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Abstract—We are at the dawn of a hyper connectivity age
otherwise known as the Internet of Things (IoT). It is widely
accepted that to be able to reap all benefits from the IoT promise,
device security will be of paramount importance. A key require-
ment for most security solutions is the ability to provide secure
cryptographic key storage in a way that will easily scale in the IoT
age. In this paper, we focus on providing such a solution based on
Physical Unclonable Functions (PUFs). To this end, we focus on
microelectromechanical systems (MEMS)-based gyroscopes and
show via wafer-level measurements and simulations, that it is
feasible to use the physical and electrical properties of these
sensors for cryptographic key generation. After identifying the
most promising features, we propose a novel quantization scheme
to extract bit strings from the MEMS analog measurements. We
provide upper and lower bounds for the minimum entropy of
the bit strings derived from the measurements and fully analyze
the intra- and inter-class distributions across the operation
range of the MEMS device. We complement these measurements
via Monte-Carlo simulations based on the distributions of the
parameters measured on actual devices. We also propose and
evaluate a key derivation procedure based on fuzzy extractors
for Hamming distance, using the min-entropy estimates obtained
to derive a full entropy 128-bit key, requiring 1219-bits of helper
data with an (authentication) failure probability of 4 · 10−7.
Thereby, we present a complete cryptographic key generation
chain. In addition, we propose a dedicated MEMS-PUF design,
which is superior to our measured sensor, in terms of chip area,
quality and quantity of key seed features.

I. INTRODUCTION

In 1991, Mark Weisser [1] set out the vision of ubiquitous
computation, which promised to make our interaction with
things to be seemless. Today, this vision has already started
to become reality through modern technologies that allow for
electronic systems to be embedded practically everywhere with
applications ranging from smart homes, to connected vehicles
and smart factories. More specifically, ubiquitous computation
has been made tangible in the concept of the Internet of Things
(IoT), which by some estimates is expected to surpass 50
billion devices by 2020 [2]. Regardless of the exact numbers,
it is widely acknowledged that to make the IoT a success the
security of this super large distributed systems will have to be
guaranteed and the privacy of the collected data protected.

The Internet of Things, made possible through the wide
deployment of embedded devices, differs significantly from

”classical” systems, such as desktop (networked) PCs, in
various aspects, which include: severe computational, memory,
and power constraints, lack of advanced user interfaces, an
increased vulnerability with respect to physical or network
attacks, and as mentioned previously, their tendency to collect
potentially highly privacy sensitive data. Until recently, there
has been an inclination to assume the inability to provide
strong hardware security guarantees. However, this is start-
ing to change with new device architectures such as those
presented in [3]–[5], which aim to provide more fundamen-
tal security properties for embedded devices. In this paper,
we continued this line of work and we focus our attention
on an even more constrained type of device, MEMS-based
sensor devices, which are widely deployed today in smart
phones, automotive applications (e.g., crash detection, airbag
deployment), environmental condition assessment, pressure
measurements, etc. and for which security solutions have been
until now overlooked.

As a starting point in the study security for MEMS-based
sensors, we look at how to provide secure cryptographic key
storage in such devices in a cheap and intrinsic manner, as
keeping cryptographic keys secure is the basis for many higher
level security mechanisms such as attestation, secure boot
as well as any other cryptographic operation which might
require a secret or private key (e.g., encryption, signatures,
message authentication generation, etc.). In particular, we look
at the feasibility of creating a Physical Unclonable Function
(PUF) based on the physical properties of MEMS devices
themselves. PUFs have received a lot of attention (see e.g.,
[6]–[10]) as a technology for secure key storage. One of
PUF’s main advantages is that the device does not need to
store secrets in non-volatile memory but rather it can generate
the cryptographic key whenever it needs to process secrets
and destroys it afterward, making the job of an attacker with
physical access to the device more difficult1.

While the possibility of deriving a fingerprint from MEMS-
based devices has been explored in previous work [14], the
feasibility of deriving a cryptographic key from MEMS char-

1The fact that memory is susceptible to invasive attacks has been demon-
strated in [11]–[13].



acteristics is a more challenging undertaking and to the best
of our knowledge, we are the first to propose such a design.
As with many PUFs, a MEMS-based PUF has the following
requirements: the cryptographic key should be unique per
device (similar to a fingerprint), (ii) the cryptographic key
should be reproducible across the whole range of environ-
mental conditions for which the device is designed, (iii) the
cryptographic key should be hard to replicate even for the
manufacturer of the device, (iv) the PUF properties should
be hard to model and therefore a mathematical model that
predicts the PUF responses should be infeasible to obtain,
and (v) it is desirable that the particular PUF has tamper
resistance or tamper evidence properties. In this paper, we
show that MEMS-based gyroscopes can be used to this
end and, moreover, we show via experimental evidence on
actual devices and simulations that requirements (i)-(iv) are
met by our design. Furthermore, we present and simulate a
fully functional MEMS device specifically designed for PUF
applications, which has smaller size than other gyroscopes and
has more variation (allowing for the derivation of more full
entropy bits). In short, our contributions are as follows:
• Physical Modelling: In contrast to previous work, which

use the response of MEMS accelerometers and derive
signal processing features suitable for identification, we
identify suitable properties (mechanical and electrical) of
the MEMS gyroscopes and show that they can be used to
derive a robust bit string suitable for cryptographic key
generation,

• Key Derivation: We propose a quantization method
which allows us to derive binary keys from analog sensor
data inspired by a method described by Chang et al. [15].
Then, we analyze via multiple methods the amount of
entropy that such binary strings carry and based on a
conservative estimate we propose several helper data [16],
[17] parameters which would provide with robust keys
across a temperature range of 65 ◦C, with probabilities of
failure lower than 10−6. We also provide specific codes,
which can be used in combination with a fuzzy extractor
to create a uniformly distributed random 128-bit key.

• Uniqueness and Robustness: We analyze the intra- and
inter-class distributions induced by our key derivation
procedure from 70 different physical MEMS-devices and
verify the behavior of such distributions via Monte-
Carlo simulations of the MEMS behavior using variability
parameters measured on physical MEMS devices. This
analysis includes the variability due to repeated measure-
ments and environmental conditions, most prominantly,
temperature.

• MEMS Design Optimized for PUF Applications. We
present a completely new MEMS design, which has been
optimized to increase variability and thus, the ability to
create unique/robust keys

A. Organization of the Paper

We begin by providing basic background on MEMS tech-
nology, their potential for PUFs and cause of variations in

Section II. In Section III, we show how a MEMS-PUF should
be included in a package, to withstand probing attacks. We
then explain features of MEMS that fulfill our requirements
for robustness and uniqueness in Section IV, how we quantize
these features, how our measurements are set up and the
results for the most promising parameters. From the learned
insights, we then can simulate additional devices in Section
V. This allows us to verify that the simulations are consistent
with the measured data. In Section VI, we provide upper
and lower bounds for the min-entropy of the MEMS-PUF
responses for both measured and simulated data. In Section
VII, we describe the last step in the key generation process,
namely, information reconciliation via error correcting codes
and randomness extraction. It is worth observing that our
constructions tend to require less public helper data (measured
in bits) than recently published fuzzy extractor schemes, in
spite of our constructions are based on very conservative min-
entropy estimations2. We propose a dedicated MEMS-PUF
design in Section VIII. We conclude this article in Section
IX.

