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Abstract

Title: Synthesis of neuromorphic circuits with neuromodulatory properties
Author: Luka Ribar

The field of neuromorphic engineering shows great promise in delivering novel devices
inspired by biological principles that would undertake sensory and processing tasks with
an unprecedented level of efficiency. In order to achieve that, engineers are required to
understand and implement the many complex biological regulatory mechanisms that allow
the nervous system to robustly operate and adapt over scales covering many orders of
magnitude, while at the same time using unreliable and noisy components.

As a step towards that, this thesis aims at discussing and implementing the principles of
neuromodulation in neuromorphic hardware, mechanisms which allow neurons to change
and regulate their behaviour through the continuous control of their internal currents. We
discuss how neural dynamics and its modulation can be broken down into four essential
feedback loops, and we introduce a simplified model of the neural membrane respecting
this fundamental structure. We present a novel methodology for controlling the neuron’s
behaviour through the shaping of its I-V curves in distinct timescales, thus characterising the
behaviour of the neural circuit through its input-output properties. We show how modulation
of the feedback loops affects the behaviour, and importantly, captures the transition between
spiking and bursting oscillatory regimes, two major signalling modes of neurons. We then
show how the architecture can be easily implemented using well-known neuromorphic
building blocks based on subthreshold MOSFET circuits. Finally, we discuss how the
excitability switch captured by the model can be exploited in simple network settings, thus
opening up the possibility for future research into novel architectures where the control of
cellular properties is utilised to shape the global behaviour of the network.
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Chapter 1

Introduction

Although recently there has been a myriad of astonishing developments in artificial intelli-
gence and robotics, comparing the state-of-the-art digital hardware and biological systems
still shows a striking discrepancy in robustness, adaptability and energy efficiency between
the two. The fact that even the simplest animals possess an awesome repertoire for sensing
and navigating their environments while at the same time using very little energy has led
scientists and engineers to believe that there are significant fundamental advantages to the
organisational principles that biology utilises compared to the established semiconductor
techniques. This realisation has ushered in an interest in understanding and applying the
biological neural mechanisms in silicon, leading to the field of neuromorphic engineering,
coined by the early pioneer Carver Mead in the late 1980s.

Since its inception, neuromorphic engineering has showed great promise in developing
novel, biologically inspired devices that would undertake the complex motor, sensory and
processing tasks in new, more efficient ways. Early developments in emulating the structure of
the retina and the cochlea in semiconductor technology have been successful at demonstrating
how the sensory information processing can be undertaken on the hardware level. This
has led to advancements in developing efficient systems that would have extraordinary
adaptation capabilities, while at the same time optimising the use of the available bandwidth
by intelligently compressing signals, much like our own sensory systems do. Spiking neural
chips have sparked an ongoing interest into developing non-von Neumann architectures for
processing tasks. At the same time, engineers have been inspired by the developments in
artificial neural networks to develop hardware solutions that would have the same learning
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capabilities, with novel devices showing promise in implementing learning rules using the
device physics.

The potential of neuromorphic systems is undoubtedly great and it has ignited renewed
interest within the semiconductor industry as a possible way forward past the end of Moore’s
law era. Nevertheless, important issues remain that still prove to be a bottleneck in expanding
the biologically inspired analogue concepts to mass production. The unreliability of the basic
components and their fragility to noise in low-power analogue applications highlights the
prevailing question in building neuromorphic systems: how does nature utilise unreliable
building blocks in order to build robust and adaptable systems? Understanding this requires
us not only to try to replicate the observable biological behaviour, but to identify the key
organisational principles that are used in biological systems and translate them to circuit
architectures that can be implemented in hardware. Uncovering these principles is a necessary
step for both synthesising and controlling such systems.

Biological principles that allow the rich adaption of neural systems are prevalent on
all scales: from the tiny ion channels that shape the single neuron behaviour, to the neural
networks that control actions such as locomotion and breathing through the collective action
of many neurons and their interconnections, to finally entire brain regions that produce
cognitive emergent behaviour. One of the key control principles in neuroscience is neuro-

modulation. It covers the effects of various chemicals on internal properties of neurons, and
subsequently, how they shape the electrical behaviour of cells. As such, the cumulative action
of neuromodulatory substances can have profound effects on neural behaviour by drastically
changing their firing patterns and properties such as frequency and duty cycle.

The aim of this thesis is to introduce the principles of neuromodulation as an engineering
concept that can be applied to simple neuromorphic circuits. We present a simple circuit
architecture and show how it captures the fundamental feedback loops present in biological
neurons, and how the circuit’s behaviour can be modulated by considering its input-output
properties. As such, the methodology does not require intricate knowledge of the neural
physiology, but allows for a rich set of different behaviours. More importantly, the archi-
tecture aims to reproduce the same neuromodulatory mechanisms in a simplified modelling
framework, so that the circuit not only produces various different waveform patterns, but
captures the underlying dynamics, in turn capturing the same robustness and adaptation
capabilities.
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1.1 Outline

The thesis is structured in the following way:

Chapter 2 covers the biological and modelling background behind neuronal excitability
and neuromodulation. It begins by introducing the fundamental concept of excitability
and the classical Hodgkin-Huxley model of an excitable cell. We then take a look
at neuronal bursting and an example model in the conductance-based framework. In
both cases we dissect and highlight the essential feedback mechanisms present in the
models that are responsible for the complex nonlinear behaviour. We compare these to
the minimal models of excitability and bursting and show how minimal models capture
the same feedback structure. Finally, we take a look at neuromodulation, and how it
can be understood as a cumulative effect of many agents on the same fundamental
feedback loops.

Chapter 3 gives an overview of the neuromorphic approach and some of the fundamentals
of the VLSI circuit design behind it. It starts with a brief overview of the history of
neuromorphic devices and some of the major achievements of the field so far. We
revisit the prevailing modelling concepts, and motivate the need for simple architec-
tures capturing the biological neuromodulatory mechanisms. The second part of the
chapter introduces the fundamental building blocks and the principles of subthreshold
MOSFET design widely utilised within the neuromorphic community, which will serve
as the basis for our own synthesis approach.

Chapter 4 covers the main results of the thesis. We first introduce the model of the circuit
architecture that we will be using, and introduce the concepts of neuromodulation
through I-V curve shaping. We show how designing different behaviours in this
way reduces to the synthesis of I-V curves in the appropriate timescales. The initial
construction covers the design of an excitable circuit, after which we show how the
same principles can be extended to model more complicated behaviour such as neuronal
bursting. We show how the feedback loops of the circuit can be modulated to control
its behaviour, and how this relates to the I-V curves. This chapter is largely based
on work presented at IEEE BioCAS 2017 [88] and published in IEEE Circuits and
Systems [90].

Chapter 5 builds upon the previous chapter to show how the model introduced in Chapter 4
can be realised in hardware using the methodology from Chapter 3. We show how each
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element has a simple realisation using the standard MOSFET transconductance ampli-
fiers operating in the subthreshold regime. To this end, we provide a SPICE simulation
using the TSMC 0.35 µm model parameters. Finally, we provide a proof-of-concept
realisation using off-the-shelf discrete components and showcase its modulation capa-
bilities. This chapter is largely based on work published in IEEE Circuits and Systems
[90].

Chapter 6 discusses the potential of the circuit architecture from Chapters 4 and 5 for
building small rhythm generating networks. We start by outlining the different prop-
erties of spiking and bursting neural regimes, why this excitability switch can have
important consequences in a network setting, and how it can be implemented through
external current modulation. We start the network construction by introducing a simple
model of neural synapses using the same principles utilised in modelling conductance
elements of single neurons. We then show how an elementary oscillatory unit in the
form of a half-centre oscillator can be realised using these elements, and how a simple
pattern generating network inspired by the stomatogastric ganglion can switch between
different rhythms. In both cases, the modulatory properties of the individual cells are
essential for the switching behaviour at the network level. Some of the results in this
chapter were presented at CNS 2018 [89].

Chapter 7 provides conclusions and discusses the potential for future work. On the single
neuron level, this includes the study into homeostasis-inspired mechanisms that would
allow automatic regulation of neuronal properties in the face of technological variation,
noise and temperature dependence. On the network level, this includes future studies
into small pattern generating networks, as well as the potential in using the architecture
in devices inspired by biological sensory networks.



Chapter 2

Neuronal excitability and
neuromodulation

Neurons are the basic processing units of animal nervous systems, and as such, are responsible
for the plethora of different functions such as analysing sensory stimuli, memory, generation
of movement, awareness, cognition and others. Each individual neuron receives information
from potentially many other neurons through synaptic and electrical connections, processes
the information while taking into account the memory of its past activity, and in turn, affects
other neurons it is connected to in the network. Every neuron in itself is a complex dynamical
system [57], where the voltage across its membrane is determined by the joint operation
of possibly many ion channels that open or close in response to changes in the membrane
voltage and thus allow the ionic currents to flow across and control the voltage. Single
neurons vary greatly and are able to experience rich dynamical behaviour [53, 25], while
networks consisting of many such cells obtain their functions through complex interactions
of all its individual units [117].

It is a daunting task to analyse these systems that transcend many spatial and temporal
scales, mostly because of the prevailing question: what properties in the small scale are
fundamental for the activity in the large scale, and how does changing these properties
modulate the global behaviour? Therefore, finding simple prevailing mechanisms in the
neural behaviour is of paramount importance, mainly for two reasons:

• Firstly, it leads to the analytical understanding, as mapping the many parameters of
detailed biophysical models to a few aggregate ones unveils their respective roles in
the behaviour, as well as the role of biological redundancies.
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• Secondly, and in line with this thesis’ aims, simple models capturing the essential
dynamical mechanisms allow us to design neuromorphic systems that would be able to
experience rich biological behaviour, but also be susceptible to straightforward analysis
and manufacturing.

This chapter presents a brief overview of the fundamental properties of neurons and their
physiological background, including the identification of the minimal necessary dynamical
components required for robust and controllable simplified models.

We first revisit the fundamental notion of excitability, and the classical biophysical model
of an excitable cell in the form of the Hodgkin-Huxley conductance-based model. We aim
to present the well-known results through a simplified feedback outlook that uncovers the
essential dynamical components for the excitable behaviour. Next, we take the same approach
to more complex neuronal behaviours such as bursting: again starting with a biophysical
conductance-based model, we dissect the essential feedback loops and compare the structure
with the previous picture of excitability. In both cases we show how the simplified feedback
structure relates to the minimal mathematical models of neuronal activity.

Finally, we examine basic neuromodulatory mechanisms that allow a neural cell to
actively change its properties, and relate those complex mechanisms to the simple feedback
structure identified previously.

2.1 Excitability

We start by introducing the defining input-output property of neurons, which is excitability.

We characterise a neuron’s input-output relationship by considering the externally applied
current as the input, and the cell’s membrane voltage as the output. In that sense, a neuron is
excitable because for small, sub-threshold input pulses, the output will change slightly before
relaxing to rest again. In contrast, a current above a certain level will have a significantly
different effect: the voltage goes through a large, well-defined excursion called an action
potential (Fig. 2.1), before returning to rest. Such specific non-linear behaviour comes from
the appropriate balance of ionic currents that flow through the membrane and react to the
changes in the membrane voltage. In order to understand how ionic currents provide the
feedback loops behind excitability, we will first take a look at the physiological background
behind the excitability of neurons.
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Fig. 2.1: Input-output characteristic of excitable systems. Subthreshold inputs generate subthreshold
outputs, but suprathreshold inputs generate an all-or-none response in the form of one or several
action potentials. Response shown for the Hodgkin-Huxley neural model.

2.1.1 The Hodgkin-Huxley model

The classical picture of excitability comes from the analysis of Hodgkin and Huxley of the
squid giant axon in 1952 [43]. Although the analysis concentrated on this particular neuron,
the methodology was later applied to explain the behaviour of other neural cells. The starting
point of the analysis is that the excitable membrane can be modelled as an electrical circuit
(Fig. 2.2).

Firstly, every cell consists of an impermeable membrane which is able to maintain an
electrical potential difference between the intercellular and the extracellular environments.
This property is modelled with a capacitor which stores the charge between the two media.
In addition to this, the membrane is equipped with special proteins called ion channels

which are selectively permeable to specific ions in the environment. Due to the different
concentrations of ions inside and outside the cell, the cell dynamically controls its membrane
voltage by opening and closing these channels and thus controlling the ion currents that pass
through them. Hodgkin and Huxley were able to identify the key players for the generation of
electrical pulses in the squid axon: potassium (K+) and sodium (Na+) ion currents, lumping
all other currents into a third, leak component. The selective permeability to each ion is
captured by an individual conductance element in the circuit, while the equilibrium voltage
where the diffusion is exactly balanced by the electrical force is captured by a battery in
each ion branch. There is a higher concentration of sodium outside the cell than inside,
and vice-versa for potassium. Within the circuit modelling framework, this translates to
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the sodium battery potential being higher than the membrane voltage, while the potassium
battery potential is lower. Thus, sodium current is always inward (negative by convention)
and acts to increase the voltage, while potassium current is outward (positive by convention)
and acts to decrease the voltage.

C

EL

gL

IL

ENa

gNa

INa

EK

gK

IK

Iapp

Intracellular medium

Extracellular medium

V

Fig. 2.2: The Hodgkin-Huxley circuit. The neural membrane, separating the intracellular and the
extracellular media, is modelled as a parallel interconnection of the passive capacitor and leak current
IL, together with the active sodium INa and potassium IK currents. External current applied to the cell
is represented with the current source Iapp.

The dynamics of the system are therefore governed by the following equation:

Cm
dV
dt

=−gNa(V −ENa)−gK(V −EK)−gL(V −EL)+ Iapp (2.1)

where Cm is the membrane capacitance, V is the membrane voltage, gNa, gK , and gL are
the conductances corresponding to sodium, potassium and leak respectively, with ENa, EK

and EL being their corresponding equilibrium potentials, and Iapp is the externally injected
current into the cell.

Sodium and potassium conductances are active i.e. they are voltage and time dependent.
This reflects the continuous opening and closing of the their ion channels, in contrast to the
leak conductance which is constant, and accounts for the passive properties of the membrane.
By using the technique known as voltage clamping, Hodgkin and Huxley were able to keep
the membrane voltage fixed at different levels and measure independently the transient
currents due to sodium and potassium, thus effectively being able to measure different step
responses from the resting state of the system. Fitting the data to the simplest form, they
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obtained the equations for the two conductances:

gNa = gNam3h (2.2)

gK = gKn4 (2.3)

where gNa and gK are the maximal conductances of sodium and potassium respectively, and
m, h, and n are the gating variables that follow first-order dynamics:

τm(V )ṁ = m∞(V )−m

τh(V )ḣ = h∞(V )−h

τn(V )ṅ = n∞(V )−n

(2.4)

Each gating variable has a value between 0 and 1 and thus represents the continuous tuning of
the ion channels between being fully closed and fully open. The steady-state functions m∞(V ),
h∞(V ), and n∞(V ) have a sigmoidal shape (Fig. 2.3, left), while the voltage-dependent time-
constants τm, τh, and τn have a Gaussian shape (Fig. 2.3, right). The mathematical form of
the functions and parameter values can be found in the Appendix 2.C.
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Fig. 2.3: Steady-state and time-constant functions of the gating variables. The steady-state func-
tions (left) have a sigmoidal shape and are monotonically increasing for activation variables, and
monotonically decreasing for inactivation variables. The time-constants (right) have a Gaussian shape.

The dynamics of each gating variable is fully characterised by these two voltage-
dependent functions. The steady-state functions are monotonic and the voltage range in
which the slope of these functions is non-zero defines the window in which the currents
are active, while the slope defines the sign of the feedback. Thus, as m∞ is monotonically
increasing (called an activation variable) and sodium current is inward, we see that the vari-
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able has a positive feedback effect on the membrane voltage, while h∞, being monotonically
decreasing (called an inactivation variable), has a negative feedback effect. Similarly, due to
the potassium current being outward and n∞ being monotonically increasing, n also adds to
the negative feedback.

The voltage-dependent time constants define the time-scale window in which the currents
operate. To understand the essential mechanism behind excitability, it is not necessary to
consider the specific shape of these functions, but to note that both n and h operate on a
significantly slower time-scale than m. Thus m, being the source of positive feedback, acts
quickly in response to the changes in voltage, while n and h which constitute to negative
feedback, act slowly. This dynamical structure of fast positive in conjunction with slow
negative feedback is a signature of excitable systems. We discuss this further in the following
section by considering the linearisation of the Hodgkin-Huxley equations.

2.1.2 Feedback structure of excitability

In order to understand the role of the ionic currents in terms of their feedback effects, we can
study the behaviour for small variations around different voltage levels, i.e. the behaviour
of the linearised system [57]. When studied locally, the nonlinear circuit described in
the previous chapter simplifies to a purely linear one, containing only the standard circuit
components in the form of resistors, capacitors and inductors whose values depend on the
voltage around which the system is studied.

If we apply a small change in the membrane voltage and look at the change in current
within each branch, we can see that there are effectively two contributions: an instant change
in the current, due to the passive properties of each ion current, and a slower component, due
to the active properties of the gating variables. In circuit terms, the passive property leads
to a simple resistor that gives an instantaneous change in current for a change in voltage,
and each gating variable leads to a resistor-inductor branch, capturing the slower, first-order
dynamics that arise. This is shown in Fig. 2.4, and the combined linearised circuit is shown
in Fig. 2.5.

