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Abstract

Spiking Neural Network as the third generation of artificial neural networks offers a promis-

ing solution for future computing, prosthesis, robotic and image processing applications.

This thesis introduces digital designs and implementations of building blocks of a Spiking

Neural Networks (SNNs) including neurons, learning rule, and small networks of neurons

in the form of a Central Pattern Generator (CPG) which can be used as a module in con-

trol part of a bio-inspired robot. The circuits have been developed using Verilog Hardware

Description Language (VHDL) and simulated through Modelsim and compiled and syn-

thesised by Altera Qurtus Prime software for FPGA devices.

Astrocyte as one of the brain cells controls synaptic activity between neurons by pro-

viding feedback to neurons. A novel digital hardware is proposed for neuron-synapse-

astrocyte network based on the biological Adaptive Exponential (AdEx) neuron and Post-

nov astrocyte cell model. The network can be used for implementation of large scale spik-

ing neural networks. Synthesis of the designed circuits shows that the designed astrocyte

circuit is able to imitate its biological model and regulate the synapse transmission, suc-

cessfully. In addition, synthesis results confirms that the proposed design uses less than 1%

of available resources of a VIRTEX II FPGA which saves up to 4.4% of FPGA resources

in comparison to other designs.
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ABSTRACT

Learning rule is an essential part of every neural network including SNN. In an SNN,

a special type of learning called Spike Timing Dependent Plasticity (STDP) is used to

modify the connection strength between the spiking neurons. A pair-based STDP (PSTDP)

works on pairs of spikes while a Triplet-based STDP (TSTDP) works on triplets of spikes

to modify the synaptic weights. A low cost, accurate, and configurable digital architectures

are proposed for PSTDP and TSTDP learning models. The proposed circuits have been

compared with the state of the art methods like Lookup Table (LUT), and Piecewise Linear

approximation (PWL). The circuits can be employed in a large-scale SNN implementation

due to their compactness and configurability.

Most of the neuron models represented in the literature are introduced to model the

behavior of a single neuron. Since there is a large number of neurons in the brain, a

population-based model can be helpful in better understanding of the brain functionality,

implementing cognitive tasks and studying the brain diseases. Gaussian Wilson-Cowan

model as one of the population-based models represents neuronal activity in the neocortex

region of the brain. A digital model is proposed for the Gaussian Wilson-Cowan and exam-

ined in terms of dynamical and timing behavior. The evaluation indicates that the proposed

model is able to generate the dynamical behavior as the original model is capable of. Dig-

ital architectures are implemented on an Altera FPGA board. Experimental results show

that the proposed circuits take maximum 2% of the resources of a Stratix Altera board. In

addition, static timing analysis indicates that the circuits can work in a maximum frequency

of 244 MHz.

Central Pattern Generators (CPGs) are neural circuitries which are responsible for con-

troling the locomotion part of the animals by generating rhythmic patterns. A hardware

implementation of bio-inspired CPG can be used in robotic and control applications. In this

dissertation, a CPG architecture is constructed by coupling Hindmarsh-Rose (HR) neuron

modules to generate the anti-phase patterns in the output of the network. Aiming an effi-

cient implementation, a novel digital implementation is proposed for HR neuron module

vii



ABSTRACT

using a combined methodology which decreases the computational complexity suitable for

digital hardware implementation. Timing and dynamical analysis verifies that the model

is successfully able to reproduce the bifurcation and patterns which are observed in the

original model. The proposed architecture of CPG is made of coupled digital HR which

is implemented on an FPGA device aiming a compact, flexible and configurable platform

for generating periodic rhythmic antiphase patterns. Results indicate that the generated

waveforms from the RTL design follows the simulations successfully and the CPG param-

eters can be adjusted for an adaptive behavior. Static Timing Analysis indicates that the

circuit can work in a maximum frequency of 98.43 MHz which is a 20% improvement in

comparison with the current works.
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Chapter 1

Introduction

In this chapter, a brief overview of Spiking Neural Network (SNN) and a comparison

between the conventional artificial neural network and SNN, Neuromorphic Engineering

(NE), and digital hardware implementation methodologies for NE is presented. In the last

part of this chapter, the outline of the dissertation and contributions are given.

1.1 Artificial Neural Network vs Spiking Neural Network

Artificial Neural Network (ANN) are based on extremely simplified brain dynamics. ANNs

have been powerful to solve complicated problems such as pattern recognition, classifica-

tion, and function estimation tasks. Spiking Neural Network (SNN) as the third generation

of ANN is inspired by brain and mimics the brain behavior more closely in comparison

with the conventional ANN. One of the differences between ANN and SNN is that SNN

takes another element, time, in their functionality [1]. In SNN, information is transferred by

sequences of timing events called spike similar to what is observed in the biological coun-
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terpart. Since SNN takes time as an element in their functionality and learning process, it is

a good candidate to be used to solve complicated time-dependent pattern recognition prob-

lems. In addition to time-dependent pattern recognition tasks, SNN can model the central

nervous system which is a neurocircuit called Central Pattern Generator (CPG) [2]-[3]. An

electronic CPG can be used in a functional electrical stimulation (FES) system to recover

the motor function and stimulate the human muscle to help people with disabilities. Fur-

thermore, hardware implementation of SNN can be employed in several applications such

as [4]-[5]:

• Neuroprostheses

• Bio-robotic

• Brain-Machine Interface

• Medical studying

• Neuroprostheses

• Bio-robotic

• Brain-Machine Interface

• Medical studying

1.2 SNN Elements

Each spiking neuron is made of three main part: dendrite tree, soma and axon [6]. Dendrites

receive the input information from other neurons. The inputs produce electrical transmem-

brane currents, if the summation of the current is high enough to change the membrane

potential to a threshold voltage, a sudden signal, called spike is emitted. The spike gener-

ated by the soma is transferred through axon to the other neurons. Where each two spiking

2
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Figure 1.1: A typical spike waveform [6]

neurons are connected is called synapse. The neuron which receives the inputs from other

neurons is called postsynaptic neuron, and the neuron which sends the data through axon

to the other neurons is called presynaptic neuron. Fig. 1 and Fig. 2 shows a typical spike

waveform and a spiking neuron which is connected to another neuron through synapse,

respectively [6].

There are also other cells in brain which regulate the activity of the neurons by pro-

viding a feedback. Astrocyte is one of the cells which controls the synaptic connection

between the neurons. Basically, in a network composed of pre and post synaptic neurons,

synapse and astrocyte both neurons and astrocyte will affect each other performance by a

feedback which is controlled by a set of parameters [8].

In any neural network, a learning algorithm is required to modify the neurons connec-

tion for a specific purpose. Learning is defined as a mathematical rule which modifies the

synaptic weights accordingly. The learning algorithm which is used for SNN, is called

Spike Timing Dependent (STDP) [8] algorithm which is based on the timing differences

between consecutive spikes.

3
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Figure 1.2: A spiking neuron component[6]
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1.3 Spiking Neuron Models: Single Models and Population-

Based Models

Over the few last decades, scientists have tried to model the behavior of a spiking neuron

using mathematical equations to mimic the behavior of the neurons in the brain. A wide

range of mathematical models have been introduced to describe the non-linear behavior of

a single spiking neuron with different levels of biological accuracy and mathematical com-

plexity. In this range, Hodgkin-Huxely (HH) [9] model is the most accurate model which

describes the behavior of a single neuron in a great detail and it won the Nobel prize in

1963. This model is made of four coupled differential equations and it requires a high vol-

ume of mathematical calculations. Due to high volume of required computation, this model

is not appropriate for hardware implementation. On the other hand, Integrate and Fire (IF)

[10] is the simplest spiking neuron model which is made of only one differential equation.

Consequently, this model is not able to reproduce a wide range of spiking behavior at the

output. However, it is a good candidate for a large scale SNN implementation due to its

very low hardware cost. There are other models [11]-[14] which make a trade-off between

the biological accuracy and mathematical complexity. Most of these models have been

made of two or three coupled differential equations such as Adaptive-Exponential model

(AdEx) [15], and Izhikevich (Izh) [16]. There are also other two and three dimensional

models which have been presented to simulate the activity of the neurons in brain. These

models are fairly ideal candidates for small to medium size SNN implementation such as

CPGs and stimulators for medical studying due to the trade-off they provide between the

accuracy and mathematical complexity.

In contrast with the single spiking neuron models [9]-[16], population-based models

represent the behavior of groups of spiking neurons in the brain. For example, Wilson-

Cowan (WC) [17] model presents two coupled differential equations representing the be-

havior of groups of excitatory and inhibitory neurons in the neocortex part of the brain.
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Figure 1.3: A rehabilitation system using CPG [18]

Since, all tasks in our brain are performed by groups of spiking neurons, having a population-

based model is essential to study the brain behavior. Neocortex part of the brain is re-

sponsible for controlling the locomotion part of the animals including both vertebrate and

invertebrates. Therefore, hardware implementation of such a model can be employed in

developing bio-robotic and CPGs which can be used in FES. Fig. 3 [18] shows an exam-

ple of a CPG which has been employed in a rehabilitation system to stimulate muscles for

recovering movement.

1.4 Neuromorphic Engineering

Neuromorphic Engineering (NE) is a concept which was introduced by carver Mead [19]

in 1980s for the first time, and it states the use of Very Large Scale Integration (VLSI)

electronic systems containing analog components to map the functionality of the brain,

including the neurons, into analog VLSI. Nowadays, NE is used for digital, analog and

mixed signal VLSI implementation of SNN. NE is an interdisciplinary field of study which

takes inspiration from many fields including biology, physics, neurology, mathematics,

computer science and electronic engineering. There are lots of funded projects around the

world which are working in this area including Blue Brain project [20] in EPFL Switzerland

and Human Brain [21] project which has over 100 university partner around the world.
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1.5 Hardware and Software based Implementations

Different methods can be used for a neural system implementation. Computational cost,

speed, and configurability are the main concerns for the implementations. Although CPU-

based simulations offer a relatively high speed simulations they are designed to be used for

general purpose and every day applications. Besides, they offer a serial implementation

which limits the number of neurons which can be implemented at the same time. Hard-

ware implementations instead can provide a platform to have parallel implementations.

Although analog implementation is relatively efficient it suffers from the long process of

fabrication. FPGAs, on the other hand offer a configurable platform which offers parallel

processing which makes it a suitable candidate for spiking neural network implementations.

1.6 Digital Hardware Implementation Methodologies

There are different kinds of methodologies for digital hardware implementation which is

discussed briefly in this section. In this thesis, depending on the application, either one or

combination of these methods can be used for digital implementation.

• Look Up Table based implementation (LUT): In this method, the discrete points

for a range of input are stored in a memory. This method can be very accurate but it

is not efficient for large range of inputs and outputs. Furthermore, by adding each bit

to the input range the size of the LUT will be doubled.

• Piecewise Line approximation (PWL): In this method, the non-linear behavior of

functions is approximated using several first-order lines. The accuracy of the approx-

imation is highly dependent to the number of lines which are used. With the higher

number of lines, higher accuracy is provided. This method is more efficient than

LUT based approximation, but it usually provides less accuracy.
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• Hybrid method: A hybrid method can be used for a bivariate function. In this case,

by considering one fixed input, PWL method can be employed to approximate the

function and these values can be stored in a memory.

• Base-2 approximation: In this method, a nonlinear function can be approximated

using a base-2 function. Base-2 function can be easily implemented in digital by shift

and add/sub operations. Therefore, with an affordable hardware cost, an acceptable

accuracy can be provided with this method. Although, this method is efficient, it’s

more appropriate for non-linear functions with a large input and output range. Be-

cause for small input and output range LUT approximation provides better accuracy

with an affordable hardware cost.

1.7 Design Flow and Prototype Used in the Thesis

First of all the equations must be discretized for a digital hardware implementation. Choos-

ing an appropriate digital approximation methodology is required for nonlinear functions.

The proposed approximation must be tested through a numerical simulation. In this thesis,

MATLAB simulation is used to verify the validity of the approximation.

The second step is designing the architecture and employing RTL design which is per-

formed by writing a behavioral Verilog code to describe the model in hardware. The design

is simulated by ModelSim software and the functionality is checked in this phase.

In the third phase the design must be synthesized for a target FPGA. This step can

be performed using FPGA compilers such as Vivado (Xilinx FPGAs) and Quartus Prime

(Altera FPGAs). In this thesis, Quartus Prime compiler has been used to synthesize the

design and map the design to the FPGA resources.

The last phase of the design is the measurement which is performed using PXI na-

tional instrument device and LabVIEW software. The GPIO port of the Altera FPGA is

linked with the input port of the PXI device using a cable and the waveform is captured by
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LabVIEW software.

1.8 Outline of the Dissertation and List of the Contribu-

tions

In this thesis several digital blocks are designed for SNN.

• In chapter 2, a novel digital neuromorphic design is introduced for neural-glial inter-

action. The design is made of pre and post synaptic AdEx spiking neuron, synapse,

and astrocyte cell model. Synthesis of the designed circuits shows that the designed

astrocyte circuit is able to mimic its biological counterpart and modify the synapse

connection, successfully. In addition, synthesis results indicate that the proposed de-

sign uses less than 1% of available resources of a VIRTEX II FPGA which saves up

to 4.4% of FPGA resources in comparison to other designs.

• In chapter 3, a low cost, accurate and configurable digital circuits for pair-based

and triplet-based STDP learning models are introduced. The proposed architectures

are compared with the state of the art methodologies such as Lookup table (LUT),

and Piecewise Linear approximation (PWL). The results show a maximum error of

0.0088 between the proposed digital circuits and the original learning models. The

circuits have been synthesized and physically implemented on Altera FPGA board.

The Quartus prime synthesis tool verify that the proposed circuits take maximum 1%

of the FPGA resources. The circuits can be employed in a large scale Spiking Neural

Network (SNN) implementation due to the efficient hardware cost.

• In chapter 4, Gaussian Wilson–Cowan model as a biological model for neocortex part

of the brain is investigated in terms of its digital implementation feasibility. Gaussian

Wilson–Cowan model as one of the well-known population-based models represents

neuronal functionality in neocortex. Hardware implementation of biological neural
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models are helpful in understanding of the brain performance, cognitive tasks, and

learning about the brain diseases. Digital model is proposed for the Gaussian Wil-

son–Cowan and examined from dynamical and timing behavior point of view. The

evaluations show that the proposed model is capable of mimicking the biological

model. An efficient digital hardware system is presented for the digitized model with

minimum required resources using Verilog Hardware Description Language. Digital

architectures are implemented on an Altera FPGA board. Experimental results show

that the proposed circuits take maximum 2% of the available resources of a Stratix

Altera board. A maximum frequency of 244 MHz has been achieved by employing

Static Timing Analysis (STA).

