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Abstract — In today’s modern electric Vehicles, enhancing the 

Safety-Critical Cyber-Physical (CPS) system’s performance is 

necessary for the safe maneuverability of the vehicle. As a typical 

CPS system, the braking system is crucial for the vehicle design 

and safe control. However, precise state estimation of the brake 

pressure is desired to perform safe driving with a high degree of 

autonomy. In this paper, a sensorless state estimation technique of 

the vehicle’s brake pressure is developed using a deep-learning 

approach. A Deep Neural Network (DNN) is structured and 

trained using special deep-learning training techniques, such as, 

dropout and rectified units. These techniques are utilized to obtain 

more accurate model for brake pressure state estimation 

applications. The proposed model is trained using real 

experimental training data which were collected via conducting 

real vehicle testing.  The vehicle was attached to a chassis 

dynamometer while the brake pressure data were collected under 

random driving cycles. Based on these experimental data, the DNN 

is trained and the performance of the proposed state estimation 

approach is validated accordingly. The results demonstrate high-

accuracy brake pressure state estimation with RMSE of 0.048 

MPa.  

Index Terms— Cyber-Physical System (CPS), Brake 

Pressure State Estimation, Deep Learning, Dropout 

Regularization Approach.  

I. INTRODUCTION

 ITH the rise of autonomous vehicles, Cyber Physical 

Systems (CPSs) have become a major research focus, 

with teams from academia, industry and government 

organizations studying them [1]-[4]. In Electric Vehicles (EV), 

the various subsystems of the EV, like communications, electric 

powertrain and energy management, sensors, the driver, and the 

environment all come together to form a tightly coupled, 

dynamically interacting system [5]-[11]. The resulting system 

has strong uncertainties, nonlinearities, and difficult to model 

interactions between its parts, making estimation and control of 

CPSs in EVs a difficult task. 

For CPSs in EVs, we are concerned primarily with safety 

critical systems, such as the braking system [12, 13, 14]. 

Braking systems have benefitted from numerous technological 

advances in the last several decades, such as new control 

schemes, higher safety standards, and other electronic 

improvements [15, 16, 17]. With increased autonomy and 

control authority, however, it becomes increasingly important 

that the braking system be accurate and safe against faults. 

Braking control generally uses measurements of the hydraulic 

pressure in brakes to decide actions to be taken, measured by 

pressure sensors [18]. If a hardware or software fault occurs in 

these sensors, however, brake control can be compromised, 

leading to potentially dangerous safety issues. This can be 

circumvented by using high precision brake pressure state 

estimation, with the potential to evolve the system into a 

sensorless system with sufficiently accurate estimation [19, 20]. 

This type of estimation has been a hot research topic in the 

past, generally through the use of control theory-based 

approaches. A recursive least-squares approach was used in 

[21] to estimate brake pressure by using characteristics of the

pressure response of antilock braking systems. An Extended

Kalman Filter based approach, combining tire dynamics and

hydraulic models, was used in [22]. Other approaches have

included the design of inverse models for brake pressure [23],

modeling the decrease, increase, and hold of brake pressure

using experimental data [24], including  measuring the amount

of fluid passing through the valve to determine brake pressure

[25]. All of these, however, are controls based approaches, with

none being suitable for a fully sensor-less design. [26] uses a

neural net to perform estimation of brake pressure, using data

obtained from an EV. However, this paper used conventional

back propagation, which suffers from problems with

overfitting, vanishing gradient, as well as higher computational

complexity in training. Nevertheless, these problems have been

resolved by implementing the recent advances of Deep

Learning techniques to augment the training process of the

DNN [27].

Deep learning can be described as a learning approach that 

employs DNNs which comprise of two or more hidden layers 

[28]. Deep learning was introduced to resolve the problems 

associated with the poor training techniques used with DNNs 

[29]. Among these problems are the overfitting and vanishing 

gradient problem. The vanishing gradient problem has been 

resolved using rectified unit functions as activation functions 

[30]. The overfitting problem has also been tackled by 

implementing modern regularization techniques, such as 

dropout [31]. Dropout randomly drops units and their 

connections during the weight update cycle to reduce 

overfitting. Similar results were found by [32], which used 

rectified linear units (ReLU) and dropout techniques to improve 

the accuracy of their neural net. These advantages are exploited 

to improve the training accuracy of the DNN and enhance the 

brake pressure state estimation. 

