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ABSTRACT OF THE DISSERTATION

NON-INVASIVE TECHNIQUES TOWARDS RECOVERING HIGHLY SECURE

UNCLONABLE CRYPTOGRAPHIC KEYS AND DETECTING

COUNTERFEIT MEMORY CHIPS

by

Bashir Mohammad Sabquat Bahar Talukder

Florida International University, 2021

Miami, Florida

Professor Md Tauhidur Rahman, Major Professor

Due to the ubiquitous presence of memory components in all electronic com-

puting systems, memory-based signatures are considered low-cost alternatives to

generate unique device identifiers (IDs) and cryptographic keys. On the one hand,

this unique device ID can potentially be used to identify major types of device

counterfeitings such as remarked, overproduced, and cloned. On the other hand,

memory-based cryptographic keys are commercially used in many cryptographic

applications such as securing software IP, encrypting key vault, anchoring device

root of trust, and device authentication for could services. As memory components

generate this signature in runtime rather than storing them in memory, an attacker

cannot clone/copy the signature and reuse them in malicious activity. However, to

ensure the desired level of security, signatures generated from two different memory

chips should be completely random and uncorrelated from each other. Traditionally,

memory-based signatures are considered unique and uncorrelated due to the random

variation in the manufacturing process. Unfortunately, in previous studies, many de-

terministic components of the manufacturing process, such as memory architecture,

layout, systematic process variation, device package, are ignored. This dissertation

shows that these deterministic factors can significantly correlate two memory sig-
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natures if those two memory chips share the same manufacturing resources (i.e.,

manufacturing facility, specification set, design file, etc.). We demonstrate that this

signature correlation can be used to detect major counterfeit types in a non-invasive

and low-cost manner. Furthermore, we use this signature correlation as side-channel

information to attack memory-based cryptographic keys. We validate our contri-

bution by collecting data from several commercially available off-the-shelf (COTS)

memory chips/modules and considering different usage-case scenarios.
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CHAPTER 1

INTRODUCTION

The field of cybersecurity has predominantly focused on the security of the soft-

ware and the communication network due to the assumption that the underlying

hardware is trustworthy and reliable. However, emerging attack vectors on hard-

ware originating from the untrusted global supply chain, along with unintentional

design and integration-caused hardware vulnerabilities, questions the well-regarded

notion of hardware “root of trust”. In the era of secure computing, many hardware-

based security primitives use memory-based signatures to ensure device security,

authenticity, and users privacy. These memory signatures are comparable to silicon

fingerprints due to their reproducible nature. Currently, memory-based signatures

are commercialized to generate device identifiers (IDs) for chip authentication or

counterfeit chip detection and generating keys for various cryptographic applica-

tions.

From the application perspective, memory-based signatures are considered as the

physical unclonable functions (PUF) [SRR16, SMRR20, KPHM18, G+07]. By defi-

nition, PUF is a circuit that can generate a unique signature (“response”) depending

on its input pattern (“challenge”) [RSS+10]. However, unlike traditional PUFs (such

as Arbiter PUF and Ring Oscillator PUF), memory-based PUFs (mPUFs) are only

capable of generating a limited number of challenge-response pairs (CRPs) [RH14].

Therefore, traditional PUFs are also known as strong PUF, whereas mPUFs are

known as weak PUF [RH14]. Although strong PUFs are the preferred choice for

many cryptographic applications, the mPUFs provide a low-cost alternative solu-

tion as they do not require any additional hardware. Moreover, mPUF can replace

strong PUFs in all possible applications with necessary adjustments in the PUF pro-

tocol [HYKD14]. Nevertheless, to ensure a similar level of security as strong PUFs,
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mPUFs must have the following three properties- (i) reproducibility (reliability), (ii)

uniqueness, and (iii) randomness (uniformity) [MGS13]. The reproducible property

of mPUFs comes from the fact that electronics properties of mPUFs are immutable

once it is fabricated. On the other hand, the uniqueness and the randomness of the

mPUFs signature are believed to be a direct consequence of the random variation

of the memory manufacturing process. However, we observe that mPUF signatures

may have a significant correlation if they share the same manufacturing resources

(fabrication facility and design specifications) due to similarities in their architec-

ture, layout, and die packaging. unfortunately, these observations have been ignored

in all previous research, which leads us to two distinct research opportunities- (i)

exploiting mPUF correlation to simplify the mPUF-based counterfeit IC (Integrated

circuit) detection technique, and (ii) using this same signature correlation as side-

channel information to attack the mPUF key.

1.1 Research Objectives

1.1.1 Research Objective 1: Anti-counterfeiting Solution

Electronic counterfeiting is a longstanding problem with adverse long-term effects

for many sectors, remaining on the rise. Globalization of the semiconductor supply

chain has allowed worldwide fabrication of both authentic and counterfeit chips. In

an established global semiconductor supply chain, several untrusted parties (foundry,

assembly, third-party IPs, market distributor, etc.) are involved, any of whom can

clone IP (intellectual property), insert hardware trojan, and/or include recycled, re-

marked, overproduced, out-of-spec/defective, and forge-documented chips [BB15,

GHD+14, FC18]. Without question, the presence of counterfeit or inferior compo-
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nents in commercial or military cyber-infrastructure could have catastrophic and

far-reaching consequences on security and reliability domains because of their sub-

standard quality, poor performance, and shorter life span [BB15, GHD+14, FC18].

Current techniques to detect and prevent major counterfeit types (e.g., recycled,

remarked, etc.) are either invasive or expensive [GHD+14, FC18]. Furthermore,

existing countermeasures target only a single counterfeit type.

Recently, mPUF-based anti-counterfeiting solutions gained a lot of attention as

they can identify the major types of counterfeit chips (e.g., recycled, remarked,

cloned, etc.) by tagging each authentic chip with a unique identifier [GHD+14,

FC18]. As memory components are the essential part of most electronic chips, the

mPUF-based solution does not incur additional hardware costs. Unfortunately, this

solution is still not suitable for low-cost hardware as it requires an exhaustive regis-

tration process and maintains a centralized database of authentic chips’ identifiers.

In this dissertation, we will try to answer following three research questions (RQs)

in order to simplify mPUF-based anti-counterfeiting solutions-

• RQ1: Can we avoid the exhaustive device registration phase? Can we use a

statistical model to identify a group of memory chips instead of using a unique

identifier for each chip?

• RQ2: Can we avoid the interactive communication protocol of mUF-based device

authentication? Can we authenticate the device in offline mode?

• RQ3: What type of device counterfeitings can we identify?

To answer the above questions, this dissertation will explore the following three

goals-

1. Extraction of salient features: We need a set of features that reliably classify

memory manufacturer and memory specification, which is a non-trivial task and

one of the novelties of our research. The objective is to extract a set of features

3



from memory-based signatures, which can uniquely correlate to a group of mem-

ory chips if they share the same architecture, layout, systematic process variation,

and die packaging (i.e., sharing the same manufacturer and part number).

2. Development of machine-learning-based framework: An efficient machine-

learning-based framework is required to learn manufacturer and part number-

specific information from the extracted features. We use this statistical model

(offline or online) to identify the manufacturer and part number for an unknown

chip. It is worth mentioning that identifying the manufacturer and part number

can provide almost the same level of protection against counterfeit memory chips

as mPUF-based identifiers.

3. Detection of other counterfeit types: As the recycled chips share the same

manufacturing resources and design specifications as the fresh chips, identifying

the manufacturer and part number might not be sufficient to detect recycled

chips. However, some electrical properties of recycled chips deviate due to the

device age [KBTS+18], which might be observed from the feature distribution of

the recycled chips. Therefore, distinctive distribution of one or multiple features

can potentially identify recycled memory chips.

1.1.2 Research Objective 2: Attacking on mPUF keys

In order to be useful in practical security applications, the fingerprint or key gen-

erated by the PUF should be reliable and attack-resistant. Due to the open-access

nature of the strong PUFs, numerous successful attacks have been proposed against

those PUFs where the attacker does not require any physical access to the PUF

[RSS+10, RvD13, RJA12]. On the contrary, mPUFs (more generally, weak PUFs)

are resistant to such attacks as their protocol does not support accessing them di-

4



rectly from the outside world [RH14]. While most research focuses on low-cost

techniques that generate reliable signatures from mPUFs, this dissertation will fo-

cus on security aspects of mPUFs that have been widely overlooked and answer the

following four research questions (RQs).

• RQ4: What are the major challenges of mPUFs from using to generate low-cost

keys or unique identifiers? Can we avoid expensive key generation schemes (e.g.,

fuzzy extractor [FRS20, FRS16]) for generating high-quality identifiers or keys for

low-cost applications?

• RQ5: Do mPUFs have any weaknesses that can lead to non-invasive attacks?

For example, can we exploit the correlation between to mPUF signature as side-

channel information?

• RQ6: There have been several PUF metrics that are reliable and used to quantify

the security of PUFs. Do any of these metrics have any weaknesses?

• RQ7: Can we develop invasive attack methodologies that do not need physical

access to the target system?

Below is the four specific aims of this dissertation that will answer the above

research questions.

1. Discovering the weaknesses of memory-based signatures: We will dis-

cover the vulnerabilities of an mPUF that can be exploited to recover or model

the PUF responses in non-invasive ways without any physical access to the target

device.

2. Discovering the weaknesses of existing PUF quality metrics: With the

support of current PUF metrics, the mPUF is considered secure. This dissertation

will aim to discover the weakness of existing PUF metrics and show that they do

not always guarantee the security of mPUF signatures.

3. Recovering/predicting memory-based PUF outputs: The mPUFs are
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considered robust against non-invasive attacks because of their limited CRPs.

This dissertation will develop techniques to predict or model PUF outputs in

non-invasive ways by exploiting the mPUF vulnerabilities.

4. Developing attack-resistant mPUFs at a low cost: An expensive fuzzy

extractor generates high-quality keys/identifiers, which is not viable for low-cost

systems [FRS20, FRS16]. Furthermore, other low-cost alternatives to fuzzy ex-

tractors can also be vulnerable to our new non-invasive attack. We will develop

low-cost techniques for generating attack-resistant mPUFs from memory chips.

1.2 Significance of Study

Recent studies show that the global market share of counterfeit integrated circuits

(ICs) is worth $169 billion [Kar20]. Among different counterfeit ICs, memory chips

share the most considerable portion of the counterfeit IC market (∼17%) [FC18].

Moreover, another 28% of the fake chips are contributed by memory-integrated

microprocessors, microcontrollers, and FPGAs [FC18], which are the most expensive

components of any system. Hence, identifying counterfeit memory elements might

be able to element those counterfeit components as well. Recent statistics showed

that counterfeit chips incidents are growing at a rate of 25% each year [FC18]. The

Senate Armed Services Committee confirmed more than 1,800 counterfeit electronic

components incidents in U.S. military hardware in the early 2010’s decade, and

most of them are associated with counterfeit memory [Dep11]. The inclusion of

counterfeit memory in an electronic system can endanger personal and national

privacy, sabotage critical infrastructure, and damage the viability of entire business

sectors because of their sub-standard quality, poor performance, and shorter lifespan.

Section 818 of the U.S. National Defense Authorization Act (NDAA) requires defense
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contractors to tighten supply chain traceability and parts procurement to minimize

counterfeit risk [U.S18]. Although industry and academic researchers developed

several methods to combat counterfeit memories, none of them are suitable for low-

cost memory chips or memory integrated embedded devices. Hence, this research

can benefit- individuals and the semiconductor industry from potential financial loss

and the government from compromising national security and privacy. Additionally,

Identifying the manufacturer and the specification is also essential to- (i) enforce

the license agreement, (ii) tracking the chip quality, and (iii) ranking the memory

products and worthiness [BTMR+20].

In addition to identifying counterfeit memory chips, it is also essential to de-

termine the vulnerability of mPUF-based cryptographic applications. The mPUF-

based cryptographic key has become very popular as they do not require any addi-

tional cost, and consequently, they have been deployed in many commercial embed-

ded devices. Hence, analyzing the vulnerability to mPUFs is essential to ensure the

risk-free application in privacy-, safety- and security-critical operations.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides necessary

backgrounds on different memory technologies, the detailed construction of mPUFs

using different memory technologies, and PUF applications on counterfeit device

identification and cryptographic key generation. We also compare other existing

anti-counterfeiting solutions with PUFs and known vulnerabilities of the mPUF key.

In Chapter 3, we discuss different non-deterministic factors that can impact mPUFs’

signature during the manufacturing process. In Chapters 4 and 5, we proposed a new

anti-counterfeiting solution by extracting a feature-set from mPUF-based signatures.
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Our proposed technique is much simpler than the PUF-based solution, which is

demonstrated by two different types of memory technologies (DRAM and SRAM).

Chapter 6 assesses new possible vulnerabilities of the mPUF key and demonstrates

our idea on SRAM-based silicon data. Finally, we conclude our dissertation and

propose the future direction of our research in Chapter 7.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This dissertation starts where other research works on memory-based PUF (mPUFs)

have been called off. This chapter will provide an overview of PUFs, the fundamen-

tal difference between mPUFs and other PUFs, the construction of mPUFs, and

PUF-based anti-counterfeiting solution and cryptographic key extraction.

2.1 Overview of PUFs

A PUF is a hardware security primitive that can translate a input (“challenge”

or “stimuli”) to a unique sequence (“signature” or “response”) which is specific to

the electrical characteristics of that system [RSS+10, MGS13, MBW+19, HYKD14].

The key idea behind a PUF is, although one can use the same architecture and

manufacturing process to fabricate multiple PUF circuitry, the random variability

in the manufacturing process impacts the electrical characteristics (e.g., timing path

delay) randomly [HYKD14]. PUF utilizes this random variation on the electrical

property to create a unique sequence. In general, an ideal PUF should have following

three properties for reliable operations [RRFT15, MGS13, BTRFR19]-

1. Uniqueness: The PUF response should be unique and should not collide if mul-

tiple PUF devices are stimulated with the same challenge. In other words, if

the responses generated from two PUFs (with the same challenge) are properly

random, the Hamming distance1 between two PUF responses should be ∼ 50%.

However, if the number of test devices is large, then one-to-one Hamming dis-

tance becomes a very expensive metric to test (due to a large number of possible

combinations). Furthermore, a single PUF is usually capable of producing multi-

1Hamming distance (or simply “distance”) is defined as the number of bit difference
between two binary strings.
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ple challenge-response pairs. Consequently, assessing Hamming distance for each

CRP makes it computationally expensive. Fortunately, bit-aliasing is a cheaper

alternative to test uniqueness. For this metric, we create a binary string using

all memory-bits from a specific bit-location of all PUF devices and measure the

Hamming weight [MGS13, RHG+17] (Equation 2.1).

βl,C =
1

k

k∑
i=1

bil,C (2.1)

Here, βl,C is the bit-aliasing computed at the lth bit using k PUF devices with a

unique challenge C, and bil,C is the lth bit response generated from the ith PUF

device. Hence, for the n-bit responses generated from all k PUF devices, we have

a set of βs. To make it simpler, researchers only focus on the average bit-aliasing

defined by the Equation 2.2.

βC =
1

n

n∑
l=1

βC,l (2.2)

For a set of ideal PUFs, βC (with unique challenge C) should be close to 0.5. This

condition suggests that the probability of getting “0” (or “1”) from a specific bit

location over multiple PUFs is exactly 50%.

2. Uniformity: The PUF response should have a uniform distribution of “0” and

“1”. To satisfy this condition, the average Hamming weight of the PUF responses

should be close to 50% [MGS13, RHG+17]. Mathematically, the uniformity can

be expressed with Equation 2.3.

UC =
1

n

n∑
l=1

bl,C (2.3)

Here, bl,C is the lth bit of the response, which corresponds to challenge C. For a

uniform response, the uniformity, UC should be close to 50%.

3. Reproducibility: An ideal PUF device should produce the exact same response

while assessed with the same challenge [MGS13]. Alternatively, two responses
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produced by the same PUF with the same challenge should have a Hamming

distance of 0. Ideally, A robust PUF should retain this property even with

extreme variations in operating conditions.

2.2 PUF Taxonomy

The strength of PUF mainly depends on the number of challenge-response pairs

(CRPs) that it can produce. Based on the number of CRPs, PUFs are categorized

into two major types [MBW+19, HYKD14, RH14]-

1. Strong PUF: Strong PUFs typically support a large number of CRPs; more

precisely, the number of CRPs grows exponentially with respect to the growth

of strong PUF resources [MBW+19]. One of the popular architectures of strong

PUF is MUX-controlled Arbiter PUF and Ring Oscillator PUF [SD07]. A single-
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Figure 2.1: single bit arbiter PUF with m-bit challenge.

bit m-stage arbiter PUF is shown in Figure 2.1. In arbiter PUF, each bit of the

challenge sequence (cj) controls a pair of MUXes, and each pair of MUXes uses

the output of the previous pair of MUXes. For any MUX, if the selector, cj is

0, the top and bottom MUX conduct the same signal from the previous stage’s

top and bottom MUX, respectively. However, if cj is 1, the top and bottom

signals switch the side. If the source S generates a rising signal, the D flip-flop

latches “0” if the delay at the D pin is higher than the delay at the clock pin;
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otherwise, it latches “1” at the output. Note that a multi-bit arbiter PUF is

constructed by cascading multiple single-bit arbiter PUFs. Due to the random

process variation, each MUX consists of slightly different delay characteristics.

Hence, the latched value at the D flip-flop is completely random and depends on

the signals applied on each selector pin of each stage. Note that if we increase

the Arbiter PUF structure by one pair MUXes (i.e., adding one more stage), it

will support (m + 1)-bit challenge, and the number of CRPs will be increased

two-fold. As a strong can produce a large number of CRPs, only a randomly

chosen subset of CRPs are used in real applications.

2. Weak PUF: Weeks PUFs can only produce a limited number of CRPs (in the

extreme case, only one CRP). Unlike the strong PUF, the number of CRPs grows

linearly with respect to the weak PUF resources [MBW+19]. Note that most of

the mPUFs are considered weak PUF, which are discussed in Section 2.3. In such

mPUFs, the address of the memory is used as the challenge while the content of

that address location (with some special arrangement) is fetched as the response.

Due to the array-like structure of the memory chips, the number of CRPs linearly

grows with the growth of the memory size (i.e., the number of CRPs is doubled

if the number of the memory cell is also doubled).

Aside from the number of CRPs, there are other differences between the strong PUF

and the Weak PUF. For example, the strong PUF uses an open-access protocol as

opposed to the weak PUF [MBW+19, HYKD14, RH14]. In an open-access protocol,

anyone can challenge the strong PUF and collect corresponding responses. However,

an attacker cannot feasibly collect the whole set of CRPs from a strong because of

its enormous size. Furthermore, for a strong PUF, a randomly sampled subset of

CRPs (Sused,CRP ) is used in real applications. Hence, even if an attacker succeeds to

collect a subset of the CRPs (Sattacker,CRP ), the probability of Sused,CRP∩Sattacker,CRP
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to be a non-empty set is very negligible. Moreover, as the number of CRP in

strong PUF is very large, strong PUF uses a particular CRP only once to prevent

reply attacks [MS09] and simplify the PUF protocol. On the other hand, memory-

based weak PUFs are a cheaper solution compared to strong PUFs as a device can

utilize its existing memory components without incurring any additional hardware

cost. However, Weak PUF might require complex protocol to support some special

application (e.g., IOT device authentication for cloud services) [HYKD14].

This dissertation mainly focuses on memory-based weak PUFs (or simply mPUFs)

as they are more common than strong PUFs and are available in many commercial

devices. In the next couple of sections, we will discuss different types of mPUFs and

their typical applications.

2.3 Memory-based PUFs (mPUFs)

Memory chips are the ubiquitous component of modern computer systems. Typi-

cally, a modern computer system consists of multiple memory components. Inter-

estingly, most types of memory chips are capable of generating PUF-like signatures

without making any design modifications. However, generally, they require some

non-standard memory operations (e.g., reducing read/write latency, latching start-

up state, etc.) to function like a PUF [G+07, HBF07, BTRFR19, SRR16, KPHM18,

TKYC16, SMRR20, JXW+15, MRFA15]. Fortunately, those operations can be per-

formed by only OS/firmware level manipulation without making any hardware mod-

ification. Hence, except for some software overhead, the cost associated with mPUFs

is very negligible. To understand the operation of mPUFs in more detail, here, we

present the modern memory organization briefly and the basic principle of different

types of memory components.
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2.3.1 Memory Organization and Memory Technologies

Most of the modern computer system maintains a hierarchical memory organization

to read and write data efficiently (see fig. 2.2). As technology does not allow

a memory to be fast and cost-effective at the same time [Eve], different types of

memories are used at each level of memory hierarchy to balance between cost and

performance. In most of computer system, memory organization maintains the

following hierarchy [PH16, BO16]- CPU → registers → private cache → shared

cache → main memory → storage memory. Note that, in many smaller embedded

systems, one or more components from this hierarchy might be fused together; for

example, smaller micro-controllers may use a single SRAM (static random access

memory) chip as both cache and main memory. Nevertheless, starting from the

beginning down to the end of this hierarchy, each memory component is slower but

bigger and cheaper than the previous one.
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Figure 2.2: Memory organization in modern computer system.

In general, most of the memory components are analogous to a 2-D array struc-

ture [vdGS02]. Selecting the appropriate row and column provides one-bit data.

Usually, memory chips contain multiple memory arrays to produce a multi-bit data
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word. In Figure 2.3, we present a 4× 4× 4 memory2 chip with a 4-bit address (two

bits each for row addressing and column addressing) [vdGS02, JWN10, GWHS19].