• In chapter 5, A digital architecture is proposed for a CPG composed of coupled

Digital Hindmarsh-Rose (DHR) neurons to generate the anti-phase patterns in the

output of the network. Hardware implementation of bio-inspired Central Pattern

Generators (CPG) is employed in many robotic and control applications. Aiming

an efficient implementation, a fast and compact FPGA implementation is proposed

for HR neuron by employing on-chip memories and a combined methodology which

reduces the computational complexity appropriate for digital hardware implementa-

tion. The model is verified in terms of accuracy and system dynamic behavior. The

proposed architecture for CPG is implemented on an FPGA device which is suit-

able in robot control applications. Experimental results indicate that the generated

waveforms from the RTL design follows the simulations successfully and the CPG

parameters can be adjusted for an adaptive behavior. Static Timing Analysis (STA)

indicates that the circuit can work in a maximum frequency of 139.53 MHz which is

a 70% improvement in comparison with the fastest work reported in the literature.
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Chapter 2

A Digital Neuromorphic Circuit for

Neural-Glial Interaction

2.1 Introduction

In the pathway toward understanding the brain activity and its capabilities for learning, glial

cell along with neurons is needed to be considered in order to explain brain behavior [1],

[2]. Without astrocytes, description of the brain behavior is incomplete. Therefore, in order

to have a comprehensive representation of brain, glial cells are required to be incorporated

in the modelling of the brain activity.

Astrocyte is a subtype of glial cells and plays an important role in communication

between neurons by controlling synaptic transmission through receptors, transporters, and

glia transmitters release [3]. In fact, astrocyte reacts to synapse activity and modifies synap-

tic process [4].

Understanding the functionality of the astrocyte and its relation with neurons affects
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2. A DIGITAL NEUROMORPHIC CIRCUIT FOR NEURAL-GLIAL INTERACTION

how the network activities such as information processing, synapse formation, modulation

of synaptic transmission, and memory formation are modelled. A precise neural network

should include the astrocyte model in its hardware implementation. Accurate implemen-

tation of the astrocyte which regulates the synaptic activity improves the reliability of the

systems implemented in modern CMOS technologies where fabrication process limits the

reliability of circuit operations.

In this paper, an efficient digital implementation of the network composed of neurons,

synapse, and astrocyte is presented. This network serves as a building block for implemen-

tation of a large scale Spiking Neural Network (SNN).

In the proposed network interaction model between the astrocyte and neuron is imple-

mented. These interactions although have been reviewed in literature [3], [4], but only a few

have covered hardware implementation of astrocytes and neural-glial interaction [7]-[9]. It

should be mentioned that even in these works, a simplified version of astrocyte interaction

is considered.

The proposed digital architecture is based on the Postnov mathematical network [10],

except the neuron model has been replaced by the biological AdEx model instead of Fitzhugh-

Nagumo (FH) model. The proposed model is more comprehensive and is composed of

astrocyte and AdEx neurons. Considering large scale nature of applications to reduce the

hardware cost, approximations have been used in the design of the system.

In the following section, the interaction of neurons and astrocyte is briefly presented.

The model of the network and its elements are introduced in section 2.3. In section 2.4 the

proposed network is introduced. Design and hardware synthesis are discussed in section

2.5, following with the conclusion in section 2.6 .
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2.2 Neuron and Astrocyte Interaction

A neural-glial network is composed of at least two neurons which are called presynaptic

and postsynaptic neuron, an astrocyte, and a synapse which interacts with the two neurons

and the astrocyte. This type of synapse provides three paths to neurons and astrocyte and is

called tripartite synapse. In such a network, there is a mechanism in which each unit affects

the other cells. This mechanism is initiated by presynaptic neuron. When presynaptic

neuron fires, two activations are initiated. First glutamate receptors is activated on the

postsynaptic membrane and then glutamate metabotropic receptors is activated on astrocyte

which results an increment in the amount of calcium ion (Ca+2). The amount of increment

is affected by the level of synaptic activity. Increasing Ca+2 results in triggers in the glial

transmitters Glutamate release, adenosine triphosphate (ATP), or D-serine. Finally Glial

Glu interacts with i-GluRs which results in additional depolarization of the postsynaptic

neuron [10].

The astrocyte is controlled by neurons using two routes. Fast route (α parameter) in

which astrocyte is sensitive to potassium ion (K+) release when a postsynaptic neuron

fires. The second route is slow route (β parameter) in which astrocyte is sensitive to presy-

naptic neuron firing. On the other hand, astrocyte affects postsynaptic neuron excitation

and inhibition as well. The excitation is controlled by γ parameter and inhibition is con-

trolled by δ parameter.

Therefore, Ca+2 has oscillations due to Ca+2 exchange between neurons and astrocyte

cells. This oscillation is transformed into the network and even passes through neighboring

astrocytes as well. Experiments indicate that astrocytes can form a network similar to

neurons and an astrocyte network can even be connected to another one only through a

common astrocyte [11], [12]. Therefore, a large scale network can be built based on the

smaller implemented networks of astrocytes and neurons suitable for different processing

applications.
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Figure 2.1: A Neuron-Synapse-Astrocyte network: N1 is presynaptic neuron, N2 is post-
synaptic neuron, S is synapse unit and A is astrocyte unit.

2.3 Network Model

In this section the network model is discussed. The network is composed of two neurons

(N1, N2), a tripartite synapse (S), and an astrocyte (A) which regulates the synapse trans-

mission between the two neurons. Fig. 2.1 shows the main elements of the network. As it

is shown in this figure, both neurons and astrocyte affect each other. The effects of neurons

on astrocyte is displayed by α and β parameters and astrocyte controls the postsynaptic

neuron through γ and η parameters.

In the following section background information and the mathematical models used for

each component are briefly reviewed.

2.3.1 Neuron (N)

There are two neurons in the network, a presynaptic, and a postsynaptic neuron. In this

section mathematical representation of their activities is briefly described.
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Presynaptic Neuron (N1)

Presynaptic neuron is activated by an external current and if a spike occurs, it will activate

the synapse unit.

In this work, neurons are based on the biological AdEx model as follows [11]:

C
dV

dt
= −gl(V − El) + gl∆T · exp

V − VT
∆T

+ I − ω (2.1)

τω
dω

dt
= a(V − El)− ω (2.2)

where V is the membrane potential, ω is the adaptive variable, C is the total membrane

capacitance (pF), gl is the total leak conductance (nS), El is effective rest potential (mV),

∆T is threshold slop factor (mV), VT is effective threshold potential (mV), Vr is resting

potential (mV), τω is adaptation time constant (ms), a is subthreshold adaptation (ns), b is

spike trigged adaptation (pA) and I is total current.

When the membrane voltage crosses its apex (0), the voltage and adaptation variables

change replaced according to auxiliary (reset) equations, as follows:

if V > 0 then

V → Vr

ω → ωr = ω + b

(2.3)

By choosing different parameters, the model can generate various types of spiking ac-

tivities [11]. According to the model used in [9] at I = 500mA, the tonic neuron can be

activated.

In the proposed design, the tonic type is used for both the presynaptic and postsynaptic

neurons.
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Postsynaptic Neuron (N2)

The same model is used for postsynaptic neuron. However, input current is different for

postsynaptic neuron. For presynaptic neuron I = Istimuli, while for postsynaptic neuron

input current is equal to:

Ipost = (I2 − Isyn − IGm + IGa) (2.4)

where I2 is current for N2, Isyn is synapse current, IGm and IGa are feedback currents of

the astrocyte.

IGm = γGm denotes the glutamate flow released by the glial unit and IGa = ηGa is

representing hyperpolarizing action of variable Ga. Therefore, when presynaptic neuron

spikes, synapse will be activated.

2.3.2 Synapse (S)

There are two main parameters which have to be considered for synaptic transmission:

delay and threshold of synapse activation [10].

These two parameters are incorporated in the Kopel model [8] as follows:

τc
dz

dt
= [1 + tanh(Ss(V1 − hs))](1− z)− z

ds
(2.5)

Isyn = (ks − δGm)(z − z0) (2.6)

where z is the activation variable, τc determines time delay, parameters hs, Ss, and ds are

constants determining activation and relaxation of z variable, ks is conductance, and δ is

a controller parameter which controls Gm effects. Also, z0 is a reference level and when

synapse is active it is almost 0, otherwise it is 1. When V1 is less than hs synapse is inactive,

while when it goes further than hs synpase is activated and z is approximately equal to 1.

After each presynaptic neuron spike, V1 drops below the hs which inactivates the synapse
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variable (z). Therefore, when z is active, it provides a current called Isyn which is applied

to the postsynaptic neuron [10].

2.3.3 Astrocyte Unit (A)

The astrocyte model used in this paper is the model which has been discussed in [10].

This model provides appropriate controlling parameters which can activate or deactivate

different paths between the units thus generating specific features of different neural–glial

patterns. This model is composed of six equations as follows:

τc
dc

dt
= −c− c4 · f(c, ce) + (r + αω2 + βSm) (2.7)

εcτc
dce
dt

= f(c, ce) (2.8)

f(c, ce) = c1
c2

1 + c2
− c2e

1 + c2e
· c4

c42 + c4
− c3ce (2.9)

τSm
dSm
dt

= [1 + tanh(sSm(z − hSm))](1− Sm)− Sm
dSm

(2.10)

τGm
dGm

dt
= [1 + tanh(sGm(c− hGm))](1−Gm)− Gm

dGm

(2.11)

τGa
dGa

dt
= [1 + tanh(sGa(c− hGa))](1− Sm)− Ga

dGa

(2.12)

where variable c represents the calcium dynamics in the astrocyte, ce presents the calcium

concentration in the internal storage, ω2 denotes the adaptive variable of the second neu-

ron. The nonlinear function f indicates the C+2
a exchange between the cytoplasm and the

endoplasmic reticulum. The feedback current from synapse to astrocyte is described by Sm

and Gm is responsible for describing the glial glutamate production [10].

In this model, τc, τs, τSm and τGm denote time constants delays, and hS , hSm, hGm, and
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hGa are used for discerning of activation and inactivation states of V1, z, c, c1 − c4, dSm,

dGm, dGa, ssm, sGm, sGa also are some other constants which can be provided using the

model in [10].

To implement the network in hardware, modifications are required to develop an effi-

cient digital system representing such a network. It should be noted that τSm is much larger

than τc, therefore ce displays a faster dynamic behavior [8], [9]. However, its dynamic af-

fects the astrocyte outputs therefore, in order to provide more accuracy, implementation of

ce and f is also required.

2.4 Proposed Network

In this section, a modified model of the network is introduced. In the original model, there

are two main functions which are expensive from hardware implementation point of view.

These functions are Exponential function (Ex) used in the neuron model and the Tanh

function (Tanh) which is the main function of synapse and astrocyte as represented by (5),

(10)-(12).

2.4.1 Exponential Function

Implementation of the exponential function generally consumes a lot of resources, and

takes up a large area. Therefore, to implement this function efficiently, approximations

have to be applied.

The first equation of the neuron model can be modified using a base-2 term [14]. A

base-2 value can be implemented in digital using shift and add operations.
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Figure 2.2: Tanh function and its approximations

2.4.2 Tanh Function

The Tanh function can be approximated using a sign function approximation as follows:

tanh(x) ∼=

+1, x ≥ 0

−1, x < 0

(2.13)

Fig. 2.2 shows the Tanh and its approximation based on (13).

The network has been simulated and the results are shown in Fig. 2.3 and Fig. 2.4.

Fig. 2.3 shows the astrocyte effect on the postsynaptic neuron. As can be seen from this

figure, astrocyte is able to control the postsynaptic pattern by tuning the γ and δ parameter.

Therefore, even after stopping the stimuli current, the postsynaptic neuron is spiking due to

the feedback currents from the astrocyte. The postsynaptic neuron firing continues during

the Gm activity.

On the other hand, Fig. 4.4 represents the results for slow and fast activation routes

of the astrocyte. The fast activation is controlled by α parameter. Fig. 2.4(a) shows the

postsynaptic neuron effect on the calcium release (variable c) for two different values of

α parameter (0.0033 and 0.0004). Small values of α results in damped oscillations in the

variable c. By increasing α the effect of postsynaptic neuron on astrocyte is strong enough
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Figure 2.3: Astrocyte effect on the postsynaptic neuron, V1 is membrane potential of the
first neuron. Astrocyte variables have been simulated using three approximations for Tanh
function: original (blue), base-2 (green), sign (red). V2 is representing the second neuron
output.

Figure 2.4: Simulation results (a) fast route activation (b) slow route activation

to initiate spike in variable c during the postsynaptic neuron firing.

The slow activation route is controlled by β parameter. Fig. 2.4(b) presents the presy-

naptic neuron effect on c for two different values of β parameter (0.05 and 0.09). As it
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Figure 2.5: Top level architecture of the neural network system

can be seen from this figure, β controls the presynaptic neuron effect on variable c which

describes the calcium release. At small values of β the calcium amplitude has some oscil-

lations and it slowly increases during the presynaptic firing period. When the presynaptic

neuron stops spiking, there is still some fluctuations in Ca+2 release and then it gradually

disappears. At higher values of β, more activity is observed in Ca+2 fluctuations which is

in match with biological experiments.

In these simulations, base-2 has been used for exponential function and (13) has been

used for Tanh and the results are close to the case in which original tanh function has been

used.

The results of approximation output are very similar to original one. According to these

results, sign function (red line) is able to produce original Tanh (green line). Therefore it is

an appropriate option for digital implementation due to its low-cost and accuracy.
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2.5 Digital Design and Synthesis

This section presents the hardware architecture of the system. As the first step, it is required

to discretize (1) and (2) for the neurons, (5) and (6) for the synapse , and (7)-(12) for the

astrocyte is required. This step is performed using the Euler method.

The second step is digital optimization and bit width determination. Fixed point rep-

resentation has been used for defining a variable with fraction part. Variables range cal-

culation is needed to determine the bit width of the variables. Since the integer range of

the astrocyte variables is small, two bits can be used to represent integer part of each vari-

able. However, to avoid overflow when the digits are shifted, 5 bits has been considered for

the integer part of the variables. The fraction part digit number determines the precision

of the computation. For the fraction part, 25 digits has been considered which provides a

precision of 2.98× 10−8 for digital calculations.

Base-2 model has been used for the exponential function implementation of the neurons

and sign function has been used instead of Tanh function to have an efficient implementa-

tion.

Fig. 2.5 shows the top level view of the system architecture. In this network architec-

ture, the presynaptic neuron, N1 is initially stimulated by input current. The synapse unit

is activated by each presynaptic neuron spike. When V1 is in under threshold, z variable of

synapse unit is inactive. By increasing V1 above threshold variable z is activated. More-

over, c is activated through slow activation route which is controlled by β parameter. The

synapse unit sends a current signal to postsynaptic neuron and also activates the block of

the astrocyte unit which is described by Eq. (10). Then N2 is activated by synapse which

affects the astrocyte by α parameter (fast route activation). Finally astrocyte provides the

feedback currents to postsynaptic neuron which are controlled by γ and δ parameter.