Deep learning techniques are commonly used in the field of 
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intelligent vehicles, most commonly in perception algorithms 

[33, 34, 35]. In past years, networks like AlexNet [36] and 

GoogLeNet [37] have achieved good results using deep 

learning for image classification, with image segmentation 

networks like YOLO9000 [38] and SSD [39] coming to the 

fore. Deep learning is also being used prominently in various 

forms in industrial applications. Fault detection and 

classification is an active research topic, with deep learning 

being used both to identify faults and to classify them, as well 

as for learning features to be used in fault classification [40, 41]. 

LiftingNet uses a multilayer neural network to extract deep 

features from noisy data for use in fault classification in motor 

bearings [42]. Other approaches have also been used, such as 

one that used unsupervised learning vibration images to 

perform intelligent feature extraction for fault diagnosis in rotor 

systems [43]. Semi-supervised learning is a more common 

approach, with one approach using semi-supervised learning 

based on hierarchical extreme learning machines for soft sensor 

modelling [44].  

In this paper, a sensorless deep-learning-based approach is 

proposed for precise state estimation of the brake pressure of 

the electric vehicles (see Fig. 1). The term “sensorless” refers 

to that there is no sensor required to capture the changes in the 

braking pressure cycle while driving. Due to immense noise 

associated with the onboard vehicle’s sensors, developing 

sensorless data-driven estimation algorithm is highly needed to 

design robust control schemes [26, 45]. To the best of the 

authors’ knowledge and after exploring the existent literature, 

utilizing recent DL techniques for state estimation of brake 

pressure has not been addressed. The main novel contributions 

of the proposed state estimation algorithm can be concluded as 

follow: 1) A sensorless novel deep-learning-based algorithm is 

developed for brake pressure state estimation of an electric 

vehicle; 2) This state estimation technique uses current DL 

techniques and functions, such as dropout and ReLU to provide 

overfitting-free models of the state estimator; 3) The 

implementation of the proposed network is based on 

experimental data acquired using a real experimental vehicle 

testing environment; 4) Compared with conventional training 

methods, the proposed approach demonstrate more accurate 

brake pressure state estimation with RMSE errors of 0.048 

MPa; 5) The proposed deep learning structure is expandable, 

hence, it can estimate other EV states in urban and high-way 

environments. 

The rest of the paper is formed as follows. Section II reviews 

the structure of the DNN, dropout and Adam optimization 

technique. Section III illustrates the experimental setup and data 

collection system. Section IV presents the proposed DL brake 

pressure estimation technique. In Section V, the preliminary 

results of the proposed brake pressure state estimation 

approach. In Section IV, the proposed and the future works are 

presented.  

II. DEEP NEURAL NETWORK DESIGN 

Neural networks have demonstrated good performance for 

state estimation of the brake pressure [26]. However, obtaining 

highly expressive state estimator’s model is linked, in practice, 

to the accuracy of the utilized training method. Despite the 

effectiveness of conventional training techniques, modern 

deep-learning-based structures have shown superiority in terms 

of minimizing the associated overfitting and achieving fast 

convergence. In this section, a Deep Neural Network (DNN) is 

proposed using dropout regularization to improve the quality of 

the brake pressure estimation. As described in Fig. 1, the DNN 

uses the vehicle states and powertrain states as inputs and the 

ground truth of the brake pressure values are the outputs while 

conducting the training experiment of the neural network. In 

this section, the standard structure of the DNN is illustrated. 

Dropout and the ADAM optimization technique are also 

presented.  

 
 

Figure 1:Deep-Learning-Based Training Technique 



A. Deep Neural Networks 

A deep neural network was chosen in this study to perform 

brake pressure state estimation. Figure 2 illustrates the basic 

architecture design of the Multilayer Neural Network which is 

composed of a single input layer, one or more hidden layers and 

a single output layer.  