The appropriate row and column addresses are selected via a row address decoder

and a column address decoder. Note that rows and columns are also called wordline

and bitline, respectively. Sometimes, memory cells connected in a single row are

called a page. Each bitline on a memory array is connected with a series of sense

amplifiers (SA). A series of sense amplifiers is also known as the row-buffer. During

a read operation, the bitlines are precharged to a certain voltage level. Once the

appropriate row is selected, the bitline voltage is interrupted. The sense amplifier

senses this voltage perturbation and latches the corresponding data. Then the ap-

propriate selection of the columns drives the sense amplifier data to the output. On

the other hand, the sense amplifier acts as a buffer to hold the write data during

the write operation. Once the target memory cell is activated via appropriate ad-

dress selection, the memory cell latches the data from the row-buffer. Depending

2memory size is expressed as r × c × w, where, r = number of rows, r = number of
columns, and w = word size in bits.
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on memory type, each memory cheap may have different memory cell structures.

In following subsequent paragraph we discuss necessary details of different memory

cell structure associated with the memory hierarchy-

1. Registers: In multi-core microprocessors, each core has its own set of private

registers (not shown in fig. 2.2) and can be directly accessed. Registers are very

fast, but only a small amount of data can be stored. Usually, modern CPUs’

registers are implemented with specially designed high speed SRAM cells.

2. Cache memory: Cache memory is made of SRAM and usually divided into

multiple levels; some of the levels are private to the individual CPU core, and

some can be shared among the cores [JWN10]. The size of the cache memory

can be ranged between a few hundred bytes to a few Mbytes. Although many

different structures of SRAM cell exists [RSS17, AKJ+13, CMK+07, CMN+08],

the 6-transistor (6T) SRAM cell is the most popular form among them (shown in

Figure 2.4a). A 6T SRAM cell is made of two coupled inverters along with two

access transistors. The access transistors are controlled by wordline (WL) and

connect the memory cell to the bitleines (BL and BL). The BL and BL provide

a complementary logic pair during the read (or write) operation. After the write

operation, the memory cell maintains the desired logic by creating a logic-loop

between the coupled inverter-pair.

3. Main memory: In most of the computer system, DRAM (dynamic random-

access memory) serves as the main memory. DRAMs are cheaper and larger (a

couple of hundred Mbytes to a couple of TBytes) than SRAMs. Although the

smaller DRAM cell structure reduces silicon die cost, the DRAM operations are

more complex, slower, and energy-consuming than the SRAM. A DRAM cell con-

sists of two components- an access transistor and a capacitor to hold the charge

(Figure 2.4b). The access transistor connects the capacitor with a bitline and
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Figure 2.5: DRAM timing at read cycle.

is controlled by the wordline. The state of charge in the capacitor determines

the memory content (i.e., “1” or “0”). Depending on the DRAM design, DRAM

memory cells can be categorized into true-cell and anti-cell [LJK+13]. A true-cell

stores logic ‘1’ with a fully charged capacitor and “0” with an empty capacitor.

On the other hand, an anti-cell stores “0” with a fully charged capacitor and “1”

with an empty state. Nonetheless, the stored charge in the capacitor leaks away,

which leads to an incorrect reading after a certain amount of time. So, to ensure

the integrity, the content of a DRAM cell needs to be refreshed periodically be-

fore the memory contents flip. This time interval is known as the Retention time,

which is 32 or 64 milliseconds (ms) [JED12]. A failure to refresh before the re-

tention time can alter the memory content. To write/access the cell content, the

column (or bitline) voltage need to be precharged at a specific reference voltage

(Vref = VDD

2
). Figure 2.5 presents a simplified version of DRAM read operation

[CKH+16]. A read operation starts with an ACTIVATE (ACT) command ex-
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ecuted by the memory controller. tRCD is called the Activation latency which

is required to activate (turn ON ) the access transistor properly. The activated

access transistor creates a conducting path between the storage capacitor and

the bitline. The charge stored in the capacitor perturbs the bitline voltage. The

sense-amplifier senses the perturbed voltage and amplifies it to an appropriate bi-

nary value. At this moment, the memory controller applies the READ command

to read the data and fetch it to the data bus. The minimum time latency be-

tween the READ command and the first data bit to appear in data-bus is called

Column Access Strobe latency or CAS latency (tCL). DRAM’s read operation

is a destructive process. Therefore, the charge on the DRAM storage capacitor

needs to be restored after each successful reading. The time required to activate

an access transistor and to restore the charge on the corresponding storage ca-

pacitor is known as the Row Active latency or Restoration latency (tRAS). At

the end of the restoration process, the memory controller again applies the PRE

command to re-initiate all the bitlines for the next read/write operation. The

PRE command precharges all bitlines to Vref . The time required to precharge

all bitlines properly is called Precharge time (tRP ). The PRE command also

deactivates all previously activated access transistor. The tRAS + tRP is the total

time required to read a DRAM row properly; this total time is called Row Cycle

Time (tRC).

4. Storage memory: Storage memory is a non-volatile memory (e.g., flash mem-

ory, magnetic hard drive) which is used to store and recall information that is

previously used. The storage memories are very cheap and large in volume.

However, they are extremely slow, energy consuming, and their endurance (i.e.,

number of write cycles) is very limited. Usually, storage memories are integrated

with a controller that evenly distributes the writing operation on all memory
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blocks (wear-leveling [Cha07]) to maximize the service life of the storage mem-

ory. Although many forms of storage memory devices exist, flash memories have

become very popular in past decade as they are faster and more reliable than

the traditional hard disk drive. A basic structure of a flash memory cell is shown

in Figure 2.4c [KBTS+18]. The flash memory cells consist of only one specially

designed access transistor. Unlike a regular transistor, this transistor has a float-

ing gate (red marked in Figure 2.4c) underneath the main control gate. When a

high voltage is applied to the control gate, electrons tunnels through the oxide

layer and accumulate on the floating gate. This process results in the transistor

being non-conductive while the regular voltage is applied to the control gate.

A charged floating gate represents logic “0” (program state), whereas the non-

charge state represents logic “1” (erase state) in the Flash memory cell. A large

negative voltage is applied to the control gate to erase the data (i.e., converting

“0” to “1”) from the flash memory cell. The negative voltage on the control

gate removes the electrons from the floating gate. During the read operation, the

active wordline causes the bitline to be shorted with VDD if logic “1” is stored

(consequently, sense amplifier senses the logic “1”). Otherwise, the bitline retains

its initial voltage, and the sense amplifier latches logic “0”.

2.3.2 Basic Principle of Memory-based PUFs (mPUFs)

Almost all types of memory chips can be performed as a standalone PUF. In this

section we discuss the basic principle of few popular mPUFs using different types

of memory technologies.

SRAM PUFs: Among different mPUFs, SRAM PUF is the most popular type

and commercially available in many commodity devices. The SRAM PUF takes
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advantage of the slight asymmetricity of the coupled inverters, which is arisen from

the random variation of the manufacturing process. Ideally, the cross-coupled in-

verters are symmetrically laid out to maximize the static noise margin (SNM)

[G+18, CDHS12]. SNM is defined as the maximum allowable noise that can tolerate

an SRAM cell without flipping its value [MMR10]. However, the inevitable random

dopant fluctuation (RDF) effect leads to threshold voltage variation and introduces

asymmetricity between SRAM inverters [KCL+12]. Therefore, during power-up,

these two inverters race each other and settle to “1” or “0” [G+18, CDHS12]. In

SRAM PUF, this random power-up (or start-up) is used as the PUF signature.

Although SRAM PUFs are very cheap and robust compared to other mPUFs, the

disadvantage of SRAM PUF is, it requires an entirely new power cycle for evaluation.

DRAM PUFs (DPUFs): Recently, DPUFs have also gained a lot of attention as

modern computers are equipped with large DRAM systems. Due to the large capac-

ity, DRAM PUFs can produce a very large set of CRPs and almost provide a similar

capability of strong PUFs. Researchers have been proposed multiple approaches to

produce DRAM-based signatures-

1. Retention-based DPUFs: Signatures are generated by disabling the refresh

interval for a certain and sufficient amount of time [SRR16, KPHM18]. The

DRAM cells are leaky, and therefore, the DRAM contents need to be refreshed

periodically, usually 64ms or 32ms according to the JEDEC specification [JED12],

to ensure the data integrity [SRR16]. Failing to refresh periodically within this

time interval introduces errors due to the leaky property of DRAM cells. The

error pattern generated from the retention failure is unique from chip to chip and

is used to generate device signatures [SRR16, KPHM18]. Although, Retention-

based DRAM PUFs are robust, they are significantly slow compared to other

DPUFs and take in order of a minute to evaluate.
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2. Latency-based DPUFs: The reduction in tRCD introduces erroneous read/write

operation (see Section 2.3.1), which can be used to generate device signatures

[KPHM18]. This latency-based PUF generates signature at a much faster rate

[KPHM18]. The reported result shows that the mean evaluation time is ∼88.2ms

(outperforms all previously proposed retention-based DPUF [SRR16, XSA+16,

KGKF14]). However, it still requires multiple row cycles to evaluate the PUF

response. This latency-based DPUF also needs a filtering mechanism in each

access that adds both hardware and computational overheads. To overcome this

problem, we have proposed a novel technique to evaluate DPUF by reducing

the precharge time (tRP ) [BTRFR19]. Reducing tRP also causes erroneous out-

put. Our experimental result showed that a subset of DRAM cells (which can be

selected in the early characterization phase) generates a reproducible signature

with reduced tRP . Our proposed technique is much straight-forward and faster

than previous latency-based DPUF (i.e., by reducing tRCD).

3. Start-up-based DPUFs: In start-up based DPUF [TKYC16], the device sig-

nature is generated from the start-up states of DRAM cells. Initially, the bitlines

are charged to VDD

2
. But the process variations on the storage capacitor and bit-

line capacitance slightly deviate the bitline voltage to VDD

2
+δ or VDD

2
−δ, where δ

represents a small voltage. The sense-amplifier senses the voltage difference and

latches “1” or “0”. Consequently, upon power-up, the DRAM cells generate “1”s

and “0”s randomly. Similar to SRAM PUF, start-up-based DPUFs also require a

new power cycle. Unfortunately, adding a new DRAM power cycle is expensive,

as it requires storing the whole DRAM data to a secure memory location at each

cycle. Hence, in practice, start-up-based DPUFs have very limited use.

4. Rowhammer DPUFs: The errors caused by the rowhammer disturbance are

used to generate device signatures [SXA+17, AAF+18]. Rowhammer is a pro-
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cess where a DRAM cell is repeatedly accessed. Such repeated operation causes

partial activation to its adjacent rows (due to the coupling capacitance) and

may cause data corruption at adjacent rows. The average evaluation time of a

rowhammer PUF is in order of minutes and has an almost similar performance of

Retention-based DPUFs. However, all DRAMs are not vulnerable to rowhammer

[SXA+17]; hence, it is not a universal method to generate DRAM signature.

Flash PUFs: Recently, many researchers have proposed efficient implementation

using flash memory chips. The most popular form of flash memory PUFs relies on

three different techniques- (i) partial programming, (ii) partial erasing, and (iii)

program disturbance [SMRR20, JXW+15]. Due to the random process variation,

the program time and erase time vary from cell to cell. In partial programming and

partial erasing methods, the program or erase voltage is applied on the control gate

(Figure 2.4c) for a shorter time. However, the time period is selected in such a way

so that it causes random bit failure in the flash chip. This erroneous output of the

flash chip can be used as the device signature. In the program disturbance method,

random bit failures are induced by repeatedly programming adjacent cells. It has

been observed that if a memory cell is repeatedly programmed with high voltage,

the adjacent cell also might get programmed (i.e., “1” to “0”) due to the parasitic

coupling (or parasitic capacitance) between these two cells. As the random process

variation affects the parasitic capacitance, the bit flipping due to the program dis-

turbance also creates a random pattern, which can be essentially used as the PUF

signature. Although the flash chips are capable of producing a very large set of

CRPs, the flash chips are much slower. Furthermore, flash memories have much

smaller endurance (wears out with a small number of program-erase cycles); hence,

using flash memory chips as a PUF causes the device’s early failure.
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2.4 mPUF Applications

mPUFs can potentially be used in two different applications- (i) counterfeit IC de-

tection on semiconductor supply chain and (ii) as a secure key generator in different

cryptographic applications [MBW+19, HYKD14].

2.4.1 Anti-counterfeiting Solution

Semiconductor Supply Chain Vulnerability: In recent times, IC counterfeiting

has become a global problem due to the globalization of the semiconductor supply

chain. In this model, a chip is designed in one place while fabricated in a different

place and involves several parties to reduce the fabrication cost and time to market.

Because of traveling IPs in different formats and involvement of untrusted parties,

the modern semiconductor supply chain suffers from counterfeiting (such as hard-

ware trojan or malicious change in third-party IP or chip layout, cloning IPs/ICs,

remarking, etc.) [FC18, GHD+14, BTMR+20, BB15, RFS+14, CRT13]. Figure 2.6

shows the IC design flow for authentic-chip and pirated-chip production cycle. The

untrusted party (the third-party IP developer, the foundry, the assembly, the dis-

tributor, etc.) can perform counterfeiting at different phases of the manufacturing

process. An untrusted party can send out overproduced, and out-of-spec/defective

ICs to the market. The untrusted party also can clone the original chip by steal-

ing IPs or by reverse-engineering (from a post-fabricated product) to avoid research

and development (R&D) costs. Table 2.1 defines each type of counterfeiting more

elaborately.

To avoid/detect counterfeit chips, researchers proposed many countermeasures,

such as SST, hardware metering, blockchain-based traceability, split manufacturing,

IC camouflaging, Electronic Chip ID (ECID), On-chip sensor, DNA marking, etc.,
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Figure 2.6: IC design flow vs possible covert channels to introduce counterfeit ICs.

Counterfeit
Type

Definition [FC18, GHD+14]

Recycled

Recycling chips from old PCB and selling them as new. In a
more sophisticated recycling process, the plastic/ceramic encap-
sulation of the chip die is removed and repackaged to make its
appearance new. Recycled chips shares >80% of the counterfeit
market.

Remarked Inferior quality chips are marked as the superior one.
Forged

documented
Faking the chip documentation (e.g., faking safety and security
certification).

Reverse
Engineered

Recover the functional netlist from the chip by an electro-
chemical process. Counterfeiter may use this netlist to avoid
the R&D cost.

Cloned
A untrusted party (e.g., physical design house) can copy the chip
design (netlist, GDSII); later, they can produce unauthorized
chips.

Overproduced
Untrusted fabrication facility can produce and market chips out-
side of the contract, i.e., without authorization of the IP (intel-
lectual properties) owner.

Tampered
Tampering the original chip design. For example, untrusted phys-
ical design house can insert hardware trojan in the netlist and
create a security backdoor.

Out-of-
spec/defective

Selling chips that are failed in the functionality test.

Table 2.1: Different types of IC counterfeitings.
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might be used to prevent counterfeiters [GHD+14, FC18, RFS+14, RSK13, KQP01,

AEM18, GFT16, ZT14, HHT15, HCM13, AK07, ZTT12, HM11, EBM12, IPK18,

RSSK13, WGR+17, ZWRT18]; however, these techniques suffer from different draw-

backs. For example, SST and hardware metering techniques provide control over

post-fabrication, but it requires a change in traditional fabrication flow. Further-

more, this technique requires exhaustive communication between the foundry and

the manufacturer. On the other hand, ECID tags each chip with a unique ID by

adding a one-time programmable (OTP) memory. Nevertheless, this method is not

suitable for all kinds of chips. For example, the overhead of adding an extra OTP

memory component will be very high for an small microcontroller. With an on-chip

sensor, each chip is equipped with an additional hardware component, which mod-

ifies its properties due to aging. These properties can be used to detect recycled

chips. However, on-chip sensor-based countermeasures need additional hardware

overhead and are not feasible for inexpensive systems. In DNA marking, each mem-

ory component is marked with a unique DNA sequence. DNA marking suffers from

impracticality as it requires a complex authentication scheme. Other techniques,

such as blockchain-based traceability, split manufacturing, IC camouflaging, etc.,

require modified fabrication flow or design techniques that are not suitable for low-

cost memory chips.

Physical inspection-based schemes [GHD+14, WKP14, ABN+16, H+16], such as

X-Ray imaging and scanning electron, can detect counterfeit/recycled chips. How-

ever, these techniques require expensive equipment and not viable for low-cost chips.

Moreover, expensive equipment and complex authentication schemes are also not

suitable for general users who want to verify their purchased products’ authenticity.

PUF-based Anti-counterfeiting Solutions: PUF based anti-counterfeiting so-

lution is quite straightforward; the simplified PUF-based anti-counterfeit solution
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is shown in Figure 2.7a [MBW+19]. This authentication technique is a two-step

process. The first step is known as the enrollment or registration process, where the

manufacturer creates a database by recording a pair of CRP from each device. This

step must be completed before releasing devices into the market, and the databases

must be maintained by the manufacturer or by a trusted third party. In the au-

thentication phase, the device sends an authentication request to the manufacturer;

in reply, the manufacturer sends the same challenge (as of the enrollment phase) to

the manufacturer. Now, the device generates the PUF signature corresponds to the

challenge and sends it to the manufacturer. The manufacturer verifies the response

by comparing the response with the database. For an authentic device the response

should be matched with the database within a small threshold.

PUFs can directly identify overproduced, remarked, cloned, reverse engineered

IC [GHD+14, GFT13]. Additionally, with a typical usage pattern, bit error in mPUF

signature usually increases with device age (see Section 3.6 for more details). Hence,

recycled IC can be easily identified by analyzing the degree of signature mismatch

with the manufacturer’s database [GMAS+17]. Moreover, the PUF-based key can

also identify the device’s integrity as a root-of-trust (discussed in Section 2.4.2) and

potentially identify tampered devices [vH18, ZZH+14]. Although both traditional

strong PUFs and mPUFs can be used to identify counterfeit chips, the advantage of

mPUF is that it can be readily used for any device which contains a memory chip.

Although PUF based technique is simple, it requires maintaining a large database

which is expensive. Besides, it adds an extra step in the supply chain and increases

market lead time. Furthermore, as described in Figure 2.7a, many small devices are

not configured to maintain a network protocol; hence, they cannot be authenticated

by this protocol.
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Table 2.2 summarizes different types of available anti-counterfeit solutions, their

applicability, relative complexity and cost.

PUF A

PUF B

PUF Database

PUF A: {CA, RA}
PUF B: {CB, RB}

CA

CB

Enrollment/Registration phase

PUF A

PUF A*

Compare databaseCA

CA

Authentication phase

PUF A* → Disguising as PUF A

Compare database

RA

RB

(a) PUF based counterfeit IC detection.
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signature.

Figure 2.7: PUF applications.

2.4.2 Cryptrographic Key Extraction from PUF Signature

mPUF are capable of generating cryptrographic key on fly. Almost all PUFs follow

a similar key extraction scheme as shown in Figure 2.7b [CSP15, SD07, CZZ17].

PUF-based key extraction consists of two phases. In the key enrollment/generation

phase, the PUF device generates a response RCi depending on a given challenge

Ci. Then, an ECC (Error Correction Code) encoder computes the corresponding

error correction code/helper data hCi and generates the key, K(RCi) (e.g., using

hash). Although the final key is not stored, the Ci and corresponding helper data

hCi is stored in a storage device. In the key re-generation phase, the PUF circuits

again receive the same challenge Ci, and generates the corresponding response R′Ci .

Due to the different internal and external noises (variations in operating condition,

device aging, etc.), some errors are always expected in the generated response R′Ci
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(compared to RCi). However, corrected response R′′Ci is computed using the helper

data hCi . Subsequently, the key, K(R′′Ci), is generated from the R′′Ci . If the PUF

circuit is not altered in between these two phases, the K(RCi) and K(R′′Ci) should

be the same.

Fuzzy Extractor: The Fuzzy extractor is used to enhance the security of the PUF-

based key [FRS20, FRS16, CFP+16, Boy04, KHK+14]. The security enhancement

is performed by (i) removing noise without leaking significant information and (ii)

extracting the entropy (i.e., increase the entropy density on fuzzy extractor’s out-

put) [FRS20]. Theoretically, the fuzzy extractor combines an ECC encoder/decoder

(secure sketch) and a hash function [DGV+16]. However, instead of using a fixed-

sized hash output, the length of the output depends on the entropy of the fuzzy

extractor’s input. If the input has smaller entropy, it reduces the output size and

increases the entropy density of the key.

Gen𝑹𝑪𝒊
𝑲(𝑹𝑪𝒊)
𝒉𝑪𝒊

Rep
𝑹
𝑪𝒊
′

𝒉𝑪𝒊
𝑲(𝑹

𝑪𝒊
′′ )

Figure 2.8: Rep and Gen block of fuzzy extractor.

The fuzzy extractor has two major blocks: (i) a generate algorithm (Gen) in

the key generation phase and (ii) a reproduce algorithm (Rep) in the re-generation

phase (Figure 2.8). The Gen and Rep replace the components from the red and

magenta boxes of Figure 2.7b, respectively. The Gen takes the raw PUF response

RCi and produces the output key K(RCi) and hCi . In the re-generation phase, the

Rep takes the noisy input R′Ci and hCi and produces the corrected key K(R′′Ci). The

noisy behavior of PUFs requires to allow some errors, which reduce the entropy of

the input PUF key (R). A well-designed fuzzy extractor can avoid this problem

by adding a penalty on output key length. Mathematically, it can be shown that

the output key is secured as long as the length of the output key does not exceed
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the fuzzy min-entropy [FRS20, FRS16]. The fuzzy min-entropy (Hfuzzy
∞ ) of a fuzzy

extractor is defined as follows-

Hfuzzy
∞ (R) = − log max

R′
{Pr[R ∈ Bq(R

′)]} (2.4)

Here, R is the distribution of the original response R and q is the number of allowed

erroneous bits. To maximize the chance; the attacker would select R′ that maximize

the total probability mass of all responses (drawn from distribution R) within the

ball Bq(R
′) of radius q around R′ [FRS20, FRS16]. The main difficulty of designing

the fuzzy extractor is to estimate Pr[R ∈ Bq(R
′)]. For a reasonable estimation of

the probability distribution, one might require a large number of sample sources.

