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ABSTRACT Deep learning (DL) is an exciting field of interest for many researchers and business. Due
to a massive leap in DL based research, many domains like Business, science and government sectors
make use of DL for various applications. This work puts forward the importance of DL and its application
in a few critical electrical segments. Initially, an introduction to Artificial Intelligence (AI) and Machine
Learning (ML) is presented. Then the need for DL and the popular architectures, algorithms and frameworks
used are presented. A summary of different techniques used in DL is outlined, and finally, a review on the
application of deep learning techniques in some popular electrical applications is presented. Five critical
electrical applications, namely identification of bearing faults, hot spots on the surface of PV panels, insulator
faults, an inspection of power lines and Electric vehicles have been considered for review in this work. The
primary aim of this work is to present chronologically, a survey of different areas in which it applies DL along
with their architectures, frameworks and techniques to provide a deeper understanding of DL for widespread
use in real-time applications.

INDEX TERMS Artificial intelligence (AI), deep learning (DL), machine learning (ML), power distribution
faults, power system faults, fault diagnosis.

ACRONYMS USED

AI – Artificial Intelligence
AE – Auto Encoder
AFT - Alternate Finger Tapping
ANN – Artificial Neural Network
AR – Augmented Reality
BEV - Battery Electric Vehicles
BP – Back Propagation
BPTT – Back Propagation Through Time
BSFC - Brake Specific Fuel Consumption
CAP – Credit Assignment Path
CAV - Connected and Automated Vehicle
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CDBN – Convolutional Deep Belief Networks
CWRU - Case Western Reserve University
DCG –Deeply Connected Genes
DCNN - Deep Convolutional Neural Network
DSN – Deep Stacking Network
ECMS - Equivalent Consumption Minimization

Strategy
ELM – Extreme Learning Machine
ERM - Empirical Risk Minimization
FCCNN – Fully Convolutional Convolutional Neural

Network
FCN – Fully Convolutional Network
GCHEV – Fuel Cell Hybrid Electric Vehicle
HAN – Hierarchical Attention Network
IM - Image Mosaicing
IMS - Intelligent Maintenance Systems
IMU – Inertial Measurement Unit
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KNN – K Nearest Neighbours
LOPOCV - Leave-One-Person-Out Cross Validation
NN – Neural Network
NTM – Neural Turing Machine
ODF – Onset Detection Function
PMSM - Permanent Magnet Synchronous Motor
RELU – Rectified Linear Unit
SCAE - Stacked Convolutional Sparse Auto Encoder
SDAE - Stacked Denoising Autoencoder
SGD - Stochastic Gradient Descent
SHEV - Series Hybrid Electric Vehicle
SL –Supervised Learning
SLP – Single Layer Perceptron
SMOTE - Synthetic Minority Over- Sampling

Technique
SPHEV - Series-Parallel Hybrid Electric Vehicle
SVM - Support Vector Machines
UAS - Unmanned Aerial System
UL – Unsupervised Learning
V2G - Vehicle-to-Grid
WPE – Weighted Prediction Error
XAI – Explainable Artificial Intelligence

I. INTRODUCTION
ML is paving the way for various real- time applications
without human intervention [1]. They design the programs
in ML in such a way that the data can be accessed, used to
learn the mechanism involved in the application all by it. The
learning starts with the statistics and observations in the data,
followed by decision making to provide the best outcom [2].
The data like instructions or any direct experience is the key
to the accomplishment of learning aim. Once the learning is
complete without human help, the system makes the change
of actions itself, and this helps in saving time for humans.
Whenever a challenge like a fast-changing and dynamic
environment is encountered, the need for the designer to
foresee the problems and provide permanent solutions is
bypassed by ML since the learning process is also dynamic
and it happens by adapting to the changing condition [3].
Implementing ML algorithms comprises two phases, namely
training and testing. There are three different methods of
training ML algorithms. It classifies them into supervised,
unsupervised and reinforcement learning [4]. In supervised
learning, the algorithms can foresee events based on the
learning carried out [5]. In unsupervised learning, it uses the
algorithms when no labelling or classification of information
is done [6].In reinforcement learning, the learning takes place
for training data and based on choice, and there is a reward
system for the right choice made. Based on the award of a
reward, the machine can understand the right choice to make
in a particular instance [7]. When ML algorithms populous
industrial processes, vast data is required to complement the
challenge of decision making. It can classify this data that
has to be further put in use in ML with a specific cycle.

