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Abstract—Unmanned Aerial Vehicles (UAVs) play an 

increasingly pivotal role in day-to-day rescue operations, 

offering crucial aerial support in challenging terrain and 

emergencies, such as drowning. Drone hangars are strategically 

deployed to ensure swift response in remote locations, 

overcoming range-limiting constraints posed by battery 

capacity. However, the UAV's airworthiness, typically ensured 

through conventional inspections by a technical individual, is 

paramount to guarantee mission safety. Over time, UAVs are 

prone to degradation through contact with the external 

environment, with propellers often being the cause of flight 

instability and potential crashes. This paper presents an 

innovative approach to automate UAV propeller inspection to 

avert incidents preemptively. Leveraging visual recordings and 

deep learning methodologies, we train a Convolutional Neural 

Network (CNN) model using both passive and active learning 

strategies. Our approach successfully detects physical damage 

on propellers with an impressive accuracy of 85.8%, promising 

a significant improvement in maintaining UAV flight safety and 

effectiveness in rescue operations. 

Keywords— UAV diagnostics, propeller inspection, image 

processing, deep learning, active learning, passive learning 

I. INTRODUCTION

Today, unmanned aerial vehicles (UAVs) are increasingly 
being used in day-to-day rescue operations. According to the 
German Life Saving Association (DLGR), around 355 death 
cases happened in Germany during 2022 due to drowning [1]. 
It is estimated that two thirds of these deaths occur during the 
summer season, with approximately 41 percent of the cases 
happening in lakes as shown in Fig. 1. 

In fact, the World health organization has disclaimed that 
the drowning mortality rate represents 2.1 per 100000 
population in Europe, compared to 3.1 deaths per 100000 
population as the global rate [2]. Therefore, the quick response 
of authorities to emergency calls is necessary to reduce 
fatalities. To ensure this, unmanned aerial vehicles are an 
effective solution to support the rescue operations since they 
allow the authorities to reach the victim in record times. This 
allows for a range of quick actions (such as throwing a 

flotation devices) that can be performed to save the victim 
until the responders arrive at the location. 

The RescueFly research project is a joint cooperation of an 
interdisciplinary team of scientists and companies in 
Germany, which aims to use decentralized, autonomous 
drones to enable fast and practical help in unguarded water 
emergencies, specifically in the remote Lusatian Lake District 
which spans across Brandenburg and the Free State of Saxony 
in Germany. 

The project encapsulates several research themes, from 
which we can mention the design and development of an UAV 
hangar, where UAVs can be stored. The UAVs will be 
deployed after receiving the emergency call, and locates the 
drowning victim before assisting him with a flotation device. 
Therefore, RescueFly project encompasses a range of topics, 
from the conception and creation of the intelligent UAV 
hangar, to the secure and effective missions plan. It also 
includes the autonomous identification of individuals in need, 
the automatic release of life-saving flotation devices, and the 
seamless integration of these operations into the into the two 
federal states' already established emergency response 
systems. 

In order to guarantee the automated aspect of the mission, 
the UAV must always be ready to respond to emergency calls. 

Fig. 1 The number of death by water during 2022 [1] 
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However, the readiness of the UAV depends heavily on its 
airworthiness, which is defined by examining the main 
components of the UAV. Conventionally, a technician on site 
is necessary to identify any issues with the UAV before the 
flight. While these traditional methods effectively detect 
defects, they are still very costly and time-consuming. In the 
case of drone hangars, the manual inspection requires the 
displacement of the concerned persons to remote locations, 
simply to evaluate the airworthiness of an UAV. This process 
might require a considerable amount of time and may also be 
a waste of money, since in most of the cases, the UAV is 
healthy. 

This paper addresses the aspect of automation in 
examining the UAV propeller health. The context of this 
project demands the automation of this process to remove the 
human-dependency factor surrounding UAV diagnostics. The 
proposed method leverages the camera sensors inside the 
drone hangar and uses of an AI trained model to predict the 
need for maintenance calls. The remaining of this paper is 
outlined as follows. Section 2 surveys the SOA approaches 
dealing with UAV propeller inspection. In section 3, we 
present the adopted methodology before discussing the 
experiment setup in section 4. In section 5, the obtained results 
are evaluated and surveyed. Finally, the paper discusses the 
future challenges surrounding propeller visual inspections. 

II. LITERATURE REVIEW

Propeller defects, such as cracks, deformations, and wear, 
can significantly reduce the efficiency and safety of drone 
operations and even lead to catastrophic failures [3].  

