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Abstract

In this dissertation we explore a new paradigm emerging from the subtleties of cryp-

tographic implementations and relating to theoretical aspects of cryptography. This new

paradigm, namely physical variables (PVs), simply describes properties of physical objects

designed to be identical but are not due to manufacturing variability.

In the first part of this dissertation, we focus our attention on scenarios which require

the unique identification of physical objects and we show how Gaussian PVs can be used to

fulfill such a requirement. Using this framework we present and analyze a new technique for

fingerprinting compact discs (CDs) using the manufacturing variability found in the length

of the CDs’ lands and pits. Although the variability measured is on the order of 20 nm, the

technique does not require the use of microscopes or any advanced equipment. Instead, the

electrical signal produced by the photo-detector inside the CD reader will be sufficient to

measure the desired variability. We thoroughly investigate the new technique by analyzing

data collected from 100 identical CDs and show how to extract a unique fingerprint for each

CD.

In the second part, we shift our attention to physically parameterized functions (PPFs).

Although all the constructions we provide are centered around delay-based physically un-

clonable functions (PUFs), we stress that the use of the term PUF could be misleading as

most circuits labeled with the term PUF are in reality clonable on the protocol level. We

argue that using a term like PPFs to describe functions parameterized by a PV is a more

accurate description. Herein, we thoroughly analyze delay-PUFs and use a mathematical

framework to construct two authentication protocols labeled PUF-HB and HB+PUF. Both

these protocols merge the known HB authentication family with delay-based PUFs. The

new protocols enjoy the security reduction put forth by the HB portion of the protocol and

at the same time maintain a level of hardware security provided by the use of PUFs. We

present a proof of concept implementation for HB+PUF which takes advantage of the PUF

circuit in order to produce the random bits typically needed for an HB-based authentication

scheme. The overall circuit is shown to occupy a few thousand gates. Finally, we present a

new authentication protocol that uses 2-level PUF circuits and enables a security reduction



which, unlike the previous two protocols, stems naturally from the usage of PVs.
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Chapter 1

Why Physical Variables?

Over the past few years an increasing number of results have targeted the use of

physical variables in cryptography. These variables are in essence very similar to

biometric modalities in humans. While biometric modalities are typically used to

uniquely identify specific individuals, physical variables can be used to uniquely iden-

tify physical objects such as circuits, compact discs (CDs), papers, etc. In this work,

the term physical variables (PVs) refers to variables which describe certain proper-

ties of a physical object. Due to manufacturing variability, even identical objects are

expected to have a slightly different value for their PV. A simple example of a PV

is the length of wires inside an integrated circuit. Even though identical circuits are

designed to have the same exact wire length, in reality two circuits will most likely

differ in their wire length. Different PVs have been used to uniquely identify various

objects ranging from expensive merchandise to integrated circuits [28, 38, 19, 17, 15].

These new exciting results open the door to the exploration of various cryptographic

applications which could benefit from the use of PVs.

In this dissertation we examine four advantages that can be gained from using

PVs in cryptographic applications.

Unique identification of physical objects: The ability to achieve a secure

1



2 CHAPTER 1. WHY PHYSICAL VARIABLES?

method of identifying physical objects would significantly limit counterfeiting; a prob-

lem which, according to the US chamber of commerce, costs the US economy USD

250 billion yearly. A number of recent results have used PVs to produce unique

fingerprints for different physical objects (see, for example, [38, 19, 15]). Although

these results are quite recent, using PVs to produce unique access cards was proposed

decades ago by Bauder and Simmons from Sandia National Labs [5]. More recently,

the work by Ravikanth Pappu on physical one-way functions [83] has reignited this

area of research and stimulated a large number of related results. Another notable

work in the field is that of Tuyls et al. in [96]. In their book, these authors present a

comprehensive collection of articles on noisy data which include a number of results

relating to the unique identification of physical objects. One of our interests in this

dissertation will be to quantify the identification capability of PVs under specific as-

sumptions on their distribution. We will also present a specific example where PVs

can be used to uniquely identify compact discs (CDs).

Lightweight implementations: Although PVs are typically used for their abil-

ity to uniquely identify physical objects, they also seem to offer a cheap resource that

can be utilized for cryptographic purposes. The area of lightweight cryptographic

design has seen quite an impressive boom in the past few years (see, e.g., [23, 52]

and the references therein). One of the most popular techniques used to reduce

the size of hardware implementations is to serialize classical cryptographic protocols

[24, 51, 82, 66]. Although these results are exciting, the approach itself seems to

be inherently limited. In general, most classical cryptographic protocols were de-

signed with little attention paid to their hardware implementation. Indeed, not all

such protocols lend themselves to serialization; alternative approaches are required.

From a broader perspective, the notion of taking classical protocols and attempting

to squeeze them into smaller circuits seems to eventually come up against natural lim-

itations. A different, yet equally exciting approach, is to explore new protocols which
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are designed to be lightweight in nature. A few examples of such new lightweight

constructions are given in [11, 70, 45, 90]. These proposals are mostly block ciphers

which focus on reducing the gate count but do not address tamper-resilience or com-

putational hardness. However, the approach itself seems promising in principle. As

we will see in later chapters, PVs can offer a natural approach to lightweight and

secure implementations. In essence, one can build cryptographic primitives which

use the PV value as a parameter. As PVs assume real values, they facilitate the con-

struction of functions which are parameterized with real values, without having to

incur the expensive cost of storing real values. All that would be needed to utilize the

PV in some cryptographic function is to find a mechanism to extract the PV value.

In this dissertation we explore this approach and present a number of cryptographic

primitives parameterized by PVs and which can be implemented with a significantly

low number of gates.

Tamper resilience: While typical cryptographic protocols might be very secure

in theory, one has to take into account attacks which exploit so called side-channel

attacks [63, 62] directly targeting the implementation. These attacks are roughly clas-

sified into two groups. Passive attacks solely observe side-channels (e.g. computation

time, power consumption, electromagnetic emanation, temperature fluctuation, etc.,

i.e. PVs) to deduce internal secrets from leaked side-channel profiles. In contrast,

with active attacks the attacker may also inject faults during the computation [64]

or manipulate the hardware in other ways. Not surprisingly, active attacks are more

powerful and are more difficult to prevent. A tamper-resilient hardware design is

vital in securing devices from both passive and active side-channel attacks. To detect

active side-channel attacks a number of linear [30, 31] and non-linear robust coding

techniques [32] have been proposed. While linear coding techniques bear little over-

head, they provide protection only against random errors. A more able attacker, who

can choose errors, can only be stopped by non-linear robust codes. Unfortunately,
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these methods also incur significant overhead, i.e. roughly more than 100%. At the

time of this writing, robust codes seem to be the best candidate for error detection.

As such, in this work we highlight some of the PVs benefits in preventing active

attacks against hardware.

Computational security: Any cryptographic primitive is in need of some se-

curity assurance. These assurances usually come in the form of security reduction

to known computationally difficult problems. The problem, however, is that crypto-

graphic primitives which do posses these security assurances are usually not natural to

the hardware and are therefore quite demanding in terms of resources. In constrained

environments, where only lightweight implementations are allowed, building these

primitives becomes a challenge. The question we try to answer here is whether there

exists computationally difficult problems that are naturally supported by hardware

implementations. A number of recent results have provided quite elegant solutions

to this problem (see, for example, [46, 50, 33, 53]). In this work we further develop

these results and at the same time present new cryptographic primitives which utilize

PVs in order to provide hard problems which can be efficiently implemented.

1.1 Dissertation Outline

In this dissertation we strive to achieve two main goals.

• First, to explore the ability of PVs to uniquely identify devices under certain

assumptions.

• Second, to explore new cryptographic applications of PVs and to highlight the

advantages gained from using a PV in these applications.

Each of these goals will be addressed in one of the two parts making up this disser-

tation.



1.1. DISSERTATION OUTLINE 5

1.1.1 Physical Variables and Fingerprinting

The main theme of this part of the dissertation will be a high level view of PVs with

an emphasis on their ability to uniquely identify or fingerprint physical objects.

In Chapter 2 we review some previous work on PVs and on fingerprinting. Fur-

thermore, we show when a Gaussian PV can be used to identify physical objects. We

also review how to generate a repeatable fingerprint for each physical object under

certain assumptions.

In Chapter 3 we introduce a new technique for extracting unique fingerprints from

identical CDs. The proposed technique takes advantage of manufacturing variability

found in the length of the CDs’ lands and pits which will be the PV used in this

chapter. Although the variability measured is on the order of 20 nm, the technique

does not require the use of microscopes or any advanced equipment. Instead, the

electrical signal produced by the photo detector inside the CD reader will be sufficient

to measure the desired variability. We thoroughly investigate this new technique by

analyzing data collected from 100 identical CDs and show how to extract a unique

fingerprint from each CD. We also give specific parameters and code constructions to

convert the derived fingerprints into 128-bit cryptographic keys. Finally, we outline

a simple protocol which utilizes the CD fingerprint to provide IP protection for the

software stored on the CD.

1.1.2 Applications of Physically Parameterized Functions

In this part of the dissertation we shift our attention to physically parameterized

functions (PPFs). Simply stated, PPFs are functions that use PVs as parameters.

A special case of PPFs are physically unclonable functions (PUFs) which will be the

center of our discussion in this part of the dissertation.

In Chapter 4 we throughly explore delay-based PUFs and their different construc-

tions. The main job of this chapter will be to set the stage for PUFs before we can
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use them in a number of cryptographic schemes.

In Chapter 5 we merge the delay-PUF along with the HB based authentication

protocol to produce PUF-HB; a hybrid protocol that enjoys the advantages of both

schemes while improving the level of security. The proposed authentication scheme

observes a level of tamper resilience, while at the same time being provably secure

against active attacks in the detection based model. In addition, the presented proto-

col resists the man-in-the-middle attacks proposed so far for the HB+ scheme. From

the PUF perspective, PUF-HB is the first PUF based authentication scheme with

a security reduction. From the HB perspective, PUF-HB is the first hardware HB

implementation with tamper resilience properties.

In Chapter 6 we present a proof of concept implementation for HB+PUF, a vari-

ant of the PUF-HB. The HB+PUF protocol enjoys the same properties of PUF-HB

with a much simpler security reduction. Our implementation takes advantage of the

PUF circuit in order to produce the random bits typically needed for an HB-based

authentication scheme. Note that the existence of a random number generator (RNG)

is assumed in all HB-based protocols without taking into account the complexity of

such device. The overall circuit is shown to occupy on the order of a few thousand

gates. Note that this is considered a benchmark for lightweight implementations.

This small gate count is achieved by using the tristate PUF and by serializing the

operations.

In Chapter 7 we show that delay-PUFs alone can be used to create a secure

challenge response authentication scheme. We present a new primitive, namely 2-

level PUFs which allow for a reduction to a special class of a threshold of majority

gates under the uniform distribution. Furthermore, we explore extensions of PUFs

to produce efficient n-to-n mappings.

It is important to note that our discussion on PVs will not be specifically con-

cerned with aging effects. While this is quite an important topic to be studied when
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addressing PVs it be beyond the scope of this dissertation.

1.2 Editorial Note

Each chapter will include its own related work. We will be using standard notation

for all our work, any specific terms or concepts will be explained when they first

appear in a chapter.

Many of the results in this dissertation have previously appeared in published

papers. All the results are joint work with my adviser, Professor Berk Sunar. Chapter

2 contains some results which have not been submitted for review. The results of

Chapter 3 are joint work with professor Aykutlu Dana from the institute of material

science and technology at Bilkent University and will appear in [40]. The results of

Chapters 4 and 7 are joint work with Erdinç Öztürk and have appeared in [78, 79, 42].

The results of Chapter 6 are joint work with Berk Birand and Erdinç Öztürk and

have appeared in [41]. Finally the results of Chapter 5 have appeared in [43]. Other

related work of mine, which is not part of this dissertation, includes results on the

usage of PUFs in finite state machines which is joint work with Kahraman Akdemir

[39].
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Chapter 2

PVs and Fingerprinting

Physical variables (PVs) can be viewed as a description of some property in a physi-

cal object. The essential idea behind PVs is that although some physical objects are

manufactured to be identical, some of their properties will be different due to manu-

facturing variability. When these properties can be described using a numeric value,

we can model the value of the PV as a random variable sampled from some probabil-

ity distribution. Our goal in this chapter will be to show when certain types of PVs

can be used to uniquely identify physical objects. In order to achieve this goal, we

will restrict our attention to PVs with values sampled from a Gaussian distribution1.

We will also model noise in the measured PV value as additive Gaussian noise. This

view of a Gaussian PV with Gaussian noise should be quite useful and common for

two main reasons. First, Gaussian distributions are typically used to describe natural

phenomena. Second, the Central Limit Theorem states that any variable which is the

sum of a large number of independent and identically distributed variables is likely

to be a Gaussian [80]. In fact, all the PVs which we will address in this dissertation

will be treated as independent Gaussian random variates with measurements subject

to independent additive Gaussian noise.

1We will use the terms Gaussian distribution and Normal distribution interchangeably.

11
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Another important concept which we review in this chapter is that of fuzzy extrac-

tors. Even when it is possible to uniquely identify physical objects, it is not clear if

it will also be possible to generate a unique fingerprint for the physical object. Every

time a PV is measured, its value will be accompanied by a level of noise. Therefore,

a fingerprint generated from a PV value is also expected to change every time the

PV is measured. To solve this problem, fuzzy extractors were introduced. The main

job of a fuzzy extractor is to use the PV value to generate a fingerprint which can

be regenerated from a noisy version of the PV value. Therefore, fuzzy extractors can

guarantee the generation of a fixed fingerprint for each physical object.

The remainder of this chapter is organized as follows. In the next section we

discuss some of the previous work related to PVs and fingerprinting. Section 2.2

introduces PVs and sets the stage for using them to fingerprint physical objects.

Section 2.3 addresses discretization techniques for PVs and shows when Gaussian

PVs can be used to uniquely identify physical objects. Finally, in Section 2.4, we

review fuzzy extractors.

2.1 Previous Work

Over the past years, several research papers have focused on using biometrics to

uniquely identify humans, a lot of the techniques introduced in these papers can be

applied for usage in fingerprinting physical devices. A thorough study on these various

techniques and connections has been provided by Tuyls et. al in their book “Security

with Noisy Data” [96]. In their book, the authors explore various techniques used in

biometrics and physical devices in order to prevent counterfeiting and illegal access

to secret information. As our interest is mainly directed towards physical objects, we

will focus our attention on work done in that particular area.

One of the earlier work related to (PVs) was presented by Ravikanth Pappu in his
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PhD thesis [83]. The main focus of his work was to define and explore physical one-

way functions (POWF). The motivation for POWF is to provide a one-way function

which depends on PVs and measurement probes such that the retrieval of the PV

value or the probe’s configuration is difficult to carryout using computational means

or physical interactions.

Another concept which is also dependent upon PVs is that of physically unclonable

functions (PUFs) [29, 71]. PUFs are a natural successor of POWFs and are therefore

very similar to them. The idea behind PUFs is to build physical devices which

compute a function such that an adversary cannot clone the device or deduce the

implemented function. Unfortunately, due to the popularity of the name, several

physical functions which do not satisfy the unclonability property have been labeled as

PUFs. In this work we argue that the term physically parameterized function (PPFs)

is a more accurate description for these functions. In Part II of this dissertation we

will talk extensively about PUFs.

One of the central motivations to build physical functions is to be able to uniquely

identify different physical objects. Some recent proposals directly use PVs to gener-

ate a unique fingerprint for different devices. In [3] a circuit fingerprinting technique

was introduced. The technique exploits manufacturing variability in integrated chips

to detect Trojan circuits inserted during the manufacturing process. The PV used

for this technique is the power consumption of the fingerprinted circuit. Another se-

cure fingerprinting technology named RF-DNA was developed by Microsoft Research

[19]. The RF-DNA technology provides unique and unclonable physical fingerprints

based on the subtleties in the device’s reaction when subjected to an electromagnetic

wave. The PV used here is the device’s response when subjected to electromagnetic

waves. The fingerprints are used to produce a cryptographic certificate of authen-

ticity (COA), which when associated with a high value good, may be used to verify

the authenticity of the goods and to distinguish it from counterfeit goods. Another
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application of manufacturing variability is fingerprinting paper objects. In [17] the

authors propose laser surface authentication where a high resolution laser microscope

is used to capture the paper texture, from which a PV is derived and a fingerprint

is developed. In a more recent proposal, a cheap commodity scanner was used to

identify paper documents [15]. While most of the results cited above were developed

in the last decade, the idea of using physical fingerprints to obtain security primitives

is not new at all. Access cards based on physically unclonable properties of media

were proposed decades ago by Bauder and Simmons from Sandia National Labs [5].

In Chapter 3 we will present a technique to fingerprint CDs from the length of the

lands and pits used to store the information on the CD.

These examples use different types of PVs to identify physical objects. For the

remainder of this chapter we will not be concerned with what the PV represents but

will rather focus our attention on the PV distribution.

2.2 PVs

As we mentioned in the beginning of this chapter PVs can be viewed as a description

of some property in a physical object. The idea behind PVs is that although some

physical objects are manufactured to be identical, some of their properties will be

different due to manufacturing variability. Any manufacturing process will undergo

a number of external effects which typically cause variation in the physical objects

produced. In fact, trying to eliminate this type of variability is a challenging task

which has received much attention from the research community (see, for example,

[81, 1]). A simple example of manufacturing variability can be seen in the length of

wires inside any integrated-chip (IC). As these wires are made out of a number of

atoms, it is common that the same wire (at the design level) will have a different

number of atoms (and therefore different length) from one chip to another. Of course
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when the variance in the wire’s length is low, its effect on the circuit’s behavior is

unnoticeable. The manufacturing process research is usually concerned with large

manufacturing variability which can have detrimental results on the overall perfor-

mance of the physical object. In this dissertation we are mainly interested in the

type of manufacturing variability which is not harmful to the functionality of the

physical object. Therefore, we work under the assumption that the physical object is

functional.

In order to be able to reason about PVs we model a PV as a random variable

X ∈ R with some probability distribution H over the reals. Every physical object

manufactured from some design D will have a different PV value. Therefore, we view

a physical object as a sample from the distribution H. We use ψ(D) to denote the

set of all physical objects which are manufactured from some design D, and we say

that X is a PV for ψ(D). Now every physical object Sj ∈ ψ(D) will have a an ideal

PV value X̂j. We will slightly abuse the notation and use Sj ∈H ψ(D) to denote

drawing a physical object Sj from ψ(D) such that X̂j is chosen according to H. We

also use S1, . . . , Sk ∈H ψ(D) to denote that X̂1, . . . , X̂k were drawn independently

according to H. Here, we used X̂j to denote the ideal value of X in Sj. However, as

the measurement of X will contain noise we use Xj to denote a measurement of X̂j.

We also model Xj ∈ R as a random variable with some probability distribution Dj

over the reals. Notice that every physical object Sj will determine the ideal value of

the PV and the noise distribution Dj.

A natural extension of the above model is for the physical object to have multiple

PVs. With this view we treat X as a vector in R
n. Each physical object Sj ∈ ψ(D)

will have an ideal PV value X̂j ∈ R
n. The ith entry (coordinate) of X̂i will have

an ideal value X̂ij ∈ R and can be modeled as a random variable following the dis-

tribution Hi. Here, we are making the assumption that the distributions Hi are

independent. In reality there will always be a level of dependency between these dis-
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tributions. However, we make this assumption in order to simplify our analysis. The

measurement of the ith entry of X̂j on some physical object Sj will be an independent

sample from the distribution Dij. We will be using a single subscript to mean a vector

containing the values of all the entries of X in a specific physical object (eg. Xj), and

double subscripts Xij to be the value of the ith entry of Xj. We also call n the size

of the PV. Now when we use the notation S1, . . . , Sk ∈H ψ(D) we mean that the ith

entry of each vector X̂1, . . . , X̂k was drawn independently according to Hi. Because

the distributions Hi are independent, the multivariate distribution H over R
n will be

H =
∏n

i=1Hi.

With this model we can now reason about distributions rather than physical ob-

jects. It is important to note here that the above is an idealized model. For example,

when we consider continuous distributions we are implying that ψ(D) contains an

infinite number of objects which is clearly not the case. Although we will be using an

idealized model to derive some of our equations, we will see in the next chapter that

the model closely predicts some of the experimental results.

Before we finish this section we discuss what we mean by the ability to uniquely

identify physical objects. We first introduce the following definition. We say that a

function ∆ on some set S is a semi-pseudo distance if ∆ : S × S → R
+ = [0,∞) and

for any elements a, b ∈ S, ∆(a, b) = ∆(b, a) and ∆(a, a) = 0. The reader should note

that what we refer to as a semi-pseudo distance function is a distance metric without

the triangle inequality and with a weaker notion of identity. In general, there are a

number of functions which are weaker than a distance metric, yet they share some of

the properties of a distance metric [89]. The semi-pseudo distance is a mix between a

semi-metric which does not require the triangle inequality and a pseudo metric which

allows non-identical elements to have distance 0. One other technical term which we

need is that of negligible functions. We say that a function f(n) : N→ R is negligible

if for every positive polynomial p(x) there exists some N0 ∈ N such that for all n > N0



2.3. DISCRETIZATION AND IDENTIFICATION 17

we have f(n) < 1
p(n)

[36].

Now let X1, X
′
1 ∈ R

n be two vectors where the ith entry of each vector is an inde-

pendent sample from the distribution Di1. Similarly, let X2, X
′
2 ∈ R

n be two vectors

where the ith entry of each vector is an independent sample from the distribution Di2.

The ideal values for X1, X
′
1 and X2, X

′
2 will be X̂1 and X̂2 respectively, both of which

are independent samples from the distribution H. Now let I be some extraction

algorithm which takes in values from X ∈ R
n and produces output over some set S.

For X to be useful in uniquely identifying physical objects we require it to satisfy the

following definition.

Definition 2.2.1. (Identifying Physical Variable (IPV)) Let µ : N → R
+. A

PV X ∈ R
n for ψ(D) is said to be an identifying physical variable if there exists an

algorithm I with running-time polynomial in n such that for any two objects S1, S2 ∈H

ψ(D), I can achieve

Pr[∆(I(X1), I(X ′
1)) < ∆(I(X1), I(X2))] ≥ 1− µ(n) ,

where µ(n) is a negligible function and ∆(a, b) is some semi-pseudo distance over

S. The probability is taken over any pair of objects in ψ(D) sampled independently

according to H.

We state this definition for Identifying PVs in order to express and quantify the

notion of the ability to uniquely identity physical objects. The definition above cap-

tures the notion that under our idealized assumptions the measured PV values from

some object S1 will with a very high probability be closer to each other than the

measured PV values from a different object S2.

2.3 Discretization and Identification

In this section we will restrict our attention to Gaussian distributions for Hi and for

Dij. We will also formalize our assumptions in order to explore when Gaussian PVs
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can be considered as IPVs. Recall that a Gaussian (N(M,Σ2)) random variable X

has a probability distribution function

e(X−M)2/2Σ2

√
2πΣ2

,

where M is the mean and Σ2 is the variance.

In order for X to identify a large number of objects there needs to be a sufficient

amount of entropy in H. In general the entropy of a Gaussian distribution of variance

Σ2 will be log
(
Σ
√

2πe
)

which is the maximum entropy among all real-valued distri-

butions with a given mean and standard deviation [16].2 This quantity is limited,

and will require a large Σ in order to allow the identification of a large number of

objects. This is why we will need to consider PVs with n values larger than 1.

In some sense our goal will be to extract the entropy from X and use it to generate

the fingerprint. This task is made harder with the noise contaminating the ideal

values of the PV. Recall that X assumes values from the reals. It is typically easier

to reason about the identification ability of binary fingerprints. Due to this reason we

will start our extraction process by imposing a discretization technique on X. This

discretization process will have significant impact on both the noise level and the

identification ability of X. In this section we present two discretization techniques,

the halfspace technique and the threshold technique. In the coming two sections we

will elaborate on each of these techniques and then derive closed expression formulas

for their error and collision probability. Different discretization techniques can be

found in [96].

