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1. Introduction 

Since the invention of electric vehicles (EVs), there was always a perception that 

EVs will dominate the future of vehicular transportation [1]. The importance of 

reducing industrial and vehicular emissions to minimize the effects of global 

warming, along with the fact that EVs have improved significantly in terms of 

technology and performance in recent years, has attracted many companies and 

people to investigate further on EVs [2, 3]. Even though, internal consumption 

engine vehicles (ICEV) are still superior to EVs in terms of performance and costs. 

However, sales of different kinds of EVs are growing rapidly [4]. 

    Fig. 1 shows the four main types of prevailing EVs [5]. Electricity is the only 

energy source in battery electric vehicles (BEV). Due to the replacement of patrol 

and gasoline tanks with big batteries, BEVs are completely environmentally 

friendly. Low driving range, the high cost of the batteries, and the long time 

required for the batteries to be fully charged are some of the main problems of 

BEVs. Required energy in hybrid electric vehicles (HEV) is supplied through two 

energy systems. Main energy system (MES), which generally is a fuel cell (FC), 

and rechargeable energy storage system (RESS), which can be either batteries or 

ultra-capacitors. Both gas and electric motors are utilized in HEVs structure. HEVs 

are highly efficient and have rather long driving ranges among different kinds of 

EVs. Different types of HEVs are categorized based on the type of hybridization 

and connection of energy systems [6] in their structure. Compared to HEVs, plug-

in hybrid electric vehicles (PHEV), due to the usage of bigger batteries, are more 

reliant and can drive longer periods supplied only by the RESS. The main 

advantage of PHEVs is the possibility of charging the batteries by plugging the car 

into an outlet [7]. Similar to HEVs, extended-range electric vehicles (EREV) have 

both MES and RESS as energy systems. The difference is that only an electric 

motor is considered in EREVs and the produced energy by the internal consumption 

engine (ICE) is used to charge the RESS through a generator [8]. This paper reviews 

DC-DC Convertors for EV Applications based on different terms such as; isolation 

and type of switching. Moreover, the control strategies, comparative factors, 

selection for a specific application, and recent trends are reviewed too. It is 

organized as follows. In the first section, different types of DC-DC converters are 

considered. DC-DC converters that can be used in EV applications are presented in 

section 2. Control devices and strategies are described in the third section. The 

selection of components and Comparative factors for DC-DC converters in EV 

application are presented in the fourth and fifth sections, respectively. The main 

aspects of designing DC-DC converters in EV applications are deliberated in 

section 6. Section 7 introduces the latest trends and developments of DC-DC 

converters in EVs. Conclusions drawn from this paper are presented in the last 

section. 
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Fig. 1 Main Types of EVs 

 

2. DC-DC Converters 

The usage of DC-DC converters to change the input DC voltage to the required 

output DC voltage are very common in many applications [9]. DC-DC converters 

are capable of providing either voltage step-up or step-down and can be classified 

into two main categories; isolated and non-isolated. Non-isolated converters are 

mostly used when the required change in the voltage is small, and contain six basic 

types that are shown in Fig. 2. The main problem of the non-isolated converters is 

that they offer lower protection for high voltage levels in comparison with the 

isolated DC-DC converters. The main components used in these converters are 

switching power MOSFETs, flywheel diodes, inductors, and capacitors. A control 

circuit is usually applied to these converters to monitor the output voltage and 

maintain it at the desired level by controlling the switching frequency and duty 

cycle of the switches [10,11]. 

 

 
Fig. 2 Basic topologies of non-isolated DC-DC converters 

 

    In isolated DC-DC converters the input and output terminals are separated. High 

isolation voltage is one of the main features of these types of converters. 

Furthermore, it is possible to use these converters as a floating ground for different 

types of devices. Besides the fact that isolation has made these converters a safer 

choice, unlike the non-isolated type, isolated converters are also capable of 

blocking noise and other interferences. Therefore, a clean-up output voltage can be 
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expected. Fig. 3 shows four basic types of isolated DC-DC converters.  The main 

components used in isolated DC-DC converters are quite similar to non-isolated 

converters, except that in isolated converts a transformer is also used to provide 

isolation. So, their topologies are usually more complex than non-isolated DC-DC 

converters. Moreover, their control circuit has higher complexity and requires much 

more attention [11].  

 

 
Fig. 3 Basic topologies of isolated DC-DC converters 

 

    The development of high-efficiency DC-DC converters is important in many 

applications [12–16]. To design a DC-DC converter with high efficiency it is 

necessary to reduce energy losses in the converter as much as possible. These losses 

contain different conduction losses, switching losses, output losses, operation 

losses, etc. The reduction of mentioned losses hugely depends on the specification 

of the converter [17,18].  One of the main losses in DC-DC converters is switching 

loss which depends on the switching method used in the converter. Two main types 

of switching which can be used in DC-DC converters are soft and hard switching. 

Hard switching means that there is an overlap between voltage and current when 

the switching happens. This overlap can cause energy loss in the converter and 

decrease the overall efficiency. Hard switching technique is usually used in 

Flyback, Forward, 2-SW Flyback, 2-SW Forward, and Full-bridge converters [19]. 

In soft switching technique either voltage (ZVS) or current (ZCS) is brought to zero 

before the switching occurs which will hugely decrease the amount of energy losses 

in comparison with the hard switching technique. This technique will also minimize 

the EMI in the converter. The sample topologies of soft switching converters are 

LLC-HB resonant, active clamp Forward, active-clamp Flyback, asymmetrical 

Half-bridge, and Full-bridge with phase shift [18,20]. There are also some other 

parameters which should be considered for designing a DC-DC converter such as; 

bi/uni-directional operation, weigh, efficiency, switching frequency and etc. 

    In recent years DC-DC converters have reached an acceptable condition in terms 

of quality, volume, weigh, performance, isolation, safety, etc. Also, they are feeding 

various loads with different power ratings in a large number of applications [21–
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23]. High efficiency, low number of active and passive components, and simple 

control circuit are the main parameters in the DC-DC converters, recently [24–26]. 

 

3. Different kinds of DC-DC converters for EV application 

DC-DC converters find applications in various functions related to EVs. They are 

used for charging the batteries [27,28], interfacing different DC-links and 

distribution systems [29,30], interfacing the power sources to DC-link [31,32], etc.  

    Due to increased electrical needs in vehicles, automotive industries are usually 

using 42V/300V systems in the vehicles [33]. However, a 14V bus is still available 

in some EVs. A DC-DC converter is the device used in all configurations to enable 

the power flow between these buses [34]. 