The traditional methods for inspecting drone propellers, 
such as manual visual inspection, are time-consuming and 
labor-intensive. Lately, methods based on machine learning 
algorithms are gaining more and more interest due to the 
robustness that they bring to the detection problem. 

A. Propeller Fault Inspection

Lee et al. [4] proposed a technique for detecting faults in
UAV motors using a steady-state model and an infrared sensor 
to measure angular speed. The classification and diagnostics 
of motors is tested based on the predicted nonlinear 
parameters of a steady-state model. DC motor are used to 
simplify the model assumption due to the facility of removing 
derivatives. According to their results, the model performance 
is unstable due to the transient state and is very sensitive to 
sensor noise. 

In the same direction, Ciaburro et al. [5] proposed a model 
based on the audio signal processing of the propeller sound. 
The measurements of the noise emitted by a UAV were used 
to build a classification model to detect unbalanced blades in 
a UAV propeller with an accuracy reaching 97.63%. A similar 
study [6] has also leveraged the audio signal for fault 
detection. The detection algorithm is a data-driven approach 
that uses of an artificial neural network to classify 
characteristic features of acoustic signals (Mel Frequency 
Spectrum Coefficients) and accurately detect the presence of 
anomalies. 

Guo et al. [7] also proposed a hybrid feature model and 
deep learning-based fault diagnosis for UAV sensors. Their 
model makes use of residual signals of different sensor faults, 

including a global positioning system (GPS), an inertial 
measurement unit (IMU), and an air data system (ADS). 

Bondyra [8] et al. adopted a three-stage method based on 
signal processing and machine learning. The method aims to 
identify a rotor fault's occurrence and detect its scale and type. 
The proposed method uses the measurements of acceleration 
from an inertial measurement unit (IMU) sensor to detect the 
fault. Unbalanced rotating parts are sources of vibrations in 
mechanical systems, noticeable in the acceleration signal.  

Li et al. [9] developed a model based on a deep Gaussian-
Bernoulli Boltzmann machine (GDBM) that uses a statistical 
approach using vibration measurements of rotating machines. 
The recorded signals of the vibration sensors by rotating 
mechanical systems are represented in the time, frequency and 
time frequency domains. The statistical approach can detect 
several defects with a minimum accuracy of 91%. 

B. Passive vs. Active Learning

The usage of deep learning in computer vision tasks have
been a trending topic in the last decade. In fact, the vision 
inspection systems have noticed a tremendous increase in their 
robustness thanks to breakthrough in neural networks. Deep 
learning architectures and their training strategy play an 
essential role in ensuring the model quality.  

Active learning is a machine learning approach that aims 
to improve model accuracy while minimizing the labeling 
effort required. It involves selecting the most informative 
samples from a large unlabeled dataset and presenting them to 
a human expert for labeling. The labeled samples are then used 
to train the model, and the process is repeated iteratively. 
Compared to passive deep learning tasks, active learning can 
significantly reduce labeling effort while achieving 
comparable or better model accuracy [10], [11]. 

Active learning can be beneficial approach for inspection 
tasks, especially when labeled data is limited or costly. It 
offers the advantage of reducing the annotation effort and 
achieving comparable performance to deep passive learning 
with a smaller labeled dataset. However, passive deep learning 
can also be a suitable choice if a large labeled dataset is readily 
available and annotation costs are not a significant concern. 
The selection between the two approaches depends on the 
specific constraints, available resources, and desired trade-
offs in terms of data efficiency and annotation costs. 

III. METHODOLOGY

The study introduces a robust methodology to enhance the 
reliability and safety of Unmanned Aerial Vehicles (UAVs) 
by applying Deep Learning (DL) techniques. Focused 
primarily on the critical aspect of propeller inspection, our 
approach employs a comprehensive process encompassing 
data collection, data augmentation, duplicate removal, and the 
training based on both passive and active learning strategies. 
We aim is to fortify UAV's operational lifespan and flight 
performance through the creation of an automated, efficient, 
and accurate propeller inspection mechanism. 

A. Dataset Collection

At the time of the experiment, no publicly available dataset
included propeller defects. Identification of the appropriate 
dataset for training the deep learning model is essential step to 
solving the task. The dataset's quality is also a critical aspect 
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to guarantee a high-quality model. It is proven that the 
dataset's quality directly affects the performance and quality 
of the trained model [12]. Therefore, collecting a quality 
dataset for the training and testing phases (Fig. ). To achieve 
this, we collected, using a camera mounted on top of the UAV, 
a total of 1216 images split fairly into two main classes: 
healthy, and broken. Due to the limited number of broken 
propellers, the background of the captured frames has been 
changed to diversify the samples in our dataset. In addition, 
the frames were captured under different illumination 
conditions. The propellers were also classified depending on 
the severity of the defect. Three categories were taken into 
consideration: fully broken, partially broken, and healthy. 
This helps the model distinguish between defect types and also 
allows it to generalize easily to new or unseen data. 

