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Automatic Vision-Based Fault Detection on Electricity 

Transmission Network Components Using Very High-

Resolution Imagery and Deep Learning Model 

 

Abstract 
 

Electricity is indispensable to modern-day governments and citizenry’s day-to-day operations. 

Fault identification is one of the most significant bottlenecks faced by Electricity transmission and 

distribution utilities in developing countries to deliver credible services to customers and ensure 

proper asset audit and management for network optimization and load forecasting. This is due to 

data scarcity, asset inaccessibility and insecurity, ground-surveys complexity, untimeliness, and 

general human cost. In this context, we exploit the use of oblique drone imagery with a high spatial 

resolution to monitor four major Electric power transmission network (EPTN) components 

condition through a fine-tuned deep learning approach, i.e., Convolutional Neural Networks 

(CNNs). This study explored the capability of the Single Shot Multibox Detector (SSD), a one-

stage object detection model on the electric transmission power line imagery to localize, classify 

and inspect faults present. The components fault considered include the broken insulator plate, 

missing insulator plate, missing knob, and rusty clamp. The adopted network used a CNN based 

on a multiscale layer feature pyramid network (FPN) using aerial image patches and ground truth 

to localise and detect faults via a one-phase procedure. The SSD Rest50 architecture variation 

performed the best with a mean Average Precision of 89.61%. All the developed SSD based 

models achieve a high precision rate and low recall rate in detecting the faulty components, thus 

achieving acceptable balance levels F1-score and representation. Finally, comparable to other 

works of literature within this same domain, deep-learning will boost timeliness of EPTN inspection 

and their component fault mapping in the long - run if these deep learning architectures are widely 

understood, adequate training samples exist to represent multiple fault characteristics; and the 

effects of augmenting available datasets, balancing intra-class heterogeneity, and small-scale 

datasets are clearly understood. 
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1 Introduction 

1.1 Contextual Background 

Growing population and a shortage of energy availability have placed problems for 

economies concerning the development of effective manufacturing industry, citizens’ 

expectations, and livelihood sustainability. According to the United Nations (UN), 

electricity, among others, is a necessity for life [1]. The UN Sustainable Development 

Goals 7 for 2030 has specifically established one of their key priorities: improving 

equitable access to cost-effective, secured, and optimum energy (electricity) resources 

[2]. This can be done by expanding infrastructure and updating technologies to deliver 

sufficient energy facilities via consistent energy efficiency monitoring, particularly for 

developed countries. Accordingly, remote sensing techniques have proven to be an 

efficient tool in which defects such as corrosion and mechanical loss can be managed 

and identified, power component damage detected, and energy supply conditions 

monitored, especially with UAV surveillance [3]. As a result, various public-private 

partnerships (PPP) are being established to tackle and upgrade existing systems. One 

of the challenges for these PPPs is the current dilapidated state of most power 

transmission assets and infrastructure [4], [5]. Other challenges they face include 

meeting customer demands; forecast and distribution of customer’s load; excessive cost; 

customer service delivery; capturing of accurate, up-to-date information of network 

infrastructures and asset; network optimization; cybersecurity; fault resolution and 

outage; and technical and commercial losses [4]–[7]. 

In terms of faults in electrical transmission and control systems, defects such as 

breakage and corrosion are a significant source of in-service system deterioration and 

disruption [8]. Once faults are not handled at their early stages, it may soon affect system 

reliability, resulting in the drop in voltage, network diminishment, grid destruction, along 

with increasing outages, with ultimately impact threatening repercussions to the 

ecosystem [9]. This ultimately has unintended consequences in the form of cost and 

sanctions. This was further emphasized by an annual report released in the US, which 

evaluates the corrosion cost at about $276 billion in maintenance [10]. In other climes 

like Brazil, the 2010 large-scale blackout that impacted 11 of the 27 states containing 6 

million people was attributed to corrosion and wear of transmission lines [10].  

Before integrating the IT system in early 2010 [4], [6], manual methods were 

conventionally employed by the electricity distribution company. Electrical linesmen were 

sent to the site to inspect, track, and maintain distribution and overhead power lines with 

mechanical devices. This procedure generally included pole climbing, foot patrols, and 

vehicle inspection, involving just human subjectivity [3]. These manual methods are time-

consuming, labour-intensive, imprecise, and risky. Providentially, the current availability 

of fast computers, digital data acquisition technology, digital data processing technique, 

information technology, and geographic Information system brought a revolution into 

electricity distribution [4]–[7]. For example, in fault analysis, network optimization, asset 
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audit, load forecasting, customer indexing, and listing [4]–[7], GIS and GPS have been 

used to provide database management capabilities and pinpoint the location of electrical 

assets. However, this process is cumbersome and exposes utility staff directly to unsafe 

conditions during inspection [3]. 

As a result of these, other geospatial technique has been adopted. Most notable is the 

use of very high-resolution imagery (VHRI) via Unmanned Aerial Vehicle (UAV) 

surveillance using red-green-blue (RGB), light detection and ranging (LIDAR), radio 

detection and ranging (RADAR) [12], or a modular combination of any of these sensors 

[3], [11]. UAV monitoring offers high-spatial multispectral images that deal with the 

limitation of other techniques with the benefit that they can capture accurate images of 

transmissions components at closer proximity [13], which are very useful for the 

detection of small-scale defects such as broken fittings and missing knobs and can be 

incorporated with other modes of remote sensing. 

Most research only considers the transmission lines’ delineation after the data has been 

captured using different mathematical models. However, to create an automated vision-

based fault detection system for power transmission networks utilizing high-quality 

remote sensing imagery [13], a high-level vision task is needed to adopt a high-level 

vision task capable of advanced learning characteristics and generalization. Currently, 

improved algorithms and multilayer neuron systems such as CNN, DNN, and RNN have 

demonstrated more outstanding performance than standard approaches, particularly in 

power line identification, transmission components detection, and vegetation 

encroachment prevention [14]. The traditional approach for pattern recognition depends 

on the parameters that are well built by humans. Hence, this manual extraction process 

is inefficient, unfavourable, and inadequate for generalization necessities.  

Also, most machine learning approaches using primary neural networks need vast 

quantities of standardized hand-made structured training data in the form of rows of 

records, which can be cumbersome. With deep learning algorithms, visual perception to 

extract feature hierarchies and generalization ability is enhanced on several levels [15]. 

These algorithms have demonstrated that conventional learning methods are sluggish 

and unreliable; they require substantial post-processing attempts to differentiate 

between transmission infrastructure [16]. Succinctly, power transmission network 

mapping and defect inspection require a more advanced adequate hybrid classifier that 

is way beyond task-based approaches, promoting the improved performance of visual 

recognition tasks and successfully adapts from multimodal data sensors for object 

detection. 

Therefore, by leveraging VHRI and robust classifiers with deep learning models, the PPPs 

can ensure comprehensive and accurate track of the conditions, especially corrosion of 

their transmission line assets wherever they are, both as part of service provision, 

network expansion, and routine maintenance. Additionally, for many electricity 

companies, especially private electricity distribution Companies: a critical step in 

ensuring smooth service delivery lies in monitoring the electricity distribution assets [4], 

[7]. Hence, they must know what assets they have, where they are, their state, and how 

they are working. 
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1.2 Problem Statement and Motivation 

In traditional operations, utilities must power off entire distribution grid sections to identify 

damaged outgoing lines. Many power grids are linked across the network. A domino 

effect in one field can also lead to supra-regional blackouts [11]. After finding the 

damaged line, technicians will power the faulty line part by part until they ultimately locate 

the ground fault. This process often takes several hours or even days, further made 

strenuous by unfavourable weather conditions and mountainous terrain. Usually, field 

and airborne surveys that are quite challenging are standard methodologies used for 

decades for inspecting power networks [3], [11]. However, this traditional approach is 

limited in terms of accuracy and ability to extract features at multiscale as well as portrays 

a low-level generalization ability. In recent years, several studies have been undertaken 

to automate the inspection of defects using remote sensing satellite and aerial images, 

including LIDAR, SAR, and optical images; however, very little public analysis and 

implementation have been adopted and published. They focus mainly on mapping and 

monitoring the power line components and vegetation invasion encroachment adjoining 

transmission lines. These studies are generally carried out majorly in developed countries 

like China, where adequate data with high quality are easily acquired by qualified 

technical know-how propelled by the right motivation and adequate funds. Alternatively, 

developing countries such as Nigeria are limited to such very high multispectral data 

needed for a complete overhaul of transmission assets. 

Nigeria’s development agenda is anchored in a vision that identifies energy as one of the 

vital infrastructural enablers for development. For a country to successively make a 

significant positive transition in development, it must have efficient, reliable, vast, and 

environment-friendly energy source transmission. This power should also be availed at 

the points of demands consistently and effectively. This means that majority of the burden 

of energy demand is on power companies to provide and transmit quali ty energy services 

to consumers. Against this backdrop, the recent images available inspire research and 

development in maintenance and asset inventory to overcome such difficulty and look 

for effective and sustainable solutions. Based on that, deep learning has demonstrated 

potential promising advances in power line component inspection and other study fields. 

Thus, the potential solution of developing an automatic vision-based fault detection 

system that uses multispectral images and deep learning (DL) framework also adds 

motivation to conduct this study. 

1.3 Research Aims and Objectives 

This research seeks to detect and inspect vision-based components’ faults on the 

electricity transmission line using very high-resolution UAV imageries (VHRI) and deep 

learning techniques (DLT). To achieve these main research aims, the following sub-

questions are addressed: 

a) Which different hyperparameters finetuning yields the best results in the 

implemented deep learning model? 

b) To what extent will the deep convolution neural network perform based on 

the predicted component fault classes’ performance metrics analysis? 
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1.4 Contribution 

Most current studies focus separately on either identifying transmission assets or 

detecting a single fault on transmission components individually using either traditional 

methods or DL. However, this research focuses on the following contributions: 

→ Explore the feasibility of using a single-phase deep learning model and affordable 

drone surveillance to develop a power line component fault detection and 

classification pipeline for a series of faults (multi-class) that typically exists on 

power transmission components. Based on my understanding, very little 

research has been carried out here as most implemented or underway 

are proprietary and have provided little benefit to the research communities and 

electric utilities.  

→ Empirically, evaluate via comparative analysis different backbone architectures 

to classify and localize multi-class electric power transmission component fault. 

1.5 Thesis Organization  

This thesis is divided into seven chapters. The remainder of this thesis is organized as 

follows. Chapter 2 reviews vision-based inspection in the electric power transmission 

network (EPTN). It further evaluates the related works on the existing approach and 

technique utilized for electric transmission components fault detection. Chapter 3 

provides a theoretical background needed to understand the basic concept approaches 

applied to the thesis methodology. Deeper explanations are given on the convolution 

neural networks (CNNs) basic building blocks concept and image classification that 

serves as backbone architecture for feature extraction. In addition, a brief exposition of 

the SSD as the meta-architecture of choice is presented. Chapter 4 outlines the research 

location and describes the dataset used in the potential deep learning models. It further 

describes the research problem, i.e., how each components’ faults appear. Chapter 5 

describes extensively the method adopted in this work. It provides details about the data 

pre-processing, network training of the deep learning framework, and the 

hyperparameter augmentation and validation approach. 