The value of each component will depend on the voltage around which we study the
change. Writing this down, we get the linearised system equations (the derivation can be
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δ IK

Fig. 2.4: Linearisation of the Hodgkin-Huxley currents. The sodium current (top) projects into three
branches: passive, and one for each of the gating variables m and h. Similarly, potassium current
(bottom) projects into a passive component and a branch corresponding to its activation variable n.
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Fig. 2.5: Linearised Hodgkin-Huxley circuit. The circuit consists of the total passive component
G = ḡL +GNa +GK , in parallel with the first-order branches corresponding to the gating variables.
The fast positive feedback appears as the fast negative conductance branch gm −Lm, while the slow
negative feedback appears as the two positive conductance branches gh−Lh and gn−Ln. All the values
in the circuit are voltage-dependent, depending on the voltage point around which the linearisation is
considered.
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found in the Appendix 2.A):

δ INa = GNa(V ∗) δV +
gm(V ∗)

τm(V ∗) d/dt +1
δV +

gh(V ∗)
τh(V ∗) d/dt +1

δV (2.5)

δ IK = GK(V ∗) δV +
gn(V ∗)

τn(V ∗) d/dt +1
δV (2.6)

δ IL = ḡL δV (2.7)

where V ∗ is the voltage value around which we are considering the linearisation. The
passive components of the each branch can be grouped into a single conductance element
G = ḡL +GNa +GK .
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Fig. 2.6: Linearised conductances of the Hodgkin-Huxley model. The conductances are grouped
in three parts: instantaneous (left), fast (middle) and slow (right). The excitability stems from the
combination of the fast positive feedback (negative conductance) and the slow negative feedback
(positive conductance).

The interesting insight from this analysis comes when we consider the steady state values
of conductances at every voltage in the physiological range V ∈ [EK,ENa]. This is shown in
Fig. 2.6, where we have grouped the conductances based on the timescale in which they are
acting:

• The instantaneous branch describes the passive dissipative property of the membrane.

• The fast branch is due to the fast action of the sodium activation, which is several times
faster than the sodium inactivation and potassium activation (Fig. 2.3, right).

• The slow branch is due to the slower action of the sodium inactivation and potassium
activation.
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The linearisation therefore illuminates the dynamical signature of excitable systems in
terms of the circuit structure. The instantaneous branch is purely positive and captures
the passive dissipative properties of the membrane (Fig. 2.6, left). As the sodium current
is inward, its activation provides a positive feedback effect captured in the circuit as a
negative conductance1 (Fig. 2.6 middle), while its inactivation conversely provides a positive
conductance in the slower timescale (Fig. 2.6, right). Similarly, potassium is an outward
current, so that its activation leads to a negative feedback effect, captured again as a slow
positive conductance (Fig. 2.6, right). Excitability comes from the interconnection of the
passive circuit with a fast negative and a slow positive conductance.

The second important point captured by the linearisation is the local action of the dynamic
currents. Both the fast negative conductance due to gm and the slow positive conductance
due to gh and gn act in a voltage window defined by the their respective gating variables (i.e.
where the derivatives of m∞, h∞ and n∞ are non-zero).

We therefore highlight the following properties of the currents of an excitable neuron:

• The feedback currents are local in amplitude: they act in a limited voltage window.

• The feedback currents are local in time: they have a well defined time-scale in which
they act.

It is the combination of these two properties of the basic building blocks that allows for
the complex neural behaviour that we observe. We show later how this property is captured
in the architecture we introduce in Chapter 4.

2.1.3 Minimal models of excitability

The Hodgkin-Huxley formalism has been incredibly successful in describing the neurophysi-
ological mechanisms of excitability. Since the publication of the model of the squid giant
axon, there have been many conductance-based models of different excitable cells [15],
differing in the structure of their ionic conductances, but retaining the same signature of
excitable cells. The complexity of the original Hodgkin-Huxley model and the plethora of
various excitable cells therefore leads to the question: what is the minimal mathematical
model of excitability?

1We use the term conductance interchangeably with differential conductance throughout the thesis.
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The classical minimal model of excitability comes in the form of the FitzHugh-Nagumo
equations [27, 79]. The model captures the essential excitability mechanism that requires
fast positive feedback, and slow negative feedback in a two-dimensional model:

v̇ =−v3

3
+ v−w+ Iapp

τẇ = v+a−bw
(2.8)

The model qualitatively captures the picture of Fig. 2.6 in a reduced sense: the instantaneous
dissipative properties are captured by the term v3

3 , the fast negative conductance by the
instantaneous term v, and the slow positive conductance by the term w. The state w is ensured
to evolve on a significantly slower timescale than v by imposing τ ≫ 1.

The main contribution of the model has been to uncover the phase portrait picture of
excitability. By reducing the number of states to two, the dynamics behind the generation of
an action potential can be understood in the phase plane. In addition, the simple structure of
the model allowed for straightforward circuit realisations, starting with the contribution from
Nagumo and colleagues [79].

Another important minimal model that captures the excitability properties of the barnacle
muscle fibre is the Morris-Lecar model [78]. Unlike the FitzHugh-Nagumo model, the
model has a conductance-based structure which is why it has commonly been used when
biophysical interpretability is needed. The model is minimal as it is two-dimensional and
has the necessary and sufficient components for excitability: a fast negative conductance
component, represented by the instantaneously activated inward calcium current, and slow
positive conductance component, represented by the slowly activating potassium current.
This leads to the following model:

C
dV
dt

=−gCam∞(V )(V −ECa)−gKn(V −EK)−gL(V −EL)+ Iapp

τnṅ = n∞(V )−n
(2.9)

From the dynamical systems perspective, the model is also important because for different
model parameters it can showcase different subtypes of excitability in a minimal representa-
tion, while at the same time being susceptible to the phase plane analysis.
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2.2 Multi-scale excitability: Bursting

We now take a look at the more complex neuronal signalling behaviour in the form of bursting.
Bursting is a dynamical property where a neuron is able to experience alternating periods of
spiking behaviour, followed by periods of quiescence characterised by no activity. Although
every excitable neuron can be turned into a burster with a sustained periodic input, here
we concentrate on intrinsically bursting neurons which are able to generate such behaviour
without an external stimulus. Such systems experience burst excitability, which showcases
as an all-or-none response in the form of a burst of spikes, in contrast to the excitability
discussed in Section 2.1. The characteristic input-output behaviour of bursting systems is
shown in Fig. 2.7.
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Fig. 2.7: Input-output characteristic of bursting systems. Similarly to the excitability property shown
in Fig. 2.1, the subthreshold inputs generate small, subthreshold outputs. However, suprathreshold
inputs generate a burst of spikes. Response shown for Aplysia R-15 model [94].

There are many biological examples of intrinsically bursting neurons, such as the neurons
in the neocortex [14, 37], hippocampus [109], thalamus [108], cerebellum [118]. Other
well-studied examples include the pancreatic β -cell [13], the Aplysia R-15 [84] and the
neurons within the stomatogastric ganglion of crabs [70].

Although bursting activity can appear in vastly different forms, and different neurons
utilise different combinations of ion channels to generate their activity, we would like to
concentrate on the elementary mechanisms that are common to all of them. Bursting is
fundamentally a two-timescale dynamical phenomenon, as it appears as an interplay of the
slow wave that defines the bursting upstrokes and downstrokes, and the fast spiking behaviour



16 Neuronal excitability and neuromodulation

that is triggered during the active phases of the slow wave. Its generation therefore requires
an interaction between a slow excitable subsystem, and a fast excitable subsystem, where the
ionic agents responsible for either can differ in their structure.

We illustrate this structure on a specific example from the literature in the following
section.

2.2.1 Feedback structure of bursting

We consider the neuron R-15 of Aplysia studied in [84, 94] as an illustration of a bursting
neuron. Traditionally, it has been one of the most well-studied bursting neurons in the
literature, and here we concentrate on one of the classical models of its behaviour. The
neuron has the same ionic currents as the Hodgkin-Huxley model (Section 2.1.1), i.e. the
sodium and potassium channels responsible for generating individual spikes, but in addition
it has slower channels that are responsible for generating the slow variations of the membrane
voltage. These channels are responsible for two additional ion currents: an inward calcium
current, and an outward calcium-activated potassium current. The model has the following
structure:

Cm
dV
dt

=−gNa(V −ENa)−gK(V −EK)−gL(V −EL)

−gCa(V −ECa)−gK−Ca(V −EK)+ Iapp

(2.10)

where gNa and gK are as in Eq. (2.2) with the standard simplification that sodium activation is
instantaneous (i.e. m = m∞(V )). The additional currents have the following characteristics:

gCa = ḡCa x (2.11)

gK−Ca = ḡK−Ca
c

0.5+ c
(2.12)

The calcium activation variable x and the calcium concentration c have the first-order dynam-
ics:

τxẋ = x∞(V )− x (2.13)

τcċ = (Kcx(ECa −V )− c) (2.14)

The detailed model parameters can be found in the Appendix 2.C. The time constants of
the additional currents in the model τx and τc are significantly larger than the dynamics of
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the Hodgkin-Huxley currents. The calcium current therefore activates slowly compared to
the potassium current IK , while in turn the calcium-activated potassium current IK−Ca is the
slowest in the model.

The two currents have a different structure, but they again play exactly the same roles as
the Hodgkin-Huxley currents in establishing slow excitability. The calcium current is inward
and its activation leads to a positive feedback effect acting on a slower timescale than the
spiking generation dynamics, while the activation of the calcium-activated potassium current
leads to a stabilising negative feedback effect in the slowest timescale of the model. Bursting
generation can therefore be effectively divided into two parts: the fast spiking generation
requiring a combination of fast positive and slow negative feedback effect currents, and the
slow wave generation requiring currents that provide the same feedback structure, but acting
on a significantly slower timescale.
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Fig. 2.8: Linearised conductances of the Aplysia R-15 bursting model. Building from the picture
shown in Fig. 2.6, in addition to the fast negative and slow positive conductance necessary for spike
generation (top), bursting requires additional slower negative and ultra-slow positive conductances
(bottom). The two slower conductances activate at lower voltages than the two faster ones, so that the
slow wave is generated in the lower voltage range. Note that at high voltage values the ultra-slow gc

becomes negative: the excursions in this range are too fast for the ultra-slow variable to have an effect.
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We again observe this in the structure of the linearised circuit. Adding to the picture
shown in Section 2.1.2, there are two additional active currents:

δ ICa = GCa(V ∗) δV +
gx(V ∗)

τx d/dt +1
δV (2.15)

δ IK−Ca = GK−Ca(V ∗) δV +
gc(V ∗)

τc d/dt +1
δV (2.16)

and we can plot the voltage dependence of the linearised conductances as before (Fig. 2.8).
The derivation of gx and gc can be found in the Appendix 2.B. Note that the voltages are
shifted compared to the Hodgkin-Huxley model, as the rest voltage is not set to lie at 0mV.

Again, linearisation illuminates the basic circuit structure of a bursting neuron. The fast
negative, slow positive conductance of excitability is effectively repeated twice, so that the
faster combination of the conductances generates the individual spikes within the burst, while
the slower conductance combination generates the slow wave that turns the spiking on and
off. In the example presented here, the source of slow negative conductance acts on a slower
timescale than the sodium and potassium currents providing fast excitability. This may be
further simplified by assuming the slower source of negative conductance acts on the same
timescale of the slow positive conductance, and this simplification is further discussed in
Section 2.2.2 and used in the circuit architecture introduced in Chapter 4.

Another important point is the different localisation in the voltage range: the fast conduc-
tances are localised in a higher voltage range than the slower conductances, which enables
the activation of the slow wave to in turn activate the fast spiking threshold.

We will consider this dynamical organisation as the foundation for building models that
are able to generate robust and controllable bursting waveforms.

2.2.2 Minimal models of bursting

There are various proposed mathematical models of bursting in literature, capturing the
particular dynamical features of different neuronal bursting cells [53]. From the mathematical
viewpoint, the main classification between the bursting types lies in the mechanism of the
transition from resting to spiking and back. If the fast spiking system has a region of bistability
between the resting and spiking states, then an additional slower variable is sufficient to drive
the system around the hysteresis and generate a bursting attractor. However, if the fast system
is monostable, then the slow system needs to be at least two-dimensional in order to generate
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semi-autonomous slow oscillations that push the system between spiking and rest. Analysis
of these mechanisms has led to an extensive classification that focuses on the bifurcations
that lead to the transition between resting and spiking and vice-versa [51].

Recent work has illuminated the important fact that regardless of the underlying mecha-
nism of bursting, in order to robustly model the dynamical features of bursting neurons, it is
necessary to retain the essential four feedback loops discussed in the previous section [31, 16].
This has led to the proposed three-timescale model based on the transcritical singularity
[30]. The model is based on the reduction of the Hodgkin-Huxley model with the addition
of a slowly-activated calcium current [23], and has a similar form as the FitzHugh-Nagumo
model. It also has a similar structure to the well-known Hindmarsh and Rose minimal model
[42], but in addition, provides a mathematical framework for understanding the mechanisms
that allow a system to modulate its behaviour between bursting and spiking modes. The
model is the following:

v̇ =−v3

3
+ v− (n+n0)

2 − z+ Iapp

τnṅ = n∞(V −V0)−n

τzż = z∞(V −V0)− z

(2.17)

The model has two main differences compared to the FitzHugh-Nagumo model. Firstly, the
slow variable is quadratic instead of linear: the variable therefore captures both the negative
and the positive feedback effect in the slow timescale. In that sense, it captures two of
the essential feedback loops in a single variable: the slow positive and the slow negative

conductance, by assuming both currents act on the same timescale. Secondly, there is the
additional ultraslow variable z that captures the ultraslow negative feedback effect. Because
the model has the four essential feedback loops presented in Section 2.2.1, it is able to
experience the full dynamical properties of bursting neurons, including the physiological
transition between bursting and purely spiking regimes.

2.3 Neuromodulation

We have so far discussed the mechanisms that allow neurons to have different excitability
properties, both in terms of their physiological structure, and the simplified feedback outlook.
However, neurons are not “hard-wired”, but are able to actively change their pattern of
behaviour. The ionic feedback loops of neurons are constantly tuned as a result of the
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action of external signals, and this process is called neuromodulation. It covers the effects
of different substances called neuromodulators on the electrical activity of neurons. Some
examples of major neuromodulators include dopamine, serotonin, acetylcholine, histamine
and norepinephrine [72].

Understanding how neuromodulation configures neural circuits and affects the behaviour
is one of the most important questions in neuroscience, and in turn, in neural modelling and
synthesis. The ability of neuromodulators to greatly modify the cellular properties of neurons
means that the behaviour of sensory systems can be dynamically adjusted [58], as well as
the way the information is relayed to the higher processing stages [102]. Rhythm generating
networks known as the central pattern generators (CPGs) are constantly under the effect
of neuromodulators [40, 68]. This allows them to swiftly change their rhythmic patterns in
response to varying conditions, providing the amazing robustness and flexibility of animal
locomotory actions. The capability of neuromodulation to target and modify local parts of
neural networks in a matters of seconds is at the essence of the biological control across
scales that allows the local changes to shape the global behaviour in a robust way [100, 101].

We will now briefly take a look at the modelling framework for neuromodulation. We
aim to connect the problem of neuromodulation to the feedback structure we have shown in
Sections 2.1 and 2.2.

2.3.1 Neuromodulation as circuit loop shaping

We have discussed two specific conductance-based models of neurons so far in Sections 2.1.1
and 2.2.1. Generally, we can consider an arbitrary neuron in the form of a conductance-based
circuit (Fig. 2.9). A neuron may have many different ionic currents in parallel all working in
unison to generate the specific neural behaviour.

In this modelling framework, we can consider the effects of the various external sub-
stances as modulating the maximal conductance parameters of the currents ḡi. Understanding
how neuromodulators can drive the behaviour in the desired way therefore boils down to
understanding which regions in the rich parameter space of the maximal conductances cor-
respond to which behaviour. This is a difficult task due to the highly non-linear nature
of the currents, but recent work [21] has proposed a way of viewing the modulation of
maximal conductances as a form of loop-shaping of the basic feedback loops responsible for
generating the behaviour.
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Fig. 2.9: A general conductance-based circuit. The passive membrane consisting of the membrane
capacitor and the leak current is interconnected with possibly many ion currents.

In this sense, we can map the effects of the multitude of ion currents into only a few
distinct timescales that are relevant for the spike-generation. The effects can be superimposed
through the linearisation techniques discussed in Sections 2.1.2 and 2.2.1 into the aggregate
conductances for each timescale: fast, slow and ultra-slow. Spiking then requires the
appearance of fast negative conductance, and slow positive conductance, while bursting
requires the addition of the slow negative conductance and ultra-slow positive conductance,
appropriately localised in the voltage range.

Modulating the maximal conductances thus shapes the conductance in each timescale,
changing the properties such as frequency, duty cycle, as well as the qualitative properties of
the waveform. Balancing between the slow positive and slow negative conductance leads to
the transition between the purely spiking and purely bursting modes, drastically altering the
processing capabilities of neurons.