Before we start, we will list the assumptions that we have stated and which we

will use in the next two sections. We will use H to denote that multivariate Gaussian

made of all n independent Gaussian distributions Hi = N(Mi,Σ
2). Where Mi is the

mean of the ith entry in X over all the physical objects in ψ(D). Note that by using

2Note that unless we mention otherwise, all logarithms in this dissertation are with respect to

base 2.
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Σ for all the entries of X we are assuming that the variability in all the entries of X

is equal. The measurement of the ith entity of X on some physical object Sj will be

a sample Xij from Dij = N(µij, σ
2). We assume that Dij will be additive noise to

the ideal PV value X̂ij. Furthermore, to simplify our derivations we assume that the

noise has a mean value of 0, and therefore µij = X̂ij. In our derivations we use µij

to avoid confusion. Also, by fixing the variance in all the measurement distributions

to σ2 we are making the assumption that the measurement devices on any physical

object in ψ(D) will introduce the same level of noise. Following we formalize these

assumptions.

Assumption 2.3.1. Let X ∈ R
n be a PV for ψ(D). We assume,

1. For any physical object Sj ∈ ψ(D) the measurement of the ith entry of Xj is an

independent sample from the distribution Dij = N(µij, σ
2).

2. For any given physical object Sj ∈H ψ(D) the mean of the measurement on the

ith entry of X which is µij will be an independent sample from the distribution

Hi = N(Mi,Σ
2).

3. The distributions Hi = N(Mi,Σ
2) are independent for i ∈ [1..n].

The above captures our idealized model of a PV.

2.3.1 Halfspace Technique

The idea here is to extract a single bit from each entry in X. This can be achieved by

simply breaking the space of Xij in half, such that over all possible values of Xij the

probability of extracting a 0 or 1 is equal. This approach was first proposed in [94]

and [73]. In order to extract a single bit we will use the mean of Xij overall physical

objects in ψ(D). The following equation captures the technique.
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Zij = HT(Xij) =





1, Xij > Mi

0, Xij ≤Mi



 . (2.1)

It should be clear that since Hi is symmetric around Mi the above will yield a 0 or

a 1 with equal probability. Which means that Zij for two different objects will collide

with probability 0.5, we label this probability as Pc. This guarantees the extraction

of a single bit of entropy. With Assumption 2.3.1, the n entries of X will result in

n bits of entropy. Therefore, if we consider Zj = [Z1j, . . . , Znj] ∈ {0, 1}n to be the

fingerprint for each object, two physical objects S1, S2 ∈H ψ(D) will have an expected

Hamming distance of n
2

between Z1 and Z2. However, with the existence of noise the

Hamming distance between Z1 and Z2 will be affected. The next proposition will

address the issue of noise. In specific, the proposition quantifies the probability of

Zij yielding different values after two different reads. We use Zij and Z ′
ij to denote

two different extracted bits from the ith entry of a PV on the same physical object.

This proposition was proven in [57]. We restate the following proposition using our

notation.

Proposition 2.3.2. ([57]) let X ∈ R
n be a PV under Assumption 2.3.1, and Sj ∈H

ψ(D) be a physical object. Also, let Zij and Z ′
ij be the result of applying the halfspace

technique of Equation 2.1 to the output of two independent measurements of Xij. The

error probability

Pe = Pr[Zij 6= Z ′
ij] =

1

2
− 1

π
arctan


 Σ

σ
√

2 + σ2

Σ2


 . (2.2)

It will be useful to rewrite the equation above using the ratio R = σ
Σ

as

Pe =
1

2
− 1

π
arctan

(
1

R
√

2 +R2

)
.

Now we know the collision and error probability. Recall from Definition 2.2.1 that

we need a semi-pseudo distance such that except with a negligible probability the
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distance between Z1 and Z ′
1 is smaller than the distance between Z1 and Z2. As the

generated fingerprints are binary it will be natural to use the Hamming distance as

our metric. For two binary vectors a, b ∈ {0, 1}n we use d(a, b) = |a ⊕ b| to denote

the Hamming distance, where |a| is the Hamming weight3 of a. Now we can prove

the following theorem.

Theorem 2.3.3. let X ∈ R
n be a PV under Assumption 2.3.1, and S1, S2 ∈H ψ(D).

If n = Ω(R5) then d(Z1, Z
′
1) < d(Z1, Z2) except with a negligible probability in n.

Therefore, X is an IPV.

Proof. Let d1 = d(Z1, Z
′
1) and d12 = d(Z1, Z2). For each bit in the Zj the probability

of Zi1 and Zi2 not being equal is Pnc = 1 − Pc = 1
2
, while the probability of an

error (different bit) between Zi1 and Z ′
i1 is Pe = 1

2
− 1

π
arctan

(
1

R
√

2+R2

)
. We need to

find a specific Hamming distance which separates d1 and d12 except with a negligible

probability. We set this Hamming distance at n · ε where ε = 1
2
(Pnc−Pe). Now using

Hoeffding Inequality [44] we have

Pr [|d1 − nPe| ≥ nε] < 2e−2ε2n

Similarly,

Pr [|d12 − nPnc| ≥ nε] < 2e−2ε2n

We know that Pe ≤ Pnc, so with probability at least 1− 4e−2ε2n we have

d12 > nPnc − nε and

nε+ nPe > d1 .

Therefore, d12 > d1. We now need to prove that with our choice of R the failure

probability Pf = 4e−2ε2n is negligible. We have,

ε =
1

2
(Pnc − Pe) =

1

2π
arctan

(
1

R
√

2 +R2

)

3The Hamming weight of a binary vector is the number of ones in the vector.
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One can easily show that arctan(x) ≥ x
x+1

. Therefore,

1

2π

(
1

1 +R
√

2 +R2

)
≤ ε .

With our choice of n we get,

ε = Ω

(
1

n2/5

)

and finally,

Pf = 4e−2ε2n = 4e−Ω(n1/5) ,

which is negligible in n. This satisfies the conditions for an IPV (Definition 2.2.1).

The theorem above proves that even with a significant noise σ compared to the

variation in the PV Σ it is possible to use X as an IPV. Of course, using asymptotes

we are implicitly assuming that n can be made arbitrarily large. Also, we assume a

dependence between R and n. To get exact numbers for the failure probability and

the Hamming distances one can directly plug numbers into the equations above. We

next shift our attention to a different technique.

2.3.2 Threshold Technique

The halfspace technique was quite simple and straight forward to apply. It also

enabled us to easily quantify the extracted entropy. However, the problem with the

halfspace technique is that there might be more than a single bit of entropy in each of

the entries in X. Restricting our attention to a single bit might be wasteful in certain

cases. Another problem with the halfspace technique is that it requires knowing the

mean Mi for every entry of X. This might not be possible for all applications. These

two problems motivate the threshold technique.

In the threshold technique the extracted binary string is simply the binary rep-

resentation of Xij. The essence of this technique is really in the distance function

defined. It should be clear that using a Hamming distance will not be natural to the
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readings which come from the reals. Two values Xij and X ′
ij which are close to each

other (using the L1-distance), will not necessarily be close when using the Hamming

distance over their binary representation. Our focus in this section will be on the

distance function which will enable us to use the binary representation of Xij as our

fingerprint. Also, keep in mind that our goal is to place conditions on σ and Σ such

that X can become an IPV.

For two real values ai and bi we define the threshold distance which is a semi-

pseudo distance as follows. For any positive τ ,

dτ (ai, bi) =





0, |ai − bi| ≤ τ

1, |ai − bi| > τ



 . (2.3)

For two real vectors a = [a1, . . . , an] ∈ R
n and b = [b1, . . . , bn] ∈ R

n the distance is

defined as

dτ (a, b) =
n∑

i=1

dτ (ai, bi)

We now start by quantifying the probability of an error occurring (threshold dis-

tance 1) when measuring the ith entry of X on the same physical object. Before we

start, we recall the definition of the error function which is

erf(x) =
2√
π

∫ x

0

e−t2dt .

Proposition 2.3.4. let X ∈ R
n be a PV under Assumption 2.3.1, and Sj ∈H ψ(D)

be a physical object. The probability of having a threshold distance of 1 between Xij

and X ′
ij is

Pe = Pr[dτ (Xij, X
′
ij) = 1] = 1− erf

( τ
2σ

)
. (2.4)

Proof. The reading Xij will be drawn from Dij = N(µij, σ). We quantify the proba-

bility that two independent samples from Dij are a distance τ apart. We will quantify

the probability that no error occur which will be easier to carryout. We use dummy
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variables x and z in the derivation. Without loss of generality, since both Xij and

X ′
ij come from the same distribution we shift the mean to 0. Pr[|Xij −X ′

ij| ≤ τ ] =

=

∫ ∞

−∞

e−z2/2σ2

√
2πσ2

dz

∫ z+τ

z−τ

e−x2/2σ2

2
√

2πσ2
dx

=
1

2
√

2πσ2

∫ ∞

−∞

[
erf

(
z + τ√

2σ2

)
− erf

(
z − τ√

2σ2

)]
e−z2/2σ2

dz

=
1

2
√

2πσ2

[∫ ∞

−∞
e−z2/2σ2

erf

(
z + τ√

2σ2

)
dz −

∫ ∞

−∞
e−z2/2σ2

erf

(
z − τ√

2σ2

)
dz

]

=
1

2

[
erf
( τ

2σ

)
− erf

(−τ
2σ

)]

= erf
( τ

2σ

)

where the third line was done using

∫ ∞

−∞
e−(αz+β)2erf (γz + δ) dz =

√
π

α
erf

(
αδ − βγ√
α2 + γ2

)
. (2.5)

Now we have,

Pe = Pr[dτ (Xij, X
′
ij) = 1] = 1− Pr[|Xij −X ′

ij| ≤ τ ] = 1− erf
( τ

2σ

)

Next, we need to quantify the probability of a collision (threshold distance 0)

occurring when measuring the ith entry of X on two physical objects.

Proposition 2.3.5. let X ∈ R
n be a PV under Assumption 2.3.1, and S1, S2 ∈H

ψ(D). The probability of having a threshold distance of 0 between Xi1 and Xi2 is

Pc = Pr[dτ (Xi1, Xi2) = 0] = erf

(
τ

2
√
σ2 + Σ2

)
. (2.6)

Proof. The measurement of Xij will be drawn from Dij = N(µij, σ). However, the

mean µij will be drawn from Hi = N(Mi,Σ
2). For a collision to happen we need

|Xi1−Xi2| ≤ τ . To compute this probability we integrate over all values of the mean
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of the first object taken from Hi then we integrate over all possible values of Xi1

taken from Di1. This will cover every possible reading coming from the Xi1. We will

still have to integrate over all the mean values of the second object taken from Hi

and finally we integrate over all the values of Xi2 coming from Di2 and which are at a

distance τ from Xi1. Similar to the previous proof we will without loss of generality

shift the mean of Hi to 0 as both Xi1 and Xi2 come from the same distribution. We

use dummy variables z, x, t and l in the derivation. Now we have Pr[|Xi1−Xi2| ≤ τ ] =

=

∫ ∞

−∞

e−z2/2Σ2

√
2πΣ2

dz

∫ ∞

−∞

e−(x−z)2/2σ2

√
2πσ2

dx

∫ ∞

−∞

e−t2/2Σ2

√
2πΣ2

dt

∫ x+τ

x−τ

e−(l−t)2/2σ2

√
2πσ2

dl

=

∫ ∞

−∞

e−z2/2Σ2

2
√

2πΣ2
dz

∫ ∞

−∞

e−(x−z)2/2σ2

√
2πσ2

dx ·
∫ ∞

−∞

e−t2/2Σ2

√
2πΣ2

[
erf

(−x+ τ + t√
2σ2

)
− erf

(−x− τ + t√
2σ2

)]
dt

=

∫ ∞

−∞

e−z2/2Σ2

2
√

2πΣ2
dz

∫ ∞

−∞

e−(x−z)2/2σ2

√
2πσ2

[
erf

(
−x+ τ√
2(σ2 + Σ2)

)
− erf

(
−x− τ√
2(σ2 + Σ2)

)]
dx

=

∫ ∞

−∞

e−z2/2Σ2

2
√

2πΣ2
dz

[
erf

(
z + τ√

2(2σ2 + Σ2)

)
− erf

(
z − τ√

2(2σ2 + Σ2)

)]
dx

=
1

2

[
erf

(
τ√

2(2σ2 + 2Σ2)

)
− erf

(
−τ√

2(2σ2 + 2Σ2)

)]
dx

= erf

(
τ

2
√
σ2 + Σ2

)

where all the integrations were carried out using Equation 2.5.

With the last two proposition we can now bound the value of n which allows X

to be used as an IPV under the threshold distance. As before we use n entries for

the PV X.

Theorem 2.3.6. let X ∈ R
n be a PV under Assumption 2.3.1, and S1, S2 ∈H ψ(D).

If n = Ω(R5) and T = τ
2σ

= O(1), then dτ (X1, X
′
1) < dτ (X1, X2) except with a

negligible probability in n. Therefore, X is an IPV.
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Proof. The theorem proceeds similar to Theorem 2.3.3. We define Pnc = 1−Pc. Note

that for the halfspace technique we had Pnc = Pc. Now set, R = σ
Σ

as before and

T = τ
2σ

.

Pc = erf

(
τ

2
√
σ2 + Σ2

)
= erf

(
τ

2σ
R

√
1 +R2

)
= erf

(
T

R√
1 +R2

)

Let C = R√
1+R2 ≤ 1. Next we set ε = 1

2
(Pnc−Pe). We can now show that that ε ≥ 0.

ε =
1

2
(erf(T )− erf(TC)) ,

since the error function erf() is increasing for T ≥ 0 and C ≤ 1 therefore ε ≥ 0

and Pnc ≥ Pe. We can now use the same steps as Theorem 2.3.3 to deduce that

dτ (X1, X
′
1) < dτ (X1, X2) except with probability Pf = 4e−2ε2n. All we need to do

now is to show that with our choice of R the failure probability Pf is negligible. We

have,

ε =
1

2
(erf(T )− erf(TC)) =

1√
π

∫ T

TC

e−u2

du ≥ e−T 2

√
π

(T − TC)

We also have,

1− C = 1− R√
1 +R2

= Ω

(
1

R2+ε

)
,

for any ε > 0.

ε = Ω

(
1

R2+ε

)
= Ω

(
1

n(2+ε)/5

)
.

Substituting into Pf we get,

Pf = 4eΩ(n(1−2ε)/5) .

By choosing ε < 0.1, where 0.1 was chosen as an arbitrary small value, the above

becomes negligible in n. Therefore, X is an IPV.

The significance of the theorem above is that even with an R which is quite

significant there will always be a way to use X as an IPV using the threshold distance.
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In terms of handling different R values there is barely any difference between the

halfspace and the threshold techniques. This should be expected since we are using

asymptotes. What is interesting about the threshold technique is that it does not

require prior knowledge of the mean Mi. The above shows that when using the

binary representation of Xij as the fingerprint it is possible to use X as an IPV.

2.4 Fuzzy Extractors

In this section we review fuzzy extractors and quickly discuss their relation to the

previous discretization techniques. In the next chapter we will utilize fuzzy extractors

in a specific application. Loosely speaking a fuzzy extractor is a technique to extract

randomness from a given string such that it is possible to reproduce the same output

string from a noisy version of the input string. In [20] the authors show how a

fuzzy extractor can be built using an error correcting code along with a universal

hashing function. Their construction requires that the output of the fingerprint (the

biometric data in their language) be represented as an element of Fn for some field F
and an integer n which represents the size of the fingerprint. Moreover, it is naturally

assumed that the noise experienced by the fingerprint is upper bounded by a constant

distance from the original fingerprint in order to guarantee identical reproduction of

the extracted key.

In some sense fuzzy extractors assume the existence of IPVs in order to provide

some guarantee on the distance. It is also natural to think of fuzzy extractors as

the natural next step after discretization. To a great extent our review here will

follow [20]. We start by quoting the following definition from [20]. We will use the

following terms. The definition of min entropy is H∞(A) = − log(maxaPr[A = a]).

The conditional min-entropy is H∞(X|I) (meaning X conditioned on I)4. Also, recall

4Typically we use the | operator to mean concatenation. This will be the only part of this

dissertation where it will have a different meaning.
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the definition of the statistical distance between two probability distributions A and

B, SD(A,B)= 1
2

∑
v |Pr(A = v) − Pr(B = v)|. U` is the uniform distribution over

{0, 1}`. Finally, dis(a, b) is the distance between a and b using some distance function.

Definition 2.4.1. ([20]) A (S,m, `, t, ε)-average-case fuzzy extractor is a pair of

randomized procedures, generate (Gen) and reproduce (Rep), with the following prop-

erties:

1. The generation procedure Gen on input x ∈ S outputs an extracted string Z ∈
{0, 1}` and a helper string P ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element x ∈ S and a bit string P ∈
{0, 1}∗ as inputs. The correctness property of fuzzy extractors guarantees that if

dis(x, x′) ≤ t and R,P were generated by (R,P )← Gen(x), then Rep(x′, P ) =

R. If dis(x, x′) > t, then no guarantee is provided about the output of Rep.

3. The security property guarantees that for any distribution X on S of min-

entropy m, the string R is nearly uniform even for those who observe P : if

(R,P ) ← Gen(X), then SD((R,P ), (U`, P )) ≤ ε. Furthermore, if H∞(X|I) ≥
m, then SD((R,P, I), (U `, P, I)) ≤ ε for any auxiliary random variable I.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

In this chapter we will be interested in a specific class of fuzzy extractors, namely

the code offset fuzzy extractors. The next theorem stated and proven in [20] outlines

this class.

Theorem 2.4.1. ([20]) Given any [n, k, 2t + 1]F code C and any m, ε, there exists

an average-case (M,m, `, t, ε)-fuzzy extractor, where ` = m+ kf − nf − 2 log(1
ε
) + 2.

The generation algorithm GEN and the recovery algorithm REP are efficient if C has

efficient encoding and decoding.
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We explain the parameters in the theorem by outlining a specific construction.

This construction was proposed in [20] and further detailed in [38]. As stated in

the theorem, C is an error correcting code over the field F , where f = log(|F|).
For the construction we will also need a family of universal hashing functions5 H .

The generation algorithm GEN takes the fingerprint x ∈ Fn as input and outputs

the triplet (k, w, v). Here, x is drawn from some distribution X over Fn which has

min-entropy m. GEN starts by computing w = x + c for a randomly chosen code

word c ∈ C and then computes the key k = hv(x) ∈ {0, 1}` for some string v chosen

uniformly at random such that hv ∈ H. The recovery algorithm REP takes in the

helper data (w, v) along with x′ a noisy version of the fingerprint x and returns the key

k. REP starts by computing c′ = w−x′ which is a noisy version of c. If the Hamming

distance between x and x′ is less than t then so will be the Hamming distance between

c and c′ and therefore using the error correcting code REP can reproduce c from c′.

Next, REP can compute x = w − c and consequently compute k = hv(x) which will

conclude the recovery algorithm.

With this construction we will have a clear way to build a fuzzy extractor. How-

ever, the key size ` and the security parameter ε will both depend on m and the

code used. Moreover, the code will depend on the noise rate in the fingerprint. We

finish this section by relating the min-entropy and the error rate of the fingerprint.

Recall, that x is required to have a min-entropy of m and at the same time using the

construction above, x will have n symbols from F . To merge these two requirements

we define the average min-entropy in every symbol δ = m/n. We also define ν to be

the noise rate in the fingerprint x and F = |F|. With these definitions we can now

prove the following simple bound relating the noise rate and the min-entropy rate

δ/f . We will first need the definition of F -ary entropy function.

HF (p) = p logF

(
F − 1

p

)
+ (1− p) logF

(
1

1− p

)
.

5For details on universal hashing the reader is referred to [14].
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Proposition 2.4.2. For the fuzzy extractor construction of Theorem 2.4.1, and for

any meaningful security parameters of ε < 1 and ` > 2 we have HF (ν) < δ
f
.

Proof. From Theorem 2.4.1 we now that ` = m + kf − nf − 2 log(1
ε
) + 2. Let

A = `+ 2 log(1
ε
)− 2 = m+ kf − nf . From the conditions above we now that A > 0

and therefore m + kf − nf > 0. Let R = k/n which yields (δ + Rf − f)n > 0 and

therefore R > 1− δ/f . Using the sphere packing bound where k/n = R ≤ 1−HF (ν)

we immediately get HF (ν) < δ
f
.

As it is impossible to calculate the min-entropy for a physical source we will

estimate this quantity over the symbols of x. The bound given above will give us

an idea whether the min-entropy in the symbols of x will be sufficient to handle the

measured noise rate. This will be useful in the next chapter when we deal with a real

physical source.

We finish this section be relating the review above to the extraction techniques

discussed in the previous section. For the halfspace technique the output will be a

binary string. Using Assumption 2.3.1 we showed that for any two physical objects

S1, S2 ∈H ψ(D) we have d(Z1, Z
′
1) < d(Z1, Z2) except with a negligible probability.

We also know that the entropy in the output of the halfspace technique will be n. By

using any reading from a physical object to form the template w produced by Gen and

by setting the distance separating d(Z1, Z
′
1) from d(Z1, Z2) to t, the fuzzy extractor

in the above construction will work properly except with a negligible probability.

To show how the threshold technique can be properly used with a fuzzy extractor

is slightly more complicated. For clarity we will postpone this discussion to Section

3.4.1 where we will be working with a real application.
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2.5 Summary

In this chapter we studied Gaussian PVs and discussed discretization techniques

which can enable using PVs as IPVs. We thoroughly derived the error and collision

probability for the new threshold technique. We also provided a review of fuzzy

extractors which will become quite useful in the next chapter.
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Chapter 3

CD Fingerprinting

In this chapter we introduce a new technique for extracting unique fingerprints from

identical CDs. The proposed technique takes advantage of manufacturing variability

found in the length of the CD lands and pits which will be the PV used in this

chapter. Although the variability measured is on the order of 20 nm the technique

does not require the use of microscopes or any advanced equipment. Instead, the

electrical signal produced by the photo detector inside the CD reader will be sufficient

to measure the desired variability. We thoroughly investigate the new technique by

analyzing data collected from 100 identical CDs and show how to extract a unique

fingerprint for each CD. We also give specific parameters and code constructions to

convert the derived fingerprints into 128-bit cryptographic keys. Finally, we outline

a simple protocol which utilizes the CD fingerprint to provide IP protection for the

software stored on the CD without taking away from the users ownership.

The remainder of this chapter is organized as follows. In the next section we

present some background information. In Section 3.2, we discuss the physical aspects

of CD storage, the sources of manufacturing variability and the theoretical model

capturing the CD variability. Section 3.3 presents experimental data to verify our

theoretical model. In Section 3.4 we discuss the fingerprint extraction technique and

33
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determine the parameters necessary for key generation. We discuss the robustness of

the fingerprint in Section 3.5 and we propose a simple protocol for usage in Section

3.6.

3.1 Background

According to a study by the Business Software Alliance about 35% of the global soft-

ware market, worth $141 Billion, is counterfeit. Most of the counterfeit software is

distributed in the form of a compact disc CD or a digital video disc DVD which is

easily copied and sold in street corners all around the world but mostly in develop-

ing countries. Given the severity of the problem in hand, a comprehensive solution

taking into account the manufacturing process, economical implications, ease of en-

forcement, and the owner’s rights, needs to be developed. While this is an enourmous

undertaking requiring new schemes at all levels of implementation, in this work, we

focus on secure fingerprinting techniques for optical media.1

To address this problem the SecuRom technology was introduced by Sony DADC.