Furthermore, the evaluation and performance metrics utilized are established. In Chapter 

6, the evaluation and comparison of hyperparameter configurations and results over the 

three implemented SSD-based models were discussed via outline, graphs, and 

overview. It aims to show fusing deep learning and high-resolution RGB oblique imagery; 

it is feasible to build a model that better identifies component fault of interest in cluttered 

backgrounds.  The thesis concludes by summarizing the findings and possible directions 

of the analysis for future works in Chapter 7.  
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2 Literature Review 

2.1 Vision-Based Inspection and Faults Diagnosis in Electricity Distribution 

The inspection of electric transmission lines (ETL) has become an essential concern 

because virtually all human communities, processes, and mechanisms rely on electricity. 

External forces, especially meteorological influences, have been identified as the primary 

cause of the collapse of electric power transmission networks (EPTN) [18], [20]. Hence, 

frequent monitoring and assessment of the transmission line are necessary to strengthen 

and sustain the transmission network and provide reliable and quality service delivery to 

customers [5].  

According to Chen et al. [21], faults associated with electrical power grids are described 

as accidental short circuits, or a prolonged short circuit, between power-conductors or 

an energy-efficient conductor and the ground due to wear, corrosions, and interruptions 

by adjoining ecosystem, causing irregular electrical current. Generally, ETL faults are 

classified into symmetrical (balanced) and unsymmetrical (unbalanced). In engineering, 

a fault is symmetric if it impacts all phases equally (three lines), while it is unsymmetric 

when it does not affect each of the phases equally [18], [23]. Nonetheless, many power 

system failures are fundamentally unsymmetrical. This is because the current induces 

unevenness. This implies an unequal difference in the frequency of fault currents along 

the usual three-phase conductor (wires) present in the ETL [18]. 

The electricity line inspection aims to verify these faults on a power line, the output of 

which is used as a reference to determine which components to retain or replace. A 

precise and straightforward inspection will make sustaining decisions more effective and 

reduce the risk that the transmission network will fail, facilitating secure and stable power 

distribution [3], [19]. Overhead power line inspection by a human observer and airborne 

surveys is the most utilized means for regular inspection and power line maintenance. 

With the increased advancement of technologies, geo-referenced remote sensing 

techniques such as the Unmanned Aerial Vehicle (UAV) mounted with different sensors 

have become a great alternative providing rich data sources for data analysis.  

The UAV is operated manually or automatically along the power lines corridors. Multiple 

sensors are used on the aircraft to track and gather data during this operation. A variety 

of benefits of the UAV make it a preferred inspection method: 1) Proximity to problematic 

areas, which allows data collection incredibly versatile, 2) Ability to load multiple 

inspections sensing instruments, 3) Fix low-efficiency issues and line harm, 4) saves time 

and human resources and is associated with a high rate of safety. With this technology, 

data processing is distinguished from data acquisition using digital data captured 

via remote sensing sensors and laser scanners. This is especially relevant as data 

acquisition practices now concentrate solely on cost-reduction; hence, allowing precise 

assessment, repeated study, and persistent data storage enabling multi-temporal 

analysis and evaluation [3]. 
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The UAV images serve as an inexhaustible source of information for utilities to know 

where assets are located, their functional status, and to determine their net worth. This 

falls into a broader system that assists with a well-organized inventory of distribution 

facilities for optimum electric lines, pole support infrastructures, transformers, and all 

network assets fault diagnosis [3]. Combining these data with scientific and technological 

developments like artificial intelligence enables an ever-increasing volume of data to be 

processed and has increased growing research on the use of UAV survey imageries to 

allow the conditions on power lines to be distinguished automatically [24]. In the 

classification of the insulator status, Zhao et al. [25] have proposed object detectors and 

insulator fault detection processes utilizing multi-patch in-depth features learnt from the 

aerial images to classify the insulator into normal, damaged, dusty, and missing caps.  

2.2 Remote Sensing in Power Line Inspection 

To investigate the electric power transmission network (EPTN) usually located in remote 

areas, various data sources ranging from coarse-resolution satellite images to detailed 

ground images and point clouds obtained via ground vehicles are utilized. These data 

sources primarily result from optical, microwave, and LIDAR (LASER) remote sensing 

techniques. These approaches provide multispectral imagery with varying temporal 

resolution access based on operational capabilities and technical limitations [11]. 

Studies presented using microwave sensing imageries, majorly employ synthetic 

aperture radar (SAR), have noted the advantage of being acquired in all weather 

conditions, making them particularly interesting to inspect powerlines, most especially 

during disaster monitoring [27]. 

For example, Xue et al. [27] utilized SAR image-based systems for landslide detection to 

measure electricity towers’ damage. Based on pixel resolution, morphology algorithm, 

and location of the damage caused by landslides, the authors detected and geotagged 

power lines damaged by landslides directly. The use of TerraSAR-X imagery of high-

resolution in spotlight mode with 300 MHZ range bandwidth to track power line towers 

in natural disaster situations was discussed by Yan et al. [28]. SAR imagery was 

preferred to optical imagery as the author points out that SAR geometry makes it suitable 

to detect vertical, human-made objects, such as power towers. The critical theory was 

that towers were finally derived from single imagery, and the estimated tower height 

information was used to detect fallen or deformed towers. 

Sentinel-1 SAR satellite from the European Space Agency, ESA, and other very high-

resolution (VHR) SAR images (TerraSAR, RADARSAR) that are higher than five metres 

have recently opened a wide range of surveillance, tracking, and monitoring of power 

transmission systems [29]. However, VHR SAR for EPTN seems impacted by distortions 

connected to imagery, the particularly pseudo-random variation of the different 

components imprints, making it semantically challenging to interpret [30]. They are also 

limited by coarse resolution to detect small defects in electricity transmission 

components, geometric deformations, strong noise-like effect creating false 

representations, and multi-path scattering [11], [27]. In light of this, various studies of 

transmission line inspections utilize multispectral images acquired from optical satellite 
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remote sensing, as it allows for straightforward interpretation. However, these data are 

still restricted by resolution in power line inspections.  

Optical remote sensing has focused on fault diagnosis for the different EPTN components 

themselves because the ground sample distance (GSD) is usually greater than the 

individual components’ size, especially for those caused by the adjoining environment. 

As a result, most power line inspection research is fixated on vegetation encroachment 

and minimum height and clearance distance [14], [31].  Additionally, a stereo pair of 

optical satellite images have been utilized to extract the canopy height model to monitor 

damages to EPTN caused by vegetation [32]. This has allowed the identification of 

individual overgrown trees affecting power lines with high accuracy. The studies on 

vegetation encroachment faults affecting transmission lines from satellite and aerial 

images have habitually utilized the classification of trees, extraction, vegetation indices, 

and segmentation approach. Vegetation invasion on transmission lines was studied by 

Ahmad et al. [31]. The paper explored the use of multispectral satellite stereo imagery to 

simulate transmission lines using a 3D digital elevation model (DEM) to detect dangerous 

vegetation branches that could affect power lines and cause blackouts.  

Apart from vegetation encroachment, a variety of papers addressed automatic 

inspection of insulators’ condition. These techniques aimed to take images of the 

insulators periodically and use automated classification methods to identify damaged 

insulators. Reddy et al. [33], for example, used fixed cameras on poles. Jiang et al. [34], 

using a photogrammetric method, addressed flashover faults - pollution-related flashes 

affecting insulators. In the experiment, a sensing camera placed on a tripod was used. 

However, most remote optical sensing techniques are primarily restricted by the 

atmosphere. Consequently, using the Lidar method through airborne laser scanning or 

mobile laser scanning has also been used to improve the shortcomings of multispectral 

optical images to detect and identify tall trees that may collapse through the conductor 

and exceed the required vegetation clearance. In responsive inspections and audits for 

transmission lines, such as catenary modelling for thermal upgrade and vegetation 

encroachment research, Ussyshkin et al. [35] explored using LIDAR data. 

Other remote sensing techniques have further involved integrated sensors, which majorly 

involves integrating ultraviolet images over both an infrared and multispectral visible 

colour image. For instance, a UAV surveillance incorporated with optical and thermal 

Infrared sensors was identified by Luque Vega et al. [36] for the power transmission 

network. The corona impact can be located by utilizing the different layers’ stack, and 

the ultraviolet/infrared image can be analysed for damage and phenomenon magnitude 

[11]. The most exciting uses for satellite data concerning power lines have been 

automatic extraction of power transmission components [11], power lines affected by 

vegetation encroachment [17], damaged transmission tower [27], and damaged 

conductor faults at a coarse level over large areas [26]. It is possible to apply optical and 

SAR images. Airborne and terrestrial scanning systems have more reliable information 

than satellite imagery, but it is impossible to regularly cover vast regions. Optical images 

captured by UAVs are proposed as a data source since (i) they are easily accessible and 

available, and (ii) they can be analysed very quickly, while (iii) ample information is given 

for the identification of a wide variety of common small defects in both power components 
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and power lines. Most literature has yet to address more than one fault affecting the 

power line and detect small faults. 

2.3 Traditional Approach for Power Transmission Lines Fault Detection 

Optical imagery, particularly multispectral RGB images, has proven to be effective means 

for automatic inspection and identification of power transmission lines components 

compared to traditional ground-based surveys, which consume a lot of money, time, and 

human resources [37]. Hence, making it a better choice of detecting and classifying 

faults critically across electricity networks. In terms of fault detection approaches, they 

can be grouped into two types in general: supervised and unsupervised classification 

[38], [39]. Many methods for the automated identification and monitoring of the electric 

power transmission network (EPTN) faults have been implemented in recent years using 

supervised classification.  

The typical detection process can be divided into two stages: extraction of feature and 

feature (fault) classification [24]. Features are extracted from images and subsequently 

inserted into the classifier to identify the components’ faults. Significant parameters for 

these features (ETPN components) classifications, which are primarily used, include 

colour, form, texture, and fusion. A widely used approach applied to check faults of power 

line components primarily involves clustering, mathematical-based techniques such as 

Hough transform, Gabon filters, and low-level filters. In detecting broken transmission 

line spacers, a Canny edge detector combined with Hough transform [40] by Song et al. 

extracts the conductors.  First, a scan window was formed in the path of the conductor. 

During the convolution process, if there are a candidate’s spacers, they are recognized 

in all sliding windows. Finally, the shape configuration parameter was structured to 

decide whether the sensed spacer was broken based on the measurement of linked 

parts. However, several factors can make it challenging to extract power line 

components’ faults automatically. These include complex background, camera viewing 

angle at the moment of capture, background light and spectral resonance, weather, and 

seasonal changes in the background [3], [11].  

