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Abstract 

This thesis describes the addition of novel ‘Geometric Guides’ to a generative Computer-

Aided Design (CAD) application that supports early-stage concept generation. The 

application generates and evolves abstract 3D shapes, used to inspire the form of new 

product concepts. It was previously a conventional Interactive Evolutionary system where 

users selected shapes from evolving populations. However, design industry users wanted 

more control over the shapes, for example by allowing the system to influence the 

proportions of evolving forms. The solution researched, developed, integrated and tested is 

a more cooperative human-machine system combining classic user interaction with 

innovative geometric analysis. 

In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose 

Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches 

are compared, with some of these technologies identified as applicable for this research. 

Using its Application Programming Interface, add-ins for the Siemens NX CAD system have 

been developed and integrated with an existing Interactive Evolutionary CAD system. These 

add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration 

session. Before evolving shapes can be compared with the GG, they must be aligned and 

scaled (known as Pose Normalisation in the literature).  

Computationally-efficient PN has been achieved using geometric functions such as Bounding 

Box for translation and scaling, and Principle Axes for the orientation. A shape comparison 

algorithm has been developed that is based on the principle of non-intersecting volumes. 

This algorithm is also implemented with standard, readily available geometric functions, is 

conceptually simple, accessible to other researchers and also offers appropriate efficacy.  

Objective geometric testing showed that the PN and Shape Comparison methods developed 

are suitable for this guiding application and can be efficiently adapted to enhance an 

Interactive Evolutionary Design system. System performance with different population sizes 

was examined to indicate how best to use the new guiding capabilities to assist users in 

evolutionary shape searching. This was backed up by participant testing research into two 

user interaction strategies. A Large Background Population (LBP) approach where the GG is 

used to select a sub-set of shapes to show to the user was shown to be the most effective. 

The inclusion of Geometric Guides has taken the research from the existing aesthetic 

focused tool to a system capable of application to a wider range of engineering design 

problems. This system supports earlier design processes and ideation in conceptual design 

and allows a designer to experiment with ideas freely to interactively explore populations of 

evolving solutions. The design approach has been further improved, and expanded beyond 

the previous quite limited scope of form exploration.  
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1 Introduction 

1.1 Computer-Aided Design 

Early Computer-Aided Design (CAD) systems were representative; they just followed direct 

instructions to create drawings or models, and therefore were not very useful for 

conceptual design. As CAD systems became more accessible, they were also used by 

engineers, architects, mechanics, inventors, and designers to explore design ideas and 

visualise their concepts. CAD became very important in engineering across most of the 

design, development and manufacturing processes, for consumer products, as well as 

electronic and mechanical design automation, shipbuilding, aerospace industries, 

architectural design and many more.  

More recently, simulation tools (e.g. Finite Element Analysis (FEA)) and optimisation 

techniques have been integrated into CAD systems (rather than being separate 

applications). The use of CAD with FEA offers remarkable added value to the product design 

process – reduces design costs by allowing many simulations to be performed using 

computer software in the time that it would take to build and test a single or a few 

iterations of a concept or prototype. Optimisation is most critical during the initial stages of 

design – engineers optimise parameters like weight, cost and strength, while considering 

constraints, loads, material, and manufacturability.  

CAD systems are now beginning to include generative functionality (based on engineering 

properties) – quickly generating high-performance design alternatives, many that users 

would never think of on their own, from a single idea. More specifically, in generative 

design, designers or engineers input into the software design goals such as materials, 

constraints and manufacturing methods and the software explores all the possible solutions 

by quickly generating design alternatives. There are potentially thousands of great solutions 

and the designers choose the design that best fits their needs.  

There are many types of tools which are used in early design for engineering problems and 

now integrated with CAD; engineering calculations (PTC Mathcad, 2018), sketching 

(Catchbook, 2018), and generative design (Autodesk, 2018). There are also many methods 

which can be used to increase the possibility of a successful form finding in early design; 

visual affordances, ergonomics, product semantics, emotional factors and biomimicry. 

However, these methods are still separate to the CAD system – they are not supported very 

well by the CAD system. 
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Product appearance methodologies 

In the physical world, objects have physical properties like size, shape or weight that provide 

hints as to what one could do with them. The use of visual affordances may inspire the 

design of products in human-computer interaction systems and assist designers in form 

finding by turning the physical world into a virtual world (Manandhar, 2017). 

Ergonomics uses data to optimise products and environments to help users enjoy a better 

overall experience and gives to the design special attention to make sure it is the best 

possible fit for the user, the environment and the task.  

Product semantics is the understanding of the ways in which visible features of products 

(form, colour, size) could communicate additional meaning to users. It is when people act on 

what the physical qualities of objects mean to them. Krippendorff and Butter (1984) claims 

that designers could enhance opportunities for self-expression, by using semantics. Product 

semantics can provide designers with design concepts and an understanding of the meaning 

of products. 

An emotional factor is how people feel when they are using products in their everyday lives. 

Designers need to understand how the users are affected by the products and how the 

products can improve the user experience and fit their needs if they are developed carefully 

(Komninos, 2018).  

Biomimicry is the imitation of the elements of nature for solving complex human problems. 

It studies nature's models and then imitates or takes inspiration from these designs and 

processes to solve human problems (The biomimicry Institute, 2018). Evolution can inspire 

designers with solutions that nature has produced and that they have been tested by the 

various forces of nature itself, to find a design solution. 

Limitations in CAD 

CAD systems do not involve the users early in the design process and do not allow them to 

experiment with ideas freely; designers do not find inspiration in conceiving form ideas 

(Graham et al., 2008). CAD tools, where any number of random forms is presented to the 

designer, are of limited use too; these forms should be useful and inspire the designer to 

intuitively guide the process of form generation. These limitations lead to the need for 

interactive evolutionary CAD which can be used to optimise designs by combining 

evolutionary algorithms and simulation or to allow designers to interactively explore 

populations of evolving solutions.  

  

https://en.wikipedia.org/wiki/Human
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Interactive Evolutionary Design 

Interactive evolutionary design is driven by human evaluation, commonly, aesthetic 

selection. Usually, human evaluation is necessary when the result of optimisation should fit 

a particular user preference. An advantage of interactive evolutionary design is that it can 

perform the optimisation based on human preference and feeling rather than relying on the 

evaluation by fitness functions. Interactive evolutionary design can be a tool for improving 

collaborative discussions between a designer and customer (Tiainen et al., 2008). The 

advantage of interactive evolutionary CAD is that it generates ideas of concepts that could 

inspire the designers – the designer does not develop the form manually. It can also involve 

the users early in the design process.  

So although CAD technologies remain firmly established in the later stages of design, the 

functional aspects of earlier stage product design are starting to be supported quite well by 

generative design.  

1.2 The need for Interactive Evolutionary CAD 

Indications of a need for this work come from at least two places: 

 Trends in CAD 

Commercial CAD systems are becoming more generative (SolidThinking, 2018). There is a 

trend from representative to assistive CAD systems that changes the way product designers 

and engineers approach design, and allows them to investigate efficient concepts quickly 

and easily. However, CAD is still focused on the later stages of design. There is still a need 

for CAD systems to support earlier design processes and better support ideation in 

conceptual design (Gharib, 2013). 

 EvoShape 

An earlier attempt at meeting this need was launched in 2011 (EvoShape). It has been used 

in industry to inspire the design of unique consumer electronics products, elegant super-

yachts, eye-catching packaging, refined medical devices, award-winning sculpture, and 

beautiful household and lighting products. Encouraged by these achievements, it is likely 

that the design approach can be further improved, and expanded beyond the current, quite 

limited scope of form exploration. 

Current users of EvoShape within the design industry have expressed a desire to have more 

control over the process beyond interacting with the system during the evolutionary 

process through selecting and scoring shapes. 
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1.3 Wider research vision  

The aspiration of the wider research vision, of which this thesis is a part, is to create smarter 

and more co-operative human-machine systems that utilise real-time human interaction 

during geometric optimisation. In a real-time approach, humans would have control over 

the process by interacting during the optimisation algorithm (they direct the search using 

their preference) so they do not have to spend a long time setting up optimisation 

conditions –  which saves engineers days or weeks (InstantCAD, 2017). 

This wider ambition is distinctive in focussing on CAD methodologies to support early-stage 

concept generation by combining automatic and human systems through a blend of 

engineering optimisation and Interactive Evolutionary Computation (IEC). 

1.4 Aims and Objectives 

The specific aims of this research are to investigate the integration of guiding geometry with 

IEC, and the interaction strategies that best exploit it. Guiding geometry is simple target 

geometric primitives that represent the overall proportions sought – it is a simple box model 

that the user constructs at the beginning of the process and consists of simple 3D shapes 

(bounding volumes), to which evolving forms are compared. More specifically, it is proposed 

that the evolving geometries are tested against simple target geometric primitives (e.g. the 

guiding geometry mentioned above). They require three-dimensional (3D) alignment before 

a comparative test is applied. Henceforth, guiding geometry is referred to as Geometric 

Guides (GG). 

The specific objectives of this research are: 

 

1. Identify available strategies for bringing users into a generative design process. 

2. Develop a representation for the Guiding Geometry – soft geometric constraints (in the 

form of simple bounding geometry) created at the start of the evolution process. 

3. Develop stand-alone programs to investigate the individual operations involved in Pose 

Normalisation / alignment: 

 Rotation. 

 Scaling. 

 Translation. 

 Shape comparison. 

4. Find efficient alignment methods. 

5. Find efficient shape comparison methods. 

6. Integrate the most efficient operations with EvoShape Interactive Evolutionary Design 

(IED) system. 
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7. Turn the add-in program into an automated shape matching program without human 

interaction, to objectively test and assess the efficacy of the 3D alignment and shape 

comparison and the approaches being developed. 

8. Test alignment and shape comparison methods efficiency.  

9. Develop effective human-system interaction strategies.  

10. Add human intervention to the system to subjectively test and assess the efficacy of the 

interactive evolutionary strategies and the approaches being developed. 

11. Test the human-system interaction strategies with users. 

The broad methodology that is used to develop these objectives is a Software application 

development followed by a combination of objective and subjective testing. More 

specifically, it is a CAD add-in for the Siemens PLM NX11 CAD system (both new test 

applications and integration with an existing evolutionary design system) followed by 

numerical analysis and user testing (both during development of new functionalities, and 

comparisons between the old and the new system). 

1.5 Novelty 

The novelty of the research is the combination of simple GG with optimised interactive 

strategies and evolutionary computation in the CAD domain, and their specific application in 

the field of form ideation of product design. There are generative CAD systems that aid in 

functional concept ideation.  

SolidThinking was the first commercial generative system to use topology optimisation to 

enable design engineers, product engineers, and architects to create and investigate 

structurally efficient concepts quickly and easily. This kind of tool can now be found in 

other commercial CAD systems – but as discussed earlier, the focus is on functional 

form rather than aesthetic. 

GenoForm (2018) does focus on product appearance, and is the only design exploration 

software that enables the exploration variations of designs – it is an iterative design 

exploration tool that gives to the users some variations of their design proposal. However, it 

relies on a designer already having a design concept in which to model in the CAD system.  

 

In Sinclair’s research (2013), GenoForm software was used to generate variations of concept 

designs after the CAD model had been modified in a way that the participant was satisfied 

with the design. However, GenoForm was not able to suggest new ideas and most of the 

participants preferred their own modified model to the options generated by GenoForm. 

When the designer gives fixed restrictions to the participant as to which features of the 

model might be changed, GenoForm failed to rebuild the model; it is impossible to create a 
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model that updates. It takes time to build more robust models using modelling practices for 

GenoForm; it requires a lot of up-front work to set up. So the research described in this 

thesis – guided evolutionary shape searching – has not been done before; it is unique. The 

users have some control over the process beyond interacting with the system during the 

evolutionary process by creating a GG at the beginning of the process, therefore it is 

different to the original work on which it is based (Graham, 2002). The system generates 

shapes that can inspire the users, but by allowing GG to guide the evolutionary process, 

these shapes are more useful to the user. 

 

Also, the optimised interactive strategies in this research are more sophisticated than other 

interactive evolutionary algorithms; the system has very low inertia – i.e. quicker than 

GenoForm because the users do not create their own design (they only have to create a 

simple guide). It also supports earlier design processes and ideation in conceptual design – 

allowing a designer to experiment with ideas freely and to interactively explore populations 

of evolving solutions. 

1.6 Contribution to Knowledge 

The contribution to knowledge in this research is the combination of design automation (EO) 

and human interaction (IEC).  

The IED system, developed in this research, is a co-operative and efficient human-machine 

system. This system integrates a GA-driven generative design process with human 

interaction by allowing users to have control to the evolution of 3D form. Users create a 

simple GG at the start of the process, the GG is aligned and compared with the evolving 

forms and human interaction strategies (IEC) that best exploit the 3D alignment and 

comparison (EO) are established. 

In this research, the IED system supports early design processes and ideation in conceptual 

design and generates forms that can inspire the users and that are not based on predefined 

designs created by skilled designers. It allows the designers to experiment with ideas freely 

and to interactively explore populations of evolving solutions. 

1.7 Thesis Structure 

The rest of this thesis is organised as follows: in Chapter 2, a Technology Review of 

Evolutionary Optimisation (EO), Interactive Evolutionary Optimisation (IEO), Interactive 

Evolutionary Design (IED), Geometry Mathematics, Pose Normalisation (PN), Shape 



  
 

7 
 

Comparison and Minimum-Volume Bounding Box (MVBB) is provided, analysing and 

comparing the different methods of IEO, PN and Shape Comparison. Conclusions of the 

Technology Review about the most suitable techniques of IEO, PN and Shape Comparison 

methods to be applied for this research are drawn. In Chapter 3, the Methodology that has 

been used to develop the research solutions is described. In Chapters 4 and 5, the 3D 

Alignment and Shape Comparison Analysis as well as the User Interaction Strategies are 

presented alongside the experimental results that have been produced. In Chapter 6, the 

results of the participant testing are presented and evaluated alongside the participants’ 

feedback. Finally, in Chapter 7, the thesis conclusions and future work are provided. 
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2 Literature Review  

2.1 Overview of generative CAD systems 

Generative design is the automated algorithmic combination of goals and constraints to 

reveal solutions (Hauck, 2018). This approach can help designers to capture the generic 

geometric features of designs and create design variations as well as decreases the time and 

cost of design. 

There are alternative generative CAD systems available that have been employed for 

bringing users into a generative design approach, e.g. Genoform (Krish, 2018), Rhino plus 

Grasshopper (Davidson, 2018), SolidThinking (Altair Company, 2018), Dean’s et al. (2005) 

algorithm-driven designs, Autodesk Project Dreamcatcher (Autodesk Research, 2018) and 

Frustum Generate (Frustum, 2018).  

GenoForm (Krish, 2018) is a professional design exploration software, developed by Sivam 

Krish, that enables designers to help companies optimise their designs. It allows users to 

create genetic design and generate variations. GenoForm is based on building intelligent 

models on CAD systems that capture all the important geometric engineering and 

constraints, and designs can be modified easily. It focuses on product aesthetic but it relies 

on designers creating their own design concept in the CAD system. 

Grasshopper (Davidson, 2018) is a visual programming language and environment, 

developed by David Rutten, that runs within a 3D CAD application. Programs are created by 

dragging components onto a canvas. Rhino plus Grasshopper is used to build generative 

algorithms (e.g. for generative art). Advanced uses of Grasshopper include parametric 

modelling for structural engineering, architecture, lighting performance analysis for eco-

friendly architecture and building energy consumption. 

The SolidThinking (Altair Company, 2018) project was started by Allessandro and Mario 

Mazzardo in 1991. It develops industrial 3D design software that helps designers explore 

and evaluate new ideas easily and fast, without the limitations of traditional software. It is a 

simulation driven design that aims to greatly reduce the costs of designing parts by carrying 

out detailed simulations and optimisation in the early stages of design. After the geometry is 

imported and the loads, constraints and materials are defined, the users can then run an 

analysis or optimisation study. To solve the optimisation the users must decide if, for 

example, they want to maximise stiffness or minimise mass (Hale, 2018). However, it uses 

topology optimisation and focuses on requirements of the form and not on the aesthetic of 

the solutions. 

https://en.wikipedia.org/wiki/Structural_engineering
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Lionel Dean has been exploring the creative potential of digital design and manufacturing 

technology as well as 3d printing in art and design. In 2002 Lionel Dean founded 

FutureFactories (Dean et al. 2005), which is entirely focused on 3D printing technologies and 

developing computational design methodologies which combine CAD with computer 

programming. It is a digital design and manufacturing concept and a computer based 

evolutionary design application. Instead of creating a single discreet design solution or a 

range of options, the designer creates a template. This template defines the functional 

requirements of the form and the designer creates rules and relationships which maintain a 

desired aesthetic over a potentially range of solutions. The solutions are found according to 

the selection criteria that are specified by the designer. Solutions score high on ‘fitness’ but 

are not ultimately the ‘target’. 

Autodesk Project Dreamcatcher (Autodesk Research, 2018), designed by Mark Davis and the 

Autodesk Design research group, is a generative design system that enables designers 

to craft a definition of their design problem through goals and constraints. First the 

users create the essential design geometry such as important aesthetic areas. Then, 

they apply fixed constraints, such as bolt holes for a bracket, as well as loads. Next 

the users define the objectives; what they are trying to achieve with the design 

generation e.g. maximise the stiffness based on the load conditions and factor of 

safety for a given mass target. Finally, the users choose the materials and the designs 

are being generated (Hale, 2018). 

Frustum Generate (Frustum, 2018), developed by Harry Zhong, is cloud based generative 

design system that the users can access through a web browser. This greatly reduces the 

performance requirements of the computer required to do this sort of optimisation. This 

system empowers engineers to create optimal design faster through a balance of artificial 

intelligence and human insight. First, the users create the design space which is where the 

part material can be, which also includes fixing points, bolt holes etc. The next step is to 

define the design constraints and to set the boundary conditions. The material, resolution 

and mass target parameters are defined before the optimisation starts (Hale, 2018). 

2.2 Evolutionary Optimisation 

Evolutionary Computation (EC) is often used for engineering and design problems that are 

too complex to tackle deterministically, and is generally focused on optimisation and the 

later stages of design (Testing, Detail Design, Manufacturing and Further Testing, 

Refinement and Sales). EC is usually either automatic or interactive, with the latter well-

suited for messy problems that are hard to model (e.g. the primary use-case of form 

ideation within Product Design (Graham, 2002)). 
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Most engineering research uses several optimisation methods which include auto-control, 

pattern recognition and engineering design. There are many optimisation problems in 

everyday life. Some of them are so complex that mathematical optimisation is not 

achievable and fail in solving large-scale engineering problems with many variables and non-

linear objective functions (Løvbjerg, 2002). These problems can be tackled by using EC that 

is a powerful computational method for solving complex real-world problems, and 

Evolutionary Algorithms (EAs) that researchers have proposed and have gained wide 

popularity. Their principal characteristic is that they examine many solutions rather than 

one solution at a time. EAs are techniques that mimic the biological evolution or the social 

behaviour of species (e.g. how ants find their food by following the shortest route and how 

birds find their destination during migration). The first evolutionary optimisation technique 

introduced in the literature was Holland’s Genetic Algorithm (GA) (2016). 

2.2.1 Evolutionary Algorithms  

Many EAs have been introduced in the last 20 years. One of them is the GA. A GA is a search 

heuristic inspired by Charles Darwin’s survival-of-the-fittest philosophy of natural evolution 

and generates new individuals with selection, crossover and mutation operators. GAs have 

been applied successfully to a wide range of problems (Labadie, 2004; van Zyl et al., 2004).  

The process begins with the creation of a population. Then the fittest individuals from a 

population are selected. The offspring is produced which inherits the characteristics of the 

fittest individuals (parents) and is added to the next generation. If parents have better 

fitness, their offspring may be better than parents and have a better chance at surviving. This 

process keeps on iterating and at the end, a generation with the fittest individuals may be 

found. Five phases are considered in a GA (Mallawaarachchi, 2017). 

1. Initial population:  

The process starts with a population which is a set of individuals and each individual is a 

solution to the problem. An individual consists of a set of variables (Genes) which form 

a chromosome as shown in Figure 2.1. The set of genes of an individual is normally 

represented by binary values (string of 1s and 0s). 



  
 

11 
 

 
Figure 2.1. Population, Chromosomes and Genes. 

2. Fitness function:  

The fitness function determines how fit an individual is. It is the ability of an individual to 

compete with other individuals. The probability that an individual will be selected for 

reproduction is based on the fitness score that the function gives to each individual. 

3. Selection: 

Two pairs of individuals (parents) are selected based on their fitness scores. Individuals 

with high fitness have more chance to be selected for reproduction. The parents 

therefore tend to be the fittest individuals, and it is their genes that are passed to the 

next generation.  

4. Crossover: 

Crossover is a characteristic that influences the GAs’ performance. This is a significant 

phase in a GA. As shown in Figure 2.2, the crossover exchanging information of parents 

creates an offspring. A crossover point is normally randomly chosen from within the 

genes for each pair of parents. For example, consider the crossover point to be 3 as 

shown below. The genes of parents are being exchanged among themselves until the 

crossover point is reached and offspring are created. 

A2 

A3 

A4 

Chromosome 

Population 

0 0 0 0 0 0 
 

1 1 1 1 1 1 
 

1 0 1 0 1 1 
 

1 1 0 1 1 0 
 

A1 Gene 
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Figure 2.2. Crossover operation to generate offspring. 

         The new offspring is added to the population. 

5. Mutation:  

Mutation is a characteristic that influences the GAs’ performance. In mutation, a 

sudden change to an offspring can occur by arbitrarily changing some information of 

one chromosome from the population, as shown in Figure 2.3. Some of the offspring’s 

genes can be mutated with a low random probability. This indicates that some of the 

bits in the bit string can be flipped. 

 

 

 

 

 

 

 

 

 

 

 

Mutation occurs to maintain diversity within the population and prevent premature 

convergence. 

1 3 4 5 6 N 

Parent gene (A) 

2 

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 . . . 𝐴𝑁 

 

Parent gene (B) 
𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 . . . 𝐵𝑁 

 

Offspring 𝐴1 𝐴2 𝐵3 𝐵4 𝐵5 𝐴6 . . . 𝐴𝑁 

 

 Generate random range → (e.g., 3-5) 

1 1 1 0 0 0 
 

 

 

1 1 0 1 1 0 
 

Before Mutation 

After Mutation 

A5 

A5 

Figure 2.3. A chromosome before and after mutation. 
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The algorithm terminates if the population has converged (does not produce offspring which 

are significantly different from the previous generation). Then it is said that the GA has 

provided a set of solutions to the problem. 

The population has a fixed size. As new generations are formed, individuals with least fitness 

die, providing space for new offspring. The sequence of phases is repeated to produce 

individuals in each new generation which are better than the previous generation. The 

offspring replaces the population member only if it is better than it. The process goes on 

with many generations until the best fit solution is achieved. 

Other parameters that influence the GAs’ performance are the population size and the 

number of generations that raise the possibilities of achieving an optimum solution, but also 

increase the processing time. 

So that the problem can be tackled and processing time can be reduced, more EAs have 

been introduced in the last 20 years, as shown in Figure 2.4: 

 Memetic Algorithms (MAs) (Moscato, 1989): They are similar to GAs but instead of 

genes they have memes. They use local search to every population member in order to 

allow the offspring to gain some experience and achieve local optimum solutions. Like 

GAs, MAs are influenced by population size, number of generations, crossover rate and 

mutation rate. 

 Particle Swarm Optimisation (PSO) (Kennedy and Eberhart, 1995): PSO is based on the 

social behaviour of migrating birds going to an unknown destination. Unlike GAs, PSO 

does not produce new birds (offspring). The birds communicate together, find the bird 

that is in the best location and speed towards it. The process stops when the bird 

reaches the destination. It is a combination of local and global search while the birds 

learn from their own experience and from the others’ experience around them. 

 Ant-colony systems (Dorigo et al., 1996): Similar to PSO, Ant-Colony Optimisation (ACO) 

algorithms are based on social behaviour of ants trying to find the shortest way from 

their nest to the source of food. Ants leave pheromone trails to communicate together. 

The best path is the one with the most pheromone. Over time, all ants will choose the 

shorter path.  

 Shuffled Frog Leaping (SFL) (Eusuff and Lansey, 2003): SFL combines MAs and PSO 

algorithms. Every frog is divided into subsets (memeplexes) and holds an idea that can 

be influenced by the ideas of the other frogs. After the memetic evolution, ideas are 

going among memeplexes in a shuffling process. 
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Figure 2.4. Schematic diagram of natural evolutionary systems (Elbeltagi et al., 2005). 

 

According to Elbeltagi et al. (2005), the PSO technique achieves better results than the other 

methods in success rate and solution quality, and is good in processing time. However, PSO 

does not integrate well with interaction; it does not produce variety – it is focusing on 

finding one solution. 

EAs provide a framework for effectively sampling large search spaces, are broadly applicable 

and easily tailored to specific problems. Two more examples of EAs (Jones, 1998) are 

described below: 

 Evolution Strategies (ESs) developed by Rechenberg (2016), where a current population 

of individuals is randomly initialised, fitness scores are assigned to each of the 

individuals, new offspring are generated, new fitness scores are assigned to them and 

the new population becomes the current population. 

 Evolutionary Programming (EP) developed by Fogel et al. (1966). Unlike GAs and ESs, in 

EP there is no recombination operator and the evolution depends on the mutation 

operator. Genetic recombination is the production of offspring with combinations of 

traits that differ from those found in either parent. Mutation is a genetic operator used 

to maintain genetic diversity from one generation of a population of GA chromosomes 

https://en.wikipedia.org/wiki/Genetic_operator
https://en.wikipedia.org/wiki/Genetic_diversity
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
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to the next. It is analogous to biological mutation. Mutation alters one or more gene 

values in a chromosome from its initial state. In mutation, the solution may change 

entirely from the previous solution. Hence, the GA can come to a better solution by 

using mutation. Like ESs, EP is more popular in parameter optimisation. 

ESs and EP use real numbers while GAs use binary numbers. All three use a selection 

operator which applies extinctive evolutionary pressure (i.e. in ESs and EP, the operator 

determines which individuals will be excluded from the new population) or preservative 

evolutionary pressure (i.e. in the GA the operator selects individuals for breeding). In GAs 

and EP selection is probabilistic, while in ESs selection is deterministic. 

2.2.2 Hybrid Simulated Annealing and Genetic Algorithm 

Simulated Annealing (SA) is a method for finding a good solution to an optimisation problem 

(Geltman, 2014). It is a stochastic based general search tool that mimics the natural process 

of metals annealing (Kirkpatrick et al., 1983). There are many optimisation algorithms, 

including hill climbing, genetic algorithms, gradient descent, and more. The SA algorithm has 

the ability of escaping from local minima that are better than any others neighbouring 

solutions, but are not the very best and has been applied widely (Dougherty and Marryott, 

1991; Marryott, 1996; Goldman and Mays, 1999; Cunha and Sousa, 2001). 

An example of SA is the traveling salesman problem where the salesman is travelling to 

different places in the order that minimises the total number of miles he travels. As the 

number of places increases, it becomes too computationally intensive to check every 

possible route. At that point, the SA algorithm is needed. 

When an optimisation algorithm searches for the best solution, if a neighboring solution is 

worse than the current one, then the algorithm stays with the current solution. This can 

lead the algorithm to get trapped in a sub-optimal place, as shown in Figure 2.5. 

https://en.wikipedia.org/wiki/Mutation
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Figure 2.5. The red arrow on the left shows the best solution. But if a simple algorithm finds its way to where the green 

arrow on the right shows, it will get trapped in there: all of the neighboring solutions are worse. The green arrow is a local 

maximum. 

Here is where SA helps to escape local maxima early in the process: 

1. First, generate a random solution. 

2. Calculate its cost using some cost function. 

3. Generate a random neighboring solution. 

4. Calculate the new solution's cost. 

5. Compare them: 

o If cnew < cold: move to the new solution. 

o If cnew > cold: maybe move to the new solution. To decide, the algorithm 

calculates the acceptance probability and then compares it to a random number. 