    An electrical or hybrid vehicle’s power train contains a combination of two or 

more energy sources (fuel cell and battery or super capacitor), a motor drive system, 

and in many cases a bidirectional DC-DC converter placed between the battery and 

the motor drive, to power an electric drive system as shown in Fig. 4. In this 

condition, MES provides an extended driving range, and RESS provides good 

acceleration and rechargeable braking. RESS can be connected to MES in many 

ways (parallel, series, series-parallel). A simple configuration is to connect two 

devices in parallel. But, in this configuration, the power drawn from each energy 

system cannot be controlled and is determined by the impedance of the power 

systems which depends on many parameters, e.g. temperature, state-of-charge, 

health, and point of operation [35]. The possibility of choosing different voltages 

for the power systems and also, controlling the power of each device are two 

advantages of using DC-DC converters in EVs. The different combination and 

configuration of the MES with the RESS and their comparison is discussed in many 

research papers [36]. It can be said that having both MES and RESS results is the 

best type of EV. Therefore, using a minimum of one DC-DC converter is necessary 

for EVs. DC–DC converter enables independent optimization of the battery system 

and reduction of the electric machine size [37,38]. The DC bus voltage of the motor 

drive can be increased, which leads to extensions to the motor speed range without 

field weakening. Consequently, the efficiency of both motor and the inverter are 

improved [39]. Also, the converter can adjust the DC bus voltage dynamically, so 

that the system efficiency can be further optimized [40]. The power train 

architecture using a DC-DC converter has been successfully incorporated into 

commercial vehicle systems [41–44]. 

    Based on what discussed above, the applications of DC-DC converters for an 

HEV can be summarized as is shown in Fig. 5. 
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Fig. 4 Main role of DC-DC converter in EVs 

 

 

Fig. 5 The application of DC-DC converters in EVs 

 

 

Fig. 6 Different applications of DC-DC converters in EV [34] 
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    Different configurations and topologies of DC-DC converters that are used in 

many systems inside the car are shown in Fig. 6 [45]. Unidirectional DC-DC 

converters are usually used in parts like; sensors, entertainment, safety, and control. 

They are also used in DC motor drives and electric traction. Bidirectional DC-DC 

converters find their application when regenerative-braking and recharging of the 

battery or super-capacitors are needed. The power flow in a bidirectional converter 

is usually from a low-voltage side (battery or a super capacitor) to the high-voltage 

side (DC link) and vice versa with high gain. The best way to reach high voltage 

gain is using transformer-based converters such as Flyback, Full-bridge, Half-

bridge, and Push-pull. However, using the large transformer turns ratio increases 

the voltage and current stress on primary elements.  During regenerative braking, 

the power flows back to the low-voltage side to recharge the battery (Buck mode). 

As a backup power system, the bidirectional DC-DC converter facilitates the safe 

operation of the vehicle when ICEs or electric drives fail to drive the motor. Due to 

the aforementioned reasons, the attention to design high-power BDCs is increased 

in recent years. Moreover, the various approaches have been proposed to improve 

the efficiency of them. As a result, different methods to reduce switching losses 

[46–53], different methods to improve magnetic features [54–58] and approaches 

to implement devices having lower rating of voltage [59,60] are proposed in the 

literatures. 

    To ensure the safety of the loading devices, isolation is recommended for either 

BDCs or unidirectional DC-DC converters [61]. Due to the increased power 

capability of the converters over the last decade which has led to high current stress, 

high conduction and switching losses, high-frequency transformers are used in their 

structures [62]. But, the high-frequency transformer leads to some problems: 

It is preferred in either unidirectional or bidirectional DC-DC converters, to ensure 

the safety of the loading devices, to be isolated [61]. The increased power capability 

of the converters over the last decade has led to high current stress in these 

converters and consequentially led to a significant increase in the conduction loss 

and switching loss of the switching devices [62] and also to obtain isolation a 

converter incorporates a high-frequency transformer. The inclusion of the high-

frequency transformer leads to some problems: 

• The leakage inductance of the transformer leads to high voltage stresses across 

the converter switches and diodes due to ringing caused by the leakage 

inductance and the transistor/diode output capacitance. 

• Increases converter area, volume, weight, and cost. 

• Increases Electro Magnetic Interface (EMI).  

    In DC-DC converters, designs are aimed to solve these problems and to obtain 

an efficient, cost-effective, and high-quality converter. To solve the problems 

caused by the energy stored in the transformer leakage inductance which leads to 
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high voltage/current stress, active-clamping, active commutation, passive snubbers, 

soft commutation, and soft-switching solutions have been incorporated. However, 

the setback of these solutions is that the converter will need more components and 

gets more complex. Since in bidirectional DC-DC converters, power needs to be 

able to flow in both directions so many full-bridge-based topologies have been 

introduced and to minimize the components used in the converter many half-bridge-

based topologies have also been developed. Many approaches based on voltage-fed 

converters [63–68] (used in many applications), current-fed converters [69–81] 

(due to their intrinsic characteristic of low current ripple are mainly used in high-

voltage gain step-up applications, and usually active-clamping technique is used in 

these converters), interleaved converters [74,75], and some other topologies [76–

81] have also been proposed by designers and researchers.  

    In this paper, based on isolation and the switching method used in the topologies, 

DC-DC converters are classified into four main groups. Fig. 7 shows the proposed 

classification. 

 

Fig. 7 Classification of DC-DC converters for EV application 

 

3-1. Isolated, Soft-switched DC-DC converters  

Galvanic isolation, by improving the safety of the loads, and soft-switching 

technique (ZVS, ZCS, ZVZCS), by reducing the losses in the converter, has made 

this class suitable for many applications of EVs. Based on these features, for 

applications that contain a high voltage bus, on the input or output, and also 

applications that include sensitive loads or are in direct contact with passengers, it 

is preferable to use this class of converters. Using transformers in these converters 

will cause the problems mentioned before, even though by using the soft switching 

technique designers have tried to minimize the problem caused by a transformer. 

But still using both isolation and soft switching means increasing the number of 

components, weigh, and volume of the converter. These are the setbacks that can 

persuade designers to use different classes of converters in their vehicles. Different 

converters in this class proposed for various applications in EVs, are studied in this 

paper. 
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Fig. 8 Proposed converters based on (a) Flyback [82] and (b) Forward [83] topology 

 

    In [82] C.Y. Inaba et al. have proposed a unidirectional two-switch high-

frequency Flyback transformer linked zero voltage soft switching PWM DC-DC 

power converter, shown in Fig. 8 (a). The circuit of this converter is mainly 

composed of two active power switches and a Flyback high-frequency transformer. 

In addition, soft switching from light to full load conditions is realized by using two 

passive lossless resonant snubbers. By connecting an additional diode and inductor 

at the output side, this converter can also function as a forward-type DC-DC power 

converter. Results of experimenting with a 1kW prototype show that, compared to 

a hard-switched design of this converter, the efficiency is approximately 1.3 to 

3.0% higher. 

    In [83] Ehsan Adib et al. have proposed a forward-type resonant bidirectional 

DC-DC converter which is illustrated in Fig. 8 (b). As this figure shows, the 

transformer is modeled by a magnetizing inductor, a leakage inductor, and an ideal 

transformer. Other components of the converter contain four switches and a 

resonant capacitor. ZCS is achieved for all switches by resonance between the 

leakage inductor of the transformer and the resonant capacitor. No other extra 

element is utilized for the resonant technique in the converter. Since the transformer 

in the converter is forward type, it has a low volume and hence has less effect on 

the volume of the converter. Moreover, the results of the simulation show that the 

branch that contains two series switches has a small current which proves the 

possibility of reducing the number of switches in the converter as explained in [83]. 

