15 research outputs found

    Digital Implementation of Bio-Inspired Spiking Neuronal Networks

    Get PDF
    Spiking Neural Network as the third generation of artificial neural networks offers a promising solution for future computing, prosthesis, robotic and image processing applications. This thesis introduces digital designs and implementations of building blocks of a Spiking Neural Networks (SNNs) including neurons, learning rule, and small networks of neurons in the form of a Central Pattern Generator (CPG) which can be used as a module in control part of a bio-inspired robot. The circuits have been developed using Verilog Hardware Description Language (VHDL) and simulated through Modelsim and compiled and synthesised by Altera Qurtus Prime software for FPGA devices. Astrocyte as one of the brain cells controls synaptic activity between neurons by providing feedback to neurons. A novel digital hardware is proposed for neuron-synapseastrocyte network based on the biological Adaptive Exponential (AdEx) neuron and Postnov astrocyte cell model. The network can be used for implementation of large scale spiking neural networks. Synthesis of the designed circuits shows that the designed astrocyte circuit is able to imitate its biological model and regulate the synapse transmission, successfully. In addition, synthesis results confirms that the proposed design uses less than 1% of available resources of a VIRTEX II FPGA which saves up to 4.4% of FPGA resources in comparison to other designs. Learning rule is an essential part of every neural network including SNN. In an SNN, a special type of learning called Spike Timing Dependent Plasticity (STDP) is used to modify the connection strength between the spiking neurons. A pair-based STDP (PSTDP) works on pairs of spikes while a Triplet-based STDP (TSTDP) works on triplets of spikes to modify the synaptic weights. A low cost, accurate, and configurable digital architectures are proposed for PSTDP and TSTDP learning models. The proposed circuits have been compared with the state of the art methods like Lookup Table (LUT), and Piecewise Linear approximation (PWL). The circuits can be employed in a large-scale SNN implementation due to their compactness and configurability. Most of the neuron models represented in the literature are introduced to model the behavior of a single neuron. Since there is a large number of neurons in the brain, a population-based model can be helpful in better understanding of the brain functionality, implementing cognitive tasks and studying the brain diseases. Gaussian Wilson-Cowan model as one of the population-based models represents neuronal activity in the neocortex region of the brain. A digital model is proposed for the GaussianWilson-Cowan and examined in terms of dynamical and timing behavior. The evaluation indicates that the proposed model is able to generate the dynamical behavior as the original model is capable of. Digital architectures are implemented on an Altera FPGA board. Experimental results show that the proposed circuits take maximum 2% of the resources of a Stratix Altera board. In addition, static timing analysis indicates that the circuits can work in a maximum frequency of 244 MHz

    A Survey of Spiking Neural Network Accelerator on FPGA

    Full text link
    Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    A low cost biomimetic implementation of a CPG based on AdEx neuron model

    No full text

    The University of Iowa 2020-21 General Catalog

    Get PDF
    corecore