6. Repeat steps 3-5 above until an acceptable solution is found or a maximum number of 

iterations is reached. 

An important parameter of this algorithm is the "temperature". This name comes from the 

fact that this algorithm was inspired by a method of heating and cooling metals. The 

acceptance probability function takes in the old cost, new cost, and current temperature. 

Once the acceptance probability is calculated, it's compared to a randomly-generated 

number between 0 and 1. If the acceptance probability is larger than the random number, 

then the new solution is accepted. The equation 2.1 shows the acceptance probability. 
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2.1 

where   is the acceptance probability,     -     is the difference between the new cost 

and the old cost, T is the temperature, and e is the mathematical constant equal to 2.71828. 

This equation was inspired by metalworking and it describes the embodied energy of metal 

particles as they are cooled slowly after being subjected to high heat. This process allows 

the particles to move from a random configuration to one with a very low embodied energy. 

Computer scientists borrow the annealing equation to help them move from a random 

solution to one with a very low cost. 

The hybrid SA and GA is quite a new global optimisation search approach. It can enrich 

neighbourhood structure in the searching process and improve searching ability in the range 

of values. Therefore, this hybrid algorithm has some application to the fields of system 

design (Shieh and Peralta, 2005), system and network optimisation (Ponnambalam and 

Reddy, 2003), etc.  

The hybrid SA‐GA algorithm proposed by (Adler, 1993) improves the crossover and mutation 

based on the acceptance probability rule. The hybrid algorithm replaces the mutation and 

recombination operators with SA‐mutation (SAM) and SA‐recombination (SAR). The SAM 

operator not only mutates a chromosome-solution and returns the new one, but also 

evaluates the fitness of the solution after mutation and decides whether to accept the new 

or keep the old one based on the acceptance probability rule. The SAR generates two 

children solutions based on two parent solutions. Each of the children is then compared 

with the better parent for acceptance by the acceptance probability rule. The artificial 

temperature decreases in each generation according to the cooling schedule.  

2.2.3 Evolutionary Dynamic Optimisation 

Over the last 20 years, evolutionary optimisation in dynamic environments, or evolutionary 

dynamic optimisation (EDO), has become a challenging research area in the field of 

evolutionary computation since many real-world optimisation problems have changing 

conditions over time and need to optimise in a dynamic environment. Changes, e.g. 

breakdown of machines, new tasks’ arrivals or change of some conditions, may influence 

the objective function and the optimal solution(s) of the optimisation problem. 

As is described by Nguyen et al. (2012), Dynamic Optimisation Problems (DOPs) need an 

optimisation algorithm to find optimal solution(s) and track the optimal solution(s) that are 

changing over the time. The algorithm needs to consider changes during the optimisation 

process as time goes by (Branke, 1999), (Jin and Branke, 2005). The most suitable tools that 

can solve DOPs are EC, and swarm intelligence since they are based on biological evolution 

which always reacts to changes in the environment. 
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In non-dynamic evolutionary optimisation environments, the goal is to locate the optimal 

solution(s) as fast as possible. While the time-changing problems appear, the goal changes 

to track the changing optimal solution(s). The optimisation algorithm needs to assimilate its 

previous search experience in order to be effective, since the problem after the changing 

conditions is related to the problem before the changing conditions. 

2.3 Interactive Evolutionary Optimisation 

Interactive Evolutionary Computation (IEC) is an optimisation method that affiliates EC 

based on subjective human evaluation, as described by Takagi (2001). It is simply an EC 

technique whose fitness function is replaced by a human user. In a general IEC system, as 

shown in Figure 2.6, EC optimises the target system to achieve the ideal output based on 

the user’s evaluation and the user sees or hears and evaluates system outputs. In regard to 

this, IEC is a technology that inserts Kansei in the target system.  In engineering, Kansei is 

the development or improvement of products and services by translating the customer’s 

psychological feelings, preferences, intuitions, emotions and needs into the domain of 

product design. Kansei engineering connects the customer’s emotional reactions to the 

characteristics of a product or service. 

 
Figure 2.6. General IEC system: System optimisation based on subjective evaluation (Takagi, 2001). 

 

EC is a population-based searching algorithm with many candidate system outputs. These 

candidates are called individuals. In IEC, these individuals are estimated by the users 

according to the distance (d) between the target in their psychological spaces and the actual 

system outputs (Figure 2.7). Corresponding to the psychological distance, EC searches for 
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the global optimum in a feature parameter space. The global optimum of IEC is an area and 

not a point. For example, if one wants to find the next model of a car, the aim is to define a 

number of different car models and not just one point. The candidate car models will be 

similar to the previous models. 

 
Figure 2.7. Psychological distance (d) between the target in psychological space and actual system outputs becomes the 
fitness axis of a feature parameter space where EC searches for the global optimum in an IEC system (Takagi, 2001). 

 

The first IEC problem is to reduce human effort. Since humans cooperate with a tireless 

computer, the IEC generations need to be reduced. The second problem is the small 

population size and the limited number of generations which cause the reduction of the 

individuals and make the goal searching difficult. The third problem is how to get the user to 

evaluate time-variant individuals such as sounds or video with less effort and operation time. 

The user’s psychological fatigue and the operation time increase, since they need to 

compare the current displayed sounds or video with the previous ones in their memory and 

to evaluate them. Sounds and video are spatially impossible to display. 

 

The second and the third problems are correlated with the first. Therefore, the fatigue 

problem which is the biggest IEC problem needs to be solved to make IEC practical. 

 

Human users can decrease psychological fatigue with broad ratings, for instance five or 

seven rating levels, instead of a higher order of level ratings (Ohsaki et al., 1998). A 

simulation experiment showed that, when the EC search reaches a number of tens or 

hundreds of generations, the closer convergence becomes noteworthy. However, the 

smaller convergence, for example less than the first 10 or 20 generations, is not problematic. 

 

A second way to decrease human fatigue, in a huge population size, is to display a few 

predicted individuals that have higher fitness values. Takagi (2001) suggested two prediction 

methods that assimilate the user’s evaluation characteristics and predict fitness values: the 

first uses Euclidean distances in an EC searching space (Nagao et al., 1998), and the second 

uses Neural Networks (NN) (Biles et al., 1996). 
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One last method that reduces human fatigue is active intervention, which accelerates EC or 

IEC convergence. Takagi (2001) proposed two active user interventions: online knowledge 

embedding (Caldwell and Johnston, 1991) and visualized IEC (Hayashida and Takagi, 1999). 

 

According to Takagi’s survey (Takagi, 2001) (Takagi, 2003), IEC is most often achieved in 

applications such as: 

 Music: IEC is applied to music to generate the melody (Biles, 1994). GenJam is an 

example of a melody generator where a user listens to and evaluates the melody as it is 

played. If the users give one fitness value for every melody that they hear, it will take too 

much time and human effort. To tackle this problem, GenJam allows the user to 

evaluate the melody measure by measure instead of the entire melody. This technique 

reduces IEC time. 

 Face Image Generator: Montage systems combine partial images of facial photos and 

create a facial image. IEC is applied to montage systems to optimise the combination of 

partial facial images and produce a face image which is not based on the memory of 

each facial part but on the observer’s total impression (Takagi and Kishi, 1999). 

 Image Processing: IEC is applied to image processing to define the sequence of image 

filtering. Different orders of image filtering outputs different images. For example, an 

image filtered by A then B is different from an image filtered by B then A. It is not easy 

for non-experts to decide on a filtering order, but it is easy for them to estimate which 

image is better. 

 

Other applications that IEC has been used in are virtual reality, control and robotics, graphic 

arts and animation (Takagi, 2001). 

 

It was predicted that IEC would become more important in design that is correlated with 

human Kansei factors. As IEC was further developed, it would help unite humanised 

technology with user-friendly technology. This was Takagi’s prediction that this research is 

now fulfilling. 

 

In the following section, different types of IEC approaches will be covered and some of these 

technologies are recommended for the proposed research. 
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2.3.1 Pareto-optimal points Interaction Strategies 

Sinha et al. (2014) combined an evolutionary multi-objective technique with the Decision 

Maker (DM) interaction during the implementation of the algorithm. The evolutionary 

multi-objective optimisation (EMO) algorithm aims to find the Pareto-optimal1 points from 

which the decision maker will select the most preferred point, instead of finding the entire 

Pareto-optimal front. The algorithm tries to get as close to this point as possible (Figure 2.8) 

and in as few interactions with the DM as possible. 

 
Figure 2.8. Progressively interactive approach to handle a two-objective maximisation problem (  ,   ) (Sinha et al., 2014). 

There are three different types of approach that a multi-objective optimisation problem can 

generate: 

 In apriori approach, the users make decisions before the EMO algorithm starts. Then, 

the decisions and the optimisation procedure are united and the most suitable point is 

found without any further interaction with the DM. However, the solution sometimes is 

not close to the most suitable solution. 

 In the aposteriori approach, the EMO algorithms try to find the entire Pareto-optimal 

frontier before the user interaction, but this is difficult due to the large number of 

objectives (number of objectives > 3). 

 In the interactive approach, on which they focus, the decision making takes place during 

the implementation of an optimisation algorithm so that the most preferred point and 

solution is found. 

                                            
1
 Pareto optimality is a distribution of resources in which it is impossible to make any one individual better 

off without making at least one individual worse off. When this is possible, it is called Pareto improvement. So, 
a distribution is defined as Pareto optimal when no further Pareto improvements can be made. 
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The method that they describe uses the notion of polyhedral cones to find the most 

preferred point. They use the best solution in the population to create a polyhedral cone 

and to use it at each DM call2. Then they choose the proper search direction based on the 

cone and explore the preferred region, as shown in Figure 2.9. 

 
Figure 2.9. Polyhedral cone in three dimensions (Sinha et al., 2014). 

The bounding hyperplanes of the polyhedral cone are constructed by:  

 The best solution in the population (that forms the peak of the polyhedral cone); 

 The end points of the non-dominated part of the parent population at that instant. 

Considering that the space is M-dimensional, M different bounding hyperplanes are 

constructed. Eliciting preferences progressively provides the algorithm information to focus 

the search on a specific area of the search space. The non-negative normal unit vectors (Vi) 

of all the M hyperplanes can be summed up (V1+V2+V3) to get a search direction. 

Before the start of the optimisation, the maximum number of times that the DM will 

interact has to be provided and the algorithm has to find the best solution within this range. 

The experiments of Sinha et al. (2014) show that this interactive method is able to efficiently 

handle optimisation problems with many objectives. 

This method should be able to be effectively applied to IED systems and efficiently handle 

optimisation problems without user’s fatigue, since the algorithm uses an interactive 

approach to get close to the most preferred point in only a few interactions with the user. 

The maximum number of times the user will interact, that has to be provided before the 

process starts according to Sinha et al. (2014), would also be useful to be applied to IED 

                                            
2
 A DM call is an event where the algorithm seeks preference information from the DM. 
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systems, since it is critical in defining the accuracy of the optimisation (with higher values 

leading to better accuracy). 

As is described above, the DM has to find the most preferred point and a unique solution 

instead of being interested in the entire Pareto-optimal front. The algorithm aims for well 

spread solutions close to the Pareto-optimal front. The advantage associated with seeking 

the most preferred point, instead of the entire Pareto-optimal front, is that it avoids the 

intricacies involved in exploring the entire multi-dimensional front. When the DMs use the 

apriori approach, it is difficult to express their preferences. On the other hand, in the 

interactive approach, the DMs interact during the execution of the process being able to 

drive the search toward the preferred parts of the Pareto-optimal region and thus 

expressing their preferences interactively. 

Said et al. (2010) attempt to find a new variant called reference solution-based dominance 

(r-dominance), which is creating a strict partial order between Pareto-equivalent solutions. 

In this approach, the DM is searching among the Pareto-optimal Region Of Interest (ROI) 

parts. The ROI is illustrated in Figure 2.10. 

 

 
Figure 2.10. Illustration of the ROI. It is the preferred part of the Pareto-optimal region from the DM’s perspective (Said et 
al., 2010). 

The r-dominance variant is able to: 

 Drive the search toward the preferred parts of the Pareto optimal region; 

 Control the number of ROIs and; 

 Make the DM interact with the process. 

The key feature of this variant is that it tries to get as close to the preferred point as possible 

and at the same time holds the order that is generated by the Pareto dominance. In order to 
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estimate how close to the preferred point the solution is, Said et al. (2010) used the 

weighted Euclidean distance3. 

Said et al. (2010) have applied the r-dominance method to both apriori and interactive 

approaches on a set of multi-objective problems. Furthermore, this technique has better 

results than other Evolutionary Multi-objective approaches.  

Since the experiments (Said et al., 2010) have shown the ability to guide the search based 

on DM’s preferences toward the preferred parts of the Pareto-optimal front on a 

reasonable number of evaluations, this method should be applied to IED systems to 

accomplish robust results. However, the progressive focus of solutions on a specific region 

of the search space (i.e., ROI) has led to a population diversity reduction. Therefore, 

considering that the decreased population diversity should sometimes drive the process to 

inaccurate results, the IED system would be much more competitive if some strategies, that 

allow escaping from local optima (mutation), were designed. Especially, some IED systems 

that provide inspiration – like the IED system proposed in this research – need a very diverse 

set of solutions and not just traditional convergence. 

2.3.2 Efficient Interaction Strategies 

Deb et al. (2010) suggest a technique concerning an interactive evolutionary multi-objective 

optimisation algorithm based on progressively approximated value functions (EMO-VF). The 

algorithm gradually accepts the DM’s preference information after every few generations 

and leads the DM to the most preferred solution. The preference information constructs a 

value function which guides the algorithm to search for more preferred solutions, as shown 

in Figure 2.11. 

 
Figure 2.11. Contours of the chosen value function (acts as a DM) and the most preferred point corresponding to the value 
function (Deb et al., 2010). 

                                            
3
 It is a variant of Euclidean distance used to measure and thereby depict the distances between profile 

points. 
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The DM has to rank some non-dominated points from best to worst, this is called a DM call. 

Until the next DM call, this preference information finds a value function which satisfies the 

DM’s preference information and searches for more preferred solutions by using a 

preference-based domination principle and utilising a preference-based termination 

criterion.  More specifically, the DM’s preference information has been utilised to: 

 Find a function value which is maximised between ranked points. 

 Redefine the domination principle between the points by using the value function. (The 

modified domination principle guides the algorithm to search for more preferred 

solutions). 

 Design the termination criterion algorithm using the value function. 

This method concentrates on procedures requiring more frequent involvements of a DM 

with an EMO algorithm and is able to find the most preferred solution in a simple way. With 

a user’s evaluation every few generations and its ability to effortlessly find the best solution, 

this method should be effective when it is applied to IED systems and should achieve 

robustness. 

Similar to the previous approach, Koksalan and Karahan (2010) also developed a human-

based evolutionary algorithm that interacts with the DM during optimisation to recognise 

their preferences. This method aims to converge to a final preferred region of the DM. The 

algorithm is tested on multi-objective problems with multiple interactions with the DM to 

investigate the quality of the solutions. It is observed that the algorithm converges better if 

the DM interacts many times during optimisation. More interactions also help the algorithm 

to identify more easily the final preferred region of the DM. 

In each iteration stage, a filtered set of individuals are presented to the DM to make it easier 

for them to choose the best individual. This filtering method uses a modified dominance 

scheme where an individual is non-dominated if there is no individual that is at least a small 

amount better than that individual in every objective and at least more than a small amount 

better in one objective. However, this filtering method may lower the performance of the 

algorithm. To tackle this problem, first they will expand the amount of individuals presented 

to the DM and therefore expand the accuracy, and second will perform a better filtering 

method to make sure that better individuals of the population are selected. The improved 

method may produce consistent results by being applied to IED systems. However, this 

method may not be efficiently adapted for the IED proposed in this research as this kind of 

approach might be hard to implement with subjective fitness assignation – it may cause 

user’s fatigue by interacting many times during optimisation. 
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2.4 Interactive Evolutionary Design (IED) 

In this thesis, research investigating the benefits of combining an interaction system with an 

automatic system is described. Usable Interactive Evolutionary Design (IED) systems are 

emerging, but this research’s interests are distinctive in focussing on CAD methodologies to 

support early-stage concept generation by combining engineering optimisation and IED. 

Most evolutionary design systems are either interactive (Ventrella, 2008) or automatic 

(Baluja et al., 1994), (DiPaola and Gabora, 2009). Interactive systems serve aesthetic 

inspiration because human selection is taking place, but it needs a lot of human effort and 

this could have negative consequences. On the other hand, automatic systems reduce the 

human effort but they are not able to generate better aesthetic artworks as the evaluation 

needs some improvements.  

To tackle this barrier, Machado et al. (2005) combine the advantages of both systems and 

propose partially interactive evolution where the user interaction is reduced but still drives 

the evolution. More specifically, to address the user fatigue issue, Machado et al. (2005), 

propose the use of an automatic seeding procedure, phenotype filters and partial 

automation of the fitness assignment. The experimental results show that these methods 

are effective to decrease user fatigue without decreasing the aesthetic quality of the results. 

When applied to IEC systems, the user can select a particular style and let the automatic 

procedure assign fitness to the individuals according to their similarity to the selected style; 

the IEC generates individuals that fit the characteristics of the style and then fitness is 

assigned according to the user preferences and the automatic procedure used as a filter.  

This method can efficiently be adapted for the IED system proposed in this thesis as it 

supports the initial proposals of this research; combine automatic and human systems to 

allow humans to direct the search using their preference – so they do not have to spend a 

long time setting up optimisation. 

In the following sections, different types of Interactive Evolutionary Design (IED) approaches 

will be covered and some of these technologies are recommended for the proposed 

research. 
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2.4.1 ICE-GCAD 

Hu et al. (2008) proposed an interactive co-evolutionary CAD system for garment pattern 

design (ICE-GCAD) by supporting inexperienced designers to cooperate with experts, though 

it is very important to include the consumers. Hu et al. (2008) took a leisure shirt as a 

sample and focus on size fitting. 

By using interactive evolutionary systems, users interact with the system constantly by 

evaluating and choosing alternative designs that are being produced and developed. A co-

evolutionary algorithm runs in the background to search and produce the optimal designs 

by using intelligent techniques like Clonal Proliferation, Hyper Mutation, Co-Evolution and 

Elimination. The initial designs for the evolutionary algorithm are the common experts’ 

designs. The evolutionary algorithm will then search for optimal designs and the experts will 

evaluate them. When the termination condition of the algorithm is satisfied, the optimal 

designs are outputted. If the experts are not satisfied, the system will start a new round of 

co-design. 

In the proposed interactive design, one designer can edit whilst others can only read the 

design. Designers can invite others and watch the design process by a remote assistant, 

messaging and adding notes on the specific design. Experts can evaluate a design by scoring 

and statistical computation approaches sum the scores from all experts. 

A challenging problem that must be tackled is the way the design needs to be evaluated. 

The users can use their experiences or check the size of the design by using some size 

constraints or logic rules. Experimental results (Hu et al., 2008) prove that ICE-GCAD is a 

valuable solution to improve the existing GCAD systems. ICE-CAD can be effectively applied 

to the proposed IED system but the method will be more robust if, for example, geometry 

constraints are considered. 

2.4.2 IDSET 

Sato and Hagiwara (2001) propose an artistic shape-creating Interactive Design support 

System using Evolutionary Techniques (IDSET). They use Stages where shapes of each part 

are generated (generating-Stages) and Stages where some parts are combined (combining-

Stages). 

At each Stage, the system generates new shapes using evolutionary techniques, and the 

shapes are shown to the user. First, the shape of each part is created, and then the entire 

shape is formed by combining them. To begin with, simple shapes or random shapes are 

employed which are represented as individuals. Then a population of individuals is 

generated. All of the individuals are presented on the screen and the user evaluates them. 

Genetic operators are applied to the individuals in order to produce new shapes in the next 

generation. The cycle of display, evaluation and genetic operation is called one generation. 
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Five kinds of initial shapes are used, as shown in Figure 2.12. The evolution begins from 

these simple shapes. Cutting, expansion and contraction are employed as the genetic 

operators. Other genetic operators that are applied are addition, deletion, cross over and 

scale mutation. 

 

 
Figure 2.12. Initial shapes (Sato and Hagiwara, 2001).    

Since the system begins with creating parts instead of using parts that are prepared in 

advance, a wide variety of designs can be created. The user only has to evaluate the 

presented shapes and not create them. Through the interaction between the user and the 

system, it is possible to make new designs that the user could not have shaped easily. 

Additionally, the user’s creativity may be inspired by watching the evolution process. 

The evaluation of individuals is a vital task for an evolutionary technique. Takagi and Unemi 

(1998) have studied two methods for user evaluation: the rating-all  method and the 

simulated breeding method. In the rating-all method, the user gives an evaluation value for 

all of the individuals. Consequently, this technique is best for utilising the human skill of 

evaluation. However, the psychological and physical user’s tiredness is very high because 

the user has to evaluate all of the individuals through many generations. In contrast, in 

simulated breeding, a user chooses only the best individual in each generation. Therefore, 

the user’s fatigue is much smaller. 

In the suggested IDSET, a user provides only two types of evaluation values: -1 and +1. The 

value -1 is given to the individual that is useless and then these individuals are destroyed. 

On the other hand, +1 is given to the individual that is a good one. This individual turns into 

a parent of all of the children in the next generation. When +1 is given to more than one 
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individual, one of them is selected as a parent randomly. By giving two types of evaluation 

values, the population can change based on the user’s evaluation while keeping variety in 

the individuals. It is essential to keep a variety of individuals, specifically in the primary 

generations, because many designs inspire the user’s creativity. 

It is found that this technique presents interesting shapes to the user and can support the 

design of several artistic shapes. The average number of generations required is 57.5 and 

the user’s fatigue to evaluate the various candidates is small. The population size is set to 

ten individuals in each generation but the maximum number of individuals shown to the 

user is set to three. If the shape does not exist, the IDSET method will be effective to create 

the design. And if the designers have some existing parts in their mind, they should be 

applied the initial shapes.  

By applying this IDSET method in the proposed IED system, it should produce inefficient 

results since the system selects a parent randomly when +1 is given to more than one 

individual. The user should evaluate the individuals having +1 by scoring them, and the one 

with the best score should become a parent for the next generation. Apart from the 

evaluation process, there is also room for improving this technique by improving the initial 

shapes and the selection of genetic operators for each Stage. Also, by adding some 

geometric constraints in the evolutionary process, the evolutionary algorithm should 

achieve more robustness.  

On the other hand, Takagi and Unemi’s (1998) simulated breeding method should produce 

efficient results by applying it to the proposed IED system, since a user selects only the best 

individual in each generation. In addition, the user’s effort is small. However, the proposed 

EvoShape design system (2011) is already a hybrid of the two aforementioned methods, the 

rating-all  method and the simulated breeding method. 

2.4.3 Machine Learning in IED 

Machwe and Parmee (2006) introduce Machine Learning within an IED environment. This 

research concentrates on user-centric intelligent design and on the integration of user 

evaluation and the machine learning sub-system. 

The user interacts with the evolutionary procedure: The system represents the images of 

the fittest designs and the user defines a User-assigned fitness (Ufit) value to each design. 

The aim of the Machine Learning is to assimilate on-line the aesthetic preferences of the 

designer. 

To reduce the large amount of solutions that the user has to evaluate, the authors reduced 

the human interaction gradually from the first generation until the last, and increased the 

aesthetical solutions in terms of the user preferences. This is a machine-based method 

which is based on the system that has sufficiently studied the user preferences. The user 
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ranks the solutions by giving inputs and outputs of an online learning system. The users give 

inputs according to their preferences by defining an Ufit value to each design, and the 

inputs become outputs that the Machine Learning assimilates online. 

A common issue is that, if the user gives enough information to the system with a good 

representation, then the algorithm will learn and assimilate the information easier and 

better and the machine learning system will be overloaded with the instances to be learned. 

The three techniques that they examined are as follow: 

 Fuzzy rule based learning systems; 

 Radial Basis Functions (RBF); and 

 Case Based Reasoning (CBR). 

 

In the fuzzy system, the input information is characteristic-based variables that are simple 

and the system fails to work efficiently, especially when the designs are complex. On the 

other hand, in the case of the RBF and CBR method, the representation is more flexible and 

the information is based on the geometrical properties. 

 

The CBR is the most efficient technique. The user evaluates at the first population and the 

library starts to fill with information. The machine learning system ranks the solutions and 

the user is allowed to change this ranking. According to the experimental results of Machwe 

and Parmee (2006), once the machine learns the user preferences, the number of changes 

that the users make will decrease rapidly in the first generations and then slightly until the 

last generations, as shown in Figure 2.13. With the use of the machine learning sub-system, 

the user does not need to examine all the solutions. 

 

The CBR technique should achieve efficient results by being applied to the proposed IED 

system since it is proved (according to Figure 2.13) that it is working effectively within the 

IEDs and due to the gradual human interaction reduction. Since the proposed IED system 

uses complex designs, the CBR method should be more flexible than the fuzzy system 

technique as CBR is based on the geometrical properties while the fuzzy system fails to work 

efficiently when the designs are complex. However, machine learning should be a challenge 

that this research may investigate in the future since it is not general enough to be applied 

outside its specific domain. 
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Figure 2.13. Average number of changes that the users make to fitness during different generations (Machwe and Parmee, 
2006). 

2.4.3.1 Aesthetic descriptors in IED 

Li and Hu (2015) describe an approach based on aesthetic learning in evolutionary design. 

They attempt to make the user aesthetically judge the images and decrease the human 

interaction by reducing the loops of the process in which the user has to take part. They 

employ two types of aesthetic descriptors: 

 A high-level4 descriptor based on pixel distribution; and 

 A low-level5 descriptor based on aesthetic criteria (it applies computational methods 

that can make applicable aesthetic decisions in a similar way as humans can (Hoenig, 

2005)). 

Both descriptors represent the user’s preference. The computational learning model is 

found, by utilising the learning algorithm, and the model is able to drive the following 

generations as humans do. This indicates that the evolutionary process is automated. There 

are two models in the learning model: The features extraction from the images by using the 

above two descriptors to simulate the user’s preference and the classifier that is used for 

ranking the population in each generation. 

                                            
4
 It is the kind of features that users employ to describe an image. High-level descriptors include colour 

harmony, image complexity and image order. 
5
 Low-level descriptors include colour moments, lightness distribution and texture features. 
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These aesthetic descriptors describe the users’ judgements and are applied to every image. 

The system learns the user’s behaviour by using the descriptors’ model and so the model is 

able to help the user in the last evaluation, as shown in Figure 2.14. 

 

 
Figure 2.14. Architecture of EDS (Li and Hu, 2015). 

The steps that the process of the evolutionary exploration follows are: 

 Images are presented to the user on a screen; 

 The user chooses their favourite images; 

 The images are ranked by the user and those with the highest fitness become parents; 

 Descriptors extract features of the images; 

 If the number of generations is not fixed, then the user decides when the process will 

stop; 

 The system learns the user’s behaviour from the information that is collected from 

descriptors; and 

 The model evaluates the following generations. 

Machine learning is adopted to learn the aesthetic judgement in order for the system to 

have more aesthetic populations and less user interaction. They show that high-level 

descriptors are useful for predicting fitness in evolutionary design systems with aesthetic 

quality and that they are more convincing than low-level descriptors (Figure 2.15). 

Therefore, high-level aesthetic descriptors may be efficiently applied in the proposed IED 

system, as a future investigation. This aim has been attempted by Karim (2004) with the 

original EvoShape technology but without the machine learning. However, machine learning 
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is useful because it means that the system does not have evaluation criteria defined in 

advance (e.g. geometric properties). 

  
Figure 2.15. Accuracy obtained by low-level and high-level descriptors along with generations (Li and Hu, 2015). 

2.4.3.2 Human preference in evolutionary art 

Ekart et al. (2011) combine interactive and automatic approaches in evolutionary art by 

reducing the human contribution, however the user is still able to guide the evolution. This 

is called partially interactive evolution. They attempt to model human preference by 

employing four aesthetic measures: 

 Measure R: This measure is based on a mathematical model that is proposed by Ralph 

and Ross and Ralph (2006) and finds the colour gradient for each pixel. Then, the 

response value of the user is computed to each pixel. Measure R ignores images where 

the user gives very little or very large response (too much information) because it is 

either not interesting or it is chaotic, respectively. Measure R prefers reasonable values 

of gradients. For example, very low values give rise to single coloured monotonous areas 

(which do not interest a viewer) whereas very large values give rise to sharp lines and 

boundaries separating areas with huge colour differences (which is undesirable). 

