (Section 5) and ternary computing [47].

Figure 4. (a) V–R majority gate [42–44] (b) R–V majority gate [45,46] (c) When multiple gates have to
be executed in parallel, the majority gates of [42–44] have to be mapped diagonally because two gates
cannot be executed in the same row/column.

201

J. Low Power Electron. Appl. 2020, 10, 28

4. In-Memory One-Bit Full Adders Using Different Logic Primitives

As stated, in-memory addition is achieved by a sequence of Boolean logic operations executed
in memory. To compute in memory, the circuit must first be expressed in terms of the logic gates the
particular memristive logic family implements. A one-bit full adder in memristive logic family based
on NOR [48], NAND [49] and MAJORITY [45] is compared in Figure 5. It is evident that the number of
steps (memory cycles) to compute in memory is larger than the number of logic levels. When mapped
to the memory array, n levels of logic will require n + x cycles, where x depends on the characteristics
of the memristive logic family. This includes attributes like statefulness, capability to executes gates
in parallel etc. In a non-stateful logic family, the output of the gate may be a voltage and it may be
needed as resistance for the next level of logic, requiring an additional WRITE operation. In a stateful
logic family, the output of the gate needs to be aligned with the inputs of following gate (next logic
level), requiring an additional WRITE operation. In this manner, the interconnecting wires between
logic levels contribute to additional cycles in memory. Furthermore, a memristive logic family should
have the capability to execute multiple gates simultaneously. Consequently, multiple gates in a logic
level can be mapped to the memory array in a single cycle. If the memristive logic family does not
support the simultaneous execution of multiple gates, x will increase. Thus the parallel-friendliness of
the logic family is also an important characteristic to minimize latency.

Figure 5. n levels of Boolean logic will require n + x cycles in-memory, where x depends on the
memristive logic family. It must be noted that the number of cycles required (10 cycles for NOR,
NAND and 6 cycles for MAJORITY) is already optimized by executing multiple gates in parallel (see
the mapping for NOR [31], NAND [49] and MAJORITY [45]).

To evaluate the effectiveness of majority logic for in-memory computing, one-bit adders using
different logic primitives are analysed from literature. Table 3 lists the latency of one-bit adders.
IMPLY logic primitive was the most researched logic primitive because of it’s stateful nature.
IMPLY was explored in different array configurations (1S–1R, 1T–1R) and the full adder, expressed
in terms of XOR and AND gates was implemented as sequence of IMPLY operations. However, all
the adders using IMPLY primitive have a latency of at least 13 cycles, implying a weak primitive.
As summarized in Table 3, the number of steps to compute in an array, reduces from IMPLY to
NAND/NOR logic primitive, and, further from NAND/NOR to MAJORITY, proving the strength of
majority as a logic primitive.

202

J. Low Power Electron. Appl. 2020, 10, 28

Table 3. Latency of in-memory one-bit full adders.

Primitive Structure Latency Ref

IMPLY 1D–1R 43 steps [50]

IMPLY 1R 35 steps [32]

IMPLY 1R 27 steps [51]

IMPLY 1R 23 steps [52]

IMPLY(semi-parallel) 1T–1R 17 steps [53]

IMPLY 1T–1R 13 steps [54]

ORNOR 1T–1R 17 steps [55]

NOR 1S–1R 10 steps [48]

NAND 1S–1R 10 steps [49]

XOR+NAND (unipolar memristors) 1S–1R 8 steps [56]

MAJORITY+NOT 1T–1R 6 steps [45]

5. In-Memory Eight-Bit Adders Using Different Logic Primitives

Will the reduced latency obtained by majority logic for 1-bit full adder translate to n-bit adders?
In this section, eight-bit adders using different logic primitives are analysed and compared to answer
this question. From Figure 5, it is evident that to minimize in-memory latency, the number of
logic levels which is mapped to the memory array must be minimized. Parallel-prefix (PP) adders
are a family of adders originally proposed to overcome the latency incurred by the rippling of
carry in ripple carry adders. Such adders have the capability to minimize the latency to O(log n),
for n-bit adders. PP adders are conventionally expressed as “propagate” (ai ⊕ bi) and “generate”
terms (ai.bi). Hence, they are implemented as AND, OR and XOR gates. As already stated,
a memristive logic family cannot implement such a heterogeneity of gates. As illustrated in Figure 6,
the XOR gate has to be implemented as NAND gates [37,49], increasing the logic levels to 12.
Such an eight-bit PP adder (Sklansky) is expressed in OR/AND logic primitive and implemented
in the memory array in 37 cycles [57]. Using majority logic, an 8-bit PP adder is implemented in
memory in [46]. Since majority gate is the basic building block for many emerging nanotechnologies,
prior works [13,14] have formulated such PP adders in majority logic. The majority-based eight-bit
adder depicted in Figure 7 is derived from [13,14]. For an eight-bit adder, the logical depth is six levels
of majority gates and one level of NOT gates, and at most eight gates are needed simultaneously in
each level. Since multiple majority gates can be executed in parallel (Figure 4), they can be mapped to
the array in 19 cycles, as elaborated in [46].

Figure 6. An eight-bit parallel-prefix adder (Ladner-Fischer) has 8 logic levels of AND, OR and XOR
gates. If the logic family cannot execute XOR gate, it must be expressed as NAND gates, increasing the
logic levels to 12.

203

J. Low Power Electron. Appl. 2020, 10, 28

A detailed comparison of the latency of 8-bit in-memory adders based on different logic primitives
and the corresponding adder configuration is presented in Table 4. Since IMPLY logic incurred highest
latency for 1-bit addition, the trend continues for 8-bit addition which is to be expected. In ripple
carry configuration, IMPLY logic based adders incur a latency of at least 54 steps and parallel-prefix
configuration could reduce it to 25 steps. It may be safe to conclude that for the same logic primitive,
parallel-prefix configurations results in lower latency, although the mapping of the parallel-prefix
adder to the memory array is not clearly elaborated in [58]. Regarding NOR, a carry look-ahead
configuration incurs 48 steps while a computerised algorithm is used to map 8-bit NOR-based adder
to the memory array in 38 steps. OR/AND-based logic primitive could achieve a latency of 37 steps in
parallel-prefix configuration. An eight-bit parallel-prefix adder in majority logic could achieve a latency
of 19 steps [46]. Finally, a XOR-based adder [59] could achieve a latency of 16 steps even in ripple
carry configuration, but it must be emphasized that [59] used multiple arrays since multiple XOR
gates could not be executed simultaneously in the same array. To conclude, the latency minimization
achieved by majority logic for 1-bit addition does extend to 8-bit addition. Majority logic used in
synergy with parallel-prefix configuration is one of the best performing in-memory adders. Finally,
any comparison among in-memory adders is not complete without considering energy consumption
and area of the memory array and the peripheral circuitry needed to implement the logic operations in
memory. Such a holistic comparison is beyond the scope of this work. However, latency can be a good
measure of performance if the individual logic operations are achieved in an energy efficient manner
and sneak-path energy leakage is avoided (in 1S–1R configuration). Note that there are other works
implementing adders using memristors along with CMOS in a non-array configuration. However,
such works are not included in the comparisons performed in this work since they cannot be exploited
for in-memory computing.

Table 4. Latency of in-memory 8-bit adders.

Primitive Array Adder Type Latency Comment/Ref

IMPLY 1S-1R Ripple carry 58 Each step is IMPLY operation [35]

IMPLY+OR 1S-1R Ripple Carry 54 Each step is IMPLY/OR/NOR operation [60]

IMPLY – Parallel-prefix 25 Each step is IMPLY operation [58]

NOR/NOT 1T-1R Look-Ahead 48 Each step has one or more NOR/NOT
operations [61]

NOR 1S-1R algorithm 38 Each step has one or more NOR operations [18]

OR/AND 1S-1R Parallel-prefix 37 Each step has one or more OR/AND
operation [57]

ORNOR 1S-1R Parallel-clocking 31 Each step has one or more ORNOR/IMPLY
operation [55]

MAJORITY+NOT 1T-1R Parallel-prefix 19 Each step is Majority/NOT or WRITE [46]

XOR 1T-1R Ripple carry 16 * Each step is XOR [59]

* XOR gate proposed in [59] is not parallel-friendly and consequently multiple gates cannot be executed
in parallel in the array (to circumvent this, multiple arrays have been used in [59]). Furthermore, XOR is
not functionally complete and has to be used in conjunction with other gates to implement other arithmetic
circuits. In contrast, majority+NOT is functionally complete.

Latency is a big hurdle for mainstream adoption of in-memory arithmetic. As noted in
Tables 3 and 4, in-memory adders require tens of steps for addition operations. Even if a single
step takes 5 ns (RRAMs can switch in a few ns), this would be much larger than the latency incurred
in CMOS technology (32-bit addition operation can be performed in 4 ns in CMOS technology [62]).
However, in in-memory arithmetic, the energy and latency (hundreds of ns) for data movement is
avoided (the numbers to be added have to be moved from DRAM memory to processor in conventional
approach). Therefore, in-memory arithmetic can still be beneficial, provided the latency to compute

204

J. Low Power Electron. Appl. 2020, 10, 28

in memory is minimized. The power of majority logic lies in reducing this latency to compute
in memory array.

Figure 7. Eight-bit parallel-prefix adder (Ladner-Fischer) expressed as 7 levels of Majority+NOT
gates. By executing multiple gates in parallel, the adder can be implemented in memory in 19 cycles,
as elaborated in [46].

6. Conclusions

Majority logic did not become the dominant logic to compute in CMOS technology because
it was more efficient to implement NAND/NOR gate than a majority gate (12 transistors for an
inverted majority gate compared to 6 transistors for NAND3/NOR3). However, in many emerging
post-CMOS devices, a majority gate can be implemented efficiently and therefore, majority logic needs
to be re-evaluated for its computing efficiency. This review attempted to investigate the efficiency of
majority logic from the perspective of in-memory computing. When the logic levels are minimized and
mapped to the memory array using a memristive logic family (which can implement an in-memory
majority gate), it leads to a latency optimized in-memory adder. Unlike CMOS implementation
which accommodated a heterogeneity of logic gates, in-memory computing favours a homogeneous
implementation of logic gates because peripheral circuitry of the array needs to be enhanced with
capability to execute a particular logic primitive (different logic primitives necessitate different
modifications to the peripheral circuitry). Therefore, majority-based memristive logic may be all
the more preferred since they can implement any logic succinctly when used together with NOT gates.
Comparisons with different logic primitives revealed that majority logic incurs least latency for 1-bit
adders. For n-bit adders, majority logic has the potential to achieve a latency reduction of 70% and
50% when compared to IMPLY and NAND/NOR logic primitives, if implemented in a parallel-prefix
configuration in the memory array. Minimizing latency also aids in lowering the power consumption
since the array will be powered for a shorter time. Latency is a significant disadvantage in in-memory
addition and the power of majority logic lies in reducing this latency. Therefore, majority logic and its
advantages needs to be rediscovered in the era of in-memory computing.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Theis, T.N.; Wong, H.P. The End of Moore’s Law: A New Beginning for Information Technology.
Comput. Sci. Eng. 2017, 19, 41–50. [CrossRef]

2. Bohr, M.T.; Young, I.A. CMOS Scaling Trends and Beyond. IEEE Micro 2017, 37, 20–29. [CrossRef]
3. Shalf, J.M.; Leland, R. Computing beyond Moore’s Law. Computer 2015, 48, 14–23. [CrossRef]

205

J. Low Power Electron. Appl. 2020, 10, 28

4. Nikonov, D.E.; Young, I.A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated
Circuits. IEEE J. Explor. Solid State Comput. Devices Circuits 2015, 1, 3–11. [CrossRef]

5. Testa, E.; Soeken, M.; Amar, L.G.; De Micheli, G. Logic Synthesis for Established and Emerging Computing.
Proc. IEEE 2019, 107, 165–184. [CrossRef]

6. Young, I.A.; Nikonov, D.E. Principles and trends in quantum nano-electronics and nano-magnetics for
beyond-CMOS computing. In Proceedings of the 2017 47th European Solid-State Device Research
Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 1–5.

7. Ciubotaru, F.; Talmelli, G.; Devolder, T.; Zografos, O.; Heyns, M.; Adelmann, C.; Radu, I.P. First experimental
demonstration of a scalable linear majority gate based on spin waves. In Proceedings of the 2018 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 36.1.1–36.1.4.
[CrossRef]

8. Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G.H.; Porod, W. Majority Logic Gate for Magnetic
Quantum-Dot Cellular Automata. Science 2006, 311, 205–208. [CrossRef] [PubMed]

9. Breitkreutz, S.; Kiermaier, J.; Eichwald, I.; Ju, X.; Csaba, G.; Schmitt-Landsiedel, D.; Becherer, M. Majority Gate
for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy. IEEE Trans. Magn. 2012, 48, 4336–4339.
[CrossRef]

10. Oya, T.; Asai, T.; Fukui, T.; Amemiya, Y. A Majority-Logic Nanodevice Using a Balanced Pair of
Single-Electron Boxes. J. Nanosci. Nanotechnol. 2002, 2, 333–342. [CrossRef]

11. Amarú, L.; Gaillardon, P.; De Micheli, G. Majority-based synthesis for nanotechnologies. In Proceedings
of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau, China,
25–28 January 2016; pp. 499–502. [CrossRef]

12. Amarú, L.; Gaillardon, P.E.; Micheli, G.D. Majority-Inverter Graph: A New Paradigm for Logic Optimization.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 806–819. [CrossRef]

13. Jaberipur, G.; Parhami, B.; Abedi, D. Adapting Computer Arithmetic Structures to Sustainable
Supercomputing in Low-Power, Majority-Logic Nanotechnologies. IEEE Trans. Sustain. Comput. 2018,
3, 262–273. [CrossRef]

14. Pudi, V.; Sridharan, K.; Lombardi, F. Majority Logic Formulations for Parallel Adder Designs at Reduced
Delay and Circuit Complexity. IEEE Trans. Comput. 2017, 66, 1824–1830. [CrossRef]

15. Amarú, L.; Gaillardon, P.; Mitra, S.; De Micheli, G. New Logic Synthesis as Nanotechnology Enabler.
Proc. IEEE 2015, 103, 2168–2195. [CrossRef]

16. Parhami, B.; Abedi, D.; Jaberipur, G. Majority-Logic, its applications, and atomic-scale embodiments.
Comput. Electr. Eng. 2020, 83, 106562. [CrossRef]

17. Reuben, J.; Ben-Hur, R.; Wald, N.; Talati, N.; Ali, A.; Gaillardon, P.E.; Kvatinsky, S. Memristive Logic:
A Framework for Evaluation and Comparison. In Proceedings of the Power And Timing Modeling,
Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; pp. 1–8.