 

Fig. 9 Proposed converters based on (a) half-bridge [84] and (b) full-bridge [85] 

topology 
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    Gang Ma et al. have proposed a bidirectional DC-DC converter based on the 

half-bridge converter in [84]. The proposed converter achieves ZVS for the entire 

main switches and ZCS for the rectifier diodes in the large-load range. In the circuit 

of the proposed converter shown in Fig. 9 (a), the primary and secondary sides of 

the circuit are symmetrical and switches conduct complimentary, capacitors are 

identical and inductors are important for energy transfer. A 1kW experimental 

prototype of the proposed converter in [84] is compared with the hard-switched 

half-bridge DC-DC converter. Even though the proposed converter has a slightly 

lower efficiency than the hard-switched prototype in light loads, overall the results 

show that the proposed soft-switched converter is about 2% more efficient than the 

half-bridge hard-switched prototype. 

    A converter based on the unidirectional full-bridge topology is proposed in [85] 

(Fig. 9 (b)). Full- bridge topology is considered the most popular topology in the 

range of 1-5kW for DC-DC converters. The proposed converter in [85] can 

efficiently deliver power over a very wide range of loads. Pahlevaninezhad et al. 

have employed a symmetric passive close to the lossless auxiliary circuit of the 

converter, which by providing a reactive current for the full-bridge switches will 

guarantee ZVS at turn-on at switches for all load conditions. Moreover, to 

overcome the problems associated with voltage-driven rectifiers, the converter is 

based on a current-driven rectifier, ensuring ZVZCS operation for all load 

conditions.  

 

 

Fig. 10 Proposed converters based on a Push-Pull topology [86] 

9

Hosseinzad and Mirzaei: A Comprehensive Review of DC-DC Converters

Published by Scholarworks@UAEU, 2023



 

    In [86] a unidirectional current-fed push-pull DC-DC converter is proposed for 

high-power applications such as EVs, illustrated in Fig. 10. As this figure shows, 

the proposed converters are composed of; an input filter inductor, three main 

switches, a clamp circuit which contains three clamp switches and a clamp 

capacitor. Moreover, a diode bridge is also designed on the HV side. The proposed 

converter by Sangwon Lee et al. has features like; active clamping of the transient 

surge voltage caused by transformer leakage inductance, natural ZVS turn-on of 

main switches, and ZVZCS of clamp switches, etc. which in an improvement the 

overall efficiency of the proposed converter. A 5kW prototype of the proposed 

converter has been experimented proving the practicality of the converter. 

    Details of some isolated soft switched papers and experimental porotypes in 

these papers are given in Table. 1. 

 

3-2. Isolated, Hard-switched DC-DC converters  

Galvanic isolation is the feature that is considered in both class 1 and class 2 of DC-

DC converters. To achieve this, a transformer is used in the converter which means 

that the safety of the loads will be obtained. As it was discussed in class 1 of 

converters, utilizing a transformer in the circuit of the converter has disadvantages 

like increasing stress on the switches and EMI in the converter. To reduce these 

effects soft switching technique is used in class 1 of converters which further 

increased the number of components and size of the converter in this class. 

Different from what was done in class 1, soft switching is not considered in this 

class. Instead in this class, it is tried to reduce these effects as much as possible 

when choosing different parameters of the converter or designing the control 

method. Overall, it is expected for the converters in class 2 to have a lower price, 

volume, and weigh compared to class 1.  

 

 
Fig. 11 Proposed converters based on (a) Flyback [130] and (b) Forward [131]  
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Table. 1 Some isolated soft switched DC-DC converters for EV application 

Paper 
Base 

Type 

Nominal 

Power 

Switching 

Frequency 

Input 

Voltage 

Output 

Voltage 

Max 

Efficiency 

Number 

of 

Switches 

Number of 

Passive 

Elements 

Application 

Claudio Y. Inaba 

et al. 2003 [82] 
Flyback 1kW 25kHz 300V 100V 93.3%  2 16 

Interfacing DC-link and 

Traction System 

Ehsan Adib et al. 

2016 [83] 
Forward 40W 142kHz 200V 48V ≈ 93% 4 5 

Interfacing Battery and 

DC-link 

Gang Ma et al. 

2009 [84] 

Half-

Bridge 
1kW 20kHz 60V 144V 93% 4 11 

Interfacing Battery and 

DC-link 

Majid 

Pahlevaninezhad 

et al. 2012 [85] 

Full-

Bridge 
3kW 220kHz 400V 300V ≈ 97% 4 16 

Interfacing DC-link or 

Fuel Cell with Traction 

System 

Sangwon Lee et 

al. 2010 [86] 
Push-Pull 5kW 50kHz 60-110V 380V __ 6 12 

Interfacing Battery and 

Traction System 

Roman Kosenko 

et al. 2016 [87] 
Push-Pull 300W 100kHz 20-30V 400V 96.3% 6 7 

Interfacing Battery and 

Traction System 

Ankur Patel 2016 

[88] 
Forward 1.65kW 1.1Mhz 384V 48V 97.94% 6 10 

Interfacing Battery and 

Traction System 

Sina Salehi 

Dobakhshari et al. 

2016 [89] 

Half-

Bridge 
150W 100kHz 24V 380V 96.3% 2 13 

Interfacing Battery and 

Traction System 

Fei Shang et al. 

2016 [90] 

Full-

Bridge 
3kW __ 24V 400V ≈ 94% 4 14 

Interfacing Battery and 

Traction System 

Alexander Isurin 

et al. 2016 [32] 

Full-

Bridge 
3.1kW 120kHz 30V 380V 94.1% 4 9 

Interfacing Battery and 

Traction System 

Saeed Anwar et 

al. 2016 [31] 

Dual-

Active-

Bridge 

5kW 50kHz 200V 450V ≈ 98.5% 8 7 
Interfacing DC-link and 

Traction System 

Sven Bolte et al. 

[29] 

Dual-

Active-

Bridge 

2kW 25-75kHz 400V 14V 98.2% 6 7 
Interfacing Battery and 

Traction System 

Kumar Goswami 

et al. 2016  [94] 

Dual-

Active-

Bridge 

2.5kW 50kHz 380V 50V __ 8 8 
Interfacing battery and 

Traction System 

 

    Fig. 11 (a), illustrates a converter designed based on the bidirectional Flyback 

topology proposed in [130]. Bhattacharya et al. have proposed a multi-power-port 

DC-DC converter capable of handling multiple power sources while maintaining 

the simplicity of the converter. High gain, wide load variations, and lower output-
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current ripple are other features of the proposed converter by Bhattacharya. The 

transformer winding used for the converter has drastically reduced the leakage 

inductance in the converter. A 6kW prototype of the converter has experimented 

and the results show an efficiency of 96% for the proposed converter. 

