44 research outputs found

    Soft-Switching DC-DC Converters

    Get PDF
    Power electronics converters are implemented with switching devices that turn on and off while power is being converted from one form to another. They operate with high switching frequencies to reduce the size of the converters\u27 inductors, transformers and capacitors. Such high switching frequency operation, however, increases the amount of power that is lost due to switching losses and thus reduces power converter efficiency. Switching losses are caused by the overlap of switch voltage and switch current during a switching transition. If, however, either the voltage across or the current flowing through a switch is zero during a switching transition, then there is no overlap of switch voltage and switch current so in theory, there are no switching losses. Techniques that ensure that this happens are referred to as soft-switching techniques in the power electronics literature and there are two types: zero-voltage switching (ZVS) and zero-current switching (ZCS). For pulse-width modulated (PWM) Dc-Dc converters, both ZVS and ZCS are typically implemented with auxiliary circuits that help the main power switches operate with soft-switching. Although these auxiliary circuits do help improve the efficiency of the converters, they increase their cost. There is, therefore, motivation to try to make these auxiliary circuits as simple and as inexpensive as possible. Three new soft-switching Dc-Dc PWM converters are proposed in this thesis. For each converter, a very simple auxiliary circuit that consists of only a single active switching device and a few passive components is used to reduce the switching losses in the main power switches. The outstanding feature of each converter is the simplicity of its auxiliary circuit, which unlike most other previously proposed converters of similar type, avoids the use of multiple active auxiliary switches. In this thesis, the operation of each proposed converter is explained, analyzed, and the results of the analysis are used to develop a design procedure to select key component values. This design procedure is demonstrated with an example that was used in the implementation of an experimental prototype. The feasibility of each proposed converter is confirmed with experimental result obtained from a prototype converter

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Split DC bus converters for power electronic and AC-DC Microgrid applications

    Get PDF
    Power electronic converters are used extensively for electrical power conversion in applications such as renewable energy systems, utility applications, and electric vehicles. Such converters are needed as it is rare for a source voltage to fit the needs of a load or a set of loads for any particular application. They consist of active semiconductor switches and passive components that are combined in circuit structures (topologies) that are operated with a control strategy. The focus of this thesis is on AC-DC and DC-DC converters and their applications in AC-DC microgrids. AC-DC converters are typically two-stage converters that consist of a front-end AC-DC converter followed by a DC-DC back-end converter. The AC-DC front-end converter converts AC voltage from an AC source such as the grid to a DC bus voltage that has been filtered by an intermediate DC bus capacitor; the DC-DC converter then converts this DC voltage into the desired output voltage. A less expensive alternative to this two-stage approach is to have just one converter perform AC-DC and DC-DC conversion. This thesis examines isolated single-stage AC-DC converters and back-end DC-DC converters for two-stage converters that have a split DC bus, with either two capacitors in series across the bus to split the voltage or with two parallel current paths to split the bus current. These converters have fewer components or fewer light-load losses than converters with conventional topologies. Four new power converters with a split DC bus are proposed in this thesis: a reduced-switch three-phase AC-DC converter, two lower power DC-DC converters, and an AC-DC converter that can be used to simplify the architecture and control of AC-DC hybrid microgrids. The proposed converters increase efficiency and reduce the control complexity of hybrid microgrids. The operation of each converter is explained, the steady-state characteristics and the dynamic model of each converter are determined by mathematical analysis, and a procedure that can be used for their power and control stages design is developed. Experimental and simulation results are used to confirm the feasibility of the converters and simplified AC-DC hybrid microgrid, and conclusions that resulted from the thesis work are stated

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Low Power AC-DC and DC-DC Multilevel Converters

    Get PDF
    AC-DC power electronic converters are widely used for electrical power conversion in many industrial applications such as for telecom equipment, information technology equipment, electric vehicles, space power systems and power systems based on renewable energy resources. Conventional AC-DC converters generally have two conversion stages – an AC-DC front-end stage that operates with some sort of power factor correction to ensure good power quality at the input, and a DC-DC conversion stage that takes the DC output of the front-end converter and converts it to the desired output DC voltage. Due to the cost of having two separate and independent converters, there has been considerable research on so-called single-stage converters – converters that can simultaneously perform AC-DC and DC-DC conversion with only a single converter stage. In spite of the research that has been done on AC-DC single-stage, there is still a need for further research to improve their performance. The main focus of this thesis is on development of new and improved AC-DC single-stage converters that are based on multilevel circuit structures (topologies) and principles instead of conventional two-level ones. The development of a new DC-DC multilevel converter is a secondary focus of this thesis. In this thesis, a literature survey of state of the art AC-DC and DC-DC converters is performed and the drawbacks of previous proposed converters are reviewed. A variety of new power electronic converters including new single-phase and three-phase converters and a new DC-DC converter are then proposed. The steady-state characteristics of each new converter is determined by mathematical analysis, and, once determined, these characteristics are used to develop a procedure for the design of key converter components. The feasibility of all new converters is confirmed by experimental results obtained from proof-of-concept prototype converters. Finally, the contents of the thesis are summarized and conclusions about the effectiveness of using multilevel converter principles to improve the performance of AC-DC and DC-DC converters are made

    A Four-Port DC-DC Converter for a Hybrid Wind/Solar Energy System

    Get PDF
    With the increasing demand for clean and hybrid energy in the last decades, more and more attentions are paid to the renewable energy, e.g., wind and solar energy. According to the International Energy Agency, solar power was growing-fastest source in the world. In a hybrid wind/solar system, power converters play an important role in in power management and the voltage regulation. Gradually, power systems have undergone a paradigm shift from centralized generation to distributed generation. Smart grid, which is a combination of power systems and communication networks, was proposed to allow power systems to fit the future system challenge. However, Due to their intermittence characteristics, energy storage such as battery is used together with renewable energy sources. Generally, there are two ways to integrate these distributed energy sources, one is to use several individual converters for each source; the other is to use an integrated multiple ports converter. The later iv solution is preferable because some component can be shared and has lower cost and higher efficiency than that using several individual converters. In this thesis, a new four-port DC-DC converter is proposed for a hybrid wind/solar energy system. The operation principle is analyzed and different controllers are designed to regulating the DC-link and source voltage, power management for the battery and maximum power point tracking (MPPT) for the renewable energy sources. The effectiveness of the hardware design and controllers are validated by a developed prototype which interfaces wind turbine generator, photovoltaic (PV) panel, battery, and the load

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters
    corecore