18. Reuben, J.; Talati, N.; Wald, N.; Ben-Hur, R.; Ali, A.H.; Gaillardon, P.E.; Kvatinsky, S. A Taxonomy and
Evaluation Framework for Memristive Logic. In Handbook of Memristor Networks; Chua, L., Sirakoulis, G.C.,
Adamatzky, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1065–1099. [CrossRef]

19. Simmons, J.G.; Verderber, R.R. New conduction and reversible memory phenomena in thin insulating films.
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1967, 301, 77–102. [CrossRef]

20. Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’ switches enable
‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876. [CrossRef]

21. Zhou, F.; Guckert, L.; Chang, Y.F.; Swartzlander, E.E.; Lee, J. Bidirectional voltage biased implication
operations using SiOx based unipolar memristors. Appl. Phys. Lett. 2015, 107, 183501. [CrossRef]

22. Talati, N.; Ben-Hur, R.; Wald, N.; Haj-Ali, A.; Reuben, J.; Kvatinsky, S. mMPU—A Real Processing-in-Memory
Architecture to Combat the von Neumann Bottleneck. In Applications of Emerging Memory Technology: Beyond
Storage; Suri, M., Ed.; Springer: Singapore, 2020; pp. 191–213. [CrossRef]

23. Rahimi Azghadi, M.; Chen, Y.C.; Eshraghian, J.K.; Chen, J.; Lin, C.Y.; Amirsoleimani, A.; Mehonic, A.;
Kenyon, A.J.; Fowler, B.; Lee, J.C.; et al. Complementary Metal-Oxide Semiconductor and Memristive
Hardware for Neuromorphic Computing. Adv. Intell. Syst. 2020, 2, 1900189. [CrossRef]

24. Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Hung, Y.C.; Syu, Y.E.; Chang, Y.F.; Chen, M.C.; Chu, T.J.;
Chen, H.L.; et al. Physical and chemical mechanisms in oxide-based resistance random access memory.
Nanoscale Res. Lett. 2015, 10. [CrossRef]

206

J. Low Power Electron. Appl. 2020, 10, 28

25. Reuben, J.; Fey, D.; Wenger, C. A Modeling Methodology for Resistive RAM Based on Stanford-PKU Model
With Extended Multilevel Capability. IEEE Trans. Nanotechnol. 2019, 18, 647–656. [CrossRef]

26. Golonzka, O.; Arslan, U.; Bai, P.; Bohr, M.; Baykan, O.; Chang, Y.; Chaudhari, A.; Chen, A.; Clarke, J.;
Connor, C.; et al. Non-Volatile RRAM Embedded into 22FFL FinFET Technology. In Proceedings of the 2019
Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T230–T231. [CrossRef]

27. Hsieh, C.C.; Chang, Y.F.; Chen, Y.C.; Shahrjerdi, D.; Banerjee, S.K. Highly Non-linear and Reliable
Amorphous Silicon Based Back-to-Back Schottky Diode as Selector Device for Large Scale RRAM Arrays.
ECS J. Solid State Sci. Technol. 2017, 6, N143–N147. [CrossRef]

28. Lin, C.Y.; Chen, P.H.; Chang, T.C.; Chang, K.C.; Zhang, S.D.; Tsai, T.M.; Pan, C.H.; Chen, M.C.; Su, Y.T.; Tseng,
Y.T.; et al. Attaining resistive switching characteristics and selector properties by varying forming polarities
in a single HfO2-based RRAM device with a vanadium electrode. Nanoscale 2017, 9, 8586–8590. [CrossRef]
[PubMed]

29. Kim, S.; Lin, C.Y.; Kim, M.H.; Kim, T.H.; Kim, H.; Chen, Y.C.; Chang, Y.F.; Park, B.G. Dual Functions of
V/SiOx/AlOy/p++Si Device as Selector and Memory. Nanoscale Res. Lett. 2018, 13. [CrossRef]

30. Chen, C.; Lin, C.; Chen, P.; Chang, T.; Shih, C.; Tseng, Y.; Zheng, H.; Chen, Y.; Chang, Y.; Lin, C.; et al.
The Demonstration of Increased Selectivity During Experimental Measurement in Filament-Type Vanadium
Oxide-Based Selector. IEEE Trans. Electr. Devices 2018, 65, 4622–4627. [CrossRef]

31. Ben-Hur, R.; Ronen, R.; Haj-Ali, A.; Bhattacharjee, D.; Eliahu, A.; Peled, N.; Kvatinsky, S. SIMPLER MAGIC:
Synthesis and Mapping of In-Memory Logic Executed in a Single Row to Improve Throughput. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2019. [CrossRef]

32. Adam, G.C.; Hoskins, B.D.; Prezioso, M.; Strukov, D.B. Optimized stateful material implication logic for
three- dimensional data manipulation. Nano Res. 2016, 9, 3914–3923. [CrossRef]

33. Kumar, A.P.; Aditya, B.; Sony, G.; Prasanna, C.; Satish, A. Estimation of power and delay in CMOS circuits
using LCT. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 990–998.

34. Rumi, Z.; Walus, K.; Wei, W.; Jullien, G.A. A method of majority logic reduction for quantum cellular
automata. IEEE Trans. Nanotechnol. 2004, 3, 443–450. [CrossRef]

35. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-Based Material
Implication (IMPLY) Logic: Design Principles and Methodologies. IEEE Trans. Very Larg. Scale Integr.
(VLSI) Syst. 2014, 22, 2054–2066. [CrossRef]

36. Lehtonen, E.; Poikonen, J.H.; Laiho, M. Memristive Stateful Logic. In Handbook of Memristor Networks;
Chua, L., Sirakoulis, G.C., Adamatzky, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 1101–1121, doi:10.1007/978-3-319-76375-0_38. [CrossRef]

37. Shen, W.; Huang, P.; Fan, M.; Han, R.; Zhou, Z.; Gao, B.; Wu, H.; Qian, H.; Liu, L.; Liu, X.; et al. Stateful Logic
Operations in One-Transistor-One- Resistor Resistive Random Access Memory Array. IEEE Electr. Device Lett.
2019, 40, 1538–1541. [CrossRef]

38. Ielmini, D.; Wong, H.S.P. In-memory computing with resistive switching devices. Nat. Electr. 2018, 1, 333–343.
[CrossRef]

39. Gupta, S.; Imani, M.; Rosing, T. FELIX: Fast and Energy-efficient Logic in Memory. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD ’18), San Diego, CA, USA, 5–8 November
2018; pp. 55:1–55:7. [CrossRef]

40. Reuben, J.; Fey, D. A Time-based Sensing Scheme for Multi-level Cell (MLC) Resistive RAM. In Proceedings
of the 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), Helsinki, Finland, 29–30 October 2019; pp. 1–6. [CrossRef]

41. Reuben, J.; Biglari, M.; Fey, D. Incorporating Variability of Resistive RAM in Circuit Simulations Using the
Stanford–PKU Model. IEEE Trans. Nanotechnol. 2020, 19, 508–518. [CrossRef]

42. Gaillardon, P.; Amaru, L.; Siemon, A.; Linn, E.; Waser, R.; Chattopadhyay, A.; De Micheli, G.
The Programmable Logic-in-Memory (PLiM) computer. In Proceedings of the 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 427–432.

43. Shirinzadeh, S.; Soeken, M.; Gaillardon, P.; Drechsler, R. Logic Synthesis for RRAM-Based In-Memory
Computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 1422–1435. [CrossRef]

44. Bhattacharjee, D.; Easwaran, A.; Chattopadhyay, A. Area-constrained technology mapping for in-memory
computing using ReRAM devices. In Proceedings of the 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 69–74. [CrossRef]

207

J. Low Power Electron. Appl. 2020, 10, 28

45. Reuben, J. Binary Addition in Resistance Switching Memory Array by Sensing Majority. Micromachines 2020,
11, 496. [CrossRef]

46. Reuben, J.; Pechmann, S. A Parallel-friendly Majority Gate to Accelerate In-memory Computation.
In Proceedings of the 2020 IEEE 31st International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), Manchester, UK, 6–8 July 2020; pp. 93–100.

47. Fey, D.; Reuben, J. Direct state transfer in MLC based memristive ReRAM devices for ternary computing.
In Proceedings of the 2020 European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria,
7–10 September 2020; pp. 1–5.

48. Hur, R.B.; Wald, N.; Talati, N.; Kvatinsky, S. SIMPLE MAGIC: Synthesis and In-memory Mapping of
Logic Execution for Memristor-aided Logic. In Proceedings of the 36th International Conference on
Computer-Aided Design (ICCAD ’17), Irvine, CA, USA, 13–16 Novenber 2017; pp. 225–232.

49. Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; et al. Reconfigurable
Nonvolatile Logic Operations in Resistance Switching Crossbar Array for Large-Scale Circuits. Adv. Mater.
2016, 28, 9758–9764. [CrossRef] [PubMed]

50. Chang, Y.; Zhou, F.; Fowler, B.W.; Chen, Y.; Hsieh, C.; Guckert, L.; Swartzlander, E.E.; Lee, J.C.
Memcomputing (Memristor + Computing) in Intrinsic SiOx-Based Resistive Switching Memory: Arithmetic
Operations for Logic Applications. IEEE Trans. Electr. Devices 2017, 64, 2977–2983. [CrossRef]

51. Cheng, L.; Zhang, M.Y.; Li, Y.; Zhou, Y.X.; Wang, Z.R.; Hu, S.Y.; Long, S.B.; Liu, M.; Miao, X.S.
Reprogrammable logic in memristive crossbar for in-memory computing. J. Phys. D Appl. Phys. 2017,
50, 505102. [CrossRef]

52. Teimoory, M.; Amirsoleimani, A.; Shamsi, J.; Ahmadi, A.; Alirezaee, S.; Ahmadi, M. Optimized
implementation of memristor-based full adder by material implication logic. In Proceedings of the
2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, France,
7–10 December 2014; pp. 562–565.

53. Rohani, S.G.; Taherinejad, N.; Radakovits, D. A Semiparallel Full-Adder in IMPLY Logic. IEEE Trans. Very
Larg. Scale Integr. (VLSI) Syst. 2019; 28, 297–301. [CrossRef]

54. Kim, K.M.; Williams, R.S. A Family of Stateful Memristor Gates for Complete Cascading Logic. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 4348–4355. [CrossRef]

55. Siemon, A.; Drabinski, R.; Schultis, M.J.; Hu, X.; Linn, E.; Heittmann, A.; Waser, R.; Querlioz, D.; Menzel, S.;
Friedman, J.S. Stateful Three-Input Logic with Memristive Switches. Sci. Rep. 2019, 9, 14618. [CrossRef]

56. Xu, L.; Yuan, R.; Zhu, Z.; Liu, K.; Jing, Z.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Memristor-Based Efficient
In-Memory Logic for Cryptologic and Arithmetic Applications. Adv. Mater. Technol. 2019, 4, 1900212.
[CrossRef]

57. Siemon, A.; Menzel, S.; Bhattacharjee, D.; Waser, R.; Chattopadhyay, A.; Linn, E. Sklansky tree adder
realization in 1S1R resistive switching memory architecture. Eur. Phys. J. Spec. Top. 2019, 228, 2269–2285.
[CrossRef]

58. Revanna, N.; Swartzlander, E.E. Memristor based adder circuit design. In Proceedings of the 2016 50th
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016;
pp. 162–166.

59. Wang, Z.; Li, Y.; Su, Y.; Zhou, Y.; Cheng, L.; Chang, T.; Xue, K.; Sze, S.M.; Miao, X. Efficient Implementation
of Boolean and Full-Adder Functions with 1T1R RRAMs for Beyond Von Neumann In-Memory Computing.
IEEE Trans. Electr. Devices 2018, 65, 4659–4666. [CrossRef]

60. Cheng, L.; Li, Y.; Yin, K.S.; Hu, S.Y.; Su, Y.T.; Jin, M.M.; Wang, Z.R.; Chang, T.C.; Miao, X.S.
Functional Demonstration of a Memristive Arithmetic Logic Unit (MemALU) for In-Memory Computing.
Adv. Funct. Mater. 2019, 29, 1905660. [CrossRef]

208

J. Low Power Electron. Appl. 2020, 10, 28

61. Kim, Y.S.; Son, M.W.; Song, H.; Park, J.; An, J.; Jeon, J.B.; Kim, G.Y.; Son, S.; Kim, K.M. Stateful In-Memory
Logic System and Its Practical Implementation in a TaOx-Based Bipolar-Type Memristive Crossbar Array.
Adv. Intell. Syst. 2020, 2, 1900156. [CrossRef]

62. Xiao, T.P.; Bennett, C.H.; Hu, X.; Feinberg, B.; Jacobs-Gedrim, R.; Agarwal, S.; Brunhaver, J.S.; Friedman, J.S.;
Incorvia, J.A.C.; Marinella, M.J. Energy and Performance Benchmarking of a Domain Wall-Magnetic Tunnel
Junction Multibit Adder. IEEE J. Explor. Solid State Comput. Devices Circuits 2019, 5, 188–196. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

209

Citation: Ascoli, A.; Weiher, M.;

Herzig, M.; Slesazeck, S.; Mikolajick,

T.; Tetzlaff, R. Graph Coloring via

Locally-Active Memristor Oscillatory

Networks. J. Low Power Electron. Appl.

2022, 12, 22. https://doi.org/

10.3390/jlpea12020022

Academic Editors: Alexander Serb

and Adnan Mehonic

Received: 22 January 2022

Accepted: 2 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Tutorial

Graph Coloring via Locally-Active Memristor
Oscillatory Networks

Alon Ascoli 1,*, Martin Weiher 1, Melanie Herzig 2, Stefan Slesazeck 2, Thomas Mikolajick 2,3 and Ronald Tetzlaff 1

1 Chair of Fundamentals of Electrical Engineering, Institute of Circuits and Systems, Faculty of Electrical and
Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
martin.weiher@tu-dresden.de (M.W.); ronald.tetzlaff@tu-dresden.de (R.T.)

2 Nano-Electronic Materials Laboratory (NaMLab) gGmbH, 01187 Dresden, Germany;
melanie.herzig@namlab.com (M.H.); stefan.slesazeck@namlab.com (S.S.);
thomas.mikolajick@namlab.com (T.M.)

3 Institute für Halbleiter-und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden, Germany
* Correspondence: alon.ascoli@tu-dresden.de

Abstract: This manuscript provides a comprehensive tutorial on the operating principles of a bio-
inspired Cellular Nonlinear Network, leveraging the local activity of NbOx memristors to apply
a spike-based computing paradigm, which is expected to deliver such a separation between the
steady-state phases of its capacitively-coupled oscillators, relative to a reference cell, as to unveal
the classification of the nodes of the associated graphs into the least number of groups, according
to the rules of a non-deterministic polynomial-hard combinatorial optimization problem, known as
vertex coloring. Besides providing the theoretical foundations of the bio-inspired signal-processing
paradigm, implemented by the proposed Memristor Oscillatory Network, and presenting pedagog-
ical examples, illustrating how the phase dynamics of the memristive computing engine enables
to solve the graph coloring problem, the paper further presents strategies to compensate for an
imbalance in the number of couplings per oscillator, to counteract the intrinsic variability observed
in the electrical behaviours of memristor samples from the same batch, and to prevent the impasse
appearing when the array attains a steady-state corresponding to a local minimum of the optimization
goal. The proposed Memristor Cellular Nonlinear Network, endowed with ad hoc circuitry for the
implementation of these control strategies, is found to classify the vertices of a wide set of graphs
in a number of color groups lower than the cardinality of the set of colors identified by traditional
either software or hardware competitor systems. Given that, under nominal operating conditions, a
biological system, such as the brain, is naturally capable to optimise energy consumption in problem-
solving activities, the capability of locally-active memristor nanotechnologies to enable the circuit
implementation of bio-inspired signal processing paradigms is expected to pave the way toward
electronics with higher time and energy efficiency than state-of-the-art purely-CMOS hardware.

Keywords: graph coloring; cellular nonlinear networks; memristor oscillatory networks; locally-active
memristors; control theory

1. Introduction

Memristor technologies promise to revolutionise the world of electronics in the years
to come, allowing to boost the performance of integrated circuits beyond the Moore era.
Theoretically introduced in 1971 by L. Chua [1], memristors are essentially resistances
with state- and input-dependent programmable capability [2]. Despite the first association
between Chua’s theory and the experimental observation of fingerprints of memristive be-
haviour at the nanoscale was made by R.S. Williams and his team at Hewlett Packard Labs
in 2008 [3], the appearance of memory resistance switching effects in miniaturized physical
structures were reported in numerous occasions throughout the past two centuries [4],
constituting the object of extensive and intensive investigations for the development of

J. Low Power Electron. Appl. 2022, 12, 22. https://doi.org/10.3390/jlpea12020022 https://www.mdpi.com/journal/jlpea
211

J. Low Power Electron. Appl. 2022, 12, 22

novel solid-state memories first in the 1960s [5]. In fact, the main application of memris-
tors [6]—certainly the most profitable one from a business perspective point of view—is the
design of memories with higher retention, lower power consumption, and larger density
as compared to state-of-the-art data storage units [7]. Another major field of application
regards the development of innovative neuromorphic systems, which resemble biological
entities more closely than traditional artificial networks ([8–11]). A closely-related branch
of research takes inspiration from the high levels of organization and energy efficiency
of biological systems to develop mem-computing machines ([12–14]), which extend the
functionalities of traditional cellular architectures [15]. Another bio-inspired research di-
rection aims to the circuit implementation of in-memory computing paradigms through
high-capacity memristive memories, stacked in 3D crossbar arrangement above underlying
CMOS circuitry [16], and employed, alternatively, to store data or to execute processing
tasks ([17–20]), which reveals the high potential of novel hardware platforms of this kind to
resolve the von Neumann bottleneck, limiting the maximum operating speed of traditional
computing engines, in the near future. Additionally, the unique combined capability of
non-volatile resistance switching memories to sense data ([21,22]), learn how to recognize
patterns [23], process information [24], and store multiple states [25] within a single tiny
physical volume, and the availability of nanoscale locally-active [26] volatile memristors,
which may amplify the small signal upon suitable polarization ([27,28]), open up yet-
unexplored opportunities for the Internet-of-Things (IoT) industry, which urgently calls for
the development of miniaturized, low-power, light-weight, portable, and smart technical
systems, which, within a very short time frame, are able to acquire a large amount of
information from the environment, to extract features of interest from noisy data so as to
solve specific optimization problems, and to store or transmit to a prescribed user the most
relevant results of the computation.