    A unidirectional Forward topology-based DC-DC converter proposed in [131] is 

shown in Fig. 11 (b). An interleaved series input parallel output active clamp 

forward topology is designed and experimented by Kimura et al. The proposed 

converter has a superior performance and configuration in terms of size and losses 

compared to conventional similar forward topologies. The performance of the 

proposed converter is experimented by a 500W prototype and based on the results 

the efficiency of the converter is close to 86%.  

 

 
Fig. 12 Proposed converters based on (a) half-bridge [132] and (b) full-bridge 

[133] topology 

 

    [132] proposes a bidirectional DC-DC converter suitable for low-power 

applications. The proposed topology by Manu Jain et al. is based on a half-bridge 

converter on the primary side. The secondary side of the converter is based on a 

current-fed push-pull DC-DC converter, and a high-frequency transformer is used 

between the two sides. The proposed converter, illustrated in Fig. 12 (a) has 

advantages like; a reduced number of parts due to the usage of the same components 

in both directions of power flow, low stress on switches without using the soft-

switching technique, low current ripple, and the minimal number of switches. An 

experimental prototype of the converter is tested and the efficiency of the converter 

is reported as 86.6% in forward mode and 90.5% in backup mode.  

    Operation, design, and control of a bidirectional full-bridge isolated bidirectional 

DC-DC converter for HEVs are discussed in [133]. Mathematical relations of 

important parameters of the converter, simulation, and experimenting a test 

prototype to approve simulation results have also been carried out by Mi et al. Fig. 

12 (b) illustrates the converter proposed by them. 

    Fig. 13 illustrates a unidirectional push-pull DC-DC converter proposed by 

Marek Galek et al. The authors in [134] aim to obtain a flexible DC/DC converter 

block that can be used to cover a wide power range as well as a wide input and 

output voltage range. The primary side of the proposed converter is based on a half-
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bridge push-pull converter and the secondary side contains a center-taped 

transformer with a midpoint rectifier.  

    Details of some other non-isolated soft-switched papers and experimental 

porotypes in these papers are given in Table. 2. 

 

 
Fig. 13 Proposed converters based on a Push-Pull topology [134] 

 

Table. 2 Some isolated hard-switched DC-DC converters for EV application 

Paper 
Base 

Type 

Nominal 

Power 

Switching 

Frequency 

Input 

Voltage 

Output 

Voltage 

Max 

Efficiency 

Number 

of 

Switches 

Number of 

Passive 

Elements 

Application 

Tanmoy 

Bhattacharya et al. 

2009 [130] 

Flyback 6kW 20kHz 60V 330V 96% 8 2 
Interfacing battery and 

traction system 

Shota Kimura et 

al. 2017 [131] 
Forward 500W 175kHz 202V 12V ≈ 86% 4 20 

Interfacing battery and 

DC-link 

Manu Jain et al. 

2000 [132] 

Half-

Bridge 

100-

300W 
100kHz 

300-

400V 
48V ≈ 91% 4 9 

Interfacing battery and 

traction system 

C. Mi et al. 2008 

[133] 

Full-

Bridge 
10kW 10-20kHz 100V 600V __ 8 6 

Interfacing DC-link and 

traction system 

Marek Galek et al. 

2014 [134] 
Push-Pull __ __ 

600-

800V 
24V ≈ 92% 4 9 

Interfacing battery and 

traction system 

Fu-Ming Ni et al. 

2014 [135] 

Full-

Bridge 
1.2kW 20kHz 350V 

42-

58.4V 
≈ 95.5% 9 26 

Interfacing battery and 

traction system 

Thummala et al. 

2014 [146] 
Flyback __ __ 24V 0-250V 89.2% 2 12 

Interfacing battery and 

DC-link 

Saeed Rahimpour 

et al. 2017 [136]  

Full-

Bridge 
500W 50kHz 10-30V 60V __ 8 7 

Interfacing battery and 

distribution system 

Siwakoti et al. 

2013 [137] 
Push-Pull 500W 6.1kHz 40-80V 400V 97.4% 2 8 

Interfacing battery and 

traction system 

Kwon et al. 2009 

[73] 

Half-

Bridge 
1kW 50kHz 20-50V 350V 96% 4 8 

Interfacing battery and 

traction system 
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3-3. Non-Isolated, Soft-switched DC-DC converters  

In these converters, high-frequency transformers have been removed from the 

vehicle which makes the converter a lot lighter. Non-isolated DC-DC converters 

are common and have a lower cost. they are used in most negative ground 

applications in vehicles for various DC-powered appliances and equipment. 

However, they have one big disadvantage in the electrical connection between the 

input and output which offers little or no protection to the load for any high 

electrical voltage, current, etc. occurs on the input side. They also have less noise 

filtering blockage. Soft switching, by reducing voltage stress and losses in the 

converter, improves the efficiency and performance of the converter. Overall, 

converters of this class are expected to cost less and be smaller than class 1 and 

class 2 of DC-DC converters.  

 

Fig. 14 Proposed converters based on (a) Cuk [147] and (b) Sepic-Zeta [148] 

topology 

 

    Zero ripples of both input and output currents are the advantage that Cuk 

converters with integrated magnetics benefit from. [147] proposes a simple 

bidirectional ZVS scheme for a Cuk converter containing only passive components 

which is based on a basic buck-boost converter. The proposed scheme by Philip 

Jose et al. is simulated and the results show improved efficiency of the converter 

with 1.4% current ripple at output and 2.1% current ripple at input. The proposed 

converter, shown in Fig. 14 (a) is ideal to regulate power flow between available 

14V and 42V DC buses in the EV. 

    In-Dong Kim et al. have proposed a bidirectional Sepic/Zeta converter with low 

switching loss and low conduction loss in [148]. The circuit of the proposed 

converter, illustrated in Fig. 14 (b), can be divided into two parts of hard switched 

Sepic/Zeta DC-DC converter and an auxiliary resonant commutated pole circuit 

(ARCPC). The operation of the converter for forward power flow is like a 

conventional hard-switched Sepic converter, and for backward power flow is like 

a Zeta converter. The ARCPC provides ZVS operation for the hard-switched 

Sepic/Zeta converter. 
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Fig. 15 Proposed converters based on (a) Boost [149] and (b) Buck-Boost [150] 

topology 

 

    [149] presents a single switch high step-up unidirectional Boost DC-DC 

converter. The proposed converter by Bhajana et al. is capable of achieving high 

voltage gain without a large duty cycle, which is mainly due to using coupled 

inductors and switched capacitor techniques. The converter is composed of one 

switch, five capacitors, four diodes, two coupled inductors, and an input filter 

inductor, as is shown in Fig. 15 (a). A 200W prototype of the converter is examined 

to prove the capabilities of this converter. 