SecuROM uses the location information of hidden markers (faulty bits) to uniquely

identify a key. The technology links the identifiers produced to executable files which

may only be accessed when the CD is placed in the reader. The main advantage of

this technology is that it can be used with existing CD readers and writers. While

the specifics of the scheme are not disclosed, in practice, the technology seems to be

too fragile, i.e. slightly overused CDs become unidentifiable. Another problem is at

the protocol level. The digital rights management (DRM) is enforced too harshly,

therefore significantly curtailing the rights of the CD owner.

In this chapter we take advantage of CD manufacturing variability in order to

generate unique CD fingerprints. As discussed in the previous chapter the approach

1We shall refer to all optical discs including compact discs, digital video discs (DVDs), and

Sony c©Blue-Ray discs as CDs for the remainder of this chapter.
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of using manufacturing variability to fingerprint a device or to build cryptographic

primitives has been applied in several contexts.

3.2 Pits and Lands

In this section we briefly describe how data is stored on a CD. We also present our

model to describe the dimensions of the CD features. On a typical CD data is stored

as a series of lands and pits formed on the surface of the CD. The pits are bumps

separated by the lands to form a spiral track on the surface of the CD. The spiral

track starts from the center of the CD and spirals outward. It has a width of about

0.5 µm and a 1.6 µm separation. The length of the land or pit determines the stored

data. The encoding length can assume only one of nine lengths with minimum value

in the range 833 to 972 nm up to a maximum of 3054 to 3563 nm with increments

ranging from 278 to 324 nm. Note that the range is dependent on the speed used

while writing the CD. To read the data on the CD the reader shines a laser on the

surface of the CD and collects the reflected beam. When the laser hits the pits it will

reflect in a diffused fashion thus appearing relatively dark compared to the the lands.

Upon the collection of the incoming beam, the reader can deduce the location and

length of the lands and pits which results in reading the data on the CD.

CDs are written in two ways, pressing and burning. In pressed CDs a master tem-

plate is formed with lands and pits corresponding to the data. The master template

is then pressed into blank CDs in order to form a large number of copies. In burned

CDs, the writing laser heats the dye layer on the CD-R to a point where it turns

dark, thus reflecting the reading laser in a manner consistent with physical lands.

Note that the burned CDs will not have physical lands and pits but will act as if

they had these features. Figures 3.1 and 3.2 show the lands and pits of a pressed CD.

We captured Figure 3.1 using an optical microscope and Figure 3.2 using a scanning
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electron microscope.

Figure 3.1: Lands and pits (Optical Microscope)

3.2.1 Source of Variation

Similar to any physical process, during the writing process CDs will undergo man-

ufacturing variation which will directly affect the length of the lands and pits. For

burned CDs this variability will be a direct result of the velocity of the CD while

writing takes place. This velocity is assumed to be at a fixed rate between 1.2 and

1.4 m/s where the velocity variation during writing should be within ±0.01m/s [22].

Pressed CDs are manufactured by molding thermoplastics from a micro or nanos-

tructured master prepared by lithographic methods. The molding process itself is

optimized for replication fidelity and speed, and typical replication variations are on
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the order of tens of nanometers [88]. The molding process involves contacting the

thermoplastic with the master slightly above the glass transition temperature of the

material, with a preset pressure for a brief amount of time, cooling the master and

the thermoplastic to below the glass transition temperature and demoulding. Local

variations of polymer material’s mechanical and thermal properties, local variations

of the temperature and pressure all potentially lead to variations in the imprinted

structures. The thermal stresses induced during cooling and demoulding also poten-

tially lead to variations. In this chapter we aim at using the small variation in the

length of lands and pits in order to form a unique fingerprint for each CD. In the next

section we characterize the length features of lands and pits.

Figure 3.2: Lands and pits (SEM capture)
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3.2.2 Single Location Characterization

Together lands and pits form the full spiral track. Therefore, it makes sense to

fingerprint only lands or pits. The length of both lands and pits will follow similar

distributions which is why we will simply use the term location to refer to either of

them. We label the lengths of k consecutive locations by starting from a reference

point on the track, as L1, L2, . . . , Ln. In the ideal setting Li = ci · L for a small

constant integer ci ∈ [3, 4, . . . , 11] and L ≈ 300 nm. However, due to the subtle

variations we talked about in the previous section we expect Li = ci · L + `i. The

variable `i is expected to be quite small compared to Li, and therefore difficult to

measure precisely. Still our measurements should be centered around the ideal length.

Hence, quite naturally across all identical CDs we model Li as a random variable

drawn from a Gaussian distribution Hi = N(Mi,Σ
2) where Mi = ci ·L and Σ denotes

the mean and the standard deviation respectively. The length L will be the PV of

this chapter. Note that in the language of the previous chapter, the length of each

location (out of n CD locations) can be treated as an entry in the PV.

Here we are assuming that regardless of the location the standard deviation Σ will

be the same. This is a quite a realistic assumption since Σ is essentially capturing

the manufacturing variability which should affect all locations similarly. The more

precise the manufacturing process is, the less of a standard deviation we would expect

Hi to have. A perfect manufacturing process would have Σ = 0 and would therefore

give all CDs the same exact length of a specific location across all identical CDs. On

the other hand, for better identification of CDs we would like Hi to have a relatively

large Σ.

In a typical CD reader, the reading laser is reflected from the CD surface back into

a photo diode which generates an electrical signal that depends on the intensity of

the reflected laser. Therefore, the electrical signal is expected to depict the shape of

the CD surface. If these electrical signals are used to measure the length of any given
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location, we expect these measurements to have a certain level of noise following

a Gaussian distribution. So for location i on CDj we denote this distribution by

Dij = N(µij, σ
2). The noise in the length measurements is captured through the

standard deviation σ. Since this quantity mainly depends on the readers noise we

assume that its the same for all CDs and CD locations. Contrary to Σ, to identify

different CDs using the length information of CD locations we would like to see a

relatively small σ. The theoretical model we use here is similar to Assumption 2.3.1.

Therefore, we will be using some of the equations derived in the previous chapter.

3.3 Experimental Validation

To validate the theoretical model, we conducted an extensive experiment on a number

of CDs. We directly probed into the electrical signal coming out of the photo diode

constellation inside the CD reader. The intensity of this signal will reflect the CD

surface geometry, and therefore can be used to study the length of the CD locations.

To sample the waveform we used a 20 GHz oscilloscope. The data was read from the

same locations on the same CD. Each CD was read a number of times in order to

get an idea of the actual D distribution. Similarly, multiple identical CDs (about 100

CDs) were read from the same locations in order to generate theH distribution. Each

collected trace required about 100 MB of storage space. Moreover, synchronizing the

different traces to make sure that the data was captured from the same location of

the CD was quite a challenge. We had to assign a master trace which represented

the locations we were interested in studying and then ran the other traces through

multiple correlation stages with the master to finally extract synchronized signals from

the same locations on different CDs. Automating the process in order to accurately

capture this massive amount of data was a time consuming challenge. However, we

note that all this work would be almost trivially eliminated if we had access to the
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internal synchronization signals of the CD reader chip. The captured signals were

then further processed, using Matlab, in order to extract the location lengths and

obtain the distributions. After processing, we extracted the length of 500 locations

(lands) on the CDs. We used commercially pressed CDs for all the experiments

reported in this chapter2.

Figure 3.3 shows the histogram of lengths extracted from 550 reads for a randomly

chosen location on one CD. The mean length of the histogram is about µij = 958 nm.

This histogram captures the D distribution. The other locations observe similar dis-

tributions with different mean lengths which will depend on the encoded information.

When considering data coming from different locations and different CDs we obtain

a Gaussian distribution with σ = 20 nm (with an average standard deviation of 2

nm on σ). This will be a good estimate for the noise observed during probing of the

electrical signals. These results verify the assumption that the noise in the electrical

signal can be approximated as Gaussian noise. Note that with Gaussian noise simple

averaging can be used to substantially reduce the noise level.

As we are interested to see the behavior of the location lengths across different

CDs we next shift our attention to two CDs before we look at a larger batch of

CDs. Figure 3.4 captures a histogram for the length of the same location on two

identical CDs. What is important here is the distance between the two Gaussian

distributions. The larger this distance becomes the easier it is to identify CDs. Our

basic thesis for fingerprinting CDs is that the length of a single location will vary

across multiple identical CDs. As pointed out earlier, this behavior can be modeled

with the Gaussian distribution Hi. The histogram in Figure 3.4 captures this for two

CDs. To generalize these results we need a larger sample space to estimate the Hi

distribution. The major problem here is that each data point needs to come from

2We have verified a similar behavior for burned CDs. Not surprisingly, the data from the burned

CDs had a much larger variation and was easier to analyze.
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a different CD. Therefore, to obtain a histogram which clearly depicts a Gaussian

we would need to test on the order of 500 CDs. This was not possible as each CD

required substantial time, computing power and storage space in order to produce
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Figure 3.3: Histogram of reads coming from the same location on the same CD
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Figure 3.4: Histograms for reads coming from the same location on two CDs with

identical data
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final data points. However, we were able to carry out this experiment for about 100

CDs. Each CD was read about 16 times to reduce the noise. Finally, we extracted

the lengths of 500 locations for each of the CDs. Figure 3.5 depicts the histogram

over 100 CDs for a randomly chosen location out of the 500 extracted locations.
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Figure 3.5: Histograms of reads coming from the same location on 100 identical CDs
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Figure 3.6: Histograms of reads coming from the 500 locations on 100 identical CDs



3.3. EXPERIMENTAL VALIDATION 43

The histogram in Figure 3.5 has a mean of about 940 nm. As mentioned earlier, for

all locations Σ had a mean of 21 nm with a standard deviation of 1.8 nm. The previous

histogram looks similar to a Gaussian distribution generated from 100 data points.

However, it would be interesting to get a confirmation that with more data points

the above histogram would actually yield a Gaussian. To do so, we normalized the

lengths of each location by subtracting the average length for that particular location.

Since the distribution for each location had roughly the same Σ the normalization

process effectively made all these distributions identical with a mean of 0 and a

standard deviation of Σ. We then collected all these data points (on the order of

50,000 points) and plotted the corresponding histogram. This is shown in Figure

3.6. The histogram of Figure 3.6 strongly supports our thesis of normally distributed

location lengths across different CDs. One might observe a slight imbalance on the

positive side of the Gaussian. This behavior seems to be a result of some of the CDs

having a DC offset. Fortunately, this will not pose a problem for our fingerprinting

technique as we will be normalizing each batch of data to have a mean of zero, thus

removing any DC components.
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Figure 3.7: Histogram of location lengths using the electrical signal

We finish this section by showing the histogram in Figure 3.7. The main purpose
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Figure 3.8: Histogram of location lengths using microscope images

of this histogram is to confirm that what we are studying is in fact the length of data

locations written on the CD. We elaborated earlier that the data on a CD is stored

in discrete lengths ranging from about 900 nm to about 3300 nm taking 9 steps in

increments of about 300 nm. We build the histogram in Figure 3.7 using the data

collected from 500 locations over the 100 CDs without normalizing each location’s

length to zero. In Figure 3.8 we show the same histogram with data extracted from

scanning electron microscope images via image processing.

3.4 CD Fingerprinting

There are many challenges in deriving a robust and secure fingerprint. One important

issue is the reading noise. Similar to a human fingerprint, we saw in the previous

section that the readings used to extract the CD fingerprint are inherently noisy.

The extraction of a deterministic and secure fingerprint from noisy data has been

previously studied in the literature [49, 48, 20]. Most relevant to our work is the

fuzzy extractor technique [20] which we have discussed in the previous chapter. For

the remainder of this section we will discuss how fuzzy extractors can be used in the
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CD setting. Moreover, we will discuss the experimental results and present various

bounds needed to achieve high levels of security.

3.4.1 Fingerprint Extraction

In the previous section we described how the empirical data suggests that every

CD has unique location lengths. These location lengths as can be seen from Figure

3.7 will have different values depending on the encoded information. Moreover, we

discussed earlier that the raw data measured from the electrical signal will sometimes

have different DC offsets. Therefore, it is important to process the data before the

different locations can be combined together in order to produce the final fingerprint

x. The first step in processing the data coming from every location on every CD is

to remove the signal noise. To achieve this, the length of every location on a CD

is averaged over a number of readings. Since we are assuming Gaussian noise, the

noise level σ will scale to σ/
√
a where a is the number of readings used for averaging.

Next, we normalize the data using the ideal average of each location. As the ideal

location lengths are discretized it becomes easy to find the ideal length for every

location and subtract it from the measured lengths. This will guarantee that all

location lengths have similar distributions as we saw in Figure 3.6. Finally, to remove

the DC component we need a second normalization step. We subtract the mean

of the reading coming from different locations of the same CD. Figure 3.9 and 3.10

show the lengths of 500 locations for two identical CDs after being averaged and

normalized. Each figure contains two traces each originating from the same CD but

read at different times. The vertical axis represents the variation in nanometers from

the ideal length of that location. It should be easy to see that identical CDs will have

different fingerprints.

We still need to outline a technique to extract a final fingerprint. Even after the

previous averaging and normalization steps we will still have errors in the length read-
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Figure 3.9: Length variation, 500 locations, CD1

ings. Although we will be using a fuzzy extractor to correct the errors, the biggest

challenge towards achieving an efficient extraction technique will be the nature of this

error. The noise is Gaussian over the real values of the lengths. This means that even

when the data is discretized the error will manifest itself more as a shift error from

the ideal length rather than a bit flip error. Unfortunately, the hamming metric does

not naturally accommodate for this kind of errors. Moreover, if we assume that every

location length of the CD will be a symbol in the extracted fingerprint, then the error

rate would be very high as it is very difficult to get the same exact length for the CD

locations. A more natural distance metric in this situation would be the Lee metric

[67]. However, this might require substantial changes to the fuzzy extractor construc-

tion outlined earlier. To solve this problem we proposed the threshold technique in

the previous chapter. Here we will elaborate on how the threshold scheme can be

combined with the fuzzy extractor of Theorem 2.4.1. A formulation of the threshold

scheme is shown in Table 3.4.1.

The scheme works as follows. We label the normalized readings from n locations

on a CD (or any source of these variables) by z ∈ R
n, where z = zn . . . z1 and the
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Figure 3.10: Length variation, 500 locations, CD2

symbols of z are bounded such that −2u−1 ≤ zi ≤ 2u−1 − 1 for some integer u. It is

also possible to scale the data to fit into a certain region. However, this might lead to

a blow up in the error rate. Each zi is shifted to the range 0 ≤ zi ≤ 2u − 1 and then

rounded to integers and discretized using simple unsigned binary encoding. If there is

a need to use l of the bits in the fractional part then the readings are first multiplied

by 2l before rounding. Now zi ∈ {0, 1}u+l. As explained earlier new readings of zi

will result in a noisy version z′i which is a shift from the original zi. If zi is defined

to be a symbol then any slight noise in z′i will result in counting that symbol as an

error. This is where the threshold scheme comes to play. To allow some room for the

reading to move without being considered as an error we define the threshold τ = 2s

where s < u+ l − 1. Any reading z′i is considered to be an error only if |zi − z′i| > τ

(threshold distance of 1). This seems pretty useful and straightforward as we can now

treat errors natural to the Lee metric as errors in the hamming metric. However, it

is not clear how we can get the fuzzy extractor of Theorem 2.4.1 to correct the cases

when |zi − z′i| ≤ τ . To get this scheme to work we need to sacrifice some of the bits

in zi. Specifically we break zi into two parts. The template part z1,i ∈ {0, 1}u+l−s−1
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which contains the most significant (u + l − s − 1) bits of zi. And the noisy part

z2,i containing the remaining bits of zi where , so zi = z1,i|z2,i. The field used in

the error correcting code C is only defined over the template part of zi. Therefore,

F = {0, 1}u+l−s−1 and f = u+ l − s− 1. Using the fuzzy extractor explained in the

previous chapter for the fingerprint x = xn . . . x1 we will have xi = z1,i. However,

the noisy part of zi will also need to be kept in order to help correct for the noise.

To generate (k, w, v) the GEN algorithm now works as follows. It takes in xi|z2,i for

i ∈ [1, . . . , n] and then choses a random code word c = cn . . . c1 ∈ Fn and computes

w = wn . . . w1 where wi = (xi|z2,i)+ (c|τ). As before v is chosen uniformly at random

and k = hv(x) where h ∈ H is a universal hash function. The recovery algorithm

REP will now take in a noisy version of z which is z′. To recover x, REP computes

Ci = wi − zi = (xi|z2,i) + (c|τ) − (z′1,i|z′2,i). Now since xi = z1,i we can rewrite this

as Ci = (zi − z′i) + (ci|2s). If zi − z′i < −2s or if zi − z′i > 2s − 1 then there will be

no carry from the template part to the noisy part of wi, and therefore c′i = ci. In

any other case ci will change therefore resulting in an error in c′i. Upon retrieval of

c′ the error correcting code will be able to correct it back to c given that less than

t of the symbols were out of the threshold bound. Following is a formulation of the

above discussion.

The threshold τ solves the error correcting problem with respect to the Lee dis-

tance. In particular, τ helps control the error rate which arises when treating the real

values as symbols over some field. Without a threshold scheme (τ = 0), the error

rate will be very high. On the other hand if τ grows too large then the error rate

will be low. However, the collision rate between the CDs will start to increase thus

decreasing distinguishability between CDs. We have already computed the error rate

and the collision rate of the threshold technique in Equations 2.4 and 2.6. These

equations will hold for the CD case if Assumption 2.3.1 holds.

To verify the error probabilities given in Equations 2.4 and 2.6 we used the data
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Threshold Scheme: (GEN,REP) parameterized by M,m, `, t, ε, l, C, H, τ = 2s

GEN: (k, w, v)← GEN(CDj)

1. Obtain (a) samples for the length of each of the n locations on CDj.

2. Generate z = zn . . . z1:

a. Average the lengths over a samples,

b. Subtract the ideal mean from the averaged reads,

c. Normalize the sequence to have a zero mean and set that to z.

3. Find u such that −2u−1 ≤ zi ≤ 2u−1 − 1 for all i, then shift zi to 0 ≤ zi ≤ 2u − 1.

4. Take the binary representation of zi, shift left by l bits and round to an integer.

5. Form z2,i, the lowest s+ 1 bits of zi, and set xi = z1,i to be the remaining bits of zi.

6. Set x = xn . . . x1 to be the fingerprint template.

7. Choose a random code word c ∈ C, such that c = cn . . . c1.

8. Compute wi = (xi|z2,i) + (c|τ) and form w = wn . . . w1.

9. Randomly choose v to compute k = hv(x) where hv ∈ H, and output (k, w, v).

REP: k ← REP(CDj, w, v)

1. Generate z′ as in GEN.

2. Set c′i to be the the highest u+ l − s− 1 bits of wi − z′i.
3. Use C to correct c′ = c′n . . . c

′
1 to c = cn . . . c1.

4. Compute xi = wi − ci.
5. Form x = xn . . . x1 and return k = hv(x).

Table 3.1: Formulation of the threshold technique for CD fingerprint extraction



50 CHAPTER 3. CD FINGERPRINTING

collected from 100 CDs. In this data there was no averaging over the samples and

therefore σ was not changed. The data we have uses 500 locations on each CD. Under

the assumption that these errors will occur independently across the location then

the expected value of the number of errors should be 500Pe. Similarly, the number

of collisions observed assuming the independence of the extracted symbols should be

500Pc. Figure 3.11 plots the expected theoretical (circle) and the observed (square)

number of errors both as a function of s = log(τ). One can see that the theoretical

model does a good job predicting the behavior of the experimental data. Also, this is

a verification on the error independence assumption. Figure 3.12 shows the expected

theoretical (circle) and the observed (square) number of collisions between the ex-

tracted strings as a function of s. Naturally the theoretical model expects a slightly

lower number of collisions due to the independence assumption. As we will discuss

in the coming section there will always be a level of dependency between different

locations in the CD which will result in a higher collision rate.
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Figure 3.11: Number of errors

To have useful fingerprints, 1 − Pc has to to be significantly larger than Pe, oth-

erwise the CDs will start looking alike. Without averaging, σ results in a high error
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Figure 3.12: Number of collisions

rate which is larger than 1−Pc. Therefore it becomes important to average before ex-

traction. Also we saw in Proposition 2.4.2 that the entropy of the error rate imposed

a lower bound on the amount of entropy needed to have a realistic fuzzy extractor

scheme. This is another reason to push for a low error rate. In the next section we

discuss entropy and error rate estimations.

3.4.2 Entropy Estimation and 128-bit Security

The previous sections dealt with the theoretical aspects of extracting the CD fin-

gerprint. In this section we take more of an experimental approach where we are

more interested in computing actual parameters. The most important parameters

that we need to estimate are the entropy of the source (the CD variability) and the

noise level. The first and hardest task here will be to decide the amount of entropy

generated by the source. In [38] and [47] the authors use a universal source coding

algorithm in order to estimate the secrecy rate. In particular it was proposed to

use the Context-Tree Weighting Method (CTW) [100]. What is quite useful about
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the CTW algorithm is that in [99] it was shown that for any binary stationary and

ergodic source X, the compression rate achieved by CTW is upper bounded by the

min-entropy H∞(X) as the length of the input sequence approaches infinity. This is

a good indication about the entropy produced by the source provided enough bits are

fed to the algorithm. To apply this algorithm to our setting we start by using the

data coming from the 100 CDs. On each CD we collected data from 500 locations

and processed the data with a threshold value of τ = 22. The final data came out to

be in the range [0, 25− 1] and we did not use any fractional bits so l = 0. With these

parameters the size of the symbols was f = 2. This means that every CD produced

1000 bits. The data was fed into the CTW algorithm which resulted in a compression

rate of about 0.83 bits of entropy per extracted bit. Recall here that these samples

were not averaged over multiple reads. Therefore the error rate is quite high. When

we averaged over 16 samples the combined entropy became 0.71. This is expected

since the noise will add to the entropy. In order to get a more precise estimate for

the min entropy we decided to average over 225 reads. With this many reads we had

to restrict our samples to only 14 CDs as the amount of data quickly becomes large.

With the new sample the compression rate of the CTW algorithm was about 0.675

which seemed to be a good estimate of our min-entropy. For this sample the average

error rate is Pe = 8%. That is, on average about 40 of the 500 locations will fall out

of the threshold region. On the other hand the collision probability is about 46%.

We can use the result in Proposition 2.4.2 which suggests that for a noise rate

of 0.08 and f = 2 the entropy of the source should be at least 0.40 which translates

in δ = 0.8 < 1.35, and therefore we conclude that we have enough entropy in our

source. However, with this level of entropy we are placing stringent conditions on

R, i.e. the rate of the error correcting code.3 To relax the restriction on the code

3Recall from the prof of Proposition 2.4.2 that R ≥ A/nf + (1 − δ/f) for a security level of at

least A = ` + 2ε− 2.
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rate we took a closer look at our source bits. Ideally the two bits would have the

same entropy. However looking at Figure 3.9 and 3.10 and multiple similar figures

we clearly see that there is a degree of dependency between the adjacent locations.

There is a low probability of a sharp change of the length variability from one location

to its neighbor. With this observation we would suspect that the most significant bit

will have less entropy as it is less likely to change across adjacent locations. To verify

this we applied the CTW algorithm to each of the two extracted bits separately.

For the most significant bit the entropy for the above three cases of no averaging,

averaging over 16 reads, and averaging over 225 reads we found 1, 0.9, 0.6-bits of

entropy, respectively. When we repeated this process for the least significant bit we

obtained 1, 1, 0.98-bits of entropy, respectively. Clearly, we have more entropy in the

least significant bit. It seems reasonable to only use the least significant bit to form

the fingerprint and the final key. This would effectively increase the entropy of our

source while very slightly affecting the error rate and the collision rate. For this least

significant bit scheme we obtained Pe = 8% and Pc = 0.46%.