 Measure MC: This measure is based on the theory of Machado and Cardoso (1998) who 

consider that the value of the aesthetic measure is the ratio of the image complexity to 

processing complexity. The less the ratio is, the less the complexity of the image is. 
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 Measure BZ: This measure is based on Birkhoff’s (2016) research and computes the 

entropy Hp. Measure BZ accepts very high and very low lighting values because they 

both lead to low values of Hp. 

 Measure S: In this measure the image is divided into four equal parts to compute how 

similar these parts are. They manage it by computing Shannon’s entropy Hp for each 

part, as mentioned in Rigau et al. (2016), and they calculate the ratio of the weighted 

mean of these values to the entropy. 

The results of these aesthetic measures are shown in Figure 2.16. 

 
Figure 2.16. Evolution of measure values (Ekart et al., 2011). 

In partial automatic evolution the users’ previous preferences are examined, modelled and 

ranked, and then the automatic evolution utilises these measures. This method creates a 

proper environment to examine user aesthetic preferences but it is very simple and it 

produces images within a limited set.  

2.4.4 EvoShape 

EvoShape is a semi-commercial IED system, originally proposed by Graham et al. (2008) and 

developed and launched in 2011. It was developed from a core technology arising from 

doctoral research conducted at the Wolfson School of Mechanical and Manufacturing 

Engineering at Loughborough University (Graham et al., 2001). 
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The EvoShape application runs within a CAD environment and the geometric modeller of the 

CAD system interacts with a GA. An example of a product and the evolved geometry which 

has inspired it is shown in Figure 2.17. 
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Figure 2.17. Design concept developed using EvoShape. The image in this figure was created in 2011 as publicity media. 
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Users guide the evolutionary process, from a random starting population of 3D shapes, 

purely through shape selection or rating. The users interact with the system by selecting or 

scoring objects from small generations, as shown in Figure 2.18. Using a mouse or 

touchscreen to choose their favourite objects, the users can work quickly by explicitly 

choosing parents for the next generation, or scoring objects to influence their probability of 

being selected by the system as parents. 

 

 
Figure 2.18. EvoShape screen-shot. 

In the EvoShape system, each object is built up from five geometric primitives (selected 

from block, sphere, cone and cylinder) which interface via Boolean operators (unite, 

subtract and intersect), as shown in Figure 2.19. 

             
Figure 2.19. Object construction via Boolean interaction (Graham et al., 2008). 
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An edge blending operator is used to convert the original primitive edges, or those created 

by the Boolean operators, to smooth or round edges creating new and more interesting 

shapes as shown in Figure 2.20. This technique contributes greatly to the originality and 

usefulness of the EvoShape outputs. 

 

 

 
Figure 2.20. Edge blending strategies (Graham et al., 2008).             

The EvoShape system is generic and flexible. The users do not need previous experience in 

using CAD modelling tools and the system is simple and helps users to control the 

evolutionary process by interacting with the system through selection. 
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Some industrial users of the system have expressed a desire for more control by setting 

some geometric constraints or guiding geometry at the onset. This led to the aim of this 

research, that the user will not only guide the evolution of 3D form by simply selecting or 

scoring shapes but also by using simple, pre-set fuzzy-constraints in order to create a more 

cooperative system that combines human interaction and geometric analysis, within an 

evolutionary design system. This complements the suggestions made for further work by 

Graham’s (2002) thesis. 

2.5 Geometry Mathematics 

Some mathematical operations have been investigated, and are described in this section, 

such as centre of mass, bounding box, vectors, moment of inertia and principal axes. 

 

A vector is a mathematical concept that has both magnitude and direction and is often 

expressed as a series of numbers. For example, in the 2D space of real numbers, the 

notation (1, 1) represents a vector that is pointed 45° from the x-axis towards the y-axis with 

a magnitude of √  (Equation 2.2). 

 

| | = √ 2   2 = √ 2   2 = √  

2.2 

For finding the rotation of an object, a matrix of the column vector (x, y) is multiplied by a 

rotation matrix calculated by the angle  . A rotation matrix is a matrix that is used to 

perform a rotation in Euclidean space. For example the matrix in Equation 2.3: 

 

R = *
         
        

+ 

2.3 

rotates points in the xy-Cartesian plane counter-clockwise through an angle   about the 

origin of the Cartesian coordinate system. To perform the rotation using a rotation matrix R, 

the position of each point must be represented by a column vector V, containing the 

coordinates of the point. A rotated vector is obtained by using the matrix multiplication RV, 

as shown in Equation 2.4: 

 

[
  
  
] = *

         
        

+ *
 
 + = RV 

2.4 
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The centre of mass is a position defined relative to an object or system of objects. It is the 

average position of all the parts of the system, weighted according to their masses. For 

simple rigid objects with uniform density, the centre of mass is located at the centroid. For 

example, the centre of mass of a uniform disc shape would be at its centre. Sometimes the 

centre of mass does not fall anywhere on the object. For example, the centre of mass of a 

ring is located at its centre, where there is no material. For more complex shapes, there is 

need of a more general mathematical definition of the centre of mass: it is the unique 

position at which the weighted position vectors of all the parts of a system sum to zero. A 

weighted position vector is a vector which points from the origin to an object and has 

magnitude m, where m is the mass of the object. For a system of n objects, the centre of 

mass is the point where (Equation 2.5): 

 

∑    
 
  1    = 0 

2.5 

where r is a unit vector pointing from the origin to the object. 

 

Bounding boxes are 3D boxes aligned with the global axes that surround entities within the 

model. There is a default bounding box for any new model that will surround all entities, 

including all groups and components. Bounding boxes are only large enough to exactly bind 

the entities within the model, group, or Minimum Bounding Box (MMB).  

 

Moment of inertia depends on the mass of the object, its shape and its relative point of 

rotation. It is a measure of an object’s resistance to changes in the rotation direction and 

has the same relationship to angular acceleration as mass has to linear acceleration. 

Moment of inertia of a body depends on the distribution of mass in the body with respect to 

the axis of rotation, and is the rotational analogue to mass. The mass moment of inertia 

about a fixed axis is the property of a body that measures the body's resistance to rotational 

acceleration. The greater its value, the greater the moment required to provide a given 

acceleration about a fixed pivot. The moment of inertia must be specified with respect to a 

chosen axis of rotation. The principal axes of a rotating body are defined by finding values of 

inertia. The symbols Ixx, Iyy and Izz are frequently used to express the moments of inertia of 

a 3D rigid body about its three axes and products of Inertia are given by Ixy, Ixz and Iyz. The 

Inertia Matrix is shown in Equation 2.6: 

   [

           
           

           

] 

2.6 

https://www.khanacademy.org/science/physics/linear-momentum/center-of-mass/a/math/geometry/triangle-properties/medians-centroids
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The three eigenvalues are the principal moments of inertia and are known as A B and C. The 

three eigenvectors are the principal axes of inertia and are orthogonal. When the axes are 

aligned with the principal axes, the inertia matrix can be expressed as (Equation 2.7): 

 

   [
   
   
   

] 

2.7 

Some of these terms have been investigated in this research and are presented in Chapter 4. 
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2.6 Pose Normalisation 

In recent years, the expanding availability of 3D digital content has created the need for 

massive 3D model datasets to be generated and the need for methods that can effectively 

search over large datasets. One of the most common problems that has to be faced is pose 

normalisation (translation, scaling and rotation) or alignment, which is most often achieved 

in applications such as: 

 Robotics (Kouskouridas et al., 2012) 

 Shape matching 

 3D object recognition 

 3D object retrieval 

 Visualisation and modelling where 3D shapes need to be positioned in a canonical6 

frame. 

Before any processing, and due to arbitrary scale, position and orientation that 3D objects 

obtain, the normalisation of the shapes into a canonical coordinate frame is very important. 

An ideal canonical coordinate frame of a 3D model is the coordinate frame that has axes 

parallel to the front-back, left-right and top-bottom directions of the model. Pose 

normalisation includes alignment and scaling. Rotation normalisation is the most difficult 

part (Chaouch and Verroust-Blondet, 2009; Kazhdan, 2007; Rustamov, 2007), and the 

traditional technology that is used is the Principal Component Analysis (PCA). 

In the following section, methods of assessing similarities will be covered. But before these 

tests can be done, objects need to be orientated, scaled, and translated. The box-model7 

needs to be aligned within the evolving forms by allowing optimal geometric analysis. This is 

most commonly referred to in the literature as “Pose Normalisation” (Sfikas et al., 2011), 

(Papadakis, 2014), (Farrugia and Barbarar, 2015), (Axenopoulos et al., 2011), (Johan et al., 

2011). In the proposed system, Pose Normalisation is necessary to align box-models 

(created before the evolutionary process is started) with the evolving forms. The aim is to 

influence the evolution of forms around and within simple pre-set geometry. 

For more accurate and consistent results, many alignment and pose normalisation 

techniques have been proposed. Some of the following techniques may be applicable for 

this research. 

                                            
6
 In mathematics and classical mechanics, canonical coordinates are sets of coordinates which can be used 

to describe a physical system at any given point in time (locating the system within phase space). A phase 
space of a dynamical system is a space in which all possible states of a system are represented, with each 
possible state of the system corresponding to one unique point in the phase space. 

7
 Box modelling is a technique in 3D modelling where a primitive shape (such as a box, cylinder, sphere, 

etc.) is used to make the basic shape of the final model. This basic shape is then used to sculpt out the final 
model. The process uses a number of repetitive steps to reach the final product, which can lead to a more 
efficient and more controlled modelling process. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Coordinates
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Space_(mathematics)
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/3D_modeling
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2.6.1 Reflective Symmetry 

The symmetrical properties of a 3D shape can be used to implement rotation normalisation. 

In this method, the principal axes of the model are the axes that best segment the object 

into two reflecting parts. 

A reflective symmetry computed on panoramic 8  views was used for a novel pose 

normalisation method, as described by Sfikas et al. (2014). Due to their perspective that 

most objects hold a single plane of symmetry, the symmetry plane of a 3D model is 

detected and the first axis of the model is computed. The remaining principal axes are 

computed by calculating the variance of the panoramic views. The method is reported as 

being accurate and with better performance against other approaches. 

First, on an arbitrarily chosen cylinder, the surface of the model is projected and aligned 

with a principal axis in space. A panoramic view representation is created by unfolding the 

3D model over a 2D image plane. The 3D model’s plane of symmetry is defined by the axis 

of the projection cylinder and the axis of maximum reflective symmetry. The 3D model’s 

centroid is used to achieve translation normalisation, and scale normalisation is followed so 

that the 3D model exactly fits inside the unit sphere. A rotation of the symmetry plane takes 

place by orientating the surface so that it includes the Z axis and the plane of symmetry is 

detected in the panoramic image where the symmetry score graph is extracted, as shown in 

Figure 2.21. 

 

                                            
8
 A panoramic view is a wide-angle view in a 3D model. 

https://en.wikipedia.org/wiki/Obtuse_angle
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Figure 2.21. An example of panoramic images that represent the symmetric planes and the symmetry score graphs. At the 
bottom is the graphs of rotation (in degrees) giving the maximum symmetry score and at the top is the images of the best 
rotation, (Sfikas et al., 2014). 

The Principal Component Analysis (PCA)-based pose normalisation methods (Shilane et al., 

2004; Theodoridis and Koutroumbas, 2006; Zaharia and Prêteux, 2004) the best-known 

approach for computing the alignment of 3D objects, can be imprecise, produce poor 

alignments (Chen et al., 2003) and in most cases fail to capture symmetries and large planar 

surfaces. On the other hand, experimental results of Sfikas et al.’s (2014) method show that 

the performance is improved (Figure 2.22) and that the discriminative power of a 3D object 

retrieval system is enhanced. 

However, the symmetry-based techniques are not able to handle complex symmetry 3D 

objects because symmetry detection either focuses on small fragments or bigger abstract 

areas of the 3D objects. Also, Sfikas et al.’s (2014) method blindly searches the complete 3D 

rotational space and aims to decrease the search space through the repeated rotation of the 

3D model around one of the principal axes and the computation of the vertical reflective 

symmetry scores of its projections. 
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In some IED systems that use simple 3D models, the reflective symmetry algorithm should 

achieve robustness. But, IED systems with more complex models should produce inefficient 

alignments by using this method because of the very high computational demands. 

 

 

 
Figure 2.22. Precision-Recall (%) chart for Princeton Shape Benchmark test dataset. A comparison between SymPan+3D 
model pose normalisation method on PANORAMA retrieval results and state-of-the-art 3D object retrieval techniques 
(Sfikas et al., 2014). 
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2.6.2 Pairwise Alignments 

Averkiou et al. (2015) focus on resolving rotational autocorrelations of shapes to ease shape 

co-alignment and therefore to ease rotational normalisation.  

This technique is based on co-aligning all the objects jointly without an arbitrarily chosen 

reference shape. The reference shape is based on the first object that has been selected and 

therefore lowers the accuracy of the results when there are many different shapes in the 

database. In order to avoid comparing all the objects, this method is also based first on 

aligning similar shape pairs and spreading the alignment information to other shapes and 

second on comparing a shape with itself. They find out if two shapes are similar shape pair 

by comparing a shape with itself and then comparing this shape with a second shape. If the 

comparison with the second shape is close to the comparison with itself, then the two 

shapes are similar shape pair. They compare a shape itself by using an autocorrelation 

descriptor. 

The aim is to find pairs of similar shapes by finding the angles that lead to local minima in 

order to sample only a small number of possible alignments and therefore to increase the 

speed of co-alignment. Only a small amount of relative angles leads to local minima, as 

shown in Figure 2.23. 

 
Figure 2.23. Pairwise alignments; an autocorrelation descriptor is used to predict their relative alignment (Averkiou et al., 
2015). 
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Unlike Sfikas et al. (2014), this method does not use rotationally symmetrical shapes, but 

searches for near-symmetries that may provoke ambiguities in shape matching. These 

ambiguities are solved with a co-alignment formulation. With respect to state-of-the-art 

methods, this work results in higher-level performance, leading to efficient and accurate 

alignments (Figure 2.24), and should be applied to IED systems to produce efficient rotation 

normalisation. But, according to the authors, if a system contains models with a large 

number of near-symmetries, it will not be able to produce efficiency. 

 

 
Figure 2.24. Fraction of models (y-axis)-angle threshold (x-axis) chart for 8 datasets. Averkiou et al.'s (2015) results are 
better than the results of random alignments (with only 8% accuracy for a threshold of 15°). This method suffers from 
near-symmetries of shapes (Averkiou et al., 2015). 

2.6.3 Pose Normalisation for non-rigid shapes 

Papadakis (2014) describes the usage of One-Class Support Vector Machines (OCSVM) to 

increase the consistency of translation and scale normalisation under non-rigid shapes.  

In translation normalisation, usually, the centre of mass of a 3D model is computed and 

located to the coordinates’ origin. However, this technique is not effective in 3D objects that 

are articulated or have extruding parts and outliers (Figure 2.25). 

To alleviate this problem, Papadakis (2014) considers the surface of a 3D object as a 

collection of 3D points and uses OCSVM to compute the decision surface and find the 

volume constrained within the boundaries of the decision surface. The centre of the object 

is the centroid of the distribution of the volume. The algorithm is identifying parts that are 
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extremely small regarding the whole shape and that could derive negative results during the 

computation of the translation and scale. 

 

In scale normalisation, fitting the scale of a 3D model inside a unit cube is also not an 

effective technique due to the possible presence of outlying parts (Figure 2.25). To 

normalise the scale, they calculate the average distance of the distribution of the object 

from its centre and scale the object in order this distance to be unit, as is shown in Figure 

2.26(b). 

In the presence of non-rigid transformations, a method similar to the one proposed in Sfikas 

et al. (2014) or Kazhdan et al. (2004), that depends on the symmetry properties of the 

objects, becomes less descriptive. The state-of-the-art approaches cannot cope with 

variation of 3D objects with articulations or extrusions, because the assumption that the 

centre of a 3D object is the centre of mass of the surface is not robust in the presence of 

non-rigid transformations. Thus, the OCSVM methodology helps to alleviate this problem 

and can easily be applied to some IED systems that handle complex 3D objects with 

extruding and outlying parts, and perform a more consistent translation and scale 

normalisation. 

 
Figure 2.25. Translation normalisation using the centroid of the surface of the object, example in an object with and 
without extruding parts (a). Scale normalisation to the unit cube (b) (Papadakis, 2014). 

The future aim of Papadakis (2014) is to improve rotation normalisation methods that are 

based on measuring 3D spatial features in order for the consistency of rotation 

normalisation to be increased. 
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Figure 2.26. (a) Translation and (b) scale normalisation using OCSVM and the centroid and average distance of the surface 
(Papadakis, 2014). 

2.6.4 Principal Component Analysis Methods 

Farrugia and Barbarar (2015) focus on pose normalisation for 3D vehicle models using 

various pose normalisation techniques. There are two main techniques that can be used for 

rotational normalisation: 

 The Principal Component Analysis (PCA) algorithm; and  

 Computation of the symmetrical planes of a 3D model which is achieving rotation 

invariance. 

The symmetrical appearance of 3D vehicles should support the use of the symmetrical plane 

method but there is only one symmetrical plane on each shape of a vehicle. Since PCA based 

techniques have been proven as the most suitable techniques for 3D vehicle retrieval due to 

their vertex distribution9, Farrugia and Barbarar (2015) tested four different PCA methods 

on a downloaded database. These four methods are: 

 Principal Component Analysis (PCA) 

 Centre of Gravity-PCA (CoG-PCA) (Paquet et al., 2000) 

 Normal-PCA (NPCA) (Papadakis et al., 2007; Papadakis et al., 2008) and 

 Continuous-PCA (CPCA) (Vranic et al., 2001; Vranic, 2004; Vranic, 2005)  

The CoG method calculates the centre of the gravity of each mesh face rather than the 

actual vertices. In the NPCA technique, the principal axes are identified by the covariance of 

                                            
9
 In most 3D vehicle models, the coordinate values of the vertices have a predominant variance along 

three directions. That means that the PCA method is a sufficient technique to align 3D vehicles to a canonical 
orientation. 
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the mesh face and not by the vertex points. CPCA is the PCA method applied to an infinite 

continuous point set rather than to a traditional discrete point set. 

All these variances of the PCA differ from the original only in the computation of the 

covariance matrix and they have been studied because many researchers have shown that 

the PCA technique may lead to inconsistent results. 

For each of the four techniques the authors used two methods to evaluate the pose 

normalised models: 

 In method 1, they record the number of models that aligned with the other models in 

the same class; 

 In method 2, they compare the effectiveness of the four techniques using a scan-line 

feature descriptor algorithm. 

Using the experimental results given by the authors, the CoG-PCA method was more 

effective regarding computation time. The CPCA method had slightly better performance 

(Tangelder and Veltkamp, 2008) than the CoG-PCA and noticeably better performance than 

the PCA and Normal-PCA. Regarding reflection normalisation, PCA was inadequate (Pears et 

al., 2010) as shown in Figure 2.27, while NPCA had inaccurate results in the three axes’ 

identification as shown in Figure 2.28. 

The CPCA-based pose normalisation method, in some cases can be unsuccessful to detect 

some specific characteristics of 3D models such as symmetries, but they should be more 

effective when they are applied to IED systems that handle simple geometric shapes. 

 

 
Figure 2.27. PCA’s inconsistency in identifying the positive and negative side of an axis (Farrugia and Barbarar, 2015). 
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Figure 2.28. NPCA’s inconsistency in identifying the three axes (Farrugia and Barbarar, 2015). 

2.6.5 Combined Pose Estimation (CPE) 

Axenopoulos et al. (2011) combine the plane reflection symmetry and recti linearity10 to 

attain a 3D model alignment by using the PCA method. The method starts by locating the 3D 

object in a coordinate system and the object generates 2D images. A flip-invariant shape 

descriptor is used for each image. The method is summarised in Figure 2.29. 

 

 
Figure 2.29. Diagram of the method (Axenopoulos et al., 2011). 

First, the 3D object is translated by locating the centre of the mass to the centre of the 

coordinate system and then it is scaled to fit within a bounding sphere. Then, rotation 

estimation takes place using a novel Combined Pose Estimation (CPE) method which 

combines the Continuous-PCA with plane symmetry and recti-linearity. The CPE method is 

shown in Figure 2.30. 

                                            
10

 Recti linearity is defined as the maximum ratio of the surface area to the sum of three orthogonal 
projected areas of the mesh. 
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CPCA is used to produce a first pose estimation and the reflection symmetry is the 

computed. If there are two or three planes of symmetry, the transformation is kept as it is 

otherwise the algorithm needs to be corrected using recti linearity. Recti linearity is 

invariant to scaling, translating and rotating and is also invariant to flipping of the 

coordinate axes. PCA and recti-linearity happen at the same time and the one that produces 

the best rotation estimation is chosen. 

 

 
Figure 2.30. Diagram of the CPE method (Axenopoulos et al., 2011). 

After alignment, a set of 2D black/white views is extracted and from each 2D view a 

descriptor vector is also extracted. These vectors are converted into a single descriptor 

vector which describes the shape of the object. The 2D vectors are flip-invariant which 

means that even if the orientation is not consistent, the resulting descriptors are the same. 

View-based similarity is computed by matching each 2D view between 3D models, so that 

the 3D models can be properly aligned in a coordinate frame. 

The experimental results given in Axenopoulos et al. (2011) prove that the CPE technique 

produces accurate rotation estimation results in comparison with other state-of-the-art 

approaches. 

This technique should achieve robustness in IED systems that use simple models. However, 

using the centre of the mass for translation normalisation will not produce consistent 

alignment in more complex objects. 
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2.6.6 Minimum Projection Area (MPA) 

Johan et al. (2011) focus on pose normalisation using a novel Minimum Projection Area-

based (MPA) alignment method. They use an optimisation method11 that finds three 

principal axes to align a model: 

 The first axis gives the MPA; 

 The second axis is vertical to the first and also gives the MPA; 

 The third axis derives from the point that the other two axes intersect. 

An object has a MPA by orthogonally projecting it in the direction parallel to one of the axes 

of the ideal canonical coordinate frame. Figure 2.31 shows that there are three canonical 

orthographic projection views for every 3D model: front-back, left-right, and top-bottom 

views. 

 

 
Figure 2.31. Canonical orthographic projection views of a car model based on its ideal canonical coordinate frame (Johan et 
al., 2011). 

 

Each of the three canonical views has a minimum projection area that is compared to some 

arbitrary views, as shown in Figure 2.32. 

The axes orientate so that similar models can be aligned in similar poses. Johan et al. (2011) 

use a sphere to find the axis with minimum projection by sampling a set of points on the 

surface of the sphere. The MPA method can be considered as a view-based approach and 

Johan et al. (2011) use view point selection techniques to find the best views that describe a 

3D model. 

 

 

                                            
11

 This method is based on the PSO method which was employed by Johan et al. (2011) to efficiently find 
the axis with minimum projection area. 
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Figure 2.32. Examples showing that one canonical view of a 3D model usually has the MPA. In each row, the first three 
images are the front, left, and top views of a 3D model and the remaining three images are three arbitrary views of the 
same model. The number underneath each view is its normalised projection area (Johan et al., 2011). 

The experiments, that Johan et al. (2011) performed, prove that the alignment axes are 

consistent and parallel to the canonical frame and the pose normalisation of similar models 

is robust under variations and noise. This algorithm is not based on the traditional PCA-

based approach but attains better results in 3D object retrieval than CPCA, NPCA and PCA. 

In further work, symmetry should be combined with the MPA so that the method can be 

improved. This should produce efficient rotation normalisation before the 3D comparison 

between the forms and the GG, when applying it to IED systems. 

2.6.7 Planar-Reflective Symmetry Transform 

Podolak and Funkhouser (2006) describe a planar reflective symmetry transform (PRST) for 

3D models that captures a continuous measure of the reflectional symmetry of a shape 

respectfully to all potential planes. This transform is computed by a Monte Carlo12 sampling 

algorithm which is constant under transformations, and determines the centre of symmetry 

as well as the principal symmetry axes which are essential for aligning models in a canonical 

system. 

As shown in Figure 2.33, the darkest point (which is the greatest symmetry) is the centre of 

the object and the main lines are the main axes. In some parts of the objects (the 

motorcycle wheels for example) the symmetries represent the local maxima while some 

asymmetric parts (the mug handle for example) do not influence the global maxima. 

 

                                            
12

 In computing, a Monte Carlo algorithm is a randomised algorithm whose running time is deterministic, 
but whose output may be incorrect with a certain (typically small) probability. 

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Probability
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Figure 2.33. The PRST captures the degree of symmetry of arbitrary shapes with respect to reflection through all planes in 
space. Darker lines represent greater symmetries (Podolak and Funkhouser, 2006). 

 

As it is known, alignments are usually computed with PCA using the centre of mass as the 

origin and the principal axes as the orientation. However, the results are not always 

consistent, desirable and similar to what humans would choose. This can be proved 

considering the mugs in Figure 2.34. 

 

 
Figure 2.34. A mug with and without handles. The centre of mass and PCA axes are drawn in dotted green (they move 
depending on the presence of handles). The centre of symmetry and principal symmetry axes using PRST are shown in solid 
red (they remain constant under transformation of the shape) (Podolak and Funkhouser, 2006). 

Podolak and Funkhouser (2006) produce better alignments using the PRST and introducing 

the Centre of Symmetry (CoS) as well as the principal symmetry axes (PSA). The plane with 

maximal symmetry is the first PSA, the maximal symmetry vertical to the first is the second 

PSA and the plane which is vertical to both first and second axis is the third PSA. Finally, the 

intersection of those three planes is the centre of symmetry.  

For the matching process, Podolak and Funkhouser (2006) employ a shape descriptor using 

the PRST to calculate the diversity between two aligned meshes between their discrete 

PRSTs. When the one object is symmetrical and the other is not, this measure produces a 

large distance. 

Although this technique captures not only global symmetries of an object but also local 

symmetries of main parts, it successfully detects only symmetries of an entire object (while 

Podolak and Funkhouser (2006) are using the segmentation algorithm, local symmetries 

sometimes fail to be detected). This algorithm should achieve efficient normalisation by 

being applied in IED systems as the centre of symmetry and principal symmetry axes remain 

constant under transformation of shapes but it may not be robust for some complex objects. 
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2.6.8 Partial Symmetry-Based Alignment 

Complex objects with multiple symmetric parts corresponding to different sized regions has 

been researched by Dang et al. (2014) and is called Partial Symmetry-Based Alignment. 

Dang et al. (2014) describe a partial symmetry-based alignment for 3D models with Non-

Uniform Rational B-Rep13 (NURBS) surfaces, as shown in Figure 2.35. The dominant partial 

symmetric surface is found and used to determine the first canonical plane from which the 

rest are identified based on the MPA. This method uses robust algorithms to detect partial 

symmetries and to align the models based on their dominant partial symmetries. 

 

 
Figure 2.35. (a) B-Rep objects in a violin model. (b) B-Rep object representing a violin body. (c) B-Rep entities within a face 
of the violin body (Dang et al., 2014). 

 

The two algorithms that are used are as follows: 

 The symmetry detection algorithm that detects the dominant symmetry plane, as shown 

in Figure 2.36; and 

 The axes generation algorithm that evaluates the three canonical axes based on 

orthographic projection. 

                                            
13

 B-Rep model consists of multiple B-Rep objects and B-Rep object consists of multiple faces. 
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Figure 2.36. Results of symmetry detection (Dang et al., 2014). 

 

After the detection of the symmetrical faces within the model, the dominant symmetry is 

found and the first canonical plane is estimated. The second axis is vertical to the reference 

axis and the third is determined by the latter. Examples of alignment are shown in Figure 

2.37. 