Moreover, an attacker can always make a better probabilistic estimation with a

larger set of samples [FRS20, FRS16].

Application of mPUF Key: There are two possible scenarios of mPUF applica-

tions. In the first type of application, mPUF is used inside the device and is not

accessible from outside. Example of such application is software IP protection, se-

curing key vault, and establishing the root of trust [MBW+19, HYKD14, ZZH+14].

For software IP protection and securing key vault, the PUF key is used to en-

crypt/decrypt the storage device while the storage device is being used to store the

software IP or the users’ key. As the PUFs generate the key on the fly, an attacker

cannot clone the encrypted storage memory and use the content in another device.

Similarly, the mPUF key can also be used to check the software and hardware in-

tegrity of the device at the boot-up stage (i.e., establishing the root of trust or a

trusted execution environment) [ZZH+14, vH18]. In the most simplest technique,

the security module of the computing system (e.g., trusted platform module) hashes

the software and hardware information by salting with the PUF key. Then, the se-

curity module compares this hash value with the hash value of the previous boot
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and identifies if there is any unauthorized hardware or software tampering between

these two boots.

Device (D)                         Server (S)

1. Service request        

2. Receive challenge              

3. Send response 

𝐈𝐃𝐃

𝐒𝐃,𝐒, 𝐂

𝐄(𝐊𝐏,𝐒, 𝐇(𝐑𝐂, 𝐒𝐃,𝐒))

Enrollment/Registration phase

Device (D)                         Server (S)

1. Receive challenge                      

2. Send response              

3. Verification 

𝐒𝐃,𝐒, 𝐍, 𝐂

𝐇(𝐍,𝐇(𝐑𝐂
′ , 𝐒𝐃,𝐒))

Authentication phase

If 𝐇(𝐍,𝐇(𝐑𝐂
′ , 𝐒𝐃,𝐒))

== 𝐇(𝐍, 𝐇(𝑹𝑪, 𝐒𝐃,𝐒))

Figure 2.9: Simplified mPUF-based IOT device authentication protocol.

In the second type of mPUF application, mPUF key is used for device authentica-

tion to access cloud services. Traditionally, strong PUF is preferred for this applica-

tion (i.e., using one CRP only once and discard it after usages) [HYKD14]. However,

with a little modification in communication protocol (Figure 2.9), the mPUF-based

key can also be used for the same purpose [YGH18, JCJ+21]. During the service

enrollment/registration phase, the IOT device sends a service request to the server

by sending its device ID (IDD). Next, the server generates a unique value SD,S

and a challenge C. In reply, the device generates a hash value (H(RC , SD,S)) using

the PUF response RC and SD,S. Then, the device encrypts the H(RC , SD,S) using

the public key of the server and sends the encrypted data to the server. The server

stores {IDD, SD,S, C,H(RC , SD,S)} to its database. In the authentication phase, the

server sends SD,S, C, and a nonce N to the device. In reply, the device generates

the PUF response R′C and creates a hash value H(N,H(R′C , SD,S)). If the R′C and

the PUF response during the enrollment (RC) matches, the H(N,H(R′C , SD,S)) and

the computed hash value using the server database (H(N,H(RC , SD,S))) should be

same, and consequently, the server can identify the unauthorized service request.

Known Attacks on mPUF Keys: There have been several techniques to pre-

dict/model PUF responses, although PUFs are widely accepted as highly secure
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because of the unclonable and immutable nature of manufacturer process variations

[vDR14, RvD13, RJA12, KS10, MSSS11]. These attacks can be categorized into (i)

protocol attack and (ii) silicon attack. In the protocol attack, the attackers usually

exploit existing design/protocol flaws in the PUF network protocol such as gaining

temporary access on a PUF, re-using the PUF responses from previous sessions,

creating a covert channel to perform malicious activity on PUF, leaking information

via error correction scheme, etc. [vDR14, RvD13]. To defend against such attacks,

we need to fix the network protocol weaknesses and vulnerabilities as soon as they

are exposed.

On the other hand, in the silicon attack, an attacker tries to (i) imitate the

characteristics of the PUF device and generate the correct responses, (ii) forge/clone

all possible CRPs, and (iii) modify the PUF responses. For the first case, the

attacker needs to derive some deterministic relationship (e.g., training a machine

learning model) between the challenges and responses. Once the relationship is

established, the attacker can produce the correct response for a given challenge.

However, this attack’s success depends on the availability of a large number of CRPs

to an attacker [MGH+18], which is possible only for strong PUFs due to their open-

access interface [MBW+19, RSS+10]. Thus, an attacker usually uses second and

third attack strategies to attack a weak PUFs. Usually, cloning or modifying PUF

output requires physical access to the device, which makes those attacks impractical

to mount in a protected environment [AAR+18, OSW13, NSHB13, HBNS13].

Anagnostopoulos et al. [AAR+18] successfully forged the SRAM-based PUF fin-

gerprint by leveraging SRAM memory cells’ data remanence property at low tem-

peratures. In this attack, the attacker writes a known bit-stream ‘X’ on the SRAM

device and change the operating temperature (−110◦C to −40◦C) before shutting it

down. At low temperatures, SRAM cells are capable of retaining the data for more
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than 10ms after turning off the SRAM power (due to the data remanence effect).

In such circumstances, when the device is booted, SRAM-PUF creates a fingerprint

that is very similar to the known bit-stream ‘X’ (up to 93% similarity). The re-

manence attack has been further improved to clone PUF CRPs by injecting some

faults on the PUF [OSW13]. In this method, the attacker uses the remanence decay

effect to introduce a sequence of random faults on the PUF-based cryptographic

key and observes corresponding outcomes of a particular operation (e.g., ciphering

a random text). Finally, the attacker analyzes these outcomes and derive the PUF

outputs. However, this attack is still impractical as it needs precise control over the

operating condition (i.e., operating temperature and voltage).

In the third approach (i.e., modification of PUF output), an attacker alters the

PUF response by exposing the PUF to high-voltage and high-temperature [RS16].

In such adverse operating conditions, the SRAM-PUF output is altered due to the

bias temperature instability (BTI) [RS16]. This attack is mainly used to perform a

denial-of-service attack (e.g., prevention of authentication).

Helfmeier et al. [HBNS13] demonstrated that an SRAM-PUF could be cloned to

a new SRAM chip by editing the microstructure (e.g., transistor size) with a focused

ion beam (FIB). In this technique, the attacker first learns the SRAM-PUF response

through physical access and then modify the microstructure of a new SRAM chip

to get the similar response of the victim PUF.

Notably, all of these silicon attacks against mPUFs assume that the attacker

can gain physical access to the victim’s (i.e., target mPUF) device at least once or

has precise control over the operating condition, which is not practical for many

PUF-based security applications. Furthermore, the physical access in some attacks

might leave traces on the victim’s device, and it is easier to identify if there is any

tampering on the device.
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CHAPTER 3

IMPACTS OF DETERMINISTIC FACTORS ON mPUF

SIGNATURES

3.1 Introduction

In this chapter, we briefly discuss different factors that can create a deterministic

impact on mPUFs. Although in earlier studies, the random variation of the man-

ufacturing process was researched exhaustively, other non-random factors such as

architectural variation, layout variation, process variation, IC packaging, and aging

effect remain unexplored. Nevertheless, these factors are important as they poten-

tially produce a unique correlation among the mPUF signatures if they share same

manufacturing resources (i.e., same manufacturer, specification-set, fabrication fa-

cility, etc.) [BTMR+20, TFR21]. In the next couple of chapters, we show that such

correlations can be anticipated using a unique set of visual descriptors and conse-

quently can identify the memory manufacturer and part number. Furthermore, the

correlation information can also be used as side-channel information and can be used

to device a heuristic attack (detailed discussed in Chapter 6). These non-random

variations are ubiquitous due to the universal array-like structure of memory com-

ponents (as shown in Figure 2.3). However, we discuss those variations mainly from

the SRAM perspective as SRAM chips are more common memory components than

any other memory type and are dominantly used as a PUF. Furthermore, due to

the rapid growth DRAM market [KBV], they become vulnerable to counterfeiting;

hence, we also discuss those variations briefly from the DRAM perspective.
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3.2 Architectural Variation

The similarity in architecture and layout of memory chips are among the main rea-

sons for correlated signature properties between two mPUFs with the same model

number (i.e., part number). All semiconductor memory chips share a very similar

row-column architecture (See Section 2.3.1). However, the address decoder cir-

cuitry for logical to physical address mappings, control circuitry to determine the

I/O state (read/write), optimal array structure to the trade-off between cost and

performance, power-saving techniques, the structure of redundant blocks (rows or

column) to replace corrupted memory arrays entirely or partially, etc. vary from one

manufacturer to another or from one model to another. Moreover, manufacturers

might also shrink the die size to reduce the cost per cell, causing the memory chips

to be more susceptible to noise and less robust. For example, the manufacturer may

follow different SRAM cell structures (e.g., 4T, 5T, 6T, 7T, 8T, 9T) for further opti-

mization [PSK15, RSS17]. Some of those architectures are asymmetric and are more

likely to produce biased start-up signature (see Section 2.3.2). Although symmetric

SRAM architectures are preferred for PUF applications [BH14], a symmetric SRAM

cell may still produce deterministic biased outputs because of asymmetric fabrica-

tion technology (e.g., asymmetric silicon doping [MGP+11]), asymmetric driving

strength of bitline pair [KYT+08], etc. Although such small asymmetricity might

not impact the regular operation of SRAMs, that might still be visible from the

SRAM start-up data statistics (by slightly favoring logic “0” or “1”).

Similarly, for DRAM chips, manufacturers may follow different array structures

to trade-off between cost and performance [LKS+17]. For example, DRAM cell

structure may vary from one architecture to another (trench capacitor vs. stacked

capacitor) and may impact the overall speed and performance (noise immunity vs.
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cost) [JWN10]. As DRAM PUFs mostly rely on manipulating retention/latency

parameters (See Section 2.3.2), variations on speed and noise immunity leave traces

on DRAM signature variation. Similar to SRAM and DRAM, manufacturers may

also follow different architectures for flash memory chips [KCHC08]. For example,

flash memory may have a NAND-like structure for better density vs. a NOR-like

structure for random access capability, better reliability, and higher read speed.

Also, flash memory cells can be configured as SLC (single level cell) or MLC (multi-

level cells). An SLC cell only stores one bit per cell and gives better reliability and

endurance, where the MLC cell can store multiple bits in a single cell to increase

density and reduce cost. Nevertheless, such differences in flash memory may impact

flash-based PUF.

3.3 Layout Variation

Chip layout variation from one manufacturer to another may originate from several

sources such as chip area, floorplanning, placement, and routing, etc. This layout

variation may affect different electrical characteristics such as RC path delay, power

utilization (I2R loss), noise margin, etc., which can be reflected in the memory

latency parameters. For example, Apostolidis et al. [ABK16] reported six different

layout designs for symmetric 6T SRAM structure, and each of them has different

pros and cons. For example, they have different power utilization, delay, and noise

characteristics. In addition to this, some implementing and resource constrain may

introduce some asymmetric nature in memory cells, leading to slight bias to a specific

logic at device start-up. For example, using multiple metal layers may introduce

unmatched wiring between the inverter pair. Moreover, the difference in CAD tools’

configurations may also introduce variations in memory layout.
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Similar to SRAM, DRAM layout variation can also impact its PUF performance.

For example, while the open bitline layout are more scalable and cost-efficient, the

folded bitline layout are more noise immune and provide better speed [JWN10].

3.4 Process Variation

Process variation (PV) is an intrinsic phenomenon during the fabrication process

that introduces the variability on transistors’ attributes, interconnecting metal, and

dielectric layers. The PV can be divided into two categories- global PV and local

PV [Liu07]. However, the PV can be broken down into finer grains, as shown in

Fig. 3.1 [Liu07, ZG14, HKX+14, HKCM13, CGS+11]. The systematic variations are

deterministic and correlated with the locality of the chip layout, characteristics of

the silicon wafer/fabrication facility, node technology, etc. [BPS+17]. In contrast,

the random PV is entirely indeterministic. Furthermore, the systematic PV can

vary from wafer to wafer (i.e., inter-wafer) and within the wafer (intra-wafer). The

inter-wafer PV impacts each silicon wafer differently and may depend on the wafer

characteristics. Moreover, the intra-wafer variation describes the variation among

dies fabricated in a single wafer. The intra-wafer process variation may be further

divided into two groups- inter-die variation and intra-die variation. The inter-die

variation affects each dies differently (i.e., multiple dies fabricated in the same wafer).

On the other hand, the intra-die variation defines the spatially correlated variation

within a single die.

The random process variation is extremely difficult to model, especially to deter-

mine the exact mismatch between coupled inverters of SRAMs or exact capacitance

value of DRAM cell capacitor. The inter-wafer process variation might also be

challenging to model as it depends on the wafer manufacturing process and corre-
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sponding intrinsic parameters. However, the intra-wafer variation might have deter-

ministic patterns and might be learned by statistical analysis [Liu07, MJ06, AAT14].

Process variation

Inter-wafer

Intra-wafer
Random

Inter-die

Intra-die

Systematic

Figure 3.1: Different types of process variation.

Additionally, in some process technology, the fabrication plant may have a spe-

cific set of design rules depending on the layout pattern (for example, different

design rules for a mirrored layout pattern). The manufacturer might need to break

the symmetricity of the layout to facilitate such design rules. Hence, a perfectly

symmetric 6T-SRAM cell layout can become asymmetric after fabrication. Recent

studies show that systematic process variation can significantly impact the SRAM

start-up data (i.e., might get biased to ‘0’ or ‘1’) [GK14].

3.5 IC packaging

Chip die is encapsulated inside a protected “package” to prevent corrosion and

physical damage. The difference in IC packaging may also alter some device char-

acteristics. Usually, manufacturers introduce different kinds of packaging to trade-off

among cost, noise immunity, and supporting different operating conditions [KMHH15,

MKD04].

3.6 Device Aging

Usually, device age alters PUF signature. In this section, we discuss this effect from

SRAM, DRAM, and flash memory perspectives.
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The SRAM signature (PUF) can be characterized by PSNMnoise (PUF SNM

noise) [CDHS12, MSM+20]. The PSNMnoise measures how easily an SRAM cell can

be initiated to logic “0” or “1”. A larger value of PSNMnoise ensures more robust

SRAM signatures. However, the PSNMnoise heavily depends on SRAM transistors’

threshold voltage [CDHS12]. Two well-known phenomena, negative and positive

bias temperature instability (NBTI, PBTI), can cause transistor threshold voltage

to shift [GWHS19] by trapping some charge on the gate oxide [DA+18]. NBTI and

PBTI are the direct consequence of transistor aging and affects pMOS and nMOS

respectively [DA+18]. Hence, the SRAM PSNMnoise can be changed over its usages

due to the change in its transistors’ threshold voltage (see Section 2.3.1).

Depending on SRAM usage data pattern, the change in PSNMnoise can affect

the SRAM start-up signature: (i) a noisy signature bit1 might get biased to “0” or

“1”, (ii) a weak “0” or “1” might become strong “0” or “1”, (iii) a stable signature

bit can be flipped (stable “0” to stable “1” or stable “1” to stable “0”), and (iv)

a stable signature bit can become a noisy one. Hence, the change in PSNMnoise

will affect the overall distribution of logic “0” and “1” on SRAM signature. The

first three factors will increase the total number of stable signature bits; whereas,

the fourth factor will produce more noisy signature bits. However, the cumulative

impact of the first three factors dominates the fourth factor. Hence, the total number

of noisy signature bits will reduce with device usage (which does not indicate the

PUF will be more robust with aging [RHG+17]). Minimizing the mismatch between

two inverters can strengthen the impact of the fourth factor, which is difficult to

achieve. The equalization of transistors’ threshold voltage requires a calculative

usage data pattern during the entire chip lifetime [PKR09].

1Noisy signature bit shows inconsistent behaviour; sometimes it produces “0” with new
power cycle, other time it produces “1”
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In an ideal case, the percentage of 0’s or 1’s should be identical in a new symmet-

ric SRAM chip. With a typical usage pattern, an SRAM cell experiences more logic

“0” bits than the logic “1” bits [WDZ+16]. Such usages pattern creates more stress

on “M4” pMOS (Fig. 2.4a). Hence, over time, the threshold voltage difference of

“M4” and “M2” PMOS increases due to the NBTI effect and causes the SRAM cell

to be biased with “1” at power-up state.

Similar to the SRAMs, DRAM chips also experience the aging effect. Due to

BTI, the threshold voltage of the access transistor increases over usage [NRT19]

(Figure 2.4b). As the threshold voltage of the DRAM access transistor changes over

usage, the leakage current of the transistor decreases. Hence, charge leakage of the

storage capacitor attached to the access transistor reduces over time and improves

the data retention capability. Consequently, the signature generated by retention-

based DRAM PUF changes over time (see Section 2.3.2). Aging on DRAM access

transistor also might impact the Activation latency PUF as the increment in access

transistor’s threshold voltage also increases the effective Activation latency. Apart

from the BTI effect on transistors, several other electrical phenomena [Fie17] such

as temperature-dependent dielectric breakdown, hot carrier injection, trap charge

also might impact other DRAM attributes (e.g., DRAM startup data [TKYC17],

rowhammar characteristics [YL19], etc.), and subsequently, alter other DRAM types

of PUF signature over time.

Although DRAM chips usually have a little less endurance than SRAM, the

DRAM’s aging process is much slower than SRAM’s [Eve]. The main reason behind

that is that the coupled inverters of SRAM cells always remain stressed as long as

the device is turned on; on the other hand, DRAM access transistor only stresses

whenever accessed. Furthermore, the access frequency of DRAM is much lower than

the SRAM chips as the DRAM modules are located underneath the cache (SRAM)
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in the memory hierarchy (see Section 2.3.1), and DRAM is only accessed on the

target data is missing from the SRAM cache.

The aging effect has a much higher effect on flash memory [Eve]. Flash memories

have much smaller endurance since flash cells are exposed at very high voltage during

the program cycle (see Section 2.3.1), and their electrical property breaks down very

quickly. In several previous studies showed that the electrical characteristics (e.g.,

program time, erase time, read latency, etc.) of flash memory changes over usage

[KBTS+18, SKBT+18, GCC+09, RNP+16, FSN+09], which inevitably affects the

flash PUF accuracy.

41



CHAPTER 4

IDENTIFYING DRAM ORIGIN

4.1 Introduction

This chapter introduces a novel technique of identifying DRAM manufacturer and

part number by extracting a common set of features from the DRAM signature. Due

to the recent trend of big data applications, modern computer systems require larger

main memory and consequently created huge pressure on the DRAM supply chain

[DIG]. However, this situation is favorable for counterfeiting, and hence DRAM

chips/modules become one of the major targets of the counterfeiters [Kan]. However,

detecting counterfeit DRAMs is very challenging because of their nature and ability

to pass the initial testing [BTMR+20, CYG+17].

Although, DRAM manufacturers provide the information of all DRAM timing

parameters in a small read-only memory (ROM) which is integrated with the DRAM

module [JEDb], it has been demonstrated that a counterfeiter can modify this in-

formation (aka serial presence detect or SPD information) or replace the ROM to

make a DRAM authentic or superior [Kem]. Hence, extracting SPD information for

identifying DRAM manufacturer and the part number is not a reliable process. In

this chapter, we propose a technique to identify the DRAM origin (i.e., the origin of

the manufacturer and the specification of individual DRAM) to detect and prevent

counterfeit DRAM modules [BTMR+20]. The main contributions of this chapter

are noted as follows-

• We propose a framework to identify the origin of the DRAM manufacturer by

exploiting the facts that the architectural, layout, and manufacturing process
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variations are reflected in latency variations. The framework is also capable of

verifying specification of individual DRAM module.

• We extract the most appropriate features from the latency-based erroneous pat-

terns in DRAM modules to amplify the variations among manufacturers and

specifications.

• We propose a machine learning approach to determine the origin of the DRAM

manufacturer based on the extracted features. The same method also separates

DRAM modules of different specifications that are from the same manufacturer.

• We validate our proposed framework with commercial off-the-shelf (COTS) DRAM

modules from three major manufacturers- Micron, Samsung, and SK Hynix [Sta].

• We validate the robustness of our proposed technique against temperature and

voltage variations.

4.2 Objectives and Assumptions

The objective of this work is to design a DRAM anti-counterfeiting solution by iden-

tifying the DRAM origin (i.e., the origin of the manufacturer and the specification

of individual DRAM) reliably by capturing all variabilities (as discussed in Chap-

ter 3). Our main goal is to propose a anti-counterfeiting framework with following

properties-

• Avoiding upfront cost: Our work aims to store minimal information (a few sta-

tistical parameters) to attest and detect a large group of memory modules/chips.

On the other hand, for example, in the PUF-based technique, we need to create

a golden/reference dataset by accumulating all CRPs for an individual memory

module/chip, which adds a large upfront cost to the PUF-based framework.
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• Uninterrupted traditional supply chain: Several existing anti-counterfeiting

techniques (such as PUF, SST, hardware metering, etc.) require registering each

device before releasing them on the market. This registration process is exhaustive

and adds an extra step to the supply chain. Consequently, those techniques

increase market lead time and manufacturing costs. In this work, we aim to

avoid such exhaustive registration processes. Later on in this work, we show that

analyzing a small number of samples from a large group of modules is sufficient

to reveal that group’s detailed statistical information.

• Avoiding hardware modification: We avoid any design modification or adding

new hardware to make our solution work. Hence, our solution is more practical

than many existing techniques such as hardware metering, SST, on-chip sensor-

based authentication, ECID, etc. [GHD+14].