The icing status of insulators was measured by Hao et al. [41] on the basis of the iced 

insulator geometric framework. The knowledge-based rules were designed to define the 

glaciation state by the distance between two neighbouring insulator caps using Graphical 

Shed Spacing (GSS) and Graphical Shed Overhang (GSO). Similarly, an improved 

uniform LBP (IULBP) was proposed for feature extraction of thaw insulator using the 

texture variable difference between predefined ice template type and the feature 

extracted from IULBP Yang et al. [42]. Zhai et al. [43] exploited Saliency Aggregating 

Faster Pixel-wise Image (FPISA) for insulator extraction. Based on the colour channel in 

Lab colour space, the observed insulator’s flashover region was extracted. The system 

was tested using 100 flashover fault insulating images and obtained a detection rate of 

92.7%. Zhai et al. [44] and Han et al. [45] detected the faults associated with missing-

cap of insulators based on saliency and adaptive morphology (S-AM).  

One of the most challenging fault diagnosis tasks is faults with a tiny aspect ratio on the 

EPTN components, for instance, power line fitting such as missing pin, nut, bolts, and a 
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small degree of fault severity on some large components. To detect such kinds of faults, 

aerial images are captured close to the exact components containing the faults or the 

components (or faults) cropped from the original image manually [46], automatically, or 

via segmentation [47]. Fu et al. [48] implemented a dynamic model for the missing pin 

type of faults. The fitting is usually a combination of multiple sections, such as pin and 

nut, for example. The haar-like attribute and Adaboost classifier was used to detect each 

part of the fitting. The methodology involved first extracting the segmented region and 

circles with LSD. and Hough transform, respectively, to identify the missing pin. The 

missing pin fault was finally obtained and then observed based on the distance limit 

between the centre of the circle and the pin section. This procedure was validated using 

42 images. Out of the five images with pin fitting identified, only one of them was classified 

correctly. 

In terms of conventional classification, machine learning-based algorithms have also 

been used as the feature classifier, primarily Adaboost [48], SVM [49], which have been 

applied successfully to detect foreign bodies on conductor faults. Most literature has 

dealt with majorly components detection over the years compared with fault detection 

associated with these components. Essentially, a fault has different types and affects 

different components, requiring robust architecture to tackle the problem. Overall, most 

faults detected focused on the missing insulator head, while other EPTN fault types 

are limited. Study on the other components continues to dwindle because of variations 

of components, inadequate data, and inappropriate scale. Furthermore, in most cases, 

each research study is centred only on one fault of a particular component. Hence, the 

deep learning concept is proposed to handle some of these limitations that have been 

stated above. 

2.4 Deep Learning Algorithms for Power Transmission Lines Fault Detection 

Prior studies have employed the deep learning approach to multispectral images (RGB 

channel) for fault detection. Most of them have achieved better performance than the 

study using knowledge-based or physical parameters as described above. The articles 

[46], [47], [50], [51] contain comparative studies for a single type of fault. The most 

notable deep learning models have been developed for EPTN faults with several essential 

considerations in mind due to the need for robustness and generalization capability. 

These considerations include data augmentation, data resizing to deal with small aspect 

ratio, and high-resolution images collected from UAV. Data augmentation 

is usually adopted to overcome data insufficiency, add variability, and increase the 

robustness in research [47], [50], [52], [53]. DL is a deep convolution neural network 

(DCNN), which offers a hierarchical representation of knowledge that facilitates a greater 

understanding of problems’ complexities [16]. Promising DL approaches used to detect 

faults through EPTN components are addressed in this section. 

Deep learning-based object detection consists of two components: a DCNN for the 

feature extraction model (also referred to as a backbone) and the object classification 

and localization scheme (meta-architecture) for the project [54]. According to the 

detection system, the DL-based detection process is classified into two categories: the 

two-stage and the one-stage detection approach [54]. The former consists of an 
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additional stage for region proposal network formation and abstracting the region of 

interest (object) such as Faster RCNN [55] and R-FCN [56]. The latter stage does not 

require proposals network generation. The one-stage detection approach, for instance, 

SSD [57], eliminates the protocol for proposal generation and reduces processing 

operations, storage requirement, time, and computing capacities. 

One of the earliest works on fault detection was detecting surface discoloration due to 

flashover on insulator using CNN classifier with pre-trained AlexNet published by Zhao 

et al. [25]. The experiments were performed with a score of 98.71% mAP on 1000 

samples. Faster R-CNN was applied by Liu et al. [53] to identify insulators with missing 

caps. The system was tested for three different voltage transmission line levels with 1,000 

training samples and 500 research samples prepared for each level. About 120 

photographs (80 for training) were used to test the diagnosis of missing cap fault. The 

entire experiment was carried out by resizing all images to 500 x 500 pixels and flipping 

and cropping to expand the dataset. Similarly, Jiang et al. [58] developed a novel 

approach using SSD as the meta-architecture for multi-level perception (low, mid, and 

high perception) based on ensemble learning to extract the missing insulator fault from 

the image resolution of 1920 × 1080-pixel. The middle and high-level perception images 

are made via the ROIs Union Extraction (RUE) image pre-processing. The proposed 

approach’s absolute precision and recall rates were 93.69% and 91.23% on the test 

image dataset with various perception levels containing missing cap insulator problems. 

However, these papers considered the contextual characteristics of one type of fault that 

affect the insulator component. 

One particular issue in power line fault detection using deep learning CNN is data 

insufficiency. This is because the DL model is required to generalize the solution at the 

end of the training. To achieve this, a robust and large amount of dataset is usually 

required.   In the previous papers to tackle this challenge, attempts were made, such 

as synthesized images (e.g. [59]) and data augmentation (e.g., [52], [53]). Other 

researchers have examined the use of transfer learning and few-shot learning to identify 

fault types. The model was first developed using the ImageNet data kit, which included a 

1.2 million samples dataset.  This same model was then trained, i.e., fine-tuned by the 

limited data set obtained containing the surface fault of insulators by Bai et al. [60] based 

on the SPP networks (SPP-Net) with transfer learning approaches. This allowed the 

weight optimization to begin at top layers (where there is a different feature complexity 

from the original training data utilized) in the 3D CNN of the SPP-Net adopted rather than 

for the whole model. 

In recent years, there have been few efforts to develop the deep learning approach, 

which has made it ideally suited for identifying power lines faults. Typically, a two-step 

object detection technique is commonly utilized: first, to identify the component and 

second, to detect the fault in those components. In this light, Tao et al. [59] developed 

two separate backbone models, D.D.N. and I.L.N. (V.G.G. and ResNet, respectively), 

based on domain knowledge of EPTN components structure. In order to find a missing 

cap fault, a cascading architecture combining a custom-developed Insulator localizer 

Network (ILN) and a Defect Detector Network (DDN) models were utilized. The ILN 

identifies all the insulators in the aerial image and then cuts the detected areas and feeds 

them into the DDN.  A total of 900 regular images were collected from UAV for this 
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experiment and 60 defective images. Data insufficiency was tackled by segmenting the 

image using the U-net algorithm to divide the output of the ILN into insulator and 

background. The segmented insulator was then combined with distinct images of 

different backgrounds to mimic real-life background situations concerning insulator 

position. The result of this was then merged as input for the DDN development. Finally, 

about 1956 pictures for ILN (1186 for training) and 1056 images with missing caps (782 

for training) were prepared. The DDN detection precision and recall are 0.91and 0.96. 
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3 Theoretical Background 

3.1 Convolutional Neural Network 

Convolutional neural networks (CNNs) are an ensemble of artificial neural networks 

designed to recognize and identify objects or images on the basis of their ability to learn 

spatial, topological, and contextual representations and patterns resulting from internal 

activations, usually an input image [24]. The CNN architecture consists of the input layer, 

the hidden layer, and the output layer, similar to the multilayer perceptron (MLP). The 

input and output layers are known and describe the input image dataset and its 

corresponding class label annotation (or associated prediction). The hidden layer(s) is 

the most important, denoting the layer depth is mainly divided into three layers: 

Convolutional, Pooling, and Fully Connected, also known as Dense Layer [61].  

 

Figure 3.1: Basic components of the CNN in contrast with MLP [86]. 

These groupings are developed as compact layers. The central core of the neural 

networks is to maximize the weights of the kernel filter. In general, each hidden layer 

detects increasingly complex patterns for these convolution networks, starting with 

simplistic features and moving on to abstract complex pattern combinations, as the 

network goes deeper and closest to precisely determining output [54]. In its heart, CNN 

can apply both the classification and regression principle to the same problem. The CNN 

framework is generally used to classify images, localise objects or detect objects used 

on images from various sources. For this purpose, researchers use different 

architectures or networks to construct a useful generic model in the pipeline [62]. 

3.1.1 Basic Architecture 

CNN’s (convNet) simple concept consists of alternately layered blocks of convolutions 

and pooling layers and a final fully connected layer. The alternating convolution blocks 

are an output of the convolved filter(s) consisting typically of convolution layers and 

accompanied by batch normalization layers. New feature characteristics are learnt and 

stored by the individual kernel filter layer output at each composite block. The learning 
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recognition becomes more complex until it reaches the top layer or block and class 

prediction nodes, as shown in Fig. 3.2. 

 
Figure 3.2: CNN with two convolutional layers, two pooling layers, and a fully connected layer, which 

allows for the final classification using class probability scores [50]. 

Convolutional layer 

Convolution is a mathematical term that combines two functions to produce a third 

function as a matrix interaction [61]. The convolution layer is the central core of the 

ConvNet composed of filters (also kernel), applied across the image to learn and 

determine various features the network has acquired. The convolution layer computes 

the dot product’s output between their weight and similar size positions in the input region 

from the previous convolution block [15]. Convolutions are executed by sliding the filter 

or weight over the input image to form the feature map. The feature map is the product 

bound to local patches representing the convolved filter’s sliding over the previous layers 

[62]. The output of each convolution layer can be computed using the formular below: 

𝑐𝑚 = 𝑓(𝑊𝑚 𝑖𝑚  +  𝑏𝑚 ) 

where cm is the output feature map (activation map) derived by the dot product between 

the input (preceding) convolution layer and all the filter with weight matrix Wm of kernel 

size W × H, and bm is the convolution layer’s bias, and f represents the non-linear 

activation function. 

 

Figure 3.3: Interaction of Convolution layer [15]. 

cm 

W 

i 

 (3.1) 
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The convolution process samples the image output by a feed-forward product based on 

the input image’s filter size. To prevent this, padding, P is applied primarily to uphold the 

original input image size. It is just a mechanism by which the zero layers are applied to 

the image boundary.  When the output function map is the same dimensions as the input 

image, it is referred to as the same padding, where no such padding is applied at all; it is 

referred to as valid padding. Also influencing the feature map size is the stride and depth. 