 
Figure 2.37. Alignment results: The pink plane is the dominant symmetry plane (first canonical plane), the blue plane is the 
second plane, and the green is the third plane  (Dang et al., 2014). 
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Compared to PCA approaches, this method is closer to human perception and it works 

better even if the model has a partial symmetry or even if the model is complex, since it is 

based on matching of trimming loops corners. The precision is higher than the PCA since it 

does not use global symmetry. The partial symmetry-based alignment method should 

achieve robustness and effective alignment in IED systems with complex models. 

2.6.9 The Spherical Trace Transform 

Zarpalas et al. (2007) present a novel method for 3D model search and retrieval using the 

spherical trace transform. After the 3D objects are translated and scaled, a descriptor vector 

that is rotation invariant is constructed without the use of rotation normalisation. The 

spherical trace transform is tracing the volume of a 3D object using: 

 2D planes which are tangential to concentric spheres; 

 Radius segments, as shown in Figure 2.38, where    is the length of the radius segment. 

Descriptor vectors that are rotation invariant are produced using a set of functions. 

 

 
Figure 2.38. The spherical trace transform: The define plane Π(η, ρ) is tangential to the sphere Sρ with radius ρ and centre 
at the origin, at the point (η, ρ), where η is the unit vector in    (Zarpalas et al., 2007). 

Specifically, a set of functions is applied to the volume of the object, a new domain of 

concentric spheres is produced where a new set of functions is applied and finally a 

descriptor vector which is rotation invariant is constructed. 

In this method, a descriptor is produced without the use of rotation normalisation. When 

rotation normalisation is used for an object at specific radius, a different shaped object will 

be created and the same descriptors will be produced for these different objects (because 

all shells of the same radius are integrated). However, Zarpalas et al. (2007) method is not 

affected by independent rotations (Figure 2.39); the descriptors that are produced are not 
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identical due to the fact that while tracing the volume of the object, the planes will contain 

information of the object in different radius. 

 
Figure 2.39. Rotation of f (x) rotates F(η, ρ), without being affected by independent rotations  (upper left image). Thus, 
F(  ,   ) = F(   ,   ) (Zarpalas et al., 2007). 

Zarpalas et al. (2007) have shown in their experimental results that this method is precise 

and these descriptors are used for 3D model matching in an efficient manner and may be 

efficiently adapted for IED systems. 

2.7 Minimum-Volume Bounding Box 

The problem of defining the minimum oriented bounding box (OBB) happens in many 

industrial applications like packing, optimum layout design, image processing and shape 

analysis. The algorithm can be applied to many other fields like fitting an object into a 

predetermined container or creating bounding boxes in solid modellers to improve their 

performance. Three-dimensional boxes can also be applied to some important applications 

like computer graphics (for fast rendering of a scene or for collision detection), and statistics 

(for storing and performing range-search queries on a large database of samples). The 

problem in such applications are divided into two: finding a good split of a given set of 

points into two (or more) subsets, e.g., in a way that minimises the maximum diameter of 

the subsets, and computing an optimal box (or another generic shape) that encloses each 

subset. 
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2.7.1 Approximation algorithms of a point set in three dimensions 

Barequet and Har-Peled (2001) give effective algorithms for solving the following problem: 

Given a set S of n points in  3 and a parameter 0 < ε ≤ 1 which is the accuracy controlling 

factor, find a rectangular box that encloses S whose volume is at most (1 + ε) times the 

minimum volume of a bounding box of S. Barequet and Har-Peled (2001) focus on 

computing a nearly optimal box that encloses subsets of given sets of points rather than on 

finding a good splitting of a given set of points into two (or more) subsets (Huebner et al., 

2008). 

Barequet and Har-Peled (2001) present two (1 + ε)-approximation algorithms for the 

Minimum-Volume Bounding Box (MVBB) problem in  3 . Both algorithms use an 

approximation of the diameter of S to define a grid. First, a good enough approximation of 

the diameter of the point set is needed, which is the distance between the two furthest 

points of S. Second, they compute an approximating box, as shown in Figure 2.40 and Figure 

2.41. The diameter of the point set is chosen as an approximate direction for building the 

first approximate OBB. 

 
Figure 2.40. Q is a set of n points in   . s and t are the points in S that define the longest edge of bounding box. s’ and t’ 
are two points in Q. μ is the direction perpendicular to st and s’t’. R is the minimum-area bounding rectangle of Q in the 
direction s’t’ and μ. ω is the length of the edge of R in the direction μ. u and υ are the two points of Q lying on the two 
edges of R parallel to s’t’ (Barequet and Har-Peled, 2001). 

The first algorithm approximates S by a set of grid points and computes the exact MVBB of 

the last set. This algorithm is possibly too difficult to implement, the computational time is 

significant if the accuracy required is high and the number of points is large. So, they 

propose a second less effective approximation algorithm but easier to implement. The 

second algorithm computes the box with a minimal volume out of a small number of 

bounding boxes whose orientations are induced by the grid. Different orientations of the 
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OBBs of the point set are computed based on the vector directions of two of the grid points. 

The minimum bounding box is then recorded. 

 

 
Figure 2.41. Bounding boxes of two spatial point sets. The diameter of the sets are shown as a nearly vertical line segments 
(Barequet and Har-Peled, 2001). 

A MVBB of a scaled-up space is a (1 + ε)-approximation of the MVBB of S. This version of the 

algorithm requires big running time. However, it is possible to reduce the running time of 

the first algorithm by scaling down the space so as to transform the bounding box to a unit 

cube. This method together with an efficient PN technique can effectively minimise the R 

area between the GG (bounding box) and the forms when adapted for IED systems. 

2.7.2 Shape aprroximation in robot grasping 

Huebner et al. (2008) enclose 3D data points into primitive box shapes by using a ‘fit and 

split’ algorithm that is based on Barequet and Har-Peled’s (2001) effective MVBB algorithm. 

Huebner et al. (2008) were interested in investigating which primitive shape representations 

might be appropriate for the task of grasping arbitrary, unseen objects Huebner et al. (2008) 

chose boxes as a very simple and rough approximation representation. 

Huebner et al. (2008) produce a tight-fitting, oriented MVBB that encloses the data points 

by performing the computation on an arbitrary point cloud, as can be seen in Figure 2.42. 

The aim is to approximate a shape with as few boxes as possible. 

Huebner et al. (2008) decided to test only the planes parallel to the parent MVBB, as Figure 

2.43 shows. The relation of the box volume before and after can be a measure of a good 

split: the less volume that the two resulting child MVBBs will have, the better the split of the 

parent box is. 

To decrease the problem, Huebner et al. (2008) evaluate the best cut by first projecting the 

data on 2D grids which correspond to the surfaces  ̅,  ̅ and  ̅ and then splitting a 2D box by 

an edge-parallel line. The Figure 2.44 shows that there are six valid split directions left, two 

for each of the surfaces   ̅,  ̅ and  ̅. The best bunny cuts that minimise the summed volume 

of the two partitions are shown in Figure 2.45. 
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Figure 2.42. The Stanford bunny model and the root MVBB of its vertices (Huebner et al., 2008). 

 
Figure 2.43. (a) A mean cut of a bunny model. (b) They test only the planes parallel to the parent MVBB. (c) A good cut 

parallel to the root MVBB plane  ̅ (Huebner et al., 2008). 

 
Figure 2.44. Bunny sample projections onto the three faces of the root box (Figure 2.43) according to the face-parallel 
cutting scheme in Figure 2.43 (b) (Huebner et al., 2008). 
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Figure 2.45. Best cuts along the six box directions (Huebner et al., 2008). 

Huebner et al. (2008) propose MVBBs as effective box decomposition on a ‘fit and split’ 

approach. This technique is highly efficient and simple for achieving exact shape 

approximation. However, exact approximation may not be necessary for grasping tasks. This 

technique is based on box representation and decomposition with an efficient splitting 

criterion that offers fast computational methods. 

The ‘fit and split’ method can achieve robustness in the IED system proposed in this 

research – splitting the bounding box of the forms during scaling, can produce more 

accurate scaling results. 

2.7.3 Iterative approach of an arbitrary solid 

Chan and Tan (2001) propose a technique for determining the minimum oriented bounding 

box of an arbitrary object by projecting the object onto the three principal planes and using 

the projected contours for analysis. The orientation of the contours are determined by 

rotating them within a specific angle range. These orientations are then used to 

approximate the orientation of the object so that its bounding box volume is minimised. 

According to Chan and Tan’s (2001) first theorem, if an arbitrary object is reoriented in such 

a way that the bounding boxes of its projected areas to the three principal planes are a 

minimum, the volume of the bounding box of the reoriented object so derived is also a 

minimum. So, the axis aligned bounding box (AABB) of the object is equal to its minimum 

oriented bounding box         . Hence, the question is how to reorient an object to 

achieve this theorem. 

Chan and Tan’s (2001) second theorem shows that the bounding volume of an object will 

become a minimum if the model is rotated about an axis passing through the AABB centre 

(as shown in Figure 2.46) and reoriented according to the minimal projected area of AABB 

on the three principal planes successively. Then, the volume of       of the object is equal 

to the minimum volume of           of the object. The steps to achieve this theorem are: 

 Find the bounding box of the object as shown in Figure 2.46a. 

 Create an axis    that is vertical to the XY plane and is passing through the centre of the 

bounding box (see Figure 2.46a). 
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 The object is repeatedly rotated about    until its projected bounding box area on the 

XY planes achieves a minimum. This gives the XY-bounding box whose y edge length is 

smaller than the x edge length. The resultant object is shown in Figure 2.46b. 

 The model is rotated about    until its projected bounding box area on the ZX plane is a 

minimum. Axis    is chosen because the y edge length does not change during the 

rotations. This gives the ZX-bounding box with a z edge length smaller than the x edge 

length as shown in Figure 2.46c. 

 Axis   , which is vertical to the y and z edge lengths, is chosen. The object is rotated 

about    until its projected bounding box area on ZY plane achieves a minimum (see 

Figure 2.46d). 

 The object is now oriented at a position which gives an approximate minimum bounding 

box volume. The rotation sequence is   →  →  . 

 

Figure 2.46. Procedures for finding out the minimum bounding box of a simple object (Chan and Tan, 2001). 

A 64% reduction in volume and 46% reduction in surface area is achieved. This algorithm 

contains many rotations of an object. So the run time mostly depends on the selection of 

angle increment for the rotation of the object. During the iterative process, there may be 
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more than one angle of rotation that gives an absolute minimal projected area. This 

problem needs further analysis.  

This iterative approach achieves efficient volume and surface reduction and can be 

efficiently adapted for IED systems. This can be achieved by rotating the form in 

  →  →   sequence and increasing (scaling) the volume of the form instead of reducing 

the volume of the GG (bounding box). The form can be continually scaled until one of the x, 

y, or z length of the form is equal to one of the x, y or z length of the GG (bounding box) 

respectively. 

2.7.4 Finding minimal enclosing boxes 

Rourke (1985) has shown that a box of minimal volume circumscribing a convex polyhedron 

of n vertices must have at least two adjacent faces flush with edges of the polyhedron. The 

convex polyhedron is oriented one at a time with each face of the polyhedron lying on, for 

instance, the XY plane. The polyhedron is projected onto the XY plane. The AABB of the 

polyhedron and its volume are computed for each orientation. The smallest volume and its 

corresponding orientation are recorded. In Rourke’s (1985) algorithms, the computational 

time is significant if the number of faces of the polyhedron is large. 

Chan and Tan’s (2001) algorithm is mainly suitable for complex objects where their 

minimum bounding box may not be obvious. For objects that contain no more than ten 

thousand vertices, either Chan and Tan’s (2001) algorithm or Rourke’s (1985) algorithm can 

be used if a precise           is not required. If the model is very complex and contains 

more than ten thousand vertices, either Barequet and Har-Peled (2001) algorithm or Chan 

and Tan’s (2001) algorithm is suitable if computational time is important in the 

consideration.  

In fact, all these algorithms can be combined into one method in order to allow the 

advantages of each of them to be used. For example, if a large complex object is given, the 

approximate orientation of the object, that its AABB is equal to the OBB, is first determined 

by either Barequet and Har-Peled’s (2001) algorithm or Chan and Tan’s (2001) algorithm. 

The result is recorded and then used for orientation filtering in Rourke’s (1985) algorithm. 
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2.8 Shape comparison 

Recent developments in 3D shape modelling have led to an increased accumulation of 3D 

models in databases and on the Internet and, with the rise in the number of 3D scanned 

objects, 3D object retrieval is becoming widespread in the fields of computer vision, 

computer graphics, computer aided design (CAD), molecular biology etc.  

The success in elaborating a solution to content based retrieval of 3D models depends 

heavily on the existence of an efficient and intelligent comparison of 3D objects. Therefore, 

as a starting point, analysis of and experimentation with geometric similarity was 

researched and conducted. The secondary research is described in the following sections. 

2.8.1 Dimension Amnestic Pyramid Match Kernel 

Saupe and Vranic (2001) consider 3D object retrieval by using spherical harmonics and 

moments in which a polygonal mesh serves as a query and similar objects are retrieved from 

a collection of 3D objects. First, models are normalized into canonical coordinates (pose 

normalisation). The goal of this procedure is that if one chose a different scale, position, 

rotation, or orientation of a model, then the representation in canonical coordinates would 

still be the same. Second, feature vectors are extracted and compared. In the feature vector 

space, the nearest neighbours are computed and ranked. The features capture the 3D shape 

of the objects and they range from simple bounding box parameters (Paquet et al., 2000) to 

complex image-based representations (Heczko et al., 2002). The features are stored as 

vectors of fixed dimension. Third, a similarity search happens. The features are designed so 

that similar 3D objects are close in feature vector space. Using a suitable metric, nearest 

neighbours are computed and ranked. A various number of objects are thus retrieved by 

listing the top ranking items. 

Wu et al. (2010) propose 3D shape comparison and partial matching, using a novel shape 

descriptor to capture local and global features of 3D objects based on high quality manifold 

harmonic bases constructed. Then they perform 3D retrieval to compute the similarity 

between two feature-sets using Dimension Amnestic Pyramid Match Kernel (DAPMK). 

More specifically, to construct high-quality manifold-harmonic bases for complex 3D shapes, 

Wu et al. (2010) first propose a novel symmetric mean-value Laplace-Beltrami 14 

representation. Second, Wu et al. (2010) propose a novel global and local shape descriptor 

which is invariant to rotation, translation, scaling, and non-rigid bending as can be seen in 

Figure 2.47. 

                                            
14

 The Laplace operator can be generalised to operate on functions defined on surfaces in Euclidean space. 
The Laplace-Beltrami operator is a more general linear operator which is used to compare and analyse 
geometric shapes. It is invariant under isometries and well suited for analysis or retrieval of non-rigid objects. 
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Figure 2.47. The Armadillo model and its 1
st

, 2
nd

, 3
rd

 manifold harmonic bases (a, b, c). It can be seen that the bending-
invariance is achieved (a’, b’, c’) (Wu et al., 2010). 

Third, by using the local and global features captured by the shape descriptor, Wu et al. 

(2010) perform a similarity comparison and partial matching (Figure 2.48) among 3D shapes 

by computing the pairwise similarities of 3D models using DAPMK. Pyramid Match Kernel 

(PMK) is an efficient approach to quantify the similarity between two unordered feature-

sets. However, the approximation of PMK to the optimal feature matches deteriorates 

linearly with the dimension of local features, which prohibits the direct use of many 

dimensional features. DAPMK is a general, data-independent Kernel which can handle many 

dimensional features and gives an upper bound of approximation error independent of the 

dimension of local features (Liu et al., 2008). Wu et al. (2010) find matched regions on other 

models that are similar to the query region on a given 3D model. Wu et al. (2010) define a 

match with a similarity measure. A smaller distance means a more similar match, as can be 

seen in Figure 2.49 and Figure 2.50. To find the matches, Wu et al. (2010) use DAPMK as the 

distance/similarity function and look for the maximum similarity match. 

 

Figure 2.48. A partial matching example. Note that this partial algorithm does not consider the symmetric shape matching, 
therefore a query on the right hand (a) may return a partial matching result with maximum similarity on the left hand (d) 
(Wu et al., 2010). 
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Figure 2.49. A similarity comparison example. The distance value indicates the dissimilarity between the query model #0 
and the match model. A smaller distance means a more similar match (Wu et al., 2010). 

 

 

Figure 2.50. Another similarity comparison example (Wu et al., 2010). 

It is difficult to handle a 3D mesh surfaces by using classical Fourier15 analysis because this 

method is not efficient for non-uniform sampling and complex topology. However, manifold 

harmonics can naturally generalise Fourier analysis or spherical harmonics on a regular 2D 

domain onto an arbitrary 3D mesh surface. Kernel’s method is dimension-free, suitable for 

handling high-dimensional feature data that complex 3D objects have and can be effectively 

used among non-rigid 3D objects. 

  

                                            
15

 Fourier transform decomposes an image into its sine and cosine components. The input of the image is 
a spatial domain, while the outcome is a frequency domain. Each point represents a particular frequency 
contained in the spatial domain image. The Fourier transform is used in a wide range of applications, such as 
image analysis, image filtering, image reconstruction and image compression. 
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2.8.2 Geometric comparison 

Novotni and Klein (2001) proposed a geometric approach for 3D object comparison. First, 

they solved the pose normalisation problem and then they compared the two objects 

geometrically. Novotni and Klein (2001) generate distance histograms which are basic tools 

for the determination of geometric similarity of stiff objects like bones, fruits etc. 

For the object comparison sub problem, Novotni and Klein (2001) calculate a volumetric 

error between one object and a sequence of offset hulls of the other object and vice versa. 

This process gives them two histograms which are used for the similarity measurement. 

Novotni and Klein’s (2001) aim is to manage and give a quantitative measure on how much 

the two objects look like each other. When Novotni and Klein (2001) align two nearly 

identical datasets (as can be seen in Figure 2.51 on the right) in order for their surfaces to fit 

one onto another as accurately as possible, each point of the one object will either be 

enclosed by the other object or be in a small distance from the boundary of the other object 

and vice versa. On the other hand, when they align two different objects (as you can see in 

the Figure 2.51 on the left) some volume portions of each object will be in large distance 

from the surface outside of the other object. 

 

 

Figure 2.51. When the objects are similar, only a small fraction of their volumes are outside of the other objects boundary 
(Novotni and Klein, 2001). 

In Novotni and Klein’s (2001) algorithm, after the pose estimation, they compute how many 

portions of one object’s volume are outside of the other object by using discrete 3D 

distance fields. For each discrete element of the volumes, they find its distance from the 

boundary of the other object and create a histogram that contains these values. Finally, 

based on these histograms Novotni and Klein (2001) compute a quantitative measure of 

similarity. 

Pose estimation is a very important part of the object comparison process (Figure 2.52). In 

their method, Novotni and Klein (2001) use mass properties to align the objects. Novotni 

and Klein (2001) first compute the mass of the object, then the centre of mass (CoM) and 

translate the object so that the CoM is in the origin (r=0). After this, Novotni and Klein (2001) 

compute the principal axes which define an orthogonal coordinate system where the inertia 

tensor matrix I is diagonal. The principal axes are identified by the eigenvectors of the 
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inertia tensor. In order to get a correct alignment, Novotni and Klein (2001) match the 

eigenvectors corresponding to each principal axis of the two objects which eventually 

results in a rotational transformation. Finally, they scale the objects by normalising the 

volumes. However, the volumetric method cannot be adapted to the IED system proposed 

in this research – the Bounding Box (BB) method produces better fitness than the volume 

method according to the results presented in Section 4.2.2. 

 

 

Figure 2.52. The bananas are markedly similar but they need to be aligned before the comparative test is applied (Novotni 
and Klein, 2001).  

After pose estimation Novotni and Klein (2001) use discrete distance fields for object 

comparison. A distance field is a space where every point has a corresponding value 

showing its Euclidean distance to the closest feature of the objects existing in the space. 

They compute 2D distance fields for parallel slices of the examined object and then they 

convert this data into a 3D raster. They accomplish this by incorporating a new distance 

composed of the Euclidean distance in the 2D slices and the distance in z-direction. This 

distance is an estimation for the Euclidean 3D distance. The distance values of each slice are 

propagated to the next slice by adding or subtracting the distance between two slices which 

is supposed to be 1 pixel. 

 

Figure 2.53. The volume of banana with black contour is checked against the offset hulls (Novotni and Klein, 2001). 

Successful pose estimation indicates that the volumes of the two examined objects need to 

be intersected as much as possible. In order to compute the geometric similarity of two 



  
 

71 
 

objects, they compute offset hulls of each object based on the distance fields (Figure 2.53). 

They first determine a step size and consider for both objects the offset hulls. In order for 

the results of different objects to be comparable the step size has to be uniform. Finally, for 

each object they compute how much of the volume of the one object is inside the offset hull 

of the other object and vice versa. 

To extract the desired similarity measure, Novotni and Klein (2001) accumulate the volumes 

remaining outside of each offset hull for both objects. This gives an efficient computable 

similarity measure which is useful for a wide range of applications. 

The strength of this method is proven through results of a number of tests on different data 

sets. It is applicable for measurement of geometric similarity of 3D objects with stiff 

structure and their aim is to apply an extended version of the approach in articulated bodies 

as well. Another future plan is to include texture information and other features in the 

comparison method. 

2.8.3 Comparison based on 3D morphing 

Yu et al. (2003) proposed a 3D object retrieval method based on 3D morphing. For each 3D 

object, this method calculates two spatial feature maps (geometry and topology)16. The 

amount of effort required to morph a 3D object into a canonical sphere is calculated by 

these feature maps, without performing explicit 3D morphing. To achieve retrieval invariant 

to rotation, reflection, and non-uniform scaling of the objects, Fourier transforms of the 

feature maps are used for object comparison.  

Instead of morphing one object to the other, Yu et al. (2003) morph both of them into a 

canonical object (sphere or cylinder), and compare the difference between the objects and 

the canonical object. First, the object is translated in a sphere of unit radius so that the 

centre of the sphere coincides with the centroid of the object. Second, the object is scaled 

so that the furthest 3D point on the object is 1 unit distance away from the centroid. Third, 

PCA is applied on the 3D points on the object to align the axes of the object.  

After the alignment process, the distance map (DM) and the Surface Penetration Map (SM) 

are extracted from the object. A ray is shot from the centre of the sphere through each 

point of the object to the surface of the sphere. The distance from an object point to the 

surface of the sphere is recorded in the DM. The DM also captures the spatial locations of 

the points. It is a measure of the geometrical difference between the object and the sphere. 

The SM records the amount of the surfaces that the ray penetrates while it is travelling from 

the centre of the sphere through each point to the surface of the sphere. The amount of 

                                            
16

 Geometry determines the shapes of the objects and shape features such as size, curvature, and 
smoothness of object surfaces. Topology determines the structures of the objects such as the number of holes 
and disconnected components. 
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surfaces measured must be compressed into a single surface so that the object can be 

morphed into a canonical sphere (Figure 2.54). 

In DM, the length ǁpiǁ of a point pi on the object’s surface is the distance of the centre of 

the sphere to the point. Therefore, length di = 1 - ǁpiǁ is the distance from the object point 

pi to the surface of the sphere along the direction of pi (Figure 2.54). 

 

Figure 2.54. Rays (dashed lines) are shot from the centre (white dot) of a canonical sphere (dashed circle) through the 
object points (black dots) to the sphere’s surface. The distance di travelled by the ray from a point pi to the sphere’s 
surface and the number of object surfaces (solid lines; 2, in this case) penetrated by the ray since it leaves the sphere’s 
centre are recorded in the feature maps (Yu et al., 2003). 

 

In the SM, consider a point q on the surface of the object. If a ray is shot from the centre of 

the canonical sphere through q to the surface of the sphere, the ray may penetrate one or 

more surfaces depending on the topology and concavity of the object (Figure 2.55). Then, 

the SM (which is the mean number of the surfaces) will describe the topology and concavity 

of the entire object. 

 

Figure 2.55. Counting number of object surfaces. A ray (dashed arrow) is shot from the centre (grey dot) of the sphere 
(dashed curve) through an object point (black dot) to obtain a cone (dotted lines) with a small angle. The other object 
points (white dots) within the cone are considered. Checking the number of times the surface normals (arrows) at the 
points change direction, compared to the ray’s direction, in increasing distance of the points from the sphere’s centre, 
gives the number of surfaces that the ray penetrates (Yu et al., 2003). 
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To alleviate the problem of possible misalignment, Fast Fourier Transform (FFT) is 

performed on the feature maps for comparison and retrieval. As spatial information about 

the objects’ features is preserved in the feature maps, FFT of these maps is very accurate 

and is invariant to rotation, reflection, and scaling. Experimental results show that their 

method of retrieving 3D models is very accurate but very computationally intensive. 

2.9 Technology Review Conclusions 

The literature review to date has covered many IEC and PN strategies that are applicable for 

this research, as well as shape comparison strategies that are required to compare evolving 

and guiding geometry once they have been aligned. 

Involving users early in an EC process to evaluate and guide it has shown to be broadly 

beneficial. Interactive evolutionary optimisation is highly applicable to the IEC design system 

being developed. The most suitable interaction evolutionary optimisation strategies 

candidates for IEC design system research have been presented and compared. The Pareto-

optimal points Interaction Strategies method is recommended. This method should get 

close to the most preferred point and effortlessly find the best solution in only a few 

interactions with the users and without fatigue. This method should be combined with a 

maximum number of times the user will interact, that has to be provided before the process 

starts, to define the accuracy of the optimisation (with higher values leading to better 

accuracy). Another method that is recommended is the CBR technique. This technique 

should reduce the human interaction gradually and decrease the human’s effort. Since the 

type of IEC design envisaged generates complex 3D models, CBR should be flexible and 

robust as it is based on geometrical properties. However, this method concentrates on 

machine learning sub-system and on assimilating on-line the aesthetic preferences of the 

designer, which is a challenge that can be investigated as further work beyond the scope of 

this research project –  It was decided that machine learning was out of scope of the 

research during an early review. Takagi’s (2003) method of Euclidean distances in an EC 

searching space is also recommended. This method can be a useful addition as it improves 

the variety of solutions. However, it can only be considered as future work because it takes 

too long to integrate into the CAD system. Also, objects that mathematically are very similar 

could be subjectively quite different in appearance – a small difference to the geometry can 

make a big difference. 

The main driver for PN research, in the wider research community, is the increasing need to 

search large databases of CAD geometry (e.g. parts libraries). Conveniently, it is highly 

applicable to the shape-comparison application in the IEC design system being developed. 

Here, PN is essential to align the simple pre-set guiding geometry with the evolving forms 

being generated by the combination of the GA and CAD modeller. Many PN methods have 
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been identified but the nine most relevant PN technology candidates to this research and 

suitable for IEC design system research have been presented and compared. In conclusion, 

since the IEC design systems of interest generate quite abstract and non-symmetrical 3D 

models with blended edges, the PCA-based PN method is recommended. This can be 

combined with a robust method similar to OCSVM that does not use the centre of the mass 

as the centre of the object but finds the best ‘centre’ of objects for translation and scaling, 

and with a method similar to Partial Symmetry-Based Alignment for achieving an efficient 

orientation. Therefore, readily-available deterministic geometric properties such as the 

centre of the Bounding Box for translation as well as Principle Axis (PA) for rotation and BB 

for scaling have been investigated. These PN methods are simple and easy to use, and the 

results offer appropriate efficacy for the application – and objective tests to confirm this 

have been completed and are presented later in the thesis. 

However, before a comparison is made, which assesses the degree to which evolving shapes 

match the target shapes, the aim is to find the best fitting of the box-model within each 

object, to utilise geometric analysis to define the remaining volumes. To achieve this, the 

most suitable MVBB methods for IEC design system research have been presented and 

compared. Since the IEC design systems of interest generate quite abstract and non-

symmetrical 3D models, Barequet and Har-Peled’s (2001) approximation algorithm of a 

point set in three dimensions as well as Chan and Tan’s (2001) technique of an iterative 

approach of an arbitrary solid are recommended. This can be combined with the PN 

methods recommended above and offer appropriate efficacy for the application. 