 
Figure 2: Structure of Multilayer Neural Network 

The elements of the input vector 𝐼 = [𝑖1, 𝑖2, … , 𝑖𝑘  ] are 

weighted by the weight matrix W and then summed with the 

neuron bias b to yield the net input n.  

𝑛 =  ∑𝑤𝑗𝑖𝑗 + 𝑏

𝑘

𝑗=1

 
(1) 

Then the neuron output 𝑎 is generated using an activation 

function f .  

𝑎 =  𝑓(𝑛) 
(2) 

B. Conventional Training   

The backpropagation algorithm is commonly used for 

updating the weights of the NN. The operation of a neural 

network can be described using the equation: 

 

𝑎𝑚+1  = 𝒇𝑚+1(𝑾𝑚+1𝑎𝑚 + 𝒃𝑚+1 ) (3) 

where am and am+1 represent the outputs of the mth and m+1th 

layers of the FFNN, and bm+1 is the bias weights for the m+1th 

layer. While training, the aim is to train the network with 

associations between the specific input-output mappings {(p1, 

t1), … (pQ, tQ)}, where p is the input vector and t is the associated 

output. The Backpropagation algorithm adopts the Mean 

Squared Error (MSE) as the performance index for 

optimization, which can be approximated as  

𝐹(𝑥)  = 𝑒𝑇(𝑘)𝑒(𝑘) 
(4) 

The steepest descent algorithm, using F as above, is then 

𝑤𝑖,𝑗
𝑚(𝑘 + 1) = 𝑤𝑖,𝑗

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 (5) 

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑏𝑖
𝑚 

(6) 

where α is the learning rate. Defining the sensitivity of F to 

changes in the ith element of the net input at layer m as 

𝑠𝑖
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚 , (7) 

the derivatives in (6) and (7) can then be simplified to 

𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 = 𝑠𝑖

𝑚𝑎𝑗
𝑚−1 

(8) 

𝜕𝐹

𝜕𝑏𝑖
𝑚 = 𝑠𝑖

𝑚, 
(9) 

which then allows for the approximate steepest descent to be 

described in matrix form as a Jacobian with form 

 

𝜕𝐧𝑚+1

𝜕𝐧𝑚
=

[
 
 
 
 
 
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚 ⋯

𝜕𝑛1
𝑚+1

𝜕𝑛𝑠𝑚
𝑚

⋮ ⋱ ⋮
𝜕𝑛𝑠𝑚+1

𝑚+1

𝜕𝑛1
𝑚 ⋯

𝜕𝑛𝑠𝑚+1
𝑚+1

𝜕𝑛𝑠𝑚
𝑚 ]

 
 
 
 
 

,   (10) 

where each element can be expressed as  

𝜕𝑛𝑚+1

𝜕𝑛𝑚
= 𝐖𝑚+1𝐅̇m(𝒏𝑚), (11) 

and  

 

𝐅̇m(𝐧𝑚) =

[
 
 
 
 
𝑓̇m(𝑛1

𝑚) 0 ⋯ 0

0 𝑓̇m(𝑛2
𝑚)  0

⋮ ⋮  ⋮
0 0 ⋯ 𝑓̇m(𝑛𝑠𝑚

𝑚 )]
 
 
 
 

. (12) 

 

The recurrence relation for sm can then be expressed using the 

chain rule 

𝑠𝑚 =
𝜕𝐹

𝜕𝐧𝑚
= (

𝜕𝐧𝑚+1

𝜕𝐧𝑚
)

𝑇
𝜕𝐹

𝜕𝐧𝑚+1
  

= 𝐅̇m(𝐧𝑚)(𝐖𝑚+1) 𝑇𝑠𝑚+1. (13) 

This relation can then be initialized at the final layer as  

𝑠𝑖
𝑀 =

𝜕𝑭

𝜕𝑛𝑖
𝑀 = 

𝜕((𝐭 − 𝐚)𝑇(𝐭 − 𝐚))

