1,293 research outputs found

    Vision-based Propeller Damage Inspection Using Machine Learning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) play an increasingly pivotal role in day-to-day rescue operations, offering crucial aerial support in challenging terrain and emergencies, such as drowning. Drone hangars are strategically deployed to ensure swift response in remote locations, overcoming range-limiting constraints posed by battery capacity. However, the UAV's airworthiness, typically ensured through conventional inspections by a technical individual, is paramount to guarantee mission safety. Over time, UAVs are prone to degradation through contact with the external environment, with propellers often being the cause of flight instability and potential crashes. This paper presents an innovative approach to automate UAV propeller inspection to avert incidents preemptively. Leveraging visual recordings and deep learning methodologies, we train a Convolutional Neural Network (CNN) model using both passive and active learning strategies. Our approach successfully detects physical damage on propellers with an impressive accuracy of 85.8%, promising a significant improvement in maintaining UAV flight safety and effectiveness in rescue operations

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Automatic vision based fault detection on electricity transmission components using very highresolution

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesElectricity is indispensable to modern-day governments and citizenry’s day-to-day operations. Fault identification is one of the most significant bottlenecks faced by Electricity transmission and distribution utilities in developing countries to deliver credible services to customers and ensure proper asset audit and management for network optimization and load forecasting. This is due to data scarcity, asset inaccessibility and insecurity, ground-surveys complexity, untimeliness, and general human cost. In this context, we exploit the use of oblique drone imagery with a high spatial resolution to monitor four major Electric power transmission network (EPTN) components condition through a fine-tuned deep learning approach, i.e., Convolutional Neural Networks (CNNs). This study explored the capability of the Single Shot Multibox Detector (SSD), a onestage object detection model on the electric transmission power line imagery to localize, classify and inspect faults present. The components fault considered include the broken insulator plate, missing insulator plate, missing knob, and rusty clamp. The adopted network used a CNN based on a multiscale layer feature pyramid network (FPN) using aerial image patches and ground truth to localise and detect faults via a one-phase procedure. The SSD Rest50 architecture variation performed the best with a mean Average Precision of 89.61%. All the developed SSD based models achieve a high precision rate and low recall rate in detecting the faulty components, thus achieving acceptable balance levels F1-score and representation. Finally, comparable to other works of literature within this same domain, deep-learning will boost timeliness of EPTN inspection and their component fault mapping in the long - run if these deep learning architectures are widely understood, adequate training samples exist to represent multiple fault characteristics; and the effects of augmenting available datasets, balancing intra-class heterogeneity, and small-scale datasets are clearly understood

    A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

    Get PDF
    [Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431C 2016-047Xunta de Galicia; , ED431G/01Centro Singular de Investigación de Galicia; PC18/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach

    Get PDF
    In today's modern electric vehicles, enhancing the safety-critical cyber-physical system CPS 's performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network DNN is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.Published versio

    Aerial identification of flashed over faulty insulator using binary image classification

    Get PDF
    Flashed over insulator faults are the most significant faults in high voltage line insulators. They are complicated to identify using traditional methods due to their labor-intensive nature. This study proposes a deep learning-based algorithm for detecting flashed over insulator faults in the real time. The algorithm is based on the Resnet 50 architecture, which has been shown to be effective for image classification tasks in the previous studies regarding image analysis. The algorithm is fast, robust and efficient, making it suitable for real-time applications. The algorithm is trained on a dataset of images of flashed over and non-flashed over insulators. This dataset was collected from various transmission lines and National Center of Robotics and Automation, which are located in Pakistan. For validating the effectiveness of the Resnet 50 algorithm, it was compared with the results obtained from the two other widely popular deep learning algorithms, Densenet 121 and VGG 16 (trained and validated on the same dataset). The results showed that the Resnet 50 was able to detect flashed over insulator faults with an accuracy of over 99%. Whereas the Densenet 121 and VGG 16 have achieved an accuracy of less than 51%

    Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-30, pub-electronic 2021-10-03Publication status: PublishedTo ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future
    • …
    corecore