Fig. 1 shows the life cycle of data. But in most cases, they
process the data which is gathered in a stepwise manner.
This data is often confused with the unwanted data termed as
‘‘noise’’ that is got from surroundings. Therefore, it becomes
a tedious task to identify the original data and separate it
from the noisy data. Also, because of the changing trend in
environments, challenges related to fault identification based
on the ML approach are imposed. These challenges pose
a threat not only to the identification alone but also to the
prevention aspect. Hence, reliable real-time transmission is
a must avoid the threats posed by security issues [8]. In the
last decade, ML has seen an enormous leap in terms of its
applications in various industries.

FIGURE 1. The life cycle of data.

DL is a technique under ML through which it teaches the
computers to do tasks humans naturally do that with many
examples and essential data in terms of images and videos [9].
Some significant areas of usage include cancer detection,
object detection, speech recognition, smart city, handwriting
recognition, biological image classification, natural language
processing, adaptive testing, stock market analysis, plant dis-
ease detection, Optimization of microgrid, energy demand
forecasting, fault diagnostics of high voltage electrical equip-
ment, detection of hot spots on the surface of PV panel,
optimization of fuel in electric vehicle applications, andmany
more. An application with DL requires massive data like
thousands of images for the training of the model. This train-
ing could take much time and is successful when the models
are trained to perform tasks incorporating and understanding
data from images, sounds or texts directly without further
help. Level of the accuracy of DL algorithms is high provided
training is done with an extensive amount of labelled data.
Also, a high-performance Graphics Processing Unit (GPU)
is required to process the data rapidly [10]. DL serves as the
key behind many real-time applications including automobile
sector, voice recognition systems, image detection and more.
The major attraction behind the use of DL is the computation
method. It is made entirely automatic and can be donewithout
human intervention. The main contributions of this paper are:

1) In this work, an introduction to AI and ML is provided,
and it brings the need for DL to the limelight.

2) A summary of DL architectures and algorithms—State-
of-art are summarized.
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3) A review on DL approach towards the following appli-
cations is presented.

• Use of DL for identification of faults in Bearings
• DL approach to detect hot spots on PV panels
• DL for identification of faults in Insulators
• DL for inspection of power lines
• DL for Electric vehicle applications

We organize this work into the following sections. In the
Section II, the need for DL algorithms is discussed.
In Section III, the different architectures that are used in
fault diagnosis are discussed. In section IV the application of
DL algorithms to fault diagnostics of bearings are discussed.
In Section V, the DL approach towards detection of hot spots
on the surface of PV panels is presented. In Section VI,
the use of DL for fault identification in insulators is discussed.
In Section VII, DL approaches for inspection of power lines is
presented and finally the application ofDL in electric vehicles
is discussed in Section VIII. Themain conclusion drawn from
this study and the scope for future study is presented in the
last section.