𝜕𝑛𝑖
𝑀

=
𝜕 ∑ (𝑡𝑗 − 𝑎𝑗)

2𝑆𝑀

𝑗=1

𝜕𝑛𝑖
𝑀  

=  −2(𝑡𝑖 − 𝑎𝑖)
𝜕𝑎𝑖

𝜕𝑛𝑖
𝑀 

 

= −2(𝑡𝑖 − 𝑎𝑖)𝑓̇m(𝑛𝑖
𝑚). (14) 

The final recurrence relation can thus be summarized as 



𝑠𝑀 = −2𝐅̇𝑀(𝐧𝑀)(𝒕 − 𝐚). 
(15) 

The training procedure of the neural network is deemed 

sensitive, and utilizing the conventional backpropagation (BP) 

as a stand-alone training approach may result in inaccurate 

performance of the obtained model [46]. BP experiences some 

problems pertaining to overfitting and computational 

complexity, which was recently tackled using some innovative 

DL training techniques, namely the use of dropout. 

C. Dropout-Based training  

This section illustrates the basic Dropout neural network 

model.  Dropout is a DL technique that was introduced as a 

simple way to resolve the problem of overfitting [27]. As shown 

in Fig.3, Dropout considers randomly selected units for training 

rather than all units [47].  

In each layer m, 𝑝𝑚 denotes a vector of independent Bernoulli 

random variables which represents the probability of the 

dropped-out nodes. This vector is multiplied element-wise with 

the output of the associated layer, a𝑚, to form the thinned 

outputs, â𝑚, as     

 

𝑝𝑗
𝑚 ~ Bernoulli(𝑝) (16) 

â𝑚 = 𝑝𝑚 ∗ a𝑚 (17) 

The feed-forward operation, with dropout, is formulated as   

 

a𝑚+1 = 𝐟𝑚+1(𝑾𝑚+1â𝑚 + 𝒃𝑚+1 ). (18) 

   

 

Figure 3: Dropout training technique 

Dropout has shown its usefulness for Bayesian 

approximation and estimation purposes [48]. Incorporating 

adaptive gradient-based optimization techniques, such as, 

Adaptive Moment Estimation Technique (ADAM) with 

dropout has shown an excellent regression performance with a 

minimum training cost [49]. Hence, in this study, ADAM is 

adopted for gradient-based training optimization due to its fast 

convergence in regression problems compared to the 

conventional Stochastic Gradient Descent (SGD) [49].  

Based on the estimation of the first and the second moment 

of the gradients, ADAM calculates the adaptive learning rates 

for specific parameters. The optimization algorithm has been 

considered suitable in applications where data contains a large 

number of parameters. ADAM optimization is also well-suited 

to state estimation problems where the measurements are 

associated with immense noise sequences and sparse gradients 

[49]. Fig. 4 represents the flowchart of the ADAM optimization 

scheme. α and t define the step size and time step; respectively. 

 𝜃0,  𝑚0 and 𝑣0 represent the initial parameter vector, 1st and 

second moment vectors. 

The main aim of the ADAM optimization technique is to 

minimize the expected value of the noisy objective 𝑓(𝜃) with 

regard to its parameters 𝜃. 𝑓1(𝜃),…, 𝑓𝑁(𝜃) represent the outputs 

of the stochastic function of following timestamps 1, ….., N. 

The sources of stochasticity might be associated with 

evaluation of the randomly selected batches of data points 

and/or from the associated noise sequence of the objective 

function. The vector of the partial derivatives of the objective 

function 𝑓𝑡 can be described as the gradient with respect to 𝜃. 

  𝑔𝑡 = 𝛻𝜃𝑓𝑡(𝜃) (19) 
 

The squared gradient (𝑣𝑡) and the mean and the moving 

averages of (𝑚𝑡) the mean represent the estimates of the 

variance and the mean of the gradient, respectively. The 

exponential decay of these averages are controlled by using 

hyper-parameters 𝛽1 and 𝛽2.  