II. MEMS BACKGROUND

MEMS sensors are silicon based devices which combine
a microcontroller with a mechanical device used to measure
a variety of different physical quantities ranging from accel-
eration and yaw rate to magnetic fields, pressure, humidity,
etc. In this work, we focus on MEMS-based gyroscopes
which are devices for measuring the yaw rate. MEMS-based
gyroscopes are very complex entities with a large number
of mechanical as well as electrical properties. A MEMS
gyroscope typically consists of a combination of one or several
spring-mass systems which oscillate at resonant frequency.
In order to drive the system, an external source is needed
that applies the required voltage. To detect the yaw rate, the
Coriolis effect is used. This effect is based on the Coriolis
force, which acts on a moved mass in a rotating system.
The Coriolis force causes a deflection of an oscillating mass
which is proportional to the acting yaw rate. Therefore, the
yaw rate can be determined by measuring this deflection in
a capacitive way. The detecting axis depends on the moving
direction of an oscillating mass. For each detecting axis, at
least one oscillating spring-mass system is needed. This means
that the number of different spring-mass systems depends
basically on the number of sensitive axis. In this work, a 3-
channel gyroscope was investigated. For further background
on gyroscopes we refer the reader to [18].

A. MEMS Parameters Suitable for Identification

MEMS sensors offer many measurable mechanical as well
as electrical, parameters depending on the sensor type, which
can be used to derive a suitable unique identifier and, after

2In the PUF literature, it is standard to use the Context Tree Weighing
(CTW) compression algorithm to estimate entropy of the PUF responses. We
use CTW as an upper bound on the entropy of the MEMS-PUF responses
but use the more conservative min-entropy estimations provided by the NIST
tests for our final helper data sizes.



some processing, a secure cryptographic key. In the case of
MEMS-based gyroscopes, fundamental mechanical parameters
include the different frequency modes of the sensor. MEMS-
based gyroscopes have a complex mechanical structure which
consists of several spring-mass systems. Hence, a large num-
ber of frequency modes exist for MEMS-based gyroscopes.
Another interesting mechanical parameter is the quadrature
which is a measure for the asymmetry of a sensor. As the
manufacturing process is subjected to variations, the actual
physical structures, i.e., springs, masses and electrode gaps,
differ slightly from the ideal case by different types of
asymmetries. This can result in a deflection of the moving
directions and produces an error signal called the quadrature
signal - which is detected by electrodes in a capacitive manner.
Additionally, there are a lot of electrical parameters. These
are the capacitances and resistances that are induced between
the different electrodes which are needed for driving and
measuring the sensor. Other properties are the ability for
frequency tuning, quality factors and decay times. However,
we do not describe them any further because they have not
proven to be suitable as PUF parameters in our evaluation.

B. Causes for Parameter Variability

Although, it is difficult to determine all influencing factors
affecting the silicon manufacturing process, several of them
are well-known and understood. In what follows, we provide
an overview of the fundamental factors and their impact on
parameter variation. A main factor for the parameter variability
is the variation of the geometric dimensions (width and thick-
ness of the structures) that occurs always in the etching process
and it varies in a small range. This includes a variation of the
beam width of the springs and, hence, it changes the spring
rigidity, which leads to a shift of the resonant frequencies. In
addition, it affects the electrical parameters as well because it
changes the gaps between the electrodes and the effective area
of electrodes.

As mentioned previously, asymmetries cause slight vari-
ations of the behavior from the ideal case generating the
quadrature signal. These asymmetries have four sources:

1) A difference of the side wall inclinations, causing a
different deviation from the rectangular beam geometry
of side walls that results in an undesirable out-of-plane
force component.

2) A local variation of the structure width, affecting slightly
the spring rigidities.

3) An imbalance of the inertial masses.
4) The influence of mechanical stress caused by packaging,

temperature and bending of the Printed Circuit Board
(PCB) after soldering.

Note that actual MEMS sensors are designed with the
objective of minimal parameter variations. In principle, an
amplification of the parameters’ variation is easy to achieve.
Notice that such an amplication is likely to result in an increase
in the number of bits extracted from a particular parameter.
This could be used for the creation of a dedicated MEMS

MEMS ASIC

Mold Package

Fig. 1. Schematic composite of MEMS sensor and ASIC in a system in
package (SIP).

structure to increase significantly the number of bits that can
be derived.

III. MEMS-BASED PUF

MEMS sensors have an unique fingerprint based on inherent
variability in silicon manufacturing processes. Since MEMS
sensors are present in numerous applications, adding secure
key storage capabilities would provide an additional value,
making them enhanced sensors. This means there would be no
need for additional devices solely for the purpose of key stor-
age. Furthermore, considering resilience to different kinds of
attacks, MEMS-PUFs offer several advantages. MEMS sensors
are very complex entities with many very different features and
the behavior is hard to model. Considering invasive attacks,
a read-out is expected to be difficult, or in some cases even
infeasible. The reason for this is that tampering with a MEMS
or even with the mold package changes the properties of the
MEMS and thus the key, e.g., by changing the stress conditions
inserted by the packaging process or by changing the internal
pressure. Hence, MEMS could provide a tamper-proof PUF
without any overhead which was identified as a major future
research topic in [19].

Fig. 1 shows schematically an usual example for a system
in package (SIP) with a MEMS sensor and an ASIC that are
encased by a mold package. MEMS and ASIC are placed on
the same level, connected by wire bonds and placed on a PCB
substrate with a Ball Grid Array for the electrical contacts
to the environment. Alternatively, MEMS and ASIC could
also be stacked vertically and connected by through-silicon
vias. For high security applications, it is recommendable to
carry out all security relevant operations for authentication or
encryption on the ASIC. In this case, the secret key would
never leave the package in order to make it infeasible for
an attacker to get access to security-critical information. For
this, a True Random Number Generator (TRNG) would be
needed within the system additionally to the cryptographic
key derived from the MEMS. One approach to derive truly
random numbers could be to exploit the thermal noise as a
source of entropy which is present in the measurements of the
electrical capacitances between the electrodes, for example.
The use of thermal noise for the generation of random numbers
has already been described in previous work as in [20], [21].

On the basis of the above-mentioned assumptions, such a
system would possess similar security properties as a hardware
security module (HSM) [22] or a trusted platform module



(TPM) [23]. This could also be further enhanced by the
development, e.g., of specific package concepts, increasing
systems security. Moreover, new MEMS concepts could be
exclusively designed for the use as PUFs only (dedicated
MEMS-PUFs).