For any proposed neural model we can view its modulation as shaping the conductance in
the appropriate timescale, and we will utilise this viewpoint for the design of neuromorphic
neurons by exploiting the fact that it is both necessary and sufficient to appropriately model
the conductance in the three relevant timescales.
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Appendix 2.A Linearising Hodgkin-Huxley equations

We start by considering the change in sodium and potassium currents for a small change in
voltage δV :

δ INa =
∂ INa

∂V

∣∣∣∣
V ∗

δV +
∂ INa

∂m

∣∣∣∣
V ∗

δm+
∂ INa

∂h

∣∣∣∣
V ∗

δh (2.18)

δ IK =
∂ IK

∂V

∣∣∣∣
V ∗

δV +
∂ IK

∂n

∣∣∣∣
V ∗

δn (2.19)

The partial derivatives are then calculated to be:

∂ INa

∂V

∣∣∣∣
V ∗

= gNam3
∞(V

∗)h∞(V ∗) (2.20)

∂ INa

∂m

∣∣∣∣
V ∗

= 3gNam2
∞(V

∗)h∞(V ∗)(V ∗−ENa) (2.21)

∂ INa

∂h

∣∣∣∣
V ∗

= gNam3
∞(V

∗)(V ∗−ENa) (2.22)

for sodium and:

∂ IK

∂V

∣∣∣∣
V ∗

= gKn4
∞(V

∗) (2.23)

∂ IK

∂n

∣∣∣∣
V ∗

= 4gKn3
∞(V

∗)(V ∗−EK) (2.24)

for potassium. All the values are evaluated at an arbitrary voltage V ∗ around which we
are linearising the system. By considering the dynamical equations for the gating variables
(Eq. (2.4)), we obtain:

δm =
dm∞/dV

τm(V ∗) d/dt +1
δV, δh =

dh∞/dV
τh(V ∗) d/dt +1

δV (2.25)

and the same for potassium:

δn =
dn∞/dV

τn(V ∗) d/dt +1
δV (2.26)
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Putting all of this together, we see that the total linearised sodium current has three
components:

δ INa = GNa(V ∗) δV +
gm(V ∗)

τm(V ∗) d/dt +1
δV +

gh(V ∗)
τh(V ∗) d/dt +1

δV (2.27)

where:

GNa =
∂ INa

∂V
(2.28)

gm =
∂ INa

∂m
dm∞
dV

(2.29)

gh =
∂ INa

∂h
dh∞
dV

(2.30)

and the total linearised potassium current has two components:

δ IK = GK(V ∗) δV +
gn(V ∗)

τn(V ∗) d/dt +1
δV (2.31)

where:

GK =
∂ IK

∂V
(2.32)

gn =
∂ IK

∂n
dn∞
dV

(2.33)

Comparing these equations to the circuits in Fig. 2.4 gives the values of inductors as follows:

Lm =
τm

gm
, Lh =

τh

gh
, Ln =

τn

gn
(2.34)

Appendix 2.B Linearising R-15 neuron model equations

As in Appendix 2.A, the changes in sodium and potassium currents can be found to be:

δ INa = GNa(V ∗) δV +gm(V ∗) δV +
gh(V ∗)

τh(V ∗) d/dt +1
δV (2.35)

δ IK = GK(V ∗) δV +
gn(V ∗)

τn(V ∗) d/dt +1
δV (2.36)



24 Neuronal excitability and neuromodulation

We apply the same technique to the two additional currents, ICa and IK−Ca. Starting from the
partial derivatives, we obtain:

δ ICa =
∂ ICa

∂V

∣∣∣∣
V ∗

δV +
∂ ICa

∂x

∣∣∣∣
V ∗

δx (2.37)

δ IK−Ca =
∂ IK−Ca

∂V

∣∣∣∣
V ∗

δV +
∂ IK−Ca

∂c

∣∣∣∣
V ∗

δc (2.38)

The partial derivatives for the calcium current are:

∂ ICa

∂V

∣∣∣∣
V ∗

= gCax∞(V ∗) (2.39)

∂ ICa

∂x

∣∣∣∣
V ∗

= gCa(V
∗−ECa) (2.40)

and for the calcium-activated potassium current:

∂ IK−Ca

∂V

∣∣∣∣
V ∗

= gK−Ca
c∞(V ∗)

0.5+ c∞(V ∗)
(2.41)

∂ IK−Ca

∂c

∣∣∣∣
V ∗

= gK−Ca
0.5

(0.5+ c∞(V ∗))2 (V
∗−EK) (2.42)

where we have defined:
c∞(V ) = Kc x∞(V )(ECa −V ) (2.43)

We approximate the calcium dynamics as a first-order equation by noting that τc ≫ τx, so
that we set x = x∞(V ) in Eq. (2.14). This simplification means that the linearisation with
respect to the calcium concentration will again lead to a simple resistor-inductor branch.
From Eqs. (2.13) and (2.14) we therefore obtain:

δx =
dx∞/dV

τx d/dt +1
δV (2.44)

δc =
dc∞/dV

τc d/dt +1
δV (2.45)

Putting all these together, we finally get:

δ ICa = GCa(V ∗) δV +
gx(V ∗)

τx d/dt +1
δV (2.46)

δ IK−Ca = GK−Ca(V ∗) δV +
gc(V ∗)

τc d/dt +1
δV (2.47)
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with the passive components:

GCa =
∂ ICa

∂V
(2.48)

GK−Ca =
∂ IK−Ca

∂V
(2.49)

and the active components:

gx =
∂ ICa

∂x
dx∞
dV

(2.50)

gc =
∂ IK−Ca

∂c
dc∞
dV

(2.51)

Appendix 2.C Simulation parameters

Hodgkin-Huxley

The Hodgkin-Huxley model has the following equations for the dynamics of the ion channels
[55]:

ṁ = αm(1−m)−βmm

ḣ = αh(1−h)−βhh

ṅ = αn(1−n)−βnn

(2.52)

with the functions having the following forms:

αm = 0.1
25−V

exp(25−V
10 )−1

βm = 4exp
(−V

18

)

αh = 0.07exp
(−V

20

)

βh =
1

exp(30−V
10 )+1

αn = 0.01
10−V

exp(10−V
10 )−1

βn = 0.125exp
(−V

80

)
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The equations Eq. (2.52) can be rewritten in the form presented in the chapter (Eq. (2.4)), by
using the following equations for the steady-state and time-constant functions:

m∞(V ) =
αm(V )

αm(V )+βm(V )
, τm(V ) =

1
αm(V )+βm(V )

h∞(V ) =
αh(V )

αh(V )+βh(V )
, τh(V ) =

1
αh(V )+βh(V )

n∞(V ) =
αn(V )

αn(V )+βn(V )
, τn(V ) =

1
αn(V )+βn(V )

The other parameters are then:

Cm = 1µF/cm2

gNa = 120mS/cm2, gK = 36mS/cm2, gL = 0.3mS/cm2

ENa = 120mV, EK =−12mV, EL = 10.6mV

Aplysia R-15

The parameters for Aplysia R-15 model are taken from [94]. The equations for the dynamics
of the ion channels are the following:

αm = 0.1
50−V

exp(50−V
10 )−1

βm = 4exp
(

25−V
18

)

αh = 0.07exp
(

25−V
20

)

βh =
1

exp(55−V
10 )+1

αn = 0.01
55−V

exp(55−V
10 )−1

βn = 0.125exp
(

45−V
80

)
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For the steady-state and time-constant functions the following coordinate transformation is
used:

Ṽ =C1V +C2,

C1 = 127/105, C2 = 8265/105

so that:

m∞(V ) =
αm(Ṽ )

αm(Ṽ )+βm(Ṽ )
,

h∞(V ) =
αh(Ṽ )

αh(Ṽ )+βh(Ṽ )
, τh(V ) =

12.5
αh(Ṽ )+βh(Ṽ )

n∞(V ) =
αn(Ṽ )

αn(Ṽ )+βn(Ṽ )
, τn(V ) =

12.5
αn(Ṽ )+βn(Ṽ )

For x:
x∞(V ) =

1
exp(A(B−V ))+1

, τx = 235ms

where
A = 0.15, B =−50

For c:

τc = 1/0.003ms

Kc = 0.0085mV−1

The other parameters are:

Cm = 1µF/cm2

gNa = 4mS/cm2, gCa = 0.004mS/cm2,

gK = 0.3mS/cm2, gK−Ca = 0.03mS/cm2, gL = 0.003mS/cm2

ENa = 30mV, ECa = 140mV, EK =−75mV, EL =−40mV





Chapter 3

Neuromorphic engineering

Since its inception, neuromorphic engineering has provided an exciting avenue for under-
standing and utilising the computational principles that underlie animal behaviour. The term
neuromorphic [74] provides a good summary of the main objectives of the field: to apply the
biological organisational principles to the established semiconductor technology with the
aim of achieving the level of performance and energy efficiency observed in nature. Unlike
the prevailing purely digital von Neumann architecture we are accustomed to, neural systems
employ a mix of analogue and digital principles that allows them to operate at an amazing
level of efficiency [95]. Reverse engineering these processes would allow scientists and
engineers to approach closer to these levels of processing capabilities, while at the same time
leading to a better understanding of the biological systems.

In this chapter we start by providing an overview of the different approaches undertaken
within the neuromorphic community since the birth of the field 30 years ago. The field has
covered many exciting applications, from understanding and recreating how our sensory
systems behave, to building large neural networks that aim at uncovering the principles
of cognition. We will focus on understanding the different levels of abstraction that the
various approaches have utilised, and how these relate to the biophysical principles and the
mathematical models we have described in Chapter 2. Through this, we aim to motivate the
systems approach to synthesising and analysing neuromorphic circuits that we undertake
in Chapter 4. Our aim is to use well-known neuromorphic circuits, and show how neural
behaviours can be easily synthesised and controlled by respecting the fundamental feedback
structure described in Chapter 2.
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In the second part of the chapter we present the circuit building blocks that have been
successfully utilised in analogue subthreshold neuromorphic circuits. We discuss the main
characteristics of these circuits, and why they provide good basic elements for synthesising
nonlinear I-V curves, as well as providing temporal filtering necessary for realising the
dynamic nature of neurons.

3.1 Overview of the neuromorphic approach

The first steps towards utilising the silicon technology for recreating biological behaviour
were undertaken by Carver Mead and his colleagues in the late 1980s [66, 73, 74]. By
making an analogy between the behaviour of MOS transistors at low operating voltages
and the channel dynamics of neurons, they provided a novel methodology for synthesising
bioinspired systems by using the physics of the devices as a computational resource. This
analogue way of computing is in contrast with the established digital technology where
transistors are purely viewed as on/off switches, and computation is achieved by abstracting
their behaviour and utilising the principles of Boolean algebra.

These initial studies led to the first developments of electrical circuits emulating the struc-
ture and operation of neurons, sensory organs and the fundamental organisational principles
of neural networks. These included the first developments on implementing the conductance-
based structure of neurons, which led to the development of the first silicon Hodgkin-Huxley
based neuron [67], as well as replicating the auditory and vision sensory systems through
the silicon cochlea [65, 114] and the silicon retina [75]. The most powerful aspect of these
sensory devices is that they aim to achieve preprocessing of signals already at the level of
hardware, much like our own sensory systems do. Such low-level computational methods
using device physics enrich the hardware with automatic adaptation and compression mecha-
nisms that can lead to significant savings in the bandwidth and processing requirements in
the later stages. Other important functional primitives, such as the “winner-take-all” function
used in decision making and action selection, also had successful hardware realisations [59].
Together with these, novel communicational methods were developed to circumvent the
inability of implementing the massively interconnected neural structures found in biology.
This was achieved by cleverly combining the analogue processing of individual neurons
with digital communication through a central communicational hub in the address-event
representation [19, 8].
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The initial research into neuromorphic computing has since influenced many other
approaches for developing neuroinspired hardware. Several neuromorphic chips have been
developed [34], such as [86, 120], as well as the larger-scale IBM True North [76], Neurogrid
[5] and BrainScaleS [98]. All of these use different levels of abstraction, as well as a different
digital/analogue mix for implementing the neural computations. Significant advancements
have been made in the neuromorphic vision, allowing for commercial products that use
the retinal principles [7, 63]. Recent developments into novel devices such as memristors,
together with the incredible rise of artificial neural networks, has directed research into
finding ways of using these devices as natural implementations of synapses that would be
able to experience plasticity [54, 49]. Future advancements in this direction may lead to
intelligent systems that would have learning and adaptation capabilities on the physical level,
providing solutions with unparalleled efficiency.

All of the examples show that there has been an ongoing trend of finding novel ways
of developing bioinspired hardware. The techniques used do not necessarily strive for
accurate biological inspiration, but use bioinspiration to different extent in both analogue
and digital approaches. Considering the richness of the neuromorphic techniques [48], we
would like to concentrate on the question of finding the right level of abstraction of the neural
representation. In the following section, we revisit different methodologies that have been
used in neural circuit modelling, and aim to connect them to the feedback outlook that we
have discussed in Chapter 2.

3.2 Neuromorphic neurons

One of the main design choices that we face when approaching the development of neuro-
morphic hardware is finding the right level of abstraction of the neural behaviour [50, 41].
From the detailed compartmental models which aim to capture the morphological details
of neurons, to the simplistic integrate-and-fire models which simplify neurons as leaky
integrators with a threshold, there is a vast range of different modelling levels that can be
used. The choice generally boils down to the trade-off between the biological complexity
and the circuit simplicity [48].

Focusing on the concept of neuromodulation and the control of excitability properties
we have discussed in Chapter 2, we will broadly classify the different approaches into
biophysically detailed models and simplified models, and discuss their capability to capture
the dynamical properties of neurons.
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3.2.1 Biophysically accurate circuits

The original neuromorphic developments were focused on reproducing the neural biophys-
ical principles using the CMOS device physics, leading to the first implementation of the
conductance-based neuron [67]. The approach took several simplifications, but successfully
reproduced the conductance-based structure and the essential characteristics of a spiking
neuron. Several approaches since have aimed at generating biophysically more accurate
models, such as capturing the temporal details of the ion channel dynamics [45, 46, 26], or
introducing adaptation mechanisms to the model [106]. In [119], the authors implement a
detailed parametrised Hodgkin-Huxley type neuron. Due to the ability to control the many
parameters of the model, it can be set up to show different neural behaviours by modifying
the form and the dynamics of its ion channel representations [121]. Another implementation
of a conductance-based model of the leech heart interneuron was presented in [103] which is
able to experience bursting behaviour.

The biggest advantage of these models is that their parameters have biophysical meaning
and can come from cell measurements, allowing scientists to directly study the cell behaviour
that the models are based on. On the other hand, the drawback of such models comes directly
from the nature of the conductance-based models: due to the complex parameter space that
they occupy, it is not a trivial task to understand the mechanisms of neuromodulation and
the collaborative effect of the parameters. From an engineer’s perspective, it also not a
straightforward task to choose the appropriate set of ion currents to be modelled in order
to achieve a certain set of biological behaviour, as the circuits are tailored for modelling a
specific neural type. Finally, the high complexity of conductance-based models compared
to some of the simplified mathematical models, leads to the question if neuromorphic
implementations of simple models may provide an expansive set of neural behaviour at a
lower cost of design and production.

3.2.2 Simplified circuits

On the other side of the complexity range are the simplified models of the neural membrane
that have been extensively used in neuromorphic designs, especially when the implementation
of larger neural networks is considered. FitzHugh-Nagumo model was one of the first to
receive a circuit implementation [79, 56], including a VLSI implementation [62]. Still, the
lack of diversity of the neuronal behaviours that it can reproduce, as well as its relative
complexity, has led to developments mostly concentrating on different abstractions. One of
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the most popular modelling paradigms is the integrate-and-fire modelling, which in the most
basic form, consists of a leaky integrator which fires a discrete spike once a certain amount
of charge is accumulated at the capacitor [73]. Adaptation mechanism can easily be added to
this model, and such circuits have been broadly used [47]. Expanding this methodology in
order to model more complex spiking patterns, several models have been introduced, such
as the well-known Izhikevich model [52], adaptive exponential integrate-and-fire (AdEx)
[9], or the Mihalaş-Niebur model [77]. All of these are able to reproduce a rich set of firing
patterns in minimal representations, and as such have seen several implementations in the
neuromorphic hardware (see e.g. [115, 87] for the Izhikevich model, [1] for the AdEx model,
or [28] for the Mihalaş-Niebur model). Other approaches have aimed to reproduce the
local bifurcation mechanisms [4, 3] that lead to spiking, thus capturing the spike generation
dynamics in a minimal sense.

Integrate-and-fire modelling framework provides a powerful way of realising various
neural behaviours in simple models that are not difficult to implement in hardware. Still,
when studying the effects of neuromodulation and how neural behaviour is shaped through
the control of appropriate parameters, they do not provide a clear connection to the biological
mechanisms like the detailed biophysical models do. Obtaining a certain behaviour generally
requires the fine-tuning of the parameters, and the observed waveform might not have the
same robust and tunable mechanisms behind its generation [85]. Capturing the bifurcation
mechanisms can lead to the simplified mechanisms of neuromodulation as demonstrated
previously [11], but the proposed circuit implementation presented a closed dynamical system
which does not provide for a clear interconnection structure for scaling up the design.