• Non-invasive and low-cost solution: Our goal is to identify counterfeit DRAMs

by means of a non-invasive and non-destructive process without requiring any

high-end lab facility. This attribute of an anti-counterfeiting solution is expected

so that anyone can verify their own DRAM chips without incurring any additional

cost.

The existing techniques on attesting of the foundry rely on simulation or test

data from fabrication and packaging facilities [WKP14, ABN+16]. Unfortunately,

in most cases, the testing data are not made publicly available and, therefore, a

party that does not have access to those test data cannot make the classifier and

(or) cannot verify the ratified foundry. In contrast, in our proposed technique,

the DRAM chips can be authenticated based on trained classifier provided by the

manufacturer or a trusted third party. In the proposed technique, the verifier does

not require any prior knowledge of the manufacturing process. The classifier input,

a set of features, can be easily evaluated in any low-cost embedded or FPGA-based
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system. Our proposed technique of identifying the memory manufacturer is based

on the following assumptions-

• Memory class: A manufacturer ships memory module with a part number

on it, which contains the manufacturer information and chip specification, such

as density, speed grade, package, temperature range, bus width, die generation,

etc. [SK ]. In addition to part number, a manufacturer also provides additional

module specification on the module label, such as JEDEC PCB layout version

[JEDa], SPD version [JEDb], manufacturing country, manufacturing lot number,

etc. Timing parameters of the DRAM module are specified into SPD data [JEDb].

In this work, two DRAM modules are considered as two different classes, if one

of the following information is mismatched: i) manufacturer, ii) part number,

and iii) PCB layout version/SPD data. A change in one specification can lead

to different GDSIIs (related to the die generation, and specification), packaging,

PCB layouts, or SPD data. Note that a manufacturer may send a single GDSII

(Graphic Design System II) file to different fabrication plants. For such a case,

it is assumed that fabrication plants with the same GDSII follow similar design

rules to minimize the effect of systematic process variations. We also assume that

a manufacturer may produce memories with a different specification but with the

same set of fabrication plants or design memories with a slight change in specifi-

cations (for example, only change in the die package or PCB version). In such a

case, these memories may have two sets of features with subtle variation, which

leads to a complex classification problem to identify the memory correctly.

• Feature definition and extraction: Manufacturers/trusted third parties are

responsible for defining a set of features that define their product best and cap-

tures the architectural, layout, and process variation. Prior knowledge of memory

architecture might enable them to define a better set of features. The feature

45



extraction process should be independent and straightforward enough to be ex-

tracted on the user’s system; hence, it relaxes the requirement of any special

tool or environment requirement. In our proposed scheme, the manufacturer or a

trusted party is responsible for training the statistical model using this feature-

set. While training the statistical model for a particular memory class, we also

assume that manufacturers do not have any statistical information from other

memory classes (i.e., from the negative class). However, in practice, the manufac-

turer may collect a few random samples from other classes. Training statistical

models with some negative examples might be beneficial, but it is almost im-

possible to collect all samples from all negative classes because of the diversity

of memory chips/modules and the presence of several manufacturers. We also

assume that the chips/modules used for learning statistical model are pre-verified

and authentic.

• Classification: Classifying memory (authentic vs. counterfeit) can be done ei-

ther by manufacturer or consumer, depending on the application. For example,

if the manufacturer is reluctant to release the statistical model publicly, it might

ask for the features from memory under test (MUT) to verify the authenticity.

On the contrary, to reduce the communication overhead and complexly, the man-

ufacturer may release the statistical model publicly, and the MUT can be verified

on the user’s system. Regular consumers should be able to verify their purchased

DRAM class by only using the statistical model. We also assume that consumers

do not have any knowledge of memory architecture and manufacturing processes.

Note that, in this dissertation, “sample”, “positive sample”, and “negative sam-

ple” mean memory module/chip under test, memory module/chip that originally

belong to the target class, and memory module/chip that originally do not belong

to the classifier target class (i.e., belong to the outlier region), respectively.
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4.3 Proposed Method

To extract all possible variabilities, we reduce the DRAM timing latency and obtain

the signatures (i.e., the error pattern or fail bit count) that reflect the architectural,

layout, and process variations. Below, we present a framework to identify the DRAM

class that involves several steps.

Step 1: Data acquisition. The experimental results show that the latency-

induced error pattern depends on the data written into the memory, the amount

of latency reduction, and the DRAM module [KLM16]. To capture the maximum

variations among the memory classes, we write four different sets of data to the

memory module: (i) Data set 1: solid data pattern (all 1’s), (ii) Data set 2: inverse

solid data pattern (all 0’s), (iii) Data set 3: column stripe data pattern (101010· · · ),

(iv) Data set 4: inverse column stripe data pattern (010101· · · ). Then, each data

set is read back from the DRAM module at the reduced Activation time (tRCD)

to capture module dependent erroneous outputs (See Section 2.3.1 and Figure 2.5).

Note that one may choose a different timing parameter (e.g., reducing Precharge

time) to obtain the DRAM signature [BTRFR19].

Step 2: Feature selection. It is crucial to select the optimum number of

features since the performance of classifiers is sensitive to the choice of the features

and features’ attributes such as correlation, noise, and other factors. In this step, we

select the key features that can effectively capture architectural, layout, and process

variations observed in DRAM since they directly impact the accuracy, computation

time, and storage (of golden data) of our proposed technology. The classification

models are created based on a total of 26 features collected from the four sets of

data. Features are extracted from the whole data that is read out from one page. A

single bank from 1GB memory module contains 16k+ pages per bank (eight banks
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per module), and for the case of a 2GB memory module, each bank includes 32k+

pages. Each memory page contains 1,024 words and each word contains 64-bits

of data. The data collected (at reduced tRCD) from each memory pages are then

rearranged into a 1,024×64 (denoted as dR of size w × b, where, w = number of

words in a page, b = number of bits in each word) binary array. Moreover, for each

page, we create another array, dF (same size of dR) which tracks the location of

flipped bits. Note that, the dF (i, j) = 1, if dR(i, j) is flipped with respect to the

actual data that is written to the DRAM otherwise, it will be 0. The following

features have been chosen from each page to identify the DRAM origin (i.e., the

origin of the manufacturer and the specification of individual DRAM).

Feature 1 (Ψ1): The total number of flips, also known as failed bit count (FBC),

is used to capture the data dependency, process variation, and layout variation of

the DRAM chips. The silicon results show that the FBC counts change from one

DRAM module to another module.

Feature 2 (Ψ2): The subset of FBC bits that are flipped to logic 1.

Feature 3 (Ψ3): The compression ratio (r) depends on the distribution of ones and

zeros in the data, dR. The compression ratio effectively measures the randomness

in the data. Random data have a higher compression ratio than non-random data.

compression ratio is defined as Equation 4.1.

r =
Su
Sc

(4.1)

Where Su and Sc are the sizes of the uncompressed and compressed data re-

spectively. Our preliminary experimental results show that the compression ratio

of dR varies from one manufacturer to another. We compress data using standard

the ZLIB library [DG], which is well-known and well optimized for the minimal

computational overhead for data compression applications.
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Feature 4 (Ψ4): The whole block of dF is divided into a set of smaller blocks

(each block is 64 × 1 of size and denoted by Bw). The standard deviation on the

FBCs in these Bws are considered as a feature. This feature captures the spatial

locality of FBC along the dimension w. The higher value of standard deviation

represents a greater spatial locality.

Feature 5 (Ψ5): The block dF is divided into a smaller block, Bb (of size 1×8) and

then FBC is counted on each of the smaller blocks. Then we choose the standard

deviation of those FBCs as the feature Ψ5. The spatial locality along the dimension

b is captured with this feature Ψ5.

Feature 6 (Ψ6): Like Ψ4, we calculate the standard deviation of FBCs on 64 blocks

(of size 1024 × 1). This feature captures the fact that some cell locations of each

64-bit words are more error-prone than others.

Feature 7 (Ψ7): Like Ψ5, we calculate the standard deviation of FBCs on 1024

blocks (of size 1 × 64). This feature explores the fact that some bitlines are more

error-prone than others.

Our experimental results show that the above set of features provides an excellent

texture description of DRAM signature data [WMNS00]. All features except the

Ψ2 is extracted from all four data sets. The feature Ψ2 is only extracted from the

dataset 3 and dataset 4 (see Step 1). Choosing block-size for Ψ4 through Ψ7 is

correlated to the DRAM organization. For example, we choose a block size of 1× 8

(Bb) for Ψ5 to capture the variations among the chips in a DRAM module. Our

tested DRAM modules consist of four or eight chips, and each chip shares 1, 024×16

or 1, 024 × 8 blocks. We use block (Bb) height of 8 to extract average variations

among the chips and to ensure consistency among classes.

Step 3: Machine-learning algorithms for detecting the DRAM ori-

gin. After extracting the most suitable feature, we develop a machine-learning
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based technique to identify counterfeit DRAM modules. In our proposed tech-

nique, we use one-class classifier. Although one-class classifier is a more com-

plex statistical problem, recent works demonstrated that it is more advantageous

compared to binary-class or multi-class classifier while detecting counterfeit ICs

[HLK+15, SKR+13, ABN+16, HCM12]. In the traditional binary-class classifier, if

the statistical diversity is enormous in the negative samples, the classifier might pro-

vide poor decision boundary due to the small negative train data [CLL13, TD04].

In such a scenario, it will be very expensive or even impossible to collect data from

the negative class covering the wide statistical diversity. This situation is partic-

ularly true for counterfeit IC detection as counterfeit ICs can be introduced from

a wide variety of sources (see Chapter 1). On the contrary, the one-class classifier

[CLL13, TD04, SSWB00, CPBBFR15, KM14] is trained by only positive class sam-

ples. In our proposed method, we use Support Vector Data Description (SVDD)

[CLL13, TD04] to detect the outliers of a specific class. SVDD creates a spherical

decision boundary in feature-space around the train dataset of a given class. For a

given training data xi ∈ Rn, i = 1, 2, 3, ..., l, Tax et al. [TD04] solved the following

optimization problem given by Equation 4.2.

min
R,a,ξ

R2 + C
l∑

i=1

ξi

subject to, ‖ϕ(x)− a‖2 ≤ R2 + ξi, i = 1, 2, 3, ..., l

ξi ≥ 0, i = 1, 2, 3, ..., l

(4.2)

Here, ξi is a slack variable and ϕ(x) is the mapping function from the lower

dimension to a higher dimension. R and a are the radius and center of the encircling

boundary, and C is the regularization parameter. A smaller value of C causes more

training samples to be treated as an outlier. A sample will be considered as an
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outlier if ‖ϕ(x)− a‖2 > R2. However, Equation 4.2 can be efficiently solved by the

Equation 4.3.

max
α

∑
i

αiKi,i −
∑
i,j

αiαjKi,j

where,
l∑

i=1

αi = 1

(4.3)

Here, K is the kernel function (i.e., Ki,j = 〈ϕ(xi)
T ·ϕ(xj)〉). In our case, we have

chosen the radial basis function (RBF) as the kernel function [SSB+97]. The radial

basis function is useful when the data are not linearly separable. The RBF function

can be expressed with Equation 4.4.

Ki,j = exp(−γ ‖xi − xj‖2), γ > 0 (4.4)

In Equation 4.4 γ is a free parameter. A larger value of γ enables the classifier

to capture more complex attributes of the training data. However, the trained

model might suffer from overfitting problem if the value of γ is too large. However,

the C and γ can be optimized more efficiently by introducing artificial outliers and

applying k-fold cross-validation [TD01]. Moreover, the classifier accuracy can be

increased by introducing some real negative examples during training [TD04].

Step 4: Constructing a framework to detect DRAM manufacturer.

Figure 4.1 presents the proposed framework to identify the DRAM origin (i.e., the

origin of the manufacturer and the specification of individual DRAM). In the pro-

posed framework, we assume that the manufacturer or a trusted party provides the

classifier model to the consumer and also defines a threshold for Positive Page Rate

(PPR). The positive page rate (PPR) is defined as follows-

PPR =
No. of pages that are classified as “positive”

No. of test pages from the memory module
(4.5)
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Figure 4.1: Proposed framework for identifying the origin of the DRAM.

In Figure 4.1, the steps, shown in the blue region, are performed by the OEM

(Original Equipment Manufacturer) or a trusted third party assigned by OEM, and

the steps shown in the green region are performed at the consumer end. All other

steps (covered by the orange region) can be processed in either consumers’ system

or manufacturers’ system. Initially, the OEM or a trusted party trains a classifier

based on all page data that are captured from one or multiple DRAM samples of the

target class. The OEM or trusted party should also specify the number of memory

pages that need to be tested from a memory module to prove its authenticity. Then,

based on the sample statistics, the OEM should choose a threshold (λPPR) to decide

whether a DRAM is manufactured by them or not. If the PPR from the test module

is higher than the threshold, then the memory module should be considered as

authentic. The selection of the threshold value λPPR and the number of test pages

(n) depend on the quality of the classifier and the manufacturing process. Higher

process variations might cause a large statistical diversity on the manufactured

memory modules and may increase the chance of miss-classification. Besides, a

larger process variation may lead to a higher statistical variation among the memory

pages from the same DRAM module. In such a case, we might need more randomly
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sampled memory pages (i.e., a larger value of n) to capture all architectural and

manufacturing process variations of a DRAM module. The choice of λPPR mostly

depends on the quality of classifier. Figure 4.2a shows that the distribution of PPR
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(b) Case 2: the distribution of PPRneg
and PPRpos are mutually exclusive.

Figure 4.2: Selection of λ with different distribution of PPRneg and PPRpos.

from positive samples and negative samples have an overlapping region. In such case,

it is not possible to select a λPPR that creates a clear boundary between the positive

samples and the negative samples. On the other hand, if the distribution of the PPR

is mutually exclusive (Figure 4.2b), selecting a λPPR within the interval [PPRneg,max,

PPRpos,min] will separate positive and negative samples. Therefore, the ideal goal

should be, maximizing the separation between PPRneg,max and PPRpos,min for a

suitable value of λPPR during classification. As it is difficult/impossible to collect the

negative class data that covers the whole distribution (discussed in Step 3), the λPPR

should be defined with the highest possible value (i.e., λPPR,op = PPRpos,min). In our

proposed scheme, the OEM should train a classifier Cm, corresponding to a specific

memory class and make the classifier parameter public. Then, the user should choose

random n test pages from the memory module that is under test. The general

information given with the classifier Cm should enable the user to extract features

form those selected pages. Then, for each of those n test pages, the OEM/user
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should test the extracted features using the classifier Cm. If the PPR (calculated

from Equation 4.5) is higher than the threshold λPPR, the memory module should

be marked as authentic. Otherwise, it should be identified as a counterfeit one.

4.4 Performance Evaluation of Proposed Framework

We evaluated our proposed technique by collecting data from 25 commercial off-

the-shelf single rank DDR3 SODIMMs (small outline dual in-line memory module)

from 3 major DRAM manufacturers (see Table 1) [Sta]. We tagged the memory

class based on the part number, the Garber version (reference PCB layout version

[JEDa]), and the SPD [JEDb] data (see Table 1). Among the first six classes, we

found at least one mismatch in their SPD data (detailed of SPD data is not pre-

sented in this article). On the other hand, the last two classes only differed by their

PCB layout version and SPD version. From each memory module, we collected

data from all memory banks (each DRAM module contains eight banks). The test-

ing platform has been implemented using a Xilinx Virtex ML605 evaluation board

with SoftMC [HVK+17]. SoftMC is a reconfigurable DRAM controller framework

that is designed for the Xilinx Virtex ML605 evaluation board. Data have been

written and fetched from the DRAM memory module with two 32-byte data bursts.

For all memory modules, we observed error patterns below 7.5ns of Activation time

(the recommended Activation time is in between 10ns to 15ns [JED12]). Although

shorter Activation time maximizes the number of corrupted data bits and our plat-

form can reduce activation time to 2.5ns, in this work, we conducted our experiment

with a 5ns of Activation time to make our experimental result reproducible by most

of the system. Note that, in most DRAM-based systems, the memory controllers

interface the DRAM module with a >200MHz clock (with a clock period <5ns).
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Manufacturer
Part

Number †
Country
Origin

Quantity
SPD-Garber

Version
Class
tag

Micron
M1 China 2 10-C1 1

M2
Singapore 3

10-B1 2
China 4

Samsung

S1 China 1 10-B1 3
S2 China 1 11-B2 4

S3
China 4

11-B2 5
Philippines 3

SK Hynix
H1 Korea 5 10-B1 6

H2
China 1

11-B2 7
Korea 1

Table 4.1: Memory modules used in the data set.

In order to quantify the robustness of our proposed technique, we evaluated our

proposed method in four different operating condition- i) nominal voltage (1.5v) and

room temperature (25°C) (NVRT), ii) high voltage and room temperature (HVRT),

iii) low voltage and room temperature (LVRT), and iv) nominal voltage and high

temperature (NVHT). For HVRT and LVRT, we changed the input voltage (VDD)

by ±1% as most of the memory controllers limit the voltage ripple within ±1%

[Tex]. For NVHT, we changed the operating temperature by +15°C from the room

temperature.

Figure 4.3 presents the spatial locality of failed bits in a randomly chosen page

form each memory class at NVRT operating condition. From the scatter plot, we

observe that the error pattern is different for different classes. Note that, the PCB

layout version only differs class 6 and class 7 and the subtle difference is difficult

to understand from the figure (Figure 4.3a). In Figure 4.3b, we present the spatial

locality of failed bits on two random pages from the same memory module of the

†M1: MT4JSF12864HZ-1G4D1, M2: MT8JSF12864HZ-1G4F1,
S1: M471B2873EH1-CF8, S2: M471B2873GB0-CH9, S3: M471B5773DH0-CH9,
H1, H2: HMT325S6BFR8C-H9;
M1, M2, S2: 1GB 1333MT/s, S1: 1GB 1066MT/s, S3, H1, H2: 2GB 1333MT/s
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same class. Although there is some similarity in their texture, the pattern is not

consistent. However, the features extracted from these samples (as discussed in

Section 4.3) are still capable of separating these classes.

(a) One page from each class. (b) Two pages from
same DRAM module.

Figure 4.3: Spatial locality of failed bits from randomly chosen DRAM pages.

From each memory page, we extracted a total of 26 features as described in Sec-

tion 4.3. We applied these 26 features directly to train and test the classifier. Then,

we used the Linear Discriminant Analysis (LDA), a linear transformation [CG15], to

provide the best visualization of the class separability. The LDA projects the data

into a lower dimension feature-space by keeping the maximum separability among

the classes. In the LDA, the lower dimension and the higher dimension features

are linearly dependent. The data distribution in lower dimension (Ψ-space to ψ-

space) feature-space is presented in Figure 4.4. In this figure, we only considered

the most significant 5 dimensions (ψ1, ψ2, ψ3, ψ4, and ψ5) in the new feature-space

that provides the maximum separability (explained variance). From the figure, we

observe that each of the class forms a cluster in the feature space, which enables the

separation of manufacturers.
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Figure 4.4: Visualizing data in feature-space.

To demonstrate our proposed method, we trained one-class SVDD classifier (as

discussed in Section 4.3) for each class where we assume that the manufacturer does

not have any prior knowledge of the memory modules from other class (See Section

4.2). The classifier was only trained at NVRT operating condition, and the same

classifier was used to test the data from other operating conditions. Training one

class classifier is a more complex statistical problem compared to the multi-class

problem. We used LIBSVM library to implement the one class classifier [CL11].

For each class, we selected only one module to train the classifier (using 26 features

from all pages collected at NVRT condition) and then tested all the pages from the

rest of the 24 modules with the trained classifier with all operating conditions.

To validate our algorithm, we chose all possible combinations of training and

testing data sets. In Table 4.2, we presented the result from the one-class classifier.

?For class 3 and class 4, we have only one sample which is used to train the statistical
model. There is no positive test sample left for these two classes.
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Class
Tag

Operating
Condition

PPRpos,µ PPRpos,σ PPRpos,min PPRneg,µ PPRneg,σ PPRneg,max

1

NVRT 0.00 0.00 0.00 0.04 0.26 1.77
HVRT 0.00 0.00 0.00 0.03 0.20 1.37
LVRT 0.00 0.00 0.00 0.03 0.22 1.51
NVHT 0.00 0.00 0.00 0.05 0.31 2.08

2

NVRT 99.07 1.16 95.40 0.00 0.02 0.17
HVRT 98.04 3.54 87.60 0.00 0.01 0.10
LVRT 99.09 0.98 96.49 0.00 0.02 0.19
NVHT 99.33 0.58 97.53 0.00 0.01 0.07

3?

NVRT − − − 0.00 0.01 0.06
HVRT − − − 0.00 0.01 0.06
LVRT − − − 0.00 0.01 0.05
NVHT − − − 0.00 0.01 0.07

4?

NVRT − − − 0.00 0.00 0.00
HVRT − − − 0.00 0.00 0.00
LVRT − − − 0.00 0.00 0.00
NVHT − − − 0.00 0.00 0.00

5

NVRT 84.19 6.92 59.79 0.38 1.02 6.8
HVRT 84.74 7.16 59.31 0.41 1.10 7.19
LVRT 84.19 6.06 60.92 0.40 1.02 6.7
NVHT 82.56 7.63 57.00 0.38 1.03 6.96

6

NVRT 90.29 9.31 69.58 1.58 4.16 25.91
HVRT 90.35 9.39 68.98 1.54 4.14 25.78
LVRT 81.98 9.49 69.74 1.69 4.52 28.65
NVHT 90.32 9.31 69.17 1.52 3.80 23.64

7

NVRT 73.81 10.46 66.41 1.56 4.73 21.72
HVRT 74.22 9.36 68.11 1.61 4.91 22.98
LVRT 71.55 14.67 61.18 1.56 4.75 21.19
NVHT 76.01 6.53 71.39 1.53 4.72 22.15

Table 4.2: Results from the one-class classifier.