With the parameters we have, Pe = 0.08 and δ = 0.98 and f = 1 we can build

a fuzzy extractor which can extract secure keys from CD fingerprints. For a 128-bit

key we set ` = 128. Similarly, to achieve a fuzzy extractor output which reveals

very little information about the fingerprint we set ε = 64. Using the equation of

Theorem 2.4.1 we require that the error correcting code in the fuzzy extractor should

satisfy k ≥ 190 + 0.02n. Note that although Pe = 0.08, this is the expected error

rate. For a practical scheme we require the fuzzy extractor to correct around a 0.17

error probability. These parameters can now be satisfied using a binary BCH code of

[255, 45, 88]. More specifically, we define a code word containing 7 code words of this

BCH code, which will make n = 1785. With this construction the failure probability4

Pfail will be on the order of 10−6. Note here that treating the 7 code words separately

4Here, Pfail = 1−
(
1−

∑t=43
i=0

(
n
i

)
P i

e(1− Pe)
n−i
)7

.
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to generate separate parts of the key would significantly decrease ε but will decrease

the failure probability. Therefore, in our failure probability we treat the 7 code words

as a single entity. As we noted earlier, our data suffers from higher error rates due to

the external connections which we used. With an on-chip process we can expect the

error rate to drop significantly.

3.5 Robustness of the Fingerprint

We mentioned earlier that a CD fingerprint can be used to tie software licenses to

individual CDs where the software is stored. Under this use scenario it becomes

important to address the robustness of the fingerprint. In all our experiments the

data collected came from locations in the same sector of the CD. In a real application

readings would typically be collected from different sectors. Thus ensuring that a

scratch or any physical damage to a specific location will not render the CD fingerprint

useless.

Another important concern regarding the robustness of the fingerprint is that

of aging. Although no quantitative estimate of fingerprint durability can be given

within the scope of this work, mechanisms related to viscoelastic relaxation in optical

disc patterns need to be discussed briefly. Optical discs are printed on polymeric sub-

strates, which have glass transition temperatures typically above 150 C. The viscosity

of such materials are temperature dependent and governed by an Arrhenius type ex-

ponential temperature dependence, described by an activation energy defined by the

glass transition temperature. In its simplest form, the Arrhenius model assumes that

the rate of change is proportional to e
−Ea
kT where Ea is the activation energy, k is the

Boltzmann constant (an invariant physical parameter), T is the absolute tempera-

ture (temperature in degrees Kelvin). Even at lower temperatures (natural operating

and storage temperature range of the optical disc), viscosity of the polymer remains
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finite. During the molding process, most of the internal stresses are relieved upon

cooling, therefore resulting in fluctuations in the nanoscale structure of the bit pat-

terns. The pressed discs have a thin metal coating, which is typically coated on to

the polymer disc by evaporation or sputter coating, that results in the increase of the

surface temperature by up to 50 C. This process is also likely to be a source of local

thermoelastic stress buildup which relaxes over the lifetime of the CD. In a first order

approximation, the disc material can be thought of as a Kelvin-Voigt material, and

creep relaxation can be approximated by a single time-constant exponential behavior.

In such a case, most of the viscoelastic relaxation will occur at the early stages of disc

production, and latter time scales will have less of an effect. It may be speculated

that the fingerprints due to length fluctuations of 25 nm upon 300nm characteristic

bit length will persist within at least 10% of the CD lifetime, which is predicted to be

217 years at 25C 40% Relative Humidity conditions. This gives an estimated 20 year

lifetime for the fingerprint [91]. Due to the exponential dependence of the relaxation

on time, by recording the signature on a slightly aged optical disc (months old), the

persistance of the signature can be increased.

3.6 License Distribution Protocol

To prevent unauthorized copies from installing, many popular software titles employ

a simple license checking scheme. In the simple license scheme the license key is

delivered in printed form (on the CD or its case). The offline license distribution

scheme can be summarized as follows: identical copies of an installation software

are pressed on CDs. A unique license key is printed on the cover of each CD. The

CDs are sold to customers. Customers run the installation software on their machines.

During installation each customer enters the license key manually to the installer. The

installer checks the validity of the license. If valid, the installer copies the software
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to the target machine.

This scheme is convenient as no network connection is required to complete the

installation process. However, the offline scheme has a number of flaws. The licenses

are checked for membership in a the set of valid licenses. This means that licenses

are not tied to CDs. In other words, the software on an authentic CD, can be

trivially copied for a fraction of a dollar to another CD, which will install under any

valid license key. One way to curb rampant CD counterfeiting is to require an online

license registration step, where a central database is contacted after verification of the

license which checks whether the number of valid installations are exceeded. If not,

the software is installed and the central database is updated accordingly. While this

simple online scheme is effective, it is inconvenient as it requires an online connection.

Furthermore, the restriction on the number of installations is highly restrictive and

unfair to paying owners of the CD. The main difficulty in binding a key to a CD is

that CDs are pressed with one template since the production of the template bears

significant cost. This means that CDs coming off a production line necessarily share

an identical digital image. Here we propose to use the physical fingerprints of the

CDs as an identifier. We bind this identifier to the license and thereby achieve unique

licenses that are intrinsically tied to CDs without changing the manufacturing process.

The proposed protocol works in a manner similar to the offline distribution pro-

tocol. The license key here will be the helper data (w, v) along with the encrypted

version of the key EK(k), where EK() is an encryption function. The secret key K is

known to the installer and k is the unique key extracted from the CD. In this protocol

the CD reader is expected to provide the fingerprint x from publicly known addresses

on the CD. The user then feeds the installer with (w, v, EK(k)). The installer runs the

REP algorithm to retrieve k′ and then checks whether EK(k′) = EK(k) is satisfied.

This protocol is very simple and can clearly be bypassed if an attacker can force the

reader to return fingerprints of his choosing. While this attack is simple it requires
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modification to the reader of any user who wishes to use copied software. We finish

here by pointing out that more secure protocols are possible using the CD fingerprint.

3.7 Summary

In this chapter we showed how to generate unique fingerprints for any CD. The

proposed technique works for pressed and burned CDs, and in theory can be used for

other optical storage devices. We tested the proposed technique with a 100 identical

CDs and characterized the variability across the studied CDs. We also gave specific

parameters and showed how to extract a 128-bit cryptographic keys. This work opens

a new door of research in the area of CD IP-protection.
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Chapter 4

PUFs

In this part of the dissertation we will shift our attention to physically parameterized

functions (PPFs). PPFs are functions that use PVs as parameters. A special case

of PPFs are physically unclonable functions (PUFs) which are the natural successor

of POWFs. When PUFs were first introduced by Gassend et. al in [28] the authors

suggested that the name POWF was misleading and argued that the examples given

for POWFs did not really match the standard meaning of one-way functions, and

therefore they suggested that these physical functions should really be called physi-

cal random functions or PRFs. However, the acronym PRF is historically known to

stand for pseudo-random functions in cryptography. This lead the authors to use the

term PUF to stand for physically unclonable function.1 Unfortunately, due to the

popularity of the name, several physical functions which do not satisfy unclonability

have been labeled as PUFs. We argue that the term PPF is a more accurate descrip-

tion of most known PUF circuits. However, the problem we face in this part of the

dissertation is that most of our discussion is focused on a specific PPF which is known

as a delay-based PUF. This clearly causes confusion between the names used and the

actual functionality. On one hand, the term PUF is not accurate as a description. On

1Another reason mentioned in [28] is that the acronym PUF is easier to pronounce.
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the other hand, one needs to be consistent with the existing literature. As most of the

work presented in this part of the dissertation has been originally written before we

had a clear classification of PPFs, therefore we will keep the original notation which

happens to be consistent with the existing literature.

In this chapter we will throughly explore delay-based PUFs and their construc-

tions. The main job of this chapter will be to set the stage for PUFs before we can use

them in a number of cryptographic schemes with the goal of creating a more secure

PUF. The rest of this chapter is organized as follows. The next section provides a

review of major PUF proposals. We briefly explain the idea of each proposal and why

most of them do not qualify as unclonable functions. Section 4.2 describes delay-based

PUFs in details in addition to reviewing its mathematical model and properties. Fi-

nally, Section 4.3 presents a variant implementation of delay-based PUFs built with

tristate buffers.

4.1 Previous Work

Multiple designs have been proposed in the literature in an attempt to realize PUFs.

Coating PUFs were introduced in [95]. The main idea there is to use a random mixture

of particles with different dielectric properties in order to build a protective coating

layer around the chip. Beneath the surface, a number of sensors are installed in order

to measure the capacitance at different locations of the layer. Using the capacitance

reading, which will depend on the chemical structure of the layer, a secret key specific

to the hardware can be derived. The capacitance of the coating layer can be seen

as a PV. The capacitance sensors will act as measurements of the PV. One might

argue that it is difficult for an external attacker to replicate the coating layer, or

provide a mathematical model governing the input/output behavior. However, with

a limited number of sensors the behavior of the entire circuit can be captured in a
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small lookup table. This last observation highlights the fact that coating PUFs are

not really unclonable. Although the devices might be used to uniquely identify the

circuit, the fact that the entire behavior of the circuit can be replicated undermines

its ability to be an unclonable function. One great advantage of coating PUFs is

that any attempt to reverse engineer the circuit is faced with the coating layer. The

downside however, is that building the coating layer can be quite a costly task.

A different PUF proposal is the FPGA SRAM PUF which was introduced in

[38]. This device uses the startup values of the SRAM cells in an FPGA circuit.

Upon startup, the inverters inside an SRAM will have small voltage mismatches due

to manufacturing variability. This mismatch will be amplified upon startup, thus

resulting in a random startup value for the device. The PV here will be the small

voltage mismatch inside the SRAM inverters. The startup of the device will act as a

measurement producing the startup values of the SRAM cells. Similar to the coating

PUF the small (polynomial) size of the SRAM cells enables an attacker to build

a lookup table capable of simulating the SRAM PUF behavior. Therefore, SRAM

PUFs cannot be considered unclonable. In [65] the authors propose butterfly PUFs

which generalize the SRAM PUF idea to work on any FPGA even no intrinsic SRAM

unit is available. The butterfly PUF offers the same level of security as SRAM-PUFs.

Therefore, they also cannot be considered unclonable.

Delay-based PUFs also known as silicon PUFs were introduced and analyzed in

[28, 27, 29, 71]. This specific PUF will be the center of our discussion in this chapter.

Therefore, we postpone discussing the details of delay PUFs to the next section.

The usage of PUFs has typically been focused on the claim that they are un-

clonable. The relation between the challenges (input) and the responses (output) is

usually assumed to be a property of the hardware that cannot be cloned. This is not

always the case as we have seen. We will further elaborate on this point when we talk

about delay-based PUFs. Even if we assume that the input/output behavior is not
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clonable, this would mean that the user of the PUF needs to collect a large number

of input/output pairs to be able to authenticate the circuit which is impractical. On

some level there seems to be a contradiction here. On one hand, we would like for the

input/output relation of a PUF to be un-modelable, while on the other hand, we do

not want to store a massive input/output database. The solution as we will explore

in future chapters will be in resorting to computationally hard problems. The next

chapter will further elaborate on this point.

4.2 Delay-based PUFs

4.2.1 How PUFs Work

A delay-based PUF [27] is a {0, 1}n → {0, 1} mapping, that takes an n-bit challenge

(c) as an input and produces a single bit output (r). Figure 4.1 shows a multiplexer

delay-based PUF circuit consisting of n stages of switching gates. Each switch has

two input and two output bits in addition to a control bit. If the control bit of

the switch is 0, the two inputs are directly passed to the outputs through a straight

path. If on the other hand, the control bit to the switch is 1, the two input bits are

switched before being passed as output bits. Therefore, the control bit of each switch

will decide the path taken by the input signals. The n switches are serially connected

so that the output of each switch is connected to the input of the following switch.

The two outputs of the last switch are connected to a flip-flop, which is called the

arbiter. The two inputs to the first switch are connected to each other, and then

connected to a pulse generator.

From this point we will refer to delay-based PUFs as PUFs. We briefly describe

the operation of PUFs as follows. When a challenge c is received each of its n bits

is used as the control bit to one of the PUF switches. Next, a pulse is generated

and sent to the first switch. The pulse will break into two pulses entering the upper
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Figure 4.1: A multiplexer delay-based PUF circuit

and lower inputs of the first switch. Depending on the control bit of the first switch

the two signals will either travel in a straight path or they will switch locations.

Although the paths taken by the signals have been designed to have the same length,

due to manufacturing variability the two paths will have a small mismatch. This

mismatch will have a different value for each of the two possible paths of the two

signals. Therefore, the two pulses will acquire a time delay between them which is

dependent on the control bit of the first switch. The same argument applies for the

rest of the n switches. Each challenge c will impose a different path on the n switches.

Consequently, the total delay mismatch between the two signals will be a function of

c. The job of the arbiter at the end of the switch chain is to indicate which signal

arrives first. Recall that a flip-flop has two inputs, the data input and the clock input.

When the clock input observes a rising edge the data input is captured at the output

of the flip-flop. In a PUF setting, if the signal connected to the data input of the

arbiter arrives first, the output of the arbiter will be 1. Otherwise, the output will be

0.

The output of the circuit will depend on the delay mismatch in each of the stages.

The delay mismatch will be a small quantity which will be quite sensitive to external

effects. A major advantage of this sensitivity is to prevent physical attacks on the

system. Trying to tap into the circuit will cause a capacitance change therefore
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changing the output of the PUF circuit. Removing the outer layer of the chip will

have a permanent effect on these circuit variables and again, it will change the output

of the PUF circuit. Briefly, we can say that a well-built PUF device will be physically

tamper-resilient up to its sensitivity level.

4.2.2 Mathematical Model

In this section we derive a linear model for the delay-based PUF. In specific we

show that sufficient challenge-response pairs one can build a mathematical model

approximating the PUF behavior to a high degree. This will essentially undermine

the idea of PUFs being an unclonable function.

A similar but slightly different linear model was derived earlier in [27]. In their

model, n+ 1 variables are needed to describe the challenge-response relation. In the

model we derive, we show that this is only possible when certain assumptions are

made about the inter-switch versus the intra-switch delay variations. We start by

examining the behavior of the pulses passing through each of the n switches.

ai

C2 CnC1

Arbiter

R
bi

di

f i

Figure 4.2: A block diagram of a delay-based PUF circuit

At each of the n stages, each of the two pulses propagating through the PUF has

two paths to take. We label the two paths which the upper signal can take as ai

and bi, and for the lower signal as di and fi. This is illustrated in Figure 4.2 which
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captures a block diagram of the PUF. Paths ai and fi are chosen when the challenge

bit ci is 0, whereas bi and di are chosen when the challenge bit is 1. To compute the

total delay, the path of the upper signal is followed from the initial input pulse. The

signal will start traveling in a separate path to get to the first switch. Let us label

this initial incurred delay as a0. For the signal going through the lower path we label

this delay as f0. In the first switch, the signal will incur a delay that is dependent

on the control signal of the corresponding switch. The delay will be (c1a1 + c1b1),

where c1 is the complement of c1. The delay in the second switch will depend on

whether the signals switched paths in the first stage or not. If the signals changed

paths in the first switch, then the possible delays it will incur in the second switch

will be d2 or f2. Otherwise, the delay will be a2 or b2. The delay of the second

stage can be written as c1(c2a2 + c2b2) + c1(c2f2 + c2d2). To carry the analysis to

the rest of the switches, we introduce the variable xi = c1 ⊕ c2 ⊕ . . . ⊕ ci−1 where

x1 = 0. This variable xi represents the parity of the first i − 1 challenge bits, and

will signify if the signal starting at the upper path stays in that path or moves to the

lower path after i − 1 switches. The delay for the ith switch can now be denoted as

xi(ciai + cibi) + xi(cifi + cidi). The total delay in the pulse that starts in the upper

path will therefore be

D1 = a0 +
n∑

i=1

xi(ciai + cibi) + xi(cifi + cidi) .

Similarly, the delay for the pulse initiated in the lower path can be derived to be

equal to

D2 = f0 +
n∑

i=1

xi(cifi + cidi) + xi(ciai + cibi) .

The difference between these two delays δ is the main variable for our model. This

difference will decide whether the output of the PUF is 0 or 1. Since we do not know

which of the two signals will end up in the upper path, we will need to incorporate
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the parity of all the challenge bits which we label P . The difference between the two

delays becomes

δ = (−1)P (D1 −D2)

= (−1)P

(
n∑

i=1

(xi − xi)(ci(ai − fi) + ci(bi − di)) + (a0 − f0)

)

=
n∑

i=1

(−1)P⊕xi(ci(ai − fi) + ci(bi − di)) + (−1)P (a0 − f0) .

Finally, we define ui = (ai−di)+(bi−fi)
2

and vi = (ai+di)−(bi+fi)
2

for i = 1 . . . n, and

v0 = a0 − f0. We define the parity of the challenge bits from a reverse order as

pi = P ⊕ xi = ci ⊕ ci+1 ⊕ . . .⊕ cn. The delay equation becomes:

δ =
n∑

i=1

(−1)pi(ui + (−1)civi) + (−1)Pv0

=
n∑

i=1

(−1)piui + (−1)pi⊕civi + (−1)Pv0 .

In an actual implementation, there are only two paths connecting the consecutive

switches, the four possible paths mentioned take place inside the switches (see Figure

4.1). In reality, ai and di share the same path between the ith switch and i + 1 st

switch. However, these two delays differ in their paths within the ith switch. The

same thing can be said about fi and bi. In the PUF circuit layout, the switches

will be positioned at a significant distance from each other. Therefore, the internal

delay variation in the ith switch ui will have a much smaller magnitude than the

delay variation vi in the path between the ith switch and the i + 1 switch. Due to

this reason, we can drop the variable ui from the previous equation without having

a noticeable effect on the challenge-response relation.2 Note that p1 = P , and that

2This is the assumption needed to obtain a model similar to that in [27]. However, this assumption

can be eliminated if we use tristate buffers to build the delay-based PUF, this is explained in Section

4.3. The model derived there can essentially be described using Equation (4.1) with ci used instead

of pi.
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pi ⊕ ci = ci+1. We also define yi = vi−1. The final delay equation becomes

δ =
n∑

i=1

(−1)piyi + yn+1 . (4.1)

Equation 4.1 uses only n + 1 rather than 2n + 1 variables to describe the delay

between the upper and the lower signal paths. This reduction is very effective in

terms of efficiency, and at the same time slightly affects the error rate that can be

produced from such a model. It is important to note that the delay variations yi will

depend on the fabrication process of the PUF circuit. Therefore, one would expect

these variables to follow a normal distribution. In particular, the yi values will follow

a Gaussian distribution of mean zero, and a fixed variance [72, 71]. Without loss

of generality, we can normalize these values and assume they belong to a normal

distribution of mean 0 and variance 1. Note that the yi variables will be the entries

of the PV used in this section.

Now that we have a linear model capturing the behavior of the signals inside a

PUF circuit, we derive the input output relation. Invoking the arbiter conditions for

the response bit R we get,

δ − TS > 0→ R = 1

δ − TS ≤ 0→ R = 0 ,

where TS is the setup time for the flip flop utilized as an arbiter. To make this more

concise, we relate the delay value to the response bit as (−1)R(δ − TS) < 0. Finally,

we can use Equation 4.1 to write the response equation3

(−1)R(
n∑

i=1

(−1)piyi + yn+1) < 0 . (4.2)

Next, we show how to learn the yi values from the hardware implementation. For

this purpose, note that Equation 4.2 is an inequality relating the challenge C which

3For brevity the setup time TS can be merged with the last delay variable yn+1.
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consists of n input bits, ci, to the output bit R. This inequality has n + 1 variables

which characterize the PUF circuit. Passively observing the challenge-response pairs

(C(j), R(j)) for a single PUF, we may form the following linear equation

δj = (−1)p
(j)
1 y1 + (−1)p

(j)
2 y2 + . . .+ (−1)p

(j)
n yn + yn+1 .

Using Equation (4.2), we may write the following linear inequality:

(−1)R(j)
[

(−1)p
(j)
1 (−1)p

(j)
2 . . . (−1)p

(j)
n 1

]
Y < 0

where Y = [ y1, y2, · · · , yn , yn+1 ]T . With Ns challenge-response pairs we can

produce a system of linear inequalities and solve for Y using standard linear program-

ming methods [98, 86]. In order to test our mathematical model, we ran a number

of tests using MATLAB. Our tests were performed for three sizes of a PUF circuit

n = 32, 64 and 128. For each n we generated the n + 1 variables characterizing

the PUF using a Gaussian distribution, with a mean of 0 and a standard deviation

of 1. For each n we generated a number of random challenges Ns, and then cal-

culated the response of the PUF according to the model presented. We then used

the challenge-response pairs generated in order to solve for the n+ 1 variables which

were randomly chosen. In order to solve these equations we used the medium scale

algorithm supported by MATLAB [18], this algorithm is a variation of the known

Simplex algorithm [4]. In order to test the viability of the model we tested the noise-

less case. We generated 500,000 random points and compared the response produced

by our linear model. Table 4.1 shows the percentage error we obtained. It is im-

portant to note that the percentage error was calculated over the entire space of

possible challenges. However, if we constrain the challenges to the ones which were

used to build the linear model, then the linear model will perfectly match the actual

response. Hence, the linear model will essentially be a compressed version of the

challenge-response database. From the previous argument it might be tempting to

conclude that any level of accuracy can be achieved when attempting to model a PUF
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Number of challenge-response pairs Ns

n 32 64 128 256 512 1024 2048 4096 8192 16384

32 40.33 33.03 21.18 11.63 5.70 2.61 1.37 0.61 0.28 0.14

64 45.77 40.62 32.44 21.27 11.30 5.64 2.60 1.11 0.57 0.27

128 47.66 45.30 40.08 32.02 21.38 12.13 5.94 2.89 1.27 0.59

Table 4.1: Percentage error for each (n,Ns) pair

circuit. However, this is not the case for an actual implementation. In [27, 68, 72],

results of modeling a PUF circuit implemented in FPGA and in ASIC are reported.

The lowest error rate achieved among these results was about 3%. Note that these re-

sults were achieved using machine learning algorithms. These results suggest a lower

limit on the achievable accuracy from modeling an actual PUF circuit. This lower

limit can be explained by the sensitivity of the circuit. For certain challenges the

circuit goes into a metastable state where the the two pulses enter a race condition.

In a metastable state the time difference between the two pulses will be smaller that

the resolution of the arbiter. Therefore, the PUF output will be 0 or 1 with almost

equal probability. These metastable states are not predictable, and will correspond

to different challenges at different times due to the changes in external interferences,

such as temperature, voltage and electromagnetic emanation. In [77], the authors

use metastability to help design a true random number generator. They predict that

about 0.1% of all the challenges will fall into a metastable state. Even in the presence

of noise it will be possible to solve for the Y values. In [8], the authors introduce a

polynomial time algorithm for solving noisy linear threshold functions similar to the

one implemented in a PUF. It can be said that the PUF circuit presented in this

section is completely modelable.

With the above we can now state the following definition of a PUF. The definition

models a delay-based PUF as a function with some error parameter which accounts
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for the noise and the modeling errors.

Definition 4.2.1. A PUF is a function characterized by the vector Y ∈ R
n+1 and the

noise parameter ε ∈
(
0, 1

2

)
, where Y = [y1, . . . , yn+1] and yi ∈ N(0, 1). N(µ, σ2) being

the normal distribution with mean µ and variance σ2. PUFY,ε(c) : {0, 1}n → {0, 1}
such that

PUFY,ε(c) = sign

(
n∑

i=1

(−1)piyi + yn+1

)
⊕ ν . (4.3)

where sign(x) = 1 if x > 0, and 0 if x ≤ 0. Also, ν = 1 with probability ε and ν = 0

with probability 1− ε. Finally pi = ci ⊕ ci+1 ⊕ . . .⊕ cn, where ci is the ith bit of c.