 

 

Figure 4: Adam Optimization scheme 



III. EXPERIMENTAL SETUP AND DATA COLLECTION 

In this section, the experimental setup as well as the data 

collection procedure is presented. The proposed DNN is trained 

using real vehicle driving data. Several experiments were 

performed to collect training data using an electric passenger 

vehicle with a chassis dynamometer attached. The testing 

vehicle, data collection methods, selected feature methods, 

testing scenarios, and  data pre-processing are described in the 

following sections.  

A. Testing vehicle and the electric powertrain 

The data were collected via conducting real driving 

experiment using an electric car with chassis dynamometer, as 

exhibited in Fig.5. The chosen vehicle is driven by a permanent-

magnet synchronous motor, which can operate either in driving 

or generating modes. The electric motor is powered via battery 

via a DC bus, which releases or absorbs the electric power 

during driving or braking cycles, respectively. Relevant 

specifications of the test vehicle and power train are shown in 

Table I. 

Table 1: EV and Powertrain list of specs.  

 Specification  Value Unit 

Vehicle 

Overall Mass 1360 kg 
Gear ratio 7.881 — 

Transmission efficiency 96% — 

Nominal radius of tire 0.295 m 

Coefficient of air 

Resistance 
0.32 — 

Wheelbase 2.50 m 

Battery 
Voltage 326 V 

Capacity 66 Ah 

Electric 

motor 

Maximum torque 144 Nm 

Peak power 45 kW 

 

 
Figure 5: EV testing using a chassis dynamometer. 

Several driving cycles standards can be used to set up the 

testing scenarios. The New European Drive Cycle (NEDC) 

which comprises of four repeated urban driving cycles was used 

for brake pressure estimation using NN  [26]. However, 

arbitrary driving style imposes more challenges for NN to 

predict the brake pressure. In this paper, random driving cycles 

were adopted to better represent the urban driving environment 

with a range of speed up to 45 km/h. The proposed DL based 

brake pressure estimation is designed to capture the relevant 

trends of the urban driving behavior.  

The electric powertrain comprises the fundamental 

components that generate electrical power. This comprehends a 

gearbox, an electric motor, a differential and a couple of two 

half shafts. At the center of the front axle, the electric motor is 

placed. In acceleration scenarios, accelerating the vehicle, the 

electric motor produces a propulsion torque that is transmitted 

to the axle to propel the vehicle through the drivetrain. While 

the electric motor switches to the regenerative brake mode to 

apply a braking toque in the vehicle deceleration scenarios [50, 

51].   

The hydraulic brake system installed in the testing vehicle 

includes wheel cylinders, a master brake cylinder, and 

inlet/outlet valves. As illustrated in Fig.6 which represents the 

hydraulic brake structure, a spring and a piston are used to 

model the wheel cylinder movements. Based on the hydraulic 

valve dynamics and fluid flow, the pressure of the wheel 

cylinder can be expressed by equation 20. Detailed models can 

be found in [1]: 

 

𝑝̇𝐹𝑊 =
𝑘𝐹𝑊

𝜋2𝑟𝐹𝑊
4 𝐶𝑑𝐴𝑣√

2 ⋅ 𝛥𝑝

𝜌𝑓𝑙𝑢𝑖𝑑

 
(20) 

 

where 
FWr and 

FWk   denote  the radius of the piston and 

stiffness of the spring, respectively.
vA  is the cross section area 

of the valve opening and 
dC  is the flow coefficient. p and 

fluid are the pressure difference across the valve and the 

density of the hydraulic fluid.  

 
Figure 6: Structure of the hydraulic brake system. 

B. Data collection and preprocessing 

The vehicle was run through several random driving cycles, 

giving a total of 10000 seconds of data. Vehicle states and 

powertrain data were collected using the CAN bus, at a 



frequency of 100 Hz. In order to enhance the training 

performance, the raw unbalanced features data were smoothed 

and subsequently scaled from 0 to 1 to reduce the effect of the 

dissimilar units of the used signals. Fig.7 shows an example of 

the collected raw data of the vehicle speed and corresponding 

brake pressure.  

 
Figure 7: The vehicle speed and corresponding brake pressure. 