The stride, S refers to the step size taken when the kernel of size k x k slides over the 

input image while the depth describes the number of kernel filter which learns different 

image features and context. To ensure the image cover the full input image 

symmetrically, the following equation does the check [63]: 

(𝐼−𝑘+2𝑃)

𝑆
 

Fully Connected Layer 

This is where the final decision is made. The FC layer is usually situated at the end of a 

typical developed CNN’s network architecture chronologically following several 

convolutions and pooling layers. The FC layer captures and positions the previous layers’ 

output into n (class number) vectors inserted as the final step. Each number in this n-

dimensional vector is likely to belong to one of the predefined groups (number of classes 

defined) [64]. If several FC layers are present, the initial layers are used to predict the 

right labels from the dot product of the final ConvNet and applied weight. The last FC 

layer then provides the final class probabilities for each label [65]. The last fully-

connected layer uses the activation function to classify the input images’ generated 

features into several classes based on the output sample. Neurons in an FC layer are 

connected to all the previous layers’ activations, cognate to the multilayer perceptron 

(MLPs) output layer [63]. 

3.1.2 Gradient-Based Learning 

Generally, most current training of convolution neural network (gradient-based learning) 

algorithms is based on three key elements: (i) forward computation, (ii) Loss 

computation, and (iii) backpropagation and parameter (weight) updating. The backbone 

of deep convNet learning utilizes a similar principle as the MLPs. The cost (loss) review 

functions and optimisation procedures determine the formation of useful convolution 

neural networks. 

 (3.2) 
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Figure 3.4: Gradient-based learning [62]. 

Forward Computation 

In the forward computation, the input is supplied via the neural network architecture, 

which comprises interconnected layers (ConvNet), pooling, and fully connected layers 

as defined in the last subsection 3.1.1. Depending on the network architecture 

(classification or regression or both), the network generates the expected mark values 

(class probabilities or score). 

Loss computation and Loss function 

The network performance is improved by changing the parameter values, including 

weights and biases, acquired from the network. The optimization problem describes the 

complexity when deciding the optimum set of parameters that the loss function quantifies 

[66]. The loss function quantifies how much error the current weights produce. The 

nature of the loss function will be calculated according to the model’s output units based 

on the cross-entropy between the data distribution and the model distribution [62]. For 

instance, the binary cross-entropy loss function is used for training models with sigmoid 

output units, whereas the categorical cross-entropy is used for training models with 

softmax output units [67]. 

Back Propagation 

Backpropagation is a method to minimize the Error function (loss or cost). This function 

is based on the internal parameters of the model, i.e., weight and bias. The current error 

is typically propagated backward to a previous layer, where it is used to modify the 

weights and bias so that the error is minimized [62]. Weights are updated usually by the 

optimization function. The optimization functions measure the gradient (partial derivative) 

of the weight-loss equation and boost weights to the opposite direction of the measured 

gradient using the chain rule [68]. This loop is replicated until the global minimum is 

achieved. 

A stochastically extracted input vector x abstracted in the form of a batch size of the 

training dataset is propagated over the network, layer by layer, to measure a J(θ) scalar 

cost once it reaches the output layer. 

h =  𝑓1 (x, θ1) (3.3) 
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ŷ =  𝑓2 (h, 𝜃2) 

J(𝜃) =  
1

2
(ŷ − 𝑦)2 

The vector x represents the input (image batch), which is then utilized by the hidden layer 

to output a vector, h = f1 (x, θ1), where θ1 is the kernel filter weight of the hidden layer. 

The output layer receives the hidden input vector, h, and generates the output value ŷ = 

f2 (x, θ2), and which θ2 represents the weight of the output layer. f1 and f2 represent the 

activation function or classifier utilized to generate the output at the hidden and the final 

output layers. The scalar cost J(θ) is then backwardly distributed over the network, layer 

by layer until the first hidden layer is reached, to quantify the gradient of the network 

∇θJ(θ): 

∂𝐽(𝜃)

𝜕 ŷ
= (ŷ − 𝑦)2  

∂𝐽(𝜃)

𝜕θ2

=
∂𝐽(𝜃)

𝜕ŷ
 

𝜕ŷ

𝜕𝜃2

 

∂𝐽(𝜃)

𝜕𝜃1

=
∂𝐽(𝜃)

𝜕ŷ
 
𝜕ŷ

𝜕ℎ
 

𝜕h

𝜕𝜃1

 

∇𝜃 𝐽(𝜃) = ⟦
∂𝐽(𝜃)

𝜕𝜃1

,
∂𝐽(𝜃)

𝜕θ2

⟧ 

The network’s weights θ are updated based on the computed gradient as follows: 

𝜃1 =  𝜃1 −  𝜂
∂𝐽(𝜃)

𝜕𝜃1

 

𝜃2 =  𝜃2 −  𝜂
∂𝐽(𝜃)

𝜕𝜃2

 

Some of the challenges of gradient-based learning include (i) Overfitting - where the 

model is good at understanding the training set but poorly interprets the test set, i.e., 

comparing the train loss/accuracy with the validation loss/accuracy. (ii) Vanishing and 

exploding gradients - The problem of the vanishing gradient describes the 

model learning is either very slow or ceases operating. In contrast, gradient exploding 

describes when the gradient signal increases exponentially, allowing learning to be 

unstable [69]. (iii) Hyperparameter tuning and model interpretability. Several optimization 

algorithms exist to make the training process faster, like Stochastic Gradient Descending 

(SGD) with momentum), Adaptive Gradient (AdaGrad), Root Mean Square Propagation 

(RMSProp), and Adaptive Moment Estimation (Adam). 

3.1.3 Generalization of a model 

A learning algorithm’s strength is associated with its ability to generalize, i.e., handle 

unknown data. In addition to the generalization theory, there are two circumstances for 

model training: under-fitting and over-fitting [62]. Underfitting happens where the model 

trained is too straightforward to learn the data’s underlying structure and fails to capture 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 



 

17 

significant variables representing the reality of the situation being modelled [15]. In 

contrast, overfitting typically occurs in the case of complex models. Here the model 

learns unimportant information and makes noise more meaningful [64]. This may also be 

attributed to too many distinct classes (labels) at the output layer. Both conditions tend 

to make generalizations crappy. In under-fitting, a variety of approaches can be applied 

to fix it, such as using a more effective model with more parameters, having better 

functionality for learning algorithms, or reducing model limitations by reducing the 

hyperparameter for regularization [69]. In the case of over-fitting, certain approaches 

can be applied, such as simplifying the algorithm, minimizing the number of parameters 

(the use of additional parameters tends to contribute to a model that is vulnerable to 

over-fitting), gathering more training data (e.g., using data optimization techniques), and 

others. One or more loss functions are used to calculate this, which may vary based on 

the type of problem being faced. During the planning phase, the main goal is to reduce 

this shortfall. 

Regularization 

During training, models can sometimes find features or interpret noise to be important in 

a dataset due to their ability to memorize features concurrently. Consequently, there is a 

need to reach convergence, i.e., a level where the model optimally detects new tests or 

unseen data. Hence, regularization provides such a solution [15]. The aim is to minimize 

the amount of unpenalized costs considered a penalty term, consisting of other bias, and 

prefer a simplified model to minimize the variance and penalize larger weights. The 

penalized model involves trade-offs as it decreases uncertainty and therefore avoids 

overfitting. Several methods are suggested to regularize the model to avoid overfitting 

during training, utilized in this research. They include L1 and L2 regularization, drop out, 

the max norm regularizer, and data augmentation. 

3.2 Image Classification 

One of CNN’s most popular applications is possibly an image classification that attempts 

to identify the prevalent object type in an image dataset. Deep convNet utilized for image 

classification is based on the performance of convolution layers as its studies edges, 

patterns, context, and shapes resulting in a convolution feature map having 

spatial dimensions smaller and deeper than the original [64]. The progenitor of the image 

classification architecture referred to as feature extractor in object detection solutions is 

AlexNet with an 8-layer CNN, i.e., 5 convolutional layers + 3 fully connected layers 

developed by Krizhevsky et al. [70] in Imagenet challenge of 2012. 

MobileNet 

Mobile networks are lightweight deep neural networks. MobileNets and its derivatives 

were implemented to substitute a much deeper network constrained by the speed in 

achieving satisfactory output and real-time applications. This design’s idea is that the 

regular neural network convolution layer is broken down into two filters, depth-wise 

convolution and pointwise convolution [71]. The convolutional filter is more 

computationally complicated than depth-wise and pointwise convolutions. To achieve 
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this model implementation, each channel is convolved with its kernel, called a 

depthwise convolution. Next, the pointwise (1 × 1) convolution is done to abstract and 

integrate the individual intermediate output from the depth-wise convolution into a single 

feature layer. Figure 3.5 shows the typical convolution form and the MobileNet way of 

convolutions. It is shown that depthwise separable convolutions, at lower computational 

cost, are a better solution to the problem. 

 
Table 3.1 Detail layer for MobileNet Architecture [71] 

 

 

Figure 3.5: Concept of MobileNet results in lightweight CNN with 4.2 million parameters compared with 
VGG16 (138 million parameters) [71]. 
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Resnet 

Residual Network is also known as ResNet, which uses the concept of residual learning 

(by the subject of skipping). Residual networks were built with shortcuts to whole 

networks inspired by VGG networks [72]. To dissociate with the concept of increasing 

depth when creating CNN architecture, ResNet proposed a shallower network using 

shortcut connections, i.e., directly connecting the lth layer’s input to an (l+x) layer. The 

significant ability to train very deep CNNs in 50, 101, and 152 layers with great successful 

connections are attributed to the regular cut-off’s connection among the DCNN blocks. 

Necessary information of ResNets 50 and 101 are listed in Table 3.1. 

  

Figure 3.6: Architecture of ResNet [72] with the concept of a residual block (shortcut connections) [73] 

 
Table 3.2: Detail architecture of Resnet 50 and Resnet 101 [72]. 
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3.3 Object Detection 

Object detection follows the deep learning concept based on incorporating additional 

layers to neural networks to solve complex problems. Object recognition goes deeper 

and incorporates the idea of the image positioning of the object. It is a mixture of two 

tasks: object localization where bounding boxes are defined, which are made up of four 

variables (x-y-coordinate, width, and height) describing the rectangle that defines 

the object extent and the classification of the object within the selected bounding boxes 

to be uniquely defined [24].  

The object detection follows the concept of the basic architecture of the CNN as 

discussed in section 3.1.1 and described by Equation 3.1 with multiple sliding windows 

capable of providing solutions to both the classification and regression problem. 

Multiclass object detection is enforced by thresholding the output feature maps, defined 

by several hyperparameters, to achieve the stated hypothesis to form a concrete 

response, i.e., an object class and a bounding box. However, this simultaneous 

localisation and classification process results in several instances labelled as objects, 

resulting in duplicate detections. Hence, the application of the non-maximum 

suppression (NMS) module to eliminate duplicate detection. In a nutshell, the resulting 

bounding box score with high-class score prediction was picked using a greedy strategy, 

and consequently, the remaining boxes with less than 50% overlap are deleted. 