Note that the relation between P = [p1 . . . pn] and C = [c1 . . . cn] can be described

using the equation (P = UC). The strings C and P are represented as column

vectors, U is the upper triangular matrix with all non-zero entries equal to 1 and the

matrix multiplication is performed modulo 2.

From the definition above it is clear that a PUF is a PPF. And from the earlier

discussion it is also clear that PUFs are clonable. When PUFs were proposed in

[27] the authors noted that PUFs may be vulnerable to modeling and differential

attacks in the original configuration. Therefore, in [28] the authors propose to apply

a cryptographic hash function to the output of the PUF circuit to eliminate such

attacks. However, recall from Chapter 1 that one of our goals is to achieve our goals

in a lightweight fashion. The introduction of the cryptographic hash function adds

significantly to the footprint and power consumption. A hash function is a challenging

cryptographic primitive to serialize. Therefore, reducing the gate count might not be

feasible. In [27], feed forward arbiters were proposed to introduce non-linearity into

the PUF scheme. This approach seems promising. However, since the feed forward

PUF are not known to be modelable, one would need to collect a large number of

challenge-response pairs for every PUF circuit and store them in a database. This is

the classical approach proposed in the early literature on PUF. This solution becomes
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less practical when the number of devices deployed becomes massive. We will attempt

to address this problem in the next two chapters.

In the next section we will explore some properties of PUFs based on the above

model.

4.2.3 Properties

In this section we will be concerned with one PUF property. The following lemma

characterizes the correlation between two PUF outputs obtained from different input

challenges. The proposition uses Definition 4.2.1 with the noise level ε = 0.

Proposition 4.2.1. Given two n-bit strings a(1) and a(2) chosen independently and

uniformly at random from {0, 1}n, and Y0 = [y1, . . . , yn+1] where yi ∈ N(0, 1) for

i ∈ [1..n] and yn+1 = 0, and let z(1) = PUFY0(a
(1)) and z(2) = PUFY0(a

(2)). Assuming

that the yi values are independent then the probability that z(1) and z(2) are equal is

Pr[z(1) = z(2)] = Fn(d) = 1− 2

π
arctan

(√
d

n+ 1− d

)
. (4.4)

Where d is the Hamming distance between P (1) and P (2) and (P (i) = Ua(i)). The

strings a(i) are represented as column vectors, U is the upper triangular matrix with

all non-zero entries equal to 1 and the matrix multiplication is performed modulo 2.

Proof. First recall from the last section that for any string c = [c1, . . . cn] the PUF

response is

PUFY (c) = sign

(
n∑

i=1

(−1)piyi + yn+1

)
,

where pi = ci ⊕ . . . ⊕ cn and P = [p1, . . . , pn], as noted above (P = U · c). This

mapping is a linear bijection and will therefore preserve uniformity and independence.

Since a(1) and a(2) were chosen uniformly at random from {0, 1}n, the same can be

said about the distribution of the corresponding P vectors P (1) = [p
(1)
1 , . . . p

(1)
n ] and

P (2) = [p
(2)
1 , . . . p

(2)
n ]. Let Z(P (j), Y0) =

∑n
i=1(−1)p

(j)
i yi + yn+1, and let d be the
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Hamming distance between P (1) and P (2). Without loss of generality we may assume

that the different bits of P (1) and P (2) are in the first d bit positions. Also, let

k = n+ 1. Now we can write

Z(P (1), Y0) =
d∑

i=1

(−1)p
(1)
i yi +

k∑

i=d+1

(−1)p
(1)
i yi = Dd + Sk−d

Z(P (2), Y0) = −Dd + Sk−d ,

where Dd =
∑d

i=1(−1)p1
i yi and Sk−d =

∑k−1
i=d+1(−1)p1

i yi + yk. Note that since z(j) =

sign(Z(P (j), Y0)), then for z(1) to be equal to z(2) we need Z(P (1), Y0) and Z(P (2), Y0)

to have the same sign. For this, Dd needs to have a smaller magnitude than Sk−d

which means |Dd| < |Sk−d|. Therefore

Pr[z(1) = z(2)] = Pr[|Sk−d| − |Dd| > 0] = Pr[Rd > 0],

where Rd = |Sk−d|+ (−|Dd|). Let fR(Rd), fD(Dd) and fS(Sk−d) represent the proba-

bility distribution function (PDF) for each of the random variables Rd, Dd and Sk−d

respectively. Each term in the summations making up Dd and Sk−d involves one of

the bits p
(1)
i and the real value yi. Since yi ∈ N(0, 1) has mean zero and is symmetric

around the y-axis, we can easily see that multiplying with (−1)p
(1)
i will not affect the

normal distribution and therefore (−1)p
(1)
i yi ∈ N(0, 1). Now each of the variables Dd

and Sk−d is a summation of respectively d and k−d independent normal distributions

N(0, 1). Thus, fD(Dd) = N(0, d) and fS(Sk−d) = N(0, k − d).4 We are interested in

the PDF of −|Dd| and |Sk−d|. These can easily be calculated as follows:

f|S|(x) =





2N(0, k − d) x > 0

0 x ≤ 0



 =





2 e
−x2

2(k−d)√
2π(k−d)

x > 0

0 x ≤ 0

,

and

f−|D|(x) =





0 x > 0

2N(0, d) x ≤ 0



 =





0 x > 0

2 e
−x2

2d√
2πd

x ≤ 0
.

4This is a straightforward application of the Central Limit Theorem. It is also very easy to derive

directly from the PDF of a normal random variable.
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Now we can calculate the desired probability

Pr[z(1) = z(2)] = Pr[Rd > 0]

=

∫ ∞

0

fR(w) dw

=

∫ ∞

0

f−|D|(w) ∗ f|S|(w) dw

=

∫ ∞

0

4

2π
√
d(k − d)

·
[∫ ∞

−∞
e

−x2

2(k−d) · U(x) · e−(w−x)2

2d · U(x− w) dx

]
dw

where ∗ denotes the convolution operator and U(x) is the unit step function. By

rearranging the terms we obtain

Pr[z(1) = z(2)] =
4√

2π(k)

∫ ∞

0

(
1√

2πσ2

∫ ∞

w

e
−(x−µ)2

2σ2 dx

)
e

−w2

2k dw

= 2

∫ ∞

0

1√
2πk

[1− erf(αw)] e
−w2

2k dw

= 2

[∫ ∞

0

e
−w2

2k

√
2πk

dw −
∫ ∞

0

e
−w2

2k · erf(αw)√
2πk

dw

]

= 2

[
1

2
− 1

π
arctan

(
α
√

2k
)]

where σ2 = d(k−d)
k

, µ = σ2w
d

, erf(x) = 2√
π

∫ x

0
e−t2 dt and α =

√
d

2k(k−d)
. The first of the

two integrations is just a Gaussian over half of the space. As for the second integration

this is a known definite integral. Finally, substituting back with the original variables

n and d we obtain

Pr[z(1) = z(2)] = Fn(d) = 1− 2

π
arctan

(√
d

n+ 1− d

)
.

From Proposition 4.2.1 we can conclude that the only property which affects the

correlation between two different PUF responses is the Hamming distance between
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the corresponding challenges. Note that the derivation of the above equation was

possible due to the independence assumption made on the components of Y . This

assumption is quite important and should be one of the main metrics judging any

PUF implementation. With large dependencies between yi’s, the entropy inside the

PUF decreases thus limiting its identification capability.

4.3 PUFs Using Tristate Buffers

The original PUF circuit utilized multiplexers (MUXs) to implement the switches.

Each delay unit includes two MUX gates. Instead of having two interleaved delay

paths, we propose a circuit with two separate delay paths. We construct our PUF

circuit utilizing the delay variances of tristate buffers. As we will see this construction

will save on the number of logic gates used.

4.3.1 Tristate Buffers

A generic tristate buffer as shown in Figure 4.3 has three states: logic 1, logic 0

and high impedance (referred to as Hi-Z). If the gate is enabled, the input will be

reflected at the output. If not enabled, the output will become Hi-Z. The truth table

of a tristate buffer is shown in Figure 4.3. The outputs of two tristate buffers can

be connected together to behave as a multiplexer gate. However, when both of the

tristate buffers are enabled, the circuit is under risk of being damaged. If the inputs

of the two tristate buffers are complement values of each other, and the enable inputs

are both high, then the circuit will start heating up and eventually will be damaged.
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OutIn

En
En In Out

0 X Hi-Z

1 0 0

1 1 1

Figure 4.3: A generic tristate buffer

Buf1

Buf0

In OutEn

Figure 4.4: Delay unit built with tristate buffers

4.3.2 Delay Unit

A PUF circuit is based on the delay characteristics of the logic design. We build

our tristate buffer based on the delay unit shown in Figure 4.4. Each delay unit is

constructed by respectively connecting the input and output ports of the two tristate

buffers. The enable ports of these tristate buffers are connected to each other, with

one of the buffers having an inverted enable input. This assures that only one of

the tristate buffer gates will be enabled for a particular enable input value. When

a pulse is applied at the input of this delay unit, it will pass through either Buf0 or

Buf1. The enable input will determine which tristate buffer passes the pulse. This

will change the amount of the delay that this unit contributes according to the value

of the enable signal.
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4.3.3 PUF Circuit

The delay units are cascaded to construct a serial delay path. For our PUF circuit,

we need two separate delay paths. These two delay paths are connected as shown in

Figure 4.5. The inputs of these delay paths are connected together and the outputs

Arbiter

. . .

. . . C’n/221 C’C’

Cn/2C1 C2

Figure 4.5: PUF architecture built with tristate buffers

are fed to an arbiter. The arbiter will capture the faster path by producing logic 1 or

0 at the output. Assume the arbiter is built with a positive edge-triggered flip-flop.

The upper path is connected to the data input of the flip-flop and the lower path is

connected to its clock input. If the lower path is faster, the rising edge of the clock

signal will arrive before the rising edge of the data signal, therefore producing a logic

0 at the arbiter output. Alternatively, if the upper path is faster we observe the

opposite effect, i.e. the output of the arbiter becomes a logic 1.

4.3.4 Mathematical Model

In this section we show that a tristate PUF is equivalent to a switch-based PUF in

terms of their mathematical model. In particular we show that both implementations

can be modeled using a similar linear model. In the tristate implementation of a

PUF there are two groups of consecutive delay units; the upper and the lower. If

we consider the upper path we notice that in each delay unit there are two possible

paths. Let us call the delay in each of these two paths ai and bi, where i is the stage
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index. Let Hi = ai+bi

2
and yi = ai−bi

2
, which means that ai = Hi + yi and bi = Hi− yi.

Depending on whether the challenge bit is 0 or 1, the signal going through the upper

units will be delayed by Hi + (−1)ciyi where ci is the ith challenge to the upper delay

units. Assuming that the signal has n/2 stages to propagate through, the total delay

in the upper delay units becomes equal to

DH =

n/2∑

i=1

Hi + (−1)ciyi = τH +

n/2∑

i=1

(−1)ciyi , (4.5)

where τH =
∑n/2

i=1Hi. Similarly, one can derive the delay equation for the lower delay

units. The two delays in each of the paths of the lower delay units can be named

di and fi. Similarly one can make Li = di+fi

2
and ui = di−fi

2
. Now if we let c′i be

the challenge bit to the ith stage of the lower units, the delay in each unit becomes

Li + (−1)c′iui. Therefore, the total delay in the lower path becomes:

DL =

n/2∑

i=1

Li + (−1)c′iui = τL +

n/2∑

i=1

(−1)c′iui . (4.6)

The two signals traveling through the upper and lower delay units will interact

through the arbiter. The condition on the output bit becomes:

DH < DL + TS → R = 1

DH > DL + TS → R = 0 ,

where TS is the setup time for the arbiter latch. One can make the two relations more

concise by relating the response bit, (−1)R(DL−DH +Ts) < 0. If we incorporate the

original equations for DL and DH , we get the following response equation:

(−1)R(

n/2∑

i=1

(−1)c′iui − (−1)ciyi + T ) < 0 , (4.7)

where T = τL−τH +TS. Note that T, yi and ui are variables dependent on the circuit.

These variables are dependent on the circuit itself and will vary from one PUF circuit
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to another. For simplicity we assume that n is even and we define Y = [y1, . . . , yn+1]

where yi = ui and yn
2
+i = vi for i = 1 . . . n

2
, with yn+1 = T . Similarly we rename the

challenge bits as ai = ci and an
2
+i = c′i for i = 1 . . . n

2
. We can compute the output of

the PUF using the following function,

PUFY (a) = sign

(
n∑

i=1

(−1)aiyi + yn+1

)
.5 (4.8)

Where sign(x) = 1 if x ≥ 0, and 0 if x < 0. Note that this is almost identical

to the equation used in Definition 4.2.1. The only difference is that the input bits

are immediately used without the need for the initial transformation U . Of course

Equation 4.8 needs a noise parameter in order to accurately model the actual circuit.

It should be clear that the same modeling that we carried out for MUX-PUFs can

be used here. We will usually refer to the MUX and the tristate PUFs as PUFs or

delay-based PUFs and only specify the implementation type when it is relevant.

4.3.5 Implementation Results

We implemented the proposed tristate PUF and compared it against an implemen-

tation of a switch-based PUF built using multiplexers. The I/O for both circuits

consisted of 64-bit challenge inputs, a single bit pulse input and a response output.

Both designs were developed into Verilog modules and synthesized using the Synopsys

tools Design Compiler and Power Compiler with the TSMC 0.13 µm ASIC library.

The results are shown in Table 4.2.

The implementation results clearly display the superiority of the tristate imple-

mentation over the typical switch-based implementation in terms of design footprint

and power consumption. These are attractive features for low-power devices such

as RFIDs, smart cards and sensor networks. Note that the area (and the power)

consumption of the tristate PUF may be further reduced by custom CMOS design.

5This model is almost identical to the model derived for MUX-based PUFs
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Total Power(uW) Area(Gates)

10MHz 100MHz

Tristate PUF 18.78 152.93 351

MUX-PUF 23.14 193.67 450

Table 4.2: Synthesis results for tristate PUFs

4.4 Summary

In this chapter we explored delay-based PUFs and their constructions. In particular,

we rederive a mathematical model for delay PUFs. We also present a cheaper imple-

mentation of delay PUFs using tristate buffers. And finally, we highlight one major

property of the delay PUF. The main job of this chapter was to set the stage for

PUFs before we can use them in a number of cryptographic schemes with the goal of

creating a secure PUF.
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Chapter 5

PUF-HB

We saw in the last chapter the various attractive properties of PUFs1. However,

PUFs were modelable. In this chapter we will take a new approach in an attempt

to get closer to an actually unclonable function. Our main idea is to merge the

typical PUF circuit along with simple cryptographic primitives which can provide

some level of computational hardness. This will prove to be a fruitful approach as

it will maintain the PUF advantages including the advantages of having a model for

the PUF behavior, while at the same time providing a level of provable security.

The cryptographic primitive we choose for merger with PUFs is an authentication

family labeled HB. In complement to PUFs the HB-based authentication schemes

provide a security reduction. In [46] Hopper and Blum (HB) proposed the first

HB authentication scheme. The HB protocol is indeed promising for simplifying

the authentication process and significantly reducing the power consumption. An

additional major advantage of the HB protocol is that its security is based on the

hard problem learning parity with noise (LPN) which is known to be NP-complete [7].

Unfortunately, as pointed out in [46] the HB scheme is weak against active adversaries.

In [50], Juels and Weis proposed a hardened version of the HB protocol labeled HB+

1As mentioned in Chapter 4 we will use PUF to stand for a delay-based PUF.

83
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which resists active attacks in the detection based model.2 HB+ was shown to be

secure [50, 53] in the detection based model. In [34], the authors demonstrated a

man-in-the-middle attack for breaking HB+.

In this chapter we merge the PUF authentication scheme along with the HB-based

authentication protocol to produce a hybrid protocol which enjoys the advantages of

both schemes while improving the level of security. The proposed authentication

scheme enjoys a level of tamper resilience, while at the same time being provably

secure against active attacks in the detection based model. In addition, the presented

protocol resists the man-in-the-middle attacks proposed so far for the HB+ scheme.

From the PUF perspective, PUF-HB is the first PUF based authentication scheme

which is provably secure. From the HB perspective PUF-HB is the first hardware HB

implementation with tamper resilience properties. For our security proof we closely

follow the proof presented in [53].

The remainder of this chapter is organized as follows. In the next section we give

a review of the previously proposed HB-based authentication protocols. In Section

5.2 we define our notation and describe our protocol. The security reduction is pre-

sented in Section 5.3. In Section 5.4 we describe the known man-in-the-middle attack

against HB+ and show that the proposed protocol resists it. In Section 5.5 we discuss

hardware implementation and tamper resilience properties of the proposed scheme.

5.1 The HB Family

The HB authentication schemes base their security on the hardness of the LPN prob-

lem. In this section we give a quick review of the LPN problem and the different HB

authentication schemes, focusing on HB and HB+. For a certain ε ∈
(
0, 1

2

)
the LPN

problem is denoted by LPNε, and defined as follows.

2In this model, a flag is raised whenever a tag fails to authenticate for a large number of times.
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Definition 5.1.1 ([53]). Given n random binary k-bit strings a(j) and the bits z(j) =

a(j) · x⊕ ν for some x ∈ {0, 1}k, where a · b denotes the binary inner product between

a and b, ν = 1 with probability ε and 0 with probability 1 − ε, then find the binary

string x.

The LPN problem is known to be NP-hard [7]. In [46], the authors show that the

LPN problem is log-uniform and even hard to approximate within a ratio of 2. Kearns

proved in [55] that the LPN problem is hard in the statistical query model. The best

known algorithm to solve the LPN problem is the BKW algorithm [9]. However, there

has been a number of improvements on the algorithm with the best running time of

2O(k/ log k) [26, 69, 74].

In the HB protocol [46], the tag and the reader share a k-bit secret string x. To

authenticate the tag, the reader starts sending randomly generated k-bit challenge

strings a(j). The tag responds with the bit z(j) = a(j) · x⊕ ν where the variables are

as defined in the LPN problem. The tag and the reader repeat the same step for

multiple challenges. Finally, the reader checks to see if the number of errors in the

tag’s response matches the noise level, and decides to accept or reject accordingly.

Note that if the tag’s response did not contain noise, then a passive attacker would

easily be able to deduce x after collecting k challenge-response pairs using Gaussian

elimination. In [46], the authors prove that given an algorithm that predicts z(j) for a

random a(j) with some advantage, then this algorithm can be used to solve the LPNε

problem. However, HB is only secure against passive attacks. An active attacker can

easily repeat the same challenge multiple times, effectively eliminating the noise and

reducing the problem to Gaussian elimination.

To secure the HB protocol against an active attacker the HB+ protocol was pro-

posed in [50]. In HB+ the tag and the reader share two k-bit strings x and y. The tag

starts the authentication session by sending a random k-bit string b(j). The reader

then responds with a(j) just like the HB protocol. Finally the tag responds with
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z(j) = a(j) · x ⊕ b(j) · y ⊕ ν, where ν is defined as above. The protocol is proven to

be secure against an active attack on the tag (excluding man-in-the-middle attacks).

In such an adversary model an attacker is not allowed to obtain final decisions from

the reader on whether this authentication session was successful or not. In [50] and

[53] the authors show that in this adversary model breaking the HB+ protocol is

equivalent to solving the LPN problem. However, as we pointed out earlier, a simple

man-in-the-middle attack was demonstrated on the HB+ protocol in [34]. Note that

in a detection based model this attack will not be successful.

In addition to HB and HB+, there has been a number of other variations such as

HB++ [13], HB-MP [76] and HB∗ [21]. All these proposals attempt to prevent man-

in-the-middle attacks. In a more recently proposed scheme, i.e. HB# [33], the authors

propose a modified version of HB+ which uses Toeplitz matrices rather than vectors

for a shared secret. Under a strong conjecture the scheme is proven secure against a

class of man-in-the-middle attacks. In this adversary model which is referred to as

GRS-MIM-model, the attacker can only modify data transmission from the reader to

the tag but not the other way around. This model will protect against the previously

mentioned attack.

5.2 The PUF-HB Authentication Protocol

We start by defining basic notation. In the remainder of this chapter we reserve

k to denote the security variable. T(n,x,Y,s,ε) denotes the tag used in the PUF-HB

protocol, where x ∈ {0, 1}k, s ∈ {0, 1}2×n where we treat sj as a 2-bit vector. Y =

[y1, y2, . . . , yk+1] such that yi ∈ N(0, 1) and N(µ, σ2) is the normal distribution with

mean µ and variance σ2. The noise parameter is ε ∈
(
0, 1

2

)
and n denotes the number

of rounds required for authentication. We denote the reader byR(n,x,Y,s,ε,l,u), where all

the variables are as defined for the tag except l and u which are integers in the range
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[0, n] such that l ≤ ε · n ≤ u. We also use the following modification to Definition

4.2.1 of Chapter 4. For any bit v,

PUFY,v(a) =





sign
(∑k

i=1(−1)piyi + yk+1

)
, v = 0

sign
(∑k

i=1(−1)piyi + yk+1

)
, v = 1



 , (5.1)

where pi is the complement of pi.
3 Note that we have eliminated the noise parameter

as we are interested in the mathematical behavior. This notation will simplify the

security proof.

With this notation we describe the basic authentication step. In the jth round of

the protocol, T(n,x,Y,s,ε) outputs a randomly generated vector b(j) ∈ {0, 1}k and sends it

to R(n,x,Y,s,ε,l,u). The reader responds with the vector a(j) ∈ {0, 1}k and e(j) ∈ {0, 1}2.
Finally the tag computes z(j) = b(j) · x ⊕ PUFY,e(j)·sj

(a(j)) ⊕ ν, where · is the binary

inner product, sj are the jth two bit vector of s and ν = 1 with probability ε and ν = 0

with probability 1−ε. For authentication, this step is repeated n times. In each round

the reader checks to see if the tag’s response is equal to b(j) · x⊕ PUFY,e(j)·sj
(a(j)). If

not, the reader marks the response as wrong. At the end of the nth round, the reader

authenticates the tag if and only if the number of wrong responses is in the range

[l, u].

In general, any entity can interact with the reader and try to impersonate an hon-

est tag. To capture such interaction, let E be any entity trying to authenticate itself

to the reader R(n,x,Y,s,ε,l,u). Then PUF-HB
(
E ,R(n,x,Y,s,ε,l,u)

)
= 1 iff E is authenticated

by the reader, and is equal to 0 otherwise. The following protocol formalizes this

interaction:

Provided that E has no information about x, s or Y , the best probability of being

authenticated by the reader will be εs = 2−n
∑u

i=l

(
n
i

)
. This probability represents

the soundness error in the algorithm. As for an honest tag T(n,x,Y,s,ε) one can see

that with a very high probability PUF-HB
(
T(n,x,Y,s,ε),R(n,x,Y,s,ε,l,u)

)
= 1. However,

3The complement may be realized by simply XOR-ing the most-significant bit of a with v.
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Protocol 1: PUF-HB
(
E ,R(n,x,Y,s,ε,l,u)

)

1. R(n,x,Y,s,ε,l,u) sets c = 0 and j = 1.

2. E sends b(j) ∈ {0, 1}k to R(n,x,Y,s,ε,l,u).

3. R(n,x,Y,s,ε,l,u) choses a(j) ∈ {0, 1}k and e(j) ∈ {0, 1}2 uniformly at

random and sends it to E .
4. E sends z(j) to R(n,x,Y,s,ε,l,u).