The third, fourth, and fifth columns of the table represent the mean, the standard

deviation, and the minimum PPR from the positive samples for each classifier (PPR

is calculated from each test module). The sixth, seventh, and eighth columns of the

table represent the mean, the standard deviation, and the maximum PPR from the

negative samples. For the ideal case, the PPRpos and PPRneg should be 100% and

0% respectively. The standard deviation for both cases should be 0%. A larger gap
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between the PPRpos and PPRneg provides us the flexibility of choosing appropriate

values of λPPR and n for identifying the origin of the manufacturers along with

specification with high confidence (Section 4.3). Our silicon results provide a satis-

factory difference between the PPRpos and PPRneg, which can be further improved

by learning statistical model with more positive samples and/or introducing nega-

tive samples. Table 4.2 also presents that a small change in voltage and temperature

has a very insignificant effect on classifier performance. This is expected because a

small change in voltage or temperature has a negligible effect on Activation time.

[KPHM18, CKH+16, CYG+17, CGW+14].

A suspicious DRAM module: From the results shown in Table 3, for class

1, we observe that the PPRpos is 0% (the ideal PPRpos is 100%). Note that we

have two samples available for this class: one is used for training, and another

one is for testing. Therefore, we suspect that one of them is counterfeit. Figure

4.5a presents the spatial locality of failed bits from 2 random pages from those two

samples. The results show that they have distinct FBC properties. Furthermore,

the dissimilarities found in visual inspection (Figure 4.5b) suggests that one of them

might be counterfeit (i.e., from a fake manufacturer). The layout difference between

these two modules suggests that the reference layout version should be different for

these two modules. However, the reference layout version is described as “C1” on

both modules’ label. From the SPD data, we found that the reference raw card

(i.e., layout) version is specified as “C” (which represents- “C0”, “C1”, “C2” etc.)

for both modules. For further investigation, we checked the layout provided by the

JEDEC [JEDa] and found that the second module layout version is “C2” instead of

“C1” (as shown in Figure 4.5b). Additionally, we also found that the PCB quality

of the second module is much inferior compared to the first one. Therefore, we

conclude that the second module is either from the fake manufacturer or mislabeled
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(with layout version “C1”).

(a) Spatial locality of
erroneous bits of 2 random

pages of each samples.
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(b) Visual appearance of each sample
(Module 2 is suspicious).

Figure 4.5: Visual representation of DRAM modules from Class
.

4.5 Limitations

Our proposed method can be used to detect various counterfeit types. However, the

proposed work cannot identify overproduction from the same foundry [RFS+14]. An

untrusted foundry can reuse the GDSII of and may sneakily produce chips out of

contract. As those overproduced chips experience the same architectural, layout,

systematic process variation, our extracted feature would not be able to draw any

difference between authentic and counterfeit memory chips. In addition to that,

an adversary might use the proposed method to select recycled memory chips that

match an original OEM DRAM module. To prevent such a case, we will also have

to find a different type of DRAM signature or a different set of features that identify

recycled DRAM as well. For example, selecting a retention-based DRAM signature
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might provide a better set of features to identify recycled DRAM as DRAM retention

behavior changes over its usage [NRT19].

4.6 Conclusion

In this chapter, we proposed a simple non-invasive and low-cost scheme for identi-

fying the origin of a DRAM manufacturer and verifying individual DRAM’s specifi-

cation. The proposed method exploits the DRAM latency variations to capture the

architectural, layout, and process variations. At first, we chose the most appropriate

features from the DRAM signature, and then we used a one-class classifier to verify

the memory class without knowing the information from other classes (i.e., other

manufacturers).
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CHAPTER 5

IDENTIFYING SRAM ORIGIN

5.1 Introduction

This chapter presents a detailed description of identifying SRAM manufacturer

and part number by extracting a set of features from the SRAM startup signature

[TFR21]. Although SRAM is a relatively small component of a system, many expen-

sive ICs of the system (e.g., microprocessor’s cache, microcontroller’s main memory,

FPGA’s BRAM, etc.) are integrated with the SRAM-based memory components

(i.e., on-chip component). Hence, identifying counterfeit SRAM can potentially

identify a large family of counterfeit ICs. The major contributions of this chapter

include-

• We have extracted a set of features from the start-up state of SRAM chips to

capture the architectural, layout, and process variations. We found that our

proposed set of features can be used to identify the memory manufacturer and

part-number.

• We have tested the robustness of our proposed method by varying operating

temperature and testing platforms.

• We have also compared the extracted features between the fresh and aged (recy-

cled) chips. The practical aging state of SRAM memory has been emulated by

stressing the memory chip under high-temperature and supply-voltage conditions.

• We have validated our proposed technique with the data collected from 345 com-

modity SRAM chips (manufactured by five major vendors).

• We have provided a practical guideline to improve the accuracy of our proposed

method with a realistic demonstration.
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5.2 Differences from Prior Works

Although the feature extraction technique used for DRAM and SRAM identification

has some similarities, extracting features from SRAMs is more challenging than the

DRAMs. For instance, While we have identified DRAM modules (a combination of

few DRAM chips), we identify individual SRAM chips in this work. Additionally,

SRAM chips are much smaller than DRAM chips (few Kbytes to few Mbytes vs.

couple of hundreds of Mbytes to fey Gbytes). Consequently, a small number of

DRAM modules (containing multiple DRAM chips) can capture large systematic

process variation and produce a more accurate statistical model. However, to cap-

ture the same degree of systematic process variation, one might require more SRAM

samples to train the statistical model. Additionally, the SRAM chip architecture is

less standardized than the DRAM chips. For example, it is up to the manufacturers’

choice to divide the address bits into row-address bits or column-address bits for

SRAM chips. On the contrary, the DRAM addressing is standard (usually, the least

significant bits are used for the column addressing). Such ambiguity makes it hard

to extract 2D spatial information from SRAM chips. In addition to these challenge,

this work has the following additional differences with the prior work-

• In our previous work, we have used latency variation to extract the memory

signature; however, in this work, we used the start-up data signature from SRAM

chips. This work generalized memory signature requirement, i.e., any memory

signature might be used to identify memory manufacturer/part-number.

• We have modified the previously proposed authentication framework. In our

proposed work, we used only a single one-class classifier to identify both manu-

facturer and pat-number. However, later we realized that the part-number identi-

fication is more challenging using a one-class classifier and more practical to use a
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binary/multi-class classifier. Hence, we proposed a one-class classifier to identify

the manufacturer and a binary/multi-class classifier to identify the part-number

in this work.

• We also demonstrated our proposed work’s viability to identify the recycled mem-

ory chips, which was not presented in our previous work.

5.3 Proposed Method

In this work, we make a similar set of assumptions as we made to identify the DRAM

origin (Section 4.2). However, the feature definition, extraction, and classification

are much different than we presented in Section 4.3. Below, we summarize our

proposed method for identifying SRAM origin.

5.3.1 Feature Selection

In our proposed method, we collected 20 sets of start-up data ({D1, D2, ··· , D20})

from each SRAM chip. We constructed a unified data, D, based on majority voting1

cast by {D1, D2, ··· , D20}. SRAM memory cells are generally arranged in a 2-D

array of size r × c (r = number of rows and c = number of columns). If each

word of a SRAM chip consists of wl bit data, then, for simplicity, we can assume

that there is a total of wl 2-D array of single bit contributing 1-bit data to each

data word. So, the data D should be 3-D data of size r × c × wl. However, to

reduce the complexity, we rearrange the whole data in a 2-D array of size nw × wl

(= dim(D)), where nw = r × c is the number of words in the memory. Now we

extract the following seven features from the start-up data D [BTMR+20]:

1In the majority voting technique, each PUF bit is sampled multiple times, and the
value of that PUF bit is assigned as the majority of the samples [SMK+18].
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• Feature 1 (Φ1): This feature quantifies the “cell biasness” by counting the

number of logic “1” bits in the start-up data. The evaluation of Φ1 is illustrated

in Figure 5.1. In this example, we presented start-up data from an 8×4 (nw×wl)

SRAM chip containing four 8-bit words. In this figure, 16 bits contain logic “1”

out of 32 bits. Hence, according to our definition, Φ1 = 16/32 = 0.5. Cell

bias qualitatively measures the asymmetricity of the cross-coupled inverters (see

Section 2.3.1). For an ideally symmetric SRAM cell structure, this value should

be 0.5 (i.e., no “cell bais”). However, in practice, this value is usually deviated

from 0.5 because of the different variations discussed previously (see Section 3.1).

Figure 5.1: Illustration of Φ1, Φ2, and Φ3 (8×4 SRAM).

• Feature 2 (Φ2): The fraction of logic bit “1” is counted in each word of data D;

then, the standard deviation of those values was taken as the feature Φ2. Φ2 is

also illustrated using Figure 5.1. In this figure, we first calculated the fraction of

logic “1” from each word (along the row), and then Φ2 is estimated by computing

the standard deviation of those values. In an ideal case, the distribution of logic
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bit “1” from each data word should be normally distributed with a mean of 50%.

Our experimental results demonstrate that the mean is close to Φ1. However,

the standard deviation of distribution may vary from chip to chip depending on

memory specification (i.e., for some memory chips, the distribution can be flatter

than other chips of different specifications). Φ2 quantifies the symmetricity of

the SRAM cell array. For example, each SRAM cell might experience different

systematic process variations due to the local layout patterns2; hence, data words

from different address locations might experience different logic distribution at

start-up. A larger variation on local logic distribution will result in a larger value

of Φ2.

• Feature 3 (Φ3): An SRAM chip of word size wl can be assumed as a series

of wl 2-D SRAM arrays. We counted a fraction of “1” from each 2-D array for

this feature and took the standard deviation as the feature Φ3. If each of the 2-D

arrays follows similar data distribution, and the Φ3 should be close to 0. In Figure

5.1, each 2-D array is rearranged in a single-dimensional vector for visualization

purposes and presented along each column. Now, to evaluate Φ3, we computed the

fraction of logic “1” along each column, and then standard deviation is calculated

using those values. Φ3 can capture different physical properties of the SRAM

chips. For example, if the area constraint is too tight, all 2-D memory arrays can

be located in close proximity or may be fused together. In that case, they may

have a smaller difference in logic distribution due to smaller process variations.

• Feature 4 (Φ4): The compression ratio (r, where, r ≥ 1) of the start-up data is

selected as one of the features. A start-up data with regular patterns have larger

data redundancy and can be significantly compressed without any information

2Local layout patterns might be different from one cell to another, e.g., memory cells
near the sense amplifier vs. memory cells at the middle of the SRAM array.
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loss. However, start-up data with randomly distributed zeros and ones can be

squeezed very little and causes a smaller value of compression ratio (closer to 1).

Φ4 can capture the impact of the random process variation on SRAM chips. The

compression ratio is defined as Equation 4.1.

• Feature 5 (Φ5): All data words from each SRAM chip are split into multiple

blocks to extract this feature, where each block consists of 512 consecutive data

words. Then we compute the fractional value (P1) of each block of data that

exhibits logic “1”. We, then, calculate the standard deviation of P1 calculated

from each block. We select this standard deviation as feature Φ5. This feature

captures the spatial locality of logic “0” and logic “1” of start-up data. A higher

value of Φ5 signifies a larger spatial locality. Although we select the block size of

512, the manufacture may wish to select a different size that describes the best

structural granularity in memory space. A smaller value of the block size might

capture more spatial details; however, the Φ5 will also be largely influenced by

the local noise if the block size is too small. We experimented with different block

sizes and found that 512 provided the best result for memory classification. It

is worth mentioning that Φ2 is similar to Φ5, where the block size of Φ2 is only

one word. Hence, Φ2 captures finer grain spatial information more effectively.

However, Φ2 may also capture the local noise information.

• Feature 6 (Φ6): For each memory cell, we have collected SRAM data a total

of 20 times and mark those memory cells as noisy if logic “1” is observed 8 to 12

times. We marked those cells as noisy signature bits. For this feature, we counted

the percentage of noisy signature bits. In a well-designed SRAM memory cell,

the coupled inverters are highly matched, and corresponding signature bits are

largely affected by the external/internal noises (e.g., voltage fluctuation, thermal

noise, etc.). Furthermore, we believe that this feature can contribute highly to
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detect recycled memory chips. Over the usage, there will be more cells with large

threshold voltage mismatch in recycled memory chips [GWHS19] and will produce

large PSNMnoise (see Section 3.6). Hence, a recycled SRAM chip should produce

less noisy signature bits and reduce the value of Φ6 over time.

• Feature 7 (Φ7): This feature is similar to the Φ2. In this feature, instead

of accounting for the theoretical normal data distribution, we made a (wl + 1)-

bin histogram. If a data-word (∈ D) occupies a total t bit of logic “1”, and

then it is placed in tth histogram bin. The standard deviation of the bin size

quantifies as the feature Φ7. If the distribution is normal, then Φ2 and Φ7 should

be approximately the same (also well-known as the normal approximation for

probability histogram). Hence, the Φ7 measures the skewness on word (∈ D)

distribution from the normal distribution.

We extract all these seven features from both fresh (i.e., new) and aged (i.e., re-

cycled) SRAM chips. Then we show that these features form visually separated clus-

ters in feature space depending on the SRAM module type (manufacturer “A” vs.

Manufacturer “B”, Part number “X” vs. Part number “Y”, fresh vs. aged/recycled).

In addition to above features, manufacturers may choose a different feature-

set that describe their chips more concisely. However, when the manufacturer itself

does not define the features and assign the responsibility to a third-party, one or few

features might not obtain the exact electrical characteristics as intended due to the

special modification at the architectural or layout level (which might not be known

to the third-party). For example, bit-level scrambling in the data word may limit

the usefulness of feature Φ3 [EP17]. Nevertheless, as we are using multiple features,

a well-trained statistical model (described in Section 5.3.2) might still learn the

difference between two groups of SRAM chips by utilizing other features available

from the feature pool.

68



It is worth mentioning that the features described above only provide qualitative

information of different physical properties of the SRAM chips; however, they do not

provide any quantitative information. Furthermore, each feature described above

might be impacted by combined information from multiple physical properties. For

example, although Φ5 primarily varies from one memory class to another due to

spatial variation, Φ5 might also be impacted by the address scrambling caused by

the architectural difference in the address decoder [vdGS02].

5.3.2 Identifying Authentic Memory Chips

Usually, memory chips with the same manufacturer and specification are labeled

with a unique part number; hence, to identify a memory authenticity, we need to

identify the memory part number. We propose a machine learning-based approach

to classify the memory part number after extracting features from the start-up data.

However, the classification can be done with two different approaches- a) learning

a binary classifier (positive vs. negative) for each class, and b) learning a one-class

classifier for each class. In the first approach, we learn a binary classifier for each

class to differentiate between positive samples and negative samples (i.e., authentic

vs. counterfeit). This approach is only applicable when both positive and negative

sample is available while training the classifier. Nonetheless, it is not a practical

approach due to the enormous diversity in negative samples. Collecting negative

samples from whole statistical distribution is not cost-effective and time-efficient.

In the second approach, we do not need any samples from the negative class, and

only positive samples are sufficient to learn the classifier. In our previous study

(see Chapter 4), we showed that a one-class classifier is preferable for counterfeit IC

detection as the statistical diversity of the counterfeit chips (negative class) is too
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large, and they can be introduced from a large number of sources (see Chapter 1).

Unfortunately, one-class classification is a complex statistical problem and might

reduce the accuracy. Hence, we propose a two-step approach to solve this issue:

1. Identifying manufacturer: Different vendors use different memory cell de-

signs, design flow, and possibly fabrication facilities. Furthermore, they may in-

tegrate different peripheral inside the memory; for example, altering row-decoder

may alter apparent start-up data locality seen from outside of the memory. Hence,

multiple sources may contribute to start-up data variation among SRAMs manu-

factured by different vendors. In other words, SRAMs for different manufacturers

appeared to have a larger difference in their features (large inter-manufacturer

feature distance), which ease identifying the SRAM manufacturer (e.g., manu-

factured by vendor “A” or not). However, while training a binary-classifier, it is

impossible to learn all the negative samples that the target vendor does not manu-

facture. Therefore, we propose a one-class learner (e.g., one-class Neural Network,

one-class SVM, SVDD, etc. [BTMR+20, ABN+16, RBT21, SKR+13, HCM12])

only to identify the manufacturer information. However, one may choose to train

a binary-class classifier with all available negative samples along with a one-class

classifier to improve the accuracy. Note that, in this work, we only used a simple

binary classifier for identifying memory manufacturers to reduce the complexity

of our experimental evaluation.

2. Identifying part number: A manufacturer usually produces different memory

chips with different specifications with different part numbers. However, they

may use the same design facility and similar peripherals for all of them, lead-

ing to a more subtle feature difference among memories. Fortunately, we can

assume that a manufacturer can easily access all memories that they manufac-

ture. Therefore, once the manufacturer is identified, the target manufacturer
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can easily provide a binary (target class vs. others) or a multi-class classifier to

identify each memory part number produced by them. As we mentioned earlier,

the one-class classifier is a complex learning task; hence we should avoid it when

we have access to the negative samples from the whole statistical distribution. In

this particular scenario, one-class learning is more difficult as we have a smaller

feature distance among part numbers produced by the same manufacturer.

5.3.3 Proposed Framework

We propose a machine learning-based algorithm that uses the device signature to

verify the manufacturer and the part number. Figure 5.2 represents the detailed

framework of our proposed technique. Using a golden set of sample memory chips,

the manufacturer needs to extract a set of features as explained in Section 5.3.1

and train classifiers to identify counterfeit chips. The manufacturer can train the

classifier in two steps: (i) learning manufacturer-specific property (Cm) and (ii)

learning part number-specific property (Cp). Manufacturing-specific property can

be learned by a one-class classifier (i.e., only learning the target manufacturer) and

might be assisted by a binary classifier (i.e., target manufacturer vs. others). For

the second step, the manufacturer can train either a multi-class classifier for all

part numbers or a multiple binary (one vs. all) classifier for each part number. By

using publicly available information provided by the manufacturer, a user should

be able to collect the signature from his samples and extract the feature-set. If

the classifier information is available, the user can verify the chip authenticity by

himself. Otherwise, the user can send the extracted feature-set to the manufacture,

and the manufacturer can verify the authenticity of the test memory chip.
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Figure 5.2: Proposed protocol to identify counterfeit SRAM.

5.3.4 Identifying Recycled Memory Chips

Although identifying memory manufacturer and part number can prevent many

types of counterfeitings [BTMR+20], identifying memory manufacturer and part

number does not capture the recycled memory chips. Fortunately, the features we

described in Section 5.3.1 can also be used for identifying recycled memory chips.

For example, the distribution of the 0’s and 1’s can be skewed over time due to the

skewed distribution of 0’s and 1’s in functional memory usage, which can be easily

captured by Feature 1 [GWHS19]. Additionally, we observe that the distribution

of other features may help to identify recycled SRAM chips in extreme cases, i.e.,

when only the symmetric data patterns are used over functional memory usage (see

Section 5.4.3).

5.4 Performance Evaluation of Proposed Framework

We evaluated our proposed framework by using silicon data. In our experiment,

we collected SRAM start-up signatures to demonstrate our proposed technique.

Typically, the success of any machine learning (ML) model relies on the sample

quality and sample size. However, it is difficult to collect data from a large set of
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sample chips in a lab environment and imitate all possible operating conditions.

Therefore, we divide the data collection process into the following tasks:

1. We used Arduino Due board [Ard] for collecting start-up data from SRAM chips.

We used 345 4-Mbit (256K×16) SRAM chips from 5 major manufactures and 23

different part numbers (i.e., 23 memory classes). All of these 23 part numbers are

tabulated in Table 5.1. From now on, we will use the “tag” (specified in Table

5.1) to recall a specific memory part number/class. We used 230 SRAM chips to

train ML models (10 chips from each class) and 115 chips to test the model (5

chips from each class).

2. We collected data from both test chips and train chips at a nominal voltage (3.3V)

and room temperature (25◦C). We used two different Arduino boards to emulate

the platform variation among different embedded systems and utilized them to

collect start-up signatures from test samples. We found that the operating voltage

of these two boards is within ±35mV of the nominal voltage.

3. We used a one-vs-all binary classifier (positive vs. negative) for both manufac-

turer identification and part number identification. As we explained in Section

5.3.2, the one-classifier would be the best for the manufacturer identification.

However, the one-class classification task is a complex statistical problem and

might require a large number of samples to train the model.

4. Data noise can impact the classification models severely. To reduce noise, we

collected start-up data from the same SRAM chips 20 times. We maintained a

constant sampling interval of 2 minutes. We shorted the power pin (VCC) and

other control pins of the SRAM chip with the ground within this time interval.

We maintained such settings using relay circuits (also controlled by the same

Arduino Due board). This experimental setup should be sufficient to avoid the

potential discharge inversion effect on the SRAM start-up state [LAWG17]. We
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combined those 20 sets of data in a single set using the majority voting technique

[SMK+18].
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Table 5.1: List of SRAM chips in experiment.

5. The variance error is expected when the sample size is too small [PS04]. A model

with high variance provides too much attention to the data that are trained with

and prone to overfitting. Hence, to reduce the variance error in the trained model,

we segmented the SRAM signature data in 16 chunks and virtually increased

the sample count by treating each segment as an individual memory chip (i.e.,

extracting an individual set of features from each segment). However, in the

inference phase, the class of a test sample is determined by the majority voting

method using all 16 segments. If the same number of votes supports multiple

class labels, the tie is broken by comparing the cumulative posterior probabilities3

of all 16 segments.

gCY: Cypress Semiconductor; IDT: Integrated Device Technology; ISSI: Integrated
Silicon Solution, Inc.; AMI: Alliance Memory, Inc.; REA: Renesas Electronics.

