890 research outputs found

    Fast global and partial reflective symmetry analyses using boundary surfaces of mechanical components

    No full text
    International audienceAxisymmetry and planar reflective symmetry properties of mechanical components can be used throughout a product development process to restructure the modeling process of a component, simplify the computation of tool path trajectories, assembly trajectories, etc. To this end, the restructured geometric model of such components must be at least as accurate as the manufacturing processes used to produce them, likewise their symmetry properties must be extracted with the same level of accuracy to preserve the accuracy of their geometric model. The proposed symmetry analysis is performed on a B-Rep CAD model through a divide-and-conquer approach over the boundary of a component with faces as atomic entities. As a result, it is possible to identify rapidly all global symmetry planes and axisymmetry as well as local symmetries. Also, the corresponding algorithm is fast enough to be inserted in CAD/CAM operators as part of interactive modeling processes, it performs at the same level of tolerance than geometric modelers and it is independent of the face and edge parameterizations

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).GonzĂĄlez-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798

    3D Mesh Simplification. A survey of algorithms and CAD model simplification tests

    Get PDF
    SimpliïŹcation of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simpliïŹcation, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simpliïŹed models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simpliïŹcation algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simpliïŹcation algorithms that have not been surveyed in previous mesh simpliïŹcation reviews.Siirretty Doriast

    Graphical Image Rendering: Modeling, Animation of Facial or Wild Images

    Get PDF
    In this comparative study, we intend to analyse different methodologies to perform 3-Dimensional modeling and printing, by using raw images as input without any supervision by a human. Since the input consists of only raw images, the foundation of the methods is finding symmetry in images. But the images that seem symmetric are not symmetric due to the perspective effect and utterance of other factors. The method uses factors like depth, albedo, point of view, and lighting from the input image to formulate 3D shapes. A 3D template model with feature points is created, and by deforming the 3D template model, a 3D model of the subject is then reconstructed from orthogonal photos. The number and locations of the proper amount of feature points are derived. Procrustes Analysis and Radial Basis Functions (RBFs) are used for the deformation. Images are then mapped onto the mesh following the deformations for realistic visualization. Characterization of the input image shows an asymmetric cause of shading, lighting, and albedo rendering the symmetry of images. The experiments show that using these methods can give exact 3D shapes of objects like human faces, cars, and cats

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Isospin violating dark matter in StĂŒckelberg portal scenarios

    Full text link
    Journal of High Energy Physics 2015.4 (2015): 175 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Zâ€Č bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated StĂŒckelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from ±1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/apThe authors are grateful to D. G. Cerdeño, L. Ibañez, F. Kahlhoefer and G. Shiu for useful comments. V.M.L. and M.P. would like to thank the support of the European Union under the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the support of the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064, the Spanish MICINN under Grant No. FPA2012-34694, the Spanish MINECO “Centro de excelencia Severo Ochoa Program” under Grant No. SEV-2012-0249, and the Community of Madrid under Grant No. HEPHACOS S2009/ESP-1473. P.S. would like to thank DESY, the University of Hamburg, and the Hong Kong IAS for kind hospitality during the completion of this work. He acknowledges support from the DOE grant DEFG-02-95ER40896 and the HKRGC grant HKUST4/CRF/13G, 604231, as well as the Collaborative Research Center SFB676 of the DFG at the University of Hambur

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous Ă©tudions les problĂšmes de rĂ©tro-ingĂ©nierie et de contrĂŽle de la qualitĂ© qui jouent un rĂŽle important dans la fabrication industrielle. La rĂ©tro-ingĂ©nierie tente de reconstruire un modĂšle 3D Ă  partir de nuages de points, qui s’apparente au problĂšme de la reconstruction de la surface 3D. Le contrĂŽle de la qualitĂ© est un processus dans lequel la qualitĂ© de tous les facteurs impliquĂ©s dans la production est abordĂ©e. En fait, les systĂšmes ci-dessus nĂ©cessitent beaucoup d’intervention de la part d’un utilisateur expĂ©rimentĂ©, rĂ©sultat souhaitĂ© est encore loin soit une automatisation complĂšte du processus. Par consĂ©quent, de nombreux dĂ©fis doivent encore ĂȘtre abordĂ©s pour atteindre ce rĂ©sultat hautement souhaitable en production automatisĂ©e. La premiĂšre question abordĂ©e dans la thĂšse consiste Ă  extraire les primitives gĂ©omĂ©triques 3D Ă  partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives Ă  partir de donnĂ©es 3D est proposĂ©. En particulier, une nouvelle mĂ©thode de validation est proposĂ©e pour Ă©valuer la qualitĂ© des primitives extraites. À la fin, toutes les primitives prĂ©sentes dans le nuage de points sont extraites avec les points de donnĂ©es associĂ©s et leurs paramĂštres descriptifs. Ces rĂ©sultats pourraient ĂȘtre utilisĂ©s dans diverses applications telles que la reconstruction de scĂšnes on d’édifices, la gĂ©omĂ©trie constructive et etc. La seconde question traiĂ©e dans ce travail porte sur l’alignement de deux ensembles de donnĂ©es 3D Ă  l’aide de primitives gĂ©omĂ©triques, qui sont considĂ©rĂ©es comme un nouveau descripteur robuste. L’idĂ©e d’utiliser les primitives pour l’alignement arrive Ă  surmonter plusieurs dĂ©fis rencontrĂ©s par les mĂ©thodes d’alignement existantes. Ce problĂšme d’alignement est une Ă©tape essentielle dans la modĂ©lisation 3D, la mise en registre, la rĂ©cupĂ©ration de modĂšles. Enfin, nous proposons Ă©galement une mĂ©thode automatique pour extraire les discontinutĂ©s Ă  partir de donnĂ©es 3D d’objets manufacturĂ©s. En intĂ©grant ces discontinutĂ©s au problĂšme d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expĂ©rimentĂ© tous les algorithmes proposĂ©s sur diffĂ©rents jeux de donnĂ©es synthĂ©tiques et rĂ©elles. Ces algorithmes ont non seulement rĂ©ussi Ă  accomplir leur tĂąches avec succĂšs mais se sont aussi avĂ©rĂ©s supĂ©rieus aux mĂ©thodes proposĂ©es dans la literature. Les rĂ©sultats prĂ©sentĂ©s dans le thĂšse pourraient s’avĂ©rĂ©r utilises Ă  plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications
    • 

    corecore