B. Data Augmentation and Preprocessing

Data augmentation is a strategy that permits diversifying
the feature elements that could be fed to the model during 
training [13]. It enhances the capabilities of a model to 
improve its resilience to object transition, and prevent 
overfitting. The augmentation strategy bolsters the model's 
capacity to detect propeller defects under various conditions, 
such as changes in texture, orientation, or illumination. To 
reduce training time and resource consumption, we opted for 
offline augmentation rather than its online counterpart. We 
applied a range of augmentation techniques (Fig. ) which 
allowed us to collect approximately 5000 images. While 
traditional data augmentation includes techniques such as 
rotation, flipping, gray scaling, noise, and scaling, we also 
opted as well for negative transformation. The negative 
transformations are formed by inverting the image with the 
point processing operation. In image inversion, the original 
pixel value is replaced by the subtraction between the 
maximum pixel value and each pixel value. In our study, it 
plays a vital role due to the object color and darker background 
in the image. It helps extract information from the image's 
dark areas [14]. Therefore, we used color negative and gray 
negative images for our dataset. 

Since data augmentation increases the number of samples 
in the dataset, it sometimes causes the generation of duplicate 
images. Therefore, we developed a duplicate detector based 
on calculating of the mean square error difference, which 
allows us to compare identical images. This method is 
enormously flexible to resist noises and considerably robust in 
recognizing the image [15]. This phase aims to guarantee the 

collection of a balanced dataset with diversified samples and 
without duplicates.  

C. Deep Learning Frameworks

Our research employed two prominent deep learning
paradigms: passive learning and active learning, each 
providing unique strengths and posing different challenges. 
These learning strategies dictate how our model interacts with 
the training data and consequently influence the model's 
learning efficiency and performance. 

1) Passive Learning
Passive deep learning, also known as traditional

supervised learning, involves the training on the labeled 
dataset. In this learning paradigm, the training is performed 
only once without any interaction or modification during the 
training phase. In this regard, the dataset is split in a 80:20 
ratio, where 80% is reserved for the training and 20% for the 
testing phase. The YOLOv5 model is therefore trained and 
fine-tuned with a validation set representing about 20% of the 
training set. The primary purpose behind the fine-tuning is to 
increase the obtained accuracy from the training and help the 
model generalize. 

2) Active Learning
Active learning is a machine learning technique that

involves selecting the most informative data samples to be 
labeled by a human expert, thus reducing the amount of 
labeled data required for training. As it can be seen in Fig. 2, 
the methodology of the active deep learning used for the 
propeller damage inspection was based on the proposed 
approaches [10], [16] and it incorporates the following steps: 

a. Determination of the types of propeller damages to be
inspected.

b. Initial dataset compilation: 15% of the dataset was
manually labelled, categorized into three distinct
groups according to the extent of propeller damage, as
will be further elaborated.

c. Initial model training: The YOLOv5 model was
initially trained on the 15% labelled dataset to acquire
baseline performance metrics.

Fig. 2 Samples from the collected image dataset 

Fig. 3 Illustration of several data augmentation techniques applied to 
propellers (a) color negative (b) gray negative (c) 90° rotation (d) 10° 

rotation (e) 10° shear (f) flipping (g) grayscale (h) blur (i) noise 

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)
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d. nformative sample selection: 5% of the unlabeled
original dataset was selected using an uncertainty and
query-based selection method, allowing the model to
earmark the most informative propeller images for
labelling.

e. Labeling of selected samples: An expert manually
labelled the chosen samples, which were then
incorporated into the training dataset.

f. YOLOv5 model retraining: The model was retrained
again with the 5% of labelled dataset to upgrade its
knowledge base.

g. Steps d to g were executed in a repeated cycle until
the model's performance attained a satisfactory level.

Another essential aspect of the active learning framework 
is the query selection strategy. There are several popular 
strategies to sample the data in active learning. Uncertainty 
sampling is one of these strategies. It uses the most 
informative samples, about which the model is most certain. 
In the case of this research, the model performs a binary 
classification to predict the presence of a defect. Therefore, 
choosing the right query strategy is essential to obtain optimal 
results in the shortest amount of time. As discussed earlier in 
the report, the dataset is split into three main categories 
depending on the degree of the propeller damage. This leads 
to three degrees of confidence as explained below: 

• High Confidence: This category includes images
where the propeller damage is most severe or even
fully broken. Our model demonstrates a high level of
confidence when dealing with such images, as the
distinguishing features of such severe damage are
typically clear and straightforward to detect.