The most suitable shape comparison technology candidates for IEC design system research 

have been presented and compared. The idea of the geometric approach (Novotni and Klein, 

2001) that accumulates the volumes remaining outside of each offset hull for both objects 

and the approach based on 3D morphing (Yu et al., 2003) that compares the difference 

between the objects and the canonical object is efficient for this research. The algorithm 

used for this research is based on a simplified version of Novotni and Klein’s (2001) 

geometric method – the principle of non-intersecting volumes. This algorithm can be 

implemented with standard CAD geometric functions, is simple, accessible to other 

researchers and offers appropriate efficacy for the application – and objective tests to 

confirm this have been completed. 
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2.9.1 Knowledge Gap Identification 

In this research, the knowledge gap identification is the existing design approach to be 

further improved, and also employed within Engineering Design; by incorporating intelligent 

geometric analysis capabilities within Interactive Evolutionary Design. Thereby the 

knowledge gap identification is to create a co-operative and efficient human-machine 

system. 

This has been achieved by enabling users to guide the evolution of 3D form using simple, 

pre-set fuzzy-constraints (i.e. GG), by establishing Human-Computer Interaction strategies 

that gain the most optimisation benefit from human partnership and by researching and 

developing 3D form-comparison algorithms and the associated orientation, alignment, and 

scaling of evolving shapes. GG for Interactive Evolutionary Design is boosting creative 

solutions and generating efficiencies in subsequent design steps. 

There is still a need for CAD systems to better support ideation in conceptual design. There 

is a significant gap in the market for a tool that actually generates forms that are not based 

on predefined designs created by skilled designers, and better supports form development. 

To exploit this gap, CAD systems should provide a source of inspiration through a system 

that evolves forms. 

 

Therefore, simple GG have been combined for the first time with optimised interactive 

strategies and evolutionary computation in the CAD domain, and applied in the field of form 

ideation of product design. 

 

Since users of EvoShape within the design industry have expressed a desire to have more 

control over the process beyond interacting with the system during the evolutionary 

process17, the software allows them to create GG at the start of the process to guide the 

evolution of 3D form. 

  

                                            
17

 Purely through rating and selecting forms. 
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3 Methodology  

The research methodology that is used to develop the research solutions is a Software 

application for objective and subjective testing. Objective testing is used to test geometry 

mathematics and the efficacy of evolutionary components, whereas subjective testing is 

user testing of different interaction strategies. 

3.1 Programming Environment 

NX, formerly known as Unigraphics or UG, is an advanced high-end CAD/CAM/CAE software 

package developed by Siemens PLM Software. It is used for design, engineering analysis, 

manufacturing design and throughout the product development process. 

NX Open is a collection of API toolkits that allows developers to create custom software 

applications for NX through an open architecture. The NX Open APIs provide the 

applications and tools that allow customers to access the NX Object Model and create and 

edit objects. 

Open C API is designed to support an easy interface between NX and the outside world. The 

Open C API consists of a large set of user callable and readily-available CAD functions. Open 

C API programs can run in two different environments, depending on how the program was 

linked. The two environments are: External and Internal. 

In this research, an add-in (Internal Open C API program) for the Siemens NX11 CAD system 

was developed and integrated with EvoShape, and run from inside NX. Internal Open C API 

programs can only be run from inside of the NX session. The objectives 1-10, which are 

introduced in Section 1.4, have been achieved through objective and subjective testing. 

3.2 Objective testing 

In the objective testing, the objectives 1-8 have been achieved to: 

a. Test Geometry mathematics 

b. Test the efficacy of evolutionary components 
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Objective 1: Develop a representation for the simple GG 

Soft geometric constraints (in the form of simple bounding geometry) have been created at 

the start of the evolution process to investigate the alignment and shape comparison 

methods. 

Objective 2: Develop stand-alone programs to investigate the individual operations 

Some stand-alone programs were written to investigate the individual operations: 

 rotation 

 scaling 

 translation  

 shape comparison 

Objective 3: Find efficient alignment methods 

A program was developed in which alignment (PN) between evolving shapes and GG was 

achieved and geometry mathematics was tested. The successful 3D alignment methods 

formed a shortlist of methods which could be tested mathematically for accuracy.  

Objective 4: Find efficient shape comparison methods 

A program was developed in which shape-comparison between evolving shapes and GG was 

achieved and geometry mathematics was tested. The successful shape comparison methods 

formed a shortlist of methods which could be tested mathematically for accuracy.  

Objective 5: Integrate the most efficient operations with EvoShape Interactive Evolutionary 

Design (IED) system 

The successful 3D alignment and shape comparison methods were chosen to integrate with 

the GA.  

Objective 6: Turn the add-in program into an automated shape matching program 

This add-in program (given in Appendix A), B), C), D), E), F), G)), was turned into an 

automated shape matching programme – the human interaction was removed and 

consistent experimental environment was created – in order to objectively test and assess 

the efficacy of the evolutionary components and the approaches being developed.  

Objective 7: Test alignment and shape comparison methods efficiency. 

The shortlist of methods consists of two approaches for each stage of PN which were 

assessed and compared; Principal Axes (PA) or manual alignment for rotation, Volume or 

Minimised Bounding Box (MBB) for scaling and, Centre of BB or Centre of Mass for 

translation (see Chapter 4). The most efficient approach for each stage of PN was 

investigated by combining rotation, scaling and translation and the most efficient 

combination was established through fitness values. The shape comparison algorithm is 

based on the principle of non-intersecting volumes, is implemented with standard 

geometric functions, and is simple and accessible to other researchers. 
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32 iterations (as described in Chapter 4), with different starting populations were run. A 

code which generates text files was written. The information from the text files was 

imported to MS Excel, and graphs were created and analysed.  

Objective 8: Develop effective human-system interaction strategies 

The efficacy of the PN and shape comparison methods was tested with two broad 

approaches of user interaction strategies to investigate how best to use the GG capabilities 

to assist users in evolutionary shape searching (Chapter 5): Large Background Populations 

(LBP), or Sporadic User Interaction (SUI). For the SUI approach, four different starting 

populations and four different GG were used for each of the two approaches of each stage 

of PN, resulting in 32 separate shape matching tests of 240 forms in each test. For the LBP 

approach, four different starting populations and four different GG were used, resulting in 

16 separate shape matching tests of 240-480 forms in each test. 

Objective and fitness value graphs based on the shape comparison were produced on MS 

Excel. A combination of objective tests (Chapters 4 and 5) and subjective user-testing 

(Chapter 6) were completed. Both the SUI and the LBP approaches need further 

consideration with user interaction (Chapter 6). The objective testing diagram is shown in 

Figure 3.1. 

 

Figure 3.1. Objective testing diagram. 
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3.3 Subjective testing 

In the subjective testing, the objectives 9-10 have been achieved to: 

a. Test to the users interaction strategies by using: 

1. Task observation and statistical analysis (laboratory test). 

2. Interview. 

Task observation and statistical analysis was selected for this research as it helps target 

audiences (students and professional designers) to better understand the evolution process 

and interact with it. An interview methodology was also selected for this research as it 

allows developers to ask in-depth open ended questions. 

3.3.1 Number of Test Participants 

Testing a small number of participants and running many small tests is usually enough to 

obtain a satisfactory level of understanding (Nielsen, 2012). The data from a single test 

participant can give developers almost a third of all there is to know about the development 

of the design.  

Whether developers test websites, intranets, PC applications, or mobile apps, with five 

participants they almost always get close to participant testing's maximum benefit-cost ratio 

(Nielsen, 2012). When developers test the second participant, they will find out that this 

person does some of the same things as the first participant. By adding more and more 

participants, developers learn less and less because they will keep seeing the same things 

again and again. After the fifth participant, the developers will not learn much that is new 

(Figure 3.2). 

Contrarily, Perfetti and Landesman (2001) after testing five participants, had found only 35% 

of all development issues. After 18 participants, they were still discovering serious issues 

and had uncovered less than half of the 600 estimated website or software development 
problems. Spool and Schroeder (2001) also testified a large-scale website evaluation for 

which five participants were nowhere near learning 85% of the problems.  

The variation is because of the large and complex systems where participants have a larger 

number of problems available for discovery along the way, so any given problem is less 

likely to be found. 

In this research, the participants are not experts or familiar with the domain. However, the 

efficacy of the system is not hard to evaluate, the system is not complex and the 

participants can test the system with small multiple iterations. Therefore, in this research, 

acceptable results come from testing around five participants and running as many small 

tests as possible.  
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Objective 9: Add human intervention to the system 

In the subjective testing, human intervention was added in order to subjectively test and 

assess the efficacy of the interactive evolutionary strategies and the approaches being 

developed. More specifically, the automated shape matching programme was: 

 Either replaced by user interaction at intervals of between 4 and 11 generations (SUI 

approach; or  

 Added in every generation and repurposed to select a subset of shapes to present to 

the user (LBP approach). 

 

 

Figure 3.2. Five users would be expected to find 85% of the development problems (Nielsen, 2012). 

Objective 10: Test the human-system interaction strategies with users 

This was achieved by using task observation (laboratory test) to test the interaction 

strategies by allowing the users (participants) to guide the evolution of the 3D form by 

simply creating guiding geometry (GG) at the start of the evolution process (see Chapter 6). 

This allows participants to have more control during the process.  

The participants were selected by contacting people that either work (collaborators or 

friends) or study (students of the author’s PhD supervisor) at Loughborough University. 

Some users were students in their third year of UG studies in an Engineering Department or 

Design School, familiar with CAD systems and experienced in design but with little NX CAD 

system experience; therefore they created their GG with the support of the developer.  
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A combination of the above two user testing methods (task observation and statistical 

analysis and interview) was used for this research to develop the research solutions. Three 

different versions of the system were tested by the users: EvoShape, LBP and SUI. The order 

can be an important step in the process as the users’ fatigue is increasing during the testing, 

which can affect the results. Some of them were asked to test EvoShape first and then LBP, 

whereas others were asked to do the opposite. The SUI approach was tested by the users 

separately on a different day. The users did not work for more than an hour at a time 

because the fatigue can be increased again and affect the results.  

Since the efficacy of the system in this research is not hard to evaluate, five participants 

have been selected for the first testing process, to test EvoShape and LBP. After they 

compared the EvoShape and LBP versions, only two (one designer and one non designer 

that were easily available) participants of these five participants were needed for the 

second testing process – as they only needed to test SUI and compare it with the two 

previous methods that were already tested by them. 

The ethics procedure that was followed with the participants was: all participants were 

ensured that their confidentiality and anonymity will be respected, and that their 

participation in this research is voluntarily – the participants could leave the testing process 

any time and for any reason. 

When interviewed, all users stated a strong preference for versions that included GGs. 

Observations backed up these subjective findings in several ways, e.g. the time and number 

of iterations it took to arrive at shapes with which users were satisfied, and the proportion 

of useful shapes generated in a given time.  

Statistical analysis was used to examine how many users managed to complete the task to 

the end of the evolution process and compare the different users’ outputs according to their 

preferences and their interaction with the process (see Chapter 6). 

3.4 Summary 

The methodology described in this chapter has established the optimum combination of an 

automatic and human system, namely EO and IEC. In this research the strategy to 

investigate this gap and integrate a GA-driven generative design process with human 

interaction is: 

 To enable users to guide the evolution of 3D form not only by selection but also by 

creating a simple GG at the start of the process. 

 To develop 3D alignment and comparison algorithms between the GG and the forms. 

 To establish Human-Computer Interaction strategies that best exploit these 

algorithms – LBP and SUI. 
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4 3D Alignment and Shape Comparison Analysis 

This chapter analyses shape matching by using GGs. 3D alignment is introduced first, which 

is required before shape comparison, to find the best position of each form to be compared 

to the GG. Alignment (rotation, scaling, and translation) is a process known as PN in the 

literature. Once form and GG are aligned, shape comparison follows to calculate how closely 

the forms and GG match. 

Both PN and shape comparison methods have been implemented using geometric functions 

available within a CAD system via its API, enabling populations of evolving forms to be 

directed by the GG. 

An add-in for the Siemens NX11 CAD system has been developed and integrated with the 

EvoShape system which has been turned into an automated shape matching programme 

using GG in order to assess the efficacy of the approaches being developed. Two approaches 

for each stage of PN have been assessed and compared:  

 PA and manual alignment for rotation; 

 BB method and volumetric approach for scaling; 

 Centre of BB and CoM for translation. 

In this chapter, the algorithms and their implementation are presented alongside results 

and analysis, discussion on limitations and robustness, and their suitability for Interactive 

Evolutionary CAD. 
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4.1 Shape Matching Introduction 

4.1.1 Introduction to Geometric Guides 

The inclusion of GG is an idea introduced by Graham's (2002) thesis that would take the 

research from the existing aesthetic focused tool towards a system capable of application to 

a wider range of engineering design problems. In addition, current users of EvoShape within 

the design industry have expressed a desire to have more control over the process; since it 

is rare that a designer will have complete freedom over form in a commercial design 

situation, some have expressed a desire to influence the shapes’ overall proportions. The 

GG is thus created by the user at the beginning of the session. All the GG that have been 

used during the shape matching research are shown in Figure 4.1: Broken Ice Cream, Traffic 

Cone, Roof, and Cylinder. 

Cylinder is a simple GG represented with single geometric primitive. Both Traffic Cone and 

Broken Ice Cream are represented with two geometric primitives. Traffic cone is 

represented with a cone united to a block, and broken ice cream with a sphere subtracted 

from a cone. However, they can both be approximated with a single geometric primitive. 

Roof GG is also represented with two geometric primitives (two blocks) but it cannot be 

approximated with a single geometric primitive and is therefore more complex. 

 
Figure 4.1. GG (targets) that have been used during shape matching development, and their volumes. 
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4.1.2 Introduction to Pose Normalisation 

Before shape comparison can take place, and due to arbitrary 3D orientation, scale, and 

position, a 3D alignment that finds the best position of each form compared to the GG is 

required. PN is thus essential to align the GG with the evolving forms being generated by the 

combination of the GA and CAD modeller. 

PN has been achieved using readily-available deterministic geometric properties such as 

CoM, PA and BB. Rotation, scaling and translation are carried out in that order, and 

presented in the following sub-sections. The shape comparison technique used to evaluate 

different PN approaches is based on the principle of sum non-intersected volume, 

introduced in the next section. 

Rotation 

In an earlier version of the system, produced for maximum speed and ease of 

implementation, the GG and all forms’ primary PAs were aligned with the Z axis. This had 

two major advantages: only the major PA needed to be calculated; and the target’s BB 

computed by the CAD system tended to be closer to its minimum, irrespective of the 

orientation of the user-generated guide geometry. However, one disadvantage was the 

effect of ‘standing all the shapes up’ (as seen in Figure 4.2). Early user-testing revealed that 

users would prefer the original orientation of the GG to be maintained (some products 

naturally lie down, furniture for instance, and look odd aligned otherwise). 

So in the final version, all three principal axes of forms are identified (X, Y and Z), and 

aligned with the three principal axes of the GG. The centre of the BB of each form is used as 

the centre of rotation. 

Scaling 

Firstly, the X, Y and Z lengths of each GG and form’s BB are established. Then the ratios (X Y 

Z lengths of the GG’s BB divided by X Y Z lengths of the form’s BB) are calculated, and the 

form is scaled uniformly according to the smallest ratio of the three.  

Translation 

The centre of the base of each form’s BB is used as its local origin within each cell of a 4 x 3 

grid, and the centre of the BB of each form and GG is used to co-locate the GG and forms 

before shape comparison. 
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Figure 4.2. A population of 12 grey forms and brown GG after PN, compared to the same population beforehand (left). 

4.1.3 Introduction to Shape Comparison 

Once form and GG are aligned, Boolean operators are used to calculate how closely they 

match. In this research, the approach is based on the principle of non-intersecting volumes, 

i.e. any material volume outside the intersection of the two shapes (form and GG) counts as 

a penalty. This can arise from GG material not within the shapes’ intersection, and material 

from the form not within the shapes’ intersection. The sum of these two volumes acts as an 

objective function representing how closely the two shapes match, shown graphically in 

Figure 4.3 and mathematically in Equations 4.1 and 4.2. In the test application the sum non-

intersecting volumes tend to zero as the evolving forms more closely match the GG. 

   = (    - (        )) +        - (        )) 

4.1 

Figure 4.3. From left to right: GG; form; after PN; intersection; non-intersecting volumes. 
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Simplified to: 

   =     +       – 2(        ) 

4.2 
Where: 

    is the objective function of an evolving form. 

     and       are the volumes of GG and form respectively. 
          is the intersecting volume of GG and form. 

 
A form’s ‘match’ with the GG is used throughout this thesis as a normalised and more 

intuitive expression than fitness function, shown mathematically below in Equation 4.3. 

                            
  

   
 

4.3 
 

4.2 Detailed Analysis 

An IEC design system’s ultimate aim is not to find a known target shape, but to use a pre-

defined shape to guide evolving geometry for the user. However, the EvoShape system has 

been turned into an automated shape-matching programme for this stage of the research 

using GG to objectively assess the efficacy of the PN and shape comparison. 

With the exception of the rotation research, four different starting populations and four 

different GG were used for each experimental analysis, resulting in 16 separate shape 

matching runs of 20 iterations (each population has 12 forms, resulting in 240 individual 

shape-matching operations in total for each run). This combination of 4 x 4 x 20 x 12 is 

henceforth referred to as a dataset. 

4.2.1 Rotation 

To test the accuracy of the PA method within the application, a random population of 12 

shapes were tested with four different GG (‘traffic cone’, ‘broken ice cream’, ‘roof’ and 

‘cylinder’), making 48 individual comparisons in total. Most of these comparisons (31) 

resulted in a difference between rotational alignment using PA and manual alignment. Using 

the metric ‘% volume match’, a sample of eight comparisons of the PA method with manual 

rotational alignment have been calculated; each with two different forms, as shown in 

Figure 4.4.  
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Where human and PN alignment differs, manual alignment is generally better. According to 

the experimental results shown in Table 4.1, the average match with the GG when shapes 

are rotated intuitively is better by 10% than the average match with the GG when the PA 

method is applied, as calculated by Equation 4.4.  

 
Figure 4.4. Top row – Alignment by human. Bottom row – Alignment using PA. 

Table 4.1. Forms‘ average % volume match with GG where human and PN alignment differ. The average match of the 
forms with the GG when the shapes are rotated intuitively is 30.58%. This percentage decreases to 27.72% when the PA 
method is applied. 

Traffic Cone Broken Ice Cream Roof Cylinder Traffic Cone Broken Ice Cream Roof Cylinder Average

PA 8.82% 20.21% 10.44% 77.90% 35.12% 8.56% 4.22% 56.48% 27.72%

Human 9.07% 26.87% 10.33% 88.67% 21.80% 29.88% 3.38% 54.67% 30.58%

 

                                    

                
 = 

             

      
 ≈        

               4.4 
However, some of the generated shapes in the test had exactly the same alignment with the 

GG whether the PA method was applied or whether the rotation was made intuitively by a 

human. For example, in two random generations of shapes, in the case of broken ice cream, 

three alignments out of twelve were the same. In the case of traffic cone and roof, four out 

of twelve alignments were the same. And finally, in the case of cylinder, six out of twelve 

alignments were the same. These results should contribute to the overall assessment of 

performance deficit when comparing PA alignment to intuitive alignment. So applying these 

ratios to the 10.3% figure above gives 7.7% for broken ice cream, 6.9% for traffic cone and 

roof, and 5.2% for cylinder. Combining these gives an indicative overall performance deficit 

of 6.7%, meaning PA alignment is only around 7% worse than human alignment (Equation 

4.5). 

                               

                      
 = 

  

  
= 64.6% → 64.6% × 10.3% = 6.7% 

4.5 
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Using PAs to align GG and form is computationally efficient – essential for a real-time 

interactive application. Functionally, however, is not perfect, and can produce counter-

intuitive results, as shown in Figure 4.5. These deviations have been shown to have only a 

minor impact within the context of the guiding application. 

The centre of the BB of each form is used as the centre of rotation – this works better than 

using the CoM, resulting in less of a jump (translational movement). Functionally, this is 

unimportant as the subsequent translation step accounts for any undue movement of the 

shape, but it produces a more pleasing result visually, if users have opted to watch the 

analysis on screen. 

In conclusion, the PA method, while not perfect, and not as effective as more sophisticated 

techniques reviewed in the literature, is good enough to be used for guiding applications, 

such as in IEC design systems. This is confirmed by the results of full system validation 

outlined in Chapter 5. 

 

 

Figure 4.5. A shape’s PA aligned with the Z-axis (left) compared to a more intuitive alignment of the shape (right), where 

the PA of the dominant geometry, the cylinder, is used. 

 

4.2.2 Scaling 

The strength of the BB method over a volumetric approach is proven through testing against 

four different GG (broken ice cream, traffic cone, roof and cylinder) first by scaling them 

using the BB method and then by scaling them using volume ratio. Results have been 

generated by averaging a dataset. 

The BB method produces a better fit than the volume method (Figure 4.6). Fitness function 

is inversely proportional to objective function, as shown in Equation 4.6: 
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4.6 
                                          
Where: 

   is the fitness function of an evolving form. 

Objective function is the sum of any material volume outside the intersection of the two 

shapes (see Section 4.1.3). A form’s % match with the GG is used as a more intuitive 

expression than fitness functions, as shown (full expanded) mathematically in Equation 4.7. 

% match with the target = 100% - 
(          –            )

   
 

4.7 

Simplified to Equation 4.8: 

% match with the target = 
(     –            )

    
 

4.8 

 
Figure 4.6. A comparison of the BB scaling method with the volume scaling method. 
 

Scaling the shapes by using the BB method has the advantage of keeping the BB of the form 

within the BB of the GG and the advantage that it is intuitive for users. The BB method 

produces reasonable scaling estimations, preferred to the results of matching volumes (seen 
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in Figure 4.7), and achieves robustness with typical geometry of the Interactive Evolutionary 

CAD system described in this chapter.  

 

 

 

 
Figure 4.7. Scaling using BBs (upper): the BBs of the grey forms do not exceed the BB of the brown GG. Scaling by volume 

(lower) is less satisfactory, and the form BBs generally exceeds that of the GG. 

4.2.3 Translation 

To co-locate the GG before shape comparison, the centre of the GG’s BB is co-located with 

that of the form. 

The strength of the ‘Centre of BB’ method over the CoM method is proven through 

averaging the results of a dataset. Given that each population has 12 shapes, each data 

point in Figure 4.8 represents 16 × 12 = 192 shape comparisons. The Centre of BB method is 

clearly better than the CoM method, despite the unfair starting disadvantage caused by 

randomness in the starting populations. 

Translating the forms within each cell of a 4 x 3 grid by using the centre of the base of each 

form’s BB as its local origin works well visually, producing an even spacing between forms 

(Figure 4.9). 

The centre of BB method also produces the better translation estimations, preferable to the 

results of using CoM, and achieves robustness with typical geometry of the Interactive 

Evolutionary CAD system described in this research. 
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Figure 4.8. Centre of BB translational alignment method against CoM. 

 
Figure 4.9. A population of 12 grey forms and brown GG after PN, compared to the same population beforehand (inset left). 
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4.3 3D Alignment and Shape Comparison Conclusions 

In this chapter, investigation of shape matching is described which has involved the key 

aspects listed below: 

 Developing a representation for the simple GG. Soft geometric constraints (in the form 

of simple bounding geometry) have been created at the start of the evolution process to 

investigate the alignment and shape comparison methods:  

 GG that are represented with a single geometric primitive or with two geometric 

primitives but are not complex shapes (Cylinder, Broken Ice Cream, Traffic Cone), 

work well; produce excellent results, accurate and efficient. On the other hand, 

GG that are represented with two geometric primitives but are more complex 

shapes (Roof), do not work well; exhibit a lower match with the forms. However 

this is partly overcome with the re-introduction of user intervention. 

 Develop stand-alone programs to investigate the individual operations: 

 Rotation: All three principal axes of the form are identified (X, Y and Z), and 

aligned with the principal axes of the GG. The centre of the BB of the form is 

used as the centre of rotation. 

 Scaling: Scaling the shapes by using the BB method has the advantage of keeping 

the BB of the form within the BB of the GG. 

 Translation: The centre of BB method is preferable to CoM. 

 Shape comparison. 

 Integrate the most efficient operations with EvoShape IED system. 

 Turning EvoShape into an automated shape matching programme using GG in order to 

assess the efficacy of the approaches being developed. 
 Developing PN algorithms between the forms and the GG: 

o Rotating the forms so as to have similar orientation with the GG. 

o Scaling the forms so as to have similar size with the GG. The BB of the form does 

not exceed the BB of the GG. 

o Co-locating (translating) the forms and the GG at the same place. 
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5 User Interaction Strategies 

This chapter introduces user interaction strategies for evolutionary shape searching. To re-
introduce users back into the shape exploration process, two broad approaches of user 
interaction strategies are examined and presented in this chapter to investigate how best to 
use the GG capabilities, that have been developed, to assist users in evolutionary shape 
searching: LBP, or SUI. 

5.1 Introduction to user interaction strategies 

In the LBP approach (Figure 5.1), populations containing many evolving forms are produced. 

A subset of the best fitting evolving forms is established by using GG ’behind the scenes‘ and 

then presented to the user. The remaining (weakest) evolving forms are deleted. 

 

Figure 5.1. Large Background Populations (LBP). 

In the SUI approach (Figure 5.2), populations containing a smaller number of evolving forms 

(same population size of 12 forms as for standard interactive version) are produced. GG are 

used to evolve the majority of generations ‘behind the scenes’, with the evolving forms 

presented to the user every nth generation (sporadically). 

During an interactive session, the user is required to select one or more evolving forms or 

rate one or more evolving forms, from 0 to 10, in the population, providing each form’s 

fitness value. Another generation is then created; the best fitting scores of the last 

Many 
evolving 
forms 

A subset  
of evolving forms 



  
 

94 
 

generation influencing which evolving forms were selected as parents to create this new 

population. 

 

 
Figure 5.2. Sporadic User Interaction (SUI). 

In the SUI approach, the system operates as the original EvoShape program, except the GG 

algorithm replaces the user for the majority of the populations. 

5.2 Detailed Analysis 

For the investigation of the interaction strategies, four different starting populations and 

four different GGs were used, resulting in 16 separate shape matching runs of 20 or 6 

iterations (each population has 12 or 80 or 40 forms, resulting in 240 or 480 individual 

shape-matching operations in total for each run). These combinations of (4 x 4 x 6 x 80) or (4 

x 4 x 6 x 40) for LBP and (4 x 4 x 20 x 12) for the benchmark, are henceforth referred to as 

datasets. 

5.2.1 Initial GG analysis and benchmarking with standard-sized population 

First, benchmark data have been produced by using 20 generations with 12 phenotypes in 

each generation, which amounts to 240 forms in total. Random starting populations are 

identified with an Identification Number18 (ID) in the following graphs. The first example, 

shown in Figure 5.3, demonstrates evolving towards a Traffic Cone GG of 

185.85  3 volume. The algorithm finds a solution within 11 generations with a percentage 

of 86% volume match with the GG. The key milestones in this particular experimental run 

are described in Table 5.1. 

                                            
18

 a number, 0 – 99999, linked to how many numbers generated by the system’s random number 
generator are discarded before they start to be used to populate the first population of genotypes. 

Algorithm Algorithm User Interaction User Interaction 
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Table 5.1. Key stages in shape matching. 

Generation Stage 

1 Initial random population 

2 Suitable form type established 

8 Population converging to Traffic Cone 

10 All forms are now Traffic Cones  except mutations 

11 Very fit form created 

13 Very fit form’s genes have increased 

14 Approximately one mutation per population 

18 Population has converged 

18 All forms have 86% match with the Traffic Cone GG 
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Figure 5.3. Shape matching with benchmark using GG. 
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Three further examples are summarised in Table 5.2 and in Figure 5.4, with different GGs 

(broken ice cream, roof, and cylinder). 

Table 5.2. Shape matching to a Broken Ice Cream, Roof and Cylinder GG. 

GG Broken Ice Cream Roof Cylinder 

Starting populations 228 3900 77682 

Volumes 150.37 3 120.16 3 69.75 3 

Match with the GG 78% 75% 100% 

Achieved in generations 7 9 11 

Convergence in generations 19 20 18 

The cylinder is a simple GG represented by a single geometric primitive and produces 

excellent results of 100% match, both accurate and efficient. The traffic cone is represented 

with two geometric primitives, cone and block, like the broken ice cream which is 

represented with a cone and a sphere subtracted from the cone. However they both 

produce good results of 86% and 78% match respectively. On the other hand, in shape 

matching to a Roof GG, although represented with two geometric primitives (two blocks), is 

a more complex shape, the probable reason for a lower match with the GG (only 75%). 