II. NEED FOR DEEP LEARNING ALGORITHMS
A. INTRODUCTION TO AI
AI paves the way for machines to mimic the behavioral
attributes of human beings. It accomplishes AI with the help
of studying the working of the human brain. The learn-
ing by human beings and the way they respond to various
real-time problems is the key for machines to mimic human
behaviour [11]. It uses the outcome of this study as a basis
for developing an intelligent software system for solving
real-time problems in various applications. Some popular
applications in which they mostly use AI are speech recogni-
tion, natural language understanding, and image recognition.
The foundation of AI is a neuron and its functions. It is
presented in [12], and it brings the use of AI in Neuroscience
to the limelight. AI has seen many dimensions in applications
since then. In [13], the authors have presented a detailed
review of how AI helps in photovoltaic applications. AI has
been a massive bid in manufacturing technology. In [14],
AI implemented for Industry 4.0 it depicts based manufac-
turing standards. A detailed review of AI used for intelligent
manufacturing is presented in [15]. Not only is AI helping
the researchers of the manufacturing industry but also in
fault diagnosis of rotating machinery, which is useful for
mechanical and electrical design engineers to work on [16].
The concept of Smart Cities came into existence because
of AI technology [17]. Thanks to AI for introducing cus-
tomizable and user-friendly gadgets for implementing smart
devices.

The work of humans is enormously minimized with AI.
In the state-of-art developments of AI, Explainable artificial
intelligence (XAI), have taken an enormous leap, especially
in the last five years. It makes more-sense whenmachines can
explain the reason for displaying a specific output. It helps
the end-users to comprehend the concepts better and also feel

comfortable to work with the machines. A survey of recent
research in XAI has been done in [18] and [19]. So, AI has
paved the way for the next generation smart technologies and
various human brain replica-based applications.

B. CONCEPT OF MACHINE LEARNING (ML)
ML has been the most popular in many applications. The
application of ML algorithms requires large quantity of data
for triggering the process of decisionmaking. It has published
numerous literature works in ML and its applications. Some
of them are presented in the following section. ML applied
to it presents automated text categorization in [20], [21]. Text
recognition and characterization are vital and popular appli-
cations of ML. Optimization using Genetic algorithms (GAs)
has seen a new dimension with ML. For genomics and genet-
ics, it implements ML for ease in computation [22].

The concept of ML can be understood by digging deeper
into various categories of it. Fig. 2 shows the categories
of ML, as mentioned in [23]. We have briefed these concepts
in the following section.

FIGURE 2. Categories of Machine learning (ML).

The abbreviations used in Fig. 2 are:
SL – Supervised learning
UL – Unsupervised learning
RL – Reinforcement learning
DL – Deep learning

C. SUPERVISED LEARNING (SL)
In this method, it inserts the already known outputs for
specific inputs to train the algorithm. Usually, SL is pre-
ferred in situations where data availability is labeled. It is
most extensively used principally for classification and
regression [24].

Some popular algorithms under this category are ANNs
and SVMs. Fig. 3 shows the block diagram of the working
of the SL technique. In Fig. 3, Fig. 4 and Fig. 5, the following
notations are used:

FIGURE 3. Block diagram of working of Supervised Learning (SL)
approach.
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FIGURE 4. Block diagram of working of Unsupervised Learning (UL)
approach.

FIGURE 5. Block diagram of working of Reinforcement Learning (RL)
approach.

D–Desired output
X – Input
Y – Actual output
W – Weight of the neural network

D. UNSUPERVISED LEARNING (UL)
In this method, the algorithm itself identifies patterns of
unknown data sets [25], and absolutely no feedback is pro-
vided from any expert. Hence, unlabeled data is given for
training. A most common algorithm is PCA, and they primar-
ily use it only for monitoring. Fig. 4 shows the block diagram
of the working of the UL technique.

E. REINFORCEMENT LEARNING (RL)
In ML, a specific action of interest is chosen, and analyze it
for examining any rewards, whereas RL refers to it identifies
a sequence of actions which are tried continuously until the
fittest one. Therefore, from previous knowledge of rewards
got and the decisions taken, working of RL based algorithm
develops [26]. Fig. 5 shows the block diagram of the working
of the RL technique.