One of the most challenging tasks for computing machines, based upon the classical
von Neumann architecture, is the solution of combinatorial optimisation problems belong-
ing to the non-deterministic polynomial (NP)-hard complexity class1. Nowadays there is a
huge interest in developing novel inexpensive low-power high-speed hardware solutions
capable to solve NP-hard problems more efficiently than traditional computers, given that
high-performance technical systems of this kind may find application in various industry
sectors, e.g., for traffic management, airline scheduling, gene sequencing, and electronic
chip wiring.

A recent Nature Electronics publication [29] proposed the use of a memristive crossbar
array—refer to Figure 1—for accelerating the vector-matrix multiplications (VMMs) at
the basis of the update rule of an iterative machine learning algorithm, which is credited
to Hopfield, and enables to solve combinatorial problems, within an overall disruptive
analogue hardware architecture, leveraging and controlling its numerous inherent noise
sources to allow a power-efficient derivation of the optimal solutions.

1 The time it takes for a von Neumann computing machine to find the optimal solution to a NP-hard problem,
which involves n elements, scales exponentially with n.

212

J. Low Power Electron. Appl. 2022, 12, 22

Figure 1. In-memory computing in a N × N memristive crossbar array (here N = 4). In-memory
computing in an N × N memristive crossbar array (here, N = 4). Naturally obeying Kirchhoff’s
Current Law (KCL), the bio-inspired network enables a time-efficient computation of VMMs. With j ∈
{1, . . . , N}, the current flowing down the jth column of the array is simply given by ij = ∑N

i=1 Gi,j · vi,
where Gi,j denotes the conductance of the memory resistive switch located at the intersection between
the conductive nanowires stretching along row i and column j [29]. The computation of the currents
at the outputs of the crossbar columns assumes that the bottom terminals of all the memristors—refer
to the thick black horizontal segments in their circuit-theoretic symbols—are at virtual ground.

Cellular Nonlinear Networks (CNNs) with locally-active volatile memristors [30]
constitute a powerful engine for the implementation of bio-inspired spike-based computing
paradigms. This manuscript, inspired to a recent publication [31], is devoted to explain in
a pedagogical form how these bio-inspired memristor cellular arrays2, may be adopted
for solving a complex NP-hard problem known as vertex coloring. While page limitation
prevented a complete description of the theory at the basis of the spike-based computing
paradigm implemented by the proposed cellular arrays3, all details are pedagogically
reported in this tutorial. In regard to the structure of the manuscript, Section 2 provides a
brief description of the memristor model adopted for the study. Section 3 introduces the
memristive computing engine for solving the vertex coloring problem, including a discus-
sion of its operating principles, and the specification of strategies aimed to compensate for
non-idealities, including an imbalance in the number of couplings per oscillator, and the
memristor device-to-device variability. Section 4 presents a rigorous iterative procedure
for coloring a graph via the network phase dynamics. Importantly, control paradigms to
resolve local minima-based impasse conditions [33] are proposed in Section 5, which further
compares the performance of the proposed spike-based computing engine, endowed with
ad hoc circuitry to implement such strategies, with the solutions of state-of-the-art software
and hardware competitor systems. Finally, conclusions are drawn in Section 6.

2 CNNs with non-volatile memristors ([12–14]) may pave the way toward the development of advanced
visual-sensor processors [32] with high spatial resolution and intrinsic memory capability.

3 Importantly, depending upon the graph under focus, the proposed Memristor CNN (M-CNN) may feature
either local or non-local capacitive couplings. The solution of the vertex coloring problem through the proposed
M-CNNs depends upon the phase differences among the oscillations developing in the constitutive units of the
array at steady state. In order to highlight the steady-state oscillatory behaviours of the cells during operation,
the bio-inspired arrays are also referred to as Memristor Oscillatory Networks (MONs) in the remainder of
the manuscript.

213

J. Low Power Electron. Appl. 2022, 12, 22

2. A Physics-Based Model for the Threshold Switching Dynamics of a Nano-Scale
Locally-Active Memristor Device Stack

In a past study [34,35] we employed physics laws to construct state evolution and
memductance functions of a NbOx memristor, fabricated at NaMLab, after inferring the
physical mechanisms, which underlie its nonlinear dynamics, from the outcome of ex-
perimental measurements, and the insights gained through theoretic investigations of a
mathematical model, derived previously on the basis of Chua’s Unfolding Theorem [28]. A
thorough analysis of the proposed physics-based model [34] revealed that the Mott insulator-
to-metal transition does not constitute the key physical mechanism at the origin of the threshold
switching process, that each of our NbOx-based memristors undergoes under the application of
a generic quasi-static voltage stimulus between its two terminals. Conversely, a temperature-
activated trap-assisted Poole-Frenkel conduction mechanism underlies the abrupt turn-on
dynamics of the volatile memristor. Importantly, shortly after our discovery, a further proof
of evidence for the validity of our conjecture was provided by engineers from Hewlett
Packard (HP) Labs [36]. Remarkably, despite it was originally proposed for the NbO mi-
crostructure, the physics-based model in [34] was found to fit rather well also experimental
data extracted from nanoscale variants of the NbOx threshold switching resistance from
NaMLab after minor adaptations [37,38].

As illustrated in Figure 2(a), ([30,31]), the equivalent circuit model of the memristor
M consists of the series combination between a linear resistor Rc, capturing the action of
the top electrode resistance, and a parallel one-port, formed by a core memristor M̃, and a
nonlinear resistor R, which accounts for the parasitics inherent to the NbOx nanostructure,
and is responsible for the manifestation of leakage current effects. Several studies [34,35]
have revealed that the state of the core memristor is well captured by its body temperature T.
In fact, as anticipated earlier, threshold switching effects in the nano-device originate from
runaway Joule self-heating governed by Poole-Frenkel electrical conduction mechanisms.
Taking this into account for the formulation of a state-dependent Ohm’s law, with ṽm (ĩm)
representing the voltage (current) of M̃, and choosing Newton’s law of cooling to dictate
the time evolution of the state, the DAE set, governing the static and dynamic behaviour of
the core memristor may be expressed as

dT
dt

= g(T, ṽm) �
1

Cth
· ĩm · ṽm − Γth

Cth
· (T − Tamb), (1)

ĩm = G(T, ṽm) · ṽm � 1
R01

· exp
(
− a01 − a11 · |ṽm|

T

)
· ṽm, (2)

where Cth (Γth) stands for the effective thermal capacitance (conductance) of the core device
M̃, Tamb denotes the ambient temperature, R01, a01 and a11 are constants4, while vm (im)
symbolises the voltage (current) falling across (flowing though) the memristor M, whose
circuit-theoretic symbol is shown in Figure 2(b). Remarkably, the DAE set (1)–(2) of the
core memristor falls into the voltage-controlled extended memristor family from Chua’s
classification5 [40]. The constitutive relationship f (vR, iR) = 0 of the nonlinear resistor R
is given in implicit form as

vR = R02 · iR · exp

(
a02 − a12 ·

√|vR|
Tamb

)
. (3)

4 The reader is invited to consult [34,35] for details on the association between the real parameters R01, a01 and
a11 and the physical properties of the core nanostructure.

5 It is instructive to observe that there exist memristor physical realisations, whose models feature an even more
general input- and state- dependent Ohm law than what is admissible for extended memristors. For these
two-terminal devices, including the TiO2 memristor from HP Labs [39], the mathematical description includes
an implicit Ohm law of the form h(x, vm, im) = 0, with x, vm, and im denoting the device state, voltage, and
current, respectively.

214

J. Low Power Electron. Appl. 2022, 12, 22

revealing that a variant of the Poole-Frenkel law explains current transport phenomena in
the parasitic resistor as well6. The nominal parameter values for the core memristor and
nonlinear resistor models were obtained by fitting the underlying equations to experimental
data extracted from nano-device samples (see [37,38] for details on the NbOx nanostructure
fabrication process). Importantly, since the non-negligible intrinsic spread in dynamic
behaviour from sample to sample may impair the capability of a computing engine based
on memristive hardware to perform a predefined data processing task as desired, this non-
ideality may not be neglected in circuit design considerations. Particularly, in the analysis
to follow, where a Memristor Oscillatory Network (MON) is adopted to find optimal
solutions to graph coloring problems [31], it will be accounted through the replacement of
specific parameters in the NbOx nano-scale threshold switch physics model, specifically
Γth, R01, a01, a11, RC, R02, and a12, with corresponding ones, i.e., in turn, Γth,α, R01,α, a01,α,
a11,α, RC,α, R02,α, and a12,α, that are controlled via a real variable α, which is set randomly
to a distinct value chosen from a uniform distribution across the closed range [0, 1] for
each nanostructure individually, prior that the simulation of the ODE, modelling the array
associated to a pre-specified graph, is commenced.

Figure 2. (a) Equivalent circuit of the physical model of a NbOx nanoscale memristor M from
NaMLab. The linear resistor RC and the nonlinear resistor R respectively account for the effects of
electrode contact resistance and parasitics. (b) Memristor circuit-theoretic symbol.

Table 1 reports the parameter setting of the nano-scale memristor physics-based model
modulated according to the device-to-device variability estimated statistically beforehand
through the analysis of current-voltage characteristics of a large number of samples under
a common quasi-static stimulation [31].

Table 1. Parameter setting for NbOx nanoscale threshold switch from NaMLab. The effects of
the memristor-to-memristor variability are accounted through the assignment of a distinct value,
chosen randomly within the closed set [0, 1] to the variable α, controlling specific coefficients of
Equations (1), (2), and (3).

Cth/ J · K−1 Γth,α/ W · K−1 Tamb/ K R01,α/ Ω a01,α/ K
1 · 10−14 1.889 · 10−6 · 1.064α 293 3.047 · 0.831α 3620 · 1.061α

a11,α/ K· V−1 Rc,α/ Ω R02,α/ Ω a02/ K a12,α/ K· V−1/2

820.4 · 1.137α 173.8 · 1.092α 565 · 1.377α 1000 168.8 · 1.083α

3. Memristive Computing Engine for Solving the Vertex Coloring Problem

One of the most popular NP-hard problems is graph or vertex coloring. Given an
undirected graph, consisting of a certain arrangement of edge-coupled vertices, the aim
of the problem is to assign a color to each vertex, satisfying the constraint, which dictates

6 The mathematical description of the nonlinear resistor, formulated in Equation (3), is in fact equivalent to the
model of a NbOx memristor, as originally presented in [34,35], which reveals the correspondence of the real
parameters R02, a02 and a12 to physical properties of the nanostructure, in the limit when changes occurring in
the device state, defined as its body temperature, are negligible.

215

J. Low Power Electron. Appl. 2022, 12, 22

that a given color should be shared between as many vertices as possible so long as no
edge connects any two of them. The lowest number of color groups, the vertices of the
unconnected graph may be classified into, is called chromatic number.

As revealed back in 1988, graph coloring may be achieved by harnessing synchroni-
sation mechanisms in arrays of of coupled oscillatory cells [41]. A more recent work [42]
showed that the assignment of colors to vertices of a graph may be naturally implemented
through the analysis of the steady-state phase shifts between capacitively-coupled re-
laxation oscillators exploiting negative differential resistance (NDR) effects in vanadium
dioxide (VO2) nano-structures. Inspired from this research, we have recently investigated
the capability of an oscillatory network, leveraging locally-active dynamics in NbOx mem-
ristors, and featuring capacitive couplings, to identify the minimum possible number of
colors assignable to the vertices of an associated undirected graph via phase dynamics.

In order to color a given graph of N vertices or nodes, a unique number in the set
{0, 1, . . . , N − 1} is first attributed to each vertex. A one-to-one association is then estab-
lished between the vertices (edges) of the graph, and the oscillators (coupling capacitors,
each of capacitance CC) of the associated network. The oscillator 0, corresponding to the
node 0, assumes a critical role in the solution of the graph coloring problem, and is called
reference cell. A general indication, regarding the selection of a suitable reference oscillator
among the N possible candidates, will be given shortly. As an example, Figure 3(a) and (b)
show a 6-node ring and the associated MON, respectively.

Figure 3. (a) A 6-node ring-shaped undirected graph (b) Associated MON. The oscillator i of the
network corresponds to the vertex i of the graph (i ∈ {0, 1, 2, 3, 4, 5}).

With reference to Figure 4, plots (a) and (b) show the oscillator circuit and its symbol,
respectively. Each oscillatory cell is composed of the parallel connection between a NbOx
memristor M, a bias circuit, consisting of the series combination of a DC voltage source VS
with a series resistor RS, allowing to polarize [28] the resistance switching memory within
the locally-active region of its DC current-voltage locus, and a capacitor C.

Figure 4. Memristive oscillatory cell (a) and its symbol (b).

On the basis of the NbOx nano-device physics-based model, expressed by Equations (1),
(2), and (3), under the variability-aware parameter setting of Table 1, we carried out a deep
numerical investigation of the capability of an array of capacitively-coupled memristive

216

J. Low Power Electron. Appl. 2022, 12, 22

oscillatory cells to classify the vertices of a pre-defined undirected graph in the least number
of groups.

While the memristor model parameters, accounting for the inherent fluctuations in
static and dynamic properties among distinct nano-device samples, were already reported
in Table 1, only the values assigned to the physical quantities of the non-memristive circuit
elements in the proposed MON are provided in Table 2.

Table 2. Parameter setting for the non-memristive circuit elements in the oscillator of Figure 4(a).

VS/ V RS/ Ω C/ F CC/ F

2.5 5525 10 · 10−9 0.2 · 10−9

3.1. Operating Principles of the Capacitively-Coupled Networks

The capacitive nature of the couplings in the network is responsible for pulling the
phases of physically-connected oscillators far apart one from the other at steady-state. This
repelling mechanism may be exploited to colour the vertices of the associated graph. The
phases of uncoupled oscillators tend to form clusters, which may be interpreted as color
groups for the corresponding vertices. The larger is the separation between phase clusters,
the simpler is the classification of the nodes of the graph into color groups.

To illustrate this concept, let us consider a simple undirected graph, composed of
one edge, which couples two nodes, as shown in Figure 5(a). The chromatic number of
this graph is obviously equal to 2. The corresponding oscillatory network is depicted in
plot (b) of the same figure. Simulating the circuit with nominal parameter setting7, the
time waveforms of the voltages across the capacitors or those of the currents through
the memristors within the circuits of the two capacitively-coupled memristive oscillators
are expected to feature a steady-state phase shift of about 180◦. Upon the emergence of
anti-phase synchronisation between the two oscillators of this simple network, it would be
natural to assign one color to vertex 0 and another one to vertex 1 of the associated graph
of Figure 5(a).

As a further example, Figure 5(c) visualises another undirected graph with chromatic
number equal to 2. The respective oscillatory array is shown in plot (d) of the same figure.
Simulating this network, the phases of oscillators 1 and 2 are expected to cluster together,
and to shift away from the phase of reference oscillator 0 as much as possible, approaching
a relative value of approximately 180◦ at steady state. With the network exhibiting such
a phase pattern at steady state, it would be straightforward to divide the vertices of the
associated graph into two color groups, including vertex 0 and vertices 1 and 2, respectively.

Due to a couple of non-idealities the expectations on the phase dynamics of the
networks in plots (b) and (d) of Figure 5 are not fulfilled in practice. Details will be
provided in the next two sections.

7 The nominal parameter setting is obtained from Table 1 for α = 0.5. As will be shown later, simulating the
memristor model under a quasi-DC voltage stimulus and with the variability parameter stepped across its
existence domain, the locus observed for α = 0.5 appears in the center of the distribution of characteristics
emerging in the voltage-current plane.

217

J. Low Power Electron. Appl. 2022, 12, 22

Figure 5. (a) A 2-node 1-edge graph. Its chromatic number is 2. (b) Oscillatory network corresponding
to the graph in (a). (c) A 3-vertex 2-edge graph. Its chromatic number is once again 2. Interestingly,
the number of edges departing from vertex 0 (from either vertex 1 or vertex 2) is 2 (1). (d) Oscillatory
network corresponding to the graph in (c).