    The proposed bidirectional converter in [150] contains two main switches, two 

auxiliary switches, and two switches, input and resonant inductors, and resonant 

capacitors as shown in Fig 15 (b). The proposed converter by Bhajana et al. is 

developed to achieve high efficiency at high output levels with a high switching 

frequency. Soft switching minimizes the current stress and switching losses in this 

converter, which leads to the possibility of reducing the size and volume of 

components and the converter. ZCS is achieved because the resonant current does 

not flow through the main switches. A 5kW prototype of the converter has been 

built and the results show an efficiency close to 98.6%. Details of some non-isolated 

soft-switched papers and experimental prototypes in these papers are given in 

Table. 3. 
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Table. 3 Details of some non-isolated soft-switched DC-DC converters proposed 

for EV application 

Paper Base Type 
Nominal 

Power 

Switching 

Frequency 

Input 

Voltage 

Output 

Voltage 

Max 

Efficiency 

Number 

of 

Switches 

Number of 

Passive 

Elements 

Application 

In-Dong Kim et 

al. 2007 [148] 
Sepic-Zeta 1kW 40kHz 48V 100V ≈ 89% 3 6 

Interfacing battery and 

DC bus 

Masoume 

Amirbande et al. 

2016 [149] 

Boost 200W 50kHz 25V 400V __ 1 12 
Interfacing Battery and 

traction system 

Bhajana et al. 

2015 [150] 

Buck-

Boost 
5kW 75kHz 200V 400V ≈ 98.6% 6 7 

Interfacing DC bus and 

HV inverter 

Binxin Zhu et al. 

2017 [151] 

Interleaved 

Boost-

Boost 

800W 40kHz 30V 400V ≈ 96.2% 2 14 
Interfacing Battery and 

traction system 

Rajesh Thumma 

et al. 2016 [152] 

Buck-

Boost 
4kW 50kHz 70V 400V __ 7 8 

Interfacing Battery and 

traction system 

Chenhao Nan et 

al. 2016 [153] 

Interleaved 

Buck-

Boost 

250W 1MHz 14V 48V 92.99% 8 10 
Interfacing distribution 

buses 

Muhammad et al. 

2015 [154] 
Boost 250W 50kHz 20V 190V 94.8% 2 9 

Interfacing battery and 

DC bus 

Aamir et al. 2015 

[155] 

Buck-

Boost 
300W 20kHz 24V 200V ≈ 96% 3 12 

Interfacing battery and 

DC bus 

Mishima et al. 

2015 [156] 

Buck-

Boost 
500W 50kHz 150V 

300V 

Duty 

Cycle: 

50% 

94.9% 6 7 
Interfacing DC bus and 

HV inverter 

Xuefeng Hu et al. 

2014 [157] 

Interleaved 

Boost 
500W 40kHz 18-36V 200V 94.37% 2 14 

Interfacing battery and 

DC bus 

 

3-4. Non-Isolated, Hard-switched DC-DC converters  

Generally, this class of DC-DC converters has the lowest price, volume, and 

weight. Since both isolation and soft switching methods are overlooked in this 

class, converters have much simpler circuit configurations compared to other 

classes of DC-DC converters. Even though this class of DC-DC converters is more 

suitable in terms of simplicity, weight, and volume, but, with no isolation and soft 

switching, these converters suffer from higher amounts of losses, and also safety in 

this class of converters is not very high. These setbacks make them suitable for the 

limited number of applications in EVs.  
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Fig. 16 Proposed converters based on (a) Cuk [175] and (b) Sepic-Zeta [176] 

topology 

 

    [175] studies the application of a proposed bidirectional Cuk converter in EV 

applications. In Fig. 16 (a), batteries serve as the input voltage of the converter 

while the output voltage of the converter is connected to the vehicle control unit 

which usually has a voltage rating of around 20V. due to the characteristics of the 

Cuk converter, the output voltage can be larger or smaller than the input voltage. 

Which means more freedom in selecting and designing the battery unit. A 48V to 

20V circuit of the proposed converter is simulated and examined to show the good 

working condition of the proposed converter. 

    In [176] Dimna Denny C et al. have introduced some additional features to the 

conventional Sepic/Zeta converter. Considering the advantages of a coupled 

inductor converter like reduced voltage stress on power switches and improved 

output voltage quality, authors have modified the conventional Sepic/Zeta 

converter, by replacing the individual inductors with a coupled inductor, which 

reduces the overall size and improves the performance of the converter. A 24V  to 

200V bidirectional module of the proposed converter, shown in Fig 16 (b), is 

designed and simulated which confirms the increased reliability of the modified 

coupled inductor converter. 

    Xuefeng Hu et al. have proposed a unidirectional DC-DC Boost converter 

topology based on three-winding coupled-inductor and diode-capacitor technology 

for high step-up, high power density, and high-efficiency conversion in [177]. As 

Fig. 17 (a) shows, the equivalent circuit of the proposed converter topology 

contains a three-winding coupled inductor modeled by a magnetizing inductor Lm, 

leakage inductance, and an ideal transformer. The converter is simulated and 

examined and proved to be ideal for different high-power applications. 

    A non-isolated bidirectional hard-switched Buck-Boost DC-DC converter for 

EV application is proposed in [178]( Fig. 17 (b). Abhijeet Sah et al. have discussed 

a complementary gate signal control strategy, to achieve a high power efficiency in 

the proposed converter. Both the regenerative and motoring mode of the EV is 

considered. Different simulations have been done and an ideal control strategy for 

the proposed Buck-Boost converter is concluded. 
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    Details of some other Non-isolated hard-switched papers and experimental 

prototypes in these papers are given in Table. 4. 

 

Table. 4 Some non-isolated hard-switched DC-DC converters for EV application 

Paper Base Type 
Rated 

Power 

Switching 

Frequency 

Input 

Voltage 

Output 

Voltage 

Max 

Efficiency 

Number 

of 

Switches 

Number of 

Passive 

Elements 

Application 

Dimna Denny C 

et al. 2015 [176] 
Sepic-Zeta 200W 50kHz 24V 200V __ 2 1 

Interfacing battery and 

DC bus 

C.-C. Lin et al. 

2013 [179] 

Buck-

Boost 
200W 50kHz 24V 200V ≈ 94.8 4 4 

Interfacing battery and 

DC bus 

Paul Davis et al. 

2016 [180] 

Multiport 

DIDO 

Boost 

200W 10kHz 
38V 80V 

__ 4 9 

Interfacing Different 

LV Distribution buses 

and Batteries 48V 40V 

Miaomiao Feng et 

al. 2016 [181] 
Boost 21W 100kHz 14V 56V __ 2 12 

Interfacing Distribution 

Buses and Batteries 

Moonson M. 

Chen et al. 2016 

[182] 

Buck-

Boost 
400W 100kHz 66V 400V __ 5 4 

Interfacing Batteries 

and Traction System 

Bussa Vinod 

Kumar et al. 2016 

[183] 

Buck-

Boost 
250W 100kHz 12V 48V __ 2 6 

Interfacing Distribution 

Buses and Batteries 

Jung-Woo Yang 

et al. 2016 [184] 

Interleaved 

Boost 
53kW 60kHz 

220-

400V 
700V 98.6% 4 6 

Interfacing DC-Links 

with Traction System 

Sivaprasad et al. 

