57,975 research outputs found

    A learning-based shared control architecture for interactive task execution

    Get PDF
    Shared control is a key technology for various robotic applications in which a robotic system and a human operator are meant to collaborate efficiently. In order to achieve efficient task execution in shared control, it is essential to predict the desired behavior for a given situation or context to simplify the control task for the human operator. To do this prediction, we use Learning from Demonstration (LfD), which is a popular approach for transferring human skills to robots. We encode the demonstrated behavior as trajectory distributions and generalize the learned distributions to new situations. The goal of this paper is to present a shared control framework that uses learned expert distributions to gain more autonomy. Our approach controls the balance between the controller’s autonomy and the human preference based on the distributions of the demonstrated trajectories. Moreover, the learned distributions are autonomously refined from collaborative task executions, resulting in a master-slave system with increasing autonomy that requires less user input with an increasing number of task executions. We experimentally validated that our shared control approach enables efficient task executions. Moreover, the conducted experiments demonstrated that the developed system improves its performances through interactive task executions with our shared control

    Teaching Concurrent Software Design: A Case Study Using Android

    Full text link
    In this article, we explore various parallel and distributed computing topics from a user-centric software engineering perspective. Specifically, in the context of mobile application development, we study the basic building blocks of interactive applications in the form of events, timers, and asynchronous activities, along with related software modeling, architecture, and design topics.Comment: Submitted to CDER NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for Undergraduate

    TensorLayer: A Versatile Library for Efficient Deep Learning Development

    Full text link
    Deep learning has enabled major advances in the fields of computer vision, natural language processing, and multimedia among many others. Developing a deep learning system is arduous and complex, as it involves constructing neural network architectures, managing training/trained models, tuning optimization process, preprocessing and organizing data, etc. TensorLayer is a versatile Python library that aims at helping researchers and engineers efficiently develop deep learning systems. It offers rich abstractions for neural networks, model and data management, and parallel workflow mechanism. While boosting efficiency, TensorLayer maintains both performance and scalability. TensorLayer was released in September 2016 on GitHub, and has helped people from academia and industry develop real-world applications of deep learning.Comment: ACM Multimedia 201
    • …
    corecore