Various architecture has been developed for object detection, however choosing the 

best fit for any dataset is usually a herculean task because of the numerous base features 

used in extractors, different image resolutions, and various processing and computation 

trade-offs [74]. However, most custom-developed models are differentiated and chosen 

in terms of the trade-off between speed and accuracy. Several deep learning models 

implement object detection; however, based on these trade-offs discussed, the SSD [57] 

model is utilized in this study. 

Single Shot Multibox Detector (SSD) 

The SSD approach is focused on a feed-forward-based convolution network generating 

a fixed-size bounding box set and scores of object instances present in these boxes and 

a final detection process based on a non-maximum suppression criterion [57]. The early 

network layers are constructed on a standard image-classification architecture known as 

the base network (i.e., the classification layer without the flattened fully connected layer). 

SSD supersedes its counterpart, YOLO, by introducing several modifications: (i) multi-

feature maps from subsequent networking stage are predicted to allow multiscale 

detection; (ii) object classes and offsets at bounding box locations are predicted using 

regular sized small convolutional filter; and (iii) after deriving final feature map, different 

predictors (classifiers) are used to identify objects at varying aspect ratios in the form of 

feature pyramids [75]. SSD’s comprises two main parts: A feature map extractor (VGG 

16 was used in the published paper, but ResNet or DenseNet can also be utilized to 

provide better results) and the convolution filter for object detection. 

SSD attaches additional convolutional layers (feature layers), i.e., multiscale features and 

default boxes, which causes a steady decrease in size up to the end of the primary 
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network. Hence, the predictions of detected objects are produced at multiple levels. 

Unlike YOLO, which uses a fully connected layer to make predictions, the SSD adds a 

series of small convolutional filters to each added feature layer (or an existing one in the 

base network optionally) and uses them in boundary box positions to predict classes and 

offsets of objects. SSD adds default boxes to various feature maps of various resolutions 

[57]. 

 

Figure 3.7: Architecture of SSD showing how the model adds several feature layers to the end of a base 

network, forecasting offsets to default boxes of varying sizes and aspect ratios and their corresponding 
confidences [57] [76] 
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4 Study Area and Datasets Used 

4.1 Study Area 

 
Figure 4.1: Study area with electric transmission line corridor 

The study is based on the Shiroro - Kaduna Transmission Line corridor. The Shiroro-

Kaduna corridor connects about seven states in northwest Nigeria. Nigeria lies between 

latitudes 4° and 14°N, and longitudes 2° and 15°E. The Nigerian Transmission Network, 

called the transmission company of Nigeria (TCN), deals with the transport of voltage in 

two phases, the 330kV - 132 kV and the 132kV-33kV along transmission lines (otherwise 

referred to as conductors). In general, all transmission corridor shares similar structure, 

their infrastructure is radial and thus causes inherent problems without redundancies. 

Even though several sources of power are abundantly available, on average, around 

7.4%, network-wide propagation losses are high relative to the 2 - 6% benchmarks 

proposed for the developing countries and are majorly associated with asset 

maintenance [78], [79]. All of these represent vital infrastructure and market issues in 

the industry’s subsector of transmission. In 2018, the industry struggled to distribute 

about 12.5% (5,000 megawatts) out of the amount estimated to support the population’s 

basic needs [80]. This shortfall is also compounded by unannounced load shedding, 

partial and complete grid breakdown, and power failure mostly linked to the transmission 

company. Consequently, Nigeria’s energy sector generates, transmits, and distributes 

megawatts of electric power substantially less than what is required to satisfy basic 
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household and industrial needs, indicating the need for substantial investment to improve 

distribution efficiency. 

4.2 Datasets used 

The DJI Phantom (DJI FC330) fitted with high-resolution cameras was flown across the 

Shiroro-Kaduna T.C.N. network of 111-132 kV overhead transmission lines (7km) for the 

capture of pylons, conductors, elements of power line/pylon accessories (e.g., insulators, 

fittings, cross arms) and the objects surrounding (e.g., vegetation) from a range of angles 

of images. The sensor provided three spectral bands with a high spatial resolution 

comprising of the visible RGB. The products had been acquired by an aerial survey 

conducted from October 12, 2020, to October 22, 2020. In the event of lost or 

compromised images of transmission towers, the images were discarded. A total of 140 

images covered the study area and can be characterised as high-resolution oblique RGB 

images of dimension 4000 x 3000 pixels (72dpi). The mean pixel sensor resolution is 

0.00124m. Generally, within the images’ most prominent objects are located and 

systematically distributed transmission conductor and pylons with dirt roads, small 

patches of natural forest, and grasslands. 

4.3 Taxonomy of faults 

Inspection of power line components is a primary activity for utilities and one of the most 

common research needs in power line inspection. The purpose of this task is to 

detect and classify the faults found in the transmission components. Many components 

are connected like pylons, conductors, and pylon accessories or fittings (e.g., insulators, 

dampers, and fixtures), and each type of component has different faults.  

Pylons are pillars used for the extension of conductors over large areas, support lightning 

safety cables and other transmission elements, ensure proper electrical transmission 

process of the other components by preserving the original design positioning, and 

provide sufficient grounding against adjoining objects. Insulators are critical elements in 

a transmission system as they protect conductors by allowing lines to retain their 

expected electrical insulation strength [18]. As seen in Figure 4.3, the insulator has a 

repetitive, stacked cap structure. The colour, size, and string numbers of the insulators 

vary based on the transmission capacity and manufacturing design (e.g., single string 

and double strings). The pylon accessories, also called fittings, are the connectors of 

major components or elements seen in the electricity transmission lines. They mainly 

serve as support, inhibitors, connectors to the other transmission components. These 

include conductor clamps, dampers, splicing fitting, protective fittings, and guy wire 

fittings. 

Consequently, most of these individual components have many different types of 

faults.  For this research, the defects were divided taxonomically into four categories: 

missing insulator, broken insulator, rusty clamp, and broken dampers according to the 

contents of the captured aerial photographs. The detailed fault taxonomy discussed in 

this study is as follow: 
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i) Missing Insulator: These are those glass insulators with missing insulator cap (plate); 

see Figure 4.2. 

   
Figure 4.2: Missing glass insulator faults 

ii) Broken insulator: This applies to those insulators made of porcelain or composite 

polymer plate or cap materials. In this fault, the plate is incompletely destroyed by 

pressure exerted by external forces such as weather, especially thunder-strike and 

thaw. 

     
Figure 4.3: Broken insulator faults prominent with the porcelain or composite plate type insulator 

iii) Rusty clamp: The conductor clamp, i.e., strain or suspension clamp, helps to hold 

all components, especially the insulator, to the tower architecture based on its 

design. A faulty clamp can lead to the insulator’s total malfunction, hence leading 

to transmission collapse. 

   
(a)    (b) 

Figure 4.4: Rusty strain (a) and suspension (b) clamp 
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iv) Broken Fitting: Here, the fitting considered was the vibration damper without which 

causes conductor fatigue and strand breakage. 

   
Figure 4.5: Broken fitting (vibration dampers) 
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5 Methodological Description 

In this project, a solution was developed for the automatic vision-based detection of 

electric power line component faults using UAV optical images and deep learning 

architecture. The deep learning approach was adopted because of its ability to 

characterise intricate patterns in remote sensing imagery such that images with many 

variations in context and viewpoint are efficiently learned, and small-scale objects are 

identified from the limited datasets. The outline of the method can be seen in Figure 5.1.  

For this electrical fault classification and detection, SSD, a one-stage detection model, is 

considered with varying base ConvNet network architecture, i.e., the backbone for 

feature extraction. A naïve strategy for object detection is to use a sliding crop-based 

window moving across the image. A preferred modification of this method is using a 

Region-based proposal adopted by the Faster RCNN model. However, there are 

drawbacks to this method: i) they are computationally expensive as each 2000 proposal 

from selective search goes through its block of the convolutional neural network [55], 

and (ii) requires three models to train any dataset. 

Hence, the SSD was chosen based on its ability to balance processing time, speed, and 

accuracy. Three different pre-trained models are utilized for the base network to develop 

the model: ResNet-50, ResNet-101, and MobileNet. The first network architecture 

utilized will be referred to as SSD Rest50. The second CNN architecture is indicated as 

SSD Rest101. Similarly, the third form of CNN base network is assigned the name SSD 

MobNet. The three variations of the base network CNN have been employed to analyse 

how the detection accuracy varies with the change in base network architecture.  

 
Figure 5.1: Methodology Workflow. 
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5.1 Data Pre-processing and labelling 

The whole dataset contains 294 images. Due to the small-scale problem identified in 

some research [58], the dataset (132kV) was split into about 817 tiles centred on at least 

one components’ fault of interest. For the other dataset representing the other 33kV 

transmission line, the non-destructive resize, i.e., resize and pad approach, is applied to 

preserve the image aspect ratio to preserve the geometric and spatial information. 

Moreover, the split and resized RGB images were normalized to the same size of 600 x 

600 pixels following [33], combined to form a total of 1027 ‘Felect’ dataset sample 

imagery. The data is divided into train, test, and validation sets. It was assured that 17% 

of the original dataset was allocated for the test dataset, and 83% of the dataset was 

reserved for training and validation. About 80% of training was used as the training 

samples, while the remaining 20% was dedicated to validation samples - table 5.1 

displays the data slicing information. The drone captured the ‘Felect’ dataset with 

numerous characteristics, including diverse perspectives, sizes, occlusion, background 

clutter, and intra-class variance. 

 
Table 5.1: Data partition 

Thus, a “stratified” data division is used, making the proportion of the faulty components’ 

for the dataset similar to the number of images, as well as the average number of 

components and the intraclass variation shared equally for samples with different types 

of difficulties to be learnt and appropriately located and classified. 

Data annotation is utilized to identify and label the output sample layer used in supervised 

learning. An annotation is the means of digitising the set object of reference. The 

bounding box approach and pixel-wise object segmentation are two approaches that can 

be used to annotate the main object on the image manually. To annotate the faults as 

partitioned, the ground truth annotation of actual components’ fault types was generated 

as a rectangular bounding box mask was then drawn around the object rendering the 

object within the box for each image in the datasets. LabelImg tool is employed to label 

the different component faults as displayed in section 4.3. The details of the image, 

bounding box, and object class, along with shared characteristics, were stored as a 

VOC2007/extensible mark-up language (.xml) file. After annotating all the frames, the 

whole split dataset containing image patches tensor and their output label were 

converted into a TF record-oriented binary as shown in Figure 5.2 to help dataset 

initialization and ease network architecture using the TFRecordWriter function. 
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(a) 

 
(b) 

Figure 5.2: TFrecord (a) reading and (b) writing principle. 