• Average Confidence: Images falling into this category
show propellers with only partial damage. The level
of confidence here is somewhat intermediate, as the
damages are less conspicuous compared to the high
confidence category. It's also a more challenging

classification task since it involves distinguishing 
between minor defects and normal wear and tear. 

• Low Confidence: This category is comprised of
images that depict healthy propellers. These images
typically elicit a lower level of confidence from the
model as there is often a fine line between a perfectly
healthy propeller and one with minor, yet significant,
damage. Ensuring that the model correctly identifies
healthy propellers is crucial for avoiding false
positives.

D. Model Training

The passive learning strategy involves training the model
for a total of 150 epochs, with a batch size of 16, using the 
Stochastic Gradient Descent (SGD) optimizer. This process is 
implemented on a Tesla T4 GPU, ensuring optimal 
computational efficiency. We used the YOLOv5m 
architecture to focus on accuracy rather than performance. 
Unlike the active learning approach, where training involves 
iteratively selecting, labeling, and introducing samples into 
the training set based on their confidence levels (high, 
average, and low), the passive learning strategy maintains a 
fixed training dataset and uses consistent hyper-parameters. 
This distinct approach to model training offers valuable 
insight into the effectiveness and efficiency of both passive 
and active learning methodologies in propeller defect 
detection. 

IV. RESULTS AND DISCUSSION

Following the model training, the results were assessed for 
both the passive and the active approaches. The evaluation 
was performed on the same test data. In order to assess the 
performance and effectiveness of our model in the task of 
propeller damage classification, we leveraged a set of widely-
used metrics. This includes precision, recall, and mean 
average precision (mAP).  

The mean average precision clearly assesses the model’s 
performance, specifically for the YOLO family. It is evaluated 
based on model prediction's intersection over union (IoU) and 
the ground truth. In the case of @0.5, the intersection 
represents 50% of the union. The precision and the recall are 
measured using the formula in (1) and (2), which are 
calculated using the confusion matrix results. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2) 

TABLE I represents the obtained results from the passive 
learning approach. We trained two versions of the YOLOv5 
model, where YOLOv5s is lightweight but less accurate than 
YOLOv5m. In addition, we compared the obtained results 
with the YOLOv7 model, for testing purposes. As depicted in 
the table, the performance of the YOLOv5m overcomes both 

Fig. 2 Prposed Active Learning Workflow 
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TABLE I Model performance comparison using passive learning 

Models Precision Recall 
mAP 

@0.5 

mAP 

@0.5-0.95 

YOLOv5s 0.769 0.823 0.798 0.663 

YOLOv5m 0.798 0.849 0.853 0.737 

YOLOv7 0.777 0.810 0.847 0.725 
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other YOLO versions, allowing us to detect the presence of 
defects on propellers accurately. Therefore, the active learning 
approach was performed on the YOLOv5m model to compare 
the results of both strategies.  

Although the passive learning scored a mAP reaching 
85%, it required the entire dataset and longer times to train the 
model. On the other hand, the active learning, which 
iteratively feeds chunks of selected datasets to train the model 
further, obtained the same mAP after 10 phases. Furthermore, 
it required only 60% percent of the entire dataset and less time 
to train the model. TABLE II showcases the aforementioned 
results and Fig. 3 depicts the model predictions. 

V. CONCLUSION

This research takes on the task of propeller damage 
identification on UAVs, despite the challenge related to the 
size of the dataset. We have constructed two deep learning 
models, following both passive and active learning strategies, 
to assess propeller health accurately. Both models harness the 
power of YOLOv5 medium architecture, delivering around 30 
FPS, which makes them apt for the inspection applications.  

When comparing the two strategies, our results suggest 
that active learning can potentially enhance efficiency in 

object inspections, mainly when the available dataset is 
limited. Although it is efficient in the learning process, active 
learning still demands increased human interaction. 

On the other hand, when a rich and varied dataset is 
available, and the variability in propeller conditions is less, 
passive learning appears to be more suitable. This study 
represents an initial step in inspecting aircraft propellers using 
image datasets. As we look ahead, future endeavors will 
involve refinement of our models to boost their 
generalizability. This would enable the models to tackle a 
broader range of propeller conditions and further enhance 
performance metrics. Additionally, improved deployment 
strategies will be a key focus to ensure practical real-time 
application of these models. 