2015 [185] 

Multiport 

DISO 

Buck- 

Boost 

__ 5kHz 
36V 

240V __ 2 2 

Interfacing Different 

Batteries and 

Distribution Links with 

HV Bus 48V 

Xiaoyu Jia et al. 

2015 [186] 
Boost 40.kW 20kHz 

200-

375V  
600V 97.5% 2 3 

Interfacing DC-links 

with Traction System 

Hiba Al-Sheikh et 

al. 2014 [187] 
__ 30kW 15kHz 200V 300V __ 4 5 Interfacing DC-links  
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Fig. 17 Proposed converters based on (a) Boost [177] and (b) Buck-Boost [178] 

topology 

 

4. Advanced Topologies 

Different topologies of DC-DC converters have been proposed to be used for EVs. 

Apart from the introduced basic topologies for isolated and non-isolated DC-DC 

converters, some other topologies can be useful for the application of EVs. These 

topologies that are generally more complex than basic ones include; interleaved, 

hybrid, and multi-port DC-DC converters. 

 

4-1. Interleaved DC-DC converters  

Interleaving is a technique in which multiple switching cells are interconnected. 

This technique will increase the effective pulse frequency by synchronizing several 

smaller sources and also by operating them with relative phase shifts. An 

interleaving technique helps the system save more energy and improves power 

conversion without affecting efficiency [229]. By using the interleaved method in 

DC-DC converters, the system can achieve a high voltage step-up and a smaller 

ripple of voltage and current at the output [241]. Generally, the switching loss in 

these converters is low and the transient response is faster. Since the two parallel 

converters are identical, the design and analysis of the converter are quite simple 

[242]. Also, interleaved DC-DC converters offer better power handling capacity 

and reliability. Another advantage of these converters is that in case one of the cells 

faces failure, the system still can work with the other cell of the converter. Fig. 18 

illustrates two different types of isolated and non-isolated interleaved DC-DC 

converters used for EV applications.  

    Fig. 18 (a) shows an isolated interleaved soft-switching bidirectional snubber-

less current-fed full-bridge DC-DC converter. The proposed converter by Pan 
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Xuewei et al. [239] consists of two interleaved cells; a current-fed full-bridge cell 

is connected in parallel on the low-voltage side, and a half-bridge converter is 

connected in series on the high-voltage side. 

    A ZCS interleaved bidirectional Buck-Boost DC-DC converter is illustrated in 

Fig. 18 (b). The circuit of the proposed converter by Kumar et al. [174], contains 

four main switches, two input inductors, auxiliary resonant cell switches, resonant 

inductors, and resonant capacitors. 

 

 
(a) 

 
(b) 

Fig. 18 Proposed interleaved converters; (a) Full-Bridge [239] and (b) Buck-

Boost [174] topology 

 

4-2. Hybrid DC-DC converters  

Generally, hybrid DC-DC converters include a PWM switched-inductor DC-DC 

converter which is a cascaded switched capacitor DC-DC converter [247,248]. 

Hybrid converters include most of the advantages of the basic PWM switched 

inductor converter. Furthermore, these converters can achieve a much higher 

conversion ratio in both Buck and Boost modes. Apart from a higher total 

conversion ratio, low stress on the switches and higher total conversion in 

continuous conduction mode (CCM) are other important attributes of these 

converters [249]. In non-isolated hybrid DC-DC converters, capacitor multipliers 

replace the transformer which is required in isolated converters. As a result, 

possible losses caused by the transformer are depleted from the system and also the 

HV diodes required in isolated converters are not needed anymore. Moreover, the 

control strategy in hybrid structures is simpler and more flexible. All of these 

advantages have made hybrid converters suitable for many applications like EVs 

[249,250]. Fig. 19 illustrates two different types of isolated and non-isolated hybrid 

DC-DC converters used for EV applications. 
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    De Souza et al. have proposed an isolated bidirectional DC-DC current-fed 

topology [243] which is based on a unidirectional current-fed Flyback-Push-Pull 

converter proposed in [251]. As Fig. 19 (a) shows, the proposed converter circuit 

is composed of; a Flyback transformer, a Push-Pull transformer, and four switches 

(bidirectional for current, unidirectional for voltage). 

    [245] proposes a Boost-Forward-Flyback converter with a single switch and high 

voltage gain. The development of this converter is based on an integrated Boost-

Flyback step-up converter. The circuit of the proposed converter by Liu et al. is 

based on a coupled-inductor, clamped circuit, and pumping capacitor. The circuit 

contains; an input inductor, a pumping capacitor, a power switch, a two-winding 

coupled-inductor, rectifier diodes, clamp capacitor and clamp diode, and a Flyback 

output capacitor, as is shown in Fig. 19 (b). 

 

 
(a) 

 
(b) 

 Fig. 19 Proposed Hybrid converters; (a) Flyback-Push-Pull [243] and (b) Boost-

Forward-Flyback [245]topology  

 

4-3. Multi-port DC-DC converters  

For some types of EVs, which use more than one energy source to provide a more 

stable DC voltage or there is more than one DC bus available in the vehicle, using 

multiport converters is ideal and can be beneficial [262,263]. The multiport DC-

DC converters can be divided into three different types. The converter can have a 

single input and multi-output (SIMO), multi-input and single-output (MISO), and 

multi-input along with multi-output (MIMO). Generally, these kinds of converters 

have simple topology, low construction cost, high reliability, and central control 

[265]. Conventional multiport converters were made of several single-input single-

output (SISO) converters, which on the output were connected to a common DC 
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bus [266]. The problem with the conventional multiport DC-DC converters 

included a high number of elements, complexity of the circuit, high cost, 

complexity of the control system, and problems in the stability of the DC bus. But 

in recent years, multiport converters have changed a lot and now are suitable to use 

in many applications including EVs. 

 

Fig. 20 Proposed topology of an isolated multi-port topology [253] 

 

    In [253] Gui-Jia Su et al. have proposed a soft-switched, bidirectional DC-DC 

converter using only four switches for interconnecting a triple voltage bus (14V/ 

42V/ HV) system in an EV. The proposed double input single output (DISO) 

converter is a reduced-part topology of the converter proposed in [126]. The 

schematic of the proposed converter, shown in Fig. 20, is composed of; dual half-

bridges and a high-frequency transformer to ensure the galvanic isolation between 

low voltage and HV buses, and the 14V bus is derived by tapping the capacitor leg 

at the midpoint. Furthermore, the 14V and 48V buses share a common ground. 

 

Fig. 21 Proposed topology of a non-isolated multi-port topology [258] 
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    Nahavandi et al. have proposed a multi-input multi-output non-isolated DC-DC 

converter in [258]. The proposed converter is based on a combination of a multi-

input converter [267], and a multi-output converter [268]. The structure of the 

proposed converter is illustrated in Fig. 21. As this figure shows, the converter is 

capable of interfacing m input sources. The converter has one inductor, n capacitor 

at the output side, and m+n switches. Also, n resistances represent the equivalent 

power feeding a multilevel inverter in the EV. Output voltages can be either 

different or equal which is appropriate for connection to a multilevel inverter. The 

proposed converter is suitable for hybridizing alternative energy sources such as 

FC, battery, or supercapacitor, in EVs. 