IV. IDENTIFICATION OF SUITABLE FEATURES

In order to identify suitable features for the use as a PUF,
we have to point out initially the requirements that a feature
has to fulfill. These can be derived in principle from the PUF
definition.

1) Uniqueness. Based on the used parameters, it must
be possible to identify the device absolutely uniquely.
Measurable variability of the used parameters has to
be inherent in the system. This variability should not
be controllable even for the manufacturer in order for
copying attacks to become infeasible.

2) Robustness. The parameters should be stable even when
affected by different environmental conditions, i.e., tem-
perature, humidity, aging.

3) High Bit Entropy. In case of using several parameters to
derive the final response, low correlation among them
should preferably exist. This is important because, the
stronger the parameters correlate, the less entropy do
they offer for the extracted cryptographic key.

A. Quantization Scheme

The generation of a binary key from the measured values
requires a quantization procedure beforehand. The general
problem of converting such analog measured values into binary
strings is also known in the field of biometrics. Thus, a
procedure is developed that is inspired by a method described
by Chang et al. [15]. There, the authors proposed a procedure
for cryptographic key generation from biometric features and
verified it, as it applies to human face recognition. The
modified procedure used in this work is explained below. Fig. 3
shows exemplary the quantization scheme for a Gaussian
distributed parameter.

The basic factors for this procedure are the mean value µ
and the standard deviation σglobal of the global distribution of
a parameter calculated from all devices and the local variation
V ′ which can be interpreted as the robustness of a parameter
affected by temperature and measurement noise. Ideally, the
cumulative distribution function for a normal distribution with
our mean µ and deviation σglobal is given by equation (1).

The global distribution is divided into several ranges Ai with
an equal probability of occurence until the whole distribution
is covered with a very high probability (6−σ). Each range has
a left bound Ai,l and a right bound Ai,r. Initially, the width of
the ranges A1 to the left and right of the global mean value µ
are defined based on the value for V ′. Afterwards, the further
ranges A2, . . . An are determined so that each range occurs
with the same probability, equation (2).

101100 001000 011 010 110 111

A1 A1 A2A2 A3A3 AnAn … …

global distribution of a 
parameter (global)
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Fig. 3. Quantization scheme (exemplary for one parameter).

F (x) =
1

σglobal
√

2π

∫ x

−∞
e
− 1
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σglobal
)2

dt (1)

F (Ai,r)− F (Ai,l) = F (Ai+1,r)− F (Ai+1,l) (2)

A bit combination is assigned to each range. The number
of bits that can be derived from a parameter in this way can
be calculated by log2(2× An). This procedure is carried out
for all parameters and the key parts are concatenated to the
cryptographic key seed.

B. Experimental Setup

The measurements were carried out on wafer-level, i.e., the
devices are not in a mold package and laboratory measuring
equipment is used for all measurements. We use the probe
station PA 200 by Süss Micro Tec (Fig. 4) which enables to
measure a large number of devices fully automated and the
setting of temperature by a heatable chuck. Furthermore, the
test equipment consists of a multiplexer probe card for driving
and measuring on the different electordes and the Impedance
Analyzer 4294A by Agilent Technologies. For contacting the
sensor pads, a device with several contact probes is mounted
on the probe card.

The device under investigation was a 3-axis gyroscope. We
measured all parameters that are mentioned above (Section
II) for each channel so that we had in total more than 50
parameters of 70 devices. We repeated the measurements
multiple times at room temperature (RT) to determine the
repeatability of the measurements. Additionally, we carried
out the measurements at 85 ◦C to verify the robustness of the
parameters at higher temperature. As a result of the repeated
measurements and the temperature variation, we can describe
the parameter robustness as combination of a Gaussian dis-
tributed factor fnoise which is based on measurement noise
and a temperature dependent shift factor fshift. Thus, the local
variation V ′ of a parameter can be estimated from a measured
value V and this two factors in the following way:

V ′(T ) = fnoiseV + fshift(T ) (3)
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(b) Percentage distribution of correlation coeffients ρ between
the used parameters.

Fig. 2. Percentage distribution of ratios and correlation coeffients.

Hence, the maximum local variation V ′max occurs in case of
the maximum temperature range (from RT to 85 ◦C) and an
adding effect of the factors fnoise and fshift.

Initially, we identify basic suitable parameters regarding the
ratio τ of the maximum local variation V ′max to the global
variation σglobal for each parameter V ′max

σglobal
. The ratio τ =

V ′max
σglobal

should be significantly smaller than 1.

C. Parameter Results

As mentioned above, major influence factors on the param-
eter variation are the variation of the geometric dimensions
(structure width and thickness). For this reason, some of the
parameters are strongly correlated with this factors. Because
all measurement variables depend on them in a similar way, an
appropriate measure to reduce this dependency is to calculate
ratios. Thus, other effects become more important such as local
differences in the structure widths, for example.

Regarding the frequency modes, the use of ratios provides
a further advantage. The frequency modes are temperature
dependent in a linear way because of the temperature depen-
dence of the Young’s modulus [24]. Thus, the frequency modes
themselves vary about temperature with a constant factor. This
factor is deleted by calculating ratios and, hence, the ratios
are significantly more stable about temperature than the pure
frequency modes. This also applies for the capacitances in a
similar manner.

As a first result of the measurements, we can define the
following parameters as potentially appropriate (in brackets is
the quantity of a parameter type):

• frequency modes (9),
• capacitances (6),
• quadrature signals (2).

Hence, the further evaluations are based on this parameters.
Fig. 2a shows the percentage distribution of the τ values for
this properties. The proportion of 50% of ratios τ between 0
and 0.08 is mainly originated from the frequency mode based
parameters and the quadrature signals. The higher τ values

Fig. 4. Probe station PA 200 by Süss Micro Tec with mounted probe card
used for measurements on wafer-level.

come from the ratios of capacitances. This is mainly caused
by their low σglobal-values.

In terms of cryptographic key generation, the consideration
of the correlation between the parameters is of fundamental
importance. We determine the correlations between all suitable
parameters. The correlation coefficient RX,Y between two
parameters X and Y with N measurement values is calculated

by equation (4), whereas C =

(
Cov(X,X) Cov(X,Y )
Cov(Y,X) Cov(Y, Y )

)
is the covariance matrix. The covariance Cov(X,Y ) of X and
Y is given by equation (5).

RX,Y =
CX,Y√
CX,XCY,Y

(4)

Cov(X,Y ) =
1

N − 1

N∑
i=1

(Xi − µX)(Yi − µY ) (5)

Fig. 2b shows the percentage distribution of correlation coef-
ficients ρ between the used parameters.