5. If z(j) 6= b(j) · x⊕ PUFY,e(j)·sj
(a(j)) then c = c+ 1.

6. R(n,x,Y,s,ε,l,u) increments j and repeats steps 2 through 5 until j = n.

7. If l ≤ c ≤ u then PUF-HB
(
E ,R(n,x,Y,s,ε,l,u)

)
= 1, otherwise it equals 0.

Table 5.1: PUF-HB Protocol

the tag’s choice to set ν = 1 with probability ε is independent in each round of the

authentication. Therefore, it will be possible for the tag to introduce a number of

errors which is outside the range [l, u]. This will result in a failed authentication

session. We denote the probability of this incident by εc, i.e. the completeness error.

If we set l = 0 then using the Chernoff bound we can produce the following bound,

εc < e−(εn)(u/εn−1)2/4.

Protocol (1) would work identically if we run it in a parallel fashion. In this case,

the n different b(j) vectors sent in Step 2 would be sent in a single step and similarly all

the a(j) vectors and e(j) bits sent in Step 3 would also be sent in a single step. Finally

all the z(j) bits returned in Step 4 would be sent in a single step. In general, the PUF-

HB protocol is almost identical to the HB+ protocol. The main difference introduced

in the PUF-HB protocol is to substitute the inner product a ·y where y ∈ {0, 1}k with

PUFY,s(a). As we will see in the proof of Theorem 5.3.3 this substitution will not

affect the security features introduced by the HB+ protocol. However, as indicated

in the previous sections this substitution will make the tag tamper-resilient, and will

simultaneously help resist the known man-in-the-middle attack on the HB+ protocol
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[34].

5.3 Security Against Active Attacks

In this section, we reduce the security of the PUF-HB protocol in the active attacker

model (which does not include man-in-the-middle attacks) to solving the LPN prob-

lem. Note that as we pointed out earlier, the proof here closely follows the proof of

Katz et al. on the security of the HB+ protocol [53]. However, due to the nature of

the PUF circuit, a very simple part of the original proof in [53], becomes much more

complex in our protocol. Such a difference is a reflection of the change from a simple

binary inner product to a PUF operation. For a more elaborate explanation of the

proof see [53] where the authors prove security for the parallel execution case with

ε < 1/4. Also see [54] for a similar proof when ε < 1/2. Moreover, in the original

paper where the HB+ protocol was proposed [50] the authors provide an elegant proof

of security against active attacks. The proof in [50] can easily be modified to prove

the security of the PUF-HB protocol. However, for simplicity and completeness we

use the proof in [53].

We start by quoting the following definitions directly from [53]. Let Ax,ε denote

an LPNε oracle which outputs a k + 1 bit string such that x is chosen uniformly at

random from {0, 1}k and ε ∈
(
0, 1

2

)
. The output of the oracle is the string

(a, a · x⊕ ν) .

Where a is chosen uniformly at random from {0, 1}k, and ν = 1 with probability ε

and ν = 0 with probability 1− ε. We also define Uk+1 to be the uniform oracle with

outputs from the uniform distribution over {0, 1}k+1. We say that an algorithm M

can (t, q, δ) solve the LPNε problem if

Pr
[
MAx,ε(1k) = x

]
≥ δ ,
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provided that M runs in time t and uses q queries to the oracle Ax,ε. The main

theorem of this chapter relies on the following lemma originally due to Regev [85]

and reproven in [53].

Lemma 5.3.1. ([53]) If there exists an algorithm D making q oracle queries, and

running in time t, such that

∣∣Pr
[
DAx,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣ ≥ δ ,

then there exist an algorithm M making q′ = O(q·δ−2 log k) oracle queries and running

in time t′ = O(t · kδ−2 log k), such that

Pr
[
MAx,ε(1k) = x

]
≥ δ/4 .

Before we prove the main theorem of the chapter we try to give some intuition on

why the proof in [53] can be applied to prove the security of the PUF-HB protocol. In

addition, we state two technical lemmas which are needed for the proof of the main

theorem.

First, note that the function computed in the HB+ protocol is z = b · x ⊕ a · y
whereas the function computed in the PUF-HB protocol is z = b · x ⊕ PUFY,s(a).

Moreover, Theorem 5.3.3 states that if there exists an algorithm A which starts by

impersonating a reader to interact with an honest tag T(n,x,Y,s,ε) (learning phase),

and then impersonates a tag to interact with an honest reader (impersonation phase)

therefore achieving PUF-HB
(
A,R(n,x,Y,s,ε,l,u)

)
= 1 with high probability, the algo-

rithm A can also be used to distinguish between an LPN oracle and a uniform oracle.

As implied by Lemma 5.3.1, then algorithm A can be used to solve the LPN problem.

In the learning phase, the algorithm A will expect to interact with an honest tag.

In the proof, we impersonate such a tag, and use the oracle outputs to substitute

the b · x part of a tag’s response. Note that this part of the response is in common

between the HB+ protocol and the PUF-HB protocol. Now since we will use an oracle
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for part of the response, this means that we will have no control over x which will be

determined by the oracle. At the same time we will have full control over Y, s (y in

the HB+ protocol).

In the impersonation phase A will take the role of a tag interacting with an honest

reader, and will therefore attempt to correctly compute the responses z(i). However,

the responses of A will depend on the interaction that took place in the learning

phase. If we were successful in providing outputs which were consistent with some

x, then A will be able to provide correct responses in the impersonation phase. This

will be the case if the used oracle was an LPN oracle. On the other hand, if the oracle

was the uniform oracle, then we will have failed in providing consistent outputs to A.

Consequently, the responses z(i) produced by A in the impersonating phase will be

random. While this presents a technique to distinguish between an LPN oracle and a

uniform oracle, nevertheless, we do not have a way to know if the responses z(i) were

correct or not. Primarily because we have no knowledge of x. To resolve this issue we

run the algorithm and acquire the responses for a set of challenges {a1
(i)} along with

the {e1(i)} bits, then we rewind the algorithm and acquire a second set of responses

for a different set of challenges {a2
(i)} and the {e2(i)} bits. Adding the two responses

cancels out the effect of x and retains the effect of PUFY,e1
(i)

·si
(a1

(i))⊕PUFY,e2
(i)

·si
(a2

(i))

(this would be a1
(i) · y ⊕ a2

(i) · y for the HB+ protocol). With this trick we will have

complete knowledge over the remaining variables. Therefore, we can check whether

the responses retuned by A were correct or not.

What remains to be shown is that given the inputs a1
(i) and a2

(i) and no other infor-

mation, the algorithm A will not be able to predict the output bits PUFY,e1
(i)

·si
(a1

(i))

and PUFY,e2
(i)

·si
(a2

(i)). This is akin to asking the question: How much can be inferred

about the output, by only knowing the input. In the HB+ protocol this becomes a

question of linear independence. However, in the case of PUF-HB the answer becomes

much more complicated. This question was addressed in Proposition 4.2.1 and will be
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further detailed in Lemma 5.3.2. In general, one can see that the function PUFY,s(a)

(compared to a · y) only becomes relevant toward the end of the proof of Theorem

5.3.3. In fact, it should be clear that there is a large family of functions that could

be used in place of PUFY,s(a) or a · y while maintaining the security of the protocol.

However, our choice of PUFY,s(a) was mainly motivated by hardware simplicity and

tamper resilience.

The following lemma connects Proposition 4.2.1 to the main theorem.

Lemma 5.3.2. Let A be an adversary who is given n strings {a(i)}ni=1, where a(i)

is chosen independently and uniformly at random from {0, 1}k. A also knows that

s is chosen uniformly at random form {0, 1}n and that Y0 = [y1, . . . , yk+1] where

yi ∈ N(0, 1) for i = 1, . . . , k and yk+1 = 0. Let z(i) = PUFY0,si
(a(i)) then the bits z(i)

will be uniform and independent (from the point of view of A).

Proof. To show that the bits {z(i)}ni=1 are uniform and independent, we need to show

that the probability of z(i) = 0 for any i ∈ [1, n] is 0.5 and that the probability of

z(i) = z(j) for any i, j ∈ [1, n] is 0.5. It is clear that when yk+1 = 0 the output of a

PUF will be balanced. Therefore, it is straightforward to see that when {a(i)}ni=1 are

independent and chosen uniformly at random the bits {z(i)}ni=1 will also be uniformly

distributed. What remains to show is that there is no correlation between the bits

{z(i)}ni=1.

From Proposition 4.2.1 and as can be seen from Equation 4.4 the probability of

any two PUF outputs being equal (or not equal) depends on the Hamming distance

d between P(i) = Ua(i) and P(j) = Ua(j) and not the specific values of a(i) and a(j).

Furthermore, we can deduce from Equation 4.4 that

F k(d) = Pr[z(i) 6= z(j)] = 1− Fk(d) =
2

π
arctan

(√
d

k − d

)
.

The two probability distributions Fk(d) and F k(d) are reflections of each other around

d = k
2
. Therefore, F k(d) = Fk(k−d). This means that when the probability distribu-
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tion of the Hamming distance between P(i) and P(j) is symmetrized around k
2
, then z(i)

and z(j) will be uncorrelated. To prove the rest of the lemma, we only need to show

that the probability distribution of the Hamming distances between the different P(i)

strings will be symmetric around k
2
.

The n bit strings {a(i)}ni=1 given to A will induce n(n−1)
2

different Hamming dis-

tances between the corresponding P(i) strings. Recall from the lemma that z(i) =

PUFY0,si
(a(i)). Therefore, as indicated by Equation 5.1 the PUF circuit will invert

the P(i) strings based on the value of the bit si. From A’s perspective s is chosen

uniformly at random from {0, 1}n. Therefore, each of the P(i) strings will be inverted

with probability 0.5. For any two strings P(i) and P(j), if both of the strings or neither

of them are inverted the Hamming distance d will not be affected. On the other hand,

if only one of the two strings is inverted then the Hamming distance d will become

k − d. Therefore, the Hamming distance between any two strings P(i) and P(j) will

be d with probability 0.5 and will be k − d with probability 0.5. This distribution is

symmetric around k
2
.

We are now ready to prove the main theorem.

Theorem 5.3.3 (Compare to Theorem 3 in [53]). If there exists an adversary A in-

teracting with a tag T(n,x,Y,s,ε) in at most q executions of the PUF-HB protocol (possibly

concurrently), running in time t such that

Pr
[
AT(n,x,Y,s,ε)(1k) : PUF-HB

(
A,R(n,x,Y,s,ε,l,u)

)
= 1
]
≥ δ ,

then these exist an algorithm D making q · n oracle queries, running in time O(t),

and such that

∣∣Pr
[
DAx,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣ ≥ δ2 − 2−n/2

2u∑

i=0

(
n/2

i

)
− e−n

8

Therefore, for any ε < 1
8

there is an appropriate choice of n, u such that the last two

terms become negligible, and thus we can conclude that the PUF-HB protocol is secure
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assuming the hardness of the LPNε problem.4

Proof. To prove the theorem we show a construction of the algorithm D. As stated

by the theorem, D is given access to an oracle returning (k+1)-bit strings which can

be broken to (b̄, z̄), where b̄ ∈ {0, 1}k and z̄ ∈ {0, 1}. D proceeds as follows:

1. D starts by choosing vectors Y0 and s such that yk+1 is set to 0, and then

the k remaining yi values are chosen from N(0, 1). The bit-string s is chosen

uniformly at random from {0, 1}2×n. D runs the algorithm A which will expect

to interact with a PUF-HB tag. In order to impersonate a real tag, D does

the following to simulate a basic authentication step: D starts by obtaining a

k+ 1 bit string (b̄(i), z̄(i)) from the oracle, and then sends b̄(i) to A as the initial

b in Protocol 1. A will reply with a challenge ā(i) and the bits ē(i). Next, D

computes z(i) = z̄(i)⊕PUFY0,ē(i)·si
(ā(i)) and sends z(i) back to A. D repeats this

step q · n times.

2. In the second phase of the algorithm, A tries to impersonate an honest tag.

Looking at the parallel execution of PUF-HB,A starts by sending b(1), . . . , b(n) ∈
{0, 1}k to a reader. Next, D randomly choses a1

(1), . . . , a
1
(n) ∈ {0, 1}k and

e1(1), . . . , e
1
(n) ∈ {0, 1}2 and send them back to A, which will in turn respond

with the bits z1
(1), . . . , z

1
(n). D then rewinds A and sends randomly chosen

a2
(1), . . . a

2
(n) ∈ {0, 1}k and e2(1), . . . , e

2
(n) ∈ {0, 1}2. A will respond with z2

(1), . . . , z
2
(n).

Note that since the algorithm was rewound the same b values will be sent by A.

3. D calculates z⊕(i) = z1
(i) ⊕ z2

(i) and lets Z⊕ = (z⊕(1), . . . , z
⊕
(n)). D also computes

ẑ(i) = PUFY0,e1
(i)

·si
(a1

(i)) ⊕ PUFY0,e2
(i)

·si
(a2

(i)) and lets Ẑ = (ẑ(1), . . . , ẑ(n)). D out-

puts 1 iff Z⊕ and Ẑ differ in at most 2u positions.

4Note that by parametering the length ` of the strings si ∈ {0, 1}` and e(i) ∈ {0, 1}` we may

achieve some flexibility in the parameters, i.e. ε < 0.25− 2−(`+1).
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Now we analyze D:

Case 1: If the oracle used by D was the uniform oracle Uk+1, then the outputs

z̄ given to D in step 1 were uniformly distributed and independent of everything.

This means that the bits z(i) which D sent back to A in step 1 were also uniformly

distributed and independent of everything. Therefore, by the end of step 1 A has no

information about either Y0 or s. All A receives in the second step are the inputs

{a1
(i)}ni=1, {e1(i)}ni=1 and {a2

(i)}ni=1, {e2(i)}ni=1. All of these inputs are uniformly and

independently distributed. As shown in Lemma 5.3.2 each of the two calculated

output strings {PUFY0,e1
(i)

·si
(a1

(i))}ni=1 and {PUFY0,e2
(i)

·si
(a2

(i))}ni=1 will be uniform over

{0, 1}n (from the point of view of A). However, when we add these two variables

and obtain Ẑ the individual bits of the output will not always be independent. The

affect of the si bits will actually cancel out from both terms when e1(i) = e2(i) with

probability 0.25. To simplify the proof, we assume in this case that the outputs are

completely dependent. Using the Chernoff approximation we bound the probability

of observing more than n/2 dependent output bits by e−
n
8 . The probability that Z⊕

and Ẑ differ in at most 2u positions is exactly 2−n/2
∑u

i=0

(
n/2

i

)
. We conclude that D

outputs 1 in this case with probability at most 2−n/2
∑2u

i=0

(
n/2

i

)
+ e−

n
8 .

Case 2: If D is using the oracle Ax,ε for some random x, the simulation provided

by D in the first phase will be perfect and therefore A will be able to impersonate

an honest tag with probability at least δ. Let w be the randomness used in the first

phase of running A, then we denote the probability that A succeeds in impersonating

an honest tag for a fixed choice of w by δw. Now since we rewind the algorithm, the

probability that A succeeds in both rounds is δ2
w. Let E(δ2

w) denote the expected

value of δ2
w over all possible randomness w, then we have

E(δ2
w) ≥ E(δw)2 = δ2,

where the square is taken out of the expected value operator using Jensen’s inequality.
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Now assuming that A succeeds in impersonating an honest tag for both rounds, then

we would expect each of the response strings z1
(1), . . . , z

1
(n) and z2

(1), . . . , z
2
(n) to have at

most u errors. Therefore Z⊕ will in turn have at most 2u errors.5 When we add z1
(i)

and z2
(i) to generate z⊕i we are canceling the effect of b · x and therefore we are left

with z⊕(i) = PUFY0,e1
(i)

·si
(a1

(i))⊕ PUFY0,e2
(i)

·si
(a2

(i)). With the exception of the 2u errors

in Z⊕, the strings Ẑ and Z⊕ are calculating the same output. We conclude that D

outputs 1 in this case with probability at least δ2.

This concludes our security proof, and shows that the PUF-HB protocol is secure

against an active attacker provided that the LPN problem is hard to solve.

5.4 Man-in-the-Middle Attacks

The main weakness of the HB+ protocol is the man-in-the-middle attack proposed

in [34]. Briefly summarized, in this attack an adversary replaces all the challenges

{a(j)}nj=1 sent from the reader in a single authentication session by {a(j) ⊕ w}nj=1

where w ∈ {0, 1}k. The attacker knows that the challenges will interact with the

secret y through a(j) · y. At the end of the n rounds, if the reader authenticates the

tag, the adversary can deduce with very high probability that his changes did not

affect the responses of the tag, and therefore w · y = 0. On the other hand, if the

reader rejects the tag, then the adversary will know with a very high probability that

w · y = 1. Repeating the same attack k times will allow the adversary to collect

k linear equations in y. The adversary can use Gaussian elimination to recover the

secret y. Similarly, the same attack can be carried out to deduce the other secret

string x.

In the PUF-HB scheme this particular man-in-the-middle attack will not succeed

due to the non-linearity of the PUF function. From Proposition 4.2.1 we know that

5This worst case happens when the u errors in z1
(i) and z2

(i) affect completely different bits.
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the only type of correlations that the attacker can exploit are those related to the

Hamming distance between the different input strings a. However, we saw in Lemma

5.3.2 that with the secret string s the Hamming distance information is masked for

a single authentication session. It is still possible that an adversary can exploit

Hamming distances between different sessions to launch an attack. Another potential

point of weakness is the linearity in the b · x portion of the PUF-HB protocol. To

protect against simple attacks exploiting this linearity, a second PUF circuit can be

used with the b vector as its input. We label such a protocol PUF2-HB, since it will

essentially be identical to Protocol 1, with the only difference in the z bit calculated

by the tag, which becomes

z(i) = b(i) · x⊕ PUFY1,si
(a(i))⊕ PUFY2(b(i))⊕ ν (5.2)

where the shared secret becomes (x, Y1, Y2, s).

5.5 Hardware Security

In the previous section we discussed the security of the proposed scheme under ab-

stract security models. However, in recent years we have seen numerous side-channel

attacks which directly target the hardware implementation. The PUF paradigm was

aimed at protecting against active side-channel attacks. In the PUF-HB protocol

there are only two strings that are to be stored by the tag: x and s. The secret Y is

not really stored since it is part of the characteristics of the circuit itself. In Chapter

4 we discussed the resilience of PUF circuits against hardware attacks. In particular,

PUF prevents an attacker from measuring the yi parameters directly via a physical

measurement. Any major changes to the surrounding temperatures or voltage levels,

or any attempt to forcefully read the value of these registers will induce a change to

the PUF, therefore changing the identity of the tag.

What is more impressive about the PUF circuit is that it even protects neighboring
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components. This is achieved by placing all registers containing the secret strings x

and s sufficiently close to the PUF circuit. Such a level of security ensures that

even when the tag itself is compromised, an attacker cannot impersonate this tag by

extracting the secrets from the hardware. We can not quantify this ability of a PUF.

Naturally, one might be concerned about how that will affect the modelability of

the PUF in the pre-deployment phase. Before deployment of the tag, the registers are

initialized to their secret values. Afterward, with the knowledge of the secret vectors

the reader can develop an accurate model for the PUF circuit. Note that modeling

the PUF is even possible in the existence of noise [8]. Hence, the sensitivity of the

PUF does not prevent the owner from modeling it.

Finally we would like to underline that PUF-HB is not inherently protected against

passive attacks, e.g. Simple Power Analysis and Differential Power Analysis. Al-

though not trivial, side-channel profiles may be utilized to recover the secret values.

If passive side-channel attacks are a concern, standard IC level power balancing tech-

niques [92, 93, 84] must be employed. Although effective, these techniques tend to

incur significant area overhead. An alternative approach would be to modify the

implementation to balance the power consumption.

5.6 Summary

In this chapter we merged the PUF authentication scheme with the HB-based au-

thentication protocol, with the goal of producing a hybrid protocol which enjoys the

advantages of both schemes while improving the level of security. The main con-

tribution of this chapter is the proposed PUF-HB authentication scheme which is

tamper resilient, and at the same time provably secure against active attacks in the

detection based model. In addition, the proposed protocol resists the known man-in-

the-middle attacks against the HB+ scheme. Although this proposal enjoys a number
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of advantages, it still raises a number of concerns preventing it from being considered

an unclonable function. First, the man-in-the-middle security is not proven for all

attackers. Second, the side-channel security is also a concern as it is not clear whether

there is information leakage. In the next chapter we will present another variant of

PUF-HB which targets a simple security reduction with an efficient hardware imple-

mentation.
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Chapter 6

HB+PUF

In this chapter we present a proof of concept implementation for HB+PUF, a variant

of PUF-HB. The HB+PUF protocol enjoys the same properties of PUF-HB with a

much simpler security reduction. Our implementation takes advantage of the PUF

circuit in order to produce the random bits typically needed for an HB-based authen-

tication scheme. Note that the existence of a random number generator (RNG) is

assumed in all HB-based protocols without taking into account the complexity of such

a device. The overall circuit is shown to occupy a few thousand gates. This small

gate count is achieved by using the tristate PUF and by serializing the operation.

We note here that although the HB+PUF proposal seems stronger than PUF-HB in

terms of resisting man-in-the-middle attacks it will not change the general security

claims of PUF-HB.

The remainder of this chapter is organized as follows. In Section 6.1 we define

our notation and describe our proposed protocol. The security analysis is presented

in Section 6.2. In Section 6.3 we describe our RNG construction and present analysis

of its randomness. Section 6.4 describes the proof of concept implementation of the

entire circuit. Finally, we present the summary in Section 6.5.

101
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6.1 New Authentication Family: HB+PUF

In this section we present the proposed protocol. We will use R to denote the reader

and T to denote the tag. n1 and n2 will be our security parameters. T and R are

both characterized by the set of variables (k, s1, s2, x, Y, εP , ε, u) where s1, x ∈ {0, 1}n1 ,

s2 ∈ {0, 1}n2 and Y = [y1, y2, . . . , yn1+1] such that yi ∈ N(0, 1) where N(µ, σ2) is the

normal distribution with mean µ and variance σ2. The noise parameters are ε, εP ∈
(
0, 1

2

)
. We use k to denote the number of rounds required for authentication. The last

variable u is an integer in the range [0, n] such that εfk ≤ u, where εf = εP + ε− 2εpε

denotes the total noise in the scheme.

Next, we introduce an enhancement to the delay-based PUF. We use an n-bit

non-zero binary string x to implement a linear bijection on the input challenge before

it is fed into the PUF. Let a be the challenge string sent to the PUF. To produce the

actual challenge string a′ we treat x and a as elements of a finite field GF (2n) and

compute the product a′ = xa ∈ GF (2n). We next define a new PUF equation which

takes this enhancement as well as the error in modeling the PUF into consideration 1

PUFY,x,εp(a) = PUFY (xa)⊕ ν , (6.1)

where ν = 1 with probability εP and ν = 0 with probability 1 − εP . The field

multiplication may be implemented with low footprint using a simple linear feedback

shift register (LFSR) based serial modular polynomial multiplier circuit. The choice

of generating polynomial makes no difference in terms of the properties of the PUF

device. Hence, for efficiency, low weight polynomials (e.g. trinomials) may be used in

the implementation [6]. Keep in mind that in this chapter we will use tristate PUFs.