Scheduling details of the astrocyte unit and synapse have been shown in Fig. 2.6 and

Fig. 2.7, respectively. In order to reduce hardware cost, constant multiplication and division

are implemented using add and shift. Three dividers are required for implementation of the
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Figure 2.6: Scheduling diagram for astrocyte unit: a) f and ce computation, b) c variable
of astrocyte computation c) Sign function block d) Variable S computation e) Variable Gm

computation and f) variable Ga computation

Figure 2.7: Synapse unit computation

Figure 2.8: Divider building block
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Figure 2.9: Output results of the astrocyte

block which is described by Eq. (9). However, only two multiplication/division are used in

each cycle of the scheduling design. In the diagrams, dash lines separate different cycles.

For instance, based on Fig. 4.6(a), nine cycles are needed to have ce variable ready.

The synapse unit has been presented in Fig. 5.6. The synapse has been implemented by

a sign function. In this scheduling, shift and add have also been used for constant multipli-

cation or division. If presynaptic neuron spikes, the input of sign function is positive which

activates the z and synapse sends Isyn to the postsynaptic neuron, otherwise z is inactive

and Isyn is zero.

Since the results of the division terms are positive and less than 1, therefore it definitely

meets the sequential division condition [15]. Fig. 2.8 displays the divider block. In this

block, x, the dividend and d, the divisor, are inputs of the division block. With each clock

pulse, x is shifted to right and is compared with the dividend and the result would be a bit

of quotient. After (n− 1) clock pulses the output is ready.

Fig. 2.9 displays a typical output of the proposed digital architecture of astrocyte. In this

figure, c presents the calcium release of the astrocyte which is activated by the presynaptic

and postsynaptic neurons, successfully.

The hardware design has been synthesized using ISE tools for a VIRTEX II FPGA. Ta-

ble. I shows a comparison between this work and previous works from network feature and

hardware cost points of view. The proposed network is different from the previous works
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Table 2.1: Network feature and hardware cost comparison

Neuron Type No. Neurons f and ce eq. No. FF LUT Mult/Div

[7] Izh 1 included 923 1349 1(20*20)

[9] FH 4 not included 315 233 2

proposed work AdEx 2 included 205 143 2

in the neuron model and network complexity point of view. A neuron model with more

similarity with biological neuron (AdEx) has been used in the proposed network. In pervi-

ous works, the dynamical function of astrocyte model which describes the Ca+2 exchange

either has not been considered or a linear approximation has been used. However, because

its dynamic affects the astrocyte output, the nonlinear function has been considered and

implemented using sequential division which can be implemented in hardware efficiently.

Implementation of nonlinear function provides a more accurate functionality of astrocyte

and neuron interaction. The proposed system utilizes less than 1% of the FPGA resources

(27392 LUT and FF) that saves up to 4.4% of FPGA resources when compared with similar

works. This feature allows for scaling the proposed network for implementation of large

scale spiking networks.

2.6 Conclusion

A network of two neurons and an astrocyte has been developed based on Postnov astrocyte

and AdEx neuron model. The equations have been modified for an efficient hardware im-

plementation. Simulations have shown that Tanh function can be approximated using sign

function with acceptable accuracy and similarity with the original function, therefore sign

function has been used for equation approximation. Although, ce dynamic is faster it can

affect the output, so to have more accuracy f and ce equations also have been incorporated

in the design. The proposed architecture has been simulated and synthesized and the results

show that it is successfully able to reproduce the interaction signals. A digital architecture
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has been presented for the network. In order to reduce the hardware cost, shift and add

have been used instead of multiplication and division in some cases where constant multi-

plication or division is needed. Synthesis results verifies that the proposed design uses less

than 1% of available resources of a VIRTEX II FPGA, so it can be used as a module in a

large scale SNN implementation. On the other hand, since astrocyte is able to regulate the

synaptic weight, it can increase the systems reliability in neural network applications.
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sciences Computationnelles,” Neurocomp’10”, 2010.

[13] R. Naud, N. Marcille, C. Clopath and W. gerstner, “Firing patterns in the adaptive ex-
ponential integrate-and-fire model,”Biol. Cybern.,vol. 99, no. 4-5, pp. 335-347, 2008.

[14] S. Gomar, A. Ahmadi, “Digital Multiplierless Implementation of Biological
Adaptive-Exponential Neuron Model, ”Trans. on Circuit and Sytem, vol. 61, pp. 1204-
1219, 2014.

[15] Koren, Israel. Computer arithmetic algorithms. Universities Press, 2002.

30



Chapter 3

Digital Realization of PSTDP and TSTDP

Learning

3.1 Introduction

Synaptic plasticity plays an important role in learning and memory process in the brain [1].

Biological experiments shows that the relative timing of the spike events is very impor-

tant to form a phenomena in the brain called Spike Timing Dependent Plasticity (STDP)

learning. STDP is a process which is responsible for strengthening and weakening the

connection between pairs of neurons in the brain [2]. The classical model of STDP which

updates the weights only based on the timing difference between pairs of pre-post neu-

ron spikes is called pair-based STDP (PSTDP). PSTDP is not able to generate some of

the biological observations in higher-order spike trains [3]. Triplet based STDP (TSTDP)

which was introduced by Pfister and Gerstner in 2006 [1], on the other hand, is able to take

the effect of triplets of spikes into account [2], and it is able to reproduce the biological
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counterpart behavior with higher accuracy.

In this paper, a couple of efficient digital architectures are proposed for PSTDP and

TSTDP learning models which are able to replicate the biological models, accurately. The

proposed digital models have been employed for a coupled modular spiking neurons and

it is indicated that the proposed learning circuit is able to successfully adjust the post-

synaptic neuron firing pattern. Furthermore, the proposed circuits are compared with the

state of the art solutions for implementing mathematical learning models, and the results

confirm that the proposed architectures are more efficient and accurate. Digital Hardware

Description Language (HDL) has been employed to design the circuits and the design has

been physically implemented on Altera FPGA board. The experimental results verify that

the digital circuits are successfully able to reproduce the learning curves for both PSTDP

and TSTDP models and modify the postsynaptic neuron firing pattern.

The rest of this paper has been organized as below. In section 3.2, a brief is presented

on learning rules: PSTDP and TSTDP. In section 3.3, the proposed models are introduced

and compared with the current solutions. Comparison and error measurement are given in

section 3.4. In section 3.5, digital hardware design is discussed. Experimental results are

presented in section 3.6, and the paper is concluded in section 3.7.

3.2 Material And Method

Learning is defined as synaptic weight updating by a rule. This process has been modeled

by different types of mathematical equations. Among them, PSTDP and TSTDP highly

match with the biological process which are briefly discussed in the next two subsections.
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3.2.1 Pair Based STDP Rule

PSTDP which is based on a pair of spikes timing difference is defined as [2]:

∆w =

∆w+ = A+e
−∆t
τ+ , if ∆t ≥ 0

∆w− = −A−e
∆t
τ− , if ∆t ≤ 0

(3.1)

Where ∆t = tpost − tpre , represents the time difference between the pre and postsynap-

tic neurons spikes. In this model, ∆t+ denotes potentiation and ∆w− denotes depression.

Based on this model potentiation occurs when postsynaptic neuron fires after presynaptic

neuron (∆t ≥ 0) and depression occurs when the postsynaptic neuron fires before presy-

naptic one (∆t < 0).

3.2.2 Triplet Based STDP Rule

TSTDP modifies the weights of synapses based on three consecutive spikes timing [2]-[3].

TSTDP equations are given as below

∆w =

∆w+ = e
−∆t1
τ+ (A+

2 + A+
3 e
−∆t2
τy )

∆w− = −e
∆t1
τ− (A−2 + A−3 e

−∆t3
τx )

(3.2)

similar to PSTDP, ∆w+ and ∆w− represents potentiation and depression, respectively. Po-

tentiation occurs when the postsynaptic spike arrives while depression occurs by a presy-

naptic spike arrival. A+
2 , A+

3 , A−2 , A−3 are the potentiation and depression strength param-

eters and τ+, τ−, τx and τy are time constants which control the width of STDP curve

window. Depending on the neuron type, and timescale, the width of the learning curve can

be adjusted. Also, ∆tis are defined as below:

- ∆t1: time difference between pre and postsynaptic neuron spikes

- ∆t2: time difference between current post and previous postsynaptic neuron spikes
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- ∆t3: time difference between current pre and previous presynaptic neuron spikes

Fig. 3.1 demonstrates the timing representations for PSTDP and TSTDP learning pro-

tocols.

3.3 State of the Art and Proposed Model

3.3.1 LUT Based Approximation

Discrete points are stored in a memory in LUT method [5]. The accuracy is highly de-

pendent on the number of the points which is chosen for the hardware implementation. In

fact, by adding each bit accuracy, the size of the memory will be doubled. Moreover, the

LUT-based methods require a high volume of memory to store the values which are not ef-

ficient when targeting a large scale system implementation or a function with a wide range

of input and output.

3.3.2 PWL Approximation

In PWL model, the nonlinear behavior of the equations is linearized by several first order

lines. This method is efficient but its accuracy depends on the number of lines used in ap-

proximation [4],[6]-[7]. In this paper, the proposed model is compared with LUT method,

and linear approximation by using one line (PWL), and two lines (PWL2) for approximat-

ing each curve.

PSTDP Rule

PWL: Each exponential term can be approximated by one line:

∆w+ = m0∆t+ b0

∆w− = m1∆t+ b1

(3.3)

34



3. DIGITAL REALIZATION OF PSTDP AND TSTDP LEARNING

Figure 3.1: PSTDP, and TSTDP timing representations. n0 represents the presynaptic neu-
ron, and n1 represents the postsynaptic neuron. a) PSTDP depression, b) PSTDP potentia-
tion, c) TSTDP, post-pre-post protocol, and d) TSTDP, pre-post-pre protocol. Vertical bars
show the spike events. [2]

PWL2: Each exponential term can be approximated by 2 lines:

∆w+ =

m0∆t+ b0, if ∆t ≥ p0

m1∆t+ b1, if ∆t ≤ p1

(3.4)

∆w− =

m2∆t+ b2, if ∆t ≥ p3

m3∆t+ b3, if ∆t ≤ p4

(3.5)

where mi, and bi represent the parameters of the lines.

Table 3.1 shows the line coefficients for PWL and PWL2 models.

TSTDP Rule

Since TSTDP is a bivariate function of dt1 and dt2, a combination of PWL and LUT

methods can be used as a hybrid method for TSTDP implementation. TSTDP equations

can be converted into a function with one variable (dt2). Therefore, one-variable functions

can be approximated by lines and stored in memory for discrete values of dt1. The details

about the size of the memory are discussed in the following section.
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Table 3.1: PSTDP coefficients for PWL

parameters m0 m1 b0 b1
A+ = 1, A− = 1 -0.016 -0.016 1 -1

A+ = 0.5, A− = 0.5 -0.008 -0.008 0.5 -0.5
A+ = 1, A− = 1 −2−6 −2−6 1 -1

A+ = 0.5, A− = 0.5 −2−7 −2−7 0.5 -0.5

Table 3.2: PSTDP coefficients for PWL2

parameters m0 m1 m2 m3 b0 b1 b2 b3
A+ = 1, A− = 1 -0.0224 -0.0096 -0.0224 -0.0096 1 0.68 -1 -0.68

A+ = 0.5, A− = 0.5 -0.0112 -0.0048 -0.0112 -0.0048 0.5 0.34 -0.5 -0.34
A+ = 1, A− = 1 -0.0234 -0.0098 -0.0234 -.0098 1 -0.6875 -1 -0.6875

A+ = 0.5, A− = 0.5 -0.0117 -0.0049 -0.0117 -0.0049 0.5 0.34375 -0.5 -0.34375

36



3. DIGITAL REALIZATION OF PSTDP AND TSTDP LEARNING

Ta
bl

e
3.

3:
E

rr
or

m
ea

su
re

m
en

tf
or

PS
T

D
P

m
od

el
s

fo
rt

im
e

st
ep

=1
.V

al
ue

s
in

th
e

br
ac

ke
ts

sh
ow

s
th

e
da

ta
bi

t-
w

id
th

.

E
rr

PW
L

[8
]

PW
L

[1
6]

PW
L

2[
8]

PW
L

2[
16

]
L

U
T

[8
]

R
M

SE
0.

01
21

0.
01

21
0.

00
42

0.
00

42
2.

86
∗

10
−
4

M
E

0.
28

46
0.

27
69

0.
07

03
0.

07
26

0.
00

78

E
rr

L
U

T
[1

6]
21
.5
x
[8

]
21
.4
3
7
5
x
[8

]
21
.5
x
[1

6]
21
.4
3
7
5
x
[1

6]

R
M

SE
2.

35
∗

10
−
6

5.
85
∗

10
−
4

2.
83
∗

10
−
4

4.
78
∗

10
−
4

4.
53
∗

10
−
5

M
E

10
−
4

0.
02

1
0.

00
88

0.
01

43
0.

00
14

37



3. DIGITAL REALIZATION OF PSTDP AND TSTDP LEARNING

Table 3.4: Error measurement for TSTDP models for time step=1. Values in the
brackets shows the data bit-width.

Err hybrid [16] 21.5x[8] 21.5x[16] 21.4375x[8] 21.4375x[16]

RMSE 4.19 ∗ 10−5 2.03 ∗ 10−5 1.30 ∗ 10−6 2.03 ∗ 10−5 1.81 ∗ 10−7

ME 3.2 ∗ 10−3 9.3 ∗ 10−3 1.7 ∗ 10−3 7.8 ∗ 10−3 1.73 ∗ 10−4

3.3.3 Base-2 Approximation

STDP equations are made from exponential functions. Although LUT method can work ac-

curately and linear approximations are efficient for implementing the exponential function,

the accuracy and hardware cost are the main concerns simultaneously when a large-scale

implementation is targeted. The exponential function can be converted to a base-2 function

(Ex2) which has been employed in [4] for the first time:

exp(x) ∼= 21.44x ∼= 21.5x (3.6)

In [4], the coefficient 1.44, has been modified to 1.5 to make the digital implementation

straightforward. In order to increase the accuracy the approximation can be modified as:

exp(x) ∼= 2x+2−1x−2−4x ∼= 21.4375x (3.7)

This modification only requires one more addition operation, however, because of the ex-

ponential nature of the function it improves the accuracy, significantly. As shown in Table

3.2 and 3.3 the accuracy of equation (7) is up to 10 times of the (6).