3.2.3 Balancing between?

We have presented a brief overview of different modelling approaches present within the
neuromorphic engineering community. Looking at the models capable of showcasing the rich
neural dynamics that involve several timescales, we find two drawbacks at the two extremes
of the modelling spectrum. The biophysically detailed models provide a powerful avenue
for studying how the many physiological parameters influence the behaviour, but from an
engineer’s perspective, suffer from the difficulty of controlling and analysing the complex
parameter space in which they live in. Moreover, the incredible diversity of biological ion
channels leads to the question of choice of ionic currents to be modelled that would replicate a
rich set of neuronal behaviour. On the other hand, simple models can be cheaply synthesised
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and may produce an incredibly varied set of neural behaviours, but as analysed in recent
work [85], often lack the underlying dynamical mechanisms of detailed models, making
them unsuitable for studying how neuromodulation shapes the behaviour.

We have discussed in Chapter 2 how neural excitability and its control are greatly
simplified by obtaining a feedback outlook of a neuron, where all ionic currents are classified
as contributing to the four essential feedback loops. In order for a neural model to experience
robust modulation mechanisms between the different multi-scale firing patterns, it needs
to retain these four loops and their modulation in some form. We therefore aim to provide
a simplified modelling framework for these loops, which would be able to capture the
neuromodulatory processes.

Such an approach is complimentary to the modelling principles described previously
in this chapter: by analysing and replicating the modulatory effects of the basic feedback
loops, one can gain a better understanding of how modulating the ion channels in a detailed
conductance-based model may affect the behaviour, as well as what set of ion channels would
be necessary for replicating the spiking/bursting behaviours. On the other hand, it highlights
what are the minimal requirements for a simplified model to capture the neuromodulatory
mechanisms of neurons.

3.3 Neuromorphic building blocks

In this section we revisit the design principles laid out by Carver Mead and colleagues in their
pioneering work [66, 73, 74]. We present the basics of the subthreshold MOSFET design
and its advantages compared to the standard above-threshold operation. The basic building
blocks of the methodology are discussed: the transconductance amplifier which realises a
non-linear current-voltage relationship, and the integrator-follower circuit, which achieves
temporal integration. We describe why these simple circuits provide good building blocks
for the I-V curve shaping methodology that we introduce in Chapter 4.

3.3.1 Subthreshold regime

A standard n-channel MOSFET transistor is shown in Fig. 3.1. At the most basic level, we
can view a transistor as a three-terminal current source element: the current going between
its drain and its source (output current) is controlled by the voltage applied between its
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G
(Gate)

D
(Drain)

S
(Source)

Fig. 3.1: An n-channel MOSFET.

gate and source (input voltage). This can most easily be seen in Fig. 3.2, left: sufficiently
increasing vds saturates the transistor so that the current between its drain and source is mostly
independent of the voltage between the two terminals, and can be controlled by varying the
voltage at its gate. The transistor does not act as a perfect current source though, apparent
from the finite slope of the ids dependence in the saturated regime.
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Fig. 3.2: Drain-source current (ids) as a function of the drain-source voltage (vds) and the gate-source
voltage (vgs). For a large-enough vds, the current saturates and the MOSFET acts as a current source
whose magnitude is mainly controlled by vgs. For small vgs the current exponentially increases with
increasing input voltage (subthreshold regime). For a large enough vgs (i.e. above threshold), the
exponential dependence turns into a quadratic dependence, and the transistor is commonly considered
on.

In traditional electronics, MOSFET is only considered on if the input voltage is sufficiently
high, disregarding the small output current when the input is below the threshold voltage. In
this regime the output current is a quadratic function of the input voltage and the charge is
mainly carried by drift. In turn, we concentrate on the subthreshold regime where the output
current is orders of magnitude smaller and there is an exponential input-output relationship
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(Fig. 3.2, right). In this region, the charge is mainly carried by diffusion, and the transistor
has the following characteristic:

ids = i0e
κvg
vT e

−vs
vT

(
1− e

−vds
vT

)
(3.1)

where i0 is the zero-bias current, vT ≈ 25mV is the thermal voltage, and κ ∈ (0,1) is a
process-dependent variable. If we consider grounding the source of the transistor, and the
saturated region where vds ≫ vT , then the relationship simplifies to:

ids = i0e
κvgs
vT (3.2)

so that the output current is purely an exponential function of the input voltage. The transistor
has finite output resistance due to the Early effect, which appears in Fig. 3.2, left as the
finite slope of the output current in the saturated regime. We often disregard this for most
calculations and consider the transistor as a perfect current source controlled by its gate-
source voltage, but if the effect is considered it can be modelled as an additional factor added
to the Eq. (3.2):

ids = i0e
κvgs
vT

(
1+

vds

v0

)
(3.3)

where v0 is the Early voltage.

In our work we will be purely considering the MOSFETs in the subthreshold region.
There are two main advantages of operating in this regime:

• The voltages and the currents are kept low. This leads to circuits operating with very
low power requirements in the order of µWs.

• The exponential input-output relationship is a powerful analogue primitive for synthe-
sising non-linear functions.

In the following section we take a look at the standard transconductance amplifier
operating in the subthreshold regime, and show how it leads to a realisation of a basic
sigmoidal I-V relationship.
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3.3.2 I-V element primitive: Transconductance amplifier circuit

The transconductance amplifier is the essential circuit building block of this dissertation. It
generates an output current that depends on the differential input voltage. The schematic of
the differential amplifier is shown in Fig. 3.3.

ib

v1 v2

vb

iout

i1 i2

i1

VDD

=−

+

vb

v1

v2

iout

Fig. 3.3: Transconductance amplifier. The circuit realises a hyperbolic tangent mapping from the
differential voltage input to the current output. The gain of the function is determined by the current
flowing through the base transistor (ib), controlled by its base voltage (vb) that acts as the additional
amplifier input.

As the transistors are operating in the subthreshold regime, the currents through the input
transistors can be found to be the following:

i1 = ib
1

1+ eκ(v2−v1)/vT
, i2 = ib

1
1+ eκ(v1−v2)/vT

(3.4)

The bottom three transistors of the circuit therefore provide a sigmoidal mapping from the
input to the currents i1 and i2. The two top transistors are then used as a current mirror that
realises a subtraction of the two currents, so that we obtain the output current:

iout = i1 − i2

= ib tanh
(

κ
v1 − v2

2vT

) (3.5)
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The full transconductance amplifier provides a hyperbolic tangent mapping from the differen-
tial input to the output current. Its versatility comes from the fact that the gain of the element
can be simply controlled by varying the current ib through the voltage at the base transistor
vb. Since there is an exponential relationship between vb and ib, the gain of the element can
be easily controlled over several orders of magnitude.

The realisation of the transconductance amplifier shown in Fig. 3.3 has several limitations.
The mismatch of transistors in the final circuit design means that the input-output characteris-
tic will not be symmetrical. This mainly manifests as an inherent offset that appears in the
Eq. (3.5). Such an offset can be compensated for by appropriately tuning the inputs v1 or v2,
but is unknown at the design stage.

Furthermore, since the transistors do not behave as ideal current sources, there are
additional limitations that are imposed on the circuit operation. Firstly, the output current can
only be supplied in the finite voltage range of the output voltage vout . Secondly, due to the
output resistance of the transistors, the supplied iout will have a dependency on the voltage
at the output node. These issues can be circumvented easily by limiting the output voltage
range in which we are operating.

As the transconductance amplifier provides a controllable I-V characteristic with a limited
active voltage range due to its saturation, we will utilise it as a basic element for synthesising
nonlinear I-V curves. We also utilise it as a dynamical primitive, as it can be used to construct
a nonlinear first-order filter as we show in the following section.

3.3.3 Dynamical primitive: follower-integrator

The time-constants of neuromorphic systems generally require high resistor values in order
to align with the frequencies at which biological systems operate. Due to this, using resistors
in the standard CMOS processes is generally impractical, and instead, the transconductance
amplifier of the previous section can be utilised as a resistive element with variable resistance.

The elementary dynamical circuit that we will utilise is the so-called follower-integrator

circuit [66, 73]. Essentially, it acts as a first-order filter, where instead of a resistor-capacitor
network, the filtering is implemented with a transconductance amplifier connected to a
capacitor. This is shown in Fig. 3.4.

The circuit consists of a transconductance amplifier from the previous section, with its
negative input and output short circuited, in series with a capacitor. The output voltage is
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−

+vin

vout

vb
C

Fig. 3.4: Follower-integrator circuit. The circuit implements nonlinear first-order filtering of the
input voltage vin. The time-constant of the filter can be controlled by changing the voltage vb, which
effectively controls the output resistance of the amplifier.

then:
C

dvout

dt
= ib tanh

(
κ(vin − vout)

2vT

)
(3.6)

where ib is controlled by the base voltage vb so that ib = i0eκvb/vT . Although the circuit is non-
linear, by considering small changes in voltage we can find the approximate time-constant of
the circuit:

C
dvout

dt
≈ ibκ

2vT
(vin − vout) (3.7)

defining the time-constant as:

T =
2CvT

κib
(3.8)

As the non-linear nature of the filter does not have a major effect on the temporal
characteristics of our proposed model, we will use this circuit as the basic element for
temporal filtering.
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Appendix 3.A Simulation note

Figure 3.2 was generated with the data from SPICE simulation using the BSIM3 MOSFET
model with TSMC 0.35µm process parameters.



Chapter 4

Neuromodulation through I-V curve
shaping

Building from the ideas discussed in Chapters 2 and 3, in the following chapter we present a
novel methodology for synthesising neural behaviour. The methodology departs from earlier
approaches by rooting the design and analysis in an input-output rather than state-space
model of the circuit. We assume the specific circuit architecture common to all voltage-
gated conductance-based models of neurophysiology: the excitable membrane is modelled
as a passive RC circuit in parallel with (possibly many) circuit elements, each of which
controls the circuit conductance in a specific voltage and dynamic range. This architecture
is also common to recently introduced low-dimensional model of bursting [29, 30]. By
separating the circuit elements in distinct timescales, we propose that shaping the circuit’s I-V
characteristics in those distinct timescales is modular and sufficient to control the excitability
properties of the circuit. The curve shaping methodology maps with surprising ease to the
dynamical behaviours of the circuit, and allows us to generalise the intuitive spike-generation
mechanisms of the FitzHugh-Nagumo circuit to the more complex neuronal behaviours such
as bursting, while also enabling easy modulation between distinct behaviours.

Although the proposed methodology is rooted in the rigorous mathematical analysis
of a low-dimensional bursting model [29, 30], the key contribution of this chapter is to
present a qualitative approach to tuning the neuronal behaviours which is purely input-output
and by-passes the state-space realisation of the circuit for its design and analysis. This
is in contrast with recent efforts in designing spiking and bursting feedback circuits from
simplified state-space models [33, 11]. Here we directly formulate the task of controlling
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a given excitable behaviour as an I-V curve synthesis problem, independent of the circuit
implementation specifics. Most importantly, our circuits are inherently neuromodulable
as the control of each current element maps to the modulation of a maximal conductance
parameter in biophysical conductance-based models [21, 36, 82, 110]. We regard this as an
important step towards building neuromorphic circuits with neuromodulation capabilities.

We start by describing the general structure of the neural circuit, relating it to standard
examples of excitable circuits such as the FitzHugh-Nagumo model, as well as more recent
bursting models. We then define the notion of I-V curves in separate timescales, and describe
a simple yet general circuit architecture that allows us to shape the I-V curves through parallel
interconnections of basic elements with localised conductance and first-order dynamics. In
the following sections, we show how, similarly to the classic FitzHugh-Nagumo circuit, a
tunable spiking neuron is realised as an interconnection of the passive membrane, a fast
negative conductance element, and a slow positive conductance element. We further show
how the interconnection of additional slow negative conductance and ultra-slow positive
conductance elements leads to a tunable bursting circuit, mirroring the ionic conductance
structure of the bursting neurons [94, 21]. We also compare the bursting mechanism we
present with alternative mechanisms studied in neurodynamical models [93]. We show
why such mechanisms do not allow for robust control due to their fragile parameter choice
requirements.

A graphical interface for simulating the principles of this chapter is described at the end
in Appendix 4.A.

4.1 I-V curve shaping by interconnection

C ip(v)

iapp

Passive RC circuit

i±x

Current sources with localised conductance

v

Fig. 4.1: The neural circuit. A passive RC circuit is interconnected with localised conductance current
source elements that model the action of the ionic currents.
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We base our methodology on the general neural circuit architecture shown in Fig. 4.1.
This architecture mirrors the biophysical modelling principles pioneered by Hodgkin and
Huxley in their seminal work [43]: an excitable membrane is modelled as the parallel
interconnection of a passive RC circuit with several voltage-gated ionic currents (sodium,
potassium, calcium, etc.). Here, the passive membrane properties are represented with a
membrane capacitor C and a purely resistive element ip(v), so that its I-V characteristic
satisfies:

dip(v)
dv

≥ 0,∀v (4.1)

We assume that each voltage-controlled current source obeys the elementary model:

i±x = f±x (vx) (4.2a)

Txv̇x = v− vx (4.2b)

so that the output current i±x has a monotonic dependence on the filtered voltage vx through
the function f±x (v) that satisfies

d f+x (v)
dv

≥ 0,∀v (4.3)

for a positive conductance element, or

d f−x (v)
dv

≤ 0,∀v (4.4)

for a negative conductance element. The time constant Tx defines the timescale of the current.

The behaviour of the circuit is then governed simply by Kirchhoff’s law:

Cv̇ =−ip(v)−∑ i±x + iapp, (4.5)

and we can define an approximate time constant of the voltage equation:

C/Tv =
dip(v)

dv

∣∣∣∣
v=ve

(4.6)

with the derivative taken around the equilibrium point of the system v = ve. This allows us to
consider all time constants relative to the membrane dynamics:

τx = Tx/Tv (4.7)
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In order to describe both bursting and spiking behaviours, it is sufficient to include
elements that act on three separate timescales: fast (τ f ), slow (τs) and ultra-slow (τus), for
which we assume:

max(τv,τ f )≪ τs ≪ τus (4.8)

The dynamics of the fast element relative to the membrane dynamics can be arbitrary, and
in particular, the fast dynamics can be taken as instantaneous. We use an instantaneous fast
element throughout the simulations in the chapter, corresponding to τ f = 0.

For modelling purposes, we will consider a dimensionless representation of this circuit
architecture. We will denote the dimensionless quantities with capital letters, so that Eqs. (4.2)
and (4.5) become:

dV
dτ

=−Ip(V )−∑ I±x + Iapp (4.9a)

I±x = F±
x (Vx) (4.9b)

τx
dVx

dτ
=V −Vx, (4.9c)

with τ being the dimensionless time.

The classic FitzHugh-Nagumo model of excitability assumes this form with the elements:

Ip(V ) =V 3/3 (4.10a)

F−
f (V ) =−V (4.10b)

F+
s (V ) = kV, (4.10c)

with τ f = 0 and k > 1. The recent model [30] generalises FitzHugh-Nagumo circuit to allow
for a modulation between bursting and spiking behaviours. It can also be presented in this
form:

Ip(V ) =V 3/3 (4.11a)

F−
f (V ) =−V (4.11b)

F−
s (V )+F+

s (V ) = (V +V ∗)2 (4.11c)

F+
us (V ) =V, (4.11d)
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The bursting behaviour relies on a non-monotonic slow current and an additional ultra-slow
current. The parameter V ∗ controls if the model is spiking or bursting.

Here we will consider those particular circuits as specific interconnections of standardised
elements with I-V characteristic

F±
x (V ) =±α±

x tanh(Vx −δ±
x ). (4.12)

Such characteristics retain a fundamental property of biophysical circuits: the conductance
has a localised activation range, as well as a well-defined timescale. The local range is
specified by the linear range of the sigmoid, whereas the timescale is specified by the time
constant τx. The parameter α±

x > 0 controls the gain of the conductance, and the parameter
δ±

x determines where in the voltage range the element is active. In addition, we have the
passive element taking form of a resistor, so that:

Ip(V ) =V (4.13)

We view the role of localised conductance elements as shaping the I-V characteristics of
the circuit in distinct timescales. Accordingly, we will consider the I-V characteristics of the
circuit in the respective fast, slow, and ultra-slow timescales. Those curves will be denoted
by:

Ix = Ip(V )+ ∑
τy≤τx

F±
y (V ), (4.14)

so that Ix represents the summation of all the I-V curves of elements acting on the timescale
τx, or faster.

The basic rationale of our design will be the following: we will use negative conductance
elements to create local ranges of negative conductance in a given timescale and positive

conductance elements to restore the positive conductance in slower timescales. The circuit
behaviour will be determined by shaping the local ranges of negative conductance in the
right voltage ranges and timescales. Our methodology is obviously qualitative in nature:
it does not depend on specific circuit or mathematical realisations but only on shaping the
monotonicity properties of the I-V curves in distinct timescales.
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4.2 Shaping an excitable circuit

Ever since the early works of Van der Pol [111], Hodgkin and Huxley [43] and FitzHugh
and Nagumo [27, 79], the property of excitability of a circuit has been rooted in a region of
negative conductance in a specific voltage range [99]. As a first step, we briefly revisit this
construction with our I-V shaping technique.

C ip(v)

iapp

Passive membrane

i−f i+s

Excitability

v

Fig. 4.2: Synthesis of an excitable circuit. Excitable circuit is constructed as the parallel intercon-
nection of a passive membrane with a fast negative conductance element (I−f ), balanced by a slow
positive conductance element (I+s ).