F. CONCEPT OF DL AND THE NEED FOR IT
DL is a buzzword in technology right now. It represents
a massive leap in the way computers could learn. One of
the significant challenges faced by ML algorithms is the
feature extraction process [27]. When complex problems
like handwriting recognition or object recognition arise, this
becomes a tremendous problem. The limitations of machine
learning lead to the development of DL. DL comes to the
rescue for unique design problems in real-time implemen-
tation. DL works based on Single layer perception (SLP),
and Multi-layer perception (MLP). DL has been developed
most prominently since 2006. In DL, exploitation of multiple
stages of processed non-linear information in a hierarchical
pattern is done for feature learning and pattern classifica-
tion. Considering, the state of art literature available, it also
links DL with representation learning in which it involves

a hierarchy of features. High-level concepts are got from
low-level concepts and vice versa.

As per history, DL originated from Artificial Neural Net-
work (ANN). The Multi-layer perceptions (MLPs) and Feed
Forward Neural Networks (FFN) are good examples of mod-
els that inherit deep architecture. In the early 1980s, the Back
Propagation (BP) has been a popular algorithm to accomplish
learning of weights of these networks. But, with more hidden
layers, BP method failed to work well [28]. The enveloping
presence of the local optima in non-convex aim functions of
deep networks proved to be the major difficulty in learning.

It employs multiple layers to construct an ANN for human
intervention free execution. Now, the wholly built ANN can
make intelligent choices while handling vast and complex
data with ease with no expert intervention [29]. It incorpo-
rates DL because:

• Whenever human intervention is not possible (Naviga-
tion System on mars)

• When human beings cannot explain the facts (Speech
Recognition, Language Comprehending)

• When the size of the problem is too large to be tackled
by a human (Advertisement Matching on Facebook)

• When the solution for a problem in real-time and
dynamic (Weather prediction)

• When specific solutions have to be used in particular
cases (Biometrics)

One can understand the basic working of a DL algo-
rithm through Fig. 6. An illustration of the DL approach
is depicted in Fig. 7. Some commonly used DL algorithms
are depicted in Fig. 8. Different ML categories have been
summarized along with their highlighted characteristics are
shown in Fig. 9 and the significant advantages of DL overML
is illustrated in Fig.10. With Feature engineering, the features
(variables used to train the model) are constructed from the
dataset. This process is automatic in automatic feature extrac-
tion. Hence feature engineering will not be required.

FIGURE 6. Block diagram of working of DL approach.

It inherits ML and DL from AI. This relationship can be
better understood from Fig. 11 in which DL is represented as
a subset of ML and ML is represented as a subset of AI.

III. ARCHITECTURES USED IN FAULT DIAGNOSIS
In the last decade, it has introduced several architectures in
DL studies. Because of the new architectures developing, also
found numerous problems to get immediate solutions with
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FIGURE 7. An illustration of DL approach.

FIGURE 8. Most common DL based algorithms.

FIGURE 9. A pictorial representation of key points from different
categories of ML.

FIGURE 10. Advantages of DL over ML.

ease. Thanks to the advancement in the DL era, complex
problems seem easy to be solved without human expertise.
In this section, it presents a brief review of the popular
architectures of deep learning.

A. RECURRENT NEURAL NETWORK (RNN)
This network is the foundation for all the following network
architectures and hence stands as the essential architecture
in DL studies. Vital information about this architecture is
that it not only has feed-forward connections but also has the
feedback connections which aid in refreshing memory and
previously stored data [30] Two RNN models are prevalent
in literature. In Fig. 12, two varieties of RNN, along with

FIGURE 11. Relationship between AI, ML and DL.

FIGURE 12. Bidirectional and Deep RNNs.

their significant features, have been depicted. It can visualize
a simplified RNN architecture through Fig. 13.

FIGURE 13. A basic RNN architecture.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
It belongs to feed-forward neural networks, in which signal
flow happens without forming cycles or loops. This architec-
ture is the most preferred one for various vision-based tasks
like image recognition [31]. The execution of CNN takes
place in for steps, as shown in Fig. 14 and a simple CNN
architecture for five layers are depicted in Fig. 15. Here w
denotes the weight of the network.