Before proceeding, the following remark explains how the autonomous memristive
array is initialised, and clarifies how the steady-state phases of the cells are computed when
the network converges to an oscillatory solution.

Remark 1. With VS and RS fixed to specific values, as reported in Table 1, all memristors in the
network are biased in a common operating point lying along the NDR of the DC Im–Vm locus
of the NbOx resistive nanoswitch. Defining as vC,i and Ti the states of the second-order cell i of
the memristive array (i ∈ {0, . . . , N − 1}), the initial conditions for the capacitor voltage and
the memristor8 temperature are set in each oscillator to 0 V, and to the ambient temperature Tamb,
fixed to 293 K in Table 1, respectively. A random sequence is generated to mismatch, in a non-
deterministic way, the time instants, at which the signals generated by the DC voltage sources
within the oscillators ramp toward the nominal VS value over a time span of 1μs at the beginning
of a simulation. If sustained periodic oscillations develop across the network at steady state, for
each oscillator i ∈ {0, . . . , N − 1}, the phase of the memristor current im,i relative to the phase of
the current im,0 through the NbOx device in the reference oscillator 0 is then computed, as follows.
First, the common period T of the oscillations, observed in the time waveforms of the memristor
currents at steady state, is estimated. For each i-value in the set {0, . . . , N − 1}, the time instant
ti, at which the memristor current im,i in the cell i attains a given threshold value Ith, specifically
0.5 mA, during its ascending phase, within a single common steady-state cycle, is then recorded.
The cycle, utilised for these calculations, covers the time span [t0, t0 + T], where t0 marks the time
instant, when this threshold crossing event occurs for the memristor current im,0 in the reference cell
0. Next, for each i-value, the temporal span Δti � ti − t0, which separates the instants ti and t0, at
which the threshold crossing event occurs for the memristor currents in the cells i and 0, respectively,
is calculated. Finally, this allows to compute the steady-state phase shift between cells i and 0 via9

ϕ
(s)
i � ω0 · Δti, where ω0 � 2π

T , for each i-value.

3.2. Compensation for an Imbalance in the Number of Couplings per Oscillator

If an imbalance in the number of edges per node characterises the coupling structure of
a given graph, the phases of physically-coupled oscillators in the corresponding memristive
oscillatory network may be found to hold only a marginal distance one from the other at
steady state. The balanced nature of the graph of Figure 3 (Figure 5(a)) originates from
the fact that each of its six (two) nodes is coupled to 2 other nodes (the other node). On
the other hand, inspecting the graph of Figure 5(c), vertex 0 is coupled to vertices 1 and 2,
while each of vertices 1 and 2 is connected to vertex 0 only. The resulting imbalance in the
number of couplings per cell, arising in the associated array of memristive oscillators—refer
to Figure 5(d)—prevents the phases of cells 1 and 2 from separating as expected from the

8 The voltage across (current through) the memristor in the cell i is indicated via vm,i (im,i).
9 The units of the steady-state relative phase of oscillator i, computed via ϕ

(s)
i = ω0 · Δti , are radiants. In order

to express ϕ
(s)
i in degrees, its formula needs to be scaled by the factor 180◦

π (i ∈ {0, . . . , N − 1}).

218

J. Low Power Electron. Appl. 2022, 12, 22

phase of cell 0. This is shown in the phase diagram10 of Figure 6(a), where the dashed orange
and green traces, illustrating the time evolution of the phases of cells 1 and 2 relative to cell 0,
respectively, feature a separation as small as 50◦ from the reference 0◦ level at steady state. The
unbalanced nature of the network of Figure 5(d) results in an imbalance in the capacitive load
per oscillator. Looking at the coupling configuration in this array, and recalling the circuit of
each oscillator, shown in Figure 4(a), in which, for simplicity, the memristor is replaced with its
small-signal equivalent circuit model [43], the application of basic circuit-theoretic principles
allows to obtain an expression in the sinusoidal regime for the capacitive impedance ZCi(jω),
loading oscillator i for each value of i in the set {0, 1, 2}, i.e.,

ZC0(jω) = ZC ‖ (ZCC (jω) + ZC(jω)) ‖ (ZCC (jω) + ZC(jω)), (4)

ZC1(jω) = ZC ‖ {ZCC (jω) +
[
ZC(jω) ‖ (ZCC (jω) + ZC(jω)

)]}
, (5)

ZC2(jω) = ZC ‖ {ZCC (jω) +
[
ZC(jω) ‖ (ZCC (jω) + ZC(jω)

)]}
, (6)

where

ZC(jω) =
1

jωC
, and (7)

ZCC (jω) =
1

jωCC
. (8)

Defining

Ca ‖ Cb � Ca · Cb
Ca + Cb

, (9)

the load capacitance Ci of the oscillator i ∈ {0, 1, 2} in the network of Figure 5(d) may be
extracted easily from the (i + 1)th equation in the triplet (4)–(6), yielding

C0 = C + 2 · (CC ‖ C), (10)

C1 = C + CC ‖ (C + CC ‖ C) ≈ C + CC ‖ C, (11)

C2 = C + CC ‖ (C + CC ‖ C) ≈ C + CC ‖ C, (12)

where the approximations stem from the inequality C >> CC, yielding C + CC ‖ C ≈ C.
Analysing Equations (10)–(12) it is clear that, in order to compensate for the imbalance in
the capacitive load per oscillator within the network of Figure 5(d), an additional capacitor
with capacitance Ccomp,j = CC ‖ C should be added in parallel to the capacitor C in the
circuit of oscillator j, for each j-value in the set {1, 2}, as shown in Figure 6(b). Simulating
the balanced network, the relative phases of cells 1 and 2 cluster together, converging to
values close to the expected 180◦ level at steady state, as may be evinced from plot (a) in
the same figure, where the orange and green solid traces reveal the time evolution of ϕ1
and ϕ2, respectively.

10 A new graphical tool—which we call phase diagram—is introduced in this research study [31] for visualising
the phase dynamics of the network. Referring, for example, to the phase diagram of Figure 6(a), a specific trace
visualises the time evolution of the phase of oscillator j relative to oscillator 0 (j ∈ {1, . . . , N − 1}). Reading the
time flow along the radial direction, the angle between the segment, joining the origin to the point, where the
trace is found to lie at time t, and the blue horizontal line, denoting the 0◦-valued reference level, represents
the phase shift ϕj(t) of oscillator j with respect to oscillator 0 at time t.

219

J. Low Power Electron. Appl. 2022, 12, 22

0° 0

45°

90°

135°

180°

225°

270°

315°

1

2
0ms

1ms
2ms

3ms

1 2

(a)

Figure 6. (a) Phase diagram visualising the time evolution of the phases of oscillators 1 (in orange)
and 2 (in green) relative to oscillator 0, sitting on the 0◦ phase state throughout the simulation (blue
horizontal line) for the original unbalanced network of Figure 5(c) (see the dashed traces) and for
the compensated network in plot (b) of this figure (refer to the solid traces). In the first (latter) case,
the phases of oscillators 1 and 2 are found to cluster together, and to distance themselves from the
reference 0◦ phase, associated to oscillator 0, by approximately 50◦ (180◦) at steady state. (b) Complete
circuitry of the memristive oscillatory network of Figure 5(d) after compensation for the imbalance in
the number of couplings per oscillator. Here Ccomp,1 = Ccomp,2 = CC ‖ C.

With reference to Figure 6(b), it is interesting to observe that the compensating ca-
pacitance Ccomp,j for oscillator j ∈ {1, 2} is equal to the product between CC ‖ C and
the difference between the number of connections for oscillator 0, coinciding with the
maximum number of connections per oscillator in the unbalanced network of Figure 5(d),
and the number of connections for oscillator j. Taking inspiration from this finding, for a
general unbalanced network with N oscillators, the compensating capacitance Ccomp,i for
oscillator i ∈ {0, 1, . . . , N − 1} is computed via

Ccomp,i = (nmax − ni) · (CC ‖ C), (13)

where ni is the number of couplings for oscillator i, while

nmax = max
0≤i<N

{ni}, (14)

is the maximum number of couplings per oscillator in the original network. While reducing
the coupling capacitance may allow to accelerate the phase dynamics in the memristive
computing engine, a number of factors influence its selection. In this regard, to name but
a couple of key aspects, first CC should not be too small, otherwise the capacitive path
between any two oscillators, to be paired so as to reproduce the links, joining the vertices
of the associated graph, across the proposed cellular medium, would effectively act as
an open circuit. Concurrently, CC may not be so large as to violate the validity of the
approximation C >> CC, used to derive the compensating capacitance Ccomp,i for each
oscillator i ∈ {0, 1, . . . , N − 1} (refer to Equation (13)), which enables to counteract the
non-uniformity in the load capacitance per oscillator across the cellular medium, allowing
to keep the natural frequencies11 of the oscillators close together, which facilitates the
convergence of the memristive computing engine to some steady state.

In the remainder of this paper, any unbalanced network will first be compensated, and
then simulated for the solution of a given graph coloring problem.

3.3. Compensation for the Memristor Device-to-Device Variability

Simulating the network of Figure 5(b) for the case, where the device-to-device vari-
ability is taken into account, the memristor currents in the two oscillatory circuits may
be unable to settle on steady-state oscillatory waveforms. Figure 7(a) shows the current-
voltage loci obtained by simulating the memristor model Equations (1), (2), and (3) un-
der a quasi-DC voltage stimulus for each value of the variability parameter α in the set

11 The natural frequency of an oscillator is the inverse of the period of the oscillations developing across
its circuitry.

220

J. Low Power Electron. Appl. 2022, 12, 22

{0, 0.2, 0.4, 0.6, 0.8, 1.0}. It is worth to pinpoint that the distribution of quasi-static character-
istics, visualised in this figure, matches the variability observed in analogous loci measured
from 196 device samples. Assuming that the oscillator 0 (1) in the two-cell network hosts
a memristor, featuring a quasi-DC im–vm locus lying in the center (on the right end) of
the distribution of Figure 7(a), the network is found to fail to converge to steady-state
oscillatory dynamics. This issue is essentially due to the significant mismatch between
the DC operating points of the resistive nano-switches in the two oscillators. It may be
addressed by reprogramming the DC operating point of the memristor in cell 1. This may
be achieved [28] by adjusting either the resistance RS of the series resistor, as done in this
research study, or the voltage VS of the DC source within the circuit of oscillator 1 until an
anti-phase synchronisation pattern is found to emerge in the network.

As demonstrated in the phase diagram visualised in plot (b) of Figure 7, stepping the
increment ΔRS,1 in the series resistance RS of oscillator 1 from 0 Ω up to 151 Ω, the network
keeps featuring non-convergent phase dynamics for a while (see the orange trace relative
to the case ΔRS,1 = 50 Ω). Then, from some point onward, the memristor currents in the
two oscillators settle on steady-state oscillatory waveforms, sharing the same frequency,
but differing in phase by an offset, which progressively approaches the expected 180◦ level
as the series resistance RS of oscillator 1 gets larger (compare the green and purple traces,
obtained for the first and second ΔRS,1-value in the set {100, 125}Ω, respectively). Finally,
the two capacitively-coupled cells attain anti-phase synchronisation (refer to the red trace
corresponding to the scenario ΔRS,1 = 151 Ω).

As another example, Figure 7(c), where the orange and green dashed traces illustrate
the time evolution of the phase of oscillators 1 and 2 relative to oscillator 0, respectively,
demonstrates that the balanced network of Figure 6(b) fails to converge to a steady-state
oscillatory solution when the first, second, and third value in the set {0.5, 0, 1} is assigned
in turn to the variability parameter α in the model of the memristor in oscillator 0, 1, and
2. A numerical procedure, tuning separately12, one at a time, the series resistances in
oscillators 1 and 2 with the intention to maximise the steady-state phase shifts ϕ

(s)
1 and

ϕ
(s)
2 , determines that decrementing (incrementing) the series resistance of oscillator 1 (2) by

ΔRS,1 = −134 Ω (ΔRS,2 = +151 Ω), the network exhibits a steady-state oscillatory pattern
characterised by the anti-phase synchronisation between oscillators 1 and 2, on one side,
and oscillator 0, on the other side.

In the remainder of this section, in order to compensate for the negative effects that
the memristor device-to-device variability has on the performance of a balanced network,
the following approach shall be adopted. First, a reference cell, hosting the memristor, to
which the random number generator assigns a variability parameter value closest to 0.5
among all NbOx devices in the array, should be selected. In a hardware implementation of
the memristive network, the memristor of the reference oscillator would approximately
display the average dynamical behaviour among all the resistive nano-switches employed
in the array13. This would minimise the subsequent adjustment to be carried out on the
bias circuit of each oscillator j ∈ {1, . . . , N − 1} to reprogram the DC operating point of the
respective memristor14. Then, for each j-value in the set {1, . . . , N − 1}, the oscillator j is
capacitively coupled only to the reference oscillator 0, and the series resistance RS in its

12 In order to reprogram appropriately the operating point of the memristor in the cell j ∈ {1, 2} of the 3-oscillator
network under focus, the cell j itself is capacitively coupled only to the reference cell 0, and, as described earlier,
ΔRS,j is tuned until anti-phase synchronisation emerges in the resulting two-cell network. This procedure is
carried out separately for oscillators 1 and 2.

13 It is important to pinpoint that, while the choice of a reference cell for the preliminary compensation of the
memristor device-to-device variability should fall for a specific oscillator, as specified here, no rule dictates the
selection of a reference cell for the later computation of the relative phase pattern of the array, as discussed in
Section 4.

14 It is important to observe that, while taking the proposed device-to-device compensation measure, care need
to be taken so as to keep the natural oscillation frequency of each oscillator within a close range. In fact, a wide
spread in this parameter, inevitably differing across the cellular medium, due to the RS tuning procedure,
would jeopardize the convergence of the bio-inspired computing engine to some steady state.

221

J. Low Power Electron. Appl. 2022, 12, 22

DC bias circuit is adjusted through a numerical procedure till the point when its increment
or decrement by ΔRs,j induces a 180◦ phase shift between the memristor currents of the
two cells.

It is important to observe that, in hardware, such RS tuning procedure needs to
be carried out only once, during the computing machine testing phase, directly after
its fabrication. In order to simplify the programmability of the series resistor, it could
be implemented through a voltage-controlled CMOS transistor forced to operate in the
linear region.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

i M
/
m
A

v m

α = 0.0
α = 0.2
α = 0.4
α = 0.6

α = 0.8
α = 1.0

/mV

im/mA
(a)

0°

45°

90°

135°

180°

225°

270°

315°

0ms
1ms

2ms
3ms

(b)

ΔRs,1 = 151Ω
ΔRs,1 = 125Ω
ΔRs,1 = 100Ω
ΔRs,1 = 50Ω

0° 0

45°

90°

135°

1 2 180°

225°

270°

315°

0ms
1ms

2ms
3ms

1

2

(c)

Figure 7. (a) Spread in the distribution of quasi-DC memristor current-voltage loci, as emerging
from numerical simulations of the model Equations (1), (2), and (3) for all values of the variability
parameter α in the set {0, 0.2, 0.4, 0.6, 0.8, 1.0}. (b) Phase diagram showing the time evolution of the
phase shift of oscillator 1 relative to the 0◦-valued phase of the reference oscillator 0 for each of the
values of the series resistance increment ΔRS,1 in the set {50, 100, 125, 151}Ω (refer in turn to the
orange, green, purple, and red traces). The two capacitively-coupled oscillators achieve anti-phase
synchronisation for the largest ΔRS,1-value in this set. (c) Phase diagram illustrating the phase
dynamics of oscillators 1 (in orange) and 2 (in green) for the balanced network of Figure 6(b) for the
case where specific parameters in the model of the memristor in the cells 0, 1, and 2 are respectively
controlled by the first, second, and third α-value within the set {0.5, 0, 1} (see the dashed traces),
and after the negative effects on the network performance associated to the memristor device-to-
device variability have been compensated by incrementing (decrementing) the series resistance RS by
ΔRS,1 = −134 Ω (ΔRS,2 = +151 Ω) (refer to the solid lines).