PSTDP approximation: By applying (7) to PSTDP model, approximated equations

are extracted as below:

PSTDPEx2 :

∆w =

∆w+ = A+.2−1.4375(
∆t
τ+ ), if ∆t ≥ 0

∆w− = −A−.21.4375( ∆t
τ− ), if ∆t ≤ 0

(3.8)
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Figure 3.2: (a) PSTDP, (b) TSTDP curves

TSTDP approximation: Similar to PSTDP, the equations can be extracted for TSTDP

model as below:

TSTDPEx2 :

∆w =

∆w+ = A+
2 .2
−1.4375∆t1

τ+ + A+
3 .2
−1.4375(∆t2

τy
+

∆t1
τ+ )

∆w− = −A−2 .2
1.4375

∆t1
τ− + A−3 .2

−1.4375(∆t3
τx
−∆t1
τ− )

(3.9)

Fig. 3.2 shows PSTDP, and TSTDP curves and the base-2 models for different values

of parameters. As shown, PSTDP and TSTDP curves have been reproduced by proposed

models accurately. In the next section, the proposed model is compared with the original

model in terms of accuracy.

3.4 Comparison and Error Measurement

In order to compare the original function and the results two criteria have been used to

evaluate the circuits accuracy which are introduced as below:

- Root Mean Square Error (RMSE): which is defined as:

RMSE =

√
Σ(funcorigin − funcapprox)2

n
(3.10)
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where, func represents either TSTDP or PSTDP functions, and n represents the num-

ber of discrete points which have been used in the design.

- Max Error (ME): The max absolute difference between the original function and

approximated models has been considered as a criteria to evaluate and compare the accu-

racy of the models.

Table II and III show the error measurement and a comparison between the proposed

models and the original function simulation with two different bit-width of 8 and 16 bits.

For PSTDP learning, 8 bits have been considered for ∆t (one more bit is required for the

sign bit) therefore a range of (-127,127) can be provided to the input of the PSTDP unit.

The errors have been measured with time-step equal to 1ms. It should be noted for a

smaller time step equal to 0.5ms, one additional bit has to be considered for the bit-width

of the learning input (∆t). This additional bit does not increase the hardware cost of the

PWL and base-2 models, significantly, however, a double-sized memory is required for

the LUT approach. For the TSTDP learning, a range of (−127, 127) and (0 − 64) have

been considered for ∆t1 and ∆t2 or ∆t3, respectively. Based on the neuron models used

in the network, parameters can be adjusted for the network and neuron models. For error

measurement, parameter values in [2] have been used.

Based on these results, the LUT approach has the highest accuracy, but it requires

a larger amount of hardware resources. It should also be noted that by adding each bit

to the inputs the hardware cost is doubled which is not efficient in a large-scale neural

networks implementation. PWL method require the least hardware cost but it suffers from

lower accuracy. Among these models, the base-2 model provides accuracy with affordable

hardware cost. The accuracy has also been compared based on bit-width for the models.

As it is expected by increasing the bit-width higher accuracy is provided by digital models.

The parameters can be adjusted any time in the base-2 and PWL models without mod-

ifying the whole design, while this is impossible when LUT approach is employed for

hardware implementation. When parameters are modified, the stored values in the memory
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needs to be changed based on the new parameters for LUT method. When input range

changes the characteristics of the lines require to be recalculated and modified, in the base-

2 method, learning parameters can be modified directly. Therefore, base-2 model provides

the highest reconfigurability, and it is going to be discussed for the rest of the paper.

3.5 Digital Hardware Design

The top level design is shown in Fig. 3.3(a), and Fig. 3.3(b) shows the Finite State Machine

(FSM) diagram designed for the system. The system is made of three main parts: neuron

unit, time measurement unit (Timer), and Learning Unit (LU). In the FSM diagram, S0 rep-

resents the neuron calculation state, S1 represents the timing measurement state, depending

on the results of state S1, either potentiation, S2, or depression, S3 is activated, and then the

process is repeated.

3.5.1 Neuron Unit

The neuron unit is made of two neurons: pre and postsynaptic neurons. PLE [4] model

which is a digital version of Adaptive Exponential neuron model [8] has been used in the

system. Synaptic weight between pre and the postsynaptic neuron is modified using PSTDP

and TSTDP rule. Spike trains are passed to timing measurement unit.

3.5.2 Timer

This unit consists of two counters which count the number of clocks between each pair of

pre-post (or post-pre) spikes. If one of the neurons fires, it initiates the counter. The counter

continues counting until it receives spike signal from the other neuron. Once it receives the

spike signal, it stops counting and resets the counter. Depending on the sign of the counter

output either potentiation or depression will be activated. If the time difference is positive

potentiation occurs. If the time difference is negative depression occurs. Based on the
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sign of the output, the related parameters (A, τ) for potentiation and depression are chosen

using two multiplexers, and then the results are given to the learning unit to compute either

potentiation or depression weight change.

3.5.3 Learning Unit: Base-2 Model

Scheduling diagram

Fig. 4.4 shows the scheduling diagram designs of the circuits for PSTDP, TSTDP, and

modified Ex block. PSTDP and TSTDP circuit implementations are given in Fig. 3.4 a

and c, respectively. As shown, the first step for both learning is timing measurement. Since

TSTDP has three spike trains as inputs, it’s timing measurement is more complicated than

the timing measurement of PSTDP. This block measures two timing difference of ∆t1 and

∆t2 for the exponential blocks and then based on the sign of ∆t1, the required parameters

are chosen from the register bank and then the results are passed to the Ex blocks. Two

Ex blocks are required to compute potentiation and depression based on (6). Finally, Ex

blocks results are added together to compute either ∆w+ or ∆w−.

Exponential unit

TheEx block has been shown in Fig.3.4(b). Since the inputs are always negative, checking

the sign bit is not needed. Therefore, a modified Ex block has been designed for negative

numbers which reduces the hardware cost to half of the original Ex block reported in [4].

After preparing the input, calculating 1.4375X , integer and fraction parts are stored in a

register. The integer part of the input is checked to find ’true’ bits. At the same time, the

fraction part is added to ′1′. Based on the ’true’ bits, the result of the adder is shifted to the

right.
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Figure 3.3: (a) Top level design of the system, (b) Finite State Machine (FSM) designed
for the system. neuron membrane calculation is performed in state S0. S1 represents the
timing measurement state. Depending on the sign of the timing measurement result, either
S2 (potentiation), or S3 (depression) will occur.

Bit-width Determination

The minimum and maximum range of the variables are required to be examined to choose

the optimum bit-width range. To reduce the hardware cost, varied bit-width data path has

been considered for the registers ranging from 8 to 16 bits. Since the weight change range

is small (less than 1), accuracy and consequently fraction part is more important. Higher

number of fraction bits provides more precision. For example, with the choice of 10 bits

for the bit-width of the fraction part of the Ex block an accuracy about 0.001 (2−10 equals

to 9.7656 ∗ 10−4) is provided in the output.
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Figure 3.4: Digital circuits: (a) PSTDP implementation, (b) Ex Unit [4], and (c) TSTDP
implementation

Figure 3.5: PSTDP demonstration for a pair of pre and postsynaptic neurons
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Table 3.5: Digital synthesis results

model Total reg ALUT IO pins Max Freq (MHz)

PSTDP 16 49 26 250

TSTDP 12 125 26 250

3.6 Experimental Results

The circuits were developed in verilog Hardware Description Language (vHDL) and they

have been physically implemented on FPGA. System setup is made of three parts: hard-

ware, data transfer, and user interface. Circuits are implemented on an Altera Stratix VI

FPGA (EP4SGX530KH40C2N) board. The results of hardware utilization are given in

Table 3.3. Fig. 3.5 shows a pair of pre and postsynaptic neurons which are coupled and

PSTDP rule has been applied for regulating the strength between the two neurons. Fig.

3.5(a) shows the neurons spike patterns in the first 100 ms, and Fig. 3.5(b) shows the result

when PSTDP is completed and depression causes both neurons to fire, simultaneously.

3.7 Conclusion

Digital hardware circuits have been proposed and compared for STDP learning rules. The

modified base-2 method with an efficient hardware provides a tradeoff between accuracy

and configurability for the system. The maximum error was reported 0.0088 for 8 bit data-

path and 0.0014 for 16 bit data-path. In addition, the hardware cost is not highly dependent

to the data-path bit-width. Digital circuits have been synthesized and implemented on

FPGA, and the experimental results showed that the models are capable of producing the

learning window, successfully.

The models were compared with the LUT and linear approximations. Although LUT

model provides the highest accuracy the hardware requirement is high and highly depen-

dent on the accuracy and it does not provide configurability. PWL method has lower hard-
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ware cost, but it provides the least accuracy. A modular pair of pre-postsynaptic neuron

have been implemented and STDP could successfully be applied to the coupled neurons.

The hardware cost for the proposed learning model architectures was obtained less than 1%

of the FPGA resources, and the maximum frequency was gained as 250MHz. The model

developed in this work can be employed as a module for a larger spiking neural network.
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Chapter 4

Digital Hardware Implementation of

Gaussian Wilson–Cowan Neocortex

Model

4.1 Introduction

Brain is made of different regions, each region is made of a large number of neuron cells.

Although in the recent decades a wide range of mathematical models [1]-[7] and electronic

circuits implementations, either in digital or analog [8]-[13], have been developed for de-

scribing a single neuron behavior but since the number of neurons and synapses even in

a small region of the brain is enormous, a model which is able to represent the activity

of a population of neurons is more suitable to represent neuron activities of different re-

gions of the brain [14]. The first attempts go back to 1950 and 1963 when Beurle [15] and

later Griffith [16] who introduced a model by focusing on a population of neurons which
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are activated at a specific time frame in a given volume of model brain tissue. However,

their model was unable to describe inhibitory neurons and also it was not able to describe

excitatory neurons with refractory or recovery variable [14]. After two decades, Wilson

and Cowan [17] modified the Beurle’s [15] model to include both excitatory and inhibitory

neurons and also refractories in the form of a set of coupled differential equations in which

each represents one population activity. Beurle and Wilson & Cowan are considered as

the pioneers who introduced a population-based mathematical model for the neocortex re-

gion. Furthermore, this work was followed by Amari [18] to study pattern formation in

continuum models of neural activity.

The activation function used in Wilson-Cowan for representing the nonlinear behavior

of the input and output of the neural populations is a sigmoid function which is not in com-

plete match with experimental observations [15]. Recently, a model has been introduced

[19] which is more thorough. In this model the sigmoid function has been replaced by a

Gaussian function which is able to show the upper threshold phenomenon, and it is more

realistic as there is experimental evidence which supports the Gaussian activation function

better than the sigmoid one [19]. In fact, both vivo and vitro observations indicate that the

relationship between the input and output of the network is not like a sigmoid function, but

also it supports more accurate activation function such as a Gaussian curve instead of the

sigmoid function [19].

Cognitive features of brain can be inspired for designing future computing machines,

and this is possible by mapping the brain functionality into an electrical hardware system

which is the subject of a newborn interdisciplinary field of study named Neuromorphic

Engineering (NE) [20]. Hardware implementation of the neural models not only can help

to imitate brain features for different kinds of engineering applications [21] but also it can

help studying biological neural network functionality and brain diseases in order to find the

appropriate treatments for the brain diseases. Although a wide range of works have been

presented in the literature for a single neuron implementation [8]-[13], literature reviews
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Figure 4.1: Cortical sheet schematic. Each column is represented by a pair of Excitatory
(E) and Inhibitory (I) neuron population [19]

lack a hardware implementation for a popular-based model such as Wilson- Cowan Model.

When a hardware implementation is targeted, computational cost, speed, biological

accuracy, and configurability are the main concerns. Different approaches can be employed

for hardware implementation of such a network including digital/analog ASIC design and

Field Programmable Gate Arrays (FPGAs) [9]-[10]. Although analog implementation is

more efficient in terms of power and area, the process of its design and fabrication is very

time-consuming. In addition, analog circuits are very sensitive to thermal noise or device

mismatch [9]- [10]. FPGA, on the other hand provides a configurable platform for digital

implementation of the biological neural network.

In this paper, hardware implementation of Gaussian Wilson-Cowan model is investi-

gated. The digital model is examined in terms of accuracy, and dynamical behavior. The

analysis demonstrates that the proposed model is successfully able to reproduce the origi-

nal model patterns and dynamical bifurcations. In the next step, a low-cost digital hardware

design is presented and implemented on an Altera FPGA board. The hardware is designed

with the minimum required resources to keep the design suitable for large-scale implemen-

tation. Timing analysis is also performed to obtain the maximum possible frequency for

the proposed design.

The rest of the paper is organized as follows. In section 4.2, Gaussian Wilson-Cowan is
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briefly presented. In section 4.3, the digital model is proposed and compared in terms of dy-

namic and timing analysis. Digital circuit design is presented in Section 4.4. Experimental

results and conclusion are given in sections 4.5 and 4.6, respectively.

4.2 Gaussian Wilson-Cowan Model

Local microcircuits in the neocortex can be modelled by an excitatory and an inhibitory

populations with weights for the connection strengths [19] which was presented for the first

time by Wilson & Cowan (WC) [17]. These populations can be coupled to the neighboring

pairs through long range excitatory connections projecting to the excitatory population.

Such a configuration can be demonstrated in Fig. 4.1. Studies indicate that Gaussian

function is more reflective of biological evidence in comparison with a sigmoid function

[17], [19], [22]. The later modified model was introduced by Meijer et al, [19] as a Gaussian

Firing Rate Function (Gaussian FRF). The model can be given as:

τXX
′

k = −Xk + (1−Xk)Fx(JXk) (4.1)

FX(JXk) = exp(−(
JXk −Xθ

Xsd

)2)− exp(−(
−Xθ

Xsd

)2) (4.2)

JEk = wEEEk − wIEIk +B + αwEE(Ek+1 + Ek−1) (4.3)

JIk = wEIEk − wIIIk (4.4)

where, in these equations X is either E or I , in which E represents the excitatory

neuron population while I represents the inhibitory neuron population. K is the index of

the populations, K = 1, 2, . . . , N . The excitatory populations of E1, and EN only receive

input from E2 and EN−1 , respectively [19]. τE and τI are the time constants of (1) which

are taken equal to 1ms in all our simulations and implementations. According to [19], the

output patterns of the model can be controlled mainly by two bifurcation parameters of B,

and wEI . The rest of the parameters are given in Table 4.1. These parameters have been
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Table 4.1: Equation parameters

parametr value parameter value

wEE 16 Eθ 7

wIE 12 Iθ 5

wII 3 Esd 2.1

τx 1 Isd 1.5

Figure 4.2: Phase plane and timing plots for (A) original GWC model, and (B) DWC
model. Green arrows show the direction for the system, the E and I nullclines have been
shown in blue and black in the phase plane graphs, respectively. In the timing plots, variable
E has been demonstrated in blue, and I has been indicated in red. In both models, B = 3,
and wEI = 18, while Esd = 2, Isd = 1.6 for DWC, and Esd = 2.1, and Isd = 1.5 for
original model, respectively.

used in the former studies as well [19].