C. AUTO ENCODERS (AE)
AE operate with the backpropagation principle with an unsu-
pervised learning environment. They are like but more flex-
ible than Principal component analysis (PCA). It represents
data with the help of hidden layers. It uses four kinds of AEs
in today’s scenario. Fig. 16 gives a basic outline of the kinds
of AEs and the differences among them. In Fig. 17, it presents
a simple representation of AE.

D. GENERATIVE ADVERSARIAL NETWORKS (GAN)
Training can be done simultaneously for two DL models.
Between the two models, a fierce competition arises. One is
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FIGURE 14. Stages in CNN.

FIGURE 15. An underlying CNN architecture with 5 layers.

FIGURE 16. Types of AEs with their significant features.

FIGURE 17. A simple representation of AE architecture.

termed as Generator, and call the other Discriminator. It is
widely used in computer vision application image genera-
tion [32]. Fig. 18 shows a necessary representation of GAN
architecture.

E. DEEP BELIEF NETWORK (DBN)
The layers of DBN architecture comprise Restricted boltz-
mann machines (RBMs) and feed-forward network for
pre-training stage and fine-tuning stage respectively [33].
Fig. 19 describes a DBN architecture showing both RBMs
and Feed-forward networks, and they’re working. Fig. 20 pro-
vides a summary of literature works studied concerning state-
of-the-art architectures of DL. Table 1 presents the pros, and
cons of the different architectures under study.

IV. DL FOR FAULT DIAGNOSTICS OF BEARINGS
Electric machines are extensively in use for various appli-
cations. Sometimes, unfavorable operating conditions may

FIGURE 18. A generic architecture of GAN.

FIGURE 19. A simple layout of DBN architecture.

FIGURE 20. A summary of state-of-the-art architectures of DL.

arise. Due to such conditions, malfunction of machines
occurs among which bearing faults are most common. They
are responsible for up to 40% of losses. Fig. 21 shows the
structure of a rolling element bearing. It contains outer race,
inner race, balls and cage. The outer race is usually mounted
on the cap of the motor, and the inner race holds the motor
shaft. Balls are the rolling elements, and it uses the cage for
limiting the distance between adjacent rolling elements [38].
The four cases of misalignment of bearings are neatly shown
in Fig. 22-25. In the past decades, research towards bearing
fault diagnostics has seen a significant hype since the bear-
ing is the most susceptible component of the motor drive.
This problem is being approached by establishing a physical
model and analyzing the relationship between the measuring
signals and the faults. This relationship can be obtained with
the help of various sensors. Sensors are used to observe the
vibrations [39], stator current [40], noise [41] and thermal
imaging [42]. Sometimes a fusion of sensors is used to detect
all or over one signal as mentioned earlier. Frequency spectral

VOLUME 9, 2021 41251



K. M. Sundaram et al.: DL for Fault Diagnostics in Bearings, Insulators, PV Panels, Power Lines, and Electric Vehicles

TABLE 1. Comparison of state-of-the-art architectures used in DL.

FIGURE 21. A typical structure of a rolling-element bearing.

FIGURE 22. Bearing failure due to misalignment (out-of-line).

FIGURE 23. Bearing failure due to shaft deflection.

FIGURE 24. Bearing failure due to tilted outer race.

analysis performed on the measured signals aids in deter-
mining the bearing faults. The characteristics of fault depend
on motor speed, the geometry of the bearing, and also the
location of the fault.Manyworks in literature have focused on
bearing fault diagnostics [43], [44], [45], [46], [47] In the last
decade, there has been a continuous growth in research paper
publications in DL. It presents the trend in publications cited
by Google scholar for literary works in this scope in Fig. 26

The dataset formation is the first step towards the solution
using the DL approach. Some essential dataset for bearing
faults available in the literature have been compared and
listed in table 2. Table 3 briefly summarizes the reviewed
literature works that have used DL approaches for diagnosing
bearing faults with the pros and cons of each approach.

FIGURE 25. Bearing failure due to tilted inner race.