5.2 Network Training 

As stated in section 5.1, input patch images are first translated to tensors (TF records) 

with a [600 x 600 x 3] form prior to feeding it into the backbone architecture and are 

distributed by the action of the convolution layer to an intermediate layer consisting of a 

convolutional activation map. The head of the network architecture (backbone network) 

is explained in sections 3.2 and 3.3 and typically follows the patch-based CNN 

architecture. Therefore, image patches that contain either a single class of faults or a 

combination of different components’ faults centred in the pixel of interest, also termed  

as valid patches, were extracted. For, backbone neural network ResNet50, MobileNet, 

or ResNet101 are utilized for the first part of the SSD network as the head to develop 

three models.  

 
Figure 5.3: Model architecture [52]. 

This head is made of CNN that detects smaller characteristics (patterns and corners), 

and later layers detect higher characteristics successively. The image was resized first 

into 640px x 640px x 3 (RGB) and then translated into a 38 x 38 x 512 characteristic 

mapping through the backbone network passed to the Conv7 denoted as SSD 1 

(auxiliary layer) in Figure 5.3. In all experimentation cases, the input patch tensor was 

abstracted into multi-level representations to classify the different faults after going 

through the backbone architecture (without a fully connected layer). As a deep neural 

network, the backbone algorithm derives semantic significance from the image while 

maintaining its spatial structure. 

600 

600 



 

29 

                     
Figure 5.4: Input image patch and corresponding feature map generated by the feature extractor 

(backbone architecture). 

The series of auxiliary convolutional layers (SSD layers) introduced after the SSD model’s 

backbone allows the extraction of features at different scales as the input feature map 

decreases at each successive layer. This ensures the certainty of boundary variance and 

class prediction of targets at various scales. For each decreasing successive auxiliary 

layer (multi-scale feature maps), SSD networks grids the image and assign each grid with 

the task of detecting objects. After this, 3 × 3 convolution filters are applied to each cell 

to make predictions. If no object appears, the context class is not considered, and the 

location is ignored. Each cell in the grid will decide the location and shape of the object 

inside it.  

   
 

Figure 5.5: The default boxes generation for one cell over the backbone network feature map. 

Immediately after gridding the auxiliary layer, i.e., feature map at multi -level, default 

boxes are generated at each grid cell for each convolution layer level using a defined 

scale value. This scale increases progressively towards the least spatial resolution 

feature map level (SSD 5). Next, bounding boxes are generated via a process called 

default box generation (prior). Default boundary boxes are selected explicitly, which are 

pre-computed, fixed-size boxes that closely fit the ground truth boxes. With the different 

experiment scale values, sk, and the aspect ratio, ar ϵ {1.0, 2.0, 0.5}, the default box sizes 

are built. To detect larger objects, SSD uses lower resolution layers such as the SSD 4 

and SSD 5 layers in Figure 5.3. Each grid prediction composition includes a boundary 

box defined by bx, by, bw, bh, and four scores for each class, i.e., components faults, in the 

prediction, with the highest-class score associated with the positioned default bounding 

box. The class score corresponds to object classification labelled in this research as 
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“broken insulator,” “missing insulator,” “missing knob,” and “rusty clamp.” Having these 

several forecasts at once and awarding class scores to each is referred to as the 

Multibox. There are four predictions for every cell, regardless of the feature map’s spatial 

resolution, and an extra one prediction to represent objectness. 

 
Figure 5.6: Multiscale downscaling layer (auxiliary layer) concept. 

To improve the SSD to detect small-scale faults type, the Feature Pyramid Network (FPN) 

training structure is used in conjunction with the most immediate output feature map 

activated from the base network architecture. This method also imbues low-level CNN 

layers with more assertive semantic representation, such as layers near its head to detect 

small-scale object labels. In particular, the default boxes are chosen so that their 

Intersection over Union (IoU) is greater than 0.6. 

The Sigmoid function is then performed on the output feature map generated by the last 

CNN to obtain a class prediction score. Thereafter, the total loss is achieved by 

combining the two losses obtained for backpropagation. The two new losses measured 

by the network for each bounding box include: 

a) The localisation loss is achieved using the weighted smooth-L1 loss, calculated by 

comparing the generated default boxes (prior) against GT labels.  

b) The confidence loss is achieved using a similar method applied in image 

classification, in this case, the weighted sigmoid focal. 

The default boxes that did not get scored against any ground truth boxes are viewed as 

negatively matchbox and are applied to only the confidence loss, while the positive box 

is applied to the overall loss. This loss value is backpropagated to update the network 

parameters using different optimizers during experimentation.  

5.3 Experimental Settings 

The current projects’ fundamental problems were related to the number of computing 

resources required and the dataset’s limited size. In this study, the experiments - 

backbone architecture and meta-architecture were built on the top of the deep learning 

framework of TensorFlow Object Detection API (TF 1) Model Zoo1. Two separate outlets 

were utilized for execution, they include: 

i. A physical system with AMD Ryzen 5 3550H with Radeon Vega Mobile Rfx 

processor CPU with 7.81 GB for data processing, preparation, and model 

testing. 

 
1 The source code of this implementation can be found at: https://github.com/EmekaKing/Felect 

Ba ckbone 

a rchitectur

e  

https://github.com/EmekaKing/Felect


 

31 

ii. Google Colab on the Google cloud server with 2 Intel(R) Xeon(R) @ 2.20GHz 

processor CPU with 13GB RAM (200 GB free space disk) and 1 GPU (Tesla K80) 

with 12.6 GB RAM for parallel processing for experimentation. 

To ensure optimal experimentation with the data available, the validation dataset 

covering the research assets was utilized for evaluating the trained network. Due to 

computation cost and speed, the k fold cross-validation was not implemented. Hence, a 

hold-out validation with shuffling was used to generate an average detection result for all 

the models.   

The training set was used during network training, while the validation dataset was used 

to modify hyperparameters. In the NMS process, 100 detections and an IoU threshold of 

0.6 were maintained for each class. The momentum and the batch size were set as .9 

and 8. The regularization value was set to 0.0004. The warm-up learning rate of 

0.0001333 was used to assist in the weight optimization after 5,000 training steps and 

at the end of the training period decay to zero. Batch normalization (BN) is used after the 

convolution layer and before nonlinearity layers [81] to avoid overfitting and to save time 

during hyperparameter tuning. During training, the data augmentation technique 

increases samples’ diversity because of insufficient training data. Six methods were 

employed for this data augmentation in the training phase: jitter boxes, horizontal flip, 

vertical flip, crop, pixel value, and rotation. To ensure guaranteed detection, the IOU 

confidence level is set at 0.6. Five measurements, including recall, precision, f 1 score, 

and mAP, are applied to evaluate the components’ faults model performance. 

Hyperparameters Values 

Momentum .9 

L2 regularization 0.0004 

Batch size 8 

IoU -Threshold 0.6 

Min and max scale 3 - 7 
Table 5.2: Training hyperparameters settings for CNN models 

5.4 Sensitivity to Hyperparameters 

In this study, the hyperparameters examined were learning rate optimizers and the 

aspect ratio (Table 5.3). During the experiments, when the value of one hyperparameter 

is modified, other hyperparameters are retained continuously to achieve the optimum 

value of the hyperparameter. 
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Table 5.3: List of DCNN experiments on hyperparameters tuned using hold-out validation. The 

bold font shows the final chosen values from the hyperparameter settings. 

Optimizer 

In MLP and CNN architectures, optimizers determine the extent to which the loss function 

is minimized. An optimizer is a function that updates the model parameters to improve 

accuracy [82]. Updates to weight will vary with each preference of the optimize. Three 

optimizer algorithms were chosen to test the efficiency of the three proposed 

components’ faults architecture: mini-batch SGD with momentum, RMSProp, and Adam. 

Learning rate 

Learning rate is a hyperparameter used to monitor how easily the model weight can be 

improved to learn optimally the problem modified. It is amongst the most critical tuning 

parameters to change when training a neural network. The research explored the impact 

of the learning rate by varying its values while keeping other parameters and 

hyperparameters constant. 

5.5 Performance Evaluation 

To achieve this, the SSD model is evaluated using several performance metrics against 

the validation data set regarding the ground truth. The models’ experiments were 

measured using mAP metrics achieved over the validation dataset to select the optimum 

hyperparameters. Following these experiments, the models were chosen for final training 

and detection of the test data set using the best hyperparameter combinations. The 

detection results were also significantly measured by metrics such as the mAP and F1-

score statistics data. Generally, these metrics are based on four evaluation outputs: true 

positive (TP), false positive (FP), true negative (TN), and false negative (FN). For this 

research, components fault identification is considered a multiclass object detection. 

Details of these four fundamental evaluation quantities are described and expressed 

below:  

 True positive (TP) = number of correct detections of component fault types with 

IoU > 0.5. 

 False positive (FP) = number of correct detections of component fault types with 

IoU ≤ 0.5 or detected more than once. 

 True negative (TN) = negative ground truth boxes having IoU ≤ 0.5 or no 

intersection with detection boxes of component fault types. 

 False negatives (FN)= number of component fault types not detected or ignored 

ground truth boxes. 

Precision and Recall 

Precision refers to the ratio of the positive object correctly classified and localized to all 

positive classification. In other words, precision is a measure of how many positives are 

expected. The recall applies to all localized and classified observations that belong to the 

ground truth’s insitu class [83]. Precision is affected significantly by FP, and FN’s cost 

(5.1) 
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determines the recall performance of any model. Precision and recall can be determined 

as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

   

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

F1-score is the harmonic means of precision and recall. It considers both false positives 

and false negatives. These calculations are usually more straightforward where there is 

an unequal class distribution (many negatives). F1-Score is computed as:  

  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

Precision +  Recall
 

mAP 

AP is the precision averaged across all recall values between 0 and 1. Averaging the AP, 

also termed mean average precision (mAP), serves as a significant metric to measure 

object detection models’ efficiency and accuracy. mAP measures all classes' average 

precision over the model's recall rate, i.e., between 0 and 1 value representing the area 

under the Precision-Recall-Curve (PRC) [83]. The precision and recall of the observed 

boundary boxes and their values vary between 0 and 1, with a higher number indicating 

a good rating. The mAP is a reasonable indicator of network sensitivity and is based on 

the intersection over union (IoU) or Jaccard index [55]–[57]. The IoU is the ratio between 

the ground truth and the forecast area to the overall area or area of the union as shown 

in Figure 5.7 and is given as follows: 

𝐼𝑜𝑈 =  
Area of Overlap

Area of Union
 

 
Figure 5.7: IoU concept (Jaccard Index). 

In this way, detections are attributed to objects' ground truths and assumed to be true or 

false positive by overlapping the boundary frame. The overlap between the expected 

boundary box and the ground truth bounding box must reach 50% to be called a correct 

detection.  