Remark 2. In view of a future hardware implementation, the parameter setting of the memristive
computing engine could be optimized to increase the data processing speed further. However, a
comprehensive investigation, aimed to ensure this would not impair the accuracy of the engine
calculations, should concurrently be carried out. On one hand, the operating speed of the computing
engine should not be so large to prevent the memristor to respond to the stimuli, it experiences over
time, which would not allow to exploit thoroughly its rich dynamics for solving the challenging
vertex coloring task under focus. On the other hand, the array of capacitively-coupled memristor
oscillators is expected to attain a steady state within a sufficiently-short time frame. For all the
case studies, investigated in this research work, except for those simulations, in which the proposed
computing engine was unable to exit the transient phase, the value assigned to the coupling
capacitance CC enabled the oscillators’ phases to converge to steady-state values within tens of
milliseconds. Each design parameter may in fact affect some key figure of merit of the bio-inspired
network. For example, reducing the capacitance C of each oscillator may induce an acceleration in
the phase dynamics. However, it could also reduce the range of admissible memristor NDR bias
points, about which the processing unit would undergo limit-cycle oscillations [44], which, as a
consequence, would shrink the tuneable range for the series resistance RS in the device-to-device
variability compensation procedure.

4. A Rigorous Strategy for Coloring a Graph via the Network Phase Dynamics

As explained earlier, the assignment of colors to the nodes of a graph is based upon the
relative phases among the oscillators of the associated network at steady state. However,
a rigorous strategy, as proposed below, needs to be applied at the end of the network

222

J. Low Power Electron. Appl. 2022, 12, 22

simulation to classify the vertices of the associated graph into color groups, with the
intention to use the minimum possible number of colors15.

As described earlier, the relative phases among the oscillators of a given network are
computed at the end of a simulation, on the basis of the time instants at which, within a
common steady-state period, the time waveforms of the currents through the memristors
cross a threshold value Ith, here set to 0.5 mA, during the ascending phase. This calculation
allows to order the relative phases in increasing order, with the 0◦ reference level sitting
on the first position of the arrangement, which we refer to as phase shift ordering in the
remainder of the paper. The phase shift ordering directly translates into a corresponding
ranking among the oscillators, with those, which feature a lower steady-state phase relative
to the reference cell, sitting higher in the table. Equivalently, the ranking among the
oscillators may be interpreted as a ranking among the associated vertices.

Our rigorous strategy to assign colors to the vertices of the associated graph on the
basis of the network phase dynamics is based upon the analysis of the oscillator/vertex
ranking through an iterative procedure composed of N iterations. The first iteration
may be summarised as follows. Initially the first vertex in the table, i.e., reference vertex
0, is inserted in the first color group. Proceeding toward the bottom of the table, for
j ∈ {2, . . . , N}, vertex at position j in the table is assigned the same color as (j − 1)th-placed
vertex if the graph features no edge between these two vertices, otherwise the jth-ranked
vertex is defined as the first element of a new color group. After coloring vertex at row N in
the table, a final check needs to be carried out to verify if the vertices in the last color group
may be merged with those in the first color group. This may be done if and only if no pair
of vertices in these two groups is connected by means of an edge in the undirected graph.
In cycle i ∈ {2, . . . , N} of the iterative procedure, the color assignment step is repeated in a
similar fashion, analysing progressively the vertices at positions i, i + 1, . . ., N, 1, 2, . . ., i − 1
in the table. With such iterative procedure, at least one of the cycles will allow to determine
the minimum number of color groups, identifiable by the network, given the phase shift
ordering it outputs at the end of a certain simulation. In other words, indicating the kth

color group, which, on the basis of the prediction of the ith cycle of the iterative procedure,
is identifiable by the network, as C(i)

k (k ∈ {1, . . . , mi}, where mi ∈ [n, N] denotes the total
number of colors assigned to the N nodes of the associated graph in the ith iteration, and n
represents the chromatic number of the graph itself, the proposed strategy will output the
particular group classification obtained from the qth iteration, whereby mq = mini=N

i=1 {mi}.

Remark 3. Remarkably, the initialisation of the oscillatory network, and, particularly, the temporal
order of activation of the DC voltage sources in its oscillators, plays a crucial role on the steady-state
phase arrangement, and, as a result, on the outcome of the proposed strategy. Consequently, it
is possible that the classification of the vertices of a graph into color groups, as estimated via our
iterative procedure, is not optimal. Under these circumstances, the network is unable to identify the
chromatic number of the associated graph, since it converges to an oscillatory solution corresponding
to a local minimum for some optimisation goal associated to the vertex coloring problem.

Let us denote the phase shift vector as ϕ � [ϕ0 = 0◦, . . . , ϕN−1], where ϕi stands for
the phase shift between oscillator i and reference oscillator 0 over the course of a certain
simulation of the network (i ∈ {0, . . . , N − 1}). Given that the network of capacitively-
coupled oscillators tends to pull the phases of physically-connected cells far apart one

15 The proposed strategy will determine the minimum possible number of color groups, which, under a given
initialisation setting, the network is able to identify as it classifies the nodes of the associated graph. Importantly,
as will be clarified later, this minimum number does not necessarily coincide with the chromatic number of
graph, since the network may converge to a correct but suboptimal solution. Methods allowing the memristive
array to overcome a suboptimal solution so as to approach the optimal one will be presented shortly.

223

J. Low Power Electron. Appl. 2022, 12, 22

from the other, it is expected that the phase dynamics unfold toward a steady-state pattern
maximising a function F(ϕ) of the form

F(ϕ) � 1
2
·

N−1

∑
i=0

N−1

∑
j=0

ai,j · |ϕi − ϕj|, (15)

where ai,j is the element at row i and column j of the so-called adjacency matrix A, which
encodes the coupling arrangement within a N-node graph16. Transforming the expression
for F(ϕ) in Equation (15), another function of the phase shift vector, defined as

G(ϕ) � 1
2
·

N−1

∑
i=0

N−1

∑
j=0

ai,j · cos(ϕi − ϕj), (16)

is chosen to describe the optimisation goal of the network as it evolves toward a stable
solution. It is worth pinpointing that the phase shift vector ϕ(s) = [ϕ

(s)
0 = 0◦, . . . , ϕ

(s)
N−1],

emerging in a well-behaved network at steady state, minimises the function G(ϕ). For a
general network, however, the optimization goal function might feature a number of local
minima besides the global minimum. If the oscillatory solution, the network converges to,
at the end of a certain simulation, corresponds to a local (the global) minimum of G(ϕ),
the application of the vertex coloring strategy, described earlier, results in a group number
higher than (equal to) the chromatic number of the associated graph.

The analysis of an exemplary network, specifically the one shown in Figure 3(b),
allows to gain a deeper insight into the phase dynamics of a memristive array in a pair of
simulation scenarios, associated to a suboptimal and to the optimal initialisation scenario,
respectively. The network under focus is already balanced, since each of its oscillators is
coupled to the 2 adjacent cells, thus only the memristor device-to-device variability needs
to be neutralised. Figure 8(a) ((c)) visualises the time evolution of the phase dynamics
emerging in the network under a suboptimal (the optimal) initialisation setting. In both
scenarios the optimisation goal function decreases over time, but, in the first (latter) case,
G(ϕ) converges asymptotically toward a local (the global) minimum, as depicted in plot (b)
((d)) of the same figure.

16 If an (no) edge connects vertices i and j, then ai,j = aj,i = 1(0). Note that A = AT ∈ R
N×N .

224

J. Low Power Electron. Appl. 2022, 12, 22

0°

45°

90°

135°

180°

225°

270°

315°

0

1

2

3

4

5

0ms
2ms

4ms
6ms

8ms
10ms

(a)

0 2 8 10

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

G
(ϕ

)

0

12

3

4 5

 4 6
t/ms

(b)

0°

45°

90°

135°

180°

225°

2

1 2
3

4
5

0ms
2ms

4ms
6ms

8ms
10ms

70°

315°

0

(c)

0 2 8 10
−6

−5

−4

−3

−2

G
(ϕ

)

0

12

3

4 5

(d)

 4 6
t/ms

Figure 8. (a) ((c)) Phase dynamics of the balanced network of Figure 3(b) with compensation for the
memristor device-to-device variability and under a suboptimal (the optimal) initialisation setting. (b)
((d)) Time evolution of the optimisation goal function toward a local (the global) minimum in the
simulation scenario illustrated in plot (a) ((c)). In the first (latter) case the application of the vertex
coloring strategy to the respective vertex ranking divides the 6 nodes of the graph of Figure 3(a) into
3 (2) colors. In the first (latter) case the composition of each of the 3 (2) color groups is made clear by
the colors assigned in plot (a) ((c)) to the arcs of the circular sectors, which host the final destinations
of the traces associated to phase shifts clustering together, as well as by the colors assigned in the
inset of plot (b) ((d)) to the respective nodes of the graph. Since the chromatic number of the graph is
2, the relative phases among the oscillators of the network converge to a suboptimal (the optimal)
pattern in the simulation of plot (a) ((c)).

Let us gain a deeper insight into the outcome of the proposed graph coloring strategy
for the case of the suboptimal simulation, which, as demonstrated in Figure 8(a), outputs
the following steady-state phase shift vector:

ϕ(s) = [ϕ
(s)
0 , ϕ

(s)
1 , ϕ

(s)
2 , ϕ

(s)
3 , ϕ

(s)
4 , ϕ

(s)
5]T = [0◦, 118◦, 240◦, 358◦, 120◦, 242◦]T. (17)

The resulting phase shift ordering, namely ϕs
0 − ϕs

1 − ϕs
4 − ϕs

2 − ϕs
5 − ϕs

3, allows to
establish the following vertex ranking17:

0 − 1 − 4 − 2 − 5 − 3. (18)

17 Since, here, oscillator i is associated to vertex i for each i ∈ {0, . . . , N − 1}, the oscillator sequence, correspond-
ing to the phase shift ordering, may be indifferently referred to as oscillator ranking or vertex ranking. As will
be clarified later on, this is not always the case, when perturbation actions are performed on the network to
enhance its performance.

225

J. Low Power Electron. Appl. 2022, 12, 22

For each i-value in the set {1, . . . , 6}, the ith cycle of the proposed iterative graph col-
oring procedure provides the following group classification of the nodes of the undirected
graph of Figure 3(a):

C(1)
1 = {0, 3}, C(1)

2 = {1, 4}, C(1)
3 = {2, 5}, (19)

C(2)
1 = {1, 4}, C(2)

2 = {2, 5}, C(2)
3 = {3, 0}, (20)

C(3)
1 = {4, 2}, C(3)

2 = {5, 3}, C(3)
3 = {0}, C(3)

4 = {1}, (21)

C(4)
1 = {2, 5}, C(4)

2 = {3, 0}, C(4)
3 = {1, 4}, (22)

C(5)
1 = {5, 3}, C(5)

2 = {0}, C(5)
3 = {1, 4}, C(5)

4 = {2}, (23)

C(6)
1 = {3, 0}, C(6)

2 = {1, 4}, C(6)
3 = {2, 5}. (24)

In each of cycles 1, 2, 4, and 6, our iterative procedure assigns the vertices of the
graph of Figure 3(a) a minimum number of colors, i.e., 3, which, as expected, is higher
than the chromatic number of the graph itself, i.e., n = 2. In each of these iterations the
same three pairs of vertices are grouped together, thus any number in the set {1, 2, 4, 6}
may be assigned to q, and, as a result, any of Equations (19), (20), (22), and (24) may be
taken as outcome of the graph coloring procedure. The suboptimal solution of the graph
coloring problem is clearly indicated in Figure 8(a), where 3 different colors are used to
mark the arcs of the 3 circular sectors, which in turn host the final destinations of the
2 traces associated to the phase shifts of the oscillator pairs (0, 3), (1, 4), and (2, 5), as well
as in the inset of Figure 8(b), where a distinct color is used to fill each node pair in the set
{(0, 3), (1, 4), (2, 5)}.

Let us now analyse comprehensively the working principles of our graph coloring
strategy for the case of the optimal simulation, which produces Figure 9(a) for the dynamical
behaviour of the memristor currents in the 6 oscillators of the network over the steady-state
time interval t ∈ [9.9, 10]ms. Looking in more detail at the evolution of the memristor
currents over the last part of this time interval, i.e., for t ∈ [9.97, 10]ms, Figure 9(b) shows
the common period18 T of the 6 oscillatory waveforms, and marks the time instants t0 and
t3, at which im,0 and im,3 cross the threshold value Ith = 0.5 ms, respectively, allowing to
compute the steady-state phase shift ϕ3(s) between cells 3 and 0, as described in the figure
caption. Computing also the relative phase shifts of the other 5 oscillators of the network
over the common T-long time interval shown in plot (b) of Figure 9(b), the steady-state
phase shift vector ϕ(s) is found to be equal to

ϕ(s) = [ϕ
(s)
0 , ϕ

(s)
1 , ϕ

(s)
2 , ϕ

(s)
3 , ϕ

(s)
4 , ϕ

(s)
5]T = [0◦, 180◦, 5◦, 195◦, 11◦, 182◦]T. (25)

as indicated in Figure 8(c). The resulting phase shift ordering, namely ϕ
(s)
0 − ϕ

(s)
2 − ϕ

(s)
4 −

ϕ
(s)
1 − ϕ

(s)
5 − ϕ

(s)
3 , allows to establish the following vertex ranking:

0 − 2 − 4 − 1 − 5 − 3. (26)

For each i-value in the set {1, . . . , 6}, the ith cycle of the proposed iterative graph col-
oring procedure provides the following group classification of the nodes of the undirected
graph of Figure 3(a):

18 in this work the estimation of the common period T of the oscillations developing in a N-cell network, and the
associated group ordering of the phase shifts of the cells 1, . . ., N − 1 relative to the null phase of the reference
cell 0 are carried out every cycle throughout the duration of any simulation.

226

J. Low Power Electron. Appl. 2022, 12, 22

C(1)
1 = {0, 2, 4}, C(1)

2 = {1, 5, 3}, (27)

C(2)
1 = {2, 4, 0}, C(2)

2 = {1, 5, 3}, (28)

C(3)
1 = {4, 1}, C(3)

2 = {5, 3}, C(3)
3 = {0, 2}, (29)

C(4)
1 = {1, 5, 3}, C(4)

2 = {0, 2, 4}, (30)

C(5)
1 = {5, 3, 1}, C(5)

2 = {0, 2, 4}, (31)

C(6)
1 = {3, 0}, C(6)

2 = {2, 4}, C(6)
3 = {1, 5}. (32)

In each of cycles 1, 2, 4, and 5, our iterative procedure assigns the vertices of the
graph of Figure 3(a) a minimum number of colors, i.e., 2, which, as expected, coincides
with the chromatic number of the graph itself, i.e., n = 2. In each of these iterations the
same two triplets of vertices are grouped together, thus any number in the set {1, 2, 4, 5}
may be assigned to q, and, as a result, any of Equations (27), (28), (30) and (31) may be
taken as outcome of the graph coloring procedure. The optimal solution of the graph
coloring problem is clearly indicated in Figure 8(c), where 2 different colors are used to
mark the arcs of the 2 circular sectors, which in turn host the final destinations of the 3
traces associated to the phase shifts of the oscillator triplets (0, 2, 4), and (1, 5, 3), as well as
in the inset of Figure 8(d), where a distinct color is used to fill each node triplet in the set
{(0, 2, 4), (1, 5, 3)}.

227

J. Low Power Electron. Appl. 2022, 12, 22

9.9 9.92 9.94 9.96 9.98 10
0

1

2

3

4

0

1

2

3

9.97 9.98 9.99 10
0

1

2

3

4

Figure 9. (a) Steady-state time evolution of the memristor current im,i of oscillator i ∈ {0, 1, 2, 3, 4, 5}
over the time interval [9.9, 10]ms for the simulation of the balanced network of Figure 3(b) with
compensation for the memristor device-to-device variability and under the optimal initialisation
setting (see also Figure 8(c),(d) for more results obtained from this simulation). The differences in
the peak values of the waveforms originate from the variability in the static and dynamic properties
of the samples, as reproduced by our memristor model. As was already shown in relation to their
relative phases in Figure 8(c), the oscillator triplets (1, 5, 3) and (0, 2, 4) group together, as respectively
indicated over the first and second half of the first observable cycle, where the order of appearance of
the nearby peaks of the memristor currents follows in turn the patterns 1-5-3 and 0-2-4. The same
color coding map, as established in Figure 8(c) and reused in the inset of Figure 8(d), is adopted here
to differentiate between the traces pertaining to distinct oscillators. (b) Zoom-in view of the time
behaviour of each memristor current in the network across the time span [9.97, 10]ms. The common
period T of the oscillatory waveforms is found to be equal to 19.21μs. As an example, the time instant
t0 (t3), at which the memristor current im,0 (im,5) of oscillator 0 (3) crosses the threshold Ith = 0.5 mA
in its ascending phase over the first observable cycle, gives 9973.8457μs (9984.2351μs), allowing to

compute the steady-state phase of oscillator 3 relative to the reference oscillator 0 via ϕ
(s)
3 = Δt3 · ω0,

with ω0 = 2·π
T . Performing a calculation of this kind for each of the remaining 5 oscillators results in

the steady-state phase shift vector ϕ(s) reported in Equation (25).