3The posterior probability quantifies the confidence level of inferencing a sample to a
particular class [HTF09].
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6. To examine the temperature sensitivity of our proposed technique, we collected

data from test samples at high temperatures (∼ 45◦C) and validated the same

trained model learned in task 3.

5.4.1 Visualizing Features

The accuracy and efficiency of an ML algorithm largely depend on the quality of

the features. Hence, to demonstrate the feature-merit (explained in Section 5.3.1),

we present the feature distribution of train chip across different manufacturers and

different part numbers in Figure 5.3 and 5.4, respectively. These figures show that

most features are normally distributed (median is centered), and in many cases, at

least one feature distribution of a particular class produces a clear visible separation

with other classes (i.e., manufacturer “A” vs. all and part number “X” vs. all). For

example, in Figure 5.3, the SRAM chips manufactured by Renesas Electronics are

readily separable by the distribution of feature Φ5. Similarly, Figure 5.4a demon-

strates that SRAM chips from CY4 are easily distinguishable from the distribution

of feature Φ2. Unfortunately, in our case, many of the classes can not be separated

from other classes based on their feature distribution due to the inter-dependency

among those features. For example, feature Φ1 (number of 1’s) and Φ4 (compres-

sion ratio) might have a close relation; for instance, if the signature data is highly

random, the Φ1 should be close to 0.5, and Φ4 should be close to 1.

For such cases, the class separability can still be visualized if the current feature-

space (Φ-space) is transferred to a new feature-space (ϕ-space), where the ϕi =

f(Φ1,Φ2, · · · ,Φn). If the Φ1,Φ2, · · · ,Φn are nonlinearly correlated, then the f(·) is

a non-linear function. In our experiment, we used generalized discriminant analysis

(GDA) [BA00] to transform the Φ-space to ϕ-space, where data points are linearly
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AMI CY IDT ISSI REA

Figure 5.3: Visualizing feature distribution by manufacturer.

separable at ϕ-space. GDA4 is a supervised machine learning technique to find a

reduced set of features that preserves the maximum separability among the classes.

This reduced set of features is related to the old feature space by a non-linear kernel

function. In our experiment, we used an RBF kernel function (see Equation 4.4).

The RBF functions’ parameter (γ) is determined by the 10-fold cross-validation

method and ensured minimum distance between samples and corresponding cen-

troids. Figure 5.5 and 5.6 represent the test memory chips in ϕ-space (in 2D projec-

tion) and demonstrates the manufacturer and part number separability. Each dot

in Figure 5.5 and 5.6 represent each memory segment as explained in task-5. Those

two figures demonstrate that memory classes (manufacturer “A” vs. “B” and part

number “X” vs. “Y”) are fairly distinguishable in at least one 2D projection of the

ϕ-space. While transforming the feature-space of a K-class problem, it is worth

mentioning that at most K − 1 dimensions are required in the new feature-space

without losing any information of class separability [HTF09]. However, for IDT,

adding more than three dimensions (Figure 5.6c) only adds very small details on

class separability (which is not recognizable from visual appearance). However, we

4Reference implementation of GDA: https://github.com/mhaghighat/gda
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CY1 CY2 CY3 CY4 CY5

(a) Cypress Semiconductor

ISSI1 ISSI2 ISSI3 ISSI4 ISSI5

(b) Integrated Silicon Solution, Inc.

IDT1 IDT2 IDT3 IDT4 IDT5 IDT6

(c) Integrated Device Technology

Figure 5.4: Visualizing feature distribution by part number.
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(d) Renesas Electronics
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(e) Alliance Memory

Figure 5.4: Visualizing feature distribution by part number (Cont.).

used K − 1 dimensional new space for a K-class problem for other cases in Figure

5.5 and 5.6.

Note that some overlapping between multiple classes is still visible in the ϕ-space

due to the random process variation. However, such overlapping can be reduced by

further optimizing the RBF parameters, given that more train samples are available

(we have only ten samples from each part number). While classifying the test

memory chips, the impact of such overlap is minimized by assigning equal weight

on all 16 segments of the chip and casting a “vote” from each segment.
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Figure 5.5: Representation of SRAMs in feature-space, clustered by manufacturer.

5.4.2 Labeling Test Memory Chips

Although the GDA can be used for both visualization and classification tasks, GDA

is not ideal for a small sample size. Fortunately, the ensemble learning technique

can still perform reasonably better even with a small set of samples [Die02]. In the

ensemble technique, multiple base models are learned with different configurations,

and then the output label of the test sample is determined based on the vote cast

by each model. Although several ensemble algorithms are available, we used the

bagging (bootstrap aggregating) method in our experiment. The bagging method is

similar to other ensemble methods, except the base model is trained with a different

set of train data (sampled with replacement). The bagging method has the inherent

ability to reduce the variance error of the trained model and can out-perform other

ML algorithms when the train sample size is small [YIKA16].

In our experiment, we trained multiple ensemble models using different base

classifiers (e.g., SVM, Decision Tree, Naive Bayes, Discriminant Analysis, Kernel,

etc.), and the best model is chosen based on the 10-fold cross-validation score. Then
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we generated the test score based on our test samples. We represented the test score

in Table 5.2 and 5.3. These tables present four types of test scores: Precision (P ),

Recall (R), F1 score, and accuracy, which are defined by Equation 5.1, 5.2, 5.3,

and 5.4, respectively. P quantifies the trained model’s accuracy out of all predicted

positives, and the R computes the fraction of positives that the model captures

correctly. On the other hand, F1 score is the harmonic mean of the P and R. For

an ideal case, all of these test scores should be close to 1. Note that, the accuracy
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is not a very useful metric when the test samples from the positive and negative

classes are not equal (unbalanced data). In our experimental setup, the number of

test samples for binary (one vs. all) classifiers is unbalanced; hence, we emphasize

the P , R, and F1 score in our discussion.

Precision (P ) =
tp

tp+ fp
(5.1)

Recall (R) =
tp

tp+ fn
(5.2)

F1 =
2

(P )−1 + (R)−1
(5.3)

A =
tp+ tn

tp+ tn+ fp+ fn
(5.4)

Where,

tp = True positive

tn = True negative

fp = False positive

fn = False negative

We trained our binary model by utilizing the samples from the target class and

the samples from the outlier class (i.e., not belong to the target class). Target class

implies manufacturer (or part number), which is targeted to separate from other

manufacturers (or part numbers). Note that we can either consider the target class

as the positive class or the outlier class as the positive class in Equation 5.1, 5.2,

5.3, and 5.4; depending on the definition of positive class, the P , R, and F1 score

can be different for unbalanced test samples. We focus on the test scores produced

by considering the target class as the positive class as it delivers the worse set of

test scores.

81



Table 5.2 and 5.3 present a single accuracy score and two sets of P , R, and

F1 score considering both objectives as discussed above. In Table 5.2, the 1st row

represents the target manufacturer, and the 2nd row represents the corresponding

accuracy score. Row 3, 4, and 5 represent the P , R, and F1 score considering

the target class as the positive class. Similarly, row 6, 7, and 8 represent the P ,

R, and F1 score considering the outlier class as the positive class. Column 2–6

represents the classifier score for each manufacturer, and column 7 (µV ) represents

the average classification score considering all manufacturers. The table shows that

the average test scores are ≥ 0.92% (positive class = target class), which is promising

considering such a small number of samples. However, the classification score is a

little lower for CY and AMI than the other manufacturers, resulting from the fact

that CY and AMI slightly overlap in feature space (blue and red dots in 5.5).

However, the classification scores can be improved by adding more samples and

further optimization of the classifiers.

Vendor CY IDT ISSI AMI REA µV

A 0.93 1.00 0.99 0.97 0.99 0.98

Target Class
P 0.87 1.00 1.00 0.87 1.00 0.95
R 0.80 1.00 0.96 0.87 0.95 0.92
F1 0.83 1.00 0.98 0.87 0.97 0.93

Outlier
P 0.98 1.00 0.99 0.98 0.99 0.98
R 0.98 1.00 1.00 0.98 1.00 0.99
F1 0.98 1.00 0.99 0.98 0.99 0.99

Table 5.2: Identifying SRAM manufacturer.

In Table 5.3, we presented the classification score for the part number iden-

tification, where the 2nd row represents the target part number. Note that, µM

represents the average classification score over the corresponding manufacturer, and

the µV columns represents the average classification score over all manufacturers.

Similar to Table 5.2, rows 4–9 of table 5.3 represent two sets of P , R, and F1 scores.
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Table 5.3: Identifying SRAM part number.

Unlike manufacturer identification, the part number classification score for some

manufactures is not up to the mark; especially, the P or the R (and corresponding

F1 score) scores to identify a few part numbers of IDT, REA, and AMI are unac-

ceptably low (shown in red). Nevertheless, such low test scores can be explained

from multiple perspectives. For example, the model used to classify manufacturers

trained based on 40–60 samples per class; however, due to the extremely limited

number of samples from each part number (10 from each), it is harder to learn part

number classifiers. Besides, the differences among a few memory part numbers,

especially from IDT, REA, and AMI, are not well-understood from their electrical

characteristics mentioned in the datasheets. For example, the only noticeable dif-

ference between IDT2 and IDT5 is how they are packed during shipping (tube/tray

vs. tape/reel). Hence, these two part numbers might be equivalent based on their

electrical characteristics. Similarly, the following pair of the part numbers- (IDT3,

IDT6), (REA1, REA2), and (REA3, REA4) do not have any recognisable difference

other than their packing method. Hence, to extract the perfect set of features to
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differentiate those chips (IDT2 vs. IDT5, IDT3 vs. IDT6, REA1 vs. REA2, and

REA3 vs. REA4), we might require more detailed information about the chip char-

acteristics. On the other hand, the IDT1 and IDT4 memory chips are only differed

by the temperature grade, and possibly have only difference in their die packaging

along with some minor fabrication imperfections [MKD04]. Hence IDT1 and IDT4

may have very subtle differences due to the possible similarity in die architectural,

layout, and systematic process variation. We found the similar problem for AMI1

and AMI2, which are also only differed by the temperature grade. Note that, the

difference between IDT1 and IDT4 (or, between AMI1 and AMI2) might be still

captured by using more train samples.

In Table 5.4, we also presented the summary result (only average test score) by

changing the operating temperature of the test samples to ∼ 45◦C. The 2nd and

last row of Table 5.4 represents the average score for the manufacturer and part

number detection (respectively) from all manufacturers. On the other hand, rows

3–7 represent the average score for part number detection from the corresponding

manufacturer and the row 8 represents the average score for part number detection

over all manufacturers. From Table 5.2, 5.3, and 5.4, it is apparent that our proposed

technique is not very sensitive to temperature. The temperature insensitivity of

our selected features is reasonable; previous work shows that varying +60◦C only

changes the SRAM start-up data by ∼ 12% [PSK15].

With the temperature increase, the average test score for manufacturer iden-

tification almost retain the same score as of the nominal temperature. However,

the average part number identification across all manufacturers is slightly degraded

(presented in red in Table 5.4); for example, the F1 score to identify the target class

reduced from 0.71 to 0.67 (presented in cyan in Table 5.4). Especially, the SRAM

chips from IDT and REA are affected most while we increased the temperature. For
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Classification
goal

A
Target Class Outlier
P R F1 P R F1

Manufacturer (µV ) 0.97 0.93 0.94 0.93 0.99 0.98 0.98

P
ar

t
n
u

m
b

er

CY (µM) 0.97 0.93 0.96 0.93 0.99 0.97 0.98

IDT (µM) 0.81 0.54 0.47 0.43 0.90 0.88 0.88

ISSI (µM) 0.95 0.93 0.88 0.87 0.97 0.97 0.97

AMI (µM) 0.82 0.76 0.73 0.72 0.89 0.87 0.86

REA (µM) 0.73 0.58 0.55 0.48 0.85 0.78 0.81

µV 0.86 0.74 0.71 0.68 0.92 0.90 0.91

Table 5.4: Mean accuracy, precision, recall, and F1 score at high temperature

IDT, the average F1 score for part number identification is reduced by 19% (0.53

to 0.43), and for REA, the F1 score is degraded by 9%. For IDT and REA, we

expected such results as the features associated with those part numbers are very

closely distributed (as explained in the previously). Hence, a slight thermal noise on

start-up data impacted the corresponding classifiers heavily. Interestingly, the clas-

sification score improved by a little margin for AMI, although chips from AMI1 and

AMI2 are closely located in feature-space (Figure 5.6e). With closer observation,

we found that the features from AMI1 impacted heavily at higher temperatures and

shifted away from the AMI2, which provided a relatively better separation between

AMI1 and AMI2. The temperature sensitivity of AMI1 is not surprising as AMI1

possesses a lower temperature grade than AMI2.

In Table 5.2, 5.3, and 5.4, we trained the classifier using only one entropy source

(i.e., all features are extracted from start-up data at nominal voltage). Our proposed

technique can be further improved if more features can be extracted from different

entropy sources. For example, we collected three sets of start-up data at low voltage

(3.0V), nominal voltage (3.3V), and high voltage (3.6V) from all IDT chips. Then,

we only extracted feature Φ1, Φ4, Φ6, and Φ7 from all of those three datasets and

concatenated them in a single feature set (total 12 features). We trained ML models

from train samples as we did earlier and used the model to identify part numbers

85



from IDT. The outcome of the experiment was aligned with our expectation; The

average F1 score of part number identification is improved to 0.6 from 0.53 (presented

in cyan in Table 5.4). Note that, for most of electronic ICs, the external voltage

is down-regulated using a voltage regulator. However, our experiment shows that

varying the operating voltage to 3V or 3.6V slightly alters the SRAM startup data

(∼5%) (result not included in this manuscript). We also found a similar mismatch

(∼3%) on openly accessible SRAM data published by Forte et al. [FTGR]. Such

slight differences in startup data might be introduced from a subtle shift in core

voltage due to the voltage regulator’s input-output voltage characteristics.

5.4.3 Identifying Recycled Memory Chips

As we explained in Section 3.6, the recycled (aged) and fresh (aged) SRAM chip can

be distinguished by only observing the number of 1’s in start-up data [GWHS19].

As our method also uses the number of 1’s as a feature (Φ1), our method is more

generalized. Moreover, identifying the recycled chips by observing the number of

1’s is only possible if the SRAM chips experience more logic “0” than the logic

“1” (skewed data distribution). Although such a scenario is practical over the nat-

ural usage of the SRAM chips, we conducted an experiment without making the

assumption of skewed data distribution.

Our experiment has used the “accelerated aging” [G+18] method by continu-

ously writing random bits on SRAM chips. In accelerated aging, we exposed the

memory chips in high voltage (3.6V) and high temperature (80◦C) for 1 hour and

continuously wrote different random numbers (with the normal distribution of 0’s

and 1’s). The temperature of the chip was controlled by a thermostream system

[The]. We collected start-up data before and after the aging process and extracted
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(a) Cypress Semiconductor (CY)

(b) Integrated Device Technology (IDT)

Figure 5.7: Visualizing feature distribution: fresh vs. aged.

features from them. The aging process is time-consuming, and we had limited access

to the thermostream system; hence, we were only able to experiment with a limited

number of chips. Our experiment used used 2 SRAM chips from each part number of

CY and IDT (10 CY chips and 12 IDT chips). Although this small number of chips

is not sufficient for the ML algorithm, our experiment demonstrates the impact of

the aging process on features that are selected in Section 5.3.1.

We presented the distribution of the features from fresh chips and aged chips

in Figure 5.7. Figure 5.7a and 5.7b represent feature distribution for CY and IDT,
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respectively. Because of using random numbers (uniform distribution of 0’s and 1’s)

to age the device, we have an unpredictable shift on the Φ1 (number of 1’s) distribu-

tion, which is used in previously proposed method to identify recycled SRAM chips

[GWHS19]. However, we observed some other features might be extremely useful

even with the presence of the uniform data pattern. For example, the distribution

of Φ6 (number of noisy signature bits) always tends to shift towards 0. With suffi-

cient aging, the distribution of Φ6 from the fresh and aged chips will be completely

separable. During the aging process with the random data pattern, the number of

0’s or 1’s experienced by each memory cell will be a normal distribution. Hence,

some of the noisy signature bits (located at distribution tail) will experience more

0’s or 1’s than others. With the same argument presented in [GWHS19], we can

argue that this will bias those noisy signature bits either toward “1” or “0” and

reduce the total number of noisy signature bits (see Section 3.6 for details). Note

that, even with the biased data pattern (dominate by “0” or “1”), the number of

the noisy signature bits will also be reduced (noisy signature bits will achieve either

stable “1” or “0”).

We also observe a shift in the distribution of other features. For example, now

the compression ratio is closer to 1 (distribution of Φ4). This is also understandable

as the random distribution on the data pattern biased the SRAM cells randomly

and randomizes the start-up data. However, this distribution might shift upward if

the usage data pattern is biased towards either “0” or “1” (i.e., start-up data will

have more “1” or “0” after usages). Hence, imposing a boundary condition on Φ4

distribution might also be helpful to identify recycled SRAMs.
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5.4.4 Evaluation Time

Our proposed method is aimed to identify counterfeit memory chips from the con-

sumer end (or at least start-up signature should be collected at consumers’ end (See

Figure 5.2)). Nevertheless, our proposed method can also be scaled up for bulk

testing. A single FPGA or high-speed embedded system can be used to collect and

analyze data for bulk testing purposes. The average access time for a Commercial

off-the-shelf (COTS) SRAM is <15ns/word. Hence the total access time for a 4Mb

(256K×16) SRAM is <4ms (≈15ns×256K). In our experiment, we collected start-

up data 20 times. Additionally, to avoid the discharge inversion effect, the sampling

interval of 10s should be more than sufficient [LAWG17]. The inference time of the

machine learning model is very negligible compared to the data collection process

(order of µs). Hence, the total time required to test an SRAM chips’ authenticity

is ∼3min (≈19×10s+20×4ms), which is the time required for collecting the SRAM

start-up data.

5.5 Limitations

Identifying memory manufacturer and part number are useful for identifying many

counterfeitings, which might be introduced at a different supply chain stage. How-

ever, our feature-based manufacturer and part number detection technique will not

be effective for overproduced memory chips introduced by a malicious foundry (i.e.,

the chip produced beyond the IP owner’s consent with original GDSII and package

in the same foundry facility). Additionally, our proposed framework will not identify

a defective/tampered IC integrated with a fully functional SRAM chip.
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5.6 Conclusion

This chips presents a non-invasive and low-cost technique to (i) identify the memory

manufacturer and part number and (ii) recycled SRAM chips without requiring any

additional hardware. This proposed framework has potential to use for other volatile

and nonvolatile memory chips and help stop spreading them in the supply chain.

Finally, to train a more practical and accurate ML model, we need more train

samples which might require an industry scale setup and crowd-sourcing.
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CHAPTER 6

NON-INVASIVE HEURISTIC ATTACK ON mPUF

In Chapter 3, we discussed several deterministic factors that can create a common

trait among memory-based signatures if they share the same design specification and

manufacturing resources. In Chapter 4 and 6, we extracted a set of features that

can provide an excellent visual description. Although those features do not provide

any quantitative measurement of those mPUFs’ signature, they can be utilized to

identify the memory origin. In this chapter, we make a probabilistic estimation of

the mPUF outcome and design a heuristic attack on the mPUF key [BTFR21]. The

major contributions of this chapter include-

• We briefly discuss the weakness in PUF metrics, which are widely used to quantify

the “goodness” of many mPUFs. Without proper attention, an attacker may use

such weaknesses to attack mPUFs.

• We demonstrate that if an attacker has access to similar devices to the victim’s

mPUF device, the attacker can learn the characteristics of the target mPUF and

perform a heuristic attack to recover mPUF responses.

• We propose a set of recommendations to secure mPUF.

6.1 Vulnerabilities of mPUFs and weakness of PUF Metrics

In this section, we revisit several aspects of mPUFs overlooked by researchers. From

now on, we focus on SRAM PUFs (the most common type of mPUF).

6.1.1 Deterministic Components of mPUF keys

In Chapter 3, we discussed the deterministic impacts of architectural, layout, and

process variations on mPUF keys’ entropy. Although, a well-designed fuzzy ex-
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tractor (see Section 2.4.2) can improve the entropy density, a low-cost error correc-

tion scheme may replace it in many low-cost PUF-based devices [KHK+14, HKS20,

YD10, YMSD11, SRR16, SD07, CZZ17, YGH18], where the error correction scheme

might not maintain the constraint presented by Equation 2.4. In a most simple de-

sign, the error corrector does not extract the entropy or increase the entropy density

at the output; instead, it only corrects the error of the inputs. Many researchers

proposed such error correctors to replace the fuzzy extractor in low-cost applica-

tions [KHK+14, SRR16, SD07, CZZ17, YGH18]. In this paper, we assume a simple

error correction scheme (i.e., the entropy of the key remains unaffected) instead of a

complex fuzzy extractor and explore the impact of both the error correction scheme

and the non-uniform distribution of the PUF response. However, in Section 6.4.3,

we also discuss the scope and limitation of our proposed attack by considering a

fuzzy extractor.

6.1.2 Acceptance of Errors in PUF Protocol

If a q-bit error is allowed in an n-bit response (R), then all n-bit binary strings at a q-

bit distance (from R) will be accepted in the key re-generation phase (Figure 2.7b).