C. Process of feature selection  

Selecting unique, and redundancy-free features contribute to 

a successful training of the state estimator model. The main 

states of the vehicle and powertrain were selected to train the 

model of brake pressure state estimator, while the measured 

brake pressure value is used as a ground truth. In addition to the 

vehicle and powertrain parameters, the motor speed and torque, 

the battery voltage and current, and the state of charge (SoC) of 

the battery are used as unique features. This is because when 

the EV is in the deceleration mode, the electric motor works as 

a generator, recapturing the kinetic energy. This causes the 

motor and battery current to change from positive to negative, 

which indicates that the battery is being recharged by 

regenerated energy from braking. The mean and standard 

deviations of some vehicle states are also added as features.  

IV. DEEP LEARNING BASED STATE ESTIMATOR MODEL 

Obtaining precise state estimates in such highly dynamic 

systems is challenging due to sensor drifts and immense bias 

sequences [52, 53, 54]. In this section, the proposed deep-

structured neural network is evaluated for the purpose of brake 

pressure state estimation. The scaled EV features along with the 

ground truth brake pressure are considered for the training 

process of the DNN. The proposed DNN uses the vehicle states 

and powertrain states and the ground truth brake pressure values 

as target outputs while training the DL state estimator model. 

Figure 8 illustrates some key features from the training data for 

one natural driving cycle.     

Designing an accurate DL-Based state estimator model to 

estimate the brake pressure is not straightforward. Obtaining an 

accurate model is linked to the accuracy of the utilized training 

datasets, the structure of the network, training and optimization 

techniques. In this study, innovative deep learning techniques 

are exploited to enhance the training process of the DNN. 

Dropout regularization and Rectified Linear Units (ReLUs) are 

implemented to improve the prediction of the Brake pressure 

state estimator’s model. As shown in Fig. 9, the proposed DNN 

consists of visible input and output layers and 3 hidden layers, 

along with the visible inputs and outputs layers.   

 

 
Figure 8: Sample of pre-scaled key features training data. 

.  

Figure 9: DNN Training Scheme 

The ReLU activation function is used to generate the output 

signal of the hidden values, it can be expressed as follows:  

 

𝑓(𝑛) =  𝑚𝑎𝑥(0, 𝑛) (21) 

 The ReLU activation function is used to ensure accurate 

training for all hidden layers’ nodes. Dropout regularization 

method is implemented to reduce the training cycle’s 

computations by considering arbitrarily selected nodes for the 

training rather than the entire net. This means that the dropped-

out units have temporally no contribution on the forward path 



and any weight updates are not applied to the neuron on the 

backward path. The implementation of dropout is not 

cumbersome; it is based on picking random units with a 

predefined probability (p) to be excluded from the training 

process.  A low probability value has small impact and high 

values may cause under-learning by the network. However, 

with respect to the size of the DNN and number of units, a 

probability value of 10%-50% can provide good performance.  

 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This section presents the training and testing results of the 

implemented DL-based approach for the brake pressure state 

estimation. Discussions of dropout probability tuning are also 

included.  

A. State estimator model training 

The proposed brake pressure state estimation method is 

implemented in Python with Keras. Several DL models were 

developed and trained by importing the experimental data to the 

Keras environment. A DL structure of 3 hidden layers with 60, 

40 and 20 neurons respectively, was chosen based on its 

smallest MSE of 0.087.  All of the experiments shown were run 

on an AMD Radeon™ HD 6800 Series GPU. The ADAM 

optimization algorithm is used to update the weights and biases 

based on the Mean Squared Errors (MSE) loss function [55]: 

 𝑀𝑆𝐸 =
1

2N
∑(𝑌𝑘 − 𝑌𝑘̂)

2

𝑛

𝑘=1

 (22) 

where 𝑌𝑘 and 𝑌𝑘̂ are the target and evaluated network outputs; 

respectively, N represents the number of training data points. 