    The comparison between all types of DC-DC converters that are mentioned in 

terms of; gain, volume, safety, efficiency, switching frequency, and complexity are 

summarized in Table 5. 

 

Table. 5 Provides a summary of these 10 categories' properties and features 

 
High 

Gain 

High 

Volume 

High 

Safety 

High 

Efficiency 

High 

Complexity 

High 

Switching 

Frequency 

Isolated, Soft 

switched 
✓ ✓ ✓ Almost ✓ ✓ 

Isolated, Hard 

switched 
✓ Almost ✓ × Almost × 

Non-isolated, 

Soft switched 
× Almost × ✓ Almost ✓ 

Non-isolated, 

Hard switched 
× × × × × × 

Interleaved, 

Isolated 
✓ ✓ ✓ Almost ✓ × 

Interleaved, 

Non-isolated 
Almost Almost × Almost Almost × 

Hybrid, 

Isolated 
✓ ✓ ✓ × ✓ × 

Hybrid, Non-

isolated 
Almost Almost × × Almost × 

Multiport, 

Isolated 
✓ ✓ ✓ × ✓ × 

Multiport, 

Non-isolated 
× Almost × × Almost × 
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5. Control strategies 

5-1. Brief review 

Among various modulation techniques designed for controlling DC-DC converters, 

two common modulation techniques have found the most application: Pulse-width 

modulation (PWM) and phase-shift modulation (PSM). Between these two, PWM 

has found much more applications and is the most common control scheme for 

switching-mode DC-DC converters. The major setback in VF-PWM is the 

unpredictability of EMI in this method. On the other hand, in FF-PWM the EMI 

can easily be filtered out [269]. The exact operational principle of FF-PWM and 

VF-PWM is described in [270,271]. 

    Fixed-frequency (FF) and variable-frequency (VF) PWM are the most popular 

PWM control methods [272]. PWM control methods can also be classified into two 

groups: voltage-mode control (VMC) and current-mode control (CMC) which are 

based on output voltage/current measurements. [273]. Studies on these two groups 

have resulted from different control methods such as feed-forward VMC 

(FFVMC), peak CMC (PCMC), average CMC (ACMC), etc. 

    PSM is also suitable and attractive for different DC-DC converters. Some 

extensions of PS control techniques like single-PS (SPS) [274–276], extended-PS 

(EPS) [277–279], dual-PS (DPS) [280–282], and Triple-PS (TPS) [283–285] have 

the benefits of improved performance and characterization. Each of these PS 

control extensions is briefly explained in [286]. 

    Both closed-loop control (CLC) and open-loop control (OLC) control techniques 

can be used for DC-DC converters in high-power applications. Using CLC in high-

power applications is possible but faces electromagnetic compatibility (EMC) and 

lower efficiency issues. By using OLC it is possible to prevent such issues. To be 

able to use the OLC technique for high-power applications, output resistance should 

be as low as possible [287].  

 

5-2. Control devices 

Various control devices such as digital sensor processors (DSP), Field 

programming gate array (FPGA), other custom hardware, or a combination of 

custom hardware can be used to digitally control the different modulation and 

control techniques. Each of these devices can be suitable depending on the 

designer's preferences. DSP chips are superior in terms of the possibility of 

reprogramming, the capacity of tending, and numerous functions that DSPs are 

capable of doing. High cost and low speed are the downsides of the DSPs which 

have counterbalanced the advantages of DSPs. On the other hand, FPGA, compared 
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to DSP, has the ability of quicker operation but still FPGA is considered an 

expensive option. These downsides have led to additional consideration and 

attempts to solve these problems. The design of devoted custom ICs is one solution 

that is considered to be a less expensive device than DSPs and FPGAs and also 

offers better functioning. A combination of software and custom hardware is 

another device used in the design of DC-DC converters [286]. 

 

6. Design Considerations 

With the addition of intelligent power modules (IPMs) to design DC-DC 

converters, it is now easier for designers to develop cost-effective and compact-

sized DC-DC converters. But still, some important parameters should be considered 

when selecting components for the circuit of a DC-DC converter. One of the main 

choices in circuit components of DC-DC converters is a selection of the solid-state 

power devices which are one of the costliest components of the circuit as well. 

Generally, MOSFETs are used in low-power rating converters, due to their high 

switching rate and insignificant losses, IGBTs together with PWM technology are 

ideal for medium-power rating converters, and GTOs are used in high-power 

applications. Further information about the selection of the transistors is given in 

[288]. Another important selection in DC-DC converters is choosing the right 

inductance (L) for the application. The chosen inductor must be able to handle the 

peak switching current without being saturated. To select the best possible inductor 

which minimizes the losses of the inductor, analyzing the quality-frequency graph 

of the inductors can be helpful. The proper inductor for the application will only 

degrade efficiency by a small percentage. Choosing an inductor generally depends 

on price, size, or other electromagnetic requirements in the circuit [289]. To help 

developers design the proper inductor for their application, different methods and 

tools have been designed. In [290], The Murata Power Inductor Selection Tool 

(MPST), is described. On the other hand selection of the output capacitor is based 

on the ripple current, ripple voltage, and stability considerations of the system 

[289].  

    A proper switching frequency is essential to achieve a high level of performance. 

Switching frequency can have a huge impact on different properties in the circuit 

of the DC-DC converter as it is shown in Table 6. 

    After choosing a DC-DC converter that has the appropriate switching frequency 

for our application, choosing other components is made based on the switching 

frequency and other parameters of the system like characteristics of the load and 

output of the converter. Some points should be considered about the FET used in 

the external circuit. The amount of input capacitor and output capacitor must be 

rather small in the light load applications. This can be said about the ON resistance 

between the drain and source when the load has a higher value but it can affect the 
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input and output capacitance. Overall, these parameters need to be designed 

carefully to minimize the loss in the converter. The cut-off voltage of the gate to 

the source should be much smaller than the input voltage in the application. The 

switching speed of the selected component should be as high as possible to increase 

the efficiency of the converter. The rated voltage should be about 1.5 times bigger 

than the rated voltage of the application. Also, it can be said that choosing a 

MOSFET, GTO, or IGBT with a driving capability of unnecessarily large current 

is not appropriate. 

 

Table. 6 Effect of switching frequency on different circuit properties in DC-DC 

converters 

Circuit Properties 
Switching Frequency 

Low High 

Maximum Efficiency High  Low 

Current Ripple Large Small 

Response Speed Slow Fast 

Output Current (at Max Efficiency) Light Load Heavy Load 

 

    The selection of the L value in the converter is based on the output current and 

has a huge impact on the efficiency of the converter. If the selected value is too 

small, the current will increase when the solid-state power device is activated which 

will increase the heat losses of the device, coil, and will also reduce the efficiency. 

On the other hand, choosing a high value of L will also lead to the increase of RDC, 

decreasing the efficiency and occurrence of magnetic saturation in the ferrite coil. 