The excitable circuit in Fig. 4.2 uses two localised conductance elements: a fast negative
conductance element I−f and a slow positive conductance element I+s . The role of I−f is to
create a negative conductance range (V f

1 ,V f
2 ) in the fast I-V curve. The role of I+s is to restore

a positive conductance characteristic in the slow I-V curve. The I-V curve shaping is thus
determined by the following two conditions:

dI f

dV
< 0,V ∈ (V f

1 ,V
f

2 ) (4.15)

dIs

dV
> 0,∀V (4.16)

which correspond to the graphs illustrated in Fig. 4.3: the passive and slow I-V curves
are monotone, whereas the fast I-V curve has the characteristic “N-shape” of a negative
conductance circuit1.

Provided that the timescale separation is sufficient, the resulting dynamical behaviour of
the circuit has the following properties:

1The I-V plots in Fig. 4.3 and throughout the thesis are generated using the simulation data.
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Fig. 4.3: Properties of an excitable circuit. Top: Passive, fast and slow I-V curves of an excitable
circuit. The fast curve is “N-shaped”. The slow curve is monotone and its intersection with the line
I = Iapp determines the system’s equilibrium (Ve). The I-V curves share the same voltage axis (V )
range, while the current axis (I) range is modified to be between the minimum and the maximum
value for each plot. Middle: If the equilibrium voltage lies in the negative conductance region of the
fast I-V curve (Ve1) the system is spiking, or is excitable otherwise (Ve2). Voltage regions are indicated
with the sign of the slope of the fast I-V curve. Bottom: Transition between the spiking and excitable
regimes through the applied current.
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• The circuit has a monotone equilibrium characteristic given by the slow I-V curve. A
unique equilibrium (Iapp,Ve) exists for every value of Iapp. The equilibrium voltage is
stable except in a finite range included in the interval (V f

1 ,V f
2 ).

• The circuit has a stable spiking behaviour in a finite range of constant applied current.
The spiking behaviour is characterised by a stable limit cycle oscillation with sharp
upstrokes and downstrokes between a “low” and a “high” voltage range.

• For equilibrium voltages close to the negative conductance range (V f
1 ,V f

2 ), the circuit
is excitable: the steady-state behaviour is a stable equilibrium but small current pulses
can trigger “spikes”, i.e. a transient manifestation of the oscillatory behaviour.

I f
2

I f
1

V

I

Fast I-V

V f
1 V f

2

Thresholds

V f V f
Range

B
istability

Amplitude

Fig. 4.4: The “N-shaped” fast I-V curve. The threshold voltages V f
1 and V f

2 define the bistable region,
so that by increasing the current above I f

1 or decreasing it below I f
2 makes the system jump to the

opposite branch of the curve, defined by voltages V f and V f respectively. Controlling the location of
these points represents the essential modulation mechanism of the circuit.

The three properties above determine an excitable behaviour [99]. They primarily owe to
the fast-slow decomposition of the circuit. In the fast timescale, the negative conductance
characteristic makes the circuit bistable and hysteretic: in the range of currents (I f

1 ,I f
2 ), two
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stable voltage points coexist, so that the behaviour can easily switch between a low voltage
state in the range (V f ,V f

1 ) and a high voltage state in the range (V f
2 ,V f ) (Fig. 4.4). In the slow

timescale, the positive conductance characteristic makes the circuit monostable, resulting in
either a stable equilibrium or a stable spiking behaviour.

This analysis is consistent with the biophysics of excitable neurons: sodium channel
activation is fast and acts as a negative conductance close to the resting potential, whereas
potassium channel activation is slow and acts as a positive conductance.

4.3 Neuromodulating an excitable circuit

Provided a sufficient timescale separation between “fast” and “slow”, the qualitative be-
haviours of our excitable circuit are solely determined by the I-V curve shaping. Classical
dynamical systems tools (see e.g. [53]) show that the unstable voltage range is delineated
by two Hopf bifurcations and that the unstable range converges to (V f

1 ,V f
2 ) as the ratio

max(τv,τ f )/τs approaches zero. These asymptotic properties are very convenient to tune the
excitable circuit from its fast and slow I-V curves:

• The amplitude range of the spiking behaviour is determined by the hysteresis of the
fast I-V curve. With a localised conductance as in Eq. (4.12), the hysteresis is centred
around δ−

f and its range is modulated by the control parameter α−
f (Fig. 4.5).

• The spiking frequency is determined by the time spent in the low and high voltage
range (V f ,V f

1 ) and (V f
2 ,V f ), respectively. For a fixed negative conductance element,

this time is primarily modulated by the control parameter α+
s (Fig. 4.6, left). The

frequency can also be modulated by the applied current (Fig. 4.6, right). The neuron is
of Type II in the terminology of [53] because of a non-zero minimal spiking frequency
at the Hopf bifurcation.

4.4 Shaping a bursting circuit

Our bursting circuit in Fig. 4.7 closely mimics the architecture of the spiking circuit in the
previous section. We view bursting as shaped by two, rather than one, ranges of negative
conductance: the first one in the fast timescale, created by I−f , and a second one in the
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Fig. 4.5: Amplitude of the spikes is determined by the fast I-V curve. The jumps between the low
and the high voltage happen at the local maximum and minimum of the curve. Increasing the gain of
the fast negative conductance element (α−

f ) widens the negative conductance region and increases the
amplitude of the spikes. In order to keep the frequency of the oscillations approximately constant,
the gain of the slow positive conductance element is kept the same as the gain of the fast negative
conductance in all simulations (α+

s = α−
f ).
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α+
s

Frequency

Increasing slow positive
conductance gain

IHop f

Iapp

Frequency

Increasing applied
current

Fig. 4.6: Tuning the frequency of spiking. Left: Frequency of the oscillation can be controlled by
varying the slow positive conductance gain (α+

s ). This controls the “up” and “down” time intervals
of the spike, which approximately determines the period of oscillation due to the fast nature of the
jumps. Right: For fixed α+

s , increasing the applied current increases the frequency, but there is a
discontinuous jump at IHop f due to the oscillations emerging through a Hopf bifurcation.

slow timescale, created by I−s . The first negative conductance is balanced by a positive
conductance I+s in the slow timescale, whereas the slow negative conductance is balanced by
a positive conductance I+us in the ultra-slow timescale.

C ip(v)

iapp

Passive membrane

i−f i+s

Fast excitability

i−s i+us

Slow excitability

v

Fig. 4.7: Synthesis of a bursting circuit. Bursting circuit is constructed as the parallel interconnection
of a passive membrane with both fast (I−f ) and slow (I−s ) negative conductance elements, respectively
balanced by slow (I+s ) and ultra-slow (I+us) positive conductance elements.

Figure 4.8 illustrates the design of the slow excitable circuit (in the absence of I−f and I+s )
exactly as in the previous section.

Bursting is obtained by shaping the fast and slow I-V curves as illustrated in Fig. 4.9.
Each curve has a range of negative conductance and the two ranges overlap in such a way



52 Neuromodulation through I-V curve shaping

V s
1 V s

2

Thresholds
+/+ +/- +/+

Ve2 Ve1

Slow excitable Slow spiking

V

I

Fast I-V

V s
1 V s

2

V

I

Slow I-V

Ve2 Ve1

I1
I2

V

I

Ultra-slow I-V

t

V

I1

I2 t

Iapp

Fig. 4.8: Slow excitable circuit. Without the fast excitability elements, fast I-V curve is monotonic,
slow I-V curve is “N-shaped”, and the ultra-slow I-V curve is monotonic, so that the system is slow
excitable, similarly to Fig. 4.3. The voltage regions are now indicated with two signs, so that the first
sign corresponds to the sign of the slope of the fast I-V curve, and the second sign corresponds to the
sign of the slope of the slow I-V curve.
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Fig. 4.9: Slow bistability between the rest state and the spiking state. The I-V curves (top) show a
system with a double hysteresis: both the fast and the slow I-V curves are “N-shaped”. By having
the “up” state of the slow curve correspond to the unstable region of the fast system, the system
experiences rest-spike bistability, given that the slow threshold is at lower voltage than the fast one,
i.e. V s

1 <V f
1 . The system now has two pairs of threshold and range voltages corresponding to the fast

and the slow I-V curves, which gives the full set of modulation variables for controlling the behaviour
of the circuit.
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that
V s

1 <V f
1 <V s

2 <V f
2 . (4.17)

Finally, the ultra-slow positive conductance element restores monotonicity in the ultra-slow
I-V curve, as illustrated in Fig. 4.10. Provided that the timescale separation is sufficient, the
resulting dynamical behaviour has the following properties:

• The circuit has a monotone equilibrium characteristic given by the ultra-slow I-V
curve.

• Depending on the constant applied current, the circuit has a stable equilibrium (resting
state), a stable limit cycle behaviour (spiking), or a stable limit cycle characterised by
an alternation of spikes and rest (bursting state).

• Close to the bursting range of applied currents, the circuit is burst excitable. The
steady-state behaviour is a stable equilibrium but small current pulses can trigger
individual “bursts”, i.e. a transient manifestation of the bursting behaviour.

It is remarkable that those qualitative properties are entirely determined by the shaping of
I-V curves as in Fig. 4.10. This owes to the three timescale decomposition of the dynamical
behaviours. A detailed analysis in [29, 30] shows that the shaping in Fig. 4.9 is sufficient to
enforce bistability in the slow timescale between rest and spiking. The rest-spike bistable
range in Fig. 4.9 is analogous to the rest-rest bistable range in Fig. 4.4. It is governed
by a transcritical bifurcation at the current Is

2, as studied in [29, 30] and derived in the
Appendix 4.B.

The architecture of the bursting circuit is once again consistent with the biophysics of
bursting neurons: the slow negative conductance is provided by the slow activation of calcium
ions or the slow inactivation of potassium ions, while calcium-activated potassium channels
provide the ultra-slow positive conductance.

4.5 Neuromodulating a bursting circuit

Very much like how the fast I-V curve determined the amplitude of spiking in Fig. 4.5, the
fast and slow I-V curves of Fig. 4.9 determine the amplitude tuning of bursting. The gains
of the negative conductance elements I−f and I−s can be modulated to control the amplitude
properties of the bursting waveforms. For instance Fig. 4.11 illustrates how moving the
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Fig. 4.10: Properties of a bursting circuit. Top: Both fast and slow I-V curves are “N-shaped”. The
ultra-slow I-V curve is monotonically increasing, and the intersection with the I = Iapp line determines
the location of the system’s equilibrium Ve. Middle: If the equilibrium voltage lies below the slow
threshold, the system is burst excitable (Ve3), if the equilibrium lies in the negative conductance region
of the slow I-V curve the system is bursting (Ve2), while if the system lies in the negative conductance
region of the fast I-V curve above V s

2 (Ve1), the system is purely fast spiking. Bottom: The transition
between the three regimes through Iapp.
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Fig. 4.11: Controlling the bursting waveform. The bursting oscillations can be designed by indepen-
dently considering the fast and the slow I-V curves, and shaping both fast and slow spiking. In this
way we can design plateau oscillations (top) and non-plateau oscillations (bottom), by moving the
negative conductance region of the slow I-V curve relative to the the negative conductance region of
the fast I-V curve (see Fig. 4.9).



4.5 Neuromodulating a bursting circuit 57

negative conductance regions of the fast and slow I-V curves relative to each other as well as
modulating their widths, leads to a transition between plateau and non-plateau bursting.

Likewise, for fixed negative conductance elements, the gains of the positive conductance
elements provide natural parameters to control intraburst and interburst frequencies of the
bursting attractor (Fig. 4.12).
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Fig. 4.12: Controlling the intraburst and interburst frequencies of the circuit. Increasing the gain of
the slow positive conductance element increases the frequency of the fast spiking, thus increasing the
intraburst frequency (left column); the slow negative conductance is increased by the same amount
to keep the interburst period approximately constant. Increasing the gain of the ultra-slow positive
conductance element increases the frequency of the slow spiking, thus increasing the interburst
frequency (right column).

Figures 4.11 and 4.12 illustrate the versatility of our approach and the relevance of
tuning a bursting circuit from I-V curves rather than through an exhaustive exploration of the
parameter space.

4.5.1 Bursting/spiking modulation through slow I-V curve

Our bursting circuit has a simple parallel architecture with four basic control parameters: two
negative conductance gains, α−

f and α−
s , and two positive conductance gains α+

s and α+
us.

Each negative conductance gain controls one mode of excitability : spiking, a fast excitability
mode (α−

f ) and bursting, a slow excitability mode (α−
s ). Each positive conductance gain

controls the corresponding frequency: spiking frequency (α+
s ) and bursting frequency (α+

us).
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Those control parameters are in close analogy with the maximal conductances of the
four typical ionic currents of a bursting neuron: sodium and calcium currents are inward
currents whose activation gating variables control the negative conductances. The activation
of calcium currents is often five to ten times slower than the activation of a sodium current.
Potassium and calcium-activated potassium currents are outward currents whose activation
variables control the positive conductances. The activation timescale of potassium and
calcium are often similar, whereas the activation of calcium-activated potassium lags behind.
See [31] for a further analysis of the physiological conductances of a neuron.

The balance between I−s and I+s is particularly important in the modulation of the circuit
activity between spiking and bursting. The modulation of this balance shapes the mono-
tonicity of the slow I-V curve: a monotone shape will lead to spiking behavior whereas an
“N-shaped” curve will lead to bursting.

Further insight into this regulation is provided by a local analysis of the I-V curves around
critical points. This analysis makes contact with singularity theory, that has been the key
analysis tool to analyse the modulation of bursting in [30]. We briefly illustrate the value of
singularity theory by studying the transition from spiking to bursting around the critical point

V =V f
1 =V s

1 , (4.18)

obtained by aligning the fast and slow threshold of Fig. 4.9. The concavity of the slow I-V
curve around that point locally controls the transition from bursting (locally concave) to
spiking (locally convex). The transition is determined by a change of sign in the second
derivative:

d2Is

dV 2 = 0 (4.19)

which, together with Eq. (4.18) determines a pitchfork bifurcation in the fast-slow model
[30].

Figure 4.13 illustrates a smooth transition from bursting to tonic spiking around that point.
The transition is governed by the modulation of the sole parameter α−

s . Such a transition is
in close analogy with the modulation of calcium currents in the physiologically significant
transition from tonic spiking to bursting, see e.g. [72].

The balance between I−s and I+s can also be used to control the properties of a purely
spiking circuit, as this balance is central to controlling the spiking frequency of a neuron
in the low frequency range [24]. Neurons that can spike at arbitrarily low frequency are
referred to as Type I excitable neurons. Fig. 4.14 illustrates the classical Type I neuron model
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Fig. 4.13: Controlling the oscillation mode. Top: Transition between bursting and regular spiking
modes by changing the gain of the slow negative conductance element. Bottom: The transition can be
traced locally around the fast threshold V f

1 through the circuit’s slow I-V curve (bottom). Starting
from a balanced condition (middle), increasing the gain makes the slope locally negative and creates
slow bistability (left), while decreasing the gain makes the slow curve monotonic (right). Decreasing
the size of the bistable region continuously decreases the number of spikes per burst, changing the
behavior into regular spiking when bistability is lost.
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Fig. 4.14: Type I excitable neuron. Left: In order to generate oscillations with arbitrarily low
frequency, it is necessary for the slow I-V curve to be non-monotonic, so that for Iapp = ISNIC the
system undergoes a saddle-node on invariant circle bifurcation. The thresholds are set so that the
rest/spike bistability is lost, i.e. V f

1 =V s
1 . Right: The signature of the saddle-node on invariant circle

bifurcation is the frequency of the oscillation tending to zero for Iapp close to ISNIC.

governed by a SNIC bifurcation [93]. The transition from Type II excitability in Fig. 4.6
to Type I in Fig. 4.14 is achieved by shaping the slow I-V curve around its transition from
monotone to “N-shape”, so that V f

1 and V s
1 coincide. In the language of singularity theory,

this transition is governed by a hysteresis singularity [30]. In our circuit, shaping an I-V
curve around a hysteresis singularity is achieved by balancing a positive and a negative
conductance element. This robust regulatory mechanism is central to neuromodulation and
can be repeated in any timescale.

4.6 Fragile and rigid bursting mechanisms

Shaping the monotonicity properties of an I-V curve by balancing positive and negative
conductance elements makes a bursting circuit robust and controllable [31]. We will now
briefly review two well-known bursting mechanisms [92, 93] that do not necessitate a negative
conductance element I−s . Such models can burst but they lack the modulation properties
described in the previous section. Both models have been prevalent in the bursting literature.

The first bursting mechanism is illustrated in Fig. 4.15, in literature often referred to as
elliptic bursting. The fast and the slow I-V curves are the same as for the purely spiking
circuit in Fig. 4.3. However, because the transition from resting to spiking is through a
subcritical Hopf bifurcation, there exists a small range of applied current in which the system
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exhibits bistability between a fixed point and a stable limit cycle, separated by an unstable
limit cycle. By introducing the ultra-slow positive conductance element that generates the
ultra-slow oscillation between the two states, the system undergoes bursting oscillations.
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Fig. 4.15: Generating bursting from a Type II neuron. Bursting through a subcritical Hopf bifurcation
can be designed by adding an ultra-slow positive conductance element to a spiking circuit. This
bursting mechanism is fragile to the time scale separation and only exists for a narrow range of applied
current (depicted with the two horizontal lines in the ultra-slow I-V curve).

These bursting oscillations only appear for a small range of values of Iapp, and in addition
to this, it is not possible to precisely determine this range from the ultra-slow I-V curve as
before. The bistability range is also sensitive to timescale separation. In fact, it shrinks to
zero as the timescale separation is increased [32], unlike the slow bistability discussed in
Fig. 4.9, which is robust to an increased timescale separation.