A five-stage procedure where the mean average precision of a class is calculated is as 

follows [84]: 

a) Calculate precision (the proportion of true positives, i.e., component fault 

existing) 

Ground truth 
bounding box 

Predicted 
bounding box 

Area of  

Intersectio

n 

Area of  
Union 

(5.2) 

(5.3) 

(5.4) 
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b) Calculate recall (the proportion of good positive out of all events) 

c) Compute the Precision x Recall curve for the various thresholds. For this, we 

must first order the detections by their confidences, then determine the precision 

and recall for each cumulative detection. 

d) Average the overall precision value for all recall stages. By Interpolating over all 

data points or an 11-point interpolation, i.e., by calculating the precision of the 

eleven recall stages evenly spaced [0, 0.1, 0.2, ..., 1.], the average precision 

score for each class is: 

𝐴𝑃 =  
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖∈{0,0.1,…,1.}

 

e) Finally, the mAP is determined by taking the average AP for all classes and/or 

IoU thresholds. The mAP is approximated AUC of the Precision x Recall curve. 

In the current project, only one IoU threshold (mAP@0.5) is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.5) 
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6 Result and Discussion 

In order to check the detection performance of the SSD model, it was first 

reviewed based on its performance to detect other particular features of the object.  

Therefore, before enhancing the whole network's efficiency, it was essential to run the 

proposed approach in isolation using the default settings. Second, the different backbone 

was implemented and contrasted with each other and compared based on the change in 

hyperparameters. Using some related checks, the efficiency of different models in 

detecting EPTN faults was measured. Three experiments were conducted, including the 

optimizer out-turn, learning rate sensitivity, and the effect of aspect ratio. 

6.1 Analysis of Experimenting DCNN Hyperparameter 

Influence of Optimizers 

Although the original SSD2 employed momentum as the optimizer, two other approaches 

were tested to evaluate the model's effectiveness. This study demonstrates that 

momentum is best to be used for further evaluation and model development. 

 
Figure 6.1: Effect of varying optimizers. 

Figure 6.1 demonstrates how the different models performed during experimentation 

when different optimizers are applied. It was observed that the momentum optimizer gave 

the best mAP across the different models using the default hyperparameter settings (with 

learning rate = 0.05 and aspect ratio scale = 4.0). SSD Rest50, SSD Rest101, and SSD 

MobNet achieved a mAP of 82.85%, 80.42%, 79.61%, respectively, using the 

momentum optimizer. The SSD Rest50 gained the highest mAP when compared to the 

other two models. Also, it can be seen with the momentum optimizer, the validation and 

 
2 The source code of this implementation can be found at: https://github.com/EmekaKing/Felect 
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total loss converge optimally. Furthermore, it has been expressively proven that the 

model's convergence is affected by the optimizer utilized, as seen in Table 6.1. 

 
Table 6.1: Influence of using varying optimizers. 

We can also observe based on Table 6.1 that all the optimizers attain acceptable rates 

of mAP, but one of the most glaring differences in the value of training loss and validation 

loss as well as the model convergence, i.e., the degree of loss range from zero. It can be 

inferred that the optimizer momentum with cosine learning rate is the one that provides 

the best results and the quickest to converge. 

Learning rate effect 

Using Momentum as the ideal learning algorithm, numerous learning rate settings were 

checked to improve the model performance. After several preliminary evaluations, it was 

confirmed that the best initial Learning rate (Lr) was 0.09. 

 
Figure 6.2: The accuracy achieved using varying learning rates. 

The learning rate detection results are presented in Figure 6.2, with the aspect ratio scale 

is set to 4. The first model, SSD MobNet, reached a mAP of 73.94%, 71.56%, 79.61%, 

and 82.52%, with the learning rate was 0.001, 0.01, 0.05, and 0.09 respectively, better 

performance of the model with increasing learning rate value. Similarly, the remaining 
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two models: SSD Rest50 and SSD Rest101, demonstrated the greatest average mAP of 

86.29% and 83.14%, with a learning rate of 0.09, which is 3.44% and 2.72% higher than 

those obtained when set to 0.05. The learning rate plays a significant role in the network's 

performance and how easily it can generalize [82]. Specifically, decreasing the learning 

rate beneath this value (0.09), which gives the fastest convergence outcomes, will 

improve the mAP to generalize, particularly for large, dynamic cases. The learning rate 

used for all models was 0.09 as they all performed quite well with this value. 

Effect of as aspect ratio 

The grid default generated by SSD is based on stride, scale, and aspect ratio, making 

these factors one of the essential hyperparameters. The validation data was used to 

demonstrate the model's conduct due to variations in the aspect ratio hyperparameter. 

As a reminder, the number of scales multiplied by aspect ratios equals the total number 

of anchors (priors) for all possible variations of the four components’ fault classes. 

 
Table 6.2: Effect of anchor aspect ratio. 

Based on the findings from data exploration of the images, it was possible to infer that 

the fault ground truth's aspect ratio ranged from 0.5 to 3 after splitting into 600 by 600-

pixel tiles. However, the patch size is rescaled for the model, affecting the rendered 

image's final aspect ratio. The findings shown in Table 6.2 show that adding an extra 

aspect ratio value does not achieve a greater mAP than the base aspect ratio. With 

the inclusion of a fourth and fifth dimension, the mAP decreases. Also, it can be seen that 

using only three aspect ratios is sufficient to detect components’ fault classes in 

the images denoting the bounding boxes are appropriately readjusted to the ground truth 

boxes using the losses from localization and categories output of the object detector. 

6.2 Performances of the EPTN Faults Detection network 

After running hyperparameter refinement simulations, the most optimum finetune value 

was recorded and incorporated into each model to achieve the localisation and 

classification of the different EPTN component faults. Using these proposed models (SSD 

MobNet, SSD Rest101, and SSD Rest50), a four-class ETPN fault object detection was 

performed on our testing dataset containing 142 missing knobs, 75 broken insulators, 

73 rusty clamps, and 45 missing insulator plate faults. The models were tested using 

three separate metrics, namely F1-score and mAP. As previously mentioned in section 

5.3, a holdout validation scheme is employed to produce an average detection result for 

all the utilized models in the study area. The precision rate, recall rate, and the average 

f1 score explained in section 5.5 are used to measure the developed method's 

effectiveness on the testing dataset.  
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The test results of the proposed single-phase components' faults identification and 

classification pipeline are shown in Table 6.3. It illustrates the precision, recall, f1 score, 

and mAP of the three models, respectively. As can be seen from Table 6.3, the SSD 

ResNet holds the maximum mAP score of about 89.61% for the components’ faults 

detected and classified. Low precision rates suggest that a significant number of false 

positive samples of the different EPTN component faults are generated when using the 

models for fault classification, which is not the case here as the model generated fewer 

false positive samples of EPTN faults; hence the reason for the general precision rate 

being above 90.90%. Alternatively, there are more component faults not identified than 

misclassified, causing a lower recall rate, especially for the missing knob fault type. The 

recall rate of the SSD Rest50 is 57.14%, 73.94%, and 83.56% for missing knob and rusty 

clamp fault classes, respectively, which varies about 15.50%, and 5.48% to that 

detected and classified by SSD Rest101. 

Alternatively, the recall rate for the SSD Rest 101 is the greatest in identifying the broken 

and missing insulator faults. The SSD Rest50 achieved a better recall rate for broken 

insulator cap, missing insulator cap, missing knob, and rusty clamp component fault 

classes compared to SSD MobNet by 4.00%, 10.21%, 8.70%, and 4.11%. The SSD 

MobNet performs the least optimally in detecting and classifying the missing insulator 

fault class compared to that of the SSD Rest101 and SSD Rest50 models. Generally, all 

models had a satisfactory recall ability to detect and classify each fault class, especially 

for identifying missing knob and rusty clamp faults. This reveals that the experimental 

single-stage components' fault detection and classification pipeline can solve this 

identified problem by substantially increasing the model's performance in identifying and 

classifying the EPTN faults. 

 
Table 6.3: Assessment of SSD Rest101, SSD Rest50, and SSD MobNet on the test dataset. 

The SSD Rest101 is the second-best model with a mAP of 88.70%. Of the object 

detection methods tested, the one that delivered the least prediction (82.98%) was SSD 

MobNet. While the ResNet 101 derived model termed the SSD Rest101 is usually 
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predicted to do the best in principle; however, in this case, the SSD model based on 

ResNet 50 contrasts conventional assumptions by revealing an improved result. The 

complexity of the network architecture can indeed justify the explanation behind the 

persistent lower results by ResNet 101 model, which is made of much deeper layers in 

contrast to the size of the training dataset; making the model characteristics over 

subsample and learns features; thus, affecting the performance of detecting the different 

components’ faults optimally.  
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Figure 6.3: Epoch vs. Loss Graphs. 

Furthermore, to intuitively reflect the proposed model's detection performance, the loss 

value graph was evaluated to understand, rationalize, and justify the proposed models' 

generalization ability. In general, we can assess the proposed model's performance using 

the loss graphs and the summary information of the validation loss and examine the 

group of classification, localisation, and regularization loss [57]. Figure 6.3 gives 

snapshots of the loss values sensitivity over the training and validation phase over the 

network trajectory. A good performance is established by a total and validation loss that 

reduces until it becomes stable and the difference between both loss values reaches a 

minimum [82]. If the prediction errors are unbiased, the validation error should be near 

zero, and the validation loss decrease with a decrease in training loss. This can be seen 

distinctively by the loss graph of SSD Rest50, SSD Rest101, and SSD MobNet model. 

The Rest50 model represents a Deep network; the SSD Rest 101 can be seen as a super 

Deep Network, while the SSD MobNet is a shallow network. 

It can be seen that the various weight optimizations associated with the training and 

validation of the dataset based on the model architecture show that the loss value 

remained relatively stable. In the experiments, the base and top CNN layer used the 

Rectified Linear Units (ReLUs) [31] as activation functions over shuffled mini-batch 

gradient descent (batch size of 8) with the Adam optimization algorithm. The final output 

uses a sigmoid classifier for each decision node. Using the sigmoid activation, the final 

achieved pair total losses, i.e., [validation loss, training loss] for the SSD MobNet, SSD 

Rest50, and SSD Rest101, were approximately equal to [0.281, 0.309], [0.378, 0.385] 

and [0.356, 0.342] respectively. 

In contrast to the SSD MobNet, SSD Rest50 and SSD Rest101 have higher orders of 

magnitude as they have more parameters because they have more layers and more 

filters per layer. This allowed the model to adapt to more convoluted representations 

(features) than the shallow network can provide. In the SSD Rest101, it is observable 

that the dataset was not sufficient to train the deeper network. The ResNet 50 backbone 

architecture, which represents the Deep Network, performs much better in minimizing 
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the loss values than the other two networks, accomplishing train and validation losses of 

0.378 and 0.385, respectively, after 15 epochs. Finally, there is a strong link between 

training loss and validation loss. They both decrease and then become stable at a 

constant value. This suggests that the model is correctly trained and has a high 

probability of working well over testing data within this domain. 