Ta
bl

e
4.

2:
B

if
ur

ca
tio

n
pa

ra
m

et
er

s

Pa
ra

m
et

er
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10
R

11
R

12
R

13
R

14
R

15
R

16
R

17
R

18
R

19

B
0.

25
3

8
1

10
2.

65
2.

7
2.

7
2.

25
2.

5
2

1
7.

75
7.

5
5.

5
3.

8
6.

7
5

3.
5

w
E
I

12
30

8
2

27
23

21
16

14
11

10
8

25
20

20
19

16
16

13



4.3 Digitized Gaussian Wilson-Cowan Model

In this section, different approaches for digital implementation of GWC model are dis-

cussed, and a digital model is proposed. Equations of the model are highly nonlinear which

makes the implementation challenging. However, some approximations can be taken with-

out a significant variation in output pattern in comparison with the original model. The

main challenge is implementing (2) in which the first term is a combination of exponential

and squaring function which can be approximated using techniques proposed in [9], and

[10]. Based on the proposed method introduced in [9], which has been used in several

works such as [13] the exponential function can be approximated to a digitally imple-

mentable function as below:

exp(x) ∼= 21.5x (4.5)

The range of the outputs of GWC model (i.eE, and I) is limited to (0−1), which means

these equations are very sensitive to the accuracy of the calculations. Therefore, in order to

increase the accuracy of the digital model, a modified, and more accurate approximation is

proposed in this paper:

exp(x) ∼= 2x + 2−x + 2−4x ∼= 21.4375x (4.6)

Another option for a digital implementation of an exponential block is using Look Up

Tables (LUTs) [23]. Although LUTs provide enough accuracy but they usually require a

large volume of memory which is not efficient especially in large scale implementation.

More details are given about this approach in the digital implementation section.

Secondly, based on (1) and (2), two multipliers are required for implementing each

population (E, I). One for the second term of the (1), (XkFX(J(Xk))), and another one

for square function for the first term of (2), (((J(Xk) −Xθ)/Xsd)
2).

Since the multipliers are very expensive in terms of hardware implementation cost,

54



Piecewise Linear approximation (PWL) technique as a well-known method [11] in digi-

tal hardware design can be utilized for the square function which results in reducing one

multiplier with the cost of reducing the accuracy. Although, PWL method can reduce the

number of multipliers, but it is unable to provide required accuracy in most cases, because

the output of the square function is the input of the exponential function which results in

increasing the error.

Furthermore, the second term of (2) can be calculated using the values given in Table.

I:

exp(−(
−Eθ
Esd

)2) ∼= exp(−(
−7

2.1
)2) = 1.4979 ∗ 10−5 (4.7)

exp(−(
−Iθ
Isd

)2) ∼= exp(−(
−5

1.5
)2) = 1.4979 ∗ 10−5 (4.8)

As can be seen from the above calculations the second term can be ignored since its

value is very small. It is shown later on in simulations that this does not affect the outputs

of the equations, significantly. The rest of the calculations can be performed using simple

mathematic operations with a small coefficient modifications which are discussed in the

digital circuit design section.

Accordingly, Digital Gaussian Wilson-Cowan (DWC) model can be introduced as be-

low:

τXX
′

k = −Xk + (1−Xk)Fx(JXk) (4.9)

FX(JXk) = 2K(−GX) (4.10)

GX = (
JXk−Xθ
Xsd

)2 (4.11)

where K = 1.4375, and J(Ek), and J(Ik) are the same as the original model. Function

GX can be implemented either with a multiplier for a higher accuracy, or using a PWL

method for an efficient implementation. Because the square function is the input for the
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Figure 4.3: Bifurcation analysis for original GWC model with varying the control param-
eters: B and wEI . Orange and pink color show the I and E null cline respectively. The
arrows and the blue lines show the direction of the system dynamic. Red dots are the
equilibrium of the system

exponential function, it is important to have an accurate implementation for the square

function, otherwise the error raises exponentially when the output of the square function is

passed into the exponential block. Therefore, DWC with 4 multiplier, DWC-4M, is focused

in the next sections.
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Figure 4.4: Bifurcation analysis for DWC model with varying the control parameters: B
and wEI . Orange and pink color show the I and E null cline respectively. The arrows and
the blue lines show the direction of the system dynamic. Red dots are the equilibrium of
the system.

4.4 Evaluation and Comparison: Dynamical and Timing

Analysis

In this section, the original and proposed models are compared in terms of dynamical and

timing analysis.

4.4.1 Dynamic Analysis

As it was mentioned in the previous section, GWC model supports biological experiments,

more than sigmoid based WC model. Only one intersection is observed in the phase plane

of the sigmoid based WC model [20], while the Gaussian model has two more intersections
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(saddle, and stable node) which results in two more steady states. Therefore, Gaussian

model is more powerful in comparison to WC model in terms of the potential of generating

more possible dynamics in the system.

In this section, GWC and DWC models are compared in terms of dynamical behavior.

Fig. 4.2 shows a typical phase plane and timing plot with a set of parameters for original

model (Fig. 4.2(A)) and DWC model (Fig. 4.2(B)). Esd and Isd parameters have been

slightly modified for the DWC model. As can be seen in Fig. 4.2 the digital model phase

plane and timing plot are very similar to the original one. As shown in Fig. 4.2(B), DWC

model also has three intersections in its phase plane which means it is able to follow the

original model dynamic, successfully.

The dynamic of the system is mainly controlled by two bifurcation parameters: B,

and wEI . In fact, by varying these two parameters, different types of bifurcations and

oscillations are shown by the system [20]. For a thorough investigation of the system the

phase portrait and timing plots have been obtained for different values of B and wEI . Fig.

4.3, and 4.4 show different shapes of the system dynamic for GWC and DWC models, with

varying control parameters (B and wEI ). Also the parameters used for each region have

been given in Table. 4.2.

To have a dynamic analysis for the models, the null-cline of the equations can be ob-

tained as below:

dE

dt
= 0⇒ FE(E, I) = 0 (4.12)

dI

dt
= 0⇒ FI(E, I) = 0 (4.13)

The intersections of the null-clines are called equilibrium points. The equilibrium

points have been calculated using MATLAB. For a bifurcation analysis, Jacobean Matrix

(JM) and eigenvalues are required to be calculated as below:
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JM =

A B

C D

 (4.14)

where

A =
∂FE(E, I)

∂E
,B =

∂FE(E, I)

∂I

C =
∂FI(E, I)

∂E
,D =

∂FI(E, I)

∂I

(4.15)

Jacobean coefficients for original model (A, B, C, D), and DWC model (A’, B’, C’, D’)

have been given in the appendix section.

In the next step, the eigenvalues can be calculated using the following equations:

T = A+B

Z = AD −BC

P (λ) = λ2 − Tλ+ Z

(4.16)

The roots of P (λ) are defined as the eigenvalues of the system. Four types of fixed

points can be observed in the system: nodal sink, spiral sink, saddle point, and spiral source.

Nodal sink fixed point has eigenvalues with negative real part. In spiral sink fixed point,

eigenvalues are positive real numbers. In saddle fixed point, corresponding eigenvalues are

real with different signs λ1 > 0, λ2 < 0 (R2, R4-R18). Spiral sink and spiral source both

have complex eigenvalues with negative and positive real part, respectively. The type of

fixed points of the system have been recognized for each region by calculating Jacobean

matrix and eigenvalues which have been shown in Table. III. The DWC model is able to

reproduce the same types of fixed points and dynamic which have been reported in [19] for

GWC model. This table also shows how many fixed points each region has. For example,

R7 has 4 fixed points, two nodal sink, one spiral sink and one saddle point. In addition,

each point’s coordinators are given in the table as well. For the same example, the saddle

point is located at (E, I) = (0.34, 0.19).
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Table 4.3: Fixed points types of different regions for DWC model

R Nodal sink Spiral Sink Spiral source Saddle point

R1 (0,0) - - -

R2 (0.35,0) (0.06,0.02) - (0.25,0.14)

R3 (0.12, 0.0016) - - -

R4 (0,0) - - (0.24,0.0003)

(0.44, 0.001) - -

R5 (0.39,0) (0.27,0.350 - (0.12,0.14)

R6 (0.036,0.006) (0.07,0.014) - (0.34,0.19)

R7 (0.032,0.0007) (0.077, 0.012) - (0.34,0.19)

R8 (0.017,0.0001) (0.47,0.16) (0.15,0.048) (0.46,0.26)

(0.07,0.003)

R9 (0.009,0) - (0.17,0.05) (0.1,0.007)

R10 (0.009,0) - (0.297,0.14) (0.096,0.002)

R11 (0.002,0) - (0.3,0.11) (0.16,0.01)

R12 (0,00 - (0.39,0.12) (0.25,0.026)

R13 - (0.29,0.24) - -

R14 - (0.37,0.2) - -

R15 - (0.29,0.26) (0.23,0.48) (0.26,0.5)

R16 - (0.4,0.128) (0.17,0.14) (0.39,0.29)

R17 - (0.45,0.4) (0.37,0.48) (0.41,0.5)

R18 - (0.46,0.36) (0.32,0.39) (0.44,0.47)

R19 - - (0.28,0.2) -
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Stable and unstable resting states: If the corresponding eigenvalues of the intersection

have negative real part, the equilibrium is called nodal sink which is seen in R1, R3. This

type of fixed point attracts nearby points in the phase plane graph. This dynamic behavior

is called stable resting state [27]. If both eigenvalues of the system have positive real part,

the system has an unstable dynamic due to having a nodal source fixed point which repels

the nearby area [27] (e.g. R19).

Saddle node bifurcation: To have a saddle node bifurcation, a stable resting and a

saddle fixed point are required. A saddle fixed point is observed in all areas for GWC and

DWC model, which means the system has the potential to have a saddle-node bifurcation

(e.g. R2, R4).

Hopf bifurcation: The appearance or the disappearance of a periodic orbit by changing

the parameters of a system is called Hopf bifurcation [25]. During a Hopf bifurcation, by

changing the parameters of the system, the corresponding complex conjugate eigenvalues

of the system lose their stability, and become absolute imaginary, and a periodic solution

ascends in the system [27]. Hopf bifurcation can be classified in two categories: super-

critical or subcritical. Supercritical bifurcation results in a stable orbit while subcritical

Hopf results in an unstable bifurcation in the system. A supercritical bifurcation has been

observed in R7, R10.

Homoclinic on saddle node: Homoclinic bifurcation occurs when a periodic orbit

strikes with a saddle point. Such a behavior can be shown in the R10, R16, in which there

are saddle points and spiral source fixed points. At the bifurcation point, the period of the

orbit grows toward infinity, and after the bifurcation the periodic orbit disappears [27].

Bogdanov–Takens (BT) bifurcations: This bifurcation is a mix of other bifurcations

and can occur in the systems with dimension of n = 2. Two bifurcation parameters are

required for this bifurcation to occur. It requires three pairs of eigenvalues [25]:

• A pair of zero eigenvalues

• Eigenvalues with Re λj < 0
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• Eigenvalues with Re λj > 0

The system requires one saddle fixed point and one non saddle fixed point equilibrium.

These two equilibriums strike and vanish through a saddle-node bifurcation. The non sad-

dle equilibrium generates a limit cycle via a Hopf bifurcation. The limit cycle deteriorate

into an orbit homoclinic to the saddle and vanishes by a saddle homoclinic bifurcation [25].

This behavior can be shown in the GWC as well as DWC in most of the regions by varying

the bifurcation parameters (B, wEI), such as R7, R8, and R16. A transition from super-

critical Hopf to subcritical Hopf is also observed in the system in some regions (R7, R10).

The limit point of cycle (LPC) curve (R16) ends with a point in which there is a neutral

saddle (NH).

Furthermore, some of the dynamic features are shared among the phase portraits which

are presented in Fig. 4.4, similar to GWC, however they have different levels of inhibitory

activities.

4.4.2 Time Domain Error Measurements

Fig. 4.5 shows the behavior of GWC and DWC models at 4 types of fixed points in time

domain. As shown in these figures, the system is unstable in a source, while it shows a

resting state in time domain at a nodal sink fixed point. At a spiral sink, a stable behavior

is observed in the system although some fluctuations are displayed. Similar fluctuation

is also shown at a saddle point. To compare the original model and the proposed model

in terms of timing behavior three metrics have been introduced to measure the similarity

of the proposed model with the original model in a time domain period. For the error

measurements, initial values for E, and I variables have been considered the same for all

regions to be consistent.

Root Mean Square Error (RMSE): which is defined as:

RMSEfunc =

√
Σ(funcGWC − funcDWC)2

n
(4.17)
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Where, func is Xk, and n represents the number of discrete points which have been

used in the design. The overall RMSE error has been defined as the average of calculated

RMSE for the two equations of E, and I functions:

RMSE =
(RMSEE +RMSEI)

2
(4.18)

Errmax: Maximum error is defined as the absolute values of the maximum difference

between a set of discrete points calculated for the original and proposed model.

Errmax = |funcGWC − funcDWC | (4.19)

Where func could be E, or I , and GWC refers to original model and DWC refers to

digital model. An average of Errmax of E and I functions has been considered for the

overall error similar to RMSE error.

Correlation (corr): In order to measure overall similarity between the proposed model

and original model in timing domain, correlation with a range of (-1,1) can be used:

corr(funcGWC , funcDWC) =

ρGWC,DWC =
cov(funcGWC, funcDWC)

σGWC,DWC

(4.20)

where,

ρGWC,DWC =

∑n
i=1(funcGWC − func′GWC)(funcDWC − func′DWC)

(
∑n

i=1(funcGWC − funcGWC)2)1/2((
∑n

i=1(funcDWC − funcDWC)2))1/2

(4.21)
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Table 4.4: Timing error analysis for different regions of parameters. Correlation
has been reported in percentage.time step is considered t = 0.1ms,
and simulation has been performed for 100 ms which requires 1000
discrete points

Region RMSE Errmax corr% Region RMSE Errmax corr%

R1 0.143 0.3578 12.88 R11 0.0003 0.0011 100

R2 0.016 0.044 95.79 R12 0.0001 0.0008 100

R3 0.0025 0.0034 100 R13 0.0064 0.0127 99.64

R4 0 0 100 R14 0.0081 0.0154 99.87

R5 0.0055 0.0356 97.52 R15 0.0066 0.0126 99.65

R6 0.0025 0.0128 99.98 R16 0.0045 0.044 99.42

R7 0.0031 0.0131 99.97 R17 0.0087 0.0128 99.28

R8 0.0029 0.0117 99.98 R18 0.0818 0.2391 72.67

R9 0.0008 0.0079 100 R19 0.005 0.0371 98.03

R10 0.0010 0.0028 100 Average 0.0085 0.0268 97.98

Figure 4.5: Timing behavior of GWC and DWC models at 4 types of fixed points observed
in the system
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Figure 4.6: Proposed digital architecture for a single E − I pair DWC. (a), and (b) show
the JE and JI calculation. JE , and JI are passed through circuits shown in (c), and (d) in
which initially square function and then exponential function are calculated, and then final
calculation is performed through architecture shown in (e), and (f). The exponential block
has been shown in (g).