5. Control Paradigms to Resolve Local Minima-Based Impasse Conditions

In order to overcome the impasse, emerging when a memristive network converges to
a stable oscillatory solution associated to a local minimum of the optimisation goal function
G(ϕ), it is necessary to destabilise the array through an ad-hoc perturbation. We identified
two possible strategies allowing to pull the dynamical system out of a local minimum of

228

J. Low Power Electron. Appl. 2022, 12, 22

the respective optimisation problem. In many cases, after recovering from the impasse, the
network was found to converge asymptotically toward an oscillatory solution associated
the global minimum of the optimisation goal function. The proposed approaches, referred
to as crossover and pulse destabilisation strategies, are presented in the following two sections.

5.1. Crossover Strategy

One of the strategies, allowing the network to overcome an impasse situation, inspired
from genetic algorithms [45], is based upon the interchange between the connections
of two properly-selected oscillators19 ([31,33]). This corresponds to the exchange of the
associations between the two cells of the network and the corresponding vertices in the
relative graph. In order to select the most appropriate pair of oscillators—let us use indices
i and j to label them—for the crossover, the following two-step procedure is applied.

1. For each value of k in the set {0, . . . , N − 1}, the vertex k is removed from the original
N-node graph, and the iterative vertex coloring strategy is applied to the resulting
graph of (N − 1) nodes, using a modified version of the vertex ranking, which is
tabulated beforehand, after a simulation of the oscillatory network, under a generic
sub-optimal initialisation setting, attains the steady state. Specifically, the label of the
vertex k, taken out of the original graph, is removed from the original vertex ranking,
resulting in a new table with N − 1 entries. For each value of k, a N × N matrix,
denoted as A(k), and obtained from the original adjacency matrix A by setting to 0 all
the elements at row k and at column k, may still be used to define the connectivity of
the respective (N − 1)-node graph. Coloring the N − 1 vertices of N distinct graphs,
at least one of the N problems will be found to admit the best solution, allowing to
categorise the N − 1 nodes of the relative graph through the lowest number of color
groups. The particular node k, which, extracted out of the original graph, allows the
resulting network to identify the least number of colors according to our iterative
vertex coloring procedure, may then be chosen as first vertex i to involve in the
crossover20.

2. Assigning, one at a time, any integer from the set {0, . . . , i − 1, i + 1, . . . , N − 1} to k,
the iterative vertex coloring strategy is then applied to a new vertex ranking, obtained
from the original table by interchanging the positions of vertices i and k. Note that the
original N-node graph, with connectivity defined by the adjacency matrix A, should
be considered in each of the N − 1 applications of the iterative vertex coloring strategy,
since nothing else, except for the correspondence between oscillators and vertices,
is affected in a crossover operation21. Solving the resulting N − 1 vertex coloring
problems, the solution, assigning the least number of colors to the N nodes of the
original graph, will be determined. It may happen that, on the basis of the proposed
iterative procedure, for two or more values of k, the exchange between the positions
of oscillators k and i in the original vertex ranking results in a common lowest number
of color groups for the N nodes of the original graph. In this case, the choice of
the second oscillator j to involve in the crossover falls for the particular candidate

19 The application of a crossover to pairs of oscillators implies the necessity to endow the network with repro-
grammable connections, e.g. via transistor-based switches, which, however, would add on to the integrated
circuit (IC) overhead in a future hardware implementation of the network.

20 In fact, it is highly probable that this node mostly prevents the optimisation measure of Equation (16) from
attaining the global minimum, which would provide as solution to the vertex coloring task the chromatic
number of the original N-node graph, as desired. In case, for each of two or more values of k, the application
of our vertex coloring strategy to the respective (N − 1)-node graph, obtained by removing the vertex k from
the original graph, results in a common lowest number of colors, any of these node i candidates may be finally
considered for the crossover

21 The interchange between nodes i and k operated on the original vertex ranking is due to the fact that the
application of a crossover between the corresponding oscillators in the network is equivalent to exchanging
their associations to the respective pair of vertices in the original graph. The relative phases, inherent to the
oscillators, maintain the same ordering, as established originally. As a result, the oscillator ranking remains
unaltered, but the mapping from oscillator ranking to vertex ranking is subject to the earlier mentioned
node interchange.

229

J. Low Power Electron. Appl. 2022, 12, 22

k, whose relative phase ϕk features the largest distance from the relative phase ϕi of
oscillator i in the steady-state phase shift vector ϕ obtained through the simulation
preceding the application of the two-step strategy.

In order to gain a deeper understanding of the proposed two-step procedure, let us
apply it to the vertex ranking 0− 1− 4− 2− 5− 3, obtained at steady state from a simulation
of the balanced network of Figure 3(b) (or, equivalently, of Figure 10(b), the corresponding
graph of which is illustrated again in Figure 10(a) for the sake of clarity) with compensation
for the memristor device-to-device variability and under the same sub-optimal initialisation
setting as in the simulation illustrated in Figure 8(a),(b) (see the caption of Figure 11 for
details). According to the first step of the procedure, applying our iterative vertex coloring
strategy to the original vertex ranking, i.e., 0 − 1 − 4 − 2 − 5 − 3, after depriving it of the kth

node label, with the associated 5-node graph obtained from the original one of Figure 3(a)
by breaking all the connections of the kth vertex (k ∈ {0, 1, 2, 3, 4, 5}), the smallest number
of colors, the vertices of the 5-node graph are assigned to, is 2 for each k-value in the
set {0, 1}, and 3 for each k-value in the set {2, 3, 4, 5}. The choice for the i cell for the
crossover may then fall either on reference oscillator 0 or on oscillator 1. Let us choose
the latter cell. In line with the second step of the procedure, exchanging the positions of
labels k and i = 1 in the original vertex ranking 0 − 1 − 4 − 2 − 5 − 3 (k ∈ {0, 2, 3, 4, 5}),
the application of the iterative vertex coloring strategy to the resulting sequence, with
respect to the original 6-node graph of Figure 3(a), results in a minimum number of color
groups equal to 2 for each k-value in the set {0, 2}, to 3 for each k-value in the set {3, 4},
and to 4 for k = 5. Now, given that, in the original steady-state phase shift ordering,
ϕ
(s)
2 − ϕ

(s)
0 = 122◦ > ϕ

(s)
1 − ϕ

(s)
0 = 118◦, oscillator with label k = 2 is selected as cell j for

the crossover. With reference to Figure 10, where plots (a) and (b) show once again the
six-node ring-based graph, and the associated capacitively-coupled array of memristor
oscillators, plot (c), redrawn in a different but equivalent form in plot (d), depicts the novel
coupling arrangement in the network upon the interchange between the connections of
oscillators 1 and 2.

Figure 10. (a) Original 6-node ring-based graph. (b) ((c) or, equivalently, (d)) Coupling arrangement
in the network associated to the graph in (a), before (after) a crossover between cells 1 and 2, which
swaps the correspondence between these cells and the respective nodes in the graph.

The numerical results illustrated in Figure 11, where plots (a), (b), and (c) respectively
show phase dynamics, time evolution of the optimisation goal function, and temporal
trend of the solution of the classification task, respectively, provide evidence for the success
of the circuit implementation of the crossover strategy in pulling the dynamical system
out of the impasse state, allowing its asymptotic convergence to the solution of the graph
coloring problem associated to the global minimum of G(ϕ). These results were obtained
by simulating the balanced network of Figure 10(b), with compensation for the memristor
device-to-device variability, and under the same sub-optimal initialisation setting as in the
simulation illustrated in Figure 8(a),(b). With reference to Figure 11, at the end of the first
part of the simulation, covering the time span t ∈ [0, 5)ms,the optimisation goal function
was found to sit at a local minimum value, specifically −3 (see plot (b)), and the minimum
number of colors, which, on the basis of our iterative vertex coloring procedure, may be

230

J. Low Power Electron. Appl. 2022, 12, 22

assigned to the nodes of the graph in Figure 10(a), is 3 (refer to plot (c)). At t = 5 ms the
connections of oscillators 1 and 2 were interchanged, as shown in plot (c) or, equivalently,
in plot (d) of Figure 10. Looking more at Figure 11, the dynamics of the relative phases of
the cells resume directly after the crossover, approaching a new stable steady-state pattern,
whereby G(ϕ) is found to sit at its global minimum level, particularly −6 (see plot (b))),
and the network is able to identify the chromatic number of the graph in Figure 10(a), as
determined through the proposed iterative vertex coloring procedure (refer to plot (c)).

0°

45°

90°

135°

180°

225°

270°

315°

0
1 2
3

4
5

0ms
2ms

4ms
6ms

8ms
10ms

(a)

0 2 4 6 8 10
−6

−5

−4

−3

−2

G
(ϕ

)

time / ms
(b)

0

12

3

4 5

0 2 4 6 8 10

2

3

N
u
m

b
er

o
f

co
lo

rs

time / ms
(c)

Figure 11. (a) Time evolution of the relative phases of the oscillators of the balanced network of
Figure 3(b), with compensation for the memristor device-to-device variability, and under the same
sub-optimal initialisation setting as in the simulation illustrated in Figure 8(a),(b), for the case where
the connections of oscillators 1 and 2 are interchanged at t = 5 ms. Right before the application of
the crossover to the two cells, the network is found to sit on a stable oscillatory solution associated
to a local minimum of the optimisation goal function (see also the three phase clusters emerging in
plot (a) right before the crossover procedure). Despite the phase shift vector, measured much earlier
than it was done in the simulation of Figure 8(a),(b), was found to be slightly different from the one
reported in Equation (17), specifically ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T, the resulting vertex
ordering remains defined by Equation (18). (b) Evolution of the optimisation goal function over
time. (c) Minimum number of color groups assigned through the iterative vertex coloring procedure
of Section 4 to the nodes of the graph in Figure 3(a) over time (the procedure is applied once every
T-long cycle, with the common period T of the oscillatory waveforms of the currents through the
memristors, measured over the time interval [4.965, 4.984]ms, found to be equal to 19.24 μs). After
the crossover these nodes are classified into 2 groups (c). The interchange between the couplings of
oscillators 1 and 2 was thus found to resolve the impasse, allowing the memristive array to approach
the optimal solution associated to the global minimum of G(ϕ), and to identify the chromatic number
n = 2 of the associated graph (see also the two phase clusters emerging in plot (a) at the end of
the simulation).

As anticipated earlier, the circuit implementation of the crossover strategy crucially re-
quires the availability of reprogrammable connections among the oscillators of the network.
This inevitably increases the area overhead of the hardware platform. Furthermore, the cir-
cuitry necessary to endow the network with reprogrammable connectivity, may introduce
some mismatch between the capacitive loads of the oscillators, which may represent an
obstacle toward the convergence of the phase dynamics of the memristive array toward the
pattern corresponding to the global minimum of the optimisation problem. For this reason,
another strategy for pulling the dynamical system out of a local minimum, which is more
amenable to circuit implementation, is presented in the next section.

5.2. Pulse Destabilisation Strategy

Inspired from simulated annealing algorithms [46] as well from our latest approach—
referred to as Kick-Fly-Catch paradigm—for humanoid robot motion control [47,48], the
proposed strategy ([31,33]) is based upon supplying energy to the system, while it sits in
an impasse state. Particularly, a pulse is applied to an ad-hoc oscillator by offsetting the
value VS of its DC voltage source by an appropriate amount ΔVS for a given time interval
of length Tp. Consequently, the relative phase of the oscillator, sitting at the steady-state

231

J. Low Power Electron. Appl. 2022, 12, 22

level ϕ(s) previous to the stimulation, experiences a sudden shift by Δϕ, which is found to
depend upon amplitude ΔVS and length Tp of the voltage pulse. Taking inspiration from
the research study presented in [49], extensive numerical simulations revealed that, for a
given pulse width22 Tp, there is an approximately-linear relation between the pulse height
ΔVS and the sudden shift Δϕ, that the relative phase of the oscillator experiences upon
destabilisation, i.e.,

ΔVS ≈ V0 · Δϕ

180◦ , (33)

where V0 was numerically set to −0.23 V for the networks analysed in this research study23.
Provided the right choice is made regarding the cell to perturb, and the proper amplitude
and width are assigned to the voltage pulse stimulus, the resulting resumption of the phase
dynamics of the oscillators should ideally allow the optimisation goal function to move out
of the local minimum, converging asymptotically toward its global minimum. A two-step
procedure, presented below, is proposed here to determine the most suitable cell to perturb
and the most appropriate pulse amplitude.

1. The most suitable oscillator i ∈ {0, . . . , N − 1} to target in the pulse destabilisa-
tion action is determined in the same way as was done for the selection of the cell
i ∈ {0, . . . , N − 1} to involve in the crossover process (see the first step in the pro-
cedure aimed to choose the right cell pair (i, j) to involve in the coupling inter-
change strategy).

2. The second step is aimed to determine the appropriate shift Δϕ to be added to the

steady-state relative phase ϕ
(s)
i of oscillator i for pulling the network out of the local

minimum state, facilitating its convergence to an oscillatory solution, which would
ideally correspond to the least number of color groups for the N vertices of the associ-
ated graph. To accomplish this task, for each value of k within the set {1, . . . , M − 1},
with M a predefined positive integer, the offset Δϕk = k · 360◦

M is added to the phase

shift ϕ
(s)
i of cell i in the steady-state relative phase shift vector ϕ(s) recorded before

the application of the pulse destabilisation process, and the iterative graph coloring
procedure is applied to the resulting vertex ranking for the original graph. The choice
for the most appropriate offset Δϕ, within the specified set of k-dependent uniformly-
spaced values, goes for the Δϕk-candidate, which, according to our graph coloring
strategy, allows the network to classify the nodes of the associated graph in the lowest
number of color groups. If, for two or more k-values, the application of the iterative
graph coloring procedure to the vertex ranking, resulting from the phase shift order-
ing, obtained by adding up the relevant offset Δϕk to the phase shift ϕ

(s)
i of oscillator

i in the steady-state relative phase shift vector ϕ(s), leads to the identification of the
same lowest number of colors, the selection goes for the Δϕk-candidate featuring the
largest modulus. Finally, the pulse amplitude of the Tp-long stimulus to be applied to
oscillator i is obtained from Equation (33).

In order to gain more insights into the mechanisms underlying this two-step procedure,
let us apply it to the vertex ranking 0 − 1 − 4 − 2 − 5 − 3, obtained at steady state from a
simulation of the balanced network of Figure 3(b) with compensation for the memristor
device-to-device variability and under the same sub-optimal initialisation setting as in the
simulation illustrated in Figure 8(a),(b) (see the caption of Figure 12 for details). Given
that the first step of the procedure is identical to the first step of the algorithm allowing to

22 In this work Tp was set to twice the common graph-dependent period T of the oscillatory waveforms of
the capacitor voltages and of the memristor currents in the network before the application of the pulse
destabilisation paradigm.

23 We acknowledge, however, that the most suitable formula, expressing the relationship between the amplitude
ΔVS of a destabilising pulse of fixed width Tp and the resulting sudden shift Δϕ in the phase of the perturbed
oscillator, may depend upon network properties and parameters. A deeper study, aimed to optimise the shape
of the destabilisation stimulus, will be carried out in the future.