The second bursting mechanism is illustrated in Fig. 4.16. It is achieved by adding the
ultra-slow positive conductance element to a Type I neuron. We can construct a Type I neuron
without the use of a slow negative conductance element I−s by decreasing the linear range of
the positive conductance element I+s compared to the fast negative conductance element I−f ,
i.e. by having:

I+s = α+
s tanh(β+

s (Vs −δ+
s )), β+

s > 1 (4.20)

Although a Type I neuron is monostable (Fig. 4.14), it can be turned into a bistable system if
the fast and slow timescales are no longer separated. Such a construction is very sensitive to
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the particular choice of timescales, and making the slow timescale slower than approximately
2max(τv,τ f ) destroys the bistability. Bursting achieved in this way is shown in Fig. 4.16.
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Fig. 4.16: Generating bursting from a Type I neuron. For a small timescale separation between fast
and slow, the system can have bistability between resting and spiking, and adding ultra-slow positive
conductance element turns it into a bursting circuit. The range of applied currents for which the
system undergoes bursting oscillations is depicted with the two horizontal lines in the ultra-slow I-V
curve.

The bursting mechanisms illustrated in Figs. 4.15 and 4.16 are not only fragile to parame-
ter uncertainty. They are also rigid in the sense of completely lacking the tuning properties
shown in Figs. 4.10 to 4.13; in the first case, the system necessarily undergoes elliptic-type
bursts, while the second undergoes plateau bursting oscillations, for which it is not possible
to precisely control the height of the plateau, or the size of the fast spikes. The bursting
synthesis in the previous sections is in sharp contrast with those mechanisms: the choice of
timescales is inessential and all tuning properties can be directly deduced and designed by
shaping the I-V curves of the circuit. These alternative constructions underline the value of a
bursting circuit realised as the interconnection of both fast and slow excitability components
in order to fully capture the tuning and robustness properties of biological neurons.



4.A Graphical interface for I-V curve neuromodulation 63

Appendix 4.A Graphical interface for I-V curve neuromod-
ulation
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Fig. 4.17: Graphical interface for simulating a single neuron. Top: Fast, slow and ultra-slow I-V
curves, where red represents the negative slope region of the fast I-V curve, and yellow represents the
negative slope region of the slow I-V curve. The constant green line in the ultra-slow I-V curve is the
value of the the applied current Iapp. Middle: Live voltage trace of the simulation. Bottom: Sliders
setting the simulation parameters.

We have developed a simple graphical interface in Python for simulating the neural
model presented in Chapter 4 that can be downloaded from https://github.com/lukaribar/
Circuit-Neuromodulation. The simulation offers a venue for understanding and replicating
the results presented in the chapter.

https://github.com/lukaribar/Circuit-Neuromodulation
https://github.com/lukaribar/Circuit-Neuromodulation
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The interface simulates the bursting circuit structure from Fig. 4.7 with the elements
modelled as described in Eqs. (4.9), (4.12) and (4.13). The time constants of the simulation
are fixed:

τ f = 0

τs = 50

τus = 2500

Other parameters can be varied through the sliders at the bottom of the graphical window
- gain and offset for each of the four currents, as well as the applied current. The middle
plot shows the live voltage trace of the simulation, while the top three plots are the current
fast, slow and the ultra-slow I-V curves of the circuit. The effect of the parameters on the
trace and the I-V curves is plotted instantaneously, so the simulation can be used to study the
neuromodulatory properties of the model in an interactive live setting.

The button “Pulse” adds a positive pulse to the applied current of fixed duration and
amplitude that can be used to study the excitability properties of the circuit.

Appendix 4.B Transcritical bifurcation in the bursting model

We connect the I-V curve analysis presented in this chapter with previous mathematical
analysis of a simplified bursting model [30]. We concentrate on the fast-slow dynamics of
the model that has the rest/spike bistability property. The simplified model is the following:

ẋ =−x3 +βx− (y+λ )2 +α (4.21a)

ẏ = ε(x− y) (4.21b)

with ε ≪ 1 so that x is the fast voltage variable, and y is the slow variable.

For a range of parameters, this model experiences bistability between a stable rest state
and a stable limit cycle. This is exhibited in the fast-slow phase portrait as a mirrored
hysteresis fast nullcline; in the limit of timescale separation, i.e. when ε = 0, the bistability
is lost when the two hysteresis branches meet at a transcritical singularity.

The conditions on the I-V curves stated in Fig. 4.9 directly relate our bursting circuit to
this model. We will consider the case where τ f = 0, so that the fast-slow system consists of
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two state variables, V and Vs. Firstly, we look at the requirements for the fast I-V curve:

Ip(V )+ I−f (V ) =V −α−
f tanh(V ) (4.22)

Without loss of generality, we assume δ−
f = 0. In order for the fast I-V curve to be “N-

shaped”, we require α f > 1; when this is the case, the fast I-V curve is locally equivalent
to the instantaneous term in Eq. (4.21) x3 −βx, for β ̸= 0, which can be easily verified by
checking the first three derivatives around the points V = 0 and x = 0, respectively.

Because the slow I-V curve is obtained by adding the slow conductance characteristic
Is(V ) = I+s (V )+ I−s (V ) to the fast I-V curve, we can infer the properties of the slow conduc-
tance from the I-V curve conditions. The conditions that the slow I-V curve is “N-shaped”
and that V s

1 <V f
1 means that for V ∈ (V s

1 ,V
f

1 ), the fast I-V curve has a positive slope and the
slow I-V curve has a negative slope, and vice-versa for V ∈ (V s

2 ,V
f

2 ). This means that the
slow negative conductance element necessarily has a negative slope in the first region, and a
positive slope in the second region, therefore having a local minimum for some V s

∗ ∈ (V f
1 ,V

s
2 ).

The characteristic is therefore locally quadratic around the point V s
∗ , so that the I-V charac-

teristic of the slow conductance elements is locally equivalent to the quadratic slow term in
Eq. (4.21).

This allows us to find the point of the transcritical singularity by having the following
conditions on the derivatives of the fast nullcline around the point (Vtr,V s

tr):

∂V̇
∂V

∣∣∣∣
V=Vtr,Vs=V s

tr

=
∂V̇
∂Vs

∣∣∣∣
V=Vtr,Vs=V s

tr

= 0 (4.23)

Solving Eq. (4.23), we obtain:

d
dV

(
I+p (V )+ I−f (V )

)∣∣∣∣∣
V=Vtr

= 0 (4.24a)

d
dVs

(
I+s (Vs)+ I−s (Vs)

)∣∣∣∣∣
Vs=V s

tr

= 0 (4.24b)

Following from Eq. (4.24), we get:

(Vtr,V s
tr) = (V f

1 ,V
s
∗ ) (4.25)
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so that these points correspond to the maximum of the fast I-V curve, and the minimum of
the slow conductance I-V characteristic, respectively. We find the corresponding Iapp by
imposing that this point lies on the fast nullcline, so that finally:

Is
2 = I+p (V

f
1 )+ I−f (V

f
1 )+ I+s (V s

∗ )+ I−s (V s
∗ ) (4.26)

Appendix 4.C Simulation parameters

All simulations in this chapter were carried out in MATLAB.

Figures 4.3, 4.5, 4.6, 4.8 and 4.10 to 4.15 use the model described in Eqs. (4.9), (4.12)
and (4.13).

The parameters for each conductance element are given in Table 4.1, as well as the
applied currents. Common parameters for these figures are the following:

τ f = 0

τs = 50

τus = 2500

δ−
f = δ+

s = 0

In Fig. 4.16 the slow timescale is modified to τs = 2, and the model described in Eq. (4.20)
is used for the slow positive conductance. The parameters are the following:

α−
f = 2, δ−

f = 0, α+
s = 1, β+

s = 3, δ+
s = 0.5, α+

us = 1, δ+
us = 0, Iapp =−1.1
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Table 4.1: Parameter values for simulations in Chapter 4

Figure α−
f α+

s α−
s δ−

s α+
us δ+

us Iapp

4.3 2 2 / / / / 0, -1
4.5 (solid) 2.5 2.5 / / / / 0
4.5 (dashed) 2 2 / / / / 0
4.5 (dotted) 1.5 1.5 / / / / 0
4.6 (left) 2 [2,4] / / / / -0.8
4.6 (right) 2 2 / / / / [-1,-0.2]
4.8 0 0 1.5 -0.88 2 0 -2, -2.6
4.10 2 2 1.5 -0.88 2 0 -1, -2, -2.6
4.11 (top) 2 2 1.5 -1.5 1.5 -1.5 -2
4.11 (bottom) 2 2 1.3 -1 1.3 -1 -1
4.12 (top, left) 2 2 1.5 -0.88 1.5 -0.88 -1.3
4.12 (middle, left) 2 2.2 1.65 -0.88 1.5 -0.88 -1.3
4.12 (bottom, left) 2 2.6 1.95 -0.88 1.5 -0.88 -1.3
4.12 (top, right) 2 2 1.5 -0.88 1.5 -0.88 -1.3
4.12 (middle, right) 2 2 1.5 -0.88 2.5 -0.88 -1.3
4.12 (bottom, right) 2 2 1.5 -0.88 3.5 -0.88 -1.3
4.13 2 2 [0.8,1.6] -0.88 2 0 -2.2
4.14 2 2 1.2 -0.45 / / [-0.4,-0.3]
4.15 2 2 / / 0.5 0 -1.2





Chapter 5

Circuit design

In Chapter 4 we have presented a methodology for designing and controlling neuronal
behaviours by shaping the neuron’s I-V curves in several timescales. The central premise of
the approach is that the control of neuronal properties is translated into generating and shaping
regions of negative conductance that in turn control the underlying oscillatory properties. To
this end, the approach of Chapter 4 assumes the employment of first-order filters to set the
timescales, and elementary elements with a localised bell-shaped conductance characteristic
to shape the I-V curves.

The transconductance amplifier circuit operating in the subthreshold regime that we
discuss in Chapter 3 is a natural implementation of such an element, due to its well-defined
sigmoidal input-output relationship, and the capability of dynamically controlling its gain.
We utilise the transconductance amplifier in all parts of the circuit, including the passive
component and the first-order filters. The design thus purely reduces to the implementation
and interconnection of these basic elements. We start by describing the properties of this
implementation, and present simulation results of the circuit using the TSMC 0.35 µm
technology parameters. We discuss how variations in the MOSFET parameters affect the
I-V curves, and how such variations are compensated for by varying the circuit’s control
variables. The effect of temperature on the circuit’s output is also considered.

We follow the discussion of the simulation by presenting the implementation of a proof-
of-concept circuit that uses off-the-shelf discrete components. The simplistic implementation
shows the robustness of the approach of Chapter 4, as well as the ease of its neuromodulation
through the several voltages determining the gains of the feedback elements.
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5.1 Circuit elements

5.1.1 Implementation of a localised conductance element

We propose a simple hardware implementation of an element that satisfies Eq. (4.2) and has
the I-V characteristic as in Eq. (4.12), as shown in Fig. 5.1. The first-part of the circuit is the
follower-integrator circuit as described in Section 3.3.3, followed by a single transconduc-
tance amplifier with the hyperbolic tangent input-output relationship (Section 3.3.2). The
conductance element has the following characteristic:

i±x =±(ib)±x tanh
(

κ
vx − (vδ )

±
x

2vT

)
(5.1a)

CTx v̇x = iTx tanh
(

κ
v− vx

2vT

)
(5.1b)

Its effective timescale is determined by the capacitance (CTx) and the base current (iTx), so
that

Tx = (2vTCTx)/(κiTx) (5.2)

i+xv =
−

+

vTx

CTx

−

+(vδ )
+
x

vx
i+x

(vb)
+
x

i = 0

v

Fig. 5.1: Implementation of a localised conductance element. The first transconductance amplifier
and a capacitor form a non-linear first-order filter, whose output is the filtered voltage vx. This is then
the input to the second transconductance amplifier which forms the output current i+x . The element
in this case is positive conductance (for a negative conductance element the inputs to the second
amplifier are swapped).

The current source acts as a positive conductance when the filtered voltage is connected to
the negative input terminal, as in Fig. 5.1. Instead, it acts as a negative conductance element
if it is connected to the positive input terminal. The other terminal then defines the voltage
offset, by default set to the middle of the voltage rails.
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We map the dimensionless parameters from previous sections directly to the circuit
parameters in the following way:

(ib)±x = α±
x

(
2GvT

κ

)
(5.3a)

(vδ )
±
x = δ±

x

(
2vT

κ

)
(5.3b)

iapp = Iapp

(
2GvT

κ

)
, (5.3c)

with G being the conductance of the passive element around equilibrium, i.e.:

G =
dip(v)

dv

∣∣∣∣
v=ve

(5.4)

This conductance then defines the time constant of the voltage equation as in Eq. (4.6):

Tv =
C
G

(5.5)

5.1.2 Implementation of the passive element

For the passive element ip(v), we utilise a linearised version of the standard transconductance
amplifier. We increase the linear region of the amplifier by using the standard technique
of source degeneration. The main idea is to effectively increase linearity by introducing a
negative feedback loop: the output current is converted into a voltage and then subtracted
from the input. This is done by introducing a resistive device at the source nodes of the input
transistors: an increase in current through a transistor leads to an increase in the voltage
across the resistive element, in turn decreasing the gate-source voltage of the transistor and
thus stabilising the output current. We add two transistors with gate and drain shorted on each
input side to act as resistive elements (Fig. 5.2). This leads to a new input-output relationship
(derivation in Appendix 5.A):

iout = ib tanh
(

κl
v1 − v2

2vT

)
(5.6)
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ib

v1 v2

vb

iout

i1 i2

i1

VDD

Fig. 5.2: Linearised transconductance amplifier. The two additional transistors in each differential
branch add negative feedback through source degeneration, increasing the linear region of operation
of the amplifier.

Comparing to the regular transconductance amplifier (Eq. (3.5)), the increase in linear
region is determined by the ratio κ/κl:

κ
κl

=
κ2 +κ +1

κ2 (5.7)

The ratio depends on the value of κ , but the linear region is necessarily increased as κ < 1.
For the parameters used in the simulation, the comparison between the standard and the
linearised amplifier’s input-output relationships is shown in Fig. 5.3.

We have found this simplistic linearisation technique to be adequate for the purpose of
designing a passive element for the neural circuit. Different techniques could alternatively be
utilised to improve the linearity of the element [35, 97, 96, 17], and thus, the correspondence
to the simulations from Chapter 4.
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Fig. 5.3: Comparison of input-output characteristics of the regular and linearised transconductance
amplifiers.

5.2 SPICE simulation

We have simulated the circuit in SPICE environment, using the BSIM3 MOSFET model with
TSMC 0.35 µm process parameters and a 3.3 V voltage supply.

Each current source element of the bursting circuit from Fig. 4.7 is realised as described
in the previous section. Note that since currents i−s and i+s both act on the slow timescale,
only one filter is necessary.

All capacitors were chosen to have the same capacitance C = 100pF, and G was set so
that the period of the oscillation is of the order of seconds. We achieve this by setting:

Tus = 1s = 50 Ts = 502 Tv (5.8)

The input transistors and the source degeneration transistors were chosen to have the
minimal size, so that their width and length were set to W = 0.6µm and L = 0.4µm. The
bias transistors and the current mirror transistors were made larger in order to minimise the
channel length modulation effect and improve matching, so that a more precise tanh current-
voltage relationship is obtained. Their size was chosen to be W = 2.4µm and L = 1.6µm.

By using the relationships given in Eq. (5.3) we can set the parameters of the circuit to
replicate any behaviour demonstrated in the previous sections. As an example, we concentrate
on the transition from bursting to spiking from Section 4.5.1 (Fig. 4.13). We recreate this
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Fig. 5.4: Transition between bursting and spiking modes in the SPICE circuit simulation. The gain
of the slow negative conductance element is controlled through the corresponding base voltage that
modifies the gain of the current element i−s . Decreasing i−s reduced the negative conductance region
of the slow I-V curve, changing the behaviour from bursting to spiking.
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transition in Fig. 5.4. The transition is controlled by the parameter α−
s , which in the circuit

corresponds to the base current (ib)−s of the i−s localised conductance element. Due to the
non-linearity of the passive element, the bursts have a slightly larger amplitude of the slow
oscillation for high values of (vb)

−
s as seen in the figure, but we observe exactly the same

transition as the negative conductance region of the slow I-V curve is modulated.

The simulated power consumption of the circuit is 0.77 µW in the bursting regime.

5.3 Robustness of I-V curve shaping

Due to manufacturing uncertainty, the parameters of the circuit will vary from the idealistic
conditions of the previous section. To this extent, we would like to stress two important
characteristics of our proposed architecture:

1. Maintaining the I-V curves of the circuit keeps the behaviour intact.

2. The circuit’s I-V curves can be fully controlled through the gain and offset voltages of
the localised conductance elements.

The first point effectively means that the underlying circuit structure is inessential: as
long as the input-output characteristic of the circuit consists of a specific set of I-V curves,
its behaviour is well-defined. Robustness of the circuit behaviour therefore boils down to the
robustness of its I-V curves.

The second point stresses that the internal parameters of the circuit can be readjusted so
that the set of I-V curves is kept constant. This means that the variability in the components
can be compensated for by tuning the control voltages of the circuit elements.