As mentioned above, the stronger the parameters correlate,
the less entropy do they add to the key. For this reason we have
to define an upper limit for the correlation coefficients ρmax
that we accept. Parameters that are stronger correlated than
this upper limit were rejected. The choice of this limit affects
obviously the number of bits that can be derived. Table I shows
the dependence of the number of bits on ρmax. To analyze
the effect of the upper limit value, we vary them stepwise and
estimate the entropy of the extracted keys by different methods
(see Section VI).

TABLE I
DEPENDENCE OF THE NUMBER OF DERIVABLE BITS ON THE

CORRELATION UPPER LIMIT ρmax .

ρmax .50 .62 .74 .86 .98
bits 30 30 38 63 138

V. SIMULATING PUF RESPONSES

In order to generate an arbitrarily number of keys we
make Monte-Carlo simulations. Based on this, we are able
to generate keys from both different devices and many keys
from a single device.

A. PUF Responses from Different Devices
The simulation of PUF responses from different devices

allows us to test if the results of the entropy estimation are
affected from the limited length of our measured bit streams.
For the simulation we can assume that all of the parameters
are Gaussian distributed. Then, we have to consider the mean
value µ and the standard deviation σglobal of the global
distribution of the parameters and the correlation matrix R
that contains all correlation coefficients. The procedure is as
follows:

1) generation of a normally distributed random number
matrix Z with dimensions (number of keys i, number
of parameters j)

2) Cholesky decomposition of the correlation matrix R
which is based on the measurements R = GGT

3) multiplying Z with G to receive the normally distributed
random number matrix ZR considering the correlations
of R ZR = ZG

4) generation of matrix PMC(i, j) with parameter values
PMC(i, j) = µ(j) + σglobal(j)ZR(i, j)

B. Maximal Bit Error Rate Estimation
The estimation of a maximal Bit Error Rate (BRRmax) is

of great significance. The BRR denotes the difference between
two keys of the same device generated at different times or
environmental conditions (e.g., different temperatures) and it
is also known as the intra-distance which is a measure for the
robustness of a key. The BRR should be preferably 0, however,
due to the noisy nature of physical measurements, this is not
always achieved in practice.

Because of PUF variability across different environmental
conditions and measuring inaccuracy, when a PUF is chal-
lenged a noisy response is obtained. In applications where the

TABLE II
BRRmax FOR DIFFERENT VALUES OF ρmax WITH THE ASSOCIATED

PROBABILITIES P (BRR > BRRmax) FOR A BRR ABOVE BRRmax .

ρmax BRRmax P BRRmax P BRRmax P
.50 9 3.19e-6 10 4.18e-7 11 5.02e-8
.62 9 1.26e-6 10 1.48e-7 11 1.61e-8
.74 10 9.05e-7 11 1.18e-7 12 1.42e-8
.86 11 8.83e-7 12 1.29e-7 13 1.74e-8
.98 19 3.44e-6 20 9.39e-7 21 2.45e-7

PUF response is used as a cryptographic key a noisy response
is not acceptable. To solve this problem, algorithms known
as fuzzy extractors leverage non-secret helper data to work
around the noisy nature of physical measurements typical of
PUF applications (see Section VII). However, such a bit error
correction result in an entropy loss and means a reduced key
length. The amount of reduction depends on the number bit-
flips that have to be corrected. This has to be assessed by the
BRRmax estimation.

In order to be able to estimate the robustness of a pa-
rameter, we repeated our measurements multiple times. As
we can describe the variability by Equation 3, we carry
out a Monte-Carlo simulation to determine the probabili-
ties for dedicated bit error rates. Therefore, we create a
normally distributed random number matrix Z with dimen-
sions (number of keys i, number of parameters j) to re-
ceive the local variation of the parameters for a device
V ′(i, j)(T ) = fnoiseZ(j)V (i, j) + fshift(j)(T ).

We estimate the BRRmax for different values of ρmax
with the associated probabilities P (BRR > BRRmax) for
a BRR above BRRmax. The probabilities are calculated from
a Poisson distribution fit (see Fig. 5). The results are presented
in Table II. The values of each row are based on 10,000 keys
which are created by the Monte-Carlo simulation.

VI. ENTROPY ESTIMATION

An important aspect PUFs should show, besides robustness,
is randomness. This means that given all responses from all
PUF devices, an attacker should have a negligible chance of
estimating a future response of a PUF. Also the bits in a
response should be random and unpredictable, so that chances
for two responses from two different PUFs to be ”close” are
negligible small.

In order to assess the randomness of our PUF design, we
use the following methods:

1) Inter and Intra Hamming Distances: To evaluate the
potential of physical properties for PUF applications, the
ability to uniquely identify each instance is essential. This
can be formally defined by the concept of inter and intra
Hamming distances. The inter distance HDinter depicts the
difference between two keys of different devices and it is
a measure for key uniqueness. The Intra-Distance HDintra

denotes the difference between two keys of the same device
generated at different times or environmental conditions (e.g.,
different temperatures). The Intra-Distance is a measure for
the robustness of a key and determines directly the number



(a) ρmax = .62. (b) ρmax = .74. (c) ρmax = .86.

Fig. 5. Inter and intra Hamming distance distributions of measured data.

of bit-flips. An ideal PUF yields a HDintra = 0% and
HDinter = 50%.

2) CTW Compression: We try to compress our responses
with CTW (Context Tree Weighting), a lossless compression
algorithm [25]–[27]. This method is optimal for stationary er-
godic sources and gives an optimal compression. The resulting
compression on bit strings often used to estimate the entropy
rate [28]. The idea is that bit sequences with full entropy
cannot be compressed, meaning if a lossless compression is
possible, then our responses do not have full entropy. Thus,
CTW gives an upper bound on entropy.

3) NIST Randomness Test: We use the PUF responses as
input to the NIST randomness test suite [29] to verify, if
enough of these tests pass. This would indicate full entropy
with high probability. We configured each test in NIST SP800-
22 in the same manner as in [30], meaning the significance
level of each test is set to 1%, so that 99% of the test samples
pass if the input was truly random. Let the number of samples
be n and the probability of passing each test is p, then the
number of passing samples follow a binomial distribution. The
value p′ of observed passings is then defined as

p′ = p± 3

√
p(1− p)

n
(6)

Also the NIST tests yield a P-value, generated by a χ2 test,
which indicates randomness on a an uniformly distributed
assumption if the P-value is ≥ 0.0001. In order to pass a
NIST test both conditions must be fulfilled – the proportion
of passed tests should exceed the above the threshold defined
above and the P-value should be above 0.0001.

4) NIST Min-Entropy Estimation: Since CTW only gives
us an upper bound on entropy and the NIST randomness
test suite yield test results for full entropy or not, we try
to estimate the min-entropy with tests mentioned in NIST’s
special publication 800-90B [31], indicating a lower bound of
entropy for our purposes.