The forms’ fitness values evolving towards these three GGs are shown in Figure 5.5, Figure 

5.6, and Figure 5.7 where the starting population is referred to as an ID number. Given the 

fact that shape matching to a cylinder GG exhibits the highest match (100%), the maximum 

fitness value in generations 11-20 is 1 (perfect match with the GG). 
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Figure 5.4. Three further shape matching examples – evolved populations alongside their GG shapes. 
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Figure 5.5. Forms’ fitness values optimising to broken ice cream.  

 
Figure 5.6. Forms’ fitness values optimising to roof. 
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Figure 5.7. Forms’ fitness values optimising to cylinder. 

For the next 12 tests, the same four GGs with three different starting populations are used. 

The match with the GG as well as the generations where the match has been achieved are 

summarised in Table 5.3, Table 5.4, Table 5.5 and Table 5.6. In Figure 5.8, Figure 5.9, Figure 

5.10, and Figure 5.11, the graphs show the forms’ fitness values with four different starting 

populations (ID) for each of the four GGs. The average maximum fitness values of these four 

datasets are shown in Figure 5.12 for each GG. 

Table 5.3. Shape matching to a Cylinder GG. 

GG Cylinder 

Starting populations 578 15675  41367 

Match with the GG 62% 80% 93% 

Achieved in generation 20 13 16 

Convergence in generation 20 15 18 

 

Table 5.4. Shape matching to a Broken Ice Cream GG. 

GG Broken Ice Cream 

Starting populations 8766 78901 591 

Match with the GG 66% 88% 80% 

Achieved in generation 19 15 14 

Convergence in generation 20 20 18 
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Table 5.5. Shape matching to a Traffic Cone GG. 

GG Traffic Cone 

Starting populations 20500 85000 300 

Match with the GG 84% 64% 79% 

Achieved in generation 13 14 17 

Convergence in generation 19 18 19 

 

Table 5.6. Shape matching to a Roof GG. 

GG Roof 

Starting populations 50800 685 870 

Match with the GG 84% 88% 55% 

Achieved in generation 17 3 5 

Convergence in generation 20 20 20 

 

 
Figure 5.8. Forms’ mean (left) and maximum (right) fitness values evolving towards a Cylinder with four different starting 
populations. 
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Figure 5.9. Forms’ mean (left) and maximum (right) fitness values evolving towards a Broken Ice Cream with four different 
starting populations. 

 
Figure 5.10. Forms’ mean (left) and maximum (right) fitness values evolving towards a Traffic Cone with four different 
starting populations. 
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Figure 5.11. Forms’ mean (left) and maximum (right) fitness values evolving towards a Roof with four different starting 
populations. 

 

 
Figure 5.12. Average maximum fitness values of four different starting populations for each of the four GGs. 
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Again the cylinder produces the best results with the highest fitness values. But, surprisingly, 

shape matching with a roof does not exhibit lower fitness values, after generation 16, than a 

broken ice cream or a traffic cone. These unexpected high maximum values are random and 

the corresponding average fitness values graph shown in Figure 5.13, prove that a roof can 

give the worst average fitness values because of its shape complexity. 

 
Figure 5.13. Average mean fitness values of four different starting populations for each of the four GG. 

However, fitness values depend on the absolute volumes of the GG. For that reason it is not 

correct to compare fitness values directly when comparing different GGs because the GGs 

have different volumes. Therefore, fitness values have been normalised as shown 

mathematically in Equation 5.1 and graphically in Figure 5.14. All the GGs have been 

normalised according to the ’Cylinder’ GG, since it has the smallest volume (69.75cm3). 

 ̃    
   

         
 

5.1 

Where: 

  ̃ is the normalised fitness function of an evolving form. 
           is the volume of the Cylinder. 
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A form’s % match with the GG is used as a more intuitive expression than fitness functions. 

Therefore, the graph in Figure 5.15 shows the average average matches between the 

evolved forms and the GG, as calculated using the Equations 4.7 and 4.8. A cylinder can 

produce efficient results by achieving an 80% match, a traffic cone and a broken ice cream 

reach 65% and 70% respectively, where as a roof achieves no more than a 20% match. 

 

Figure 5.14. Normalised average mean fitness values of four different starting populations for each of the four GG. 
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% match with the GG 

Figure 5.15. Average average matches of four different starting populations between the evolved forms and the four GG. 

Ultimately, the IEC design system’s aim is not to ‘find the GG’, but this task is used here to 

assess the efficacy of the PN and shape comparison. A form’s % match with the GG is 

sometimes used as a more intuitive expression than fitness functions. Detailed benchmark 

examples are presented in Appendix H).  

 

5.2.2 Large Background Populations 

Due to the large effect of the starting population, and that small populations are well known 

to be detrimental to GA performance, a method working with LBP was developed which 

uses the Shape Matching with the GG to present a subset of fitter shapes to the user. 

LBP of 40 shapes 

Experimental results have been produced by using the LBP of 40 shapes approach where six 

generations are created with 40 phenotypes in each generation, which amounts to 240 

forms in total as an equitable comparison to the benchmark. The strength of the LBP 

method is proven through the results of a dataset. This dataset of forms includes the  GGs 

broken ice cream, traffic cone, roof and cylinder.  

The first example, shown in detail in Figure 5.16, demonstrates evolving towards a Broken 

Ice Cream GG of volume 150.37 3 and the starting population is referred to as an ID 

number. The software achieves a solution within six generations with 96% volume match 
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with the GG. The key milestones in this particular experimental run are described in Table 

5.7. 

Table 5.7. Key stages in shape matching. 

Generation Stage 

1 Initial random population 

2 Suitable form type established 

3 Population converging to Traffic Cone 

5 All forms are now Broken Ice Creams except mutations 

6 Very fit form created 
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Figure 5.16. Shape matching with LBP of 40 shapes approach using GG. 
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Three further examples are summarised in Table 5.8 and in Figure 5.17 with different GGs 

(broken ice cream, roof, and cylinder). 

Table 5.8. Shape matching to a Traffic Cone, Roof and Cylinder GG. 

GG Traffic Cone Roof Cylinder 

Starting populations 650 3900 77682 

Volumes 185.85 3 120.16 3 69.75 3 

Match with the GG 73% 21% 96% 

Achieved in generations 5 1 4 

Convergence in generations0. 6 6 4 

 

In LBP of 40 shapes approach: 

 The cylinder produces good results of 96% match, very close to the results in the 

standard-sized population approach (benchmark). 

 The traffic cone produces slightly lower match (73%) than the benchmark. 

 The broken ice cream produces much better results (96% match) than the benchmark. 

 And, the shape matching to a roof GG, with increased complexity, exhibits an even lower 

match with the GG (only 21%). 

Forms’ fitness values evolving towards these three GGs are shown in Figure 5.18, Figure 

5.19, and Figure 5.20 and the starting population is referred to as an ID number. Given the 

fact that shape matching to a cylinder GG exhibits a high match of 96%, the maximum 

fitness value in generations 4-6 is very close to 1. 
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Figure 5.17. Three further shape matching examples with LBP of 40 shapes approach – evolved populations alongside their 
GG shapes. 
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Figure 5.18. Forms’ fitness values evolving towards a traffic cone. 

 
Figure 5.19. Forms’ fitness values evolving towards a roof. 
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Figure 5.20. Forms’ fitness values evolving towards a cylinder. 

For the next 12 tests, the same four GGs with three different starting populations are used. 

The match with the GG as well as the generations where the match has been achieved are 

summarised in Table 5.9, Table 5.10, Table 5.11 and Table 5.12. In Figure 5.21, Figure 5.22, 

Figure 5.23, and Figure 5.24, the graphs show the forms’ fitness values of four different 

starting populations (ID) for each of the four GGs. The average maximum fitness values of 

these four starting populations are shown in Figure 5.25 for each GG. 

Table 5.9. Shape matching to a Cylinder GG. 

GG Cylinder 

Starting populations 578 15675  41367 

Match with the GG 100% 100% 100% 

Achieved in generation 6 3 4 

Convergence in generation 6 3 4 

 

Table 5.10. Shape matching to a Broken Ice Cream GG. 

GG Broken Ice Cream 

Starting populations 8766 78901 228 

Match with the GG 90% 76% 65% 

Achieved in generation 2 2 2 

Convergence in generation 6 3 4 
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Table 5.11. Shape matching to a Traffic Cone GG. 

GG Traffic Cone 

Starting populations 20500 85000 300 

Match with the GG 71% 76% 60% 

Achieved in generation 3 1 6 

Convergence in generation 5 3 6 

 

Table 5.12. Shape matching to a Roof GG. 

GG Roof 

Starting populations 50800 685 870 

Match with the GG 93% 97% 30% 

Achieved in generation 4 5 2 

Convergence in generation 5 6 6 

 

 
Figure 5.21. Forms’ fitness values evolving towards a Cylinder with four different starting populations. 
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Figure 5.22. Forms’ fitness values evolving towards a Broken Ice Cream with four different starting populations. 

 
Figure 5.23. Forms’ fitness values evolving towards a Traffic Cone with four different starting populations. 

 
Figure 5.24. Forms’ fitness values evolving towards a Roof with four different starting populations. 
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Figure 5.25. Average maximum fitness values of four different starting populations for each of the four GG, using LBP of 40 
shapes. 

The cylinder produces the best results with the highest fitness values while shape matching 

with a roof, broken ice cream, or traffic cone exhibit low fitness values during the whole 

process. The average fitness values graph shown in Figure 5.26, shows that a traffic cone can 

give the worst average fitness values.  

The graph in Figure 5.27 compares the average maximum fitness values between the LBP of 

40 shapes and the benchmark. The LBP of 40 shapes approach has better fitness than the 

benchmark. However, this is not a fair comparison because the two approaches do not 

represent a comparable number of solutions analysed, shape comparisons or computing 

time. A fairer comparison of all the approaches is shown in Figure 5.29. 
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Figure 5.26. Average mean fitness values of four different starting populations for each of the four GG. 

 
Figure 5.27. Comparison of LBP of 40 shapes and benchmark. 
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The PN and Shape Matching algorithms that have been developed have been used to direct 

the evolutionary process during the automated shape-matching task. As a pre-cursor to 

investigating user interaction strategies, an objective comparison of LBP with a benchmark 

was carried out that aims to provide better fitness without sacrificing form variety. Results 

indicated at this stage of development that more tests were needed to produce better 

fitness and variety, and to investigate the human-machine interaction strategies which best 

complement the evolutionary design process.  

LBP of 80 shapes 

For that reason, the number of phenotypes in each generation was increased from 40 to 80. 

Experimental results have been produced by using the LBP of 80 shapes approach where six 

and three generations are created with 80 phenotypes in each generation, which amounts 

to 480 and 240 forms in total, respectively. The strength of the LBP of 80 shapes method is 

proven through experiments based on these datasets. These datasets of forms include four 

different GGs, broken ice cream, traffic cone, roof and cylinder. Finally, the graph in Figure 

5.28 compares the average maximum fitness values between the four approaches: 

benchmark, LBP of 40 shapes, LBP of 80 shapes-6 generations and LBP of 80 shapes-3 

generations. 

 

 

 
Figure 5.28. Comparison of the fitness of the four approaches: benchmark, LBP of 40 shapes, LBP of 80 shapes-6 

generations and LBP of 80 shapes-3 generations. 
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It is not surprising that larger populations perform better, not only because more shapes are 

being tested in total, but because GA’s always perform better with larger populations. A 

fairer comparison of the four approaches that represents a comparable number of 

evaluated shapes is shown in Figure 5.29. The starting points of all four approaches are as 

expected – the LBP of 80 shapes approach has better fitness than the benchmark. After 

around 240 shapes have been evaluated, the fitness of the LBP of 80 and 40 shapes 

approach is still increasing whereas the fitness of the benchmark is levelling. After 472 

shapes have been evaluated, the fitness of the benchmark is never going to be as high as 

the fitness of the LBP approach (90% match with the GG) because it converged at a lower 

fitness than that of the LBP approach. The results confirm the widely-known properties of 

GA that large populations work better. The LBP of 80 shapes approach is better than the 

benchmark. 

 
Figure 5.29. Comparison of the fitness of the four approaches: benchmark, LBP of 40 shapes, LBP of 80 shapes-6 
generations and LBP of 80 shapes-3 generations. All four approaches represent a comparable number of evaluated shapes. 

Not only fitness but the variety of the forms is also important when investigating the 

interaction strategies that best complement the evolutionary design process. Therefore, 

twelve objective tests using three starting populations and four GGs have measured the 

variety of the forms by calculating the standard deviation of the fitness values of the twelve 

fittest forms in each generation.  

The results are shown in Figure 5.30, where in SUI approach the variety of the forms is 

smaller than the variety of the forms in the LBP approaches. The biggest variety is achieved 

by the LBP of 80 shapes-6 generations approach because it generates more forms (more 
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options) than the other approaches in each generation. However, after the fifth generation 

the variety drops as the forms start converging.  

 

 
Figure 5.30. Comparison of the variety of shapes of the four approaches: SUI, LBP of 40 shapes, LBP of 80 shapes-6 
generations and LBP of 80 shapes-3 generations.  

The next step in the research, described in Chapter 6, was to combine GG with user-

selection; to investigate and develop the human-machine interaction strategies which best 

complement the evolutionary design process. 

5.3 User Interaction Strategies Conclusions 

Investigation of several population sizes were described, which examine how best to use the 

GG capabilities to help users in evolutionary shape searching. Objective and fitness values 

based on shape comparison have been produced.  

The experimental results imply that the LBP of 80 shapes approach has the greatest benefit 

as it produces significantly better fitness than the benchmark. The variety of the forms is 

also important to investigate the interaction strategies that best complement the 

evolutionary design process. Standard deviation is used as a crude proxy for shape variety. 
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The LBP of 80 shapes approach appears to produce a larger variety of shapes due to the big 

amount of forms (80) in each population. 

However, the results were not strong enough to discard the benchmark as a user interaction 

strategy. The initial experimental results of this research shows the drawback of the 

automated shape matching programme – GG with more complex shapes are not successful 

in guiding the evolution without user intervention. It may be a problem of the 

representation of the system (GA, PN or scaling representation). Therefore, both the 

benchmark and the LBP approach needed further consideration with user interaction.  

GGs that are represented with a single geometric primitive or with two geometric primitives 

but are not complex shapes, work well, produce excellent results, both accurate and 

efficient. On the other hand, GGs that are represented with two geometric primitives but 

are more complex shapes, do not work well; exhibit a lower match with the forms. However, 

this is partly overcome with the re-introduction of user intervention. 
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6 Participant Testing 

6.1 Introduction to participant testing 

After the objective testing, where experiments with both standard and larger populations 

were conducted, this chapter introduces participant development testing for evolutionary 

shape searching.  

Due to the large effect of the starting population, and because small populations are well 

known to be detrimental to GA performance, a method of working with ‘larger populations’ 

was developed which uses Shape Matching with a GG to present a subset of fitter shapes to 

the user. In investigating user interaction strategies, a development comparison of LBP with 

SUI is carried out that aims to provide better fitness and variety.  

To evaluate the efficacy of the system, the participants have tested four different versions 

of the algorithm: EvoShape, LBP of 80 shapes, LBP of 40 shapes and SUI.  

In this chapter, the results of the participant testing are presented and evaluated. The 

participants’ feedback statements are reproduced in Appendix: Participants’ Feedback I). 

6.2 Geometric Guides with Large Background Populations 

The LBP approach has been tested with two groups of five different participants who do not 

differ significantly in expertise. 

The participants, that were asked to evolve shapes that could inspire the form of a sofa, a 

watch and a hand-held 3D mouse, were students in their third year of students in an 

Engineering Department or a Design School. These students were familiar with CAD systems 

and experienced in design but had little NX CAD system experience. The participants, that 

were asked to evolve shapes that could inspire the form of a building and a guitar, were 

both Lecturers in Engineering. Some of these products where selected by the participants 

from a list of products that were provided by the author, while some others (etc. building, 

guitar) were suggested by the participants as a personal choice. They were asked to test 

three different versions of the system:   

 EvoShape 

 LBP of 80 shapes 

 LBP of 40 shapes 



  
 

122 
 

For the last two versions they were asked to create a GG just before the beginning of the 

process. Each of the participants was also asked to test the three versions of the system in a 

different order. The order can be an important step of the process as the participants’ 

fatigue is increasing during the testing and it can affect the results. Some of them were 

asked to test EvoShape first and then LBP of 80 and 40 shapes, where some others were 

asked to do the opposite. 

During an interview held after the trials, all the participants stated that although the 

EvoShape process has a large variety of shapes and gives new ideas of useful shapes, by the 

end of it, the participants will lose the shapes they like because there are no GGs to guide 

the process (Appendix I), Participant 4, Comment 3 (P 4.3), P 4.4, P 7.3, P 10.4, P 10.5). 

However, this is not necessarily because of the lack of a GG – it could just be a property of 

the system as a whole. 

In Table 6.1, while participants had been searching for shapes that could inspire the form of 

a sofa and a hand-held 3D mouse, in the first generation EvoShape gave 16.6% of useful 

shapes, in the second generation this percentage increased to 25%, while in the third 

generation the percentage reduced dramatically to 0%. The participants stopped the 

process in the third generation because they had already lost the shapes they liked. In Table 

6.2, while participants had been searching for shapes that could inspire the form of a watch, 

a guitar and a building, in the first generation EvoShape gave 25% of useful shapes, in the 

second generation this percentage increased to 33.3%, in the third and fourth generation 

the percentage reduced to 16.6%, and in the fifth generation EvoShape again had no useful 

shapes that could inspire the form of a watch, guitar or a building. The participants stopped 

the process in the fifth generation because they had already lost the shapes they liked. 

However, some of them mentioned that this approach can be useful when the participants 

have a general idea on what they want to create.  

Since all of the participants had a specific bounding volume in their mind, they found LBP of 

80 and 40 shapes more useful – it guides the process and gets rid of shapes that are not 

similar with the bounding volume after a shape comparison. Although the shapes usually 

start converging in generation four, it is still enough to give useful ideas of shapes that the 

participants would not have thought of; in Table 6.3, while participants had been searching 

for shapes that could inspire the form of a sofa, watch, building, guitar or hand-held 3D 

mouse, in the first generation GG gave 25%-33.3% of useful shapes, the same as in the 

second generation; in the third, fourth and fifth generations the percentage reduced to an 

average of 16.6% of useful shapes, and in the last generation the participants are satisfied 

with the results – at least one of the shapes gives a useful idea for each of the five products. 

Convergence happens when all the shapes of a population start looking very similar to each 

other and therefore the variety of shapes is decreased.  
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GGs help participants to find the shape easier; ‘the concept has evolved nicer and the 

process is not random any more’ (P 6.6). The LBP approach is finally useful; it is a shape 

exploration that gives new ideas of useful shapes. Although this participant stated that 

EvoShape is random, it is not – it probably appeared random to this participant because 

they are not experienced with EvoShape. 

However, there was one participant who mentioned that a combination of both EvoShape 

and LBP could give an option to the participants to decide on which generations during the 

process they would like to use a GG (i.e. it might be useful to stop the convergence and 

increase the variety of shapes by turning GG off at around generation four). Figure 6.1 

shows the participants’ preferences analytically; four out of five participants said that LBP is 

more useful and has value. One participant said that a combination of both EvoShape and 

LBP could also be useful. None of the participants preferred EvoShape. 

Table 6.1. EvoShape: While two participants with moderate design and CAD experience had been searching for shapes that 
could inspire the form of a sofa and a hand-held 3D mouse; the participants stopped the process in the third generation 
because they had already lost the shapes they liked. 

Generation 
% Useful Shapes of Sofa and 
3D Mouse using EvoShape 

1 16,6% 

2 25% 

3 0% 

 

Table 6.2. EvoShape: While two participants with good CAD experience and one with moderate CAD experience had been 
searching for shapes that could inspire the form of a watch, a guitar and a building; the participants stopped the process in 
the fifth generation because they had already lost the shapes they liked. 

 

Generation 
% Useful Shapes of Watch, 
Guitar and Building using 

EvoShape 

1 25% 

2 33.3% 

3 16.6% 

4 16.6% 

5 0% 

 

Table 6.3. LBP of 80 and 40 shapes: in the last generation the participants are satisfied with the results – at least one of the 
shapes gives a useful idea of each of the five products.  
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Generation 
% Useful Shapes of 
products using GG’s 

1 25% - 33.3% 

2 25% - 33.3% 

3 16.6% - 25% 

4 16.6% 

5 8.3% - 16.6% 

6 The participants are satisfied with at 
least one shape that the sixth generation 

produces 

 

 
Figure 6.1. Participants’ preferences in evolutionary shape searching. 

It is also important to mention that both LBP of 80 and LBP of 40 shapes have very similar 

variety of shapes but the LBP of 80 shapes approach tends to create at least one shape that 

looks more like the bounding volume and gives better ideas of useful shapes, as shown in 

Figure 6.2. The Figure 6.3 shows an example of three different sofas using the three system 

approaches, how much the final products look like the bounding volume created by the 

participants at the beginning of the process when using LBP, and how the LBP of 80 shapes 

approach tends to create shapes that give better ideas of useful shapes than the other 

approaches do. 

0

1

2

3

4

5

Useful

G-guides with large
populations

A combination of both
versions

EvoShape



  
 

125 
 

      
Figure 6.2. Left: Three out of five participants said that LBP of 80 shapes has slightly bigger variety. Right: Four out of five 
participants said that LBP of 80 shapes can create at least one shape that has bigger similarity with the bounding volume. 

 
Figure 6.3. This figure shows three examples of sofas: a) created by using LBP of 80 shapes, b) created by using LBP of 40 
shapes, and c) created by using EvoShape. d) Shows the bounding volume created at the beginning of the process by the 
participant when using LBP approach. 

 

Figure 6.4, Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11 

and Figure 6.12 show the final products of a sofa, watch, guitar and hand-held 3D mouse 

respectively as well as the ancestors’ generations of these shapes when using the LBP 

approach. The LBP Functions Map of the software is presented in Appendix J). 

 

Variety of shapes 

80 shapes

40 shapes

Similarity with the bounding 
volume 

80 shapes

40 shapes
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Figure 6.4. LBP of 80 shapes: In both generations (1 and 2) the participant chose three shapes that they found useful and 
could inspire the form of a sofa. There is a variety of shapes but none of them can provide good ideas for a sofa yet. 
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Figure 6.5. LBP of 80 shapes: In both generations (3 and 4) the participant chose two shapes that they found useful and 
could inspire the form of a sofa. There is still a variety of shapes and some of them could already give ideas for a sofa. 
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Figure 6.6. LBP of 80 shapes: In generation 5 the participant chose two shapes that they found useful and could inspire the 
form of a sofa. Although the shapes have started to converge, there is still a variety and some of them can still give ideas 
for a sofa. In generation 6 there is at least one shape that the participant can choose to inspire the form of a sofa. 
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Figure 6.7. LBP of 80 shapes: In both generations (3 and 4) the participant chose four shapes that they found useful and 
could inspire the form of a watch. There is a variety of shapes and some of them can already give ideas for a watch. 
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Figure 6.8. LBP of 80 shapes: In generations 3 and 4 the participant chose three and two shapes respectively that they 
found useful and could inspire the form of a watch. There is a variety of shapes and some of them give useful ideas for a 
watch. 
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Figure 6.9. LBP of 80 shapes: In generations 3 and 4 the participant chose three and four shapes respectively that they 
found useful and could inspire the form of a guitar. There is a variety of shapes and some of them give useful ideas for a 
guitar. 

 



  
 

132 
 

 
Figure 6.10. LBP of 80 shapes: In generation 5 the participant chose three shapes that they found useful and could inspire 
the form of a guitar. Although the shapes have started to converge and the variety has decreased a lot, some of the shapes 
can give ideas for a guitar. In generation 6 there is at least one shape that the participant can choose to inspire the form of 
a guitar. 
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Figure 6.11. LBP of 80 shapes: In generations 3 and 4 the participant chose four and three shapes respectively that they 
found useful and could inspire the form of a hand-held 3D mouse. There is a variety of shapes and some of them give 
useful ideas for a hand-held 3D mouse. 
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Figure 6.12. LBP of 80 shapes: In generation 5 the participant chose three shapes that they found useful and could inspire 
the form of a hand-held 3D mouse. Although the shapes have started to converge and the variety has decreased a lot, 
some of the shapes can give ideas for a hand-held 3D mouse. In generation 6 there is at least one shape that the 
participant can choose to inspire the form of a hand-held 3D mouse. 
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6.3 Geometric Guides with Sporadic User Interaction 

SUI has been tested by two of these five different participants who do not differ significantly 

in expertise and belong to the same participant group. 

These participants had been searching for shapes that could inspire the forms of a sofa and 

a guitar. They were asked to test three different versions of SUI that have different 

participant interaction frequency. These frequencies have been chosen by the author 

intuitively – the bigger the intervals between the generations the more influence the GG will 

have and the inheritance is more likely to be lost. The three different frequencies are:   

 Interaction in generations 10, 16, 22, 28, 34 

 Interaction in generations 10, 20, 28, 34, 38 

 Interaction in generations 10, 14, 20, 28, 39 

In all three versions, the participant interaction starts in generation 10 (starting point). The 

starting point is where the participant is starting to interact with the system and happens 

just before the shapes start converging. This starting point is proven through experimental 

results of nine tests on three different starting populations of shapes using three different 

GGs (Traffic Cone, Roof, and Cylinder), as shown in Figure 6.13. To avoid a high interaction 

effort, the participants did not start interacting at the beginning of the process or in early 

generations; they started interacting before the shapes start converging where there is still 

a variety of shapes. 

For all three versions, the participants were asked to create a bounding volume just before 

the beginning of the process. Each of the participants was also asked to test the three 

versions of the SUI approach in a different order, as before.  

Although the shapes usually start converging after generation 10, the participants stated 

that the first version is still enough to give useful ideas of shapes that they would not have 

thought of (Table 6.4); while participants had been searching for shapes that could inspire 

the form of a sofa, in the tenth generation the first version gave 8.3% of useful shapes, in 

the     ,      and      generation this percentage increased to 25%, and in the      

generation this percentage reduced to 16.6%. At the      generation the participants are 

satisfied with the results – at least one of the shapes gives a useful idea.   
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Figure 6.13. The ‘marked generations’ are just before the shapes start converging. The starting point 10 is the average of all 
of the nine different starting populations (three starting populations for each of the three GG).  
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Table 6.4. SUI first version: At the 40
th

 generation the participants are satisfied with the results – at least one of the shapes 
gives a useful idea.  

Generation 
% Useful Shapes of Sofa using SUI 

Version 1 

10 8.3% 

16 25% 

22 25% 

28 25% 

34 16.6% 

 

In the first version of the SUI approach, the participants interact with the system in a 

sequence of generations where the difference between the consecutive terms is constant 

(every time, the difference between the generations is six), whereas in version two and 

three, this difference is increased and reduced respectively. According to the experimental 

results after testing the system with participants (Table 6.5), the version two and three of 

the SUI approach do not give as many useful shape ideas as the first version does; while 

participants had been searching for shapes that could inspire the form of a sofa, in the tenth 

generation the version two gave 8.3% of useful shapes, where in the      generation this 

percentage reduced dramatically to 0%. The participants stopped the process at the      

generation because they had already lost the shapes they liked. Almost similar results were 

given from version three where the participants stopped the process at the      generation. 

Table 6.5. SUI version two and three.  

Generation 
% Useful Shapes of Sofa using SUI 

Version 2  
% Useful Shapes of Sofa using SUI 

Version 3 

10 8.3% 16.6% 

16 0% 8.3% 

22 - 0% 

28 - - 

Therefore, according to the participants, all three versions of the SUI approach have very 

similar variety of shapes but only the first version gives useful ideas of shapes and tends to 

create a shape that looks like the bounding volume, as can be seen in Figure 6.14.  
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Figure 6.14. Left: All participants said that all versions of SUI approach have similar variety. Right: All participants said that 
only the first version can create shapes that are similar to the bounding volume. 