6.3 Further Investigation 

It should be noted that the proposed method and the SSMD [85] method achieve a high 

precision rate but have a lesser recall rate, especially for the missing insulator cap faults. 

This can be attributed to the inability to identify small-scale missing cap insulator location 

due to minuscule pixel area (about 20 x 20 pixel) indistinguishable from each other in the 

600 × 600-pixel input patch image. After the downsampling of pooled CNN outputs, 

much of the semantic information about missing insulator cap fault would be overwritten 

by the contextual background. This will lead to difficulty in identifying faults, such as the 

missing insulator caps. Also, the lack of sufficient missing insulator samples in the test 

dataset could be responsible. However, this study's proposed method incorporates other 

component fault types all at once, which cannot be seen in the other developed model 

and could be somewhat said to be responsible for the low satisfactory recall rate. As far 

as these fault detection methods' overall efficiency is concerned, the proposed method 

has demonstrated that the algorithms' continued developments could be improved.  

The proposed system performs object detection using a series of weights extracted from 

a set of representative random seeds, where each weight corresponds to a specific 

perspective of the problem being considered (four-component faults) and is developed 

using an iterative method in which alternative refining and integration of compatible 

training examples are performed. SSD has shown the capacity to detect multiclass faults 

from the UAV imagery; however, improvements such as image tiling to tackle small -scale 

problems and sufficient datasets are required. While experimenting with the model, 

overfit and exploding gradient sometimes manifest, which can be resolved by different 

techniques, requiring training the model over long periods. Finally, our findings show 

much greater precision using well-calibrated UAV images and a reasonably good recall 

rate. In summary, the comparison with detection results from the literature review with 

the analysis in this current work indicates the suitability of deep learning to monitor and 

detect components fault on electric power transmission networks to help the decision-

making process required for asset management in developing countries like Nigeria. 

6.4 Qualitative Experimental Evaluations 

Figure 6.4 provides an example of all the output images produced by all the 

models implemented. The sky-blue box denotes the missing insulator; the green box 

denotes the broken insulator, the turquoise box denotes the missing knob faults, while 

the white box bounds the rusty clamp defects. Each box is marked by the components' 

faults and its confidence score. In contrast, the red ellipse show faults undetected by the 
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models. The first column to the third column depicts the implemented method's 

performance, SSD MobNet, SSD Rest101, and SSD Rest50, respectively. 

 

   

   

   

   
Figure 6.4: Experimental results of the four components faults. The first column to the third column depicts 

the proposed method's performance in each row, SSD MobNet, SSD Rest50, and SSD Rest101. 

In the first row, the SSD MobNet (leftmost) gives an accurate detection of the missing 

insulator plate with a false positive identification of broken insulator, SSD Rest101 

(middle) gives no result even with the presence of missing insulator plate and the SSD 

Rest50 (rightmost) achieves the best result with no false prediction. In the second row of 

Figure 6.4, the SSD Rest50 method detects the broken insulator fault, while the other 

implemented model leads to a wrong judgment with a false rate. In the third row, the 

model's performance behaves similarly to what is observed in the first row as the model 

is affected by the convoluted background interferences. The fourth row shows that all 

the implemented models had depicted the missing knob near perfectly with just one false 

positive of the missing knob faults for SSD MobNet (leftmost) and one false negative 

(rightmost). 
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7  Conclusion 

7.1 Findings 

This thesis explores the use of high-resolution multispectral UAV-based imagery for 

electric power transmission line component fault detection using the deep learning 

approach without any physical participation by the site inspection by engineers. This 

research's feasibility test was conducted using the Shiroro-Kaduna transmission network 

in Niger State as a case study, one of the substations for the Transmission Company of 

Nigeria. The results demonstrate the feasibility of using high-resolution multispectral 

UAV-based imagery to identify and classify transmission component faults, particularly 

for emerging and formative transmission companies in developing countries confronted 

by data scarcity, asset seclusion, and insecurity ground-surveys complexity, 

untimeliness, and general human cost. The final models utilizing SSD object detection 

pipeline were developed in this study as an approach for power transmission network 

components fault identification. After analysing the results of the revealed studies, some 

important conclusions can be reached, such as: 

 

a) Which are different hyperparameters finetuning yields the best results in the 

implemented deep learning model? 

To help address this research query, all the chosen object detection models using 

various backbone architecture were implemented in Chapter 53. The models' 

efficiency was analysed in an exhaustive hyperparameter configuration setting to 

choose the best hyperparameter values. In addition to this, some retrospective 

studies were run to assess the usefulness of the DCNN. The following conclusions 

were observed: 

 Transfer learning is a better strategy to follow to produce short-term outcomes. 

Since the issue being discussed requires data that is not identical to current 

datasets (weights trained on images with little or no geocentric interests), 

processing just the weights of the pre-trained model resulted in a more robust 

outcome than freezing the layers, with the repercussion of a slower training 

method. This helps scopes out the model weight so that the model weight 

optimization is not starting from scratch, i.e., net-zero but from an existing optimal 

value for each convolution layer; 

 The adaptive optimizer, momentum with mini-batch SGD, allowed for the faster 

convergence of the proposed model and to automatically predict the optimum 

learning rate; 

 It was observed that higher learning rate achieved better mAP values across all 

the models implemented; 

 
3 The source code of this implementation can be found at: https://github.com/EmekaKing/Felect 

https://github.com/EmekaKing/Felect
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 During preparation, the objects' measurements in the images were precisely 

calculated to determine the best values for the anchor parameters accurately. 

The model achieved better mAP by using the default three aspect ratio value. 

 Furthermore, data augmentation was a vital technique allowing the model to 

manage invariance among the component fault classes and improve the size of 

a training dataset. 

b) To what extent will the deep convolution neural network perform based on the 

predicted component fault classes' performance metrics analysis? 

The assessment of object detection models showed that the implemented SSD 

selected based on speed and computing capabilities models achieve excellent 

results both in localising and classifying components faults utilizes high-resolution 

RGB images with complex background context. The deep learning object detection 

models implemented offered high mAP, with SSD Rest50 achieving the best, followed 

by SSD Rest101 and SSD MobNet regarding mAP and F1-score. Given the findings, 

we can deduce that in the case of related network architectures, SSD Rest50 

performs better than SSD Rest101, demonstrating that spatial and semantic 

knowledge and representations with the right proportion of deep layers like SSD 

Rest50 obtains a better detection accuracy. Second, the improved performance of 

ConvNet SSD MobNet indicates that the least-complex network architecture with the 

lesser number of filters does not lead to increased accuracy of the model and that 

any smaller native model with fewer blocks could require a much deeper or broader 

design.  In the final step, the applied models' competence was checked by the final 

achieved error based on the loss values deducted by the difference between the 

training error and validation error. The final model shows that our EPTN fault 

detection accuracy is feasible and achievable with remarkable performance. 

With this, the thesis's aim was achieved, which is “to propagate the possibility of detecting 
and inspecting EPTN assets of Electric Utilities in Nigeria utilizing UAV imagery and deep 
learning approach.” In summary, the findings are positive and optimistic. It can be seen 

that object detection strategies could help monitor faults on transmission lines, monitor 

assets, and optimize EPTN for Transmission companies using deep learning. Further 

research on applying other deep neural networks, i.e., instance segmentation model to 

different transmission line components fault identification, is encouraged. 

7.2 Limitation  

While the study produced promising research findings, there are several limi tations and 

opportunities for further research, mainly dataset sampling, and standardized evaluation 

metrics. A majority of EPTN corridors use a wide variety of power line components. 

Consequently, the grids are exposed to a tremendous range of problems. Additionally, 

other small defects in power line components such as missing knobs and rust can occur 

in various forms and simultaneously; and are described differently based on the expertise 

and technical framework of electric utilities. This, combined with the lack of uniform 

training/validation data, presents a significant challenge for the inspection of vision-based 
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faults using a combination of RGB imagery and DL due to the lack of templates for 

classifying unknown groups. 

Regarding the evaluation baseline, the assessment of object detection projects is 

subjective. There is little standard exposition in studies concerning analysis metrics and 

computation, especially against the dataset, and the degree to which the analysis 

methods generalize are still limited. The final output containing a bounding box should 

undergo digital photogrammetry workflow to form a 3D electrical transmission model 

network and further analyzed to identify severity level to assist site inspectors and 

engineers in planning and implementing fault repairs across multiple remote and 

unsecured locations. Due to image acquisition technical specifications limitations and 

some deficient computer science skills, concrete cartographic products (maps) are not 

provided. Hence, the result contained a CSV file containing the bounding box’s 

coordinates, fault type, and confidence sore, and the detected tiled images with 

bounding box overlaid and linked to the original geolocated imagery. Consequently, 

investigating spatial patterns existing among the fault detected fell outside this thesis’s 

scope. 

7.3 Future Works 

The findings discussed in Chapter 6 have several aspects that require further analysis. 

To enhance this analysis, several possible steps are posited:  

First, the single-stage component identification and classification pipeline should be 

expanded to account for faults in different components' shapes and severity levels. Two 

phases are used simultaneously in the developed frameworks: first, location of 

components faults; second, determination and classification of the component faults. The 

pipeline can detect four different types of defects from inspection images; however, it 

cannot measure the magnitude of the detected defects' scale. One alternative solution 

is to determine the limits of the observed faults directly at the precise pixel level by 

applying instance segmentation and uses this knowledge to measure the scale and 

magnitude of the faults by, for example, estimating the defect/component pixel ratio. 

Second, this study concentrates on only high-resolution multispectral RGB 

(visible) bands of the electric transmission network corridor right-of-way (ROW). Hence 

there is a need to incorporate other various data sources that adopt the other 

electromagnetic channel such as thermal images, ultraviolet images, aerial and mobile 

laser scanning images. This will allow creating a model pipeline inclusive to others not 

detectable by the human eye, such as wire failure and corona discharges. 

Third, power transmission networks have various components, and issues arise in 

different positions concerning these components. These components have several 

different instances and manifestations, and those instances can have different 

characteristics such as colour, form, texture, scale, and content. Furthermore, the 

change in imaging state will result in the object's presence being affected consistently. 

The dynamic context involves the photo's direction and distance, occlusion, context, and 

lighting conditions. Two methods can be explored to solve the issue of component fault 
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imbalance and intra-component variation. They include foreground and background 

overlay using segmentation network and image processing technique; and Generative 

Adversarial Networks (GANs) to create synthetic images. 

Fourth, the model can be extended to cover for real-time autonomous vision detection in 

the field incorporated with GPS-INS navigation, i.e., motion pictures. This can be 

consolidated into synchronized database logging camera GPS position and time logs and 

linked to a multiple object monitoring algorithm to allow fully automated asset 

management during data acquisition. 
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