Our source is not independent and identically distributed
(non-IID), because we have seen so far in the previous sections
that there are correlations in the bit strings. So, we tested our
PUF responses with the following five estimations for non-IID

sources [31]. Each test yields an estimation on min-entropy
and the overall estimated min-entropy is the minimum of these
five values. The tests are configured with a confidence level
of 95%.

a) Collision Test: The collision test measures the mean
time to the first collision in a dataset. Based on these collision
times, the collision statistic tries to estimate the probability
of the most-likely state. For biased noise sources toward an
output or state the test will result in a low entropy estimate, say
when there is a short mean time until a collision. Longer mean
times on collisions end up with in higher entropy estimates.

b) Partial Collection Test: The partial collection test
computes the entropy of a dataset based on how many distinct
values in the output space are observed. Low entropy estimates
are output for datasets that contain a small number of distinct
symbols, and high entropy estimates are the output when the
bit strings diversify quickly.

c) Markov Test: The Markov test consists of different
Markov processes, from first-order up to nth-order. In a first-
order Markov process, the output state depends only on the
current state and in an nth-order Markov process, the output
state depends on the current and all previous n-1 states. To
detect dependencies, the test builds a Markov model to be used
as a template for a given source. The min-entropy estimates
result from measuring the dependencies between consecutive
outputs from the noise source. Thereby the estimates are not
based on an estimate of min-entropy per output, but on the
entropy present in any chain of outputs.

d) Compression Test: The compression test estimates the
entropy rate by compressing the input data set. As compression
method the Maurer Universal Statistic [32] is used. It generates
a dictionary of values, and then computes the average number
of samples required to write an output based on the dictionary.

e) Frequency Test: The frequency statistic models the
probability distribution of the given data set. The entropy
estimation is based on the occurrence of the most-likely
symbol.



(a) ρmax = .62. (b) ρmax = .74. (c) ρmax = .86.

Fig. 6. Inter and intra Hamming distance distributions of simulated data.

TABLE III
CTW COMPRESSION RATES ON REAL DEVICE MEASUREMENTS FOR

DIFFERENT UPPER CORRELATION LIMITS ρmax . NOTE THAT THE DATA
SHOWS AN UNCOMPRESSABILITY, DUE TO THEIR SMALL SIZE AND IS

MENTIONED FOR THE PURPOSE OF VERIFICATION.

Size Size compression rate compression rate
ρmax uncompressed compressed of measurements random file

(bytes) (bytes) (bits/byte) (bits/byte)
.50 148 165 8.25676 8.23649
.53 164 181 8.22561 8.18902
.56 164 181 8.22561 8.18902
.59 164 181 8.22561 8.18902
.62 164 181 8.22561 8.18902
.65 192 209 8.20312 8.18229
.68 254 272 8.16929 8.14173
.71 254 272 8.16929 8.14173
.74 295 313 8.15254 8.13559
.77 331 349 8.12991 8.12085
.80 292 309 8.13356 8.13356
.83 413 432 8.12107 8.10412
.86 451 470 8.11973 8.10200
.89 496 515 8.10282 8.09476
.92 605 624 8.0843 8.08099
.95 645 664 8.08062 8.07752
.98 978 998 8.05828 8.05419

A. Entropy Estimation of Measured Data

We estimated the entropy of the responses with several
different upper correlation limits ρmax from the 70 measured
devices.

1) Inter and Intra Hamming Distances: Fig. 5 shows the
inter and intra Hamming distance distributions of the measured
data for three different values of ρmax. The inter distance
distribution is fitted by a normal distribution. The mean of
the fit is close to 50%. The intra distance distribution is based
on the Monte Carlo simulation (10,000 runs) that we explained
in Section V-B. To be able to identify a device securely, it is
important that the intra and intra distance distributions overlap
just with negligible probability, which is the case here. The
best result do we receive for ρmax = .86.

2) CTW Compression: The compression method was con-
figured with a tree depth of 6 and we used a Krichevski-
Trofimov estimator [25]. It is important to note, that CTW
compression does not work efficiently with the small sizes

we give here as input, so all resulting compression rates are
above 100%. Still, would the bit strings have major statistical
defects, then a compression would be possible even with these
small input sizes. For the purpose of verification we also tried
to compress truly random bits with the same input sizes as our
responses, yielding similar results. Therefore, our bit strings
show an uncompressability. The results can be found in Table
III.

3) NIST Randomness Test: We used the NIST randomness
tests as described in Section VI-3 on our bit strings. The
minimum pass p′ rate for each statistical test is approximately
8, because we chose our number of samples n = 10. The
results consist of two values per test and one symbol – the
first value is the P-value and the second value represents the
number of passed runs p, where p ≥ p′ to pass a test. The
third symbol indicates if all conditions for a passed test are
met (X) or not (×). The results indicate a high entropy in our
bit strings, since all except three tests fail. Nevertheless, the
tests are not that meaningful because the input size to these
tests is very small.

4) NIST Min-Entropy Estimation: Due to the short overall
bit strings we derived from our measurements, the NIST Min-
Entropy Estimation were not able to calculate valid results. So
we omit these tests in this section.

B. Entropy Estimation on Simulated PUF Responses

We estimated the entropy of bit strings, which offspring
from our measurements from real devices. However, the gen-
erated bit strings are not long enough to generate meaningful
results on entropy estimation. Therefore we repeat the entropy
estimation on simulated data, too. For a conservative estimate
we choose the minimum of our estimated entropy value for
further constructions.

We also validated to concatenate and partly replace simu-
lated bits with the one from our real measurements and we
found no significant difference.

1) Inter and Intra Hamming Distances: Fig. 6 shows the
inter and intra Hamming distance distributions of the simulated
data (1,000 runs for both intra and inter distances) for the same



TABLE IV
NIST RANDOMNESS TESTS FOR DIFFERENT UPPER CORRELATION LIMITS ρmax . THE FIRST VALUE PER TEST IS THE P-VALUE. THE SECOND VALUE IS
THE NUMBER OF PASSED RUNS p, WHERE p ≥ p′ TO PASS A TEST. THE THIRD SYMBOL S INDICATES IF ALL CONDITIONS FOR A PASSED TEST ARE MET

(X) OR NOT (×).