Dropout technique can be implemented for the hidden layers 

as well as for the visible layers. In order to investigate the best 

implementation with appropriate probability p, several batch 

training tests are performed with probabilities ranging from 0.1 

to 0.5. The tests are performed with dropout being applied to 

both the visible input layer alone, and to the visible input and 

the hidden layers. Figure 10 exhibits the average RMSE values 

over 200 epochs for both cases. As can be seen, the RMSE 

values increases as the dropout probability increases.  It can be 

noticed that dropout is more feasible to be incorporated for 

hidden and visible input layers, based on the lower RMSE 

values. The dropout probability can be optimized through cross 

validation. 

 
Figure 10: RMSE in validation with different dropout 

probabilities 

The proposed model is trained using 8500 experimental data 

points over 200 epochs.  Fig. 11 illustrates the accuracy of the 

training performance of the DNN. As shown, the losses 

represented by MSE values decrease as the DNN’s weights and 

biases updated. This proves the accurate update of the weight 

and biases while training the DNN. Based on the small MSE 

values, it can be concluded that the training process has 

obtained an expressive neural network model based on the 

training set used. 

 
Figure 11: MSE in training over 200 epochs 

B. State estimator model testing  

In this section, the proposed DL-Based state estimation 

algorithm is tested and evaluated. A testing environment is 

developed for the trained model. A 20 % of the collected data 

points was selected for testing the proposed state estimator 

model. The testing data includes the vehicle states and the 

power train states. The output of the proposed DL-based state 

estimator has been compared to the ground truth values of the 

brake pressure. Fig. 12 shows the scaled brake pressure state 

estimation. The x-axis represents the number of samples while 

the y-axis represents the scaled brake pressure. As can be 

observed, the results of the proposed DL-based state estimation 

approach show a significant coincidence with the ground truth 

values of the brake pressure.  

 
Figure 12: DL-Based Brake Pressure state estimation 

Figure 13 shows the state estimation error magnitudes. To 

evaluate the accuracy of the proposed approach, regression 

performance errors are quantified using two main indices, 

namely, the RMSE and the coefficient of determination 𝑅2. 𝑅2 

is a measure of the model’s predication accuracy. It falls 

between 0 and 1, and the higher the value of the coefficient 𝑅2, 

the better the model at predicting the observations. 𝑅2 is 

described as   

𝑅2 = 1 −
∑ ( 𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ ( 𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (23) 



where  𝑦̂ represents the predicated values of the state 𝑦 and 𝑦̅ 

represent the mean value of the state.  

 
Figure 13: Error values of the proposed state estimation 

method 

The proposed model has achieved a regression accuracy 

with 𝑅2 of 0.994, indicating that the proposed model of the 

brake pressure state estimator can achieve high predication-

accuracy of the brake pressure. Compared with the 

conventional training technique [26], the proposed has achieved 

more accurate state estimation with RMSE of 0.048 MPa. 

Based on the presented results, the proposed method 

demonstrates an accurate sensorless brake pressure state 

estimation.         

VI. CONCLUSION  

This paper proposes a novel DL-based state estimation 

algorithm for a safety-critical cyber-physical system. Using 

dropout and other DL modern elements such as ReLU 

activation functions, a novel DL-based model is introduced for 

brake pressure state estimation purposes. Real experiments for 

data collection are conducted via testing the EV on a chassis 

dynamometer under random driving cycles. The obtained data 

of the powertrain systems and vehicle states, as well as the 

ground truth values of the brake pressure are used for the 

training process. The DL-based state estimator model is trained 

using dropout with different probabilities. The training results 

show a high fitting accuracy. The trained model is tested and 

the performance of brake pressure state estimation technique is 

evaluated. The state estimation results demonstrate the 

applicability and effectiveness of the proposed brake pressure 

state estimation approach.   

As a future work of this research, the proposed state 

estimation can be further implemented and integrated with the 

onboard brake control system. The proposed DL-based model 

can also be flexibly expanded to estimate other states of the 

vehicle under several road conditions in urban and high-way 

scenarios. Furthermore, the estimated brake pressure 

information can be utilized in designing decision-making 

schemes for optimal braking in complex urban multiagent 

driving environment.   
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