FIGURE 26. Year-wise data in publications related to Bearing Fault
Diagnostics cited in Google Scholar.

V. DL APPROACH TO DETECT HOT SPOTS ON THE
SURFACE OF PV PANELS
PV panels make up the best methods of providing renewable
energy. Maintenance of these panels must be given utmost
importance for reliable operation of PV modules. Various
factors cause damage to the panels. To identify the hot spots
on the solar panels, the commonly used method is aerial
thermal imaging. For this purpose, many computer vision
methods are used. DL approach has proven to be useful.

Several works have focused on the application of DL in
PV panels [52]–[55], [1], [21], [56]–[63], [64], [65] Some
literature works that address the issue of identification of the
faults (hot spots on the solar panels) have been listed, and a
summary has been presented in table 4.

VI. DL FOR FAULT IDENTIFICATION IN INSULATORS
Insulator faults, especially the missing ones, are most
common and have adverse effects because they lead to life-
threatening accidents involving high voltages. It is presented
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TABLE 2. A Comparative analysis of various dataset used for bearing faults.

TABLE 3. Summary of DL approaches for diagnostics of bearing faults reviewed.

TABLE 4. Summary of literature works reviewed related to PV panel detection with DL approach.

many methods based on vision in the literature as a solu-
tion to this problem. However, they cannot provide accurate
results as the background of the images remains complex and
accurate identification with such complexities in the images
is next to impossibility. Also, multiple fault condition of the
insulator is failed to be addressed by any of these novel
approaches. Hence, in the following section, some State of
art approaches that provide a solution to these problems is
presented. Table 5 presents a summary of literature works
reviewed for identification of insulator faults with a DL
approach. In [71] the authors made use of 764 to adopt their
novel dataset and achieved an average running time of 30ms.
In table 6, a list of available dataset in fault diagnostics of
insulators is listed.

VII. INSPECTION OF POWER LINES
Inspection of power lines is an ongoing process as far as
power lines are concerned for supply without intermittency.
Components like conductors, insulators, fitting and towers
make up the power line. If there is fault occurrence any of
the components, system outage occurs, and this may affect
the dependent lines causing a major breakdown. Thus, it is
crucial to inspect power lines frequently. There are several
methods of carrying out power line inspection. Numerous
publications have been done every year in power line inspec-
tion through a vision-based approach [72], [73]–[92] . The
trends in publications cited by Google scholar to the same
has been presented in the form of a bar graph for easier
comparison in Fig. 27. The research has inclined towards
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TABLE 5. Summary of the state-of-the-art literature works for identifying insulator faults using DL approaches.

TABLE 6. A list of available datasets in fault diagnostics of insulators.

FIGURE 27. Publications indexed under Google Scholar in the last
decade (2010-20).

this field, and many researchers have continued to research
in this area, especially since the last five years (2015-2020).
A stepwise approach towards inspection of power lines with
the method described in brief is depicted in Fig. 28.

VIII. DL IN ELECTRIC VEHICLE APPLICATIONS
In today’s scenario, every step taken to avoid pollution is a
big bonus. To avoid environmental pollution and overcome
the alarming levels of temperature differences because of
global warming, a compulsive motto to replace the Inter-
nal Combustion Engine (ICE) based vehicles is prevalent.
As a result, several kinds of eco-friendly vehicles are being
manufactured. Electric vehicles are being used extensively
as a green energy option in the automobile industry. Among
these, the Battery Electric Vehicles (BEV), Hybrid Electric
Vehicles (HEV) and Fuel Cell Electric Vehicles (FCEV)
dominate the electric vehicle market and arouse the interest
of researchers. BEV stands as the most potential alternative

FIGURE 28. The sequential flow of inspection in power lines.

for ICE based vehicles, although it is still immature with its
traction technology and also suffers from a lack of proper
infrastructure for charging [93]. As a solution towards this
problem, they propose HEV with superiority in terms of its
design which includes both motor and the engine.