Now, using the covering code theory [Ost91, Zha91], an attacker can reduce the

number of possible patterns that cover all possible n-bit strings (i.e., smaller search

space to find the valid key). For example, if n = 16 and q = 2, then only < 960

patterns are sufficient to represent all 216 patterns [Zha91]. Hence, only allowing

2-bit error will reduce the entropy of response (R) from 16 bits to < log2(960) < 10

bits [B+17]. However, a properly designed fuzzy extractor can eliminate the PUF

weakness introduced by the error correction scheme (see Section 2.4.2).
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6.1.3 Weakness of PUF Metrics

In general, to get a uniform response from an n-bit PUF, the probability of getting

“0” or “1” at any bit location should be 1
2

(denoted with p = 1
2
). Alternatively, all

possible patterns encoded with n-bit should have an equal probability of being a

PUF response. If a PUF satisfies this condition, the Hamming weight (HW ) of all

the possible responses should follow a Binomial distribution [KLB95] with a mean

(µ = np) and standard deviation (σ =
√
np(1− p)) (see Appendix A). If the µ

and σ are large enough, such a Binomial distribution can be approximated with a

Gaussian distribution of the same mean and standard deviation (i.e., µ = np and

σ =
√
np(1− p)) [Boa05]. However, this condition is not checked adequately in

many PUF related works [SRR16, HBF07, G+07, BTRFR19, SvdL12], and some-

times, a Gaussian curve is fitted around the distribution of Hamming weight with

an arbitrarily chosen σ (i.e., only satisfying the condition, µ = np). If the condition

of µ or σ is not appropriately maintained, the PUF might produce biased outputs.

0 16 32 48 64
0

0.02

0.04

0.06

0.08

0.1

Figure 6.1: Binomial vs. Gaussian distribution (n = 64).

In Figure 6.1, we present a comparison between the Binomial distribution and

the Gaussian Distribution with n = 64. For the Binomial distribution, we assume

that all patterns encoded with 64-bit Binomial string have an equal probability of
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occurrence (i.e., p = 0.5). This Binomial distribution returns a mean, µ = np =

32 and standard deviation, σ =
√
np(1− p) = 4 (plotted with green bar). This

Binomial distribution can be approximated with a Gaussian curve with the same

mean and standard deviation (plotted with blue color). However, if σ 6=
√
np(1− p)

and fitted with an arbitrarily chosen σ ( plotted in red color), a set of patterns with

some specific Hamming weights have a higher chance to be the PUF outcome (for this

case, pattern from the tail section of the red curve). In such cases, it is much easier to

reveal the key by the heuristic analysis of pattern frequency in such instances. Note

that the perfect Binomial distribution of Hamming weight does not solely guarantee

the perfect randomness of CRPs. For example, two different patterns, X1 and X2,

may share the same Hamming weight of hX ; however, a perfect probabilistic value

of hX (drawn from the binomial distribution) does not imply that X1 and X2 have

an equal probability of being PUF responses. Therefore, we recommend checking

the uniformity of pattern distribution on mPUF signature data (see Section 6.4).

In summary, the impacts of the Hamming weight distribution are listed below:

• For a given unbiased n-bit PUF, all possible n-bit patterns should have a uni-

form probability to be the PUF outcome. Therefore, the corresponding Hamming

weight distribution of PUF responses (for all possible challenges) should follow

a Binomial distribution (with µ = n
2
, and σ =

√
n
2

). This distribution can be

approximated with a Gaussian distribution with the same mean and standard

deviation.

• If the Hamming weight does not obey the above distribution, the PUF will be

more susceptible to a heuristic attack.

• The Gaussian distribution (with µ = n
2
, and σ =

√
n
2

) in Hamming weight does

not guarantee the uniform probability of all patterns. Hence, we also recommend

checking uniformity on pattern distribution.
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6.2 Threat Model

In most attacks on weak mPUFs, attackers require physical access to the target

PUF device at least once (see Section 2.4.2). However, gaining physical access to

most devices is practically difficult (especially, for IoT device authentication). This

section discusses a more practical scenario of the attack surface and the attackers’

capability.

1. The attacker needs to know the memory model (manufacturer and part number)

of the target mPUF, which can be revealed by analyzing the victim’s device

information, such as the device manufacturer, model/variant, version, etc. They

can mostly obtain that information by using existing detection techniques [WK12,

Eck10] or/and from the victim’s browser fingerprints.

2. The attacker can own some mPUFs with the same vendor and part number as the

victim’s device. We also assume that the attacker can apply any invasive/semi-

invasive/non-invasive technique to characterize his acquired mPUFs and learn

signature heuristics, which can be used to attack the victim’s mPUF.

3. The attacker also knows about the error margin in the key re-generation phase

(Figure 2.7b). The previous assumption can relax this assumption. If the attacker

has access to similar PUF models, he or she can estimate this error margin. If the

ECC encoder/decoder is part of the mPUF devices (Figure 2.7b), the attacker can

easily determine the error limit by examining the ECC encoder/decoder circuit.

Otherwise, the attacker can estimate the error statistically. For example, if a

bunch of SRAM PUF of model “X” produces an average q-bit error between two

valid operating conditions, the attacker can assume that the victim’s device (of

model “X”) will also produce on an average q-bit error in those two operating

conditions.
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4. In an unsuccessful attempt made by the attacker, the degree of mismatch between

K(RCi) and K(R′′Ci) (or between RCi and R′′Ci) is not released in the key re-

generation phase (see Figure 2.7b).

The above assumptions are more practical than all previous attacking scenarios.

Our proposed attack is non-invasive as we do not require any physical access to

the victim’s PUF. In Section 6.5, we will discuss a set of countermeasures that can

narrow down the attack surface.

6.3 Proposed Method

To recover the signature/key from mPUFs, at first, we discover possible vulnera-

bilities of mPUF. Second, we propose an attacking scheme on mPUF by exploiting

these mPUF vulnerabilities. Finally, we propose a set of techniques to generate

secure Keys/signatures. We explain the first and second tasks in the following two

subsections and the third task in Section 6.5.

6.3.1 Analyzing PUF Vulnerabilities

Aside from the deterministic impact of architectural, layout, and systematic process

variations, we anaylyze following two aspects of mPUFs to assess their security.

Analyzing Pattern Frequency: PUF outputs must not be biased toward a spe-

cific pattern. To capture the weakness of mPUF, we analyze the pattern (observed

as the PUF outcome) frequency. Primarily, most of the applications use at least

a 128-bit or 256-bit key for authentication or cryptographic operation. However, a

64-bit key may also be used in resource-constrained applications. A 128-bit key can

form 2128 unique patterns (i.e., possible keys). Analyzing such a massive number of

patterns is not always feasible due to the limitations of computational resources and
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time constraints. Furthermore, analyzing pattern distribution of 2128 CRPs requires

a large source (memory chip) size (> 2128×128 bits = 292 Tbyte). which is not viable

for commercial off-the-shelf (COTS) memory chips due to the limited address space.

Therefore, we consider each PUF response as multi-word data and perceive PUF

responses using the 16-bit word characteristics. We computed the relative frequency

of the patterns formed by each of the 16-bit words of the memory and quantified

the deviance of Hamming weight distribution as discussed in Section 6.1.3. For an

ideal SRAM-PUF, all patterns should have a uniform probability of occurrence (see

Section 6.1.3). However, from frequency analysis, we observe that some patterns

have more probability of occurring than others. Note that in our experiment, we

use 4-Mbit SRAM chips, where each memory chip provides 218 16-bit words.

Error Estimation of SRAM Signatures: According to our third assumption (see

Section 6.2), the adversary must know the amount of error victim PUF can tolerate

(i.e., the capability of the error correction scheme adopted for the victim system).

However, the victim system does not reveal such information. To understand the

error profile of the victim mPUF, we characterize errors of mPUFs that possess

the same part number as the victim one. Error characterization is performed by

collecting two set start-up data at two different operating conditions and computing

Hamming distance between them. Once the error rate is estimated, the number of

patterns (i.e., key search-space) can be reduced, as discussed in Section 6.1.2 (for

algorithm, see Section 6.3.2).

6.3.2 Attacking an SRAM PUF

In a traditional brute-force attack, an attacker guesses a possible set of keys and

continuously tries them, hoping that one combination will match the original key.
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In such attacks, attackers do not have any prior knowledge about the key. However,

some prior knowledge in the victim’s device might provide some insights on pattern

heuristics, enabling the attacker to order all possible patterns according to their

probability of being matched. In this section, we mainly focus on characterizing

frequent patterns and ordering them. From now on, we will frequently use two

terms: target device and train devices. The target device is owned by the victim and

targeted by the attacker. On the other hand, the train devices are possessed by the

attacker (assumption 2 in Section 6.2), and they are similar (i.e., same manufacturer

and part number) to the target device. Our proposed attacking scheme uses train

devices to learn and characterize the target device.

We assume that the PUF response length is 64 (n = 64) in the rest of the chapter

for simplification. However, a 64-bit binary number can form 264 possible unique

patterns, which require, on average, 263 attempts to discover the key using a simple

brute-force attack [MGR13]. In our proposed attacking scheme, we aim to reduce

the number of attempts (i.e., reducing the search space) by analyzing train devices

and ordering all possible 64-bit patterns by assigning a relative probability to each

pattern.

Most of the SRAM chips use either 16-bit or 8-bit parallel interface. Hence,

we need to concatenate 4 (for 16-bit memory) or 8 (for 8-bit memory) addresses

to produce a 64-bit key. We use a 4-Mbit 16-bit SRAM chips for our experiment

and assume that a 64-bit key is evaluated from 4 consecutive memory addresses.

Therefore, we can generate a total of 65, 536 CRPs (� 264) from a 4-Mbit mPUF.

Ordering 264 patterns from a 64-bit number is a difficult task. Therefore, we have

fragmented the 64-bit key into four 16-bit words (n′ = 16). In our proposed attacking

scheme, we first estimate the error rate in each PUF response from the train devices

accepted in the key re-generation phase. Then we observe the frequencies of all
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16-bit patterns in train devices. In the next step, using the estimated error rate and

relative frequency information of the 16-bit patterns, we have reduced the number

of 16-bit patterns using a custom covering code algorithm and ordered them.

We use Algorithm 1 to estimate errors in PUF responses of the target device.

To estimate the error, we first record all responses (corresponding to all possible

challenges) of all train devices at two different valid operating conditions (e.g., at

different voltage and/or temperature). Next, we compute errors using the Hamming

distance between these two sets of responses. As the train devices are similar to the

target device, the train devices’ maximum error is the hard error limit of the target

device (i.e., an attacker needs to produce a response within that error limit to make

a successful attack). However, due to uncertainty associated with the statistical

measurement, this assumption might seem too optimistic from the attacker’s side

(i.e., the same maximum error limit of train devices and target devices). Hence,

to relax the condition, an attacker may choose the ith percentile of the error dis-

tribution (distribution of D from Algorithm 1) and set the value as the estimated

maximum error limit of the target device (i.e., the value of q).

Algorithm 1: Quantifying error limit during key re-
generation/authentication phase.

Data: Two sets of n-bit response data, Roc1 and Roc2 from train devices
at two valid operating conditions, op1 and op2.
Roc1 ← {R0

oc1, R
1
oc1, R

2
oc1, . . . };

Roc2 ← {R0
oc2, R

1
oc2, R

2
oc2, . . . };

Result: q, The number of errors accepted out of n-bit response.
1 begin

/* Compute element-wise Hamming distance (d(·)) between Roc1 and
Roc2 */

2 D ← {Di | Di = d(Ri
oc1, R

i
oc2)};

3 q ← max(D);

4 end
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Algorithm 2: Reducing and ordering n-bit patterns.

Data: n: PUF response length; n′: Word length in SRAM memory
q: Input from Algorithm 1; t: Number of attempts (n-bit pattern)

Result: T : Serialized n-bit patterns; len(T )� 2n

1 k ← n
n′ ; // The number of words to represent n-bit response

2 q′ ← q
k
; // Allowed bit-error in n′-bit word.

3 X ← {0, 1, . . . , 2n
′ − 1}; // Set of n′-bit words

4 pn′ ← [ ]; // List of reduced n′-bit patterns
5 wp ← [ ]; // Weights of pn′

6 t′ ← ceil( k
√
t); // Required number of n′-bit patterns

/* Compute similarity matrix of all n′-bit patterns */

7 M ←


d(0, 0) d(0, 1) · · · d(0, b2n′−1)
d(1, 0) d(1, 1) · · · d(1, b2n′−1)

...
...

. . .
...

d(b2n′−1, 0) d(b2n′−1, 1) · · · d(b2n′−1, b2n′−1)

;

8 begin
9 BX ← {b0, b1, . . . , b2n′−1}; // Histogram of X

10 idx← argsort(BX); // Indices that sorts BX

11 Xs ← X[idx]; // Sorted X
12 Bs

X ← BX [idx]; // Sorted BX

13 M s ←M [idx, :]; // Sorted the row of M
14 M s ←M s[:, idx]; // Sorted the column of M

15 M s
b ← (M s ≤ q′); // 2n

′ × 2n
′

Boolean matrix
16 for ( i← 0; (len(Xs) > 0) && (i < t′); i← i+ 1 ) {
17 pn′ .append(Xs[i]);
18 w ←M s

b [i, :] •BX ; // Weight of pn′ [i]
19 wp.append(w);
20 j ← args(M s

b [i, :] == 1); // Pattern indices covered by Xs[i]
21 delete Xs[j], M s

b [j, :], M s
b [:, j]; // Remove covered elements

22 }
/* Permute (w/repetition) indices of pn′ vector by taking k elements */

23 idxp ← perm({0, 1, . . . , len(pn′)− 1}, k);
24 pkn′ ← pn′ [idxp]; // Permute pn′

25 wk ← wp[idx
p]; // Permute wp

26 wpk ← sum(wk, row); // Each permutation’s weight
27 idxp,f ← argsort(wpk); // Indices that sorts wpk
28 T ← horstack(pkn′ [idxp,f , :]);

29 end
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Next, we propose Algorithm 2 to order all n-bit patterns. In our proposed

attacking scheme, an attacker uses pre-ordered n-bit patterns to perform a heuristic

attack. In this heuristic attack, patterns from the top of the order have a higher

probability of succeeding than the bottom of the order. Algorithm 2 generates the

most significant unique t attempts of n bits. As we explained earlier (Section 6.3.1),

ordering an n-bit pattern is a difficult task; we first order all possible 2n
′

patterns

expressed by each n′-bit word. Note that the number of allowed erroneous bits

in an n′-bit pattern is denoted by q′, and the number of unique n′-bit patterns is

denoted by t′. Later, these n′-bit patterns are joined to generate total t unique n-bit

patterns.

First, all possible n′ bit patterns are listed in a variable X (of length 2n
′
). Next,

we compute a similarity matrix M of size 2n
′ × 2n

′
, where M [i, j] is the Hamming

distance between X[i] and X[j]. We compute the histogram corresponding to each

pattern in X by observing their frequency in all train devices and denoted with BX

(see line 9 of Algorithm 2). Next, the indices that would sort (in descending order)

the BX are computed and saved in idx (line 10). We, then, reorder X, BX , and

M (both row-wise and column-wise) according to idx and store them in Xs, Bs
X ,

and M s, respectively. In line 15, we computed a Boolean matrix M s
b , in which,

M s
b [i, j] = 1, if M s[i, j] ≤ q′ and 0 otherwise. If M s

b [i, j] = 1, then Xs[j] is covered

by Xs[i] within q′ bit error. From lines 16 to 22, we computed the reduced set of

n′-bit pattern (pn′) and corresponding weight (w). In ith iteration of the loop, we

appended the most frequent n′-bit pattern (Xs[i]) in pn′ . We compute the weight of

pn′ [i] by accumulating only those bins in Bs
X that are codependent on the patterns

covered by pn′ [i] (or Xs[i]). In line 20, we compute all pattern indices that are cov-

ered by Xs[i], and then we remove corresponding entries from Xs, and rows/columns

from M s
b . At line 23, we compute the special indices idxp that generate all possible
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permutations of the input vector (in this case, indices of pn′) by taking k elements

(with repetition). A simple Cartesian product is used to do such kind of task. For

example, if we consider a set,

A = {a0, a1, a2}; and corresponding indices,

idxA = {0, 1, 2}; then,

idxpA = perm(idxA, 2) = idxA × idxA

= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}

A[idxpA] = {(a0, a0), (a0, a1), (a0, a2),

(a1, a1), (a1, a2), (a2, a2)}

Now, using this idxp, we compute the corresponding permutation of pkn′ and

wk. We, then, calculate wpk by summing the weights from each row of wk. Next,

we compute the indices idxp,f that sorts the wpk in descending order. Finally, we

sort the row of pkn′ based on the indices idxp,f , and horizontally stacked all binary

patterns of the row in a single string to form an n-bit pattern (stored in T ). The

attacker can use this pre-ordered n-bit string in T to perform the attack.

… … …1 2 3 ... … … n’

1

1 2 3 ... … … n’

2

1 2 3 ... … … n’

3

1 2 3 ... … … n’

k

Figure 6.2: Constructing n-bit key from n′-bit word.

Algorithm 2 can be explained using Figure 6.2. We concatenate k n′-bit words

from the memory chip to form an n-bit key (n = k × n′). Here we assume that

each of the n′-bit words are independent of each other. So, to attempt with t n-bit

pattern, we only need the most frequent t′(= k
√
t) n′-bit words. Later, these n′-bit

words are combined with different permutations to form t n-bit pattern. Then these

n-bit patterns are sorted based on their members’ (k n′-bit words) accumulated

frequency.
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6.4 Performance Evaluation of Proposed Attack

We have evaluated the performance of our proposed attack experimentally and com-

pared our result with the traditional brute-force attack. For our evaluation, we col-

lected SRAM start-up data from 139 4-Mbit commercial SRAM memory chips from

four major manufacturers. We used these chips as the train devices (see Section

Manufacturer¶ Part number Chip tag #Chips

ISSI
IS61LV25616AL-10TL ISSI-A 14

IS61WV25616BLL-10TLI-TR ISSI-B 6
IS61LV25616AL-10TLI ISSI-C 14

IDT
IDT71V416S10PHG8 IDT-A 7
IDT71V416S12PHG8 IDT-B 14
IDT71V416L15PHG8 IDT-C 14

CY
CY7C1041G18-15ZSXI CY-A 14
CY62147G30-55ZSXE CY-B 10

CY62146EV30LL-45ZSXIT CY-C 8

AMI
AS7C34098A-10TCN AMI-A 14
AS7C34098A-10TIN AMI-B 14

AS6C4016-55ZIN AMI-C 10

Table 6.1: List of SRAM chips used as train devices.

6.3.2). We list all of these memory chips in Table 6.1 with the corresponding manu-

facturer and part number. These chips are also tagged with unique identifier, Chip

tag, and will be used in the rest of the chapter. To emulate the proposed attack, we

collected data from another new chip from each group (not included in Table 6.1)

and used them as the target devices (see Section 6.3.2).

The data collection process is almost similar that we used in Section 5.4. We

collected SRAM start-up data using an Arduino platform [Ard] at a nominal voltage

(3.3V) and room temperature (25°C). The effect of noise was minimized by collecting

¶ISSI: Integrated Silicon Solution, Inc.; IDT: Integrated Device Technology; CY: Cy-
press Semiconductor; AMI: Alliance Memory, Inc. The listed SRAM samples of this table
are the subset of the samples described in Section 5.4.
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the start-up data 19 times from each chip and combining them using the majority

voting technique [BCM12].

6.4.1 Error Characterization of SRAM Signature

According to our threat model (Section 6.2), the adversary needs to know the degree

of errors accepted by the PUF protocol (Figure 2.7b) obtained from the train de-

vices. The error is estimated using Algorithm 1, where the attacker needs to collect

the PUF responses from the train devices at a minimum of two different operating

conditions. In our experiment, we chose a random subset of the train devices at two

operating conditions (at room temperature vs. at 45°C). Then we used those CRPs

in Algorithm 1 to estimate the errors. Figure 6.3 represents the error characteristic

between these two sets of CRPs. The results show that SRAM chips from different

manufacturers and part numbers have different levels of error tolerance. For exam-

ple, the memory signatures from IDT-C are highly error-tolerant (see Figure 6.3);

almost 99.9% CRPs can be produced within ∼ 11% of errors. On the other hand,

CY-A is highly susceptible to noise; only 50% of the CRPs can be reproduced within

∼ 11% error limit. To defend the system from various attacks (e.g., replay attack

[MS09]), multiple CRPs are used over the device’s lifetime. However, increasing the

number of usable CRPs also requires increasing the number of acceptable erroneous

bits. For example, for CY-A, CY-B, and AMI-C, using 99.9% of the CRPs requires

to allow a large number of error bits. On the other hand, for IDT-C, 99.9% of the

CRPs can be used by just allowing < 11% errors. For better error estimation, the

adversary can always collect start-up data at extreme operating conditions from the

train devices and observe the noise performance. However, to keep our experiment

simple, for Algorithm 2, we assumed 12.5% erroneous bits (1 out of 8 bit) is the
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maximum acceptable limit by the PUF protocol, which is reasonable for most of the

cases [SvdL12].

Figure 6.3: SRAM chip error characterization.