232

J. Low Power Electron. Appl. 2022, 12, 22

select the optimal cell pair (i, j) to involve in the crossover strategy, retrieving the results
presented in the previous section, either oscillator from the label set i ∈ {0, 1} may be
chosen as target of the pulse destabilisation action. Let us go for the latter one. Following
the guidelines established for the second step of the procedure, setting M to 4, for each k-
value in the set {1, 2, 3}, colors are assigned to the nodes of the original graph of Figure 3(a)
by applying the proposed iterative methodology to the kth vertex ranking variant derived
from the phase shift vector ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T recorded right before
the time instant24 t = 5 ms, at which the pulse perturbation action is commenced by adding
up the kth value of Δϕk in the set {90◦, 180◦, 270◦} to the relative phase ϕ

(s)
1 of oscillator

1. Analysing the kth vertex ranking within the set {0 − 4 − 1 − 2 − 5 − 3, 0 − 4 − 2 − 5 −
1 − 3, 0 − 1 − 4 − 2 − 5 − 3} (k ∈ {1, 2, 3}), according to our node coloring paradigm the
network identifies a minimum number of color groups equal to the kth number in the set
{3, 2, 3}. Setting k to 2 in the formula for Δϕk, from Equation (33) the amplitude ΔVS of
the pulse applied to oscillator 1 at t = 5 ms for a Tp = 38.48μs-long time interval is set to
−0.23 V (see the caption of Figure 12 for details).

0°

45°

90°

135°

180°

225°

270°

315°

01
2

3
45 0ms

2ms
4ms

6ms
8ms

10ms

(a)

0 2 4 6 8 10
−6

−5

−4

−3

−2

G
(ϕ

)

time / ms
(b)

0

12

3

4 5

0 2 4 6 8 10

2

3

N
u
m

b
er

o
f

co
lo

rs

time / ms
(c)

Figure 12. (a) Phase dynamics of the balanced network of Figure 3(b), with compensation for the
memristor device-to-device variability, and under the same sub-optimal initialisation setting as in
the simulation illustrated in Figure 8(a)-(b), for the case where the voltage VS of the DC source in
oscillator 1 is offset by ΔVs = −0.23 V from the time instant t = 5 ms for a temporal window of
duration Tp = 38.48μs (the common period T of the oscillatory waveforms of the currents through
the memristors, measured over the time interval [4.965, 4.984]ms, was found to be equal to 19.24 μs).
As discussed earlier, right before the application of the pulse to cell 1, which triggers a sudden shift
in its relative phase by approximately 180◦, the network is found to sit on a stable oscillatory solution
associated to a local minimum of the optimisation goal function (see also the three phase clusters
emerging in plot (a) right before the pulse destabilisation action). Despite the phase shift vector,
measured much earlier than it was done in the simulation of Figure 8(a),(b), was found to be slightly
different from the one reported in Equation (17), specifically ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T,
the resulting vertex ordering remains defined by Equation (18). (b) Time evolution of the optimisation
goal function. (c) Minimum number of color groups assigned through the iterative vertex coloring
procedure of Section 4 to the nodes of the graph in Figure 3(a) over time (the procedure is applied once
every T-long cycle). After the pulse destabilisation 2 colors are assigned to these nodes. The pulse-
based perturbation of oscillator 1 was thus found to resolve the impasse, allowing the memristive
array to approach the optimal solution associated to the global minimum of G(ϕ), and to identify the
chromatic number n = 2 of the associated graph (see also the two phase clusters emerging in plot
(a) at the end of the simulation). Despite, at the time instant t = 5 ms, when the pulse perturbation
commences, G(ϕ) undergoes a sudden increase from the local minimum value of −3, it descends
steeply straight away, decreasing monotonically toward the global minimum value of −6 thereafter.

The numerical results illustrated in Figure 12, where plots (a), (b), and (c) respectively
show phase dynamics, time evolution of the optimisation goal function, and temporal trend

24 In order to present a fair comparison between the beneficial effects of the crossover and pulse destabilisation
control paradigms, we ensured that the simulations in Figures 11 and 12 provided identical results for
t ∈ [0, 5)ms by choosing the same initialisation setting, and assigning a common random set of α-values to the
memristors.

233

J. Low Power Electron. Appl. 2022, 12, 22

of the solution of the classification task, respectively, provide evidence for the success of the
circuit implementation of the pulse destabilisation strategy in pulling the dynamical system
out of the impasse state, allowing its asymptotic convergence to the solution of the graph
coloring problem associated to the global minimum of G(ϕ). These results were obtained
by simulating the balanced network of Figure 10(b), with compensation for the memristor
device-to-device variability, and under the same sub-optimal initialisation setting as in
the simulation illustrated in Figure 8(a),(b). With reference to Figure 12, at the end of
this first part of the simulation, covering the time interval expressed as t ∈ [0, 5)ms, the
optimisation goal function was found to sit at a local minimum value, specifically −3 (see
plot (b)), and the minimum number of colors, which, on the basis of our iterative vertex
coloring procedure, may be assigned to the nodes of the graph in Figure 3(a), is 3 (refer
to plot (c)). From the time instant t = 5 ms and for a Tp = 38.48μs-long time interval,
the offset ΔVS = −0.23 V is added up to the nominal value VS of the DC voltage source
in oscillator 1. As may be evinced by inspecting Figure 11, the relative phase of cell 1
undergoes a sudden shift by approximately 180◦, and, thereafter, the phase dynamics of the
network evolve toward a new stable steady-state pattern, whereby G(ϕ) is found to sit at
its global minimum level, particularly −6 (see plot (b))), and the network is able to identify
the chromatic number of the graph in Figure 10(a), as determined through the proposed
iterative vertex coloring procedure (refer to plot (c)).

5.3. Discussion

Since a single crossover or pulse destabilisation manoeuvre may be unable to pull a
more complex memristive network out of an impasse situation, or to reach the solution
associated to the global minimum of the optimisation goal function, in case the dynamical
system receives enough energy to move out of the solution associated to a local minimum
of the optimisation goal function25, a good approach to address this issue would be to
reapply either of the two proposed strategies periodically, interchanging the connections of
two distinct appropriate oscillators or applying a suitable destabilising pulse to a different
ad-hoc oscillator at regular time intervals26.

Let us provide a proof of principle of the proposed approach, focusing on the pulse
destabilisation control strategy. Similar results were obtained through the periodic ap-
plication of the crossover paradigm. With reference to Figure 13, plot (a) shows the time
evolution of the phase shifts of the oscillators with labels running from 1 to 24 with respect
to the reference cell 0 in a capacitively-coupled network of NbOx memristor oscillators
implementing a N = 25-node undirected graph known as queen5_5 [50]—see also the inset
in plot (b)—in case compensation for the mismatch between the capacitive loads of the
oscillators and for the memristor device-to-device variability is set in place, and for the case
where, periodically, on the basis of the two-step strategy introduced in Section 5.2, a distinct
oscillator is perturbed by means of a Tp-long pulse of appropriate height ΔVs. As shown in
plot (b) the optimisation goal function evolves progressively through various local minima
before attaining the global minimum value, which is associated to the identification of the
chromatic number of the queen5_5 graph, i.e., n = 5, as demonstrated in plot (c). After a
38 ms-long transient time interval, the network exhibits a robust oscillatory solution, given
that the subsequent application of destabilisation pulse stimuli to the oscillators does no
longer affect the phase dynamics.

25 In some cases, after overcoming the impasse situation, the dynamical system could approach a new oscillatory
solution associated to another local minimum of G(ϕ).

26 The time separation Tint between consecutive applications of the crossover or pulse destabilisation strategy
is set to 2 ms in the simulations discussed in this section. Furthermore, in this work the estimation of the
common period T of the oscillations appearing in a N-cell network, and the associated group ordering of the
phase shifts of the cells 1, . . ., N − 1 relative to the null phase of the reference cell 0 are carried out every cycle
throughout the duration of any simulation. Moreover, in the first (latter) control strategy, the application of a
pulse to the same oscillator (a crossover involving either oscillator from the same pair) is not allowed until at
least 5 iterations of the control strategy have elapsed first. As a result, each pulse destabilisation (crossover)
manoeuvre targets a different oscillator (involves a different pair of oscillators).

234

J. Low Power Electron. Appl. 2022, 12, 22

0°

45°

90°

135°

180°

225°

270°

315°

0ms20ms40ms60ms80ms100ms

(a)

0 20 40 60 80 100

−40

−20

0

20

40

G
(ϕ

)

time / ms

(b)

0 20 40 60 80 100

6

8

10

12

14

N
u
m

b
er

o
f

co
lo

rs

time / ms

(c)

Figure 13. Evidence for the capability of a 25-cell network, preliminarily compensated for the
unbalance in the number of connections per oscillator, and for the inter-device variability inherent to
memristors, to converge toward the optimal solution of the vertex coloring problem for the graph
queen5_5 [50]. The cyclic application of a pulse stimulus of fixed length and appropriate amplitude to
an ad-hoc oscillator of the network guides the phase dynamics toward the global minimum solution.
(a) Phase diagram visualising the time evolution of the phase of each oscillator j ∈ {1, . . . , 24} relative
to the phase of the reference oscillator 0. (b) Time waveform of the optimisation goal function G(ϕ).
(c) Progression of the outcome of the iterative vertex coloring procedure of Section 4 over time.
Throughout the second half of the simulation the minimum number of color groups, assigned to the
vertices of the graph queen5_5, visualised in the inset of plot (b), is fixed to the chromatic number
n = 5 of the graph itself, despite the network is subject to further pulse-based perturbations.

Table 3 shows a comparison between the solutions of the node coloring task for a
number of graphs [50] pertaining to the 2nd algorithm implementation challenge for NP-
hard problems in Discrete Mathematics and Theoretical Computer Science (DIMACS) [51],
derived from the application of various techniques, namely an algorithmic approach
known as Brélaz heuristic [52], methods based upon the analysis of the phase dynamics of
capacitively-coupled arrays of locally-active memristor oscillators without a control strategy
for bypassing local minima solutions, as respectively presented in [42], and in Section 4,
and, finally, paradigms including either a reconfigurability of the oscillators’ couplings,
as discussed in Section 5.1, or a perturbation of the memristive array, as presented in
Section 5.2, to enable the dynamical system to exit an impasse state, and to resume the
calculations of the problem solution, thereafter.

The results obtained through the analysis of the phase dynamics in memristive os-
cillatory networks—refer to the approach employed in [42] and to our iterative strategy
from Section 4, where no technique to bypass local minima solutions is set in place, are
comparable to the corresponding ones of the Brélaz heuristic algorithm. As may be evinced
from Table 3, the graph coloring paradigm implemented through capacitively-coupled
memristive oscillators in [42] classifies the vertices of all investigated graphs, with the
exception of the one called queen6_6 [50], into a number of color groups equal to or lower
than the number of colors assigned to the nodes of the corresponding graphs through the
proposed iterative strategy from Section 4. However, it should be pointed out that, while
the nominal parameter setting in cell and coupling circuits is unaltered in the numerical
investigations of the networks of all the graphs in Table 3, it is unclear whether the same
values were assigned to the physical attributes of the components of the array for the
simulations of the corresponding systems in [42]. Furthermore, while the mathematical
characterisation of our NbOx resistance switching memory is rooted on strong physics foun-
dations, and is endowed with device-to-device variability control, the simplistic, model
adopted to characterise the locally active VO2 memristor in [42], has no physics basis,
assuming that the two-terminal element may feature at any given time one of two conduc-
tance values, denoting the metallic and insulating state, respectively, depending upon the
voltage falling across it, and does not account for the inherent spread in the device static
and dynamic properties from sample to sample. The application of our iterative graph
coloring strategy to the vertex orderings derived from the simulations of the networks from
Table 3, for the case where the tendency of the oscillators’ phase shifts to approach local

235

J. Low Power Electron. Appl. 2022, 12, 22

minima solutions is counterbalanced through the implementation of either the crossover or
the pulse destabilisation control paradigms, leads to an evident performance improvement.
With reference to each of the graphs—namely mycie15, queen5_5, queen6_6, queen7_7,
and queen8_8—whereby, according to the iterative strategy from Section 4, our memristive
network is unable to identify the chromatic number n on its own, the periodic application
of either of the two control paradigms from Sections 5.1 and 5.2 allows the lowest number
of colors assigned to the N vertices to decrease, and, in most cases, the final phase pattern
of the memristive oscillatory array allows to determine the global minimum solution. As an
example, which also reveals how further studies are necessary to improve the performance
of our memristive networks in coloring the vertices of complex graphs, Figure 14(a) shows
the phase dynamics of a balanced network implementing the queen6_6 graph [50], for
the case where the mismatch in the number of couplings per oscillator and the memristor
device-to-device variability are respectively compensated via the methodologies described
in Sections 3.2 and 3.3, and a periodic application of the crossover control paradigm of
Section 5.1, involving a distinct pair of oscillators from cycle to cycle, is set in place. In
this case, the network keeps in a transient phase throughout the simulation. As may be
evinced by inspecting the time evolution of the optimisation goal function G(ϕ), shown
in plot (b), and the evolution of the outcome of our iterative vertex coloring strategy over
time, illustrated in plot (c), the dynamical system does not exhibit a monotonic decrease
toward the global minimum solution, escaping the best solution, computed around 50 ms,
to approach higher local minima thereafter. With regard to our intention to enhance the
local minima bypass paradigms further, the analysis of the potentially-beneficial impact of
the memristor thermal noise source on the capability of the dynamical system to descend
monotonically toward the global minimum solution is one of the future research activities
in our agenda.

Remark 4. The first priority in our research agenda is to realize a hardware prototype able to solve
various graph coloring problems of small/medium size on the basis of the oscillators’ phase dynamics.
In order to allow a hardware implementation of the proposed memristive computing engine to solve
a number of different graph coloring problems, the connections between the processing units need to
be adjustable on a case by case basis, which calls for the use of a coupling arrangement typical of
a Hopfield neural network, with the introduction of a transistor switch, controllable via some ad
hoc multiplexer, in series with each capacitor CC. While hardware architecture considerations for
large networks are still quite premature, we believe that scaling up the size of the computing engine
would require the use of an array-like structure, as typically used for memories, to implement the
programmable coupling circuitry. Except for the memristors, which could be arranged in crossbar
configuration across the metal layers, the rest of the circuitry, necessary to implement the oscillatory
cells, would be laid out on the CMOS substrate. In later generations of the proposed hardware, also
back-end of line (BEOL) transistors can be envisioned so as to further increase the area efficiency
of the computing platform. From a problem-solving perspective, scaling up the network size to
tackle problems of bigger dimension, envisaging, in general, a larger number of connections between
the vertices of the associated graphs, shall result in an inevitable increase in the number of local
minima for the optimization goal function, which complicates the operation of the control circuitry,
as it tries to guide the oscillators’ phases toward the optimal grouping at steady state. This is a
general problem for all state-of-the-art software algorithms and hardware platforms, which aim
to minimize non-convex optimization goal functions. In order to solve graph coloring problems
of higher complexity, some fine tuning of the control strategies, proposed in this manuscript, as
inspired by the most efficient NP-hard optimization problem solvers, available today, is expected to
be necessary.

236

J. Low Power Electron. Appl. 2022, 12, 22

Table 3. Comparison between the solutions of the vertex coloring problem for various graphs [50] for
the 2nd algorithm implementation challenge for NP-hard problems in DIMACS [51], obtained through
the application of a specific algorithm, known as Brélaz heuristic [52], by means of methods exploiting
the phase dynamics of capacitively-coupled memristive networks without a control strategy for
bypassing local minima solutions, namely the technique proposed in [42], and the iterative node
coloring procedure, presented in Section 4, and via the iterative node coloring procedure augmented
with strategies, based upon crossover and pulse destabilisation, presented in Sections 5.1 and 5.2,
respectively, and aimed to overcome local minima solutions [31]. The results tabulated in the last
three columns were computed through the analysis of 100 ms long numerical simulations.

Minimum Number of Color Groups for the Classification of the Vertices of the Associated Group

graph vertices n Brélaz algorithm [42] iterative strategy iterative strategy and crossover control iterative strategy and pulse destabilisation control
mycie13 11 4 4 4 4 4 4
mycie14 20 5 5 5 5 5 5
mycie15 47 6 6 6 7 6 6

queen5_5 25 5 7 6 7 5 5
queen6_6 36 7 10 12 11 8 8
queen7_7 49 7 12 12 14 10 10
queen8_8 64 9 15 14 15 13 13

0°

45°

90°

135°

180°

225°

270°

315°

0ms20ms40ms60ms80ms100ms

(a)

0 20 40 60 80 100

−60

−40

−20

0

20

40

60

G
(ϕ

)

time / ms

(b)

0 20 40 60 80 100

8

10

12

14

16

18

N
u
m

b
er

o
f

co
lo

rs
time / ms

(c)

Figure 14. (a) Phase dynamics of the network associated to the graph queen6_6 [50], after its
preliminary compensation for the unbalance in the number of connections per oscillator, and for the
inter-device variability inherent to memristors, upon the periodic interchange between the couplings
of two specific oscillators. In this case the phase dynamics of the network keep in a transient state
throughout the 100 ms-long simulation. (b) Evolution of the optimisation goal function G(ϕ) over
time. (c) Minimum number of colors, assigned to the nodes of the graph queen6_6 through the
iterative vertex coloring procedure of Section 4, applied once every cycle, versus time. Half way
through the simulation the nodes of the graph, illustrated in the inset of plot (b), are classified into
8 color groups, one more than the correct number (refer to Table 3), but this solution proves to be
unstable, when the network, thereafter, is subject to further crossover-based perturbations.