A hybrid electric vehicle (HEV) has two Energy logging
units in the form of electricity and fuel. Electrical energy is
incited in a battery pack and is flooded to the traction motor
for running of the drive shaft using an electro motor whereas
the fuel is incited in an IC Engine to drive the same shaft
through the mechanical power delivered by combustion or the
same means of Electrical power from a fuel cell. HEV also
depends on fossil fuel. Therefore, it cannot stand as a remedy
for pollution emitted by Green House Gases (GHG) and
other pollutants since it emits them from HEVs. Currently,
they propose engineless configurations of FCEV. Despite
the challenges posed by Fuel Cell Hybrid Electric Vehicles
(FCHEV), they have gained the attention of many research
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TABLE 7. Summary of literature works studied related to DL approaches applied in EV.

FIGURE 29. A bar chart showing a decade of publications related to DL
technology in Electric vehicles.

and development teams, intending to mitigate environmental
problems caused to those mentioned above and improve fuel
economy [103]. Another aspect of approach in the Electric
vehicle market is the distance covered. The major challenge
faced in EVs is the range that the EV can cover once it is
fully charged [104]. This range has to be extended for reliable
usage of EVs in the future.

FIGURE 30. Merits and Demerits of centralized charging [119].

The power consumption is on a larger scale for
electric motors, although there are other units in EV that
consume power. Hybrid and electric vehicles have proven to
be propitious solutions to achieve fuel saving and emission
reduction [105]. Hence the real challenge for researchers in
EV lies in reducing the power consumption while carefully
designing the EV for a broader operating range, i.e., dis-
tance. They have applied DL approaches towards this prob-
lem in many works [106]–[115]. Table 7 summarizes the
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FIGURE 31. Merits and Demerits of decentralized charging [119].

significant literature works considered for study in this con-
text. Fig. 29 presents a bar chart indicating a decade of
publications related to DL technology in electric vehicles.

Till date, the distance covered by EV for a single time com-
plete charge remains a challenge to researchers. It has targeted
the fuel economy and power consumption optimization in
areas of research in this field. So, keeping in mind, the range
of coverage of a fully charged EV, the methods to charge the
battery in EV have to be analyzed. Considering the charging
technology used in EVs, Fig. 30 and Fig. 31 depict the
merits and demerits of centralized and decentralized charg-
ing, respectively. Multimodal Deep Learning and Modular
Data-Driven Architecture [116]–[118], can be used in the
future as they offer promising output in the current scenario.

IX. CONCLUSION AND FUTURE SCOPE
DL approaches have been widely used in various
applications. However, in this paper, five major electrical
applications have been considered for review. In this work,
a comprehensive review of DL approaches towards solving
electrical problems like Insulator fault identification, power
line inspection, PV panel hot spot detection, Bearings fault
diagnostics and optimization of fuel economy in EVs has
been presented. DL has proven to have phenomenal uses in
different fields. The primary state- of-the-art architectures
have been reviewed, and we have obtained a comparative
analysis of them. An attempt to put forward a state-of-
art review on literature related to five major problems in
Electrical sector has beenmade. This will aid researchers who
have an area of interest in this field.

This work can be further extended to other fault diagnostics
in the electrical field. In the recent use of DL algorithms,
infrequent applications including wastewater management,
breast cancer detection and other non-electrical applications
are being made. So, the authors would like to extend this
review to explore the rare areas of application of DL algo-
rithms in the future. This would give an outline about the
various possibilities of using DL which will aid researchers
in using DL algorithms in a broader dimension.

The advancement in DL has principally been achieved
by exploring diverse variants in the architectures already
described in literature. These variants are validated
on a purely experimental basis and lack the practical

approach. Thorough understanding on choosing structural
features and a means to tune the parameters efficiently
requires expensive setup. Cross validation approach or a
validation set is used for tuning of the parameters of a model.
Hence it becomes a situation that is far from reality at present.
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