However, all the participants stated that the SUI approach has neither better variety of 

shapes nor better useful ideas of shapes and similarity with the bounding box than the LBP 

approach does, as shown in Figure 6.15.  

 

Figure 6.15. The variety in LBP approach is big enough to give useful ideas of shapes, and therefore to give shapes similar 
to the bounding volume.  
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The Figure 6.16 shows an example of three different sofas using the three system versions, 

how much the final products look like the bounding volume created by the participants at 

the beginning of the process when using the SUI approach, and how the SUI first version 

tends to create shapes that give better ideas of useful shapes than the other versions do. 

 

Figure 6.16. This figure shows three examples of sofas: a) created by using SUI first version, b) created by using SUI version 
two, and c) created by using SUI version three. d) Shows the bounding volume created at the beginning of the process by 
the participant when using SUI approach. 

Figure 6.17, Figure 6.18, Figure 6.19, Figure 6.20, Figure 6.21 and Figure 6.22 show the final 

product of a sofa and a guitar as well as the ancestor generations of the products when 

using the SUI approach. The SUI Functions Map of the software is presented in Appendix K). 
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Figure 6.17. SUI: In generations 10 and 16, the participant chose one and three shapes respectively that they found useful 
and could inspire the form of a sofa. There is a variety of shapes but none of them can give good ideas for a sofa yet. 
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Figure 6.18. SUI: In both generations (22 and 28), the participant chose three shapes that they found useful and could 
inspire the form of a sofa. There is still a variety of shapes and some of them can already give ideas for a sofa. 
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Figure 6.19. SUI: In generation 34, the participant chose two shapes that they found useful and could inspire the form of a 
sofa. Although the shapes have started to converge, there is still a variety of shapes and some of them can still give ideas 
for a sofa. In generation 40 there is at least one shape that the participant can choose to inspire the form of a sofa. 
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Figure 6.20. SUI: In generations 10 and 16, the participant chose two and three shapes respectively that they found useful 
and could inspire the form of a guitar. There is a small variety of shapes but none of them can give good ideas for a guitar 
yet. 
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Figure 6.21. SUI: In both generations (22 and 28), the participant chose two shapes that they found useful and could inspire 
the form of a guitar. There is still a small variety of shapes but still none of them can give ideas for a guitar. 
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Figure 6.22. SUI: In generation 34, the participant chose two shapes that they found useful and could inspire the form of a 
guitar. The shapes have started to converge and there was no big variety of shapes to give ideas for a guitar. The 
participant stopped the process. 
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6.4 Discussion 

User testing has been carried out with five users, ranging in experience from third-year 

engineering undergraduates to design professionals. In each test, which took around 1 hour, 

users evolved shapes that would inspire a range of consumer products (a sofa, a watch, a 

guitar, and a hand-held 3D mouse). Each of the five users tested EvoShape, as well as two 

versions of the software with GG (LBP of 80 shapes and LBP of 40 shapes). Two users tested 

three versions of GG with SUI approach. Guide volumes were created at the beginning of 

the process by the participants when testing the software with GG.  

When interviewed, all participants stated a strong preference for versions that included GGs. 

Observations backed up these subjective findings in several ways, e.g. the time and number 

of iterations it took to arrive at shapes with which participants were satisfied, and the 

proportion of useful shapes generated in a given time; in the LBP of 80 shapes approach, 

after 400 shapes were evaluated by the system, the participants are satisfied with the 

results – at least one of the shapes gives a useful idea of a product (Figure 6.23). 

 
Figure 6.23. Comparison of %useful shapes that each of the three approaches provide. 

Most participants showed a strong preference for the LBP version, with only one participant 

expressing the desire to ‘turn off the guides’ at several intervals during the sessions, to 

‘speed things up’ and reduce convergence. 

Some of the participants mentioned that the algorithm can be improved by increasing the 

probability of mutation through the generations (P 3.14). “This will increase the probability 

of having, in a population, a random shape that is different from the other 11 shapes and 

may save you by giving you a different idea of a useful shape”. Some others mentioned that 
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the algorithm could be improved by creating a database of different classes of shapes and 

using the right class with the right type of bounding volume. This idea could possibly 

increase the similarity with the bounding volume and remove unwanted shapes from the 

first generation. 

6.5 Participant Testing Conclusions 

Human intervention has been added to the system to subjectively test and assess the 

efficacy of the interactive evolutionary strategies and the efficacy of PN and shape 

comparison approaches being developed. This has been achieved by: 

 Allowing the users to create soft geometric constraints (in the form of simple 

bounding geometry) at the start of the evolution process. 

 Testing by the users of three different versions of the system:  

 EvoShape. 

 LBP.  

 SUI. 

User testing during development has shown that the LBP interaction strategy best 

complements the evolutionary design process, and it is this implementation which will be 

carried forward into the next commercial release of the EvoShape software, with the 

addition of a toggle switch allowing the new guide functionality to be turned off and on by 

the user.  
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7 Conclusions and Future Work  

7.1 Conclusions 

Firstly, efficient interaction strategies for IEC design systems in the literature have been 

presented and compared. Some of these have directly influenced this research while others 

showed potential but were either too complex, computation-time demanding or would 

have required too much time to implement. The ‘pareto-optimal points‘ interaction strategy 

gets close to the most preferred point and finds the best solution in only a few interactions 

with the users and without fatigue. Although this approach has been classified as a multi-

objective problem, it has influenced the SUI approach of this research, in that the number of 

interactions with users is predefined. 

Objective 1: Develop a representation for the simple GG 

All the participants were asked to create a simple GG (soft geometric constraint in the form 

of simple bounding geometry), at the beginning of the evolutionary process, that will guide 

the evolving forms. The GG should be a rough representation of the proportions the 

participants would like to create. It should be a solid 3D bounding volume, which the users 

think will influence the evolving forms proportions, whose bounding lengths should be 

between 25mm and 100mm. Some participants had small experience in using NX CAD 

system; therefore they created their GG with the support of the developer. 

Objective 2: Develop stand-alone programs to investigate the individual operations 

During this research, through an Internal Open C API, different readily-available CAD 

functions were used to develop stand-alone programs and investigate the alignment (PN) 

functionality (rotation, scaling and translation) as well as the shape comparison functionality. 

Through these stand-alone programs a number of PN and shape comparison methods have 

been discovered. 

Objective 3: Find efficient alignment methods 

Since PN is essential to align the GG with the evolving forms, the nine most suitable PN 

technology candidates for IEC design system research have also been presented and 

compared. The PCA-based PN method is suitable for complex 3D models, and it was 

selected to be adapted for this research since the IEC design systems of interest generate 

quite abstract and complex 3D models. 

The most efficient 3D alignment methods were found by developing a program using 

different readily-available CAD functions; PA for the orientation, Volume and BB for the 

scaling, and CoM and Centre of BB for the translation. 
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Objective 4: Find efficient shape comparison method 

The most efficient 3D shape comparison algorithm was found by developing a program 

using different readily-available CAD functions; this algorithm is based on a simple method – 

the principle of non-intersecting volumes. This algorithm is implemented with standard 

geometric functions, is simple, accessible to other researchers and offers appropriate 

efficacy for the application – and objective tests to confirm this have been completed. 

Objective 5: Integrate the most efficient operations with EvoShape Interactive Evolutionary 

Design (IED) system 

The most efficient alignment and shape comparison methods, described in Objectives 3 and 

4, were chosen to integrate with the GA-driven generative design program (EvoShape). This 

shortlist of successful methods could be tested mathematically for accuracy. 

Objective 6: Turn the add-in program into an automated shapes matching program 

To test and assess the efficacy of the GG as well as to find the most efficient alignment and 

shape comparison methods that will finally be used for the IED system, the add-in program 

was turned into an automated shape matching program running consistent experiments but 

without human intervention. 

Objective 7: Test alignment and shape comparison methods efficiency 

The automatic shape matching program run 16 iterations for one method of rotation (PA), 

32 iterations for two methods of scaling (BB and volume) and 32 iterations for two methods 

of translation (Centre of BB and Centre of Mass), with four different starting populations 

and four different GG.  

The PA method applied in rotation, while not perfect, and not as effective as more 

sophisticated techniques reviewed in the literature, is demonstrated to be good enough to 

be used for guiding applications, such as in IEC design systems. This has been confirmed by 

the results of a full system validation outlined in Chapter 5. The BB method applied in 

scaling, produces reasonable scaling estimations and achieves robustness with typical 

geometry of the Interactive Evolutionary CAD system described in Chapter 4. The centre of 

BB method produces reasonable translation estimations and achieves robustness with 

typical geometry of the Interactive Evolutionary CAD system described in this research.  

Objective 8: Develop effective human-system interaction strategies 

Investigation of several user interaction strategies were described, which examine how best 

to use the GG capabilities to help users in evolutionary shape searching. Objective and 

fitness values based on the shape comparison have been produced. The experimental 

results imply that the LBP of 80 shapes approach has the greatest benefit as it produces 

significantly better fitness than the benchmark approach. The variety of the forms is also 

important to investigate the interaction strategies that best complement the evolutionary 
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design process. To discard the benchmark approach, both benchmark and LBP approaches 

need further consideration with user interaction. 

Objective 9: Add human intervention to the system 

To test and assess the efficacy of the interactive evolutionary strategies, human interaction 

was added to the add-in program. This was achieved by either replacing the automated 

shape matching program with user interaction at intervals of between 4 and 11 generations 

(SUI approach) or by adding human interaction in every generation to evaluate a subset of 

the fittest shapes found using GG (LBP approach). 

Objective 10: Test the human-system interaction strategies to the users 

User testing during development has shown that the LBP interaction strategy best 

complements the evolutionary design process, and it is this implementation which will be 

carried forward into the next commercial release of the EvoShape software, with the 

addition of a toggle slider control allowing the new guide functionality to be turned off and 

on by the user, and to customise the ‘strength’ of the guides offset by speed. The ‘strength’ 

is dictated by the number of background shapes, and can be set at 0, 20, 40, 60 and 80. 

Concluding statements 

What make this research unique is both the concept and implementation of guided 

evolutionary shape searching, the concept and optimised implementation of background 

and foreground populations in interactive evolutionary design, and the integration of both 

of these elements. The implementation in the CAD domain and the specific application in 

form ideation during conceptual stages of product design is also unique. 

Contributions 

 This system better supports early design processes and ideation in conceptual design. 

 This system better allows a designer to experiment with ideas freely and to 

interactively explore populations of evolving solutions. 

 Users of the new Interactive Evolutionary CAD system have more control over the 

process beyond direct real-time interacting with the system through shape selection 

and scoring during the evolutionary process – by creating GG at the beginning of the 

process. 

Limitations of the research 

A limitation of the system is that it focuses on aesthetics rather than function, when in 

reality function is often the major influencer on form. Another limitation is that since PN 

algorithms have not been investigated in practice, and only simple, computationally quick 

methods that are easily adoptable by other researchers have been used, the system in this 

research does not produce good results when the GG are quite complex shapes – i.e. are not 

approximated with a single geometric primitive (e.g. roof). However, this problem was 

partially solved by adding user intervention to the system where a GG similar to ‘roof’ gave 
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good results; useful ideas of products that the users wanted to create, guided by the GG 

that they created at the beginning of the process. 

7.2 Future Work 

There are two broad recommendations which could be implemented in order to develop 

the research further; integration with topology optimisation and machine learning.  

Another way that industrial designers can find inspiration for form is topology optimisation. 

When designers do not have an existing design or concept that could inspire them, they can 

simply start with a block of material, model the known forces on the part, and allow the 

optimiser to define the shape and size of the design. This is known as topology optimisation. 

Topology optimisation satisfies a set of constraints by minimising or maximising 

optimisation objectives such as mass, maximum stress or displacement (Hale, 2017). It is 

acknowledged that a weakness of the system developed during this research, is that it treats 

form independently from function, when in reality, function is often the major influencer. To 

reconcile this, topology optimisation could be integrated and run in parallel with the 

improved EvoShape system and assist the designer even more to find inspiration. 

In Section 2.4.3 a Machine Learning approach for IED was presented and analysed. After the 

system shows the best forms to the user and the user defines a fitness value to each form 

according to their preference, Machine Learning should assimilate on-line the aesthetic 

preferences of the user. This should reduce the human interaction gradually from the first 

generation until the last, and increase the aesthetical solutions in terms of the user 

preferences. It is important that the system will sufficiently study the user’s preferences. If 

enough information is given to the system with a good representation, then the algorithm 

will learn and assimilate the information easier and better and the machine learning system 

will be overloaded with the instances to be learned. This approach should be integrated 

with EvoShape to speed up the interactive evolutionary process and decrease the users’ 

effort. 

Takagi’s (2003) method of Euclidean distances could be a useful addition to the GG 

algorithm that chooses which shapes to present to the user, as it improves variety of 

solutions. The method discards any similar solutions of a population and therefore increases 

the diversity of the solutions. It would have taken too long to integrate into the CAD system 

during this research but certainly would be worth investigating in the future, despite the 

concern that objects mathematically very similar subjectively could be quite different in 

appearance – a small difference to the geometry can make a big difference. 

Additional funding from the EPSRC is enabling the outcomes of this doctoral research to be 

incorporated into the next release of EvoShape. This will then be supplied to some existing 
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customers for beta testing. As well as further validating the work described in this thesis, it 

is also likely to highlight opportunities for further related research. 
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 Appendix: Calculate fitness  A)
/***********************************/ 
/* calculate_fitness - process 3.0 */ 
/***********************************/ 
#include <stdio.h> 
#include <string.h> 
#include <uf.h> 
#include <uf_modl.h> 
#include <uf_cfi.h> 
#include <uf_ui.h> 
#include <uf_obj.h> 
#include "pop.tem" 
#include "target.tem" 
#include "analysis.tem" 
#include "results.tem" 
#include "parents.tem" 
#include "root.tem" 
#define null (int *)0 
/*******************************************************/ 
int calculate_fitness(struct root *root_ptr) 
{ 
 int decode_chromosome(struct phenotype *,int); 
 int insert_decoding_ranges(struct phenotype *,struct phenotype *); 
 int assemble_analysis_input(struct phenotype *,struct efd_object_analysis *); 
 int perform_analysis(struct efd_object_analysis *,struct calculated_values_root *); 
 int compare_values(struct calculated_values_root *,struct target_values_root *,struct 
phenotype *,struct root *); 
 int geometry(struct root *); 
 int convert_to_fitness(struct species *, struct root *); 
 int elite_replacement(struct root *); 
 int subset_to_the_user(struct root *); 
 int prompt(char *); 
 int run_mode; 
 int b_response = 0; 
 int return_code   = 0; 
 int return_code_b = 0; 
 int return_code_d = 0; 
 int status = 1; 
 int no_species =0; 
 int test = 1; 
  
 char message[40] = "Ready to Decode Chromosomes"; 
  
 struct phenotype *phenotype_ptr; 
 struct species *species_ptr; 
 /*******************************************************/ 
 printf("\n---------------------- Calculate Fitness -------------------------"); 
 printf("\n---------------------   Generation %2d   -----------------------------\n",root_ptr-
>generation_no); 
 run_mode=root_ptr->ui_control_ptr->run_mode; 
 if(run_mode==5) prompt(message); 
  
 /*   DECODE CHROMOSOMES  */ 
  
 printf("\nroot_ptr->id_number: %d\n",root_ptr->id_number); 
  
 species_ptr = root_ptr->first_species_ptr; 
 while (species_ptr != null_species) 
  { 
  species_ptr->done=0; 
  no_species++; 
  species_ptr=species_ptr->next; 
  } 
  
 while (status>0) 
 { 
  species_ptr = root_ptr->first_species_ptr; 
  while (species_ptr != null_species) 
    { 
    if ((species_ptr->done==0)&&((species_ptr->decoded_by>0&&species_ptr-
>decoded_by_ptr->done==1) 
    ||(species_ptr->decoded_by == 0))) 
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      { 
      phenotype_ptr = species_ptr->first_phenotype; 
      while (phenotype_ptr != null_phenotype) 
        { 
        if (species_ptr->decoded_by>0&&species_ptr->decoded_by_ptr->done==1) 
   return_code = insert_decoding_ranges(phenotype_ptr, phenotype_ptr-
>decoded_by_ptr); 
        return_code = decode_chromosome(phenotype_ptr, species_ptr->chrom_manip); 
        phenotype_ptr = phenotype_ptr->next; 
        } 
      species_ptr->done=1; 
      printf("Species %d decoded\n\n",species_ptr->species_id); 
      } 
    species_ptr = species_ptr->next; 
    } 
  status=0; 
  species_ptr = root_ptr->first_species_ptr; 
  while (species_ptr != null_species) 
    { 
    if (species_ptr->done==0) 
      status++; 
    species_ptr=species_ptr->next; 
    } 
 } 
 
 return_code = geometry(root_ptr); 
 printf("-> %d\n",return_code); 
 
 /*              FITNESS                 */ 
   
 if (!( root_ptr->ui_control_ptr->quitswitch + 
     root_ptr->ui_control_ptr->shoggle + 
     root_ptr->ui_control_ptr->load_bitstream )) 
  
 printf("\n Fitness processing...\n"); 
  
 species_ptr = root_ptr->first_species_ptr; 
 while (species_ptr != null_species) 
 { 
  phenotype_ptr = species_ptr->first_phenotype; 
  while (phenotype_ptr != null_phenotype) 
  { 
   return_code = assemble_analysis_input(phenotype_ptr, species_ptr-
>analysis_ptr); 
   return_code = perform_analysis(species_ptr->analysis_ptr,species_ptr-
>calculated_values_root_ptr); 
   return_code = compare_values(species_ptr-
>calculated_values_root_ptr,species_ptr->target_values_root_ptr,phenotype_ptr,root_ptr); 
   phenotype_ptr = phenotype_ptr->next; 
  } 
  printf("\nFitness values\n"); 
  return_code_b = convert_to_fitness(species_ptr, root_ptr); 
  if(run_mode==5) prompt("Check fitness values"); 
 
  if(root_ptr->generation_no > 1) 
    { 
    if (run_mode==5) prompt("OK"); 
    if(root_ptr->evaluate_mode[6]==1 && root_ptr->evaluate_mode[4]!=1) 
/*Only gg*/ 
       { 
        printf("\nCalling elite_replacement...\n\n"); 
        return_code = elite_replacement(root_ptr); 
       } 
    } 
 
  if (run_mode==5) prompt("OK"); 
  if(root_ptr->evaluate_mode[6]==1 && root_ptr->evaluate_mode[4]!=1) /*Only gg*/ 
           { 
      printf("\nCalling subset_to_the_user...\n\n"); 
         return_code = subset_to_the_user(root_ptr); 
     } 
  if (run_mode==5) prompt("OK"); 
  if(root_ptr->evaluate_mode[6]==1 && root_ptr->evaluate_mode[4]==1) /*Both gg and user 
ratings*/ 
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           { 
     printf("\nCalling subset_to_the_user...\n\n"); 
     return_code = subset_to_the_user(root_ptr); 
     } 
 
  species_ptr = species_ptr->next; 
 } 
 printf("\n - Calculate Fitness -\n"); 
 printf(" ---------------------  %d -> ",return_code); 
 return(return_code); 
} 
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 Appendix: Geometry B)
 

/***************************/ 
/* geometery - process 4.0 */ 
/***************************/ 
 
#include <stdio.h> 
#include <string.h> 
#include <uf.h> 
#include <uf_ui.h> 
#include <uf_cfi.h> 
#include <uf_part.h> 
#include <uf_trns.h> 
#include <uf_modl.h> 
#include <uf_view.h> 
#include "root.tem" 
#include "pop.tem" 
#include "results.tem" 
#define null (int *)0 
 
/*******************************************************/ 
  
int geometry(struct root *root_ptr) 
{ 
int create_form_data(struct root *); 
int open_new_part(struct root *); 
int create_objects(struct root *); 
int analyse_created_geometry(struct root *); 
int cheat_blend(struct root *); 
int real_blend(struct root *); 
int unite_all_solids(struct root *); 
int geometric_fitness(struct root *); 
int rotation_scalingBB(struct root *); 
int rotation_scalingVOL(struct root *); 
int translationBB_object_comparison(struct root *); 
int translationCOFM_object_comparison(struct root *); 
int interaction_loop(struct root *,int); 
int prompt(char *); 
 
int return_code_a = 0, 
 return_code_b = 0, 
 return_code_c = 0, 
 return_code_d = 0, 
 return_code_e = 0, 
 return_code   = 0, 
 objects, 
 run_mode; 
 
char *prompt_message = "Look at the status window"; 
 
struct species  *species_ptr; 
struct phenotype *phenotype_ptr; 
 
/*******************************************************/ 
 
printf(" ---------------------\n"); 
printf(" -  G e o m e t r y  -\n"); 
 
run_mode = root_ptr->ui_control_ptr->run_mode;  
 
return_code_a = open_new_part(root_ptr);       
  printf("  %d\n",return_code_a);  
UF_DISP_regenerate_display(); 
return_code_b = create_form_data(root_ptr);       
 printf("  %d\n",return_code_b);   
objects   = create_objects(root_ptr); 
return_code_d   = analyse_created_geometry(root_ptr); 
 
if(root_ptr->create_mode!=6) 
{ 
 return_code_d = unite_all_solids(root_ptr); 
 return_code_d = analyse_created_geometry(root_ptr); 
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} 
if(root_ptr->evaluate_mode[6]!=1) 
    return_code = geometric_fitness(root_ptr); 
 
if(root_ptr->evaluate_mode[6]==1 && root_ptr->evaluate_mode[4]!=1) /*Geometric Guides*/ 
{ 
    return_code = rotation_scalingBB(root_ptr); 
                return_code = translationBB_object_comparison(root_ptr); 
} 
species_ptr = root_ptr->first_species_ptr; 
while (species_ptr != null_species) 
{ 
if(root_ptr->evaluate_mode[4]==1 && root_ptr->evaluate_mode[6]!=1) /*User Ratings*/ 
{ 
 return_code_e = interaction_loop(root_ptr,objects); printf("%d\n", return_code_e); 
} 
else 
   { 
    phenotype_ptr=species_ptr->first_phenotype; 
    while(phenotype_ptr!=null_phenotype) 
    { 
   phenotype_ptr->user_rating=0; 
   phenotype_ptr=phenotype_ptr->next; 
    } 
   } 
species_ptr = species_ptr->next; 
} 
 
species_ptr = root_ptr->first_species_ptr; 
while (species_ptr != null_species) 
{ 
if(root_ptr->evaluate_mode[4]==1 && root_ptr->evaluate_mode[6]==1) /*Both gg and user ratings*/ 
   { 
      return_code = rotation_scalingBB(root_ptr); 
      return_code = translationBB_object_comparison(root_ptr); 
   } 
else 
   { 
    phenotype_ptr=species_ptr->first_phenotype; 
    while(phenotype_ptr!=null_phenotype) 
    { 
   phenotype_ptr->user_rating=0; 
   phenotype_ptr=phenotype_ptr->next; 
    } 
   } 
species_ptr = species_ptr->next; 
} 
 
printf("\n -  G e o m e t r y  -\n ---------------------  %d ",return_code_e); 
 
return(return_code_e); 
} 
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 Appendix: Rotation and scaling with BB C)
 

/********************/ 
/* rotation_scalingBB - process 4.D */ 
/********************/ 
#include <stdio.h> 
#include <uf.h> 
#include <uf_modl.h> 
#include <uf_view.h> 
#include <uf_trns.h> 
#include <uf_ui.h> 
#include <uf_csys.h> 
#include <uf_so.h> 
#include "root.tem" 
#include "geometry.tem" 
#include "pop.tem" 
#include "results.tem" 
#include "target.tem" 
 
#define UF_CALL(X) (report( __FILE__, __LINE__, #X, (X))) 
static int report( char *file, int line, char *call, int irc) 
{ 
    if (irc) 
    { 
        char    messg[133]; 
        printf("%s, line %d:  %s\n", file, line, call); 
        (UF_get_fail_message(irc, messg)) ? 
            printf("    returned a %d\n", irc) : 
            printf("    returned error %d:  %s\n", irc, messg); 
    } 
    return(irc); 
} 
/*********************************************/ 
int rotation_scalingBB(struct root *root_ptr) 
{ 
int import_target(struct root *); 
int prompt(char *);  
int col=0,row=1,offset = 120; 
int status; 
int type = 1; 
int n_objects = 1,move_or_copy = 2,dest_layer = 0,trace_curves = 2; 
int i,p,m; 
 
double acc_value[11] = {0.9}; 
double rot_mass_props[47],target_mass_props[47]; 
double stats[13];                                                                                                                                                                                                                  
double rot_move_data[2][12] = { {0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0} }; 
double tran_move_data[2][12] = { {0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0} }; 
double figit = 0.8; 
double rot_bounding_box[6],sc_bounding_box[6]; 
double lengthx,lengthy,lengthz,sfx,sfy,sfz; 
double scale_factor[3] = {0,0,0}, point[3], matrix[16]; 
double bounding_box[6]; 
 
struct efd_object *efd_object_ptr; 
struct calculated_values_root *calculated_values_root_ptr; 
struct species *species_ptr; 
struct target_values_root *target_values_root_ptr; 
 
const double matrix_values[9] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; 
tag_t matrix_id = NULL_TAG; 
tag_t csys_id = NULL_TAG; 
 
//Scale declarations 
UF_SCALE_TYPE_t scale_type_2 = UF_SCALE_TYPE_GENERAL; 
int num_body_tags_2 = 1; 
tag_t so_point_2 = NULL_TAG; 
tag_t so_dir_2 = NULL_TAG; 
char factors_2[3][UF_MAX_EXP_BUFSIZE] = { "scale_factor[0]", "scale_factor[1]", "scale_factor[2]" }; 
tag_t *tags_2 = NULL; 
 
UF_SCALE_TYPE_t scale_type = UF_SCALE_TYPE_UNIFORM; 
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int num_body_tags = 1; 
tag_t scalar = NULL_TAG; 
tag_t so_dir = NULL_TAG; 
tag_t so_csys = NULL_TAG; 
char scale_exp[UF_MAX_EXP_LENGTH + 1]; 
tag_t *scaleFeat; 
 
const UF_SO_update_option_t; 
double new_scale = 1.5; 
 
uf_list_p_t rot_feature_list; 
 
tag_t trace_curve_group;   
 
printf(" - GEOMETRIC GUIDES -\n"); 
 
/******IMPORTS TARGET FILE******/ 
UF_CALL(import_target(root_ptr)); 
UF_CALL(UF_VIEW_fit_view(NULL_TAG,figit));/*fits the geometry to the view. NULL_TAG = Work view*/ 
 
printf(" \n- POSE NORMALISATION -\n"); 
species_ptr = root_ptr->first_species_ptr; 
calculated_values_root_ptr = species_ptr->calculated_values_root_ptr; 
efd_object_ptr = root_ptr->first_efd_object_ptr; 
target_values_root_ptr = species_ptr->target_values_root_ptr; 
 
/***********ROTATION************/ 
UF_CALL(UF_MODL_ask_mass_props_3d(&target_values_root_ptr-
>target,1,1,4,100,1,acc_value,target_mass_props,stats));/*finds principal axes of the target*/ 
 
while(efd_object_ptr != null_efd_object)/*Object Loop*/  
{ 
 printf("----------------------\nObject %2d  %d bodies %d\n", 
 efd_object_ptr->efd_object_id,efd_object_ptr->first_efd_body->body,efd_object_ptr->bodies); 
 