6. Conclusions

The local activity [26] of NbOx memristors ([27,28]) allows the emulation of neuronal
dynamics ([9,11]), the implementation of bio-inspired signal processing paradigms [53],
and the reproduction of complex phenomena [30] emerging in systems from cellular
biology [44]. This manuscript serves as a pedagogical tutorial to the operating principles
of a cellular nonlinear network of oscillators, coupled through linear capacitors, and
employing one locally-active memristor [43] each, recently introduced in [31] to solve
a non-deterministic polynomial (NP)-hard combinatorial optimization problem, known
as vertex coloring. While, due to page limitation, only a compact description of the
signal processing paradigm, implemented by the proposed Memristor Oscillatory Network,
was reported in [31], this tutorial reports all the details of the mechanisms underlying
its modus operandi. Importantly, control methods [33] to compensate for the inherent
variability of memristor devices, to counteract the imbalance between the load capacitances
of the oscillators, as well as, most importantly, to prevent the bio-inspired network to
attain a sub-optimal steady state, are developed and implemented in circuit form. The
Memristor Oscillatory Network, endowed with the proposed control circuitry, is found to
outperform state-of-the-art software and hardware competitor alternatives, identifying, for

237

J. Low Power Electron. Appl. 2022, 12, 22

each graph from a wide selection, the lowest number of color groups for the respective
vertices. As a more general conclusion, the potential of all locally-active devices, including
niobium ([28,43,54]) or vanadium dioxide [55] threshold switches, and ovonic threshold
switches [56,57], is expected to be subject to a thorough exploration, in the years to come,
for a possible exploitation of their small-signal amplification capability for electronics
applications, e.g. to build nano-oscillators with tuneable frequency ([58]), to solve NP-hard
combinatorial optimization problems, as discussed in this manuscript, for reproducing
complex biological phenomena [44], for exploring new forms of computing via pattern
formation dynamics [59], or for designing bio-plausible neuromorphic circuits [10].

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chua, L.O. Memristor: The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
2. Chua, L.O.; Kang, S. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [CrossRef]
3. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]

[PubMed]
4. Prodomakis, T.; Toumazou, C.; Chua, L.O. Two Centuries of Memristors. Nat. Mater. 2012, 11, 478–481. [CrossRef] [PubMed]
5. Chua, L.O. If It’s Pinched, It’s a Memristor. Semicond. Sci. Technol. 2014, 29, 104001. [CrossRef]
6. Ielmini, D.; Waser, R. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, 1st ed.;

Wiley-VCH: Weinheim, Germany, 2016; ISBN-13: 978-3527334179.
7. Mikolajick, T.; Salinga, M.; Kund, M.; Kever, T. Nonvolatile Memory Concepts Based on Resistive Switching in Inorganic Materials.

Adv. Eng. Mater. 2009, 11, 235–240. [CrossRef]
8. Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; Deligeorgis, G.; Prodromakis, T. Integration of nanoscale memristor synapses in

neuromorphic computing architectures. Nanotechnology 2013, 24, 384010. [CrossRef]
9. Pickett, M.D.; Medeiros-Ribeiro, G.; Williams, R.S. A scalable neuristor built with Mott memristors. Nat. Mater. 2013, 12, 114–117.

[CrossRef]
10. Yi, W.; Tsang, K.K.; Lam, S.K.; Bai, X.; Crowell, J.A.; Flores, E.A. Biological plausibility and stochasticity in scalable VO2 active

memristor neurons. Nat. Commun. 2018, 9, 1–10. [CrossRef]
11. Kang, S.M.; Choi, D.; Eshraghian, J.K.; Zhou, P.; Kim, J.; Kong, B.S.; Zhu, X.; Demirkol, A.S.; Ascoli, A.; Tetzlaff, R.; Lu, W.D.;

Chua, L.O. How to Build a Memristive Integrate-and-Fire Model for Spiking Neuronal Signal Generation. IEEE Trans. Circuits
Syst. I Regul. Pap. 2021, 68, 4837–4850. [CrossRef]

12. Tetzlaff, R.; Ascoli, A.; Messaris, I.; Chua, L.O. Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomputing
with Bistable-like Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 502–515. [CrossRef]

13. Ascoli, A.; Messaris, I.; Tetzlaff, R.; Chua, L.O. Theoretical Foundations of Memristor Cellular Nonlinear Networks: Stability Analysis
with Dynamic Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1389–1401. [CrossRef]

14. Ascoli, A.; Tetzlaff, R.; Kang, S.M.; Chua, L.O. Theoretical Foundations of Memristor Cellular Nonlinear Networks: A DRM2-
based Method to Design Memcomputers with Dynamic Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2753–2766.
[CrossRef]

15. Chua, L.O. (Ed.) CNN: A Paradigm for Complexity; World Scientific Series on Nonlinear Science: Singapore, 1998; ISBN 978-
9810234836.

16. Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [CrossRef] [PubMed]
17. Ventra, M.D.; Traversa, F.L. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. J. Appl. Phys.

2018, 123, 180901. [CrossRef]
18. Talati, N.; Gupta, S.; Mane, P.; Kvatinsky, S. Logic Design within Memristive Memories Using Memristor Aided loGIC (MAGIC).

IEEE Trans. Nanotechnol. 2016, 15, 635–650. [CrossRef]
19. Ali, A.H.; Hur, R.B.; Wald, N.; Ronen, R.; Kvatinsky, S. Not in Name Alone: A Memristive Memory Processing Unit for Real

In-Memory Processing. IEEE Micro 2018, 38, 13–21.
20. Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [CrossRef]
21. Tzouvadaki, I.; Jolly, P.; Lu, X.; Ingebrandt, S.; de Micheli, G.; Estrela, P.; Carrara, S. Label-Free Ultrasensitive Memristive

Aptasensor. Nanoletters 2016, 16, 4472–4476. [CrossRef]
22. Ibarlucea, B.; Akbar, T.F.; Kim, K.; Rim, T.; Baek, C.-K.; Ascoli, A.; Tetzlaff, R.; Baraban, L.; Cuniberti, G. Ultrasensitive Detection

of Ebola Matrix Protein in a memristor mode. NanoResearch 2018, 11, 1057–1068. [CrossRef]

238

J. Low Power Electron. Appl. 2022, 12, 22

23. Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural
networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [CrossRef]

24. Sebastian, A.; Tuma, T.; Papandreou, N.; Gallo, M.L.; Kull, L.; Parnell, T.; Eleftheriou, E. Temporal correlation detection using
computational phase-change memory. Nat. Commun. 2017, 8, 1115. [CrossRef] [PubMed]

25. Sheng, X.; Graves, C.E.; Kumar, S.; Li, X.; Buchanan, B.; Zheng, L.; Lam, S.; Li, C.; Strachan, J.P. Low-Conductance and Multilevel
CMOS-Integrated Nanoscale Oxide Memristors. Adv. Electron. Mater. 2019, 5, 1800876. [CrossRef]

26. Chua, L.O. Local activity is the origin of complexity. Int. J. Bifurc. Chaos 2005, 15, 3435–3456. [CrossRef]
27. Pickett, M.D.; Williams, R.S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint

nanodevices. Nanotechnology 2012, 23, 215202. [CrossRef]
28. Ascoli, A.; Slesazeck, S.; Mähne, H.; Tetzlaff, R.; Mikolajick, T. Nonlinear dynamics of a locally-active memristor. IEEE Trans.

Circuits Syst. I (TCAS–I) Regul. Pap. 2015, 62, 1165–1174. [CrossRef]
29. Cai, F.; Kumar, S.; Vaerenbergh, T.V.; Sheng, X.; Liu, R.; Li, C.; Liu, Z.; Foltin, M.; Yu, S.; Xia, Q.; Yang, J.J.; Beausoleil, R.; Lu,

W.D.; Strachan, J.P. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat.
Electron. 2020, 3, 409–418. [CrossRef]

30. Weiher, M.; Herzig, M.; Tetzlaff, R.; Ascoli, A.; Mikolajick, T.; Slesazeck, S. Pattern formation with local active S-type NbOx
memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2627–2638. [CrossRef]

31. Weiher, M.; Herzig, M.; Tetzlaff, R.; Ascoli, A.; Slesazeck, S.; Mikolajick, T. Improved Vertex Coloring With NbOx Memristor-Based
Oscillatory Networks. IEEE Trans. Circuits Syst. I 2021, 68, 2082–2095. [CrossRef]

32. Vázquez, A.R.; Fernández-Berni, J.; Leñero-Bardallo, J.A.; Vornicu, I.; Carmona-Galán, R. CMOS Vision Sensors: Embedding
Computer Vision at Imaging Front-Ends. IEEE Circuits Syst. Mag. 2018, 18, 90–107. [CrossRef]

33. Ascoli, A.; Weiher, M.; Herzig, M.; Tetzlaff, R.; Slesazeck, S.; Mikolajick, T. Control Strategies to Optimize Graph Coloring via
M-CNNs with Locally-Active NbOx Memristors. In Proceedings of the International Conference on Modern Circuits and Systems
Technologies (MOCAST) on Electronics and Communications, Thessaloniki, Greece, 5–7 July 2021.

34. Slesazeck, S.; Mähne, H.; Wylezich, H.; Wachowiak, A.; Radhakrishnan, J.; Ascoli, A.; Tetzlaff, R.; Mikolajick, T. Physical model of
threshold switching in NbO2 based memristors. J. R. Soc. Chem. 2015, 5, 102318–102322. [CrossRef]

35. Slesazeck, S.; Herzig, M.; Mikolajick, T.; Ascoli, A.; Weiher, M.; Tetzlaff, R. Analysis of Vth variability in NbOx-based threshold
switches. In Proceedings of the IEEE Nonvolatile Memory Technology Symposium (NVMTS), Pittsburgh, PA, USA, 17–19 October
2016; Carnegie Mellon University: Pittsburgh, PA, USA, 2016. [CrossRef]

36. Gibson, G.A.; Musunuru, S.; Zhang, J.; Vandenberghe, K.; Lee, J.; Hsieh, C.-C.; Jackson, W.; Jeon, Y.; Henze, D.; Li, Z.; Williams,
R.S. An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 2016, 108,
023505. [CrossRef]

37. Herzig, M.; Weiher, M.; Ascoli, A.; Tetzlaff, R.; Mikolajick, T.; Slesazeck, S. Multiple slopes in the negative differential resistance
region of NbOx-based threshold switches. J. Phys. D Appl. Phys. 2019, 52, 325104. [CrossRef]

38. Herzig, M.; Weiher, M.; Ascoli, A.; Tetzlaff, R.; Mikolajick, T.; Slesazeck, S. Improvement of NbOx-based threshold switching
devices by implementing multilayer stacks. Semicond. Sci. Technol. 2019, 34, 075005. [CrossRef]

39. Pickett, M.D.; Strukov, D.B.; Borghetti, J.L.; Yang, J.J.; Snider, G.S.; Stewart, D.R.; Williams, R.S. Switching dynamics in titanium
dioxide memristive devices. J. Appl. Phys. 2009, 106, 074508. [CrossRef]

40. Chua, L.O. Five Non-Volatile Memristor Enigmas Solved. Appl. Phys. A 2018, 124, 563. [CrossRef]
41. Wu, C.W. Graph Coloring via Synchronization of Coupled Oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45,

974–978.
42. Parihar, A.; Shukla, N.; Jerry, M.; Datta, S.; Raychowdhury, A. Vertex coloring of graphs via phase dynamics of coupled oscillatory

networks. Sci. Rep. 2017, 7, 1–11. [CrossRef]
43. Ascoli, A.; Demirkol, A.S.; Tetzlaff, R.; Slesazeck, S.; Mikolajick, T.; Chua, L.O. On Local Activity and Edge of Chaos in a NaMLab

Memristor. Front. Neurosci. 2021, 15. [CrossRef]
44. Ascoli, A.; Demirkol, A.S.; Tetzlaff, R.; Chua, L.O. Edge of Chaos Theory Resolves Smale Paradox. IEEE Trans. Circuits Syst. I Reg.

Pap. 2022, 69, 252–1265. [CrossRef]
45. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998; ISBN 978-0262631853.
46. Chibante, R. Simulated Annealing: Theory with Applications; Sciyo: Rijeka, Croatia, 2010; ISBN 978-953-307-134-3.
47. Ascoli, A.; Baumann, D.; Tetzlaff, R.; Chua, L.O.; Hild, M. Memristor-enhanced humanoid robot control system–Part I: Theory

behind the novel memcomputing paradigm. Int. J. Circuit Theory Appl. IJCTA 2018, 46, 155–183. [CrossRef]
48. Baumann, D.; Ascoli, A.; Tetzlaff, R.; Chua, L.O.; Hild, M. Memristor-enhanced humanoid robot control system–Part II: Circuit

theoretic model and performance analysis. Int. J. Circuit Theory Appl. IJCTA 2018, 46, 184–220. [CrossRef]
49. Sharma, A.A.; Bain, J.A.; Weldon, J.A. Phase coupling and control of oxide-based oscillators for neuromorphic computing. IEEE J.

Explor. Solid-State Comput. Devices Circuits 2015, 1, 58–66. [CrossRef]
50. Graph Coloring Instances. Available online: https://mat.tepper.cmu.edu/COLOR/instances.html (accessed on 25 March 2022).
51. Johnson, D.S.; Trick, M.A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge; Based upon the Proceedings

of the DIMACS Workshop, 11–13 October 1993; Series in Discrete Mathematics and Theoretical Computer Science; American
Mathematical Society: Providence, RI, USA, 1996; Volume 26.

52. Brélaz, D. New Methods to Color the Vertices of a Graph. Commun. Assoc. Comput. Mach. ACM 1979, 22, 251–256. [CrossRef]

239

J. Low Power Electron. Appl. 2022, 12, 22

53. Pickett, M.D.; Williams, R.S. Phase transitions enable computational universality in neuristor-based cellular automata. Nanotech-
nology 2013, 24, 384002. [CrossRef]

54. Messaris, I.; Brown, T.D.; Demirkol, A.S.; Ascoli, A.; Chawa, M.M.A.; Williams, R.S.; Tetzlaff, R.; Chua, L.O. NbO2-Mott Memristor:
A Circuit-Theoretic Investigation. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4979–4992. [CrossRef]

55. Liu, X.; Zhang, P.; Nath, S.K.; Li, S.; Nandi, S.K.; Elliman, R.G. Understanding composite negative differential resistance in
niobium oxide memristors. J. Phys. D Appl. Phys. 2022, 55, 105106. [CrossRef]

56. Callarotti, R.C.; Schmidt, P.E. Theoretical and experimental study of the operation of ovonic switches in the relaxation oscillation
mode. I. The charging characteristic during the off state. J. Appl. Phys. 1984, 55, 3144. [CrossRef]

57. Callarotti, R.C.; Schmidt, P.E. Theoretical and experimental study of the operation of ovonic switches in the relaxation oscillation
mode. II. The discharging characteristics and the equivalent circuits. J. Appl. Phys. 1984, 55, 3148. [CrossRef]

58. Kim, S.J.; Cho, S.W.; Lee, H.; Lee, J.; Seong, T.Y.; Kim, I.; Park, J.-K.; Kwak, J.Y.; Kim, J.; Park, J.; et al. Frequency-tunable
nano-oscillator based on Ovonic Threshold Switch (OTS). arXiv:2009.13703.

59. Demirkol, A.S.; Ascoli, A.; Messaris, I.; Tetzlaff, R. Pattern formation dynamics in an MCNN structure with a numerically stable
VO2 memristor model. Jpn. J. Appl. Phys. under review.

240

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Journal of Low Power Electronics and Applications Editorial Office
E-mail: jlpea@mdpi.com

www.mdpi.com/journal/jlpea

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6186-8

	A9Rmx5rye_1kcxcuv_w0
	Low Power MemoryMemristor Devices and Systems.pdf
	A9Rmx5rye_1kcxcuv_w0.pdf