With this notation we describe the basic authentication step. In every round, T
randomly generates b ∈ {0, 1}n2 and sends it to R. Upon reception R replies with

1While this enhancement does not prevent modeling attacks, it will indeed have an affect on the

man-in-the-middle attacks as we will see in Section 6.2.
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Protocol 2 (HB+PUF): 〈E ,Rσ〉
1. Rσ sets the counter c = 0

2. E sends b ∈ {0, 1}n2 to Rσ

3. Rσ choses a ∈ {0, 1}n1 uniformly at random and sends it to E
4. E sends z to Rσ

5. if z 6= a · s1 ⊕ b · s2 ⊕ PUFY,x,0(a) then c = c+ 1

6. Steps 2 through 5 are repeated for k iterations

7. If c ≤ u then 〈E ,Rσ〉 = 1, otherwise it equals 0.

Table 6.1: HB+PUF Protocol

the challenge a ∈ {0, 1}n1 . Finally, T computes

z = a · s1 ⊕ b · s2 ⊕ PUFY,x,εp(a)⊕ ν , (6.2)

where ν = 1 with probability ε and 0 with probability 1− ε. Notice that this is very

similar to the basic authentication step in HB+. The only difference is that here we

add a PUF operation. In order forR to authenticate T , the same basic authentication

step is repeated for k rounds. In every round R checks to see if T ’s response is equal

to (a · s1 ⊕ b · s2 ⊕ PUFY,x,0(a)). If the response is not equal to this term, R marks

the response wrong. At the end of the kth round, R authenticates T if and only if

the number of wrong responses is less than u.

In general, any entity can interact with the reader and try to impersonate an

honest tag. To capture such interaction, let E be any entity trying to authenticate

itself to the reader Rσ characterized by σ = (k, s1, s2, x, Y, εp, ε, u). Following the

notation in [53] we define 〈E ,Rσ〉 := 1 iff E is authenticated by the reader, and is

equal to 0 otherwise. The following protocol formalizes this interaction:
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6.2 Security Analysis

In this section we show that the proposed protocol HB+PUF is at least as secure

as the HB+ protocol. We also discuss security against man-in-the-middle attacks.

Finally, we consider the parameter selection to obtain a secure implementation. The

reduction from HB+PUF to HB+ is in fact very simple. As can be seen from Equation

6.2, the HB+PUF protocol utilizes all the terms of HB+, and only adds a PUF

operation. Therefore, it should be expected that the HB+PUF protocol can not be

less secure than the HB+ protocol. We now formalize this intuition by showing that

any algorithm capable of successfully attacking the HB+PUF protocol can be used

to successfully attack HB+. The HB+ protocol uses a tag T +
τ and a reader R+

τ both

of which can be characterized by the string of variables τ = (k, s1, s2, ε, u). The

variables in τ are defined as we have done for the HB+PUF variables in Section 6.1.

We also use 〈E ,R+
τ 〉 to indicate an authentication session between any entity E and

an HB+ reader R+
τ using the HB+ protocol. Similar to Protocol 1, 〈E ,R+

τ 〉 = 1 when

the reader authenticates and 0 otherwise. This notation mostly follows the work

presented in [53]. Recall from the previous section that in the HB+PUF protocol

we use a tag Tσ and a reader Rσ both of which can be characterized by the string

of variables σ = (k, s1, s2, x, Y, εp, ε, u). We next prove the reduction in the active

attacker model used to prove the security of the HB+ protocol. In this model the

attacker interacts with the tag in a learning session before he attempts to impersonate

as the tag to an honest reader2.

Theorem 6.2.1. Let A be an algorithm which interacts with an honest HB+PUF

tag Tσ for q authentication sessions to achieve Pr[〈A,Rσ〉 = 1]> δ, where Rσ is an

honest HB+PUF reader. Then, there exists an algorithm A′ which can interact with

any HB+ tag T +
τ for q authentication sessions to achieve Pr[〈A′,R+

τ 〉 = 1]> δ, where

2We only need HB+ to prove the reduction to the LPN problem. However, HB+ is reduced to

the LPN problem under the same attacker model used here.
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R+
τ is an honest HB+ reader.

Proof. The basic operation of A′ is to map a given τ = (k+, s+
1 , s

+
2 , ε

+, u+) charac-

terizing the HB+ tag and reader to σ = (k, s1, s2, x, Y, εp, ε, u) used to characterize

an HB+PUF tag and reader. Note that all the variables in the HB+ protocol are

still used in the same manner in the HB+PUF protocol. Therefore, we can create

σ+ =
(
k = k+, s1 = s+

1 , s2 = s+
2 , x, Y, ε = ε+, εp = 0, u = u+

)
. The variable x is cho-

sen randomly to be any string in {0, 1}n1 . The (n1 + 1) real vector Y is chosen such

that yi ∈ N(0, 1). A′ runs as follows: It initializes A and allows it to carry its com-

munication with T +
τ . In particular, A′ pass the vector b sent by T +

τ to A which will

reply with the vector a. Again A passes a back to T +
τ . Finally, when T +

τ returns its

response z, A′ returns ẑ = z ⊕ PUFY,x,0(a) to A. The same step is followed for all q

authentication rounds between T +
τ and A. When A′ wants to authenticate itself to

R+
τ , it again runs A in its authentication phase. A will start by sending the random

string b(i). A′ will pass the string directly to R+
τ which will respond with the vector

a(i). A′ passes a(i) back to A. Finally, when A returns its response z(i), A′ returns

ẑ(i) = z(i) ⊕ PUFY,x,0(a
(i)) to R+

τ . The algorithm A′ repeats these steps for all k

rounds of the authentication session, such that i = 1 . . . k.

To see why this will actually work, notice that in the first q rounds A is getting the

response ẑ which is effectively responses from a tag Tσ+ . This means that at the end

of the q authentication sessions A will have effectively communicated with Tσ+ . In the

authentication phase, when A′ tries to authenticate itself to R+
τ , it uses the algorithm

A which will be trying to authenticate itself to Rσ+ . Assuming that A will succeed

in impersonating Tσ+ with probability larger than δ, then the responses returned by

A which are z(i) will match the responses of an honest tag with probability larger

than δ. However, this immediately implies that the responses returned by A′ to R+
τ

which are ẑ(i) and which differ from z(i) with the term PUFY,x,0(a
(i)) will match the

responses of an honest tag with probability larger than δ. Therefore, A′ should also
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succeed in impersonating a tag T +
τ with probability larger than δ.

We point out that in the PUF-HB scheme the security reduction is much more

involved since the secret s1 is replaced by the PUF operation. Theorem 6.2.1 poses

an immediate question of how the HB+PUF protocol behaves in relation to the the

known man-in-the-middle attack against HB+ [34]. As we pointed out earlier, one

of the main reasons for such an attack to work is the linearity of the inner product

operation. In our scheme the challenges a(j) are not only subjected to the inner

product operation a(j) · s1, but also to a PUF operation a(j) · s1 ⊕ PUFY,x,εp(a
(j)).

With both operations being used, an adversary will need to find a way to modify

the challenges such that he can deduce information about each of the two operations

separately. To see why a PUF operation will help against the man-in-the-middle

attacks, notice that on one hand the PUF is inherently non-linear due to the sign

operation. Therefore, it will prevent against any simple man-in-the-middle attack

trying to explore linearity, such as the attack in [34]. On the other hand, it has been

shown in Chapter 4 that the probability distribution of two different challenges a(1)

and a(2) yielding the same output from a PUF operation, will only depend on the

Hamming distance between a(1) and a(2). This means that any successful man-in-

the-middle attack would have to exploit the Hamming distances between different

challenges. However, recall from the end of Section 6.1 that the PUF circuit used in

HB+PUF implements a field multiplication over GF (2n1) with the secret string x.

This multiplication will essentially obfuscate the Hamming distance between different

challenges. Therefore, the attacker’s ability to deduce any correlation between the

inputs and the outputs of the PUF is eliminated. In conclusion, we claim that the

addition of a PUF to the authentication scheme will in effect render a man-in-the-

middle attack quite difficult.

Note that here we are talking with respect to the GRS-MIM model introduced

in [33]. To protect against the most general class of man-in-the-middle attacks, we
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suggest adding a second PUF circuit to operate on the b(j) strings sent by the tag. In

such a scheme the response of the tag would be

z = a · s1 ⊕ b · s2 ⊕ PUFY1,x1,εp1(a)⊕ PUFY2,x2,εp2(b)⊕ ν . (6.3)

The suggested scheme will be more demanding in terms of hardware and power.

However, we predict that it could be resilient against man-in-the-middle attacks.

We finish this section by discussing security parameters for an implementation of

the design. As shown by Theorem 1 our protocol is at least as secure as the HB+

protocol, which in turn is at least as hard as solving the LPN problem. All with

respect to the active attacker model. In [69] the authors give a careful study of the

BKW algorithm for solving the LPN problem. They conclude that the parameters

first introduced for the HB+ protocol by [50] and then by [53] do not provide sufficient

security. In our implementation we follow the new parameters suggested by [69] and

later adopted by [33]. To achieve 80-bits of security we choose n1 = 80, n2 = 512,

εf = 0.15 and k = 200. εf is not a separate parameter but rather a result from εp

and ε. In our implementation we will have εp = 0.15 and ε = 0.

6.3 PUF-based RNG

In Chapter 4 we discussed the inherent metastability in a PUF circuit. As we pointed

out earlier, these metastable states result from either environmental fluctuations, or

race conditions which occur between the two propagating signals inside a PUF. In

this section, we outline how metastability could be used to generate random bits.

We note here that using a PUF circuit as an RNG is not a new idea. It has been

previously proposed in [77]. In their design the authors use an LFSR to generate

a stream of challenges. Each challenge is fed to the PUF multiple times in order to

decide whether the challenge is metastable or not. Finally, the metastable outputs are

used to extract randomness. In our approach, we take advantage of a PUF feedback
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setting. This approach will essentially remove any need to separately check each

challenge for metastability. Therefore, decreasing the control logic, and increasing

the throughput.

Our RNG design is based on a shift register feeding a PUF circuit in parallel.

As we have concluded in Section 6.2 the size of the PUF and thus the size of the

shift register will be 80 bits. The register is initialized to a random bit string. At

every clock cycle the output of the PUF is fed back to the most significant bit of the

shift register, while the least significant bit is discarded. This mode of operation will

ensure a continuous stream of bits. Without metastability no randomness is expected

to come out of this construction. Therefore, to assess the generated randomness we

need to get a good estimate on the ratio of metastable points.

In order to get an estimate for the metastability ratio, we implemented the PUF

circuit on a Xilinx XC2VP30 FPGA. In typical PUF implementations, extra precau-

tions are taken to prevent metastability. However, we are interested in having a high

level of metastability. This is the case, since we use the PUF in a noisy authentica-

tion scheme, and as an RNG. To help induce a higher level of metastability we allow

close adjacency between the PUF circuit and other parts of the implementation. We

carried out a restart test by collecting 1000 different bit streams. Each bit stream

was collected after the system was reseted and initialized to the same state. In a

completely stable system, these bit streams would have to be identical. However,

in a metastable system, every time a metastable point occurs these streams are ex-

pected to break into two groups. With each group following a different choice of the

metastable point. After tracking all the bit streams we found that after 6400 bits all

the 1000 streams were in completely different states, therefore suggesting the occur-

rence of 1000 metastable points. This yields an overall metastability ratio of about

15%. With this ratio, we can insure that the output always contains a metastable

point by XOR-ing every 8 consecutive bits and using the result as the output of the
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Test Name Proportion

Frequency 100%

Frequency within block 100%

Longest run of ones in block 95%

Cumulative sum 100%

Runs 100%

Discrete Fourier Transform 100%

Non-overlapping template matching 95%

Overlapping template matching 97.5%

Maurer’s Universal 100%

Approximate Entropy 97.5%

Serial 97.5%

Lempel-Ziv Complexity 100%

.

Table 6.2: NIST suite results for PUF-RNG

RNG.

To verify the statistical quality of the RNG output, we collected a large number of

bit streams and analyzed them with the NIST statistical test suite. As recommended

by the NIST tools, every bit stream contained 20, 000 points. The test suite reports

a proportion value, which reflects the ratio of bit streams which actually passed this

particular test. The final results we obtained are shown in Table 6.2. The NIST tools

return a statistical result where even a true random number generator could fail in

some of the runs. We can conclude from the shown results that the proposed RNG

is a reasonably good generator.

6.4 Implementation

The authentication scheme presented in Section 6.1 is implemented as shown in Fig-

ure 6.1. The PUF circuit is positioned at the center of the implementation to ensure

tamper-resilience for the entire circuit. As we have verified from our FPGA imple-

mentations of a PUF circuit, any change in the surrounding hardware to the PUF

circuit will result in changing the PUF’s internal variables. We point out here that
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a PUF can easily protect against active side-channel attacks. However, for passive

side-channel attacks a designer might have to resort to standard power balancing tech-

niques [92, 93, 84]. Although effective, these technique will incur about 200 − 400%

area overhead. A cost too high for lighweight implementations. Our authentication

architecture runs in two different modes of operation during the entire protocol.

11

1

1

1

1

.s b

εY,

.s a
1

1 1

1

.

r

2

2s [511:0]

PUF

a 1

1

mode

Serial Multiplier

801 Shift Register / PUF     (xa)

.s [79:0]

1

1

a

εY,

Figure 6.1: HB+PUF Authentication Scheme

RNG Mode: In this mode the PUF circuit acts as a random number generator. As

explained in Section 6.3 the random string b ∈ {0, 1}512 is achieved using a shift regis-

ter along with the PUF circuit. This shift register is initialized with the initialization

value (IV) stored in an 80 − bit ROM structure. The shift register will be serially

initialized to (IV) in RNG mode. For the remainder of the RNG operation the serial

input of the shift register will be fed back by the output of the PUF. Conveniently

enough, we do not need to store the entire random string b generated by the PUF. As

b is generated 1 bit at a time, we can serially compute the inner product b · s2, and at

the same time serially transmit b to the reader. It is important to point out that in

the RNG mode, the system will not be able to detect any active side-channel attacks.
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With a stream of random bits, the attacker’s effects are gone undetectable. This will

not be a major problem since any invasive attack on the circuit will permanently

affect the PUF circuit. Therefore, as soon as the circuit is back to PUF mode, the

attack can be detected. In the case where more gates are dedicated for security pur-

poses, two separate PUF circuit can be used for authentication and random number

generation.

PUF Mode: In this mode we perform the serial field multiplication xa which will

be the input of the PUF. The hardware component Shift Register/Serial Multiplier

shown in Figure 6.1 is used for this multiplication. The serial input of this shift

register comes from the input a which is serially received. The field multiplication

is realized through an LFSR serial multiplier, and is carried out in parallel with the

inner product operation a · s1. These two operations will operate serially and will

take about 80 cycles. The result of the field multiplication xa is fed to the PUF as

the challenge input. The response bit of the PUF is then XOR-ed with the inner

products a · s1 and b · s2. Finally, the response of the entire circuit r is transmitted

to the reader. Note from the last section that the ratio of metastability was about

15%. This matches the overall desired noise. Therefore, there will be no need for an

added noise parameter ε.

To estimate the gate count, HB+PUF was developed into a Verilog modules and

synthesized using the Synopses Design Compiler. In the synthesis we used the TSMC

0.13 µm ASIC library. The circuit components and their gate count are explained as

follows:

-ROM Structure: The IV for the RNG and the private keys s1 and s2 are stored

inside the hardware and they are unique for each tag. Instead of utilizing flip-flops to

store these values, we designed a ROM structure for low-area storage. To minimize

the area usage, we used a design similar to a look-up table. Separate architectures
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are needed to store s1, s2 and IV. Since s2 is 512 bits, s1 and IV are 80 bits, we have

672 bits of total ROM area. Synthesis results show that 110 gates are required for

this storage.

-PUF Circuit: In our authentication scheme, we utilize an 80-bit PUF circuit.

As pointed out in Section 6.1 we use the tristate PUF implementation presented in

Chapter 4. This particular PUF implementation is of interest due to its low-power

and low-area features. When we used the tristate PUF design our synthesis results

showed the area of the PUF to be 450 gates. However, with custom circuit design,

where each tristate buffer utilized about a single gate this number was reduced to 160

gates.

-Shift register/Serial Multiplier: The shift register has a total size of 80 bits. The

structure also contains a number of XOR gates used to achieve the field multiplication.

In addition, 2-1 multiplexers are used to decide which inputs feed the individual flip-

flops of the register. Synthesis results show that a total equivalent of 500 gates is

needed for this structure.

-Serial inner products: The AND and XOR components shown in Figure 6.1 are

utilized for serial inner product operations. The boxes labeled as s2 · b and s1 · a are

single flip-flops storing the results of the inner products s2 · b and s1 · a of Protocol 1.

They work as accumulators. In each clock cycle, one bit of s2 and one bit of b pass

through an AND gate and the result is XORed with the value in the accumulator

flip-flop. The same procedure is repeated for s1 and a. At the end, the results in the

accumulator registers s2 · b and s1 · a are XOR-ed with the result of the PUFY,ε(xa)

and the result is sent to the output as r. The area for these operations is estimated

at 50 gates.

-Control logic: The control logic for this scheme is quite simple. For the ROM

structures storing s1 and s2, a single 9-bit counter is needed. Since the inner products

for s1 and s2 are operated in parallel, a single counter is enough for both operations.
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For the RNG a 3-bit counter is needed to track the XOR-ing of each 8 consecutive

bits. This can be interleaved with the inner product operation s2 ·b. The architecture

has only 2 modes of operation. Therefore, a single flip-flop would suffice to track the

state of the hardware. The total area of the control block is estimated at about 150

gates.

The total area of the authentication hardware is 970 gates. This is below 1K

gates, a typical threshold for the RFID’s footprint allotted for security [82].

6.5 Summary

In this chapter we proposed a scheme which seems resilient against certain man-in-

the-middle attacks. We also demonstrated an efficient method for generating the

random bits needed for our proposed protocol. This was done without incurring

significant overhead to the hardware, and by reutilizing parts of the authentication

circuit. As can be seen the HB+PUF proposal is very similar to the PUF-HB of the

previous chapter. However, the proposal of this chapter targets takes a more practical

approach and focuses on the implementation. One of the minor yet important contri-

butions here is the introduction of an enhanced version of PUFs which incorporates a

field multiplication (see Equation 6.1). Although this enhancement does not prevent

modeling PUFs, it does have the potential to improve its behavior under different

inputs.
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Chapter 7

Two Level PUFs

In the previous two chapters we saw how to improve the security of a simple PUF

by combining it with HB. In this chapter we show that PUFs alone can be used to

create a secure challenge response authentication scheme. In specific, we present a

new primitive which is the 2-level PUF. Learning the proposed scheme in the pas-

sive attacker model is reduced to learning a special class of a threshold of majority

gates under the uniform distribution. Furthermore, we explore extensions of PUFs

to produce efficient n-to-n mappings. So far, PUFs have only been used as a boolean

function. It should be interesting to see different ways of creating n-to-n mappings.

In Section 7.1, we define new PUF-based n-to-n mappings which we use in our

proposed scheme. In Section 7.2 we define the proposed protocol and discuss how it

can be modeled and deployed. In Section 7.3 we present the security analysis of the

proposed protocol. We finally conclude with a summary in Section 7.4.

7.1 Beyond a Single PUF

In this section we will introduce some variations of the simple PUF scheme. In Chap-

ter 4, we pointed out that attempting to model a PUF circuit will always have some

115
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inaccuracy which we refer to as noise. In this section we explore methods for con-

structing a {0, 1}n → {0, 1}n mapping using a PUF circuit. The most straightforward

way to produce such a mapping is to concatenate n different PUF circuits. We refer

to this construction as a PUF-box. Note that these definitions will be variants of

Definition 4.2.1.

Definition 7.1.1. A noisy PUF-box is a function characterized by the matrix M ∈
R

n+1×n and the noise parameter ε ∈
(
0, 1

2

)
, such that M ’s (i, j) entry mi,j ∈ N(0, 1).

PUFbM,ε(C) : {0, 1}n → {0, 1}n, Z = PUFbM,ε(C) where

zj = sign

(
n∑

i=1

(−1)pimi,j +mn+1,j

)
+ ν . (7.1)

The vector Z is defined as Z = [zi . . . zn], and the variables ν and pi are defined as in

Definition 4.2.1.

The notion of a PUF-box has not been previously defined in this manner. However,

there has been schemes proposed where the PUF is assumed to be an n-to-n mapping

without an explanation of how this would be achieved [12]. In reality, a PUF-box is

inefficient in terms of gate count. It would require O(n2) gates, which can become

large even for a low security parameter. Our definition of a PUF-box is mainly used

as a transitional step in order to define a more realistic n-to-n PUF-based mapping.

We next introduce a Simulated PUF-Box (SPB). We first explain the intuition

behind such a construction. A PUF-box is characterized by n(n+ 1) variables. Each

of these variables is only used in one of the PUFs inside the PUF-box. This large

number of variables is the source of inefficiency. To solve this problem in the SPB, we

only use two PUF circuits. In particular, we use a random n-bit string S to choose

a path which utilizes different parts of the two PUF circuits. In the ith stage of the

SPB, the signal either goes through the first or the second PUF depending on the

corresponding bit si. If we label the delay mismatch in the ith stage of the first and

second PUF as yi,0 and yi,1 respectively, then si will basically be choosing to use
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yi,0 or yi,1 in the delay equation. This means that with only 2(n + 1) variables, we

can generate 2n different PUFs, each corresponding to a different S string. A large

number of these PUFs will have a similar behavior. However, if the S’s are chosen to

have a large pairwise hamming distance, the resulting PUFs will have a sufficiently

different output behavior.

A single S string will result in having a single PUF. Therefore, we need n different

S strings in order to simulate a PUF-box. The storage of n different S strings would

be as costly as the PUF-box. To solve this problem, we introduce a simple LFSR [6].

The LFSR will behave as a schedule for the n different S strings. To run the SPB, the

LFSR is initialized to a randomly pre-chosen state S0. The challenge is then fed to

the switches of the two internal PUF circuits. As indicated earlier, the string S0 will

induce a PUF with delay variables chosen out of the two existing PUF circuits. When

a pulse is sent down the switch chain, a single output bit will be generated. Next, the

LFSR runs for n cycles, therefore generating the new state S1. This new state will

induce a second PUF circuit with different delay variables, and will therefore produce

the second output bit. Continuing in this fashion for n iterations, we obtain an n-bit

output for the n-bit challenge input. At the end of the nth iteration the LFSR is

reset to the original state S0. Note that while this construction saves on the number

of gates used, it will require O(n2) clock cycles before generating an n-bit output.

Our interest in this chapter is directed towards a smaller size circuit. Therefore, the

time/size trade off presented by the SPB will be ideal. We now formally define a

noisy SPB.

Definition 7.1.2. A noisy SPB is a function characterized by the vectors Y 0, Y 1 ∈
R

n+1, the noise parameter ε ∈
(
0, 1

2

)
, the initial bit string S0 ∈ {0, 1}n and an LFSR

function L. Such that Y j = [y1,j, . . . , yn+1,j] and yi,j ∈ N(0, 1). SPBY 0,Y 1,S0,L,ε(C) :
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{0, 1}n → {0, 1}n such that Z = SPBY 0,Y 1,S0,L,ε(C) where

zj = sign

(
n∑

i=1

(−1)piyi,sj
i
+ yn+1,sj

n

)
+ ν . (7.2)

The vector Z is defined as Z = [z1 . . . zn], Sj = [sj
1 . . . s

j
n+1] and Sj = Ln(Sj−1) such

that Ln denotes n-iterations of the LFSR function. The variables ν and pi are defined

as in Definition 4.2.1.

We utilize these definitions in the following sections in order to derive a new

authentication protocol.

7.2 A 2-Level Noisy PUF Authentication Scheme

Standalone PUF circuits may not provide adequate protection against active attacks.

Suppose a PUF-based authentication protocol is used as the security measure for an

RFID tag. An attacker can easily send challenges to the tag and receive the response

from it, without being detected. Utilizing only a small number of challenge-response

pairs, the attacker can develop a linear model of the PUF circuit with the technique

outlined in Chapter 4. Adding some level of noise to the output of the PUF circuit

by flipping a fraction of the response bits before sending it back to the reader will

make it harder for an attacker to obtain the linear model. However, the system will

still be modelable.