6.4.2 Attacking an SRAM PUF

Table 6.2 represents the silicon results of each memory group. In the second and

third columns of Table 6.2, the Hamming weight distribution of all 16-bit words

from all training devices is presented. For the uniform possibility of all patterns,

the mean and standard deviation of Hamming weight should be close to 16
2

= 8 and
√
16
2

= 2 (see Section 6.1.3). However, from Table 6.2, we notice that not all SRAM

signatures follow these criteria. Moreover, the distribution of Hamming weight does

not solely guarantee the uniform probability of all patterns (see Section 6.1.3), which

is demonstrated in Figure 6.4. Figure 6.4a represents the distribution of the Ham-

ming weight for different cases, and in Figure 6.4b, we present the corresponding

relative frequency of each 16-bit pattern (pattern 0 to 65535). For ISSI-C, the mean

of the Hamming weight largely deviates from 8 (Figure 6.4a), and the corresponding

relative frequency plot (Figure 6.4b) shows that a few 16-bit patterns have a higher
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Chip
tag

HW distribution
(16-bit patterns) βC

#Reduced
patterns
(16-bit)

CRPrec
(%)

µ σ µ σ
ISSI-A 10.49 1.90 0.66 0.02 1953 13.06
ISSI-B 7.92 2.03 0.50 0.04 1830 14.99
ISSI-C 11.30 1.83 0.71 0.02 1922 32.54
IDT-A 8.84 2.60 0.55 0.11 1747 8.70
IDT-B 8.96 2.10 0.56 0.03 1877 1.65
IDT-C 8.87 2.57 0.55 0.10 1799 13.77
CY-A 8.01 2.11 0.50 0.02 1694 0.11
CY-B 8.00 2.05 0.50 0.02 1741 0.23
CY-C 5.60 1.93 0.35 0.02 1923 11.51

AMI-A 7.99 2.08 0.50 0.03 1688 0.16
AMI-B 7.99 2.25 0.50 0.05 1740 0.13
AMI-C 8.01 1.92 0.50 0.02 1934 44.33

Table 6.2: 16-bit pattern characteristics and vulnerability to heuristic attack.

probability of appearing than others. On the other hand, for CY-B and AMI-C, the

mean and standard deviation of the Hamming weight are close to 8 and 2 (Figure

6.4a), respectively. This also indicates that the chips from CY-B and AMI-C are not

biased toward “0” or “1”. Such unbiased property is also clearly visible from Figure

6.5, which presents the spatial distribution of 0’s and 1’s from CY-B and AMI-C

using consecutive 1KByte memory space. Despite both CY-B and AMI-C exhibit

almost an ideal Hamming weight distribution, some patterns from AMI-C have more

probability of occurring than others (Figure 6.4b). Hence, to ensure a uniform prob-

ability of each pattern, we recommend checking actual pattern distribution rather

than focusing on Hamming weight distribution (see Section 6.1.3).

Columns 4 and 5 of Table 6.2 represent the mean and standard deviation of

βC (Equation 2.1 and 2.2) computed from all possible challenges, C. For most

memory groups, the mean value is ∼ 0.5, with a very small standard deviation.

However, for ISSI-A, ISSI-C, and CY-C, the mean value of βC largely deviates from

0.5, which can be explained by the Hamming weight distribution. For example, the
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(a) Hamming weights distribution of 16-bit patterns

(b) Frequency histogram of corresponding 16-bit patterns

Figure 6.4: Visualizing 16-bit pattern distribution.

(a) CY-B (b) AMI-C

Figure 6.5: Spatial distribution of 0’s and 1’s.
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mean Hamming weight of 16-bit patterns in ISSI-A is 10.49, i.e., the probability

of getting “1” in such device is 10.49
16
≈ 0.66, which is exactly the mean value of

βC . This unique correlation of Hamming weight distribution and bit-aliasing is true

for all SRAM groups presented in Table 6.2. Such a correlation is expected as the

Hamming weight measures bias towards a specific logic (“0” or “1”) and bit-aliasing

measure the probability of getting “1” (or “0”) from a given bit location. If the

distribution of “1” (or “0”) is uniform across the whole memory chip and follows

the same distribution over all chips, then the probability value calculated from the

Hamming weight and the bit-aliasing should be the same.

Column 6 of Table 6.2 presents the reduced number of 16-bit patterns covering

all 16-bit patterns within a 12.5% error limit. Note that the number of patterns

is higher than the range specified in [Zha91] (< 960). Because, in our Algorithm

2, we emphasize maximizing the probability of success for each attempt instead of

ensuring the smallest covering set in the proposed heuristic attack. However, as only

< 2000 patterns cover all of the 16-bit patterns, the entropy of each 16-bit word

reduces to < log2(2000) < 11. Hence, the allowance of 12.5% of errors (i.e., 2 out of

16-bit) reduces the entropy by > 5 bits.

Column 7 of Table 6.2 presents the percentage of recovered CRPs using Algo-

rithm 2 with 10 million (10 × 106) attempts. To generate these 10 million 64-bit

unique patterns, we only use the most frequent 57 (≈ k
√
t = 4

√
10× 106 ) 16-bit

words. In each attempt, we use a different 64-bit pattern. For each group of mem-

ory, the number of attempts vs. the percentage of recovered CRPs is presented in

Figure 6.6. From Table 6.2 (column 7) and Figure 6.6, we can divide our results

into the following three categories.

1. Category–1: Chips from this category (IDT-B, CY-A, CY-B, AMI-A, AMI-B)

are less vulnerable to our heuristic attack (success rate is < 2%). Chips for this
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Figure 6.6: Number of attempts vs. recovered CRPs.

category possess almost a perfect distribution of Hamming weight (see columns 2

and 3 of Table 6.2; µ ≈ 16
2

= 8 and σ ≈
√
16
2

= 2) and maintain a nearly uniform

distribution on their 16-bit pattern (e.g., CY-B in Figure 6.4b).

2. Category–2: Using our proposed attacking algorithm, we revealed 8–15% CRPs

from this category (ISSI-A, ISSI-B, IDT-A, IDT-C, CY-C). For chips from ISSI-A

and CY-C, the consequence is directly understandable from the skewed Hamming

weight distribution of the 16-bit pattern (µ deviated from the ideal value of 8;

see columns 2 of Table 6.2). However, although the chips from ISSI-B, IDT-A,

IDT-C follows a nearly perfect Hamming weight distribution, 16-bit patterns of

those chips deviate from the uniform distribution (not shown in Figure 6.4b).

3. Category–3: Chips from this category are highly vulnerable to our proposed

attack (ISSI-C and AMI-C). For those chips, we recovered 32.54% and 44.33%

CRPs, respectively. ISSI-C is highly skewed from the Hamming weight distribu-

tion of the 16-bit pattern (µ = 11.30, see columns 2 of Table 6.2). Although,

the vulnerability of AMI-C is not visible from the Hamming weight distribution

(µ ≈ 8 and σ ≈ 2), the actual pattern distribution (Figure 6.4b) can capture
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it. For AMI-C, some 16-bits patterns are highly probable than others, making it

easier to guess the possible value of the PUF outcome (see Figure 6.4b).

Note that using our algorithm, we are able to recover, on average, ∼ 12% of the

CRPs by using only 10 million attempts (i.e., we only used < 10−10% of all possible

64-bit patterns). As these 64-bit patterns are pre-computed and pre-ordered, the

computational overhead of our proposed attack is negligible. However, in an ideal

scenario (i.e., with equal probability of all 64-bit patterns and 0-bit error tolerance),

finding a single CRP with a traditional brute-force attack is very low (≈ 5.72 ×

10−11%, see Appendix B).

Our attacking algorithm can be further improved by extracting some spatial

locality information from the train devices. In Section 5.4.1, we presented that

the SRAM start-up data characteristics are largely correlated with the features

extracted from spatial locality information. However, those features do not provide

any quantitative measurement of signature correlation, and it is quite challenging

to uncover detailed spatial locality information from the start-up data due to the

internal data and address scrambling [vdGS02, EP17]. Nonetheless, we observe

some periodic relationship between the start-up data and the logical address of the

memory (especially, SRAM chips manufactured by the IDT). For example, Figure

6.7a shows a particular case for IDT-C SRAM memory. Along the horizontal axis,

we present the logical address of the 4-Mbit memory, and along the vertical axis,

the percentage of logic “1” from the next consecutive 256 words. This plot shows

that the number of 1’s in this memory has a periodic nature (with a period of

16,384), which might come from several sources. Instead of complete randomization

of address and data, the manufacturer may choose to quantize the whole memory

in small segments and scramble those segments only can be one of the reasons. To

improve our attacking scheme, we divide memory chips into two segments by drawing
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(a) Start-up data dependency on logical address.

(b) Number of attempts vs. recovered CRPs from different segments of
the memory.

Figure 6.7: Dependency of pattern heuristics with respect to logical address.

a magenta straight line (Figure 6.7a). The logical addresses above the straight-line

are grouped in segment 1, and under the straight-line are grouped in segment 2.

Then, we applied the same Algorithm 2 to attack CRPs from those two segments

independently (on the target device), and the corresponding result is shown in the

6.7b. Figure 6.7b shows that a higher percentage of CRPs from segment 1 than

segment 2 is recovered with the same number of attempts (17.59% of CRPs from

segment 1 (red curve), 9.18% from segment 2 (green curve), and 13.39% on average
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(violet curve)). This result is expected, as the mean Hamming weight of patterns

from segment 1 largely deviates from the ideal, i.e., 50%.

6.4.3 Attacking in the Presence of a Fuzzy Extractor

As we discussed in Section 2.4.2, in many PUF applications, a fuzzy extractor is

frequently used to correct PUF output and enhance security. To guarantee security,

the fuzzy extractor must satisfy the condition provided by Equation 2.4. The fuzzy

min-entropy from each group of SRAM chips is shown in Table 6.3 (calculated using

a training device). Although fuzzy extractors constructed with fuzzy min-entropy

can enhance the PUF security, the security of the fuzzy extractor still might not be

satisfactory. We mentioned in Section 2.4.2 that it is hard to quantify the probabil-

ity associated with each input pattern of the fuzzy extractor from the experimental

data. Such imperfection in statistical estimation arises from the uncertainty associ-

ated with the experiment. For example, for CY-B, a 16-bit input of a fuzzy extractor

should produce ∼8-bit long outputs. To produce a 64-bit key, we require at least

eight 16-bit words from the CY-B SRAM chip (i.e., total 128-bit input). Now, to

achieve the same level of success as presented in Table 6.2 (0.23%), we require all

possible combinations of the same 57(= t′) 16-bit words (as explained in Section

6.4.2) to produce 128-bit input, where k = 128
16

= 8 (see Algorithm 2). So, even after

using a properly designed fuzzy extractor for CY-B, a total of t = (t′)k = 578 ≈ 111

trillion 128-bit raw input patterns would be sufficient to recover 0.23% of 64-bit

CRPs. However, Equation B.3 (Appendix B) shows that 111 trillion trials would re-

cover 0.0009% of 64-bit CRPs, while the PUF outcome is completely random. That

is, even by following the recommended boundary condition of the fuzzy extractor;

it might not be possible to achieve the target level of security.
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Chip tag
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Hfuzzy
∞ (R) 4.36 4.59 3.18 5.09 6.46 5.18 8.24 8.19 4.42 8.41 7.48 2.78

Table 6.3: Fuzzy min-entropy for SRAM chips;
given that, length(R) = 16 and q = 2.

6.5 Mitigation

We propose several countermeasures against the proposed heuristic attack in order

to generate secure and robust signatures from SRAM chips.

6.5.1 Avoiding Error Correction Scheme

We have demonstrated that using the error correction scheme reduces entropy.

Avoiding error correction schemes in PUF protocol narrows down the attack surface

in two ways: i) attackers require to guess the CRPs with an exact match, ii) it

prevents the attacker from reducing the number of patterns as we proposed in Al-

gorithm 2. Researchers have proposed several robust SRAM cell design techniques

(e.g., [JG15]) and selection techniques (e.g., [XRF+14]) to avoid error correction

schemes. Unfortunately, the robust SRAM cell design methods usually require a

modified mask layout and might require satisfying additional design rules; whereas,

the robust SRAM cell selection technique might not be suitable in the presence of

memory address/data scrambling [vdGS02, EP17]. Moreover, they may still require

error correction code; however, applying such methods requires correcting a smaller

number of erroneous bits, significantly reducing the attack surface.
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6.5.2 Using Properly Designed Fuzzy extractor

Although fuzzy extractors are popularly used for correcting errors and improving

security, many researchers proposed simpler versions of fuzzy extractors that use

a fixed-length input to produce the fixed-length output [KHK+14, HKS20, YD10,

YMSD11], regardless of the fuzzy min-entropy (Equation 2.4). However, based on

our findings, we recommend using a fuzzy extractor that strictly follows the fuzzy

min-entropy boundary condition. Additionally, we also recommend using a con-

servative probabilistic estimation of each input pattern of the fuzzy extractor. For

example, one can use the upper bound of 99% confidence interval of estimated prob-

ability to avoid the uncertainty associated with the estimation. However, such pes-

simistic estimation might reduce the number of CRP drastically; in the worst case, it

might not be possible to generate any CRP from a given type of chip. Moreover, our

research suggests that memory chips manufactured with different specification-set

might produce different signature statistics. Therefore, the estimated probability

of input patterns will be altered if the memory component is substituted. Hence,

a fuzzy extractor designed for one device might not be reused on another device

(non-reusable hardware IP). Such one-time used hardware IPs are extremely cost-

inefficient and not suitable for low-cost devices. In addition to the above limitations,

fuzzy-extractors are vulnerable to side-channel attacks [MSSS11].

6.5.3 Pattern Distribution-aware CRPs

In Section 6.1.3 and Section 6.4.2, we emphasize uniform distribution of PUF out-

come (response) for all possible challenges (address) to maximize the entropy of

the PUF output. The uniform distribution of patterns prevents the attacker from

ordering patterns, as we proposed in Algorithm 2. For example, in Figure 6.4, the
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16-bit pattern distribution for CY-B is more uniform than ISSI-C and AMI-C. As

a result, Table 6.2 shows that CY-B is significantly less vulnerable to our proposed

attack than the ISSI-C or AMI-C. Hence, we recommend choosing a subset of SRAM

addresses (challenges) at the key enrollment/generation phase to make a uniform

distribution of all possible responses (i.e., addresses with highly repeated patterns

should be discarded).

6.5.4 Locality-aware CRPs

In Section 6.4.2, we noticed that PUF responses generated from some specific logical

address segments might be more vulnerable to other segments (Figure 6.7). So,

choosing a less vulnerable logical address segment to generate CRPs might help

avoid the proposed heuristic attack. However, if the attacker can reveal the SRAM

layout by reverse engineering [BFL+93, M+08, QCF+16, Kum00], this task might

become more challenging. Such knowledge of chip layout can enable the attacker to

redesign Algorithm 2 more efficiently. Hence, for critical applications, the SRAM

vendor is responsible for providing a guideline on PUF usage as they have the precise

knowledge of SRAM physical layout.

6.6 Conclusion

In this paper, we used the vulnerabilities of SRAM PUF and the weakness of ex-

isting metrics to mount a non-invasive attack. Traditionally, the mPUF response

is believed to be a direct consequence of random process variation. However, we

demonstrated that memory chips sharing the same specification and manufacturing

resources might have a common train on their pattern distribution. Furthermore,

we also demonstrated that the error correction scheme might severely weaken the
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PUF security, and the traditional Hamming weight-based metric of PUF “goodness”

does not ensure the PUF quality. If we do not consider these factors carefully, the

unclonable PUF will not be secure anymore.

To avoid such an attack, we emphasize reducing error correction code usage,

checking the pattern uniformity on memory-based signatures, and locality aware

challenge-response pairs (CRPs). Although our proposed countermeasures might

reduce the total number of CRPs, we believe that such techniques will significantly

improve the PUF security.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this Dissertation, we have demonstrated that, besides random variation in the

manufacturer process, few other factors can produce a deterministic impact on

mPUFs’ signature. Subsequently, we analyzed common traits on mPUFs’ signature

and proposed a novel method to identify memory manufacturer and specification,

which can effectively prevent memory counterfeiting. Furthermore, we showed that

those common traits on mPUFs’ signature could be used as side-channel informa-

tion, which an attacker can use to design a heuristic attack on mPUF key.

Our proposed anti-counterfeiting solution has almost similar effectiveness as the

mPUF-based solution (except identifying overproduced chips). The additional ben-

efits of our proposed technique are- it does not require any golden database (server),

free from complex authentication protocol, and does not require any exhaustive reg-

istration process for each chip. To demonstrate our method we used commercial

off-the-shelf DRAM modules and SRAM chips. However, the challenges associated

with each memory component are unique.

For identifying DRAM origin (i.e., manufacturer and part number), we have 26

different features by collecting latency-based signature data. We have demonstrated

that our feature is capable of separating memory modules with high confidence even

with a very small set of training samples. Our extracted features are very simple

to compute and do not require any special knowledge (e.g., manufacturing process,

architecture, chip packaging, etc.). Furthermore, we proposed a one-class classifier-

based authentication protocol, which can be efficiently used to identify counterfeit

DRAM chips from both the user and manufacturer end.

In our work on SRAM origin detection, we proposed an improved authentica-

tion protocol than our previous work. In this work, we used a two-step approach

117



for identifying the SRAM manufacturer and specification. We observed that mem-

ory chips produced by the different manufacturers have larger differences in their

features than the memory chips from the same manufacturer (with different part

numbers). However, due to the wide diversity of negative samples (i.e., not belong

to the target manufacturer), it is not realistic to train a solo binary classifier to iden-

tify the manufacturer. Hence, we proposed a one-class classifier for manufacturer

identification, which might be further assisted by a binary classifier. On the other

hand, we used a multi-class or binary classifier for part number identification. We

can safely assume that the manufacturer has access to the samples from all of its

part numbers. In contrast to DRAM chips, a typical SRAM chip contains a much

smaller memory array; hence, it is difficult to capture all spatial information and

produce accurate statistics. However, using a small set of SRAM samples, we were

still able to identify SRAM origin with a reasonable test score. The test score can

be further improved by adding more samples to the training data.

In our last work on analyzing the vulnerability of mPUF keys, we showed that

an attacker could learn the mPUFs signature characteristics if he has access mPUFs

samples similar to the victim’s one. Then the attacker used this information to sort

the possible values of the mPUF key and attack the victim’s mPUF. However, we

proposed a set of recommendations to reduce the attack surface- (i) reducing the

number of correctable error bits, (ii) designing a fuzzy extractor with a conservative

probabilistic estimation of fuzzy extractor inputs, (iii) using pattern distribution

aware CRPs, and (iv) using a subset of address-space with the less spatial locality.

Hereafter, we present the future direction of our research work-

• Our proposed technique of identifying memory origin is more suitable for testing

consumer electronics from the user end. However, this technique can be scaled

up and fine-tuned for industry applications by selecting a more appropriate set of
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features. For example, prior knowledge of architecture may help extract a better

set of features and improve memory identification accuracy. However, gathering

such knowledge is challenging, as it requires reverse engineering or industry col-

laboration. Additionally, for some cases, the evaluation time is a little longer

than expected (e.g., 3 minutes for identifying SRAM origin); however, the evalu-

ation can be further reduced by introducing different features that do not require

multiple measurements.

• Our technique of identifying memory origin can possibly be extended for many

different types of memory chips (for example, Flash chips, Resistive RAM, Mag-

netoresistive RAM, Phase-change memory, etc.). For example, recently, Sakib et

al. also proposed a similar technique to identify flash memory origin by manip-

ulating erase time [SMR21]. Hence, we believe that our technique can also be

applicable for other memory types by choosing a suitable set of signature data,

which can be another direction of our research.

• Our proposed attacking scheme on mPUF key can be further sophisticated by re-

vealing the chip layout of the victim’s mPUF. Invasive or semi-invasive methods

can be used to reverse engineer the chip layout [BFL+93, M+08, QCF+16, Kum00].

Reverse engineering of chips allows the attacker to extract exact architectural and

layout design and enable the attacker to compute spatial distribution resulting

from the architectural layout. Furthermore, the deterministic components of the

process variations can also be reconstructed to some extent [MJ06, AAT14]; how-

ever, learning the exact spatial distribution of process variation for a memory

chip is difficult due to internal address randomization [vdGS02] and data scram-

bling [EP17]. Nonetheless, using these spatial distributions, the attacker can form

multiple groups of CRPs based on spatial location and generate independent sets

of ordered patterns (as described in Algorithm 2) for each group. We expect
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that such techniques will improve our proposed attacking scheme, and we will

investigate that experimentally in our future work.
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tian Hatzfeld, André Schaller, Wenjie Xiong, Manishkumar Jain,
Muhammad Umair Saleem, Jan Lotichius, Sebastian Gabmeyer, et al.
Intrinsic run-time row hammer PUFs: Leveraging the row hammer ef-
fect for run-time cryptography and improved security. Cryptography,
2(3):13, 2018.

[AAR+18] Nikolaos Athanasios Anagnostopoulos, Tolga Arul, Markus Rosen-
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APPENDIX A

HAMMING WEIGHT DISTRIBUTION

An n-bit binary string can form a total of 2n outcomes. For proper randomness,

each of the outcomes should have an equal probability of 1
2n

. Alternatively, the

probability of getting a specific symbol (“0” or “1”) at tth bit location of the string

is 1
2

(assuming the outcome is not biased to any symbol).

Next, consider a random n-bit string (Si) of Hamming weight k (i.e., out of n bits,

k bits of the string is “1”). So, the probability of getting such string as the PUF

outcome,

p(HW = k) =
∑
i

p(Si,HW=k) =

(
n

k

)
× (

1

2n
)

⇒ p(HW = k) =

(
n

k

)
× (

1

2
)k × (

1

2
)n−k (A.1)

Eqn. A.1 is the probability mass function (PMF) of the Binomial distribution,

where the second and third term in the right-hand side comes from the fact that

the probability of getting “0” or “1” in any specific position of the bit string is 1
2
.
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APPENDIX B

mPUF KEY RECOVERING USING BRUTE-FORCE ATTACK

If a random source (i.e., SRAM chip) can produce m n-bit keys (denoted as Sm),

the probability of m keys being unique is defined as:

punique =
m−1∏
j=0

2n − j
2n

(B.1)

Hence, the probability of having a duplicate key, pduplicate = 1− punique. In this

paper, we have used n = 64 and m = 65, 536, which gives pduplicate ≈ 1.164× 10−10.

For simplicity, we can eliminate such cases of having duplicate patterns in Sm.

Now, let’s assume we have randomly selected t unique n-bit patterns (denoted

as St), where t � 2n. Hence, the probability of matching l pattern from St with

Sm:

p(St ∩ Sm = l) =

(
m

l

)
×

[
l∏

j=1

t− (j − 1)

2n − (j − 1)

]
(B.2)

Therefore, the expected number of recovered keys from t patterns can be ex-

pressed with the following equation:

E(#key) =
m∑
j=1

[j × p(St ∩ Sm = j)] (B.3)

With l = 10 million, E(#key) ≈ 5.72× 10−11%.
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