To show this, we have investigated how process variability affects the I-V relationships of
the circuit elements by varying the following process parameters: threshold voltage, surface
mobility at the nominal temperature, gate oxide thickness, and transistor width and length
offset parameters. For each parameter, the variability was modelled as a Gaussian distribution
around the nominal value with the standard deviation at 10% of the nominal value.

The main effect of these process variations on the I-V characteristics of the elements
was found to be the variation in the gains of the localised conductance elements, while the
shape of the tanh relationships remained largely unchanged. As a result, such variations can
be compensated for by readjusting the base voltages controlling the element gains (vb in



76 Circuit design

0 1 2 3 4 5 6 7 8 9
1.4

1.6

1.8

t [s]

v [V]

1 1.5 2

−20
−10

0
10

v [V]

i [nA]

Fast I-V

1 1.5 2

−20

0

20

v [V]

i [nA]

Slow I-V

1 1.5 2

−50

0

50

v [V]

i [nA]

Ultra-slow I-V

1 1.5 2

−20
−10

0
10

v [V]

i [nA]

Fast I-V

1 1.5 2

−20

0

20

v [V]

i [nA]

Slow I-V

1 1.5 2

−50

0

50

v [V]

i [nA]

Ultra-slow I-V

0 1 2 3 4 5 6 7 8 9
1.4

1.6

1.8

t [s]

v [V]

Fig. 5.5: Compensating for process variation. The element gains of a circuit instance differing from
the nominal can be adjusted so that the I-V curves are restored and the behaviour is kept the same.
Top: Due to process variation, the I-V curves of the circuit (blue, solid) are distorted compared to
the nominal (orange, dashed), and the bursting behaviour is lost. Bottom: After compensation, the
circuit’s I-V curves closely match the nominal I-V curves, and the bursting behaviour is restored.



5.4 Hardware implementation 77

Fig. 3.3). We show this on a random instance of the circuit in Fig. 5.5: for nominal values
the bursting behaviour is lost, but by rescaling the element gains the I-V curves are restored,
and therefore, the nominal behaviour. The local transistor mismatches introduce voltage
offsets in the tanh I-V relationships [103], and such variations are compensated for through
the control of offset voltages of the circuit elements (v1 or v2 in Fig. 3.3).

We also consider how temperature variations affect the behaviour of the circuit. In
Fig. 5.6 we can see that the circuit maintains the bursting behaviour for changing temperature,
while the interburst frequency increases with increasing temperature. Such a dependence on
temperature is in correspondence with the common behaviour of biological neurons [91].

In order to account for the variability in circuit components as well as temperature
variations, additional compensation techniques can be considered that would allow the circuit
to automatically maintain its behaviour irrespective of the changing conditions (see e.g.
[106]). As we have discussed in this section, the aim of such techniques would be to maintain
the circuit’s input-output properties in the form of its I-V curves, so that the behaviour is
subsequently preserved.

5.4 Hardware implementation

We have realised a proof of concept circuit implementation of the architecture in order
to test the feasibility of the design and the proposed control principles. The focus is on
showcasing the modulatory capabilities of the model as discussed in Chapter 4 in a concrete
hardware realisation. The parameters of the circuit such as the time-constants differ from
the simulations of the previous sections, but the I-V curve neuromodulation principles are
exactly the same.

For this realisation we have only used off-the-shelf components, in contrast to the the
SPICE simulations that were conducted using the TSMC 0.35 µm process parameters. We
have used the transistor array packages ALD210808 and ALD1107 for the NMOS and PMOS
respectively, each containing four transistors per component. For the passive element Ip(V )

we have used a fixed 10 kΩ resistor instead of the linearised transconductance amplifier of
Fig. 5.2. The gain of each localised conductance element is controlled by a corresponding
gate voltage, and the offsets through the corresponding voltage input to the transconductance
amplifiers. All of the control voltages were generated using voltage dividers. The circuit
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Fig. 5.6: Temperature dependence of the circuit. As temperature is increased, the circuit maintains
the bursting oscillation with increasing interburst frequency, mimicking the behaviour of biological
neurons.
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Fig. 5.7: Breadboard with a single neuron circuit.

operated with a supply voltage of 5 V. The breadboard containing the circuit is shown in
Fig. 5.7.

Fig. 5.8: Burst excitability of the circuit. Left: subthreshold response. Right: burst as a response to
an above threshold pulse.

Setting the parameters of the circuit to the bursting regime (Fig. 4.10), we first study the
modulation through the applied current. For low applied current, the circuit is at rest, but
excitable, and this can be seen in Fig. 5.8. As predicted, increasing the current sets the circuit
in the bursting regime (Fig. 5.9, left), while increasing it sufficiently high turns off the slow
spiking and the circuit is purely fast spiking (Fig. 5.9, right).

Finally, we show that the circuit’s operation can be controlled by modulating the gain of
the slow negative conductance as in Fig. 4.13. By applying a periodic triangle wave at the
(vb)

−
s , we observe that the neuron transitions between eliciting individual spikes to bursting

through increasing number of spikes per period (Fig. 5.10).
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Fig. 5.9: Bursting and spiking traces of the circuit.

Fig. 5.10: Transition between spiking and bursting in the circuit. A periodic triangle wave is applied at
the base voltage of the slow negative conductance (vb)

−
s (blue trace) so that the circuit is periodically

moving between the bursting and slow spiking regimes.
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Appendix 5.A Transconductance amplifier linearisation

To find the ratio κ/κl , we take a similar approach as in [97, 96] and consider a small voltage
increase ∆vin

2 at the input v1 and an equivalent voltage decrease −∆vin
2 at the input v2 of the

amplifier in Fig. 5.2. Due to the symmetry, this leads to an equivalent increase in current i1
and decrease in current i2 of ∆iout

2 . At the same time, the drain voltage of the bias transistor
does not change. We thus consider an equivalent small-signal circuit of one branch of the
amplifier with the drain of the bias transistor set to the ground (Fig. 5.11).

∆vs1

∆vs2

∆v1

∆i1

Fig. 5.11: Small-signal analysis of the linearised transconductance amplifier. The circuit is one
differential branch of the amplifier, where the common middle node is grounded.

Looking at a single transistor in saturation, we relate the change in the drain-source
current to the changes of the voltages at the gate and the source by differentiating Eq. (3.2):

∂ ids

∂vg
= κ

ids

vT
(5.9)

∂ ids

∂vs
=− ids

vT
(5.10)

We now apply these relationships to the circuit in Fig. 5.2:

∆i1 =
(

κ
i1
vT

)
∆v1 −

( i1
vT

)
∆vs1 (5.11)

∆i1 =
(

κ
i1
vT

)
∆vs1 −

( i1
vT

)
∆vs2 (5.12)

∆i1 =
(

κ
i1
vT

)
∆vs2 (5.13)
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Solving these equations, we obtain:

∆i1
∆v1

=
κ3

κ2 +κ +1

( i1
vT

)
(5.14)

This relationship means that we can view the three transistors in Fig. 5.11 as a single one
with the characteristic:

ids = i0e
κl v1−vs

vT (5.15)

where we have defined κl =
κ3

κ2+κ+1 . Following the standard derivation for a simple transcon-
ductance amplifier [73], we obtain the input-output relationship for the linearised amplifier:

iout = ib tanh
(

κl
v1 − v2

2vT

)

κl =
κ3

κ2 +κ +1

(5.16)



Chapter 6

Excitability switch: from single neurons
to networks

In previous chapters we have introduced the physiological concept of neuromodulation
as one of the main biological control methods for orchestrating neural behaviour. We
highlighted the importance of retaining the four essential feedback loops present in biological
neurons, and we showed how modulation of each individual loop modifies different aspects
of neural excitability. In the following chapter, we will concentrate on a specific modulatory
mechanism that we have introduced in Chapter 4 and implemented in Chapter 5: the transition
between bursting and spiking regimes through the control of the slow negative conductance.

This excitability switch has been observed in many different neural systems and underlies
a prevalent and possibly highly important mechanism. The transition between the inactive
and receptive states during sleep and wakefulness in animals has been found to be determined
by the transition from the slow oscillatory to the fast rhythmic states in the thalamus and
cerebral cortex, controlled by the neuromodulatory actions on the cell level [108, 72]. The
excitability switch in subthalamic nucleus neurons has been found to be connected to the
development of Parkinson’s disease as it leads to different synchronisation properties of the
nervous system [6]. The two modes have remarkably different input-output behaviours, as
evidenced for example in the thalamic relay neurons that pass on sensory inputs to the higher
processing stages [102]. The different processing properties are utilised in sensory systems,
leading to different detection capabilities of the cells, as well as to different responses of the
neural network depending on the spatio-temporal scale of the sensory input [58, 71, 83, 12].
Central pattern generating networks that control repetitive actions such as movement are



84 Excitability switch: from single neurons to networks

constantly under neuromodulatory regulation [40]. Recent work [22] suggests that switching
between bursting and spiking modes could be a fundamental mechanism behind the ability
of rhythmic networks to quickly switch different rhythms. Nodal control of excitability has
profound effects on the network behaviour and provides a method for controlling across
scales [100], introducing a possibly powerful engineering principle.

Inspired by biological examples, we would like to use the model introduced in Chapter 4
to utilise the neuromodulatory capabilities in artificial sensory and oscillatory networks. We
start by investigating how modulation of a single neuron affects its input-output processing
capabilities, concentrating on the bursting/spiking switch. We discuss how this internal switch
can be turned into an external control mechanism through the applied current, a mechanism
observed in biological neurons [6]. We showcase later how such an external switch can
be utilised in a simple network setting where the increased activity of a subpopulation can
switch the spiking mode of another subpopulation, and thus change its processing properties.

The second part of the chapter moves towards building small networks that are able to
utilise the single neuron control to adjust the network behaviour. We will showcase this
through a few toy examples that aim to present the multi-scale nature of the approach. We
start by discussing a simplistic model of a synaptic connection that is nevertheless able to
capture the principal effects of interneuron connections. We use these building blocks to first
construct the most basic rhythm generating network: a two-cell half-centre oscillator (HCO).
We show how the single cell switch can control the network rhythm and make individual
neurons susceptible to local inputs. We then generalise the same mechanism by instead
utilising the HCO as the building block in creating a small central pattern generating network
(CPG) inspired by the lobster gastric rhythm [69, 39, 38, 22]. Our aim in this chapter is to
show that controlling cellular properties can have important effects on the network behaviour,
and to motivate future design that uses the neuromodulation mechanisms captured by the
circuit structure from Chapters 4 and 5.

6.1 Single cell control

6.1.1 Modulating single neuron I/O properties

The combination of the fast and slow excitability currents endows the neuron with possible
four states, as each of the slow and fast oscillatory modes can be turned off or on inde-
pendently. We concentrate here on the control of the slow excitability while the neuron
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stays fast excitable (Fig. 6.1). When the slow negative conductance is on, the combination
of the slow and fast excitability leads to bursting. In this regime, the fast input spikes are
effectively rejected as disturbance, as the localised inputs are blocked by the slow mode of
the oscillation. On the other hand, when the slow negative conductance is off, individual
spikes are unattenuated at the output and the circuit behaves as a relay.
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Fig. 6.1: Neural circuit’s input-output properties in the oscillating regime. When the circuit is in the
bursting mode, the fast input spikes are rejected as disturbance and the oscillating bursting behaviour
is uninterrupted. When the circuit is in the slow spiking mode, each individual spike is relayed at the
output.

This simple switch has important consequences for the single cell in the network setting.
When the neuron is in the slow bursting mode, it synchronises with the slow rhythm and
blocks local inputs thus participating in the global network rhythm. On the other hand when
the slow mode is off, the neuron can switch off from the global rhythm and participate in the
local transfer of information.

This mechanism relies crucially on the modulation of the slow negative conductance from
a high to a low value. Shaping the slow bistability range allows the generation of arbitrarily
large interspike interval (Fig. 4.14), so that the circuit enters the slow spiking regime when
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bursting is terminated, as in Fig. 6.1. This is in contrast to the transition from bursting to
spiking for an increasing applied current shown in Fig. 4.10, where the onset of spiking is
characterised by a fast oscillation. Unlike the slowly spiking relay mode, the fast spiking
blocks incoming inputs similarly to the bursting mode, but unlike bursting, is not susceptible
to the synchronisation with slow network oscillations.

This mechanism can thus be viewed as a result of an internal property of the node. In
order to allow for an external control of the neural switch, there needs to be an additional
feedback loop that would regulate the internal slow current in response to the applied current.
We show how this mechanism can be introduced in the following section.

6.1.2 External I/O modulation

In the previous section, the modulation between the bursting and spiking modes was achieved
by adjusting the gain of the slow negative conductance element that controls the bistability
range in the slow I-V curve (Fig. 4.13). In neurons such as the ones found in the subthalamic
nucleus [6], this modulation has an automatic regulatory pathway through the inactivation
of the slow calcium current, the current that provides slow negative conductance. This
inactivation acts so that when the applied current is high, the slow negative conductance
is off, therefore leading to a purely spiking activity of the neuron. On the other hand,
lowering the applied current activates the slow inward calcium current, and the cell’s activity
transitions into bursting due to the activation of the source of slow negative conductance. This
mechanism of hyperpolarisation-induced bursting has been studied extensively [6, 18, 116],
and could provide an important external control mechanism for fast localisation of network
behaviour [20].

We can make the internal switch of excitability, achieved through the control of the slow
negative conductance gain, into an external switch through the applied current, by applying
the very same mechanism that the biology utilises. Hyperpolarisation-induced bursting
requires feedback from the input current to the slow negative conductance gain in order to
induce the switch. We introduce this feedback in a simple manner by adding a multiplicative
inactivation variable to the slow negative conductance gain, so that it becomes:

α−
s = ᾱ−

s h(Vus) (6.1)
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Fig. 6.2: Hyperpolarisation-induced bursting. An additional feedback loop through the inactivation of
the slow negative conductance h(Vus) ensures that the decrease in applied current increases the slow
negative conductance and induces a switch from slow spiking to bursting. This feedback is achieved
through the ultra-slow voltage Vus which decreases as the neuron goes from the spiking to bursting
states. The slow I-V curves are plotted for the average value of the ultra-slow voltage ⟨Vus⟩ in the two
regimes.
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where ᾱ−
s is the maximal gain of the slow negative conductance, and h is the inactivation

variable with the following form:

h(Vus) = S(β (−Vus −δh)) (6.2)

where β is the additional steepness factor, δh is the voltage offset of the inactivation, and
S(x) is the sigmoid function:

S(x) =
1

1+ exp(−x)
(6.3)

We fix the value of β = 2 due to the hardware implementation specifics (see Section 6.2.1),
but once fixed, the choice of β does not play a major role. Introducing the feedback is
described in the following heuristic way: in the open-loop, the neuron is switched from
spiking to bursting by increasing the slow negative conductance gain from a low value α−

s1 to
a high value α−

s2, while decreasing the current from Iapp1 to Iapp2. Feedback is then required
to automatically modulate the slow negative conductance gain between these two values
when the current is switched from Iapp1 to Iapp2. This is ensured by finding the average
ultra-slow voltage in the two modes ⟨Vus⟩1 and ⟨Vus⟩2, and choosing the parameters ᾱ−

s and
δh so that:

ᾱ−
s h(⟨Vus⟩1) = α−

s1, f or Iapp = Iapp1 (6.4)

ᾱ−
s h(⟨Vus⟩2) = α−

s2, f or Iapp = Iapp2 (6.5)

Closing the loop by introducing the inactivation then achieves the excitability switch mecha-
nism through the applied current.

6.2 Neural interconnections

The interconnections between neurons fall into two categories: electrical and chemical. The
electrical connections constitute of gap junctions and are modelled simply in the circuit
language as resistive connections between neurons, so that the currents flowing into neuron j

(Ip
i j) and neuron i (Ip

ji) due to a passive connection between them are:

Ip
i j =−Ip

ji = gp
i j(Vi −Vj) (6.6)

where gp
i j is the conductance of the passive connection.
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Chemical synapses on the other hand mirror the way in which ionic currents behave,
with the difference that now the activity of the presynaptic neuron modulates the synaptic
current in the postsynaptic neuron. Much like the ionic conductances, they have a well-
defined timescale in which they act, and they only activate in the specific voltage range of
the presynaptic neuron, so that the current flows only while the presynaptic neuron is active.
Unlike the resistive connections which are dissipative and tend to synchronise and average
out the activity across neurons, synaptic connections can lead to diverse heterogeneous
behaviours.

We use the same modelling approach to design synaptic current elements as for realising
localised conductance elements described in the Section 4.1, so that the synaptic current Isyn

i j

in neuron j depends on the activity of neuron i in the following way:

Isyn
i j = αsyn

i j S(β (V x
i −δ syn)) (6.7a)

τxV̇i
x
=Vi −V x

i (6.7b)

αsyn
i j is the synaptic weight, β is the steepness factor, δ syn is the voltage offset of the synaptic

current. This synaptic implementation is similar to the form used in the well-known Hopfield
network model [44], with the addition of the temporal dependence.

The circuit implementation is further discussed in Section 6.2.1.

The voltage offset of the synaptic connections δsyn is chosen so that the synaptic current
is close to 0 while the presynaptic neuron is silent, while generating a current spike in
response to an action potential in the presynaptic neuron. The offset is therefore determined
by the voltage range of the action potential: by fixing α−

f and δ−
f of each individual neuron,

the spike amplitudes are also fixed, and δ syn can be constant throughout the network. The
steepness factor β is set by the circuit implementation and is equal for all synapses.

