1,163 research outputs found

    The APC network regulates the removal of mutated cells from colonic crypts

    Get PDF
    Self-renewal is essential for multicellular organisms but carries the risk of somatic mutations that can lead to cancer, which is particularly critical for rapidly renewing tissues in a highly mutagenic environment such as the intestinal epithelium. Using computational modeling and in vivo experimentation, we have analyzed how adenomatous polyposis coli (APC) mutations and ÎČ-catenin aberrations affect the maintenance of mutant cells in colonic crypts. The increasing abundance of APC along the crypt axis forms a gradient of cellular adhesion that causes more proliferative cells to accelerate their movement toward the top of the crypt, where they are shed into the lumen. Thus, the normal crypt can efficiently eliminate ÎČ-catenin mutant cells, whereas APC mutations favor retention. Together, the molecular design of the APC/ÎČ-catenin signaling network integrates cell proliferation and migration dynamics to translate intracellular signal processing and protein gradients along the crypt into intercellular interactions and whole-crypt physiological or pathological behavior

    A model of the spatial tumour heterogeneity in colorectal adenocarcinoma tissue

    Get PDF
    Background There have been great advancements in the field of digital pathology. The surge in development of analytical methods for such data makes it crucial to develop benchmark synthetic datasets for objectively validating and comparing these methods. In addition, developing a spatial model of the tumour microenvironment can aid our understanding of the underpinning laws of tumour heterogeneity. Results We propose a model of the healthy and cancerous colonic crypt microenvironment. Our model is designed to generate synthetic histology image data with parameters that allow control over cancer grade, cellularity, cell overlap ratio, image resolution, and objective level. Conclusions To the best of our knowledge, ours is the first model to simulate histology image data at sub-cellular level for healthy and cancerous colon tissue, where the cells have different compartments and are organised to mimic the microenvironment of tissue in situ rather than dispersed cells in a cultured environment. Qualitative and quantitative validation has been performed on the model results demonstrating good similarity to the real data. The simulated data could be used to validate techniques such as image restoration, cell and crypt segmentation, and cancer grading.BBSRC and University of Warwick Institute of Advanced Study. QNRF grant NPRP 5-1345-1-228

    Interactions between dietary chicory, gut microbiota and immune responses

    Get PDF
    This thesis provides a better understanding of interactions between diet, gut microbiota, and immune responses to a specific dietary fiber source, chicory (Cichorium intybus L). This was achieved by examining the impact of chicory fiber on animal performance, digestibility, gut development, commensal bacteria community structure in small and large intestine, and follow-up reactions with specific immune components, cytoprotective heat shock protein (HSP) 27 and 72, in vivo and in vitro. The impacts of dietary chicory on nutrient utilization, performance, and gut environment and morphology were investigated in chickens and young pigs. One-day-old chicks were fed cereal-based diets with inclusion of 60 or 120 g/kg chicory forage and/or root, with each forage diet derived from two harvests. Growing pigs were fed diets without and with inclusion of 80 or 160 g/kg chicory forage and/or root. The results showed that chicory inclusion maintained good animal performance and was accompanied by changes in gut morphology. Total tract apparent digestibility of non-starch polysaccharides (NSP) and uronic acid in broilers decreased with inclusion of 120 g/kg chicory, but not with inclusion of 60 g/kg. This indicates that chicory can be used as a palatable fiber source for broiler chickens and young pigs. Gut microbiota complexity and dietary NSP-induced changes in pigs were examined using terminal restriction fragment length polymorphism (T-RFLP). The analysis revealed four primary microbiota clusters: luminal and mucosal ileal microbiota and luminal and mucosal colonic microbiota. In the ileum, lactic acid bacteria (LAB) were dominant and responsive to inulin-type fructan. In the colon, bacteria belonging to clostridial cluster IV and XIVa responded to chicory pectin, whereas Prevotella was related to cereal xylan. Mapping of cytoprotective HSP27 and HSP72 occurrence in porcine gut revealed region- and cell type-specific features. Physiological expression of HSP72 was correlated with LAB, representing an important interplay between HSPs and commensal microbes. In-depth studies of interactions between lactobacilli and gut mucosa and their effects on barrier function and HSP expression revealed protective effects from lactobacilli by enhancing HSP and tight junction protein expression under pathogen challenge

    Gradients in the in vivo intestinal stem cell compartment and their in vitro recapitulation in mimetic platforms

    Get PDF
    peer-reviewedIntestinal tissue, and specifically its mucosal layer, is a complex and gradient-rich environment. Gradients of soluble factor (BMP, Noggin, Notch, Hedgehog, and Wnt), insoluble extracellular matrix proteins (laminins, collagens, fibronectin, and their cognate receptors), stromal stiffness, oxygenation, and sheer stress induced by luminal fluid flow at the crypt-villus axis controls and supports healthy intestinal tissue homeostasis. However, due to current technological challenges, very few of these features have so far been included in in vitro intestinal tissue mimetic platforms. In this review, the tightly defined and dynamic microenvironment of the intestinal tissue is presented in detail. Additionally, the authors introduce the current state-of-the-art intestinal tissue mimetic platforms, as well as the design drawbacks and challenges they face while attempting to capture the complexity of the intestinal tissue’s physiology. Finally, the compositions of an “idealized” mimetic system is presented to guide future developmental efforts

    Cell organisation in the colonic crypt: A theoretical comparison of the pedigree and niche concepts

    Get PDF
    The intestinal mucosa is a monolayer of rapidly self-renewing epithelial cells which is not only responsible for absorption of water and nutrients into the bloodstream but also acts as a protective barrier against harmful microbes entering the body. New functional epithelial cells are produced from stem cells, and their proliferating progeny. These stem cells are found within millions of crypts (tubular pits) spaced along the intestinal tract. The entire intestinal epithelium is replaced every 2–3 days in mice (3–5 days in humans) and hence cell production, differentiation, migration and turnover need to be tightly regulated. Malfunctions in this regulation are strongly linked to inflammatory bowel diseases and to the formation of adenomas and ultimately cancerous tumours. Despite a great deal of biological experimentation and observation, precisely how colonic crypts are regulated to produce mature colonocytes remains unclear. To assist in understanding how cell organisation in crypts is achieved, two very different conceptual models of cell behaviour are developed here, referred to as the ‘pedigree’ and the ‘niche’ models. The pedigree model proposes that crypt cells are largely preprogrammed and receive minimal prompting from the environment as they move through a routine of cell differentiation and proliferation to become mature colonocytes. The niche model proposes that crypt cells are primarily influenced by the local microenvironments along the crypt, and that predetermined cell behaviour plays a negligible role in their development. In this paper we present a computational model of colonic crypts in the mouse, which enables a comparison of the quality and controllability of mature coloncyte production by crypts operating under these two contrasting conceptual models of crypt regulation

    Clonal evolution of colorectal cancer in IBD

    Get PDF

    Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery

    Get PDF
    Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids
    • 

    corecore