ρmax Frequency Block Cumul. Runs FFT Approx. Serial Linear
Frequency Sums Entropy Complexity

P-value p S P-value p S P-value p S P-value p S P-value p S P-value p S P-value p S P-value p S
.50 .03517 9 X .01791 9 X .54520 8.5 X .35049 10 X .00430 10 X .53415 10 X .23641 10 X .00009 10 ×
.53 .03517 9 X .12233 9 X .06688 9 X .91141 10 X .00430 10 X .03517 10 X .37373 9.5 X .35049 8 X
.56 .03517 9 X .12233 9 X .06688 9 X .91141 10 X .00430 10 X .03517 10 X .37373 9.5 X .35049 8 X
.59 .03517 9 X .12233 9 X .06688 9 X .91141 10 X .00430 10 X .03517 10 X .37373 9.5 X .35049 8 X
.62 .03517 9 X .12233 9 X .06688 9 X .91141 10 X .00430 10 X .03517 10 X .37373 9.5 X .35049 8 X
.65 .53415 8 X .06688 9 X .32824 8 X .73992 10 X .00095 10 X .73992 10 X .44232 10 X .00204 8 X
.68 .73992 10 X .53415 9 X .43112 9.5 X .12233 10 X .00888 10 X .06688 10 X .63703 10 X .35049 10 X
.71 .73992 10 X .53415 9 X .43112 9.5 X .12233 10 X .00888 10 X .06688 10 X .63703 10 X .35049 10 X
.74 .91141 10 X .53415 9 X .54520 9.5 X .73992 9 X .00095 10 X .00888 10 X .63095 9 X .21331 9 X
.77 .21331 9 X .53415 10 X .44232 9.5 X .01791 10 X .00888 10 X .53415 10 X .63703 10 X .01791 10 X
.80 .35049 10 X .73992 10 X .53415 10 X .91141 10 X .06688 9 X .35049 9 X .63703 9.5 X .12233 10 X
.83 .99147 10 X .53415 10 X .63703 9.5 X .35049 10 X .00888 9 X .21331 10 X .53415 10 X .73992 10 X
.86 .21331 10 X .21331 10 X .44232 10 X .21331 10 X .03517 10 X .21331 10 X .40340 9.5 X .35049 10 X
.89 .35049 10 X .53415 10 X .14010 10 X .53415 10 X .00204 10 X .53415 10 X .53415 10 X .12233 10 X
.92 .03517 9 X .53415 10 X .23641 8 X .35049 10 X .01791 10 X .53415 10 X .63703 9.5 X .91141 10 X
.95 .73992 9 X .00430 8 X .14010 9 X .73992 10 X .35049 10 X .91141 10 X .51687 10 X .06688 10 X
.98 .73992 8 X 0 5 × .00107 7 × .91141 9 X .01791 9 X .73992 9 X .44232 9.5 X .53415 10 X

values of ρmax. The results are comparable to those from the
measured data.

2) CTW Compression: Again, we configured the compres-
sion method with a tree depth of 6 and we used a Krichevski-
Trofimov estimator [25]. The compression rate is given in bits
per byte, meaning that bit strings with full entropy result in
a compression rate of 8 bits/byte. Our compression results
indicate, that the quantized bit strings up a correlation upper
limit ρmax of 0.71 have nearly full entropy. With an increasing
ρmax the compression rate drops. The results can be found in
Table VIa. Since CTW compression gives us an upper bound
on the entropy, meaning the entropy of our bit strings can be
less, but not more, this bound is also given in Fig. 7.

3) NIST Randomness Test: We used the NIST randomness
tests as described in Section VI-3 on our simulated bit strings.
The minimum pass rate p′ for each statistical test is approxi-
mately 96, because we chose our number of samples n = 100.
However, most of the NIST randomness tests failed, so we
omit the actual results at this place. We hypothesize the reasons
are that our bit strings do not have full entropy, but nearly full
entropy as seen in Table VIa, and that the random number
generator used for generating the simulated bit strings is not
truly random itself.

4) NIST Min-Entropy Estimation: The five tests for a min-
entropy estimation were configured to analyze 8-bit symbols,
to have a comparable symbol size as the CTW compression.
Four tests gave invalid results, indicated with a ⊥, as output.
We also verified the estimated min-entropy values with a
symbol size of 16 bits, where all results were valid, and the
estimations were similar to the 8-bit symbol tests. However,
our results show that the Markov test always produces the
lowest min-entropy estimate, so the other tests do not come
into account anyway. The results can be found in Table VIb.

As the results for an estimated min-entropy give us an
estimated lower bound on entropy of our bit strings. Fig. 7
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Fig. 7. Entropy upper and lower bounds as function of correlation coefficient.

shows the upper and lower bounds on entropy depending on
the chosen upper correlation limit ρmax as a combined result
of CTW compression and min-entropy estimation.

VII. KEY ALIGNMENT

Fuzzy Extractors [17] can be used to extract the same cryp-
tographic keys from correlated measurements, i.e. noisy PUF
measurements. The keys are generated in an enrollment phase
and, when the PUFs are in the field, can be reconstructed with
a previously generated helper data P . This helper information
should leak no information of the key, whatsoever, so it can be
stored in an external memory on the PUF device itself or can
be transmitted over the internet. Our construction can be easily
adapted to be secure against an active attacker on the helper
data. With a robust fuzzy extractor [33] we would introduce
a message authentication code (MAC), which can be used to
authenticate the helper data.

The correctness property of fuzzy extractors state that the
construction outputs the exact same key if the distance between



TABLE V
CTW COMPRESSION AND MIN-ENTROPY ESTIMATION RESULTS FOR SIMULATED BIT STRINGS.

ρmax Compression rate
(bits/byte)

.50 7.95728

.53 7.99916

.56 7.99914

.59 7.99943

.62 7.99953

.65 8.00645

.68 7.99308

.71 7.99439

.74 7.97247

.77 7.89551

.80 7.91321

.83 7.78784

.86 7.75614

.89 7.65709

.92 7.74842

.95 7.23375

.98 6.49315

(a) CTW compression rates of
simulated PUF responses for dif-
ferent upper correlation limits
ρmax.

ρmax Collision Partial collection Markov Compression Frequency Estimated
test collection test test test min-entropy

.50 6.22521 5.90069 5.56694 6.02559 7.11177 5.56694

.53 6.82882 6.64823 5.60197 6.69622 7.31813 5.60197

.56 6.80155 6.63535 5.60936 6.65570 7.32902 5.60936

.59 6.66015 6.64927 5.62541 6.61198 7.31514 5.62541

.62 6.68146 6.53839 5.60263 6.58637 7.32317 5.60263

.65 6.91785 6.92833 5.70984 6.88106 7.46459 5.70984

.68 ⊥ 7.18993 5.43725 ⊥ 7.69332 5.43725

.71 ⊥ 7.14051 5.44469 ⊥ 7.67901 5.44469

.74 6.23016 6.21762 5.18516 6.22934 6.92685 5.18516

.77 6.59699 5.80079 4.95366 6.07370 6.76764 4.95366

.80 6.95015 5.78587 4.65017 6.07816 7.09745 4.65017

.83 7.38529 5.67176 4.79813 6.03277 7.19481 4.79813

.86 5.80063 5.39787 4.57970 5.61252 7.13658 4.57970

.89 5.78053 5.06731 4.65375 5.41692 6.97970 4.65375

.92 5.72708 5.07137 3.99810 5.38990 6.53882 3.99810

.95 4.20345 3.64993 2.54841 4.05859 5.62399 2.54841

.98 3.70251 2.92305 2.29599 3.42860 5.04268 2.29599

(b) NIST tests for min-entropy estimation. The estimated min-entropy is in bits per byte. Note that
tests yielding an invalid result, output a ⊥.

two measurements w and w′ is smaller than some error T ,
denoted as dis(w,w′) ≤ t.