ACKNOWLEDGMENT 

The research presented is part of the project ‘RescueFly’, 
number 45ILM1016D, which is funded by the German 
Federal Ministry for Digital and Transport. 

REFERENCES 

[1] Deutsche Lebens- Rettungs-Gesellschaft e.V., “Jahresbericht 2022 
Technical Report,” 2022. 

[2] World Health Organization, “Global health estimates: leading 

causes of death,” 2020. 
[3] A. Joshuva and V. Sugumaran, “Wind Turbine Blade Fault 

Diagnosis Using Vibration Signals through Decision Tree 
Algorithm,” Indian J. Sci. Technol., vol. 9, no. 48, 2016. 

[4] J. yong Lee, W. tak Lee, S. ho Ko, and H. suk Oh, “Fault 

Classification and Diagnosis of UAV motor Based on Estimated 
Nonlinear Parameter of Steady-State Model,” Int. J. Mech. Eng. 

Robot. Res., vol. 10, no. 1, 2021. 

[5] G. Iannace, G. Ciaburro, and A. Trematerra, “Fault diagnosis for 
UAV blades using artificial neural network,” Robotics, vol. 8, no. 

3, 2019. 

[6] A. Altinors, F. Yol, and O. Yaman, “A sound based method for 
fault detection with statistical feature extraction in UAV motors,” 

Appl. Acoust., vol. 183, 2021. 

[7] D. Guo, M. Zhong, H. Ji, Y. Liu, and R. Yang, “A hybrid feature 
model and deep learning based fault diagnosis for unmanned aerial 

vehicle sensors,” Neurocomputing, vol. 319, 2018. 

[8] A. Bondyra, M. Kołodziejczak, R. Kulikowski, and W. Giernacki, 
“An Acoustic Fault Detection and Isolation System for Multirotor 

UAV,” Energies, vol. 15, no. 11, 2022.

[9] C. Li, R. V. Sánchez, G. Zurita, M. Cerrada, and D. Cabrera, “Fault 
diagnosis for rotating machinery using vibration measurement 

deep statistical feature learning,” Sensors (Switzerland), vol. 16, 

no. 6, 2016. 
[10] S. Saleh, S. A. Khwandah, A. Mumtaz, A. Heller, and W. Hardt, 

“Traffic signs recognition and distance estimation using a 

monocular camera,” in CEUR Workshop Proceedings, 2019, vol. 
2514. 

[11] S. Shadi, S. Hadi, M. A. Nazari, and W. Hardt, “Outdoor 

navigation for visually impaired based on deep learning,” in CEUR 

Workshop Proceedings, 2019, vol. 2514.

[12] T. Hashimoto, “Predicting the impact of dataset composition on 

model performance,” ICLR 2021 Conf., 2021. 
[13] L. Zhang and K. Ma, “A Good Data Augmentation Policy Is Not 

All You Need: A Multi-Task Learning Perspective,” IEEE Trans. 

Circuits Syst. Video Technol., 2022. 
[14] K. Veena Divya, A. Jatti, R. Joshi, and S. Deepu Krishna, 

“Characterization of dental pathologies using digital panoramic X-

ray images based on texture analysis,” in Proceedings of the 
Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, EMBS, 2017. 

[15] Y. Maret, “Efficient Image Duplicate Detection Based on Image 
Analysis,” École Polytechnique Fédérale De Lausanne, 2007.

[16] S. Saleh, B. Battseren, M. S. Harras, A. Chaudhry, and W. Hardt, 

“Toward Accurate and Efficient Burn Marks Inspection for MAV 

Using Active Learning.”

Fig. 3 Yolov5m model predictions on the test data 

TABLE II Performance Evaluation between 

passive and active learning for YOLOv5m 

Learning 

methods 
Datasets 

Training 

Data 

Dataset 

[%] 
Precision Recall 

mAP 

@0.5 

Active 

Training Set 1 754 15% 0.314 0.261 0.316 

Training Set 2 968 20% 0.368 0.303 0.402 

Training Set 3 1172 25% 0.423 0.350 0.499 

Training Set 4 1364 30% 0.482 0.402 0.573 

Training Set 5 1548 35% 0.545 0.464 0.728 

Training Set 6 1722 40% 0.608 0.529 0.781 

Training Set 7 1888 45% 0.695 0.666 0.827 

Training Set 8 2046 50% 0.761 0.734 0.845 

Training Set 9 2198 55% 0.816 0.797 0.836 

Training Set 10 2340 60% 0.823 0.816 0.858 

Passive Full dataset 4092 100% 0.798 0.849 0.853 