We use the model described in (6.7) to model both excitatory and inhibitory synapses,
the only difference between the two being the sign of the synaptic weight αi j. In the case of
an excitatory synapse, the spike in the presynaptic neuron induces an inward current Iexc

i j in
the postsynaptic neuron so that:

αi j > 0 (6.8)

and in the case of an inhibitory synapse, the spike in the presynaptic neuron induces an
outward current Iinh

i j in the postsynaptic neuron, so that:

αi j < 0 (6.9)
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For the inhibitory synapses in this chapter we set the dynamics to be slow, so that V x
i =V s

i

in Eq. (6.7).

6.2.1 Synapse Circuit

ib

I E

vo f f vx
pre

vb

iinh

iexc

VDD VDD

VDD

Fig. 6.3: Synapse circuit. The basic differential amplifier circuit realises a current iinh which has
a sigmoid function dependence on the presynaptic input voltage vpre. For an inhibitory synaptic
connection, the postsynaptic voltage is connected to the node I and the current acts as a sink. For an
excitatory connection, the additional current mirror is necessary so that the current acts as a source,
and the postsynaptic voltage is connected to the node E.

The realisation of a synapse element of Eq. (6.7) is achieved with the same basic circuitry
used for the realisation of a localised conductance element (Fig. 6.3). We take a single current
of the differential amplifier that then realises an inward inhibitory current:

iinh = ibS
(

κ
vx

pre − vo f f

vT

)
(6.10)

Compared to the transconductance amplifier input-output equation (Eq. (3.5)), there is an
additional steepness factor of 2. This corresponds to setting β = 2 in the dimensionless
synapse equation Eq. (6.7).

In order to realise an outward excitatory current, it is necessary to have an additional
current mirror that will copy the current iinh and invert its direction. The synaptic strength is
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then modulated through the sole parameter vb which controls the current ib in the circuit. The
vo f f parameter is chosen so that there is negligible output current while the neuron is silent,
and a pulse-like output is generated in response to each action potential of the presynaptic
neuron. The voltage vx

pre can be set to a different filtered version of the presynaptic membrane
voltage depending on the desired timescale of the synapse - in the following examples we set
the timescale of the synapse to slow by having vx

pre = vs
pre.

6.3 Half-centre oscillator

We start with the simplest rhythm generating network: the half-centre oscillator. The half-
centre oscillator circuit is the building block of more complex pattern generating networks and
constitutes of a reciprocal inhibitory connection between two neurons or neural populations
[10]. We restrict ourselves to the former situation where the single neuron behaviour can also
be interpreted as the average activity of a population, in which case the same neuromodulation
principles that would apply to controlling the single-neuron behaviour can be generalised to
the control of a population.

The oscillatory behaviour of the HCO is determined by the individual properties of the
neurons as well as the properties of the reciprocal connections. The individual neurons
can be independently excitable but non-oscillating, in which case the network oscillation
emerges from the synaptic currents driving the neurons sequentially into firing [113]. We
will concentrate on another possibility, where the network oscillation is due to the individual
oscillatory properties of the neurons and the network connections are kept weak. The synaptic
connections are kept weak by restricting them to be at least an order of magnitude smaller
than the intrinsic neural currents that we have described in Chapter 4. In this case the synaptic
connections are mainly defining the phase relationships between the oscillators, but do not
have a significant effect on the properties of the oscillation such as frequency and duty cycle.

We consider a situation where neurons are oscillating at different frequencies, shown
in Fig. 6.4. In order for neurons to be susceptible to synchronisation with weak coupling,
the difference in oscillating frequencies needs to be kept relatively small. This is shown
in Fig. 6.5: by introducing the reciprocal inhibitory connection, neurons synchronise in
anti-phase.

The network rhythm shown in Fig. 6.5 can be controlled and effectively switched off
by modulating the properties of the individual cells. By controlling the slow negative



92 Excitability switch: from single neurons to networks

t

V

t

V

Fig. 6.4: Half-centre oscillator disconnected. Individual neurons are bursting with similar frequencies.
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Fig. 6.5: Half-centre oscillator connected. The two bursting neurons are connected through mutual
inhibitory connections. As the connections are kept weak, they mainly serve to determine the phase
relationship, leading to the anti-phase oscillation of the network.
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Fig. 6.6: Excitability switch in the half-centre oscillator. Decreasing the slow negative conductance
gain at the cell level turns off the slow oscillation, and neurons are able to process local inputs as
discussed in Fig. 6.1. The light blue border around nodes represents the tonic spiking state of the
neuron.
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conductance gain as described in previous chapter, the neurons switch into the tonic spiking
mode, and the network oscillation is lost Fig. 6.6. In this regime, the neurons are susceptible
to local inputs as shown previously (Fig. 6.1). The main control is thus kept at the nodal
level, while the neural interconnections determine the anti-phase property of the network
oscillation.

6.3.1 Excitability switch through inhibition

I1

t

I1

t

V

t

V

Fig. 6.7: Inhibitory switch of neuron excitability. Control neuron (blue) modulates the excitability of
the second neuron (red) through inhibition when the second neuron has slow conductance inactivation
dynamics discussed in Fig. 6.2.

In this section we would like to briefly revisit the external control of a neuron’s excitability
through the hyperpolarisation-induced bursting mechanism that we described in Section 6.1.2.
The inactivation of the slow negative conductance allows the external applied current to
the neuron to control its excitability. In a network setting, this leads to the possibility
of neurons modulating the input-output properties of other neurons they are connected to
through excitatory or inhibitory connections. We illustrate this in a simple toy example
where a control neuron is modulating the excitability of the second neuron through a single
inhibitory connection. By changing the firing mode of the control neuron, the magnitude
of the inhibitory current changes in turn, and thus the oscillatory properties of the second
neuron. When the control neuron is silent, there is no inhibitory current, and the second
neuron is in the tonic spiking mode. When the control neuron is turned on, it starts to burst
and consequentially generates an oscillatory inhibitory current to the second neuron, which
induces the switch in its excitability regime to the slow bursting mode. The network then
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oscillates in the anti-phase bursting regime. Such mechanisms have been shown to have
important consequences for localising network oscillations in excitatory-inhibitory networks
[20].

6.4 Central pattern generator

The property shown in Section 6.3 where the network rhythm is controlled through the
individual nodes in the presence of weak interconnections can be generalised to different
network topologies of varying size [100]. In this section, we concentrate on a network
inspired by the simplified STG model [69, 39, 38]. By isolating the rhythm generating part
of the network and grouping the neurons with synchronised activity, the authors identified
the essential five-neuron network that represents the interaction between the pyloric and
gastric rhythms in the STG. The network presents an interesting topology as it effectively
consists of two half-centre oscillators communicating through a single neuron. The pyloric
rhythm sub-network is responsible for the generation of the fast rhythm, while the gastric
sub-network oscillates in the slow regime, and the rhythms are allowed to interact. As such,
this simple topology provides a rich venue for studying coexisting distinct rhythms in a single
network.

We recreate this network in Fig. 6.8. The parameters of the neurons are chosen so that the
left half-centre oscillator generates faster bursting oscillations than the right, slow half-centre
oscillator. As we effectively fix the time-constants of the individual neurons, this is done by
manipulating the ultra-slow feedback that controls the interburst frequency. The middle hub
neuron is set to the tonic spiking mode, so that it effectively acts as a relay between the two
independent rhythms.

Figure 6.9 shows the two rhythms interacting by adding the resistive connections between
the hub neuron and the half-centre oscillators. When the electrical connections are weak, the
individual rhythms are mostly unaffected by the connection, and the fast and the slow rhythm
within the network coexist. The hub neuron at the same time oscillates with a mix of the two
frequencies.

By using the mechanism shown previously in Fig. 6.6, we can effectively disconnect the
individual rhythms within the network by modulating the half-centre oscillators between
the bursting and slow spiking modes. This is shown in Fig. 6.6 where the slow negative
conductance gain is decreased for the neurons within the slow half-centre oscillator. The
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Fig. 6.8: CPG disconnected. The network consists of two half-centre oscillators and a middle hub
neuron. The parameters are chosen so that the left HCO is fast and the right HCO is slow, while the
hub neuron is in the tonic spiking mode.
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Fig. 6.9: CPG connected. Hub neuron is connected to individual neurons of the half-centre oscillators
through electrical connections. The electrical connections enable the interaction between the two
rhythms. Due to the presence of slow negative conductance in the rhythm generating neurons,
the bursting rhythms are robust, so that the fast and slow rhythms coexist, while the hub neuron
experiences a mix of the two oscillations.
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Fig. 6.10: Disconnecting a rhythm from the CPG. By modulating the slow half-centre oscillator
through the inactivation of the slow negative conductance, the slow HCO cells are switched to the
tonic relay mode. The fast bursting rhythm effectively propagates through the hub neuron, and the
network is globally oscillating with the fast rhythm.
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slow half-centre oscillator neurons then act as followers, and the fast rhythm propagating
through the hub neuron now has sufficient strength to synchronise these neurons. In this case
the whole network oscillates with the fast rhythm.
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Appendix 6.A Simulation parameters

All simulations in this chapter apart from Fig. 6.1 were carried out in Python using the model
described in Eqs. (4.9), (4.12) and (4.13). The parameters for the conductance elements and
the applied currents are given in Table 6.1. Common parameters for these figures are the
following:

τ f = 0

τs = 50

τus = 2500

δ−
f = δ+

s = 0

Table 6.1: Parameter values for simulations in Chapter 6

Figure α−
f α+

s α−
s δ−

s α+
us δ+

us Iapp

6.1 (top) 2 2 1.5 -0.88 2 0 -1.8
6.1 (bottom) 2 2 1 -0.88 2 0 -1.8
6.2* 2 2 1.6 -0.88 2 0 -2.2, -2.5
6.4, 6.5 (blue) 2 2 1.5 -0.88 1.5 -0.88 -1.3
6.4, 6.5 (red) 2 2 1.5 -0.88 1.5 -0.88 -1
6.6 (blue) 2 2 1.04 -0.88 1.5 -0.88 -1.3
6.6 (red) 2 2 1.04 -0.88 1.5 -0.88 -1
6.7 (blue) 2 2 1.5 -0.88 1.5 -0.88 -2.2, -0.8
6.7 (red)* 2 2 1.7 -0.88 1.5 -0.88 -0.65
6.8, 6.9, 6.10 (fast) 2 2 1.5 -0.88 4 -0.88 -1
6.8, 6.9, 6.10 (hub) 2 2 1 -0.88 2 -0.88 -1
6.8, 6.9 (slow) 2 2 1.5 -0.88 1.5 -0.88 -1
6.10 (slow) 2 2 1 -0.88 1.5 -0.88 -1

*These neurons additionally have the inactivation dynamics of Eq. (6.1) with δh =−0.5
and β = 2.

All inhibitory connections have the parameters:

αinh = 0.2

δinh =−1

β = 2
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and resistive connections:
gel = 0.02

Figure 6.1 was obtained in SPICE using the BSIM3 model with the TSMC 0.35µm param-
eters. The circuit parameters used were matched to the dimensionless parameters listed in
Table 6.1.



Chapter 7

Conclusion

Neuromodulation is an essential biological mechanism that targets individual neurons and
continuously alters their input-output properties, in turn shaping their response depending on
the changing conditions and network requirements. It is a key process underlying adaptation
in neurons, thus enabling the adaptive sensory and motor control in animals. Understanding,
and at the same time, synthesising these neuromodulatory mechanisms is the fundamental
requirement for building controllable and robust models of neuronal behaviour.

This thesis introduced a novel model and methodology for designing and analysing
neurons with neuromodulatory capabilities. We discussed how such a model can be synthe-
sised using well-known neuromorphic circuit techniques, and presented a proof-of-concept
realisation. In addition, we have presented initial network results using the model that aim to
showcase the importance of cellular control in interconnected systems, as well as to inspire
future research utilising the proposed principles and circuit architecture.

We will now give an overview of the main contributions of the thesis, as well as the
potential paths for future research.

7.1 Summary

Feedback structure of excitability In Chapter 2 we have given an overview of the funda-
mental concept of neural excitability, and discussed how it generalises to the multi-scale
nature of neural bursting behaviour. We have examined and outlined the essential
feedback structure of excitability consisting of the interplay between the fast positive
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feedback and the slow negative feedback, represented in circuits by elements that
provide fast negative and slow positive conductance, respectively. This organisation
can then be repeated in slower timescales by adding slow excitability currents. The
interaction between these fast and slow excitability currents enables the robust genera-
tion of neural behaviour. This structure is often overlooked in simplified models of
neurons, thus frequently making the observed behaviour fragile and without the ability
to smoothly adapt. Consequently, we have discussed in Chapter 3 how simplified
neuromorphic circuits can experience the same issues, while biologically accurate
circuits suffer from the difficulty of tuning due to their complex parametrisation. We
use the four feedback loop structure for our proposed simplified neural model, and
stress its importance in any simplified or detailed model that would robustly capture
the control properties of neurons.

Simplified model of neuromodulation We have introduced in Chapter 4 a simplified cir-
cuit architecture implementing the dynamics of the neural membrane. It follows
the structure of conductance-based models by having the parallel interconnection of
feedback currents, but aims to simplify the dynamics by purely capturing the four
fundamental feedback loops through reduced current models. Each current is modelled
as an interconnection of a first-order filter and a nonlinear I-V element which can be
easily synthesised in hardware. The main contribution of the approach is the novel
method for designing and controlling the circuit behaviour through the shaping of its
input-output I-V curves in distinct timescales. As an input-output approach, it allows
direct measurement in a circuit and is independent of the underlying implementation
specifics.

Neuromorphic implementation Based on the methodology in Chapter 4, we have shown
in Chapter 5 how basic neuromorphic circuits can be utilised to construct a neuron
with neuromodulatory properties. Following the structure of Chapter 4, the circuit
synthesis is simple, and only requires the parallel interconnection of subthreshold
transconductance amplifiers realising the basic I-V elements and first-order filters.
We have characterised its operation through a SPICE simulation, and shown how the
robustness of the design reduces to the robustness of its input-output properties. The
proof-of-concept circuit that we have presented in addition showcases that the circuit
can be easily synthesised using off-the-shelf components. The study undertaken in
this chapter provides a blueprint for future scaling-up of the design to build network
behaviour.
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Network design Finally, we have outlined the small-network design using the model in
Chapter 6. We have highlighted neuromodulation between bursting and spiking modes
as an important biological mechanism that has not received a lot of attention in
circuit design so far. We have shown how the transition leads to different input-
output properties of neurons, and have discussed how the circuit can be augmented to
showcase the transition through an external current modulation, a mechanism observed
in several biological networks. We have highlighted the effect of bursting-spiking
transition in a few toy examples that serve as building blocks for generating central-
pattern generator networks. This chapter provides a first step into synthesising neural
networks that would utilise cellular control properties in order to adapt their behaviour.

7.2 Future work

Integrated circuit implementation The design and the simulation results in Chapter 5
naturally lead to the development of the neural circuit in an integrated circuit. Such a
development would allow the study of small neuromodulable networks that can be used
to design controllable central-pattern generators, as well as neural networks inspired
by the sensory systems found in animals. The input-output nature of the control means
that additional circuitry can be implemented that would allow for direct measurement
of the I-V curves and thus graphical control of neural behaviour in hardware, similar
to some previous approaches concentrating on the neural nullcline analysis [4].

Homeostatic regulation Since the structure of the neuromorphic neuron shares the paral-
lel interconnection architecture of conductance-based models, powerful biological
concepts such as homeostatic regulation can be implemented in the architecture by mir-
roring the mechanisms observed in biology [81, 82, 64, 2]. Homeostasis allows neurons
to robustly retain their properties in the face of noise, variation in their fundamen-
tal elements, and temperature variation - the same problems affecting neuromorphic
circuits. These mechanisms act by modulating the feedback loops through the many
parallel ionic currents, and the same could be achieved in the circuit architecture by
introducing regulatory feedback from the membrane voltage to the gain variables of
the localised conductance elements.

Central pattern generator design Designing robust, adaptable and energy efficient central
pattern generating systems is an exciting avenue for building robots with biological



104 Conclusion

capabilities such as adaptable motor control. CPG design and implementation has
therefore received a lot of interest in the neuromorphic community [107, 60, 104, 80,
112, 105, 61]. Complementing these approaches, we would like to study how the
cellular control properties introduced in this thesis can be used to shape and switch the
network oscillation. As a first step, in Chapter 6 we have outlined some of the basic
building blocks for generating oscillatory behaviour in networks, and our aim is to
utilise these to study network designs inspired by well-studied biological examples
such as the STG rhythm generating network in crabs, where cellular properties and
neuromodulation have profound effects on the rhythmic pattern.

Sensory devices Another interesting direction is to study how the continuous modulation of
the input-output properties of neurons introduced in this thesis can be used to build
intelligent sensory systems that utilise these mechanisms to constantly adapt their
sensory information processing capabilities. The biological examples such as the
electrolocation sensory system of the electric fish [58] show that bursting and spiking
are effectively used as different modes of detection when the animal is traversing the
environment. Such examples provide an exciting research direction into understanding
how these mechanisms could be used to develop novel devices that employ the multi-
scale nature of neuronal behaviours.
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