A. Error Correction

We choose the syndrome construction from [17] to reconcile
our measurements w and w′ and followed the idea of [34]
to get parameters for our setting, because recent research
shows that an alternative, i.e. two-stage concatenated codes
with repetition codes, can be very risky [35]. For, e.g., the
setting with ρmax = 0.86 we use a [n = 63, k = 10, t = 13]-
BCH code, capable of correcting 13 errors in a 63-bit code
word. The entropy loss of this construction to an eavesdropper
is n − k = 53 bits. The extracted message has 10 bits after
error correction. We optimized the quantization process, so
that the resulting response w has at most t = 13 errors
with a probability of 1.74 · 10−8, as given in Table II. For
a cryptographic 128-bit key, we need to combine the min-
entropy results from Table VIb and the chosen code, so that
we need⌈

length key/min-entropy rate
length message

⌉
=

⌈
128/0.5725

10

⌉
= 23

PUF responses. This means the overall PUF response, con-
catenated from 23 sensors, has a length of 23 · 63 = 1149
bits and that our overall helper data P has a length of
23 · 53 = 1219 bits. Putting it all together, we receive an
overall authentication failure, due to decoding failure, with a
probability of 1 − (1 − 1.74 · 10−8)23 = 4.00 · 10−7. This
is less than the required standard of at most one failure per
one million uses. Note that, despite our responses do not have
full entropy, our parameters are an improvement of needed
response and helper data bits, compared to [34] while having
roughly the same false rejection rate.

B. Randomness Extraction

To generate a strong secret key, we finally hash our cor-
rected codeword. The lightweight hash function SPONGENT
[36] seems to be a perfect candidate for a resource-constrained
sensor device. In particular, we chose the SPONGENT-
128/256/128 construction, which has an 128-bit output with
full preimage and second-preimage security. To carry on with
the previous example, we hash the corrected 1449-bit code
word with a min-entropy rate of 0.5725 to receive a 128-bit
key with full entropy.

VIII. DEDICATED MEMS-PUF DESIGN

We showed that there are several sensors necessary to derive
a 128-bit key based on our used parameters. This could be
possible in applications in which several sensors are existent
(e.g., 9-degrees-of-freedom sensor node). Another option is to
design a specific MEMS element for security purposes only.
Such a dedicated MEMS-based PUF could be realized in an
area saving manner and it can be optimized providing at least
the same number of suitable properties for the use as PUFs
as an usual gyroscope. Furthermore, the structures of such a
specific MEMS could be designed in a way that increase the
variability of the properties to derive more bits from a single
parameter. One example is the use of the minimum beam width
for the springs in order to increase the percentage influence
of the beam width variation. The aim of increasing variability
could be achieved by measures in the manufacturing process
as well because this is optimized actually to keep variations
at a minimum.

Fig. 8 illustrates our proposal for a dedicated MEMS-based
PUF concept. It is a 3-masses oscillator that is free to move in
all spatial dimensions. The masses are linked by doubling U-
springs which are very sensitive to asymmetries that should



Fig. 8. Dedicated MEMS PUF design.

increase the quadrature signals and the whole structure is
suspended by four doubling U-springs at the outside corners.
The system can be driven and measured by the electrode pairs
CPX/CNX, CPY/CNY in case of in-plane movements and
CPZ/CNZ in case of out-of-plane movements with respect to
the potential of the masses (CM).

The structure contains twelve frequency modes which are
illustrated in Fig. 9. Three frequency modes are based on
in-plane movements in y direction (9a, 9e, 9g) and three
ones in x direction (9b, 9d, 9i). Furthermore, there are six
frequency modes for out-of-plane movements. Three ones
for translational motions (9c, 9h, 9k) and three ones for
rotational motions (9f, 9j, 9l). We are able to drive and
measure all of these mode shapes. A big advantage of such
a dedicated MEMS-based PUF is that it is possible to design
the mechanical structure in a way that the usable frequency
modes are close together and optimally defined for the use as
PUFs. This is in contrast to the structure of a MEMS-based
gyroscope where the focus is on the drive and detection modes
shifting all further frequency modes as far as possible away
from them. Additionally, there is a quadrature signal for each
frequency mode and six pairs of electrodes, i.e., the design
provides in total twelve frequency modes, twelve quadrature
signals and six electrical capacitances.

To estimate the number of bits that could be derived from
our structure, we carry out FEM-simulations using ANSYS
to calculate the frequency modes. Subsequently, we determine
the capacitances between the electrodes and the quadrature
signals with a reduced order model developed by Gugel [37]
which is based on the principle of modal superposition. This
method transmits the equation of motion (Equation 7) used in
the FEM-analysis to a description of the system with reduced
complexity solving the eigenvalue problem (-ω2

i M + K)ϕi
= 0 with the eigenvectors ϕi and the eigenvalues ωi. As a
result, we receive the transformation matrix Φ including the
eigenvectors ϕi. M is the mass matrix, K is the stiffness matrix
and D is the damping matrix. Equation 10 describes the system

TABLE VI
NUMBER OF DERIVABLE BITS DEPENDING ON THE CORRELATION UPPER

LIMIT ρmax .

ρmax .50 .62 .74 .86 .98
bits 62 73 89 110 199

in the modal space with the deflections q whereby x = Φq.

Mẍ+Dẋ+Kx = F (7)
MΦq̈ +DΦq̇ +KΦq = F (8)

ΦTMΦq̈ + ΦTDΦq̇ + ΦTKΦq = ΦTF (9)

M̃ q̈ + D̃q̇ + K̃q = F̃ (10)

For simulations, we consider the following aspects of man-
ufacturing process-related variations:
• geometric dimensions (structure width and thickness),
• slight differences of the beam widths locally on the legs

of the U-springs,
• pressure inside the cavity,
• differences in side wall inclination.
We make 1,000 simulations of the design to estimate the key

length that can be derived from the structure depending on the
correlation upper limit. For the key generation procedure, we
assume the same measurement accuracies and temperature de-
pendencies as determined by the measurements of gyroscopes
before. Table VI shows that it is presumably possibly to derive
more bits than from the investigated gyroscopes. Note that
we consider for this simulations measures in the design only.
A further lengthening of the key can be easily achieved by
”worsen” the manufacturing process. Furthermore, due to the
small dimensions of the structure it is conceivable to combine
several of this structures in one unit concatenating their keys
or to add such a structure to existing MEMS sensors for key
storage purposes.

