unknown

Analysis of a new family of DC-DC converters with input-parallel output-series structure

Abstract

There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Similar works