In [28], the authors note that PUFs may be vulnerable to modeling and differ-

ential attacks in the original configuration. Therefore, the authors propose to apply

a cryptographic hash function to the output of the PUF circuit to eliminate such

attacks. However, the introduction of the cryptographic hash function adds signif-

icantly to the footprint and power consumption. A hash function is a challenging

cryptographic primitive to serialize. Therefore, reducing the gate count might not be

feasible. In [27], feed forward arbiters were proposed to introduce non-linearity into
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the PUF scheme. This approach seems promising. However, since the feed forward

PUF are not known to be modelable, one would need to collect a large number of

challenge-response pairs for every PUF circuit and store them in a database. This is

the classical approach proposed in the early literature on PUF. This solution becomes

less practical when the number of devices deployed becomes massive. In this section

we attempt to present a scheme which addresses these three concerns: security, circuit

size and scalability.

As pointed out earlier, a PUF device is inherently noisy due to the small varia-

tions in the circuit’s physical properties. In the original PUF scheme, this noise is

eliminated by implementing majority voting. Even with such a scheme, there will be

an unavoidable level of noise in the system. This noise will not make the PUF more

secure. In [8], the authors introduce a polynomial time algorithm for solving noisy

linear threshold functions similar to the one implemented in a PUF. In addition, there

has been a considerable amount of work in the area of learning threshold functions.

These results show that most variations of the linear threshold functions are learnable

in polynomial time. However, there are a number of elegant results showing that a

2-level threshold function would be hard to learn under certain assumptions. We will

thoroughly discuss these results in Section 7.3. In this section it suffices to point out

that these results are the main motivation for the following scheme.

We propose using a noisy SPB with the output connected to a noisy PUF. In short

we will refer to this noisy PUF as the output PUF. Note that the overall system will

be a mapping {0, 1}n → {0, 1}. For security purposes we control the input of the

system. In particular, the input of the SPB is generated by a True Random Number

Generator (TRNG). This generator will produce a uniformly random n-bit string B

which will be fed to the SPB. Recall from Definition 1 that the PUF first transforms

its input C into the vector P where P = UC. This property of the PUF can cause a

large error propagation. Therefore, we choose to implement U−1 before sending the



120 CHAPTER 7. TWO LEVEL PUFS

output of the SPB T into the output PUF. Fortunately, U−1 has a very simple form,

and can be implemented using n− 1 XOR gates. In particular, let T ′ = U−1T , then

t′i = ti ⊕ ti+1, and t′n = tn
1. Finally T ′ is XOR-ed with the incoming challenge C

to generate the input of the output PUF which produces the response bit R. The

proposed scheme is shown in Figure 7.1. We now formally define the scheme.

Definition 7.2.1. A 2-level authentication function f is a function characterized by

the vectors Y 0, Y 1, Y out ∈ R
n+1, the noise parameter ε ∈

(
0, 1

2

)
, the initial bit string

S0 ∈ {0, 1}n and the LFSR function L. Such that yi,0, yi,1, y
out
i ∈ N(0, 1). Where

fY 0,Y 1,Y out,S0,L,ε(B,C) : {0, 1}2n → {0, 1} such that

fY 0,Y 1,Y out,S0,L,ε(B,C) = PUFY out,ε

(
U−1 (SPBY 0,Y 1,S0,L,ε(B))⊕ C

)
. (7.3)
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Figure 7.1: A 2-level Authentication Circuit

To assess the proposed scheme, we note that the size of the implementation will

be significantly smaller than that of a cryptographic hash function. It is not hard to

see the simplicity of the components involved in such an implementation. We leave

the security assessment of this scheme to Section 7.3. This leaves us with the final

criterion in our assessment: the ability to build an accurate model of the system.

1This issue can be avoided by using a tristate buffer implementation of a PUF given in Chapter

4.
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This is a very sensitive aspect, since we would like the owner of the device to be able

to model the system while at the same time preventing an attacker from achieving

the same goal.

As we will see in Section 7.3, it will be hard to model the presented scheme.

However, we provide an alternative means which would allow the owner of the PUF

to initially model the system before completely eliminating such ability. In particular,

we require a set and a reset control on the flip-flops inside the LFSR of the SPB. Using

these inputs we can set the LFSR to start in one of three possible states: the all zeros

state 0n, the all ones state 1n and the initial state S0. Note that the 0n state is a

fixed point for any LFSR function, meaning that the state will not change regardless

of the LFSR operation. Now, if we chose the LFSR function L so that the 1n state is

also a fixed point for L, we will be able to model the circuit. Making the 1n state a

fixed point of L is very simple. All we have to do is to require the L function to have

an odd number of terms in its connection polynomial. To model the system we start

by setting the state of the LFSR to the 0n state. This would reduce the SPB into

a circuit implementing the same PUF function PUFY 0,ε(B) for all n rounds. Recall

that B is a random input fed into the SPB. Now, since the SPB is implementing the

same PUF function for the n rounds, the n output bits of the SPB will be the same

except for about εn bits affected by the noise. This output T will be XOR-ed with

the challenge C. However, since the challenge is externally fed to the circuit, we can

choose C = 0n for all the modeling rounds. This means that the challenge input to

the output PUF will be T .

Although we do not know the specific parameter Y out which describes the output

PUF, we do know that its input T will either contain (1 − ε)n zeros if the output

of PUFY 0,ε(B) = 0, or (1 − ε)n ones if the output of PUFY 0,ε(B) = 1. The two

types of possible inputs will have a Hamming distance larger than (1 − 2ε)n and

will therefore with a very high probability produce an opposite output on the output
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PUF.2 This observation will allow us to collect a number of noisy challenge-response

pairs for PUFY 0,ε. Using the algorithm presented in [8], we can easily solve for Y 0.

Repeating the same process, only this time using the 1n state for the LFSR, we can

similarly solve for Y 1. The LFSR function L and the state S0 were both pre-chosen.

Now, with the knowledge of Y 0 and Y 1 we will have a model for the SPB. Next, we

set the state of the LFSR back to S0, and then permanently disable the set/reset

logic for the LFSR. Finally, since the output of the SPB is modelable, we can collect

challenge-response pairs for the output PUF, therefore solving for Y out. With this

last step we will have completely modeled the 2-level authentication scheme.

Fortunately, an attacker will not be able to carry out the same process. When

we disable the set/reset logic we are essentially logically isolating the system. Any

changes that an attacker wishes to introduce to the system will have to physically

target the implementation. With three PUF circuits inside the implementation, we

can be assured that any tampering will drastically change the response of the au-

thentication circuit. Even the register storing the state Si will be located between

the two PUF circuits. Any attempts to affect the register will also affect the internal

delays of the PUF circuits. Hence, we can assume the register to be tamper-proof.

The properties of the PUF circuit renders the authentication circuit as a black-box

to the attacker. The only information available about the system will be the triple

(B,C, fY 0,Y 1,Y out,S0,L,ε(B,C)).

Any 2-level authentication circuit we wish to enroll in the network will have to go

through the modeling process. Once the device is enrolled and deployed in the field,

the 2-level PUF authentication protocol given in Table 7.1 is used to authenticate the

device. In the protocol, P represents the PUF enabled tag which is characterized by

(Y 0, Y 1, Y out, S0, L, ε) as in Definition 7.2.1, D represents the authentication server

such as a card reader, and finally εf denotes the allowable error in the authentication

2See Proposition 4.2.1 for a rigorous statement of this fact.
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Protocol 3: 2-level noisy PUF Authentication

1. P randomly generates the n-bit string B, and sends it to D.

2. D picks a random n-bit string C and sends it to P .

3. P receives the challenge C, and then calculates

R = fY 0,Y 1,Y out,S0,L,ε(B,C).

4. P sends the bit R to D.

5. Steps 1 through 4 are repeated for k iterations.

6. D accepts P iff the number of errors in the responses R

is not more than εfk.

Table 7.1: 2-level-PUF authentication

protocol3.

7.3 Security Analysis

In the previous sections we pointed out that a PUF-based circuit is highly sensitive.

This property makes it almost impossible to access the internals of the circuit without

causing a change to the parameters. However, we saw in Chapter 4 that collecting a

number of challenge-response pairs can render a PUF circuit modelable (or learnable),

even in the presence of noise [8]. Our goal in this section is to show that under certain

assumptions the authentication scheme proposed in this chapter can be secure. In

order to do so, we review a number of results on the learnability of threshold functions.

We start by defining a number of terms. A Linear Threshold Function (LTF)

or a halfspace is essentially a boolean function f(x) = sign(
∑n

i=1(−1)xiyi + yn+1).

Note that this definition is equivalent to Equation (4.3) without the noise parameter

ν. Therefore, we can say that a noiseless PUF is essentially an LTF. Just like a

3This value will depend on ε and will be derived in Lemma 7.3.4 of Section 7.3.
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PUF the LTF is characterized by a real vector Y ∈ R
n+1, where the threshold is

the yn+1 variable. For our purposes we encoded the output of an LTF into a binary

{0, 1} rather than {−1, 1} as done in the literature. We will use the term LTF and

halfspace interchangeably to mean the same thing. We say that f is an n-dimensional

halfspace if it takes inputs from {0, 1}n. Learning such a function is one of the oldest

solved problems in machine learning [2]. As we pointed out earlier, it is possible

to learn halfspaces even in the presence of simple classification noise [8]. A light

halfspace is a halfspace in which the sum of the magnitudes of the weights yi is

bounded by a polynomial in n. Note that since PUFs are halfspaces which arise

from natural phenomena they will be light halfspaces. A majority function or gate

is an LTF with threshold equal to 0 and with all the yi values equal to 1. The

output of a majority gate will be equal to one iff the majority of the input bits are

one. Otherwise, the output will be zero. When the input is an n-bit string the

majority gate can sometimes act on a subset of these n bits. Therefore, the majority

gates can be described by the vector X ∈ {0, 1}n, where xi = 1 means that the ith

input bit is acted on by the majority gate. We call the vector X a descriptor for

the majority function. So for example, if n = 5 and the majority gate descriptor is

X = 01101, then the majority gate will only compute the majority of bits 2, 3 and 5.

The intersection of halfspaces is the logical AND of the outputs of a number of LTFs.

We say that a boolean function f : {0, 1}n → {0, 1} is PAC-learnable (Probably and

Approximately Correct) [97] if there is an algorithm A that when given ε ∈ (0, 1) and

poly(n, 1
δ
) samples (x, f(x)) where x ∈ {0, 1}n and is drawn according to a probability

distribution D, A produces the function h, such that Prx∈D [h(x) 6= f(x)] < δ where

A does not know f . If D is the uniform distribution, we say that the algorithm A

PAC-learns f under the uniform distribution. We say that an algorithm can learn in

the presence of ε classification noise if it can learn from samples (x, f(x) + ν) where

ν = 1 with probability ε and zero otherwise. One last term to introduce is proper
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learning, in which the algorithm A is required to output a function h that has the

same form as the unknown function f . When this condition is not posed, we refer to

the learning process as non-proper learning. It should be clear that proper learning

is a harder constraint on the learning algorithms. Therefore, hardness results for

non-proper learning are in general considered as stronger results.

Our main focus is on 2-level LTF circuits. This problem has been well studied in

the literature. In [10] it is shown that properly learning a two level threshold function

with two input nodes that are LTFs and one output node which is also an LTF is NP-

complete. In [56] the authors show that in general non-proper learning of a d-level

threshold function is as hard as breaking the RSA algorithm, detecting quadratic

residues and factoring Blum integers. These results are with respect to an unknown

distribution. However, in [58], the author strengthens the results to hold under the

uniform distribution. In [59], the authors show an exponential time algorithm to learn

a two level threshold circuit under the uniform distribution. When the second level is

any n-to-1 boolean function, the algorithm runs in complexity exponential in k (the

number of nodes of the first level). For special cases when the input nodes take as

inputs disjoint sets of all the n inputs, and the second level functions are majority or

AND functions, the proposed algorithm runs in exponential time in log(k). In [25] the

authors show that under the assumption that the Ajtai-Dwork cryptosystem [37] is

secure, then there is no weak non-proper PAC-learning algorithm for polynomial-sized

majority gate circuits of depth 2. A similar result was obtained in [60] in which the

authors show that non-proper learning of a polynomial-sized 2-level majority gate

circuit is at least as hard as the Shortest Vector Problem (SVP) and the Shortest

Independent Vector Problem (SIVP) for an approximation factor of Õ(n1.5). Note

that these two problems are believed to be hard for this particular approximation

factor [85]. The results obtained apply for a special distribution that is imposed by

the reduction. The authors also show that non-proper learning of the intersection
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of nε light n-dimensional halfspaces for ε > 0 is at least as hard as the Õ(n1.5)-SVP

and Õ(n1.5)-SIVP problems. Finally in [61] the authors show that in the statistical

query model [55] any algorithm for non-proper learning of the intersection of
√
n

halfspaces which are n-dimensional will require at least 2
√

n queries. To understand

the importance of the statistical query model, note that in [55] the author shows that

any class of functions efficiently learnable from statistical queries is also efficiently

learnable with classification noise.

Motivated by these results we make the following initial assumption.

Assumption 7.3.1. There does not exist a randomized polynomial-time algorithm

which can PAC-learn any threshold of n n-dimensional halfspaces under the uniform

distribution in the presence of ε classification noise, where ε ∈ (0, 1
2
).

When we say threshold of halfspaces, we basically mean a threshold of thresholds.

Note that the majority and the AND functions are both weaker than a threshold

function [35]. Assumption 7.3.1 has only been proven under strong cryptographic

assumptions for certain distributions. Therefore, the main aspect to be proven about

the assumption becomes learning under uniform distribution. In [61] the authors

report progress on this particular problem. Also note that most of these results do

not take the noise into account. The setup in the assumption is in fact identical

to the 2-Level authentication function of Definition 4, except that we need to use a

PUF-box rather than an SPB. In particular, we can say that a 2-Level authentication

scheme using a PUF-box for its first level is a threshold of n n-dimensional halfspaces.

The only difference is that the assumption does not specify the distribution on the

thresholds. It seems that when the thresholds are Gaussian, learning under the

uniform distribution will look like learning under the Gaussian distribution. This

would mean that any bounds used in the Gaussian case can be applied to the PUF

case. Note that the problem will still be hard in this case [57].

Recall that we are interested in lightweight solutions. Therefore, we will use a
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stronger assumption. We start with the following definition.

Definition 7.3.1. Let G1, . . . ,Gn be n different majority gates, such that Xi ∈ {0, 1}n

is the descriptor for Gi. Let X ∈ {0, 1}n2
where X = [X1 . . . Xn] be the combined

descriptor of the n majority gates. We say that the n majority gates described by

X have a Linear Complexity4description of n, if there exists an LFSR L of length n

which generates X .

The definition captures the complexity of describing n-majority gates. It is clear

that such a description would require n2 bits as seen in the definition. However, we

are interested in the cases when the description can be compressed such that an LFSR

can generate the entire sequence. Now we state the following assumption.

Assumption 7.3.2. There does not exist a randomized polynomial-time algorithm

which can PAC-learn any threshold of n-majority functions having a linear complexity

description of n, where the algorithm learns under the uniform distribution in the

presence of ε classification noise, with ε ∈ (0, 1
2
).

It should be clear that the added linear complexity condition on the majority gates

is added to serve the SPB. This condition can be relaxed if we allow the LFSR to be

of length n2

2
[87]. This assumption is stronger than Assumption 7.3.1. Recall from

the previous results [59] that when a number of majority gates act on disjoint inputs,

there exist quasi polynomial-time algorithms to learn the AND and the majority

functions of these majorities. Of course the restriction we add in Assumption 7.3.2

is much weaker than the restriction required to obtain these quasi polynomial-time

algorithms. Also we need to keep in mind that a 2-level polynomial-size majority

gate circuit is in general hard to learn. Another aspect of Assumption 7.3.2 is that it

takes classification noise into consideration. In general, our assumption is based on

4The Linear Complexity (LC) of a bit sequence X, is the length of the shortest LFSR which

generates X [75].
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the general hardness of learning 2-level noisy majority and LTF functions. Next, we

prove a reduction from our scheme to the problem in Assumption 7.3.2.

Theorem 7.3.3. Say there exists a polynomial-time randomized algorithm A that can

PAC-learn any 2-level authentication function fY 0,Y 1,Y out,S0,L,ε as in Definition 4, with

ε ∈ (0, 1
8
), where A is a passive5 algorithm which learns under the uniform distribution

in the presence of εf classification noise. Then there exists a randomized polynomial-

time algorithm A′ which can PAC-learn any threshold of n-majority functions having

a linear complexity description of n and denoted by MY M ,X ,εf
: {0, 1}n → {0, 1}, such

that Y M ∈ Rn+1 characterizes the threshold function of M , and X = [X1 . . . Xn]

where Xi ∈ {0, 1}n is the descriptor for the ith majority function in M , where A′

learns under the uniform distribution in the presence of εf classification noise.

Proof. We describe how to use A to produce the algorithm A′. When the algorithm A

tries to learn the function fY 0,Y 1,Y out,S0,L,ε it expects to receive a polynomial number of

triplets (Bi, Ci, Ri = fY 0,Y 1,Y out,S0,L,ε(Bi, Ci)) where Bi is chosen uniformly at random.

Let (Hi,MY M ,X (Hi)) denote the samples presented to the algorithm A′ in order to

learn MY M ,X ,εf
. Now, A′ starts running A by simulating the triplet A needs to

receive. The way A′ does this is by setting all the challenges Ci = 0n, it then feeds

the algorithm A with (Hi, 0
n, Ri = MY M ,X (Hi)). Note that Hi will be uniformly

random since we are trying to learn under the uniform distribution. Now A′ simply

takes the solution function returned by A and uses it as the solution function for

MY M ,X ,εf
.

To show that this will actually work, we demonstrate that MY M ,X ,εf
is in fact

an instance of fY 0,Y 1,Y out,S0,L,ε. Set Y out = Y M , Y 0 = 0n+1 and Y 1 = [1n 0] where

we made y1
n+1 = 0. Using the Berlekamp-Massey algorithm [75] generate the n-

bit LFSR function L′ and the n-bit initial state S ′ which produces the bit string

5Passive means that A only sees transcripts of the authentication session, rather than being able

to interact with the protocol, in which case it would be able to choose C.
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X = [X1 . . . Xn]. Such an LFSR and an initial state exist from the assumption that

X has a linear complexity of n. Now set L = L′ and S0 = S ′. After every n iterations

the LFSR will output Xi, which will in turn control the switches inside the SPB.

Note that because of the way Y 0 and Y 1 are setup, in every iteration the SPB will

be implementing the majority gate described by Xi. Therefore the output fed to the

output PUF will be that of the n-majority gates described by X . The output PUF

will be identical to the threshold function characterized by Y M . Finally, the noise of

the entire system εf will depend on the noise parameter ε. As will be shown in Lemma

7.3.4 for ε < 1
8

we have εf ∈ (0, 1
2
). Therefore MY M ,X ,εf

= f0n+1,[1n 0],Y M ,S′,L′,ε.

It should be clear that the above is a worst case reduction. The last thing we need

to do in order to complete this section, is to show how the error ε in each of the 3 PUFs

inside the 2-level authentication function fY 0,Y 1,Y out,S0,L,ε will propagate to the final

output R. To quantify the error propagation in the 2-level authentication function we

assume the error that is produced by the SPB to be independent between the different

rounds. This a reasonable assumption since the error depends on environmental

variations that are independent of the round number. Similarly, we assume the error

produced by the SPB to be independent of the error produced by the output PUF.

With these assumptions we can now prove the following lemma.

Lemma 7.3.4. The expected overall classification noise in the 2-level authentication

function fY 0,Y 1,Y out,S0,L,ε of Definition 4 will be εf <
4
π

arctan
(√

ε
1−ε

)
.

Proof. Let the output of the SPB inside fY 0,Y 1,Y out,S0,L,ε be T ∈ {0, 1}n. Because we

assumed the error occurs independently, the number of errors which are expected to

be found in T will belong to a Binomial distribution B(n, ε). Recall that in Definition

4 we use the transformation U−1 before injecting the output of the SPB to the output

PUF. Therefore, we will have P = T .6 Now we can use Proposition 4.2.1, with d as

6See the definition of P in Proposition 4.2.1.
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a random variable following B(n, ε). Assume for now that the output PUF has 0%

noise. In such a case the expected noise in the output of the entire circuit will be

εs = 1−
n∑

i=0

(
n

i

)
(ε)i(1− ε)n−i

(
1− 2

π
arctan

(√
i

n+ 1− i

))

≤ 1− Fn(εn)

≤ 1− Fn−1(εn) =
2

π
arctan

(√
ε

1− ε

)

Now we take into consideration the noise ε which will occur in the output PUF. An

overall error will appear on the output of fY 0,Y 1,Y out,S0,L,ε iff the error caused by the

output PUF and the error caused by the noise in the input to the output PUF do not

coincide. As we assumed earlier the error in T and the error caused by the output

PUF are two independent events. Therefore we have

εf = ε(1− εs) + εs(1− ε) < 2 εs =
4

π
arctan

(√
ε

1− ε

)

This lemma explains why in Theorem 7.3.3 we needed the error ε ∈ (0, 1
8
) in order

to have εf <
1
2
. Note that εf = 1

2
is the information theoretic limit on the amount of

allowable noise. In general, the choice of a noise parameter will control the number of

rounds k used in an authentication session. A reasonable parameter would be for εf

to be around 0.25. To get a sense of the error propagation in general, for the typical

noise values achieved in a PUF circuit we have ε = 3% which would yield an upper

limit of εf < 23% on the 2-level authentication function noise.

7.4 Summary

We presented a tamper-proof and lightweight challenge-response authentication scheme

based on 2-level noisy PUFs. The proposed authentication scheme may be imple-

mented in a very small footprint and deployed in applications with stringent power



7.4. SUMMARY 131

limitations. Furthermore, the inherent properties of PUFs provide strong tamper-

resilience – a feature crucial for applications where the device is in the hand of poten-

tial attackers. From a computational security point to view the 2-level PUF scheme

is weaker than PUF-HB and HB+PUF. The real advantage of the 2-level scheme is

that all the secrets are PVs which makes the possibility of detecting any tampering

more realistic.
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Chapter 8

Summary

The work in this dissertation mainly revolved around exploring applications of PVs.

Following is a summary of our contributions.

• The limits of using Gaussian PVs as identifying PVs are explored. As the most

natural form of a PV, Gaussian PVs provide a convenient vehicle to rigorously

prove limits on their identification capability.

• A new CD fingerprinting technique which utilizes the manufacturing variability

in the length of the CDs’ lands and pits is presented. The novelty of the

approach is in the use of the electrical signal produced by the photo-detector

inside the CD reader.

• A mathematical framework for delay-based PUFs is re-derived. This framework

has been previously presented in a slightly different format [27]. The work here

simplifies these derivations and quantifies the probability of observing a collision

in the output of the delay-based PUF.

• A new implementation of the delay-based PUF, i.e. the tristate PUF, is pro-

posed. The new PUF implementation is shown to be equivalent to the MUX-

based delay PUF by deriving the corresponding mathematical model.

133
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• Two authentication protocols, PUF-HB and HB+PUF, are presented. These

protocols build on the HB authentication family and combine them with PUFs

in order to improve on the security of the typical HB protocol.

• A proof of concept implementation for HB+PUF is presented and shown to

require a few thousand gates.

• An authentication protocol based on 2-level PUFs is presented.
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[79] Öztürk, E., Hammouri, G., Sunar, S., Towards robust low cost authentication

for pervasive devices. In: Proceedings of the Sixth Annual IEEE International

Conference on Pervasive Computing and Communications (PerCom 2008), 17-

21 March 2008, Hong Kong, pp. 170-178, IEEE Computer Society, Los Alamitos,

CA, USA (2008).

[80] Papoulis, A., Pillai, S.U., Probability, Random Variables, and Stochastic Pro-

cesses. McGraw-Hill, New York, NY, USA, 2002.
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