IX. CONCLUSION

MEMS sensors exhibit great potential for the generation
of cryptographic keys. In this work, we show that MEMS-
based gyroscopes, which have been developed for a broad
range of capabilities, can be used to derive a high entropy
cryptographic key. We identify properties of MEMS-based
gyroscopes, suitable for PUF applications by a large number
of measurements on wafer-level. In order to quantize the
measurement values, we propose for an appropriate procedure.
We verify the uniqueness and reliability of the generated bit
strings. Furthermore, we estimate upper and lower bounds on
the entropy of these bit strings and show how to implement
a fuzzy extractor to derive a full entropy key from the most
conservative entropy estimations. Based on error correction
and randomness extraction we display the number of required
devices for a 128-bit key generation from MEMS-based gy-
roscopes. Additionally, we present a dedicated MEMS PUF
design, solely for usage as a primitive in security applications.
This design is optimized in terms of potential features and chip
area, allowing us to derive a full entropy 128-bit key from just
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Fig. 9. 12 frequency modes of our design proposal for a dedicated MEMS-based PUF.

a few of such structures, while still being able to fit in a single
unit.

A. Limitations and Further Research

We showed that deriving a cryptographic key from a MEMS
is feasible. However, we are still in need to extract more bits
from the MEMS structure itself, enhancing following steps in
the key generation process. Regarding the implementation of
MEMS-based PUFs in sensor systems and the achievement of
a further key lengthening, two approaches are possible.

1) Use of several existent MEMS sensors in a sensor
system, e.g., 9 degree-of-freedom sensor nodes, and add-
up of cryptographic key seeds which can be derived from
the individual sensors.

2) Development of a specific MEMS-based PUF device,
optimized for PUF applications.

The first approach provides an additional value for existing
sensors and aims at its enhancement. This requires further
investigations of MEMS-based sensors. On one hand, there

could be more suitable parameters than that we have actually
measured. For example in case of gyroscopes, there should
be more frequency modes existent than nine. Additionally, it
is possible to measure a quadrature signal for each frequency
mode but we measured just two, because of constraints on
the measurement setup. Especially, the quadrature signals are
potentially able to lengthen the derivable keys, because they
can be used to extract proportionally many bits and show
little correlation with other parameters. On the other hand,
investigations of different MEMS sensors have to be done.
Besides, further tests should be carried out to analyze the
reliability of different parameters. For example, these could
be tests on packaged devices as mechanical stress tests and
aging tests.

The second approach aims at the development of a dedicated
MEMS-PUF which benefits from the experiences gained from
investigations on different existing MEMS sensors. The design
and the manufacturing process can be optimized to increase
variability and thus deriving more bits per parameter. More-



over, such a specific design can be optimized that it provides
more suitable parameters for PUF applications than a standard
MEMS sensor. Therefore a dedicated MEMS PUF would
present an excellent candidate for high security applications.
Due to the small size of such an element, it is also conceivable
to add this structure to a MEMS sensor without making them
significantly larger or affecting its functionality.

Besides the construction of an actual PUF, estimation on
min-entropy is an open research direction. State-of-the-art
estimations, e.g., CTW compression, focus on giving an upper
bound of entropy, leaving the problem of possible less entropy
open. Clearly, for high security applications a sound estimate
of the enclosed lower entropy bound should be given.

B. Related Work

1) Physical Unclonable Functions: PUFs have been di-
vided into two categories depending on the number of uncorre-
lated CRPs that they accept. These two categories are strong
PUFs and weak PUFs (also called obfuscating PUFs [38]),
originally introduced in [9] and further developed in [38],
[39]. Rührmaier et al. has formalized the strong PUF definition
[38]. Their model postulate that an attacker has access to an
oracle, which replies to a challenge Ci with the same response
Ri as the real system. Thus, concepts that protect the access
to the PUF are not taken into account, although they would
lead to increased security. Examples include concepts such
as controlled PUFs which protect the access to the PUF with
pre- and postprocessing steps [10]. A strong PUF has so many
CRPs that an attacker cannot measure all of them during a
limited time period. Furthermore, it should be infeasible to
build a digital model that would allow an attacker to come
up with the right response on a randomly choosen challenge.
In authentication applications, a strong PUF has the advantage
that the response of the system can be transmitted without any
additional security because each CRP is only used once.

A promising candidate for an electrical strong PUF was the
class of Arbiter PUFs. Arbiter PUFs generate their responses
by exploiting delay information of, e.g., two identical con-
structed paths, of ICs [8]. Such an Arbiter PUF has a multi-
bit input and computes a 1-bit output. The chosen paths are
stimulated via multiplexing by the specific challenge and an
arbiter compares which of the both competing paths was faster.
By concatenating the responses, corresponding to different
challenges, a unique key is extracted. Variations of the Arbiter
PUF presented in the literature include the XOR Arbiter PUF
[8], the Lightweight PUF [40] and the Feed Forward Arbiter
PUF [7], which aim for a higher security level than the original
Arbiter PUF. However, it has been shown several times that
it is possible to model the Arbiter PUFs behavior based on a
given set of CRPs by machine learning (ML) techniques, e.g.
[41], [42].

Weak PUFs have only a few CRPs, or in some cases, just
one. Hence, measures are needed to protect the key against
unauthorised access. A popular candidate from this PUF class
is the SRAM PUF, introduced by Guajardo et al. [9]. This
approach utilizes the power-up behavior of SRAM cells. On

power-up the bi-stable memory cells of a SRAM memory
tend to either the same bit value with high propability or
a random bit. The PUF is formed out of the robust cells,
which behave robust on every power-up. The concatenation
of the start-up values of all these memory cells is a unique
characteristic of each memory array. SRAM-based PUFs can
deliver a large number of bits, with the size of an SRAM array
as the only limit, and the memory cells do not correlated with
each other. Advantageously, SRAM cells are inherent in most
semiconductor devices. Hence, it does not require additional
devices or modifications in the manufacturing process.

However, it has been already shown that it is possible to
read out SRAM PUFs by invasive and semi-invasive attacks
[43]. Furthermore, Helfemeier et al. produced a physical clone
of a SRAM PUF [44].

Note that weak and strong PUFs aim at different purposes.
Strong PUFs could be compared with a physical hash function,
whereas weak PUFs are used for safeguard a secret key [45].

Until now, MEMS-based PUFs have received little attention,
unlike Arbiter or SRAM PUFs. The first MEMS-based PUF
was proposed by Rosenfeld et al. [46]. Their method uses
an array of on-chip photodiodes and a translucent coating.
The transmittance of the coating is not uniform and causes
variations of the measured light level. The key is generated
by the variations between the amounts of light sensed by the
photodiodes.
Another work focused on MEMS is from Aysu et al. [14].
They used the deviations of an accelerometer’s self-test and
offset values for a low-cost device authentication. However,
they stated that their keys did not achieve the uniqueness as
the keys of, e.g., SRAM PUFs.
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