This will rapidly decrease the L value which is very dangerous. To avoid this 

phenomenon, designers have to increase the dimension of the coil which is not 

preferable in the converter either. So it is very important to find the right amount 

for L value of the converter. 

    Moreover, Schottky Barrier Diodes (SBD) are used in some converters. The 

absolute maximum ratings for this component should be 1.5 to 2 times the working 

ratings. Choosing the most appropriate SBD is dependent on the load current of the 

application. But it is desirable to choose the one with the least amount of forward 

heat loss and reverse leakage current [291]. 

    The description of the perfect load capacitance differs depending on the type of 

capacitor being used in the application. There are different properties for aluminum 

electrolytic capacitors, tantalum capacitors, and ceramic load capacitors. The value 

of load capacitance should be chosen according to the targeted ripple level. 

Choosing an unnecessarily high value for the process will increase the volume and 

cost of the converter which is not acceptable [291]. 
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    Input capacitance, even though it does not have a significant impact on the 

stability of the output like load capacitance, is another important part of the 

converter. Commonly, the value of input capacitance is selected about half the 

amount of load capacitance at the start. Using a capacitor with the smallest 

equivalent series resistance (ESR) possible is recommended in DC-DC converters. 

There are other important components like feedback capacitance, feedback 

resistance, control circuit, etc. which require great attention to detail for selecting 

the best possible combination. 

    Overall, it is important to consider all the parameters when selecting different 

components to design a DC-DC converter. Some components based on the life 

assessment analyses made on DC-DC converters need more care and should be 

selected with great attention to detail to achieve a high level of performance. The 

key components of life assessment for the DC-DC converter based on three 

different simulation methods made in [292], include power switches, transformers, 

diodes, and optocouplers. 

 

7. Comparative factors of DC-DC converters 

Choosing a DC-DC converter depends on a lot of parameters and devices used in 

the design of the vehicle. Therefore, the suitability of converters differs from one 

application to another. Hence, comparing them without having enough information 

about the vehicle is not possible. Each of the four categories mentioned in previous 

sections has different features which makes them ideal for several applications. But 

within the same category, there are many circuits available and comparable to the 

ideal characteristics. Some circuits have better quality or more configurations and 

features which makes them more expensive. Subsequently, the designer is the 

person who should decide between performance, quality, or costs. For example, if 

the vehicle contains many sensitive DC loads and the EMI might disturb and 

influence their function and vehicle it is necessary to use an isolated DC-DC 

converter. But, there is no problem if the designer decides to use a cheaper solution 

by applying the non-isolated converter (as long as it satisfies the minimum 

requirements in the vehicle) with the cost decreasing the safety of the vehicle to 

some amount. Similar to isolation, depending on the vehicle requirements and 

budget one can choose various configurations of soft or hard switching methods. 

[81] Has discussed the soft switching effect in the vehicle and its effect on total 

energy saving and efficiency of EVs and HEV. It is concluded that soft switching 

does not have that much of an effect and it might just be for filtering different noises 

and lowering audible noises [81]. Similar situations and choices might occur and 

the designer should be well aware of different features of the vehicle to be able to 

choose a converter between different categories and within various configurations 

of one category to be able to make the best choice. 
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8. The main aspects of designing DC-DC converters in EV application 

The selection of DC-DC converters is an important decision that depends on many 

aspects of the designed vehicle. Here are some of the factors that can have an effect 

when choosing a converter for a specific application: 

• Required number of output voltages (number of loads supplied by the 

converter) 

• Range of input voltage  

• Power flow (unidirectional or bidirectional) 

• Required DC output level (should the converter be boost, buck, etc.) 

• Efficiency 

• Cost 

• Weigh and volume 

• Noise level  

• Power rating (Watt, kilowatt, etc.) 

• Reliability 

• Environmental conditions which influence the operation of the converter 

(such as; heat, humidity, pollution, etc.) 

• Acceptable quiescent current (<300µA in some cases) 

    These are just some of the factors in choosing a DC-DC converter for specific 

EV applications. There are also some special requirements like a low current ripple 

in fuel cell applications (because the current ripple may affect the fuel cell lifetime) 

[293],  and some more factors like complexity of control procedure, protection, 

magnetic devices used in the converter, etc. which can influence the selection of a 

converter required for the specific application. 

 

9. Latest trends and further developments in DC-DC converters 

DC-DC converters have reached an acceptable level in terms of technology in EV 

systems. Even though still many approaches are being studied to develop a 

converter with high efficiency, small size and lower weight, high noise filtering, 

and safety. Many approaches have been employed to achieve high-efficiency 

converters such as; switched-capacitor or switched-inductor techniques [294–297], 

inserting diode-capacitor voltage multipliers to serve as built-in voltage gain 

extension cells [298–301], and coupled-inductor based converters have been 

proposed (like coupled-inductor converters with an active clamp circuit or three 

winding coupled inductor converters) [302–307]. These approaches have offered 

limited improvements in size, cost, and efficiency of the converter which has led 

the researchers to develop and propose a new composite DC-DC converter 

architecture [25,25,308]. This approach utilizes several smaller converter modules 

combined to process the total system power effectively. This approach is a modular 
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multilevel system employing dissimilar Module types. Each converter module 

processes a fraction of the system power, with effective utilization of the 

semiconductor and reactive elements. The ability to optimize each module 

independently at certain critical operating points leads to substantially increased 

average efficiency. Depending on operating conditions, modules can operate in 

shutdown or pass-through modes to further reduce AC power losses. Overall, the 

loss mechanisms associated with indirect power conversion are addressed 

explicitly, resulting in fundamental efficiency improvements over wide ranges of 

operating conditions [309]. 

 

10. Conclusion 

DC-DC converters are an important part of an electric vehicle's powertrain 

controlling the power flow between different DC buses, batteries, power inverters, 

and traction systems. In this paper over 200 papers studying different topologies 

for different applications in EVs are reviewed and structured in four main classes: 

isolated soft-switched, isolated hard-switched, non-isolated soft-switched, and non-

isolated hard-switched DC-DC converters. Isolated DC-DC converters can provide 

galvanic isolation and improve safety for the loads which is an important factor for 

sensitive loads and electric systems in the vehicle which are directly related to 

passenger safety. Non-isolated converters have reduced safety, but due to the 

removal of the high-frequency transformer in the converter, weigh, volume and cost 

of the converter are rather low compared to isolated DC-DC converters. Soft-

switched DC-DC converters have the advantage of reduced switching losses which 

improves the efficiency of the converter. Soft switching can be achieved by either 

ZVS or ZCS methods. On the other hand, hard-switched converters have fewer 

components compared to soft-switched ones which reduces design complexity and 

weight and cost of the converter. Apart from the introduced basic topologies for 

isolated and non-isolated DC-DC converters, some other topologies that can be 

useful for the application of EVs such as; interleaved, hybrid and multi-port DC-

DC converters are presented in this paper. Also, control strategies, design 

considerations, comparative factors, selection for specific applications, and the 

latest trends are discussed in this paper. 
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