 UF_CALL(UF_MODL_ask_mass_props_3d(&efd_object_ptr->first_efd_body-
>body,1,1,4,100,1,acc_value,rot_mass_props,stats));/*finds principal axes of the objects*/ 
 UF_CALL(UF_MODL_ask_bounding_box(efd_object_ptr->first_efd_body->body, 
rot_bounding_box));/*finds the center of bb of the objects*/ 
  
 for (i=0,p=0,m=3;i<=2,p<=2,m<=5;i++,p++,m++) 
 rot_move_data[0][i] = (rot_bounding_box[p]+rot_bounding_box[m])/2;/*centre of rotation (x-y-z-
axis) = centre of bb, ORIGIN=ref POINT x=[0][0],y=[0][1],z=[0][2]*/ 
  
 for (i=3,p=22;i<=11,p<=30;i++,p++) 
 rot_move_data[0][i] = rot_mass_props[p];/*FROM vector: [0][3]->[0][11]*/ 
 
 for (i=3,p=22;i<=11,p<=30;i++,p++) 
 rot_move_data[1][i] = target_mass_props[p];/*TO vector: [1][3]->[1][11]---Move to csys of the 
target*/ 
     
 printf("ROTATE OBJECT\n"); 
 UF_CALL(UF_MODL_ask_body_feats(efd_object_ptr->first_efd_body-
>body,&rot_feature_list));/*returns a list of features of each body*/ 
    UF_CALL(UF_MODL_move_feature(rot_feature_list,2,rot_move_data));/*moves a list of features from 
CSYS to CSYS*/ 
    UF_CALL(UF_MODL_update());/*Update Undo Happened - Error*/ 
 UF_CALL(UF_MODL_set_update_fail_option(UF_MODL_UPDATE_ACCEPT));/*Accepts the warning of the 
failed feature*/   
     
/************SCALING************/ 
 printf("SCALE OBJECT\n"); 
 UF_CALL(UF_VIEW_fit_view(NULL_TAG,figit)); 
 
 UF_CALL(UF_MODL_ask_bounding_box(efd_object_ptr->first_efd_body->body, sc_bounding_box)); 
 
 lengthx = sc_bounding_box[3]-sc_bounding_box[0]; 
    lengthy = sc_bounding_box[4]-sc_bounding_box[1]; 
    lengthz = sc_bounding_box[5]-sc_bounding_box[2]; 
  
 sfx = (calculated_values_root_ptr->target_length_x/lengthx); 
    sfy = (calculated_values_root_ptr->target_length_y/lengthy); 
    sfz = (calculated_values_root_ptr->target_length_z/lengthz);  
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    if (sfx <= sfy && sfx <= sfz)/*finds the scale factor*/ 
    { 
   sfx = (calculated_values_root_ptr->target_length_x/lengthx); 
   scale_factor[0] = sfx; 
   scale_factor[1] = sfx; 
   scale_factor[2] = sfx; 
    
    } 
    else if (sfy <= sfx && sfy <= sfz) 
    { 
   sfy = (calculated_values_root_ptr->target_length_y/lengthy); 
   scale_factor[0] = sfy; 
   scale_factor[1] = sfy; 
   scale_factor[2] = sfy; 
    
    } 
    else if (sfz <= sfx && sfz <= sfy) 
    { 
   sfz = (calculated_values_root_ptr->target_length_z/lengthz); 
   scale_factor[0] = sfz; 
   scale_factor[1] = sfz; 
   scale_factor[2] = sfz; 
    
    }  
  
/******GENERAL SCALE******************************************************************/ 
 printf("%f %f %f", scale_factor[0], scale_factor[1], scale_factor[2]); 
 for (i=0,p=0,m=3;i<=2,p<=2,m<=5;i++,p++,m++) 
 point[i] = (sc_bounding_box[p]+sc_bounding_box[m])/2; /*Length x-y-z middle point*//*center of 
bb - SMART POINT*/ 
     
 UF_CALL(UF_CSYS_create_matrix(matrix_values, &matrix_id)); 
 UF_CALL(UF_CSYS_create_temp_csys(point, matrix_id, &csys_id)); 
 UF_CALL(UF_MODL_create_scale(scale_type_2, &efd_object_ptr->first_efd_body->body, 
num_body_tags_2, so_point_2, so_dir_2, csys_id, factors_2, &tags_2)); 
 
 UF_free(tags_2); 
 
    UF_VIEW_fit_view(NULL_TAG,figit); 
    UF_CALL(UF_MODL_update());  
 
 efd_object_ptr = efd_object_ptr->next; 
} 
printf("- End of PN -\n ------\n"); 
printf(" - End of GEOMETRIC GUIDES -\n ------\n"); 
return(0); 
} 
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 Appendix: Import target D)
/********************/ 
/* import_target - process 7 */ 
/********************/ 
#include <stdio.h> 
#include <uf.h> 
#include <uf_modl.h> 
#include <uf_disp.h> 
#include <uf_view.h> 
#include <uf_obj.h>  
#include <uf_part.h> 
#include <uf_trns.h> 
#include "root.tem" 
#include "pop.tem" 
#include "results.tem" 
#include "target.tem" 
 
                             
#define UF_CALL(X) (report( __FILE__, __LINE__, #X, (X))) 
static int report( char *file, int line, char *call, int irc) 
{ 
    if (irc) 
    { 
        char    messg[133]; 
        printf("%s, line %d:  %s\n", file, line, call); 
        (UF_get_fail_message(irc, messg)) ? 
            printf("    returned a %d\n", irc) : 
            printf("    returned error %d:  %s\n", irc, messg); 
    } 
    return(irc); 
} 
/*********************************************/                                                   
int import_target(struct root *root_ptr) 
{ 
int prompt(char *); 
int rcode; 
int count; 
int phenotypes; 
int big_number_of_phenotypes = 80; 
int small_number_of_phenotypes = 40; 
 
double acc_value[11] = {0.9};                                                           
double rot_move_data_target[2][12] = { {0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0} }; 
double dest_csys[6] = {1.,0.,0.,0.,1.,0.}; 
double dest_point[3] = {50.,50.,50.}; 
double scale = 1.0; 
 
struct calculated_values_root *calculated_values_root_ptr; 
struct species *species_ptr; 
struct target_values_root *target_values_root_ptr; 
 
char *filename = "C:\\EvoShape\\eS\\target_Laura.prt"; 
 
uf_list_p_t list;  
UF_import_part_modes_t modes = { 1, 0, 0, 3, 0, TRUE, FALSE }; 
 
tag_t group = NULL_TAG; 
tag_t inquiry = NULL_TAG; 
 
/******IMPORT TARGET FILE******/ 
printf(" ---------------------\n - IMPORT TARGET -\n"); 
 
UF_CALL(UF_PART_import(filename,&modes,dest_csys,dest_point,scale,&group)); 
 
UF_CALL(UF_MODL_create_list(&list));  
do 
{ 
 rcode = UF_MODL_ask_object(70,0,&inquiry);  
 UF_CALL(UF_MODL_put_list_item(list,inquiry)); 
} 
while (inquiry!=NULL_TAG); 
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UF_CALL(UF_MODL_ask_list_count(list,&count)); 
species_ptr = root_ptr->first_species_ptr; 
target_values_root_ptr = species_ptr->target_values_root_ptr; 
 
if (root_ptr->approach_mode[1] == 1) phenotypes = big_number_of_phenotypes; 
if (root_ptr->approach_mode[2] == 1) phenotypes = small_number_of_phenotypes; 
 
UF_CALL(UF_MODL_ask_list_item(list, phenotypes, &target_values_root_ptr->target));/*finds the tag of 
the target*/ 
UF_CALL(UF_OBJ_set_color(target_values_root_ptr->target,183));/*changes the color of the target*/ 
 
/******FINDING THE BOUNDING BOX OF THE TARGET OBJECT - TO FIND THE LENGTHS******/ 
species_ptr = root_ptr->first_species_ptr; 
calculated_values_root_ptr = species_ptr->calculated_values_root_ptr; 
UF_CALL(UF_MODL_ask_bounding_box(target_values_root_ptr->target,calculated_values_root_ptr-
>target_bounding_box)); 
 
/******FINDING THE LENGTHS OF THE TARGET OBJECT - USE THEM IN SCALING******/ 
calculated_values_root_ptr->target_length_x =  
 calculated_values_root_ptr->target_bounding_box[3]- 
 calculated_values_root_ptr->target_bounding_box[0]; 
 
calculated_values_root_ptr->target_length_y =  
 calculated_values_root_ptr->target_bounding_box[4]- 
 calculated_values_root_ptr->target_bounding_box[1]; 
 
calculated_values_root_ptr->target_length_z =  
 calculated_values_root_ptr->target_bounding_box[5]- 
 calculated_values_root_ptr->target_bounding_box[2]; 
                                                                                                                                                                                                                                                                                                             
return(0); 
return(0); 
} 
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 Appendix: Compare values E)
/*******************************************************/ 
/* compare_values - process 3.4                               */ 
/*******************************************************/ 
#include <stdio.h> 
#include <math.h> 
#include <string.h> 
#include <uf.h> 
#include <uf_modl.h> 
#include <uf_cfi.h> 
#include <uf_ui.h> 
#include <uf_obj.h> 
#include "root.tem" 
#include "pop.tem" 
#include "target.tem" 
#include "results.tem" 
/*******************************************************/ 
int compare_values(struct calculated_values_root *calculated,struct target_values_root *target,struct 
phenotype *phenotype_ptr,struct root *root_ptr) 
{ 
 
int prompt(char *); 
 
int return_code = 0, 
 run_mode; 
double sum  = 0, 
  sum1 = 0, 
  sum2 = 0, 
  p_diff_x = 0, 
  p_diff_y = 0, 
  p_diff_z = 0, 
  temp_sum_one = 0, 
  temp_sum_two = 0, 
  difference = 0; 
/*******************************************************/ 
 
run_mode = root_ptr->ui_control_ptr->run_mode; 
 
/*Geometric Fitness*/ 
if(root_ptr->evaluate_mode[0]>0 && root_ptr->evaluate_mode[6]!=1) 
{ 
 if(root_ptr->evaluate_mode[1]==1) 
 { 
  difference = calculated->h - target->bb_size; 
  sum += sqrt(difference * difference); 
 } 
 if(root_ptr->evaluate_mode[2]==1) 
 { 
  difference = calculated->i - target->volume; 
  sum += sqrt(difference * difference); 
 } 
 if(root_ptr->evaluate_mode[3]==1) 
 { 
  difference = calculated->j - target->area; 
  sum += sqrt(difference * difference); 
 } 
 if(root_ptr->evaluate_mode[5]>0) 
 { 
  if( root_ptr->evaluate_mode[5]==100 || 
   root_ptr->evaluate_mode[5]==101 || 
   root_ptr->evaluate_mode[5]==110 || 
   root_ptr->evaluate_mode[5]==111    ) 
  { 
   printf("\ncalculated x : %lf",calculated->x); 
   printf("\ntarget x : %lf",target->x_dim); 
   difference = calculated->x - target->x_dim; 
   printf("\ndifference : %lf",difference); 
   temp_sum_one = difference * difference; 
   p_diff_x = sqrt(temp_sum_one); 
   printf("\nx-difference:%lf",p_diff_x); 
   temp_sum_two += p_diff_x; 
  } 
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  if( root_ptr->evaluate_mode[5]==10  || 
   root_ptr->evaluate_mode[5]==11  || 
   root_ptr->evaluate_mode[5]==110 || 
   root_ptr->evaluate_mode[5]==111    ) 
  { 
   printf("\ncalculated y : %lf",calculated->y); 
   printf("\ntarget y : %lf",target->y_dim); 
   difference = calculated->y - target->y_dim; 
   temp_sum_one = difference * difference; 
   p_diff_y = sqrt(temp_sum_one); 
   printf("\ny-difference:%lf",p_diff_y); 
   temp_sum_two += p_diff_y; 
  } 
  if( root_ptr->evaluate_mode[5]==1   ||    
   root_ptr->evaluate_mode[5]==11  ||    
   root_ptr->evaluate_mode[5]==101 || 
   root_ptr->evaluate_mode[5]==111    ) 
  { 
   printf("\ncalculated z : %lf",calculated->z); 
   printf("\ntarget z : %lf",target->z_dim); 
   difference = calculated->z - target->z_dim; 
   temp_sum_one = difference * difference; 
   p_diff_z = sqrt(temp_sum_one); 
   printf("\nz-difference:%lf",p_diff_z); 
   temp_sum_two += p_diff_z; 
  } 
  sum += temp_sum_two; 
 } 
  
 
} 
 
/*Geometric Guides*/ 
printf("Phenotype %2d:\n", phenotype_ptr->phenotype_id);  
if(root_ptr->evaluate_mode[6]==1  && root_ptr->evaluate_mode[4]!=1) /*only gg*/ 
 { 
  phenotype_ptr->objective_function_value = sqrt(phenotype_ptr-
>non_intersected_volumes*phenotype_ptr->non_intersected_volumes); 
  printf("non intersected volumes           = %f\n", phenotype_ptr-
>non_intersected_volumes); 
  printf("Objective non intersected volumes = %f\n\n",phenotype_ptr-
>objective_function_value); 
     if(run_mode==5) prompt("geometric guides fitness"); 
 }  
  
/*User Ratings*/ 
if(root_ptr->evaluate_mode[4]==1 && root_ptr->evaluate_mode[6]!=1) /*only user*/ 
 { 
  phenotype_ptr->objective_function_value = difference = 10 - phenotype_ptr->user_rating; 
  printf("user rating difference        = %d\n", 10 - phenotype_ptr->user_rating); 
  printf("Objective user rating         = %f\n\n",phenotype_ptr-
>objective_function_value); 
 } 
 
/*Both*/ 
if(root_ptr->evaluate_mode[4]==1 && root_ptr->evaluate_mode[6]==1) /*Both gg and user ratings*/ 
   { 
  phenotype_ptr->objective_function_value = sqrt(phenotype_ptr-
>non_intersected_volumes*phenotype_ptr->non_intersected_volumes); 
  printf("non intersected volumes           = %f\n", phenotype_ptr-
>non_intersected_volumes); 
  printf("Objective non intersected volumes = %f\n\n",phenotype_ptr-
>objective_function_value); 
  if(run_mode==5) prompt("geometric guides fitness"); 
} 
if(run_mode==5) prompt("Next Phenotype"); 
return return_code; 
} 
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 Appendix: Convert to fitness F)
/******************************************************/ 
/* convert_to_fitness - process 3.5                   */ 
/******************************************************/ 
#include <stdio.h> 
#include "pop.tem" 
#include <string.h> 
#include <uf.h> 
#include "root.tem" 
#define null_member (struct member *)0 
/******************************************************/ 
int convert_to_fitness( struct species *species_ptr, struct root *root_ptr) 
{ 
int merge_objective_functions(struct phenotype *, struct phenotype *); 
int return_code = 0; 
int prompt(char *); 
int run_mode; 
 
struct phenotype *phenotype_ptr; 
struct phenotype *target_phenotype_ptr; 
 
double scaling_factor; 
double maximum_value; 
/******************************************************/ 
run_mode = root_ptr->ui_control_ptr->run_mode; 
 
maximum_value = 0.0; 
phenotype_ptr = species_ptr->first_phenotype; 
while (phenotype_ptr != null_phenotype) 
 { 
 if (phenotype_ptr->objective_function_value > maximum_value) 
  maximum_value = phenotype_ptr->objective_function_value; 
 phenotype_ptr = phenotype_ptr->next; 
 } 
 
scaling_factor = species_ptr->fitness_scale_factor; 
phenotype_ptr = species_ptr->first_phenotype; 
if (species_ptr->decodes_ptr!=null_species) 
 target_phenotype_ptr = species_ptr->decodes_ptr->first_phenotype; 
else 
 target_phenotype_ptr = species_ptr->first_phenotype; 
 
while (phenotype_ptr != null_phenotype) 
 { 
 if (species_ptr->decodes_ptr!=null_species) /* M e r g e */ 
  return_code = merge_objective_functions(phenotype_ptr,target_phenotype_ptr); 
 
 printf("Phenotype %2d :\n", phenotype_ptr->phenotype_id);  
 if(root_ptr->evaluate_mode[6]==1  && root_ptr->evaluate_mode[4]!=1) /*only gg*/ 
 { 
  phenotype_ptr->fitness_function_value = scaling_factor / (scaling_factor + 
phenotype_ptr->objective_function_value); 
     printf("gg Fitness values = %f\n\n", phenotype_ptr->fitness_function_value); 
 } 
 if(root_ptr->evaluate_mode[4]==1 && root_ptr->evaluate_mode[6]==1) /*Both gg and user 
ratings*/ 
    { 
  phenotype_ptr->fitness_function_value = scaling_factor / (scaling_factor + 
phenotype_ptr->objective_function_value); 
  printf("gg Fitness values = %f\n\n", phenotype_ptr->fitness_function_value); 
 } 
 if(run_mode==5) prompt("Next Phenotype"); 
 target_phenotype_ptr = target_phenotype_ptr->next; 
 phenotype_ptr = phenotype_ptr->next; 
 } 
 
return(return_code); 
} 
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 Appendix: Subset of shapes to the user G)
/*******************************************************/ 
/* p2.8b subset_to_the_user                            */ 
/*                                                     */ 
/*Select a subset of n objects by using g-guides       */ 
/*present these n to the user.                         */ 
/*******************************************************/ 
#include <stdio.h> 
#include <uf.h> 
#include <uf_ui.h> 
#include <uf_obj.h> 
#include <uf_modl.h> 
#include <uf_udobj.h> 
#include <uf_view.h> 
#include <uf_disp.h> 
#include "root.tem" 
#include "pop.tem" 
#include "geometry.tem" 
#include "target.tem" 
#define null_member (struct member *)0 
/*************************************************/ 
 
int subset_to_the_user(struct root *root_ptr) 
{ 
int prompt(char *); 
int sort_phenotypes(struct species *); 
int real_blend(struct root *); 
int write_fit_values_gg_fittest(struct root *, struct species *); 
int interaction_loop(struct root *,int); 
 
int col=0,row=1,offset = 120; 
int return_code = 0; 
int run_mode; 
int sorted_counter; 
int fittest_phenotypes_no = 12; 
double figit = 1.0; 
double g_response[5] = {6,0.3,0,0,0}; 
double scaling_factor; 
double tran_bounding_box[6]; 
double tran_move_data[2][12] = { {0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0} }; 
tag_t inquiry = NULL_TAG; 
struct phenotype *phenotype_ptr; 
struct species *species_ptr; 
struct target_values_root *target_values_root_ptr; 
 
uf_list_p_t tran_feature_list; 
uf_list_p_t body_list; 
uf_list_p_t fit_phenotype_feature_list; 
uf_list_p_t target_feature_list; 
 
/*************************************************/ 
printf("In subset_to_the_user now...\n");  
run_mode = root_ptr->ui_control_ptr->run_mode; 
 
printf("\nCalling sort_phenotypes...\n\n"); 
return_code = sort_phenotypes(root_ptr->first_species_ptr); 
 
return_code = UF_MODL_create_list(&body_list); 
 
sorted_counter=1; 
phenotype_ptr=root_ptr->first_species_ptr->first_sorted; 
while (sorted_counter<=fittest_phenotypes_no) 
 { 
 return_code = UF_MODL_ask_body_feats(phenotype_ptr->efd_object_ptr->first_efd_body-
>body,&fit_phenotype_feature_list); 
 return_code = UF_MODL_unsuppress_feature(fit_phenotype_feature_list);//12 fittest on 
 printf("P%d Fit-val %f unsuppressed\n",phenotype_ptr->phenotype_id, phenotype_ptr-
>fitness_function_value);//on 
 sorted_counter++; 
 phenotype_ptr=phenotype_ptr->next_sorted; 
 } 
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/************Blend the fittest*****************/ 
return_code = real_blend(root_ptr); 
/**********************************************/ 
 
sorted_counter=1; 
phenotype_ptr=root_ptr->first_species_ptr->first_sorted; 
while (sorted_counter<=fittest_phenotypes_no) 
 { 
 UF_DISP_set_display(UF_DISP_UNSUPPRESS_DISPLAY); //on 
 
 /******MOVE FITTEST OBJECTS******/  
 col++; 
 if(col==5) /*sqrt(objects)*/ 
  { 
  row++; 
  col=1; 
  }  
 /******FIND THE CENTER OF THE BASE OF EACH OBJECT******/  
 return_code = UF_MODL_ask_bounding_box(phenotype_ptr->efd_object_ptr->first_efd_body-
>body,tran_bounding_box); 
 
 tran_move_data[0][0] = (tran_bounding_box[0]+tran_bounding_box[3])/2;/*FROM vector x*/ 
 tran_move_data[0][1] = (tran_bounding_box[1]+tran_bounding_box[4])/2;/*FROM vector y*/ 
 tran_move_data[0][2] = tran_bounding_box[2];                         /*FROM vector z*/ 
 
 tran_move_data[1][0] = -((col*offset)+(offset/2));/*TO vector x*/ 
 tran_move_data[1][1] = (row*offset)+(5*offset);/*TO vector y*/ 
 tran_move_data[1][2] = 0;                      /*TO vector z*/ 
 
 return_code = UF_MODL_ask_body_feats(phenotype_ptr->efd_object_ptr->first_efd_body-
>body,&tran_feature_list); 
 return_code = UF_MODL_move_feature(tran_feature_list,0,tran_move_data); 
 printf("------->Translate object\n\n"); 
 
 sorted_counter++; 
 phenotype_ptr=phenotype_ptr->next_sorted; 
 } 
  
species_ptr = root_ptr->first_species_ptr; 
target_values_root_ptr = species_ptr->target_values_root_ptr; 
return_code = UF_MODL_ask_body_feats(target_values_root_ptr->copy_target,&target_feature_list); 
return_code = UF_MODL_suppress_feature(target_feature_list); 
return_code = UF_VIEW_fit_view(NULL_TAG,figit); 
  
write_fit_values_gg_fittest(root_ptr, root_ptr->first_species_ptr); 
 
/******FITTEST OBJECTS - USER RATINGS******/ 
if(root_ptr->evaluate_mode[6]==1 && root_ptr->evaluate_mode[4]==1) /*Both gg and user ratings*/ 
{ 
 if(root_ptr->generation_no != g_response[0]) 
  { 
  return_code = interaction_loop(root_ptr,phenotype_ptr->efd_object_ptr->first_efd_body-
>body); printf("%d\n", return_code); 
  species_ptr = root_ptr->first_species_ptr; 
  scaling_factor = species_ptr->fitness_scale_factor; 
  phenotype_ptr=root_ptr->first_species_ptr->first_sorted; 
  while (phenotype_ptr != null_phenotype) 
   { 
   phenotype_ptr->objective_function_value = 10 - phenotype_ptr->user_rating; 
   printf("user rating difference        = %d\n", 10 - phenotype_ptr-
>user_rating); 
   printf("Objective user rating         = %f\n\n",phenotype_ptr-
>objective_function_value); 
   phenotype_ptr->fitness_function_value = scaling_factor / (scaling_factor + 
phenotype_ptr->objective_function_value); 
   if(phenotype_ptr->objective_function_value == 0.00) 
   { 
    phenotype_ptr->fitness_function_value = 2; 
   } 
   if(phenotype_ptr->objective_function_value == 11.00) 
   { 
   phenotype_ptr->fitness_function_value = 0; 
   }   
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   if(root_ptr->ui_control_ptr->hidden_objects == 0 && phenotype_ptr-
>objective_function_value >= 10.00) 
   { 
   phenotype_ptr->fitness_function_value = 0; 
   } 
   printf("Fitness user rating = %f\n\n", phenotype_ptr->fitness_function_value); 
   phenotype_ptr=phenotype_ptr->next_sorted; 
   } 
  } 
} 
/*************************************************/ 
return return_code; 
} 
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 Appendix: Participants’ Feedback I)

EvoShape - Participant 1 - Product Sofa 

1.1 “In the first population there is not much variety of shapes and none of the shapes looks 

like a sofa”. 

 

1.2 “In the second generation there is slightly more variety and there is a small similarity 

with the product I want to design”. 

 

1.3 “In the third generation there is again lack of variety, maybe because of the choices I 

have made. The similarity with the product is still small”. 

 

LBP of 80 shapes - Participant 1 - Product Sofa 

2.1 “In the first generation, there is more variety than before (EvoShape without g-guides),    

more choices - but there is no similarity, with the product I would like to design, at all”. 

2.2 “In the second generation there is definitely variety of shapes and some similarity with 

the product as well”. 

2.3 “In the third generation there is good variety of shapes and more similarity with the 

product than before”. 

2.4 “In the fourth generation there is less variety but the shapes are getting lot closer to the 

product, same as in the fifth generation”. 

2.5 “In the last generation surprisingly there is again quite a lot of variety and the similarity 

with the product is high”. 

2.6 “This approach of EvoShape definitely gives useful ideas of shapes that I would not have 

thought”. 
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LBP of 40 shapes - Participant 1 - Product Sofa 

3.1 “In the first generation the variety is good and the shapes do not look like a sofa a lot but 

they are alright”. 

3.2 “In the second generation the variety is more than in the first generation and the 

similarity is pretty good – we have got some good shapes”. 

3.3 “In the third generation the variety is pretty good but there is less similarity with the 

product than the one before, same as in the fourth generation”. 

3.4 “In the fifth generation there is still good variety and the similarity is slightly better”. 

3.5 “In the last generation there is less variety and some similarity with the product”. 

3.6 “This approach of EvoShape gives some useful ideas of shapes as well”. 

3.7 “Both EvoShape with g-guides approaches have good variety of shapes, but the first 

approach (80 shapes) gives shapes that look like the product more than the second 

approach does”. 

3.8 “The first approach gives better ideas of useful shapes than the second one does”. 

3.9 “I prefer the first EvoShape with g-guides approach but I have also made better choices 

there”. 

3.10 “In general EvoShape with g-guides does not give bigger variety than EvoShape without 

g-guides but it gives more ideas of useful shapes that look like the product you would 

like to design”.  

3.11 “EvoShape with g-guides (80 shapes) is more useful if you have a specific shape in 

mind”. 

3.12 “EvoShape without g-guides is better when you have a general idea of what you want 

to create”. 

3.13 “Using g-guides is finally useful – it guides the process and gets rid of out-there ideas”. 

3.14 “What I would change in EvoShape with g-guides to make it better is: having a ‘wild 

card’, picking the 11 fittest shapes and creating one random shape in order to have 

something to ‘save’ you when you do not have very useful shapes. Maybe, I would do 

this by increasing the probability of mutation”. 
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3.15 “EvoShape with g-guides is very easy to use”. 

EvoShape - Participant 2 - Product Watch 

4.1 “In the first population there is variety of shapes but none of the shapes looks like a 

watch where in the second generation they started looking slightly like a watch”. 

4.2 “In the third generation there is still variety and the shapes started to look like more to 

the ideas I like”. 

4.3 “In the fourth generation there is less variety and in the fifth generation I have lost the 

shape I was carrying through”. 

4.4 “This version of EvoShape gives new ideas of useful shapes but, by the end of it, it wasn't 

exactly what I wanted”. 

LBP of 80 shapes - Participant 2 - Product Watch 

5.1 “In the first generation there is less variety than the old EvoShape version, but is good. 

And, also, there is already some similarity with the product”. 

5.2 “In the second generation there is nice variation and the shapes are getting closer to the 

product, same as the third generation”. 

5.3 “In the fourth and fifth generation there is a variation in the details of the shapes and 

still a good similarity with the product”. 

5.4 “In the sixth generation the variety is not good and there are less interesting shapes”. 

5.5 “This EvoShape version definitely gives new ideas of useful shapes”. 

LBP of 40 shapes - Participant 2 - Product Watch 

6.1 “In the first generation there is some variety and some shapes are quite similar to the 

product and in the second generation is getting even closer”. 

6.2 “In the third and fourth generations there is variation on the details and a lot of the 

shapes are quite similar to the product”. 
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6.3 “In the fifth generation there is not a lot variation to inspire you but there are some good 

shapes that are similar to the product”. 

6.4 “In the sixth generation there is more variety (mutation) and a big similarity with the 

product”. 

6.5 “This approach (40 shapes) is better than the 80 shapes approach because the ideas are 

closer to a watch. However, the 80 shapes approach has bigger variety of shapes and 

gives better ideas of useful shapes”. 

6.6 “EvoShape with g-guides has less variety than the EvoShape without g-guides but finds 

the shape easier; you evolve your concept easier –nicer. EvoShape without g-guides is 

too random”. 

6.7 “EvoShape with g-guides is finally useful; it is a shape exploration that gives new ideas of 

useful shapes”. 

6.8 “To make EvoShape better I would keep certain features that I like and