An average of correlations for E, and I have been considered as the overall correlation,

similarly. The results of the error measurements have been presented in Table. IV.

4.5 Digital Hardware Design

The proposed digital architectures for a pair E − I , and a network of coupled E − I are

presented in this section. Fig. 6 shows the digital arithmetic diagram for a pair of coupled

E − I neurons.

4.5.1 Equation Discretization

As the first step, (1) is required to be discretized for a digital circuit design. This can be

performed by Euler method. The main differential equation for E and I can be discretized

as below:

Xk[n+ 1] = Xk[n] +
dt

τx
(−Xk[n] + (1−Xk[n])FX(JXk)) (4.22)
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Where Xk can either be variable E or I . Based on Fig. 4.6, first of all the inputs of

function G (equation (10)) have to be calculated. Fig. 4.6(a) and (b) show the required

calculations for providing the inputs of GE , and GI functions, and the results are named

JE , and JI . JE , and JI are passed into two blocks, Square (SQ) and Exponential (ExU)

units, to calculate FE and FI functions as shown in Fig. 4.6(c) and (d), respectively.

In the next two scheduling diagrams, FE and FI are used for final calculation of the

next state of the variables E, and I . Fixed point representation has been used to represent

the variables in the digital design of the system. In order to have minimum hardware

cost, bit-width minimization is required in the process of the digital design. The integer

part is determined based on the (min, max) range of the variables, while the fraction part is

determined based on the required accuracy. Therefore, the range of the variables in the data

path of the digital system has been calculated for each variable. There is always a tradeoff

between the number of bits which is considered for the fractional part and the accuracy.

A Higher bit-width provides more accuracy in the system. In order to save more in the

hardware cost, a variable data-path (12-30 bits, including 20 bits for fraction) has been

utilized in the different parts of the system based on the required accuracy. For example,

the exponential unit (ExU) needs a higher bit-width due to having a big output result.

4.5.2 Square Function

According to (9-10), the input of the exponential function is a quadratic function, itself.

Therefore, a Square function (SQ) is needed before the exponential unit. Two possible ap-

proaches can be used for this unit. The SQ can be implemented using a multiplier which is

accurate but expensive in terms of hardware cost. The second approach is using Piecewise

Linear (PWL) approximation [10] in which the curve can be approximated using several

first order lines. Depends on the required accuracy the number of lines can be varied. PWL

is less expensive and faster than a multiplier but its accuracy is lower in comparison with a

multiplier. However, it is not suitable for this model, because the output of the square block
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Figure 4.7: General view of time-multiplexing system

is passed into the exponential block. Therefore, the square function must be calculated, ac-

curately. In this work both approaches are employed and compared in terms of hardware

cost, speed and accuracy.

4.5.3 Exponential Unit

For implementing the exponential function the technique used in [9] has been used. How-

ever, since the range of the outputs of the WC model is limited to (0, 1) which is a small

range, a higher accuracy is required for the system. Therefore, the approach used in the

[9] has been modified to have a more accurate approximation for the exponential function.

In this modification the coefficient of the ExU unit (X) has been replaced by K = 1.4375

instead of 1.5. Therefore in order to calculate exp(X), first of all, KX = 1.4375X =

X + 2(−1)X − 2(−4)X is calculated and then KX passed to the exponential block. Fig.

4.6(g) shows the exponential unit which has been designed for calculating the exponential

functions (FE , FI).

Another approach is using LUTs for implementing the exponential function [23]. In

order to design an LUT for this block, input and output range of the exponential block is

required to be calculated. The input of the exponential function is the output of the square

function.
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Table 4.5: Synthesis results

Model ALUT Logic Reg Total pins DSP blocks Freqmax

single DWC4M 1006 535 26 16 238.32 MHz

single DWC2M 436 513 26 8 244.38 MHz

DWC4M coupled 2037 1164 26 32 234.58 MHz

DWC2M coupled 862 1004 26 16 240.79 MHz

Multiplexed 10 DWC 1106 735 26 16 240.5 MHz

Figure 4.8: Typical output waveforms of the digital circuits implemented on Stratix IV
(EP4SGX530KH) for for proposed DWC model

The range of the input of the exponential block are given as below:

[Min(|FX(JXk)|),Max(|FX(JXk)|)] = [0, 12] (4.23)

Because the range of the final outputs of the model is small, (0, 1), and the system is

highly non linear, the number of bits which is considered for fraction part is important, and
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play an important role in the accuracy of the system. In some regions, FX is as minimum

as 0.0001. Therefore, by considering 15 bits for the fraction parts and 5 bits for integer part

for input of the exponential block, a total number of 20 bits are required.

The range of the output of the exponential block has been calculated as below:

[Min(exp(FX(JXk))),Max(exp(FX(JXk)))]

= [1.495 ∗ 10−5, 0.9999]
(4.24)

By considering 16 bits for fraction part to represent the values as small as 1.495 ∗ 10−5,

and 2 bits for the integer part, at least 18 bits are required for the outputs. Accordingly, the

size of the look up table for implementing each equation (E, and I) can be calculated as

below:

SizeLUT = 2BWinput ∗BWoutput = 220 ∗ 18 (4.25)

where BW represents the bit width of the input and output of the block. In this case,

two look up tables with the size of 220 ∗ 18 are required to implement both equations which

is a high volume of memory, and its not practical for large scale implementation of neural

networks.

4.5.4 Population Implementation

In this section, an array of DWC similar to Fig. 4.1 is implemented. For a high accu-

racy implementation of DWC, 4 multipliers are required and since multipliers are very

expensive in terms of hardware implementation, the number of the neurons which can be

implemented on a specific FPGA platform is limited. In order to save hardware resources,

multiplexing technique and resource sharing can be employed for a large number of neuron

implementation. Time multiplexing and resource sharing can be used for a high accuracy
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and efficient implementation of the model. In this method, a physical DWC hardware is

designed initially, and an index generator is employed to control the virtual neurons [26].

In this case, with each clock pulse one neuron output is calculated and stored in the output

buffer. Fig. 4.7 shows the overall view of such a system. The main block is made of three

parts: E, I , and register bank blocks. Blocks E, and I are responsible to calculate the E

and I equations. They also share the data through a bus between E, and I blocks. The

register bank stores the required parameters, and it also shares the required data among

the E, and I blocks. With the first clock E, and I are calculated using the initial values.

With each clock pulse one neuron output is stored in the output buffers until all neurons

are calculated and outputs are put in the buffers. The buffers work in a First in−First out

(FIFO) manner. Therefore, if there are N virtual neurons, N clock pulses are required for

all neurons to be calculated. After N clock pulses, they need to be used for the next values

calculation. Based on Fig. 1, for a one dimensional neural network implementation, each

En population needs to be coupled with its neighbor populations of En−1, and En+1 with

coupling factor of α. The coupling factor is equal to 0.1 for the implementations. There-

fore, an index recognizer is required in the main block to recognise the previous and next

neighbours.

4.6 Experimental Results

The circuits are developed in Verilog Hardware Description Language (VHDL) and have

been physically implemented on Altera Stratix IV (EP4SGX530KH) FPGA board. The

output is written into GPIO port on the FPGA board, and then the results are captured

and demonstrated in a PC. The hardware codes have been synthesized using the Altera

compiler, Quartus II. The results of the hardware utilization are given in Table. V. In

this table, DWC-4M refers to DWC with 4 multipliers (SQ function is implemented using

multiplier), DWC-2M refers to DWC implementation using PWL method for SQ function
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which reduces the required multipliers to two. DWC coupled indicates a pair of DWC

neurons which are coupled with the coupling factor of α. Multiplexed DWC shows the

hardware cost for N = 10 time-multiplexed DWCs. As shown in Table. V, the hardware

cost for the time multiplexed design is almost the same as a single DWC model. The only

difference is the required time for each neuron output to be updated. In the time multiplexed

design, the required time for each DWC output calculation isN times of a single DWC with

dedicated hardware circuit.

Static Timing Analysis (STA) has been performed using TimeQuest timing analysis

tool in Quartus II and Synapse Design Constraints (SDC) in Altera Compiler. Based on

the timing analysis, the available frequency for a single DWC model with 4 multiplier is

238.32 MHz, and with 2 multiplier is 244.38 MHz. These frequencies are a little reduced

when implementing two E − I pairs. For N virtual DWC with a single physical digital

hardware, each DWC is updated with the frequency of Fmax/N . For instance for N = 10,

each virtual DWC output is updated with the frequency of Fmax/10. Based on Table.V

the required Adaptive Look Up Tables (ALUTs) and logic registers for a single DWC is

1% of the available resources on the FPGA board, and the DSP blocks usage is 2 %. Fig.

4.8 shows some of the outputs of the neural network captured from the digital hardware

implementation. In this figure, E20, and I20 represent the outputs with considering 20 bits

for fraction, and, E10, and I10, represent the outputs with 10 bits fraction. Except for Fig.

4.8(A), in which there is a slight variation between the two outputs (because the output

range is very small), there is not a high difference between the outputs with 10 bits and 20

bits fraction.

4.7 Conclusion

In this paper, Gaussian Wilson & Cowan model as one of the accurate, and well known

models which represents cortex behavior has been implemented for the first time. A digital
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model for hardware implementation of the model has been proposed and compared with

the original model. The model has been proven to be able to follow the original model in

both dynamic behavior and timing analysis, accurately. The mathematical analysis show

that the digitized models are able to reproduce the same bifurcations and dynamic behav-

ior. Time domain analysis indicates that the model show up to 97% similarity. RMSE

and maximum error have been measured as minimum as 0.0085, 0.0268 in average, re-

spectively. In the next step, digital architecture was designed for the proposed model and

compared with PWL method in terms of the amount of resources they require and the ac-

curacy they provide. There is always a trade off between the accuracy and the hardware

cost. DWC-4M implements the model using 4 multipliers, and provides higher accuracy

with a lower speed, while the DWC-2M model represents the model using two multipliers,

lower accuracy and higher speed.

In the final step, the digital model was compiled and synthesized in Quartus II Altera

compiler and physically implemented on the DE IV Stratix FPGA board. Maximum fre-

quency was obtained as 238.32 and 244.38 for the DWC-4M, and DWC-2M, respectively.

The hardware cost reports show that DWC-4M takes maximum 2% of the FPGA board for a

single pair ofE−I implementation, which means a number of 50 pairs can be implemented

on the board. With keeping the IO pins to the minimum, this number for DWC-2M can be

up to 100. In order to implement a higher number of neurons on the board, one possibility

is implementing virtual neurons using time-multiplexing, and resource sharing techniques.

A time-multiplexing design has been performed for the model. A linear coupled popula-

tion of the DWC was performed in this work which can be extended into a two-dimensional

implementation for representing a complete DWC-based model of neocortex.

4.8 Jacobean Coefficient for GWC and DWC Models
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Chapter 5

A Digital Central Pattern Generator

Based on Hindmarsh-Rose Spiking

Neuron Model

5.1 Introduction

Central Pattern Generators (CPGs) are autonomous groups of biological neurons which

produce rhythmic patterns to control the locomotion part of the animals without receiving

a rhythmic input [1]. Accordingly, a CPG can be constructed by coupling bio-inspired

neurons known as spiking neurons [1]- [2]. CPGs structures are known as efficient and

stable construct for controlling movement despite their simplicity. In addition, CPGs are

event-based system which means that the signals are transferred in the form of events and

only when data are present. Moreover, it offers a parallel computation due to multiple units,

i.e. spiking neurons. These characteristics make CPGs promising computational primitives
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for controlling motor outputs in biomimetic robotic applications. In this study, a Spiking

Neural Network (SNN) is used to reproduce the behavior of a CPG [3].

A spiking neuron model is a dynamical system made of mathematical coupled differ-

ential equations which produce output patterns similar to what is observed in biology [4].

Many spiking neurons have been presented throughout the years which vary in terms of

complexity and biological accuracy [4]-[9]. Among them, Hodgkin Huxley (HH) [5] pro-

vides the highest accuracy by describing the action potential generation with four detailed

differential equations, six functions and tens of parameters while the Integrate and Fire

(IF) model [4] presents the least biological accuracy with only one differential equation.

Depending on the application, either a detailed model or a simple model can be employed.

For instance, for a deep learning application a simple model like IF is helpful due to its low

computation complexity, while for developing a prosthesis an accurate biological model

is essential. Two and three dimensional models have been also presented in the litera-

ture which are simplified versions of the classical HH formulation. Among these models,

Hindmarsh-Rose (HR) introduced by Hindmarsh and Rose [9] in 1984 is able to reproduce

a wide range of behaviors shown in biology such as tonic, bursting, and spike bursting

adaptation with a three-dimensional equation system [2]. An HR-based CPG and its fea-

sibility for employing in engineering applications have been studied in [2]. HR has some

advantages which makes it appropriate to develop a CPG [2]:

• The duty cycle of HR output pattern can be easily regulated for a given frequency

which is desired in a CPG system.

• The diversity of frequency can be satisfied by altering two parameters.

• The accessibility to be entrained can be easily provided by adding a sensory feedback

to the model.

• HR is immune to the possible sources of noise coming from the sensory feedback.

• Normal behavior can be recovered under the influence of a perturbation signal.
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Efficient implementations of CPGs can be employed as embedded controllers in practi-

cal engineering applications like robotic systems including bipedal robots [10] or it can be

used in a rehabilitation system to generate patterns for walking to help people with disabili-

ties [2]. Although a few works have presented hardware implementations for CPG network

such as [11], and [12] but these implementations are not efficient enough for a large system

as they require a high volume of digital resources, and offer low frequency. In this paper,

a novel, efficient and high speed hardware implementation is proposed for a digital CPG

based on HR.

Hardware implementation of a bio-inspired neural network is known as Neuromorphic

Engineering (NE), a field of research which was coined for the first time by Carver Mead

in 1990 [13]. Various methodologies can be employed to implement a bio-inspired neural

network including digital/analog ASIC design, and programmable hardware such as Field

Programmable Gate/Analog Arrays (FPGA or FPAAs) each of which has some advantages

and disadvantages [14]. FPAAs solve the problem of analog approach by offering a recon-

figurable platform for analog designs. However, this approach suffers the limited number

of available resources on a typical platform. FPGAs on the other hand offer a large number

of resources to implement a bio-inspired neural network in a system level dynamic and its

widely used in several works such as [14]-[15].

Several hardware implementations have been proposed for CPG with different neuron

models in recent years such as [16]-[18]. However, a CPG made of HR model has not

been developed for hardware implementation. In this study, a digital hardware platform is

developed for implementing a CPG based on HR spiking neuron.

In the following sections, a brief is given on HR model in section 5.2. In section 5.3,

the state of the art methodologies and proposed model are presented for HR neuron. With

the aim of an efficient hardware implementation, HR model is implemented by a reduced

size Look Up Table (LUT) methodology to minimize the computation complexity while

keeping the biological accuracy high enough. In addition, the method is compared with
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the state of the art methodologies and error measurements are performed in this section.

In section 5.4, dynamical analysis is performed for the digital model and coupled HR.

A CPG is made Subsequently, the proposed digital model results in a reduction in the

FPGA resources utilization in the implementation phase. Section 5.4 presents the CPG

architecture composed of coupled HR. Verilog Hardware Description Language (VHDL)

is employed to develop the digital system throughout this work. The proposed platform for

test is given in section 5.5, and the paper is concluded in section 5.6.

5.2 A Brief on HR Neuron

In this section the spiking model is introduced briefly, and the proposed model and timing,

and dynamical analysis are given in the next subsections. HR model [2] can be described

by three differential equations:

x
′
= y − aF (x) + bG(x)− z + I,

y
′
= c− dG(x)− y,

z
′
= r(s(x− x0)− z).

(5.1)

where
F (x) = x3,

G(x) = x2.
(5.2)

where x, y, and z represent the time dependent variables among which x represents

the membrane potential, y represents the recovery variable, and z is the adaptation current.

The parameter x0 is a control parameter for altering adaptation current, and it shows x-

coordinate of the stable sub-threshold equilibrium point if external current,I , is equal to

zero. The other parameters are constants and can be regulated to generate different patterns

including tonic, and bursting. Adaptation current, z, slowly fluctuates and it increases when

the neuron fires. The dynamics of the model is changed by altering the parameters including
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Figure 5.1: Symmetrical non-linear behavior of F (x) (left), andG(x) (right). The functions
have been plotted with step size of ∆x = 2( − 6).

I (external current), b (intrinsic parameter), r (rate of activation for some current), and x0.

The current, i.e. I , has a significant role to shape diverse patterns in the output of the

neuron. With small values of I no rhythmic pattern is observed in the output. With slightly

increasing the current, the variable x, i.e. membrane potential, exceeds a certain threshold

value which results in a rhythmic pattern of spike in the output. With further increasing

I , the frequency of the spike is increased, accordingly. A transition from tonic spiking to

bursting is also observable in the output of the neuron by increasing the current.

5.3 Methodologies and Proposed Model

5.3.1 State of the Art Methodologies and Proposed Model for HR

As seen from the equations (1) and (2), the neuron behavior is highly nonlinear due to two

terms, i.e. F(x), and G(x) shown in Fig. 1(a), and (b), respectively. Nonlinear functions are

expensive for implementation due to the required multiplication computation. In order to

reduce the hardware implementation cost, approximation is an essential step.

Several methods can be used to approximate a nonlinear behavior such as Piecewise

Linear (PWL) method in which the nonlinear behavior can be approximated using several
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first-order lines. This method has been widely used in NE such as [10], [14]. This method

reduces complexity while provides an acceptable accuracy.

Base-2 method has also been used in several works especially for exponential func-

tion implementation [14], [18]. This method is appropriate for exponential functions with

large input and output ranges. Although base-2 conversion is an efficient way for expo-

nential function with large input ranges, it is not efficient for functions with lower level of

complexity and small input and output ranges.

LUTs (memory) method on the other hand is used for storing discrete points and retriev-

ing the values when the corresponding address is triggered. The accuracy of this method

is dependent to the size of the LUTs. The larger LUTs, the higher accuracy is provided.

LUT based method is not efficient for highly non-linear functions with large inputs, but it

provides an accurate implementation with an affordable hardware cost for functions with

small to medium input/output ranges.

Accordingly, depending on the function which is aimed to be implemented, one can

find an appropriate, and efficient methodology for hardware implementation. PWL method

provides an acceptable accuracy with lower resource utilization, while LUT provides a

higher accuracy but it suffers higher hardware cost for functions with large input/output

ranges. However, for a function with a small input/output range, the use of LUTs provides

an acceptable trade-off between the accuracy and hardware cost.

As shown in Fig. 1, the required input range for F (x), and G(x) is small, (0, 2.625),

and it indicates that LUT method can be used without needing large LUTs for storing the

values. The size of the LUTs can further be reduced thanks to the symmetrical feature

which exists in F (x), and G(x) functions.

As can be seen in Fig. 1(a), the absolute values of F (x) is the same for positive and

negative values of x with the same absolute values which means that for the half negative

of the graph, storing the values is not necessary as the output sign can be inverted after

retrieving the value for its positive input.
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Figure 5.2: Error measurement for different sizes of LUTs. Blue represents MAE, and
orange represents RMSE measurement. The errors have been measured with digitally fea-
sible parameter values. For Bursting: I = 2.5, r = 2−10, Tonic: I = 1.5, r = 2−7, Fast
spiking: I = 3, r = 2−10, Quiescence: I = 1,r = 2−10. Time step is equal to 0.0313
(dt = 2−5) for all measurements.

On the other hand, the values ofG(x) is the same for identical absolute values of x (Fig.

1(b)), which means there is no need to store the outputs for negative values of x. In the

other words, in the digital hardware, G(x) can receive the absolute values of x and return

the corresponding output for both positive and negative values of x with identical absolute

values.

Therefore, thanks to the symmetrical feature of the nonlinear functions the size of the

LUTs for G(x), and F (x) could be reduced to half, while the accuracy remains unchanged.

In Fig. 5.1, F (x), and G(x) has been plotted with the step size of dx = 2( − 6) , with

considering 2 bits for the integer part, the size of the LUT can be calculated as 28 = 256

which is affordable in hardware implementation and it provides a high biological accuracy

at the same time. Fig. 2 shows a typical output pattern generated for the original model,

and the approximated model.

84



5.3.2 Error Analysis

In this section, the proposed method is evaluated by measuring the error between the orig-

inal model and proposed model. Two criteria which are widely used in previous works

[10],[12], [16] have been considered to evaluate the model. Mean Absolute Error (MAE):

which is defined as below:

MAE =
1

n

n∑
1

ei, (5.3)

, where

ei = |xorigin(i)− xapprox.(i)| (5.4)

Root Mean Square Error (RMSE): which is calculated as below: Root Mean Square Error

(RMSE): which is defined as:

RMSEHR =

√
Σn
i=1(DHR(i)−HR(i))2

n
(5.5)

where, n is the number of discrete points calculated for a period of time. The index of

the original values and proposed values is represented by i. When a digital approximation

is proposed truncation error in implementation phase is unavoidable. In order to avoid

underestimating the effect of truncation error in hardware design phase all values (including

constant parameters and time step) have been converted to a base-2 which is convenient for

digital implementation. For example, the time step of simulation is equal to dt = 2( − 5).

Therefore, the parameter values do not need further modifications in the design phase, and

the values in simulations will be exactly the same in the hardware. This error factor has not

been considered in previous works. Fig. 5.3 shows the error analysis for different sizes of

LUTs.

In this figure, the horizontal axis indicates the step sizes for stored values of x. For

example for dx = 2( − 5), F (x), and G(x) have been calculated for x values in the range

of (0, 2.625) which are stored in the memory with a step size of dx. As shown in Fig. 5.3,

both MAE, and RMSE generally drop with smaller step sizes (larger LUTs). For some of
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Figure 5.3: The simulated spiking neuron for the original model and the approximated
model.

the patterns, the approximated model is not able to predict the output pattern accurately

with large step sizes. For instance, for dx = 2( − 2) the model is not accurate enough to

predict the output patterns for quiescence an bursting. However, one can understand that

with a step size of dx = 2( − 5)which requires a LUT as small size as 22, MAE drops to

an amount as low as to 0.0156 which is far smaller than the one reported in [18] which has

employed PWL and base-2 methodology. According to the error analysis performed in this

section, it could be concluded that with dx = 2( − 5), the errors are small enough (MAE

below 0.01, and RMSE below 0.4) to accurately predict the original model for all patterns.

5.4 Dynamical Analysis of the Digitized Model

5.4.1 Single Digitized HR Dynamic

In order to analyze the dynamical behavior of the proposed Digital HR (DHR), nullclines

of the system must be obtained. The main purpose of the third equation in (1) is adding

a slow current which repolarizes the membrane potential and results in a periodic spike

pattern instead of shutting down the neuron after a few spikes [9]. Since z variable is slow
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Figure 5.4: Dynamic behavior of DHR with 32 bit fixed-point representation for (a) tonic,
and (b) bursting. Blue represent the trajectories. X-nullcline and y-nullcline are represented
by pink and orange, respectively. The intersections of the two nullclines represent the EP
of the system.

in comparison with y, x variables, the analysis of the 3-D equation is very close to the 2-D

model [9]. Nullclines of the 2-D model can be calculated as below:

x
′
[n] = 0,

y
′
[n] = 0,

(5.6)

yx[n] = aF (x[n]) + bG(x[n])− z[n] + I,

yy[n] = c− dG(x[n]),
(5.7)

where n represents nth value of discrete x and y variables. all variables in the cal-

culations are represented by fixed-point representation. By solving the equations (5), the

intersections of the two nullclines, i.e. Equilibrium Points (EPs) of the system, can be com-

puted. The neuron output could shape different patterns including tonic spike or bursting

depending on the input parameters r, and s; consequently, the type and the combination

of the EPs that the system experience during the stimulation. The type of the EPs can be

determined by calculating the Jacobean Matrix (JM) and finding the corresponding Eigen

values at each EP. Jacobean matrix for DHR can be obtained as below:
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JMDHR =

A B

C D

 (5.8)

where,

A =
∂F (x)

∂x
,B =

∂F (x)

∂y
, (5.9)

C =
∂G(x)

∂x
,D =

∂G(x)

∂y
(5.10)

A =
∂F (x, y)

∂x
,B =

∂F ((x, y)

∂y

C =
∂G(x, y)

∂x
,D =

∂G(x, y)

∂y

(5.11)

JMDHR =

−3ax[n]2 + 2bx[n] −1

−2dx[n] 1

 (5.12)

The eigenvalues can be calculated using the following equations:

T = A+B,

Z = AD −BC

P (λ) = λ2 − Tλ+ Z

(5.13)

A typical set of Eigen values and the types of the EPs of the system for a set of given

parameters are given in Table 5.1.

To perform the dynamic analysis for the digital model discrete points have been stored

in a variable and fixed-point calculations with bit-width of 32 have been performed in

MATLAB. When simulation is perfumed in MATLAB, a floating point representation is
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Table 5.1: EPs of the system and the corresponding Eigen values and types given
for a = 1, b = 2.7, c = 2, d = 5, s = 4, I = 2.25 when z = 3.5, with
considering 32-bit Fixed-point values for representing the variables.

EP (x,y) T Z Eigen Values Type

EP1 0.5 Positive positive 0.475+1.68i, spiral source

0.727 0.475-1.68i

EP2 -0.67 negative negative -6.190, unstable focus

0.283 0.290

EP3 -2.13 negative positive -25.96, stable nodal sink

-20.79 -0.147

used for representing the numerical values by default which makes the dynamic analysis

inaccurate for the digital model.

By performing fixed-point analysis for the digital model it is shown that similar to the

original model proposed in [9], three types of EP are observed in the digital model system

including spiral source, saddle point and nodal sink. Fig. 5.4 shows the x-y phase for

two modes of tonic and bursting behavior. The arrows show the trajectory of the system.

As shown there is a possible unstable focus orbit around the spiral source EP. X-nullcline

(shown in pink) position changes during the stimulation and adaption current (z variable)

adjustment to have one or three EPs which results in various patterns including tonic and

bursting patterns in the output.

By studying the phase-plane and EPs of the system, it can be found that during a tonic

operation, the x-nullcline moves upwards and the nodal sink EP moves downward. (Fig.

5.4(a)) Consequently, the saddle EP moves upward until the limit cycle crosses the saddle

EP. At this point the firing stops and the phase point moves in to the narrow region below the

saddle point EP, and gradually reaches to the nodal sink EP. This movement hyperpolarizes

the wave and with the change of the adaption current (z) the x value goes above x0 as the

nodal sink goes back to its previous position.

In the second mode, i.e. bursting, the system transits between two states of dynamics
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(Fig. 5.4(b)). One of which holds one unstable EP and the other one holds three EPs.

This transition between the two dynamic states generates burst of spikes in the output of

the neuron. Essentially, at the beginning of applying the stimulation current the system

states changes from having three EPs to one unstable spiral source EP by moving the x-

nullcline downwards (Fig. 5.4(b)). Burst of spikes is generated due to the existence of an

unstable focus orbit around the spiral source EP. With the adaption current adjustment, i.e.

z, x-nullcline moves upward which creates two intersections with y-nullcline (creating two

EPs). X-nullcline continues going upward until the orbit reaches saddle EP and enters the

narrow region below the saddle point.

5.4.2 Coupled DHR Dynamic

The dynamical behavior of coupled DHR has been investigated in Fig. 5. As shown in

this figure, the x1 − x2 phase-plane and the corresponding output patterns are given for

four states of: asynchronous bursting, synchronous bursting, synchronous tonic and asyn-

chronous tonic patterns. Fixed-point representation with the bit-width of 32 has been used

for implementing F(x), and G(x) to investigate the behavior of coupled DHR. As seen, the

dynamical behavior of coupled DHR matches the behavior which is observed in the orig-

inal model reported in [11]. The digital model is successfully able to reproduce coupled

patterns in the output.

5.5 CPG Architecture and Bipedal Gait Generation

5.5.1 Architecture

Fig. 5.6 (a) shows the top level design for DHR implementation. As can be seen from this

figure, the system is made of five main modules including three modules for implement-

ing the three equations of x, y, z variables, and two LUTs for implementing F (x), and
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Figure 5.5: Coupled DHR. A) asynchronies bursting, B) synchronous tonic, C) syn-
chronous tonic, and D) synchronies bursting.

G(x). The system designed for DHR is synchronous, therefore the status of the registers

is controlled by a global clock. A reset signal is also used for resetting the system. The
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Figure 5.6: (a) Top level design for a single DHR neuron model, (b) a CPG block made of
two coupled DHR neurons.

variables are assigned to an initial value and then the next values are calculated with each

clock arrival.

DHR neurons can be coupled through the following equations to build a CPG block [2]:

x[n+ 1] = x[n] + dt[y[n]− aF (x[n]) + bG(x[n])− z[n]

+ I +
∑

j=1,j 6=1

ωijφ(x[n]j) + ge],

y[n+ 1] = c− dG(x[n])− y[n],

z[n+ 1] = r(s(x[n]− x0)− z[n]).

(5.14)

where ω represents the connection weight strength, ϕisthecouplingfunctionwhichisequaltoϕ =

max(xj, 0), e is the sensory feedback and g is the gain of sensory feedback. If ωij = 0 it

means that there is no connection between the neurons, if ωij > 0, it means that there is an

excitatory between the neurons, and ωij < 0 indicates an inhibitory connection between the

two neurons. A basic CPG building block can be built by coupling a pair of DHR neurons

as shown in Fig. 5.7 (b). By adjusting the coupling weights and input parameters such as

I , and r an anti-phase pattern can be obtained at the output of the neurons.

Fig. 5.7 shows the hardware implementation for a CPG composed of four coupled
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Figure 5.7: Hardware architecture of the proposed CPG. A) Neural connection configura-
tion for the CPG composed of four DHR neurons for biped gait patterns generation. DHR1
and 2 represent the left leg and DHR3 and 4 show the right leg. B) Top-level architecture,
C) Details of hardware implementation for DHR neuron model.

DHR neurons. Fig. 5.7(A) shows the schematic of neural connection for a bipedal pattern

generation. Fig. 5.7 (B) displays the top level architecture designed for the CPG shown in

Fig. 5.7(A).

As shown in Fig. 5.7(B), The neuron unit computes the DHR membrane potentials in a

pipeline manner, the result is passed to a buffer and once the results of the neurons are ready,

they are passed to the adder tree to calculate the external term for each neuron. Based on

the neuron configuration shown in Fig. 5.7 (A), each neuron receives three external terms

(exti) from other neurons, which is the summation of the weighted coupling functions. The

adder tree reads the weigh values form the weight bank and computes the external terms.
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Table 5.2: Relative phases for four bipedal gait generation[2]

Gait Left leg Right Leg

Two legged x1(t), x1(t) x1(t), x1(t)

hop

Walk x1(t), x1(t+ 1/2) x1(t+ 1/2), x1(t)

Two legged x1(t), x1(t+ 1/2) x1(t), x1(t+ 1/2)

jump

Run x1(t), x1(t) x1(t+ 1/2), x1(t+ 1/2)

Fig. 5.7(C) demonstrate the details of hardware implementation for the DHR neuron

model. Two LUTs have been considered for F (x), and G(x). The values of square and

quadratic functions for the required range of x have been stored in LUTs. Depending on

the sign of the variable x, a 2’s complement operation may be needed. If x < 0, the output

of the F (x) LUT must be inverted, otherwise the output is passed to the next part of the

implementation which shown in Fig. 5.7 (b), and (d). Parts (b), (d), and (e) represent the

digital circuits for equations x, y, and z, respectively. The output of each section is placed

in a buffer in a FIFO manner. Once the result of the x circuit (part (b)) is ready, the result

must be given to the LUT to restore the corresponding values. At this stage, the sign of x

must be checked since the LUTs only store the values for positive x. Therefore, if x < 0,

the sign must be inverted to retrieve the corresponding F (x), G(x) values.

Fig. 5.8 shows a typical anti-phase pattern obtained from the digital design simulation

performed in ModelSim software for a CPG block composed of two couple DHR neurons.

As seen by adjusting the weight connections anti-phase patterns can be produced in the

output of the CPG block. With a similar approach additional neurons can be coupled to

generate extra patterns for more complex behavior in the output of the CPG.
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Figure 5.8: The proposed Digital Platform composed of the FPGA board, PXI national
Instrument and LAbVIEW.

5.5.2 Bipedal Gait Generation

To generate four different gaits including two-legged hop, walk, two legged jump and run,

the connection weights between the neurons must be tuned properly. The relative phase

between the two legs of the bipedal CPG shown in Fig. 7(A) must follow the Table I given

in [2]. Weight connections for the primary gaits generations are given in [2], and these

values are used in this work. The coupling matrix is given as below [2]:

W =


0 k1 k1 k2

k1 0 k2 k1

k1 k2 0 k1

k2 k1 k1 0

 (5.15)
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5.6 Proposed Platform for Test and Measurement

The platform is displayed in Fig. 5.8. As seen in this figure, it is composed of an FPGA

board which is used for hardware implementation, a NI PXI device for measurement and

LabVIEW program to demonstrate the output pattern. The circuits are developed in Verilog

Hardware Description Language (VHDL) and have been implemented on Altera Stratix

IV (EP4SGX530KH) FPGA development board. The RTL design have been synthesized

using the Altera compiler, Quartus Prime. The results of the hardware utilization are given

in Table. 5.3.

Static Timing Analysis (STA) has been performed using TimeQuest timing analysis

tool in Quartus Prime and Synapse Design Constraints (SDC) in Altera Compiler. Based

on the timing analysis, a maximum frequency of 98.43 MHz was achieved for the proposed

architecture. A comparison is made between the proposed model and the available works

in the literature in Table II. Ass seen in this table the proposed work offers affordable

hardware cost while working in higher maximum frequency.

Fig. 5.9 demonstrates the anti-phase patterns for walking gate generations. As expected

based on Table II x2, and x3 are in the same phase while in opposite phase with x1, and

x4.

5.7 Conclusion

This paper presented digital hardware implementation for a CPG based on HR spiking

neuron model on an FPGA-embedded system providing efficient and flexible platform to

generate rhythmic patterns suitable for mobile robotic applications. A specialized digital

circuit is proposed for HR spiking model which requires less resources for hardware im-

plementation in comparison with similar works proposed in the literature. The proposed

digital design is validated by a timing error measurement and dynamic analysis. For the

first time, this analysis is performed with fixed-point representation to validate the digital

97



model and the results indicate that the proposed digital model is successfully generates the

original model pattern in the output. Furthermore, dynamic behavior of coupled neurons

was verified for different coupling states including synchronous and asynchronous tonic

and bursting. The proposed digital model is compared with the state of the art methodolo-

gies, and it indicates less resources while presenting higher accuracy. DHR neurons are

coupled through a coupling function to form a CPG block. An architecture is proposed for

the CPG composed of four DHR to generate biped pattern. An RTL design is performed

to implement the architecture and the experimental results confirms that the proposed dig-

ital architecture is able to successfully reproduce the anti–phase pattern in the output of

the CPG. The FPGA device provides an integrated platform for developing robot control

applications. The proposed model takes maximum 5 percent of the available resources of

Stratix IV Altera FPGA board (EP4SGX530KH). STA has been performed using Quartus

Prime compiler and a maximum frequency of 98.43 MHz is provided. Extra topologies for

CPG can be analyzed and different patterns can be generated in order to apply the system

in various applications and it can be used for modeling different patterns such as walking,

running, and jumping by adjusting the coupling weights. The system can be employed as a

neuro core to couple higher number of neurons for different applications.
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[7] R. Jolivet, A. Rauch, H. R. L. Lüscher, and W. Gerstner, “Integrateand-Fire models
with adaptation are good enough: Predicting spike times under random current injec-
tion,” Advances in neural information processing systems, pp. 595–602, 2005.

[8] M. G. F. Fuortes and F. Mantegazzini, “Interpretation of the repetitive firing of nerve
cells,”, The Journal of general physiology, vol. 45, no. 6, pp. 1163–1179, Jul. 1962.

[9] J. L. Hindmarsh, and R. M. Rose, “A model of neuronal bursting using three coupled
first order differential equations,” Proc. R. Soc. Lond. B, vol. 221, no. 1222, pp. 87-102,
1984.

[10] N. Gomar, B. Moradi, M. Ahmadi, “Digital Hardware Implementation of a Biological
Central Pattern Generator”, Midwest Symposium, 2018.

99
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Chapter 6

Conclusion and Future Works

6.1 Summary of Contributions

In this dissertation, it is mainly focused on developing configurable digital architectures on

FPGA for several neuromorphic building blocks including astrocyte, STDP learning rule,

Wilson-Cowan cortex model, and a CPG based on HR spiking neuron.

In chapter 2, a digital architecture was presented for astrocyte which regulates the ac-

tivity of the coupled spiking neurons. A network of two neurons and an astrocyte has

been developed based on Postnov astrocyte and AdEx neuron model. The equations have

been modified for an efficient hardware implementation. Simulations have shown that Tanh

function can be approximated using sign function with an acceptable accuracy and simi-

larity with the original function, therefore sign function has been used for equation ap-

proximation. In order to reduce the hardware cost, shift and add have been used instead

of multiplication and division in some cases where constant multiplication or division is

needed. Synthesis results verify that the proposed design uses less than 1% of available

101



resources of a VIRTEX II FPGA, so it can be used as a module in a large scale SNN im-

plementation. On the other hand, since astrocyte is able to regulate the synaptic weight, it

can increase the reliability of the system in neural network applications.

In chapter 3, digital hardware circuits were proposed and compared for STDP learning

rules. The modified base-2 method with an efficient hardware provides a tradeoff between

accuracy and configurability for the system. The maximum error was reported as 0.0088

for 8-bit data-path and 0.0014 for 16-bit data path. In addition, the hardware cost is not

highly dependent on the data-path bit-width. Digital circuits have been synthesized and

implemented on FPGA, and the experimental results showed that the models are capable

of producing the learning window, successfully. The models were compared with the LUT

and linear approximations. Although LUT model provides the highest accuracy the hard-

ware requirement is high and highly dependent on the accuracy and it does not provide

configurability. PWL method has lower hardware cost, but it provides the least accuracy.

A modular pair of pre-postsynaptic neuron have been implemented and STDP could suc-

cessfully be applied to the coupled neurons. The hardware cost for the proposed learning

model architectures was obtained less than 1% of the FPGA resources, and the maximum

frequency was gained as 250 MHz. The model developed in this work can be employed as

a module for a larger spiking neural network.

In chapter 4, the Gaussian Wilson Cowan model as one of the accurate and well-known

models which represents cortex behavior has been implemented for the first time. A digital

model for hardware implementation of the model has been proposed and compared with

the original model. The model has been proven to be able to follow the original model in

both dynamic behavior and timing analysis, accurately. The mathematical analysis shows

that the digitized models are able to reproduce the same bifurcations and dynamic behav-

ior. Time domain analysis indicates that the model shows up to 97% similarity. RMSE

and maximum error have been measured as minimum as 0.0085, 0.0268, on average re-

spectively. In the next step, digital architecture was designed for the proposed model and
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compared with PWL method in terms of the number of resources they require and the accu-

racy they provide. There is always a tradeoff between the accuracy and the hardware cost.

DWC-4M implements the model using 4 multipliers, and provides higher accuracy with a

lower speed, while the DWC-2M model represents the model using two multipliers, lower

accuracy, and higher speed. In the final step, the digital model was compiled and synthe-

sized in Quartus II Altera compiler and physically implemented on the DE IV Stratix FPGA

board. Maximum frequency was obtained as 238.32 and 244.38 for the DWC- 4M, and

DWC-2M, respectively. The hardware cost reports show that DWC-4M takes maximum

2% of the FPGA board for a single pair of EI implementation, which means a number

of 50 pairs can be implemented on the board. With keeping the IO pins to the minimum,

this number for DWC-2M can be up to 100. To implement a higher number of neurons on

the board, one possibility is implementing virtual neurons using time-multiplexing, and re-

source sharing techniques. A time-multiplexing design has been performed for the model.

A linear coupled population of the DWC was performed in this work which can be extended

into a two-dimensional implementation for representing a complete DWC-based model of

neocortex.

Chapter 5 presents digital hardware implementation for a CPG based on HR spiking

neuron model on an FPGA-embedded system providing an efficient and flexible platform

to generate rhythmic patterns suitable for mobile robotic applications. A specialized digi-

tal circuit is proposed for HR spiking model which requires fewer resources for hardware

implementation in comparison with similar works proposed in the literature. The proposed

digital design is validated by a timing error measurement and dynamic analysis. For the

first time, this analysis is performed with a fixed-point representation to validate the dig-

ital model and the results indicate that the proposed digital model successfully generates

the original model pattern in the output. Furthermore, the dynamic behavior of coupled

neurons was verified for different coupling states including synchronous and asynchronous

tonic and bursting. The proposed digital model is compared with the state of the art method-
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ologies, and it indicates fewer resources while presenting higher accuracy. DHR neurons

are coupled through a coupling function to form a CPG block. An architecture is proposed

for the CPG composed of four DHR to generate biped pattern. An RTL design is performed

to implement the architecture and the experimental results confirm that the proposed dig-

ital architecture is able to successfully reproduce the anti-phase pattern in the output of

the CPG. The FPGA device provides an integrated platform for developing robot control

applications. The proposed model takes maximum 3 percent of the available resources of

Stratix IV Altera FPGA board (EP4SGX530KH). STA has been performed using Quartus

Prime compiler and a maximum frequency of 139.53 MHz is provided. Extra topologies for

CPG can be analyzed and different patterns can be generated in order to apply the system

in various applications and it can be used for modeling different patterns such as walking,

running, and jumping by adjusting the coupling weights. The system can be employed as a

neuro core to couple a higher number of neurons for different applications.

6.2 Suggested Future Works

This dissertation can be continued in two fields as below:

• Central Pattern Generators (CPGs) are neural circuits which generate rhythmic pat-

terns to control the locomotion parts of both vertebrate and invertebrates. Accord-

ingly, CPGs are made of coupled spiking neurons with adjustable weight connec-

tions between the neurons. In this dissertation, digital circuits were proposed for

Wilson Cowan neuron model which can be used as a block of CPG. In addition,

a bio-inspired digital CPG based on HR model was designed to produce rhythmic

patterns. An embedded implementations including all these neuromorphic building

blocks can be developed for real world applications as either a bio-robotic control

system or a rehabilitation system to help people with injuries. The developed bio-

inspired rehabilitation systems can be utilized to stimulate the nervous system of
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people with locomotor disabilities.

• The NE research is growing rapidly in a variety of fields including image processing,

signal processing, and object tracking. An embedded system composed of Spiking

neurons such as HR neuron which was designed in this thesis along with a learning

algorithm such as STDP can be developed for a pattern recognition or image process-

ing task. The aim of this project is to integrate all neuromorphic blocks to build a

configurable FPGA based neuromorphic system composed of spiking neurons, learn-

ing block, and vision sensor for an image processing task for various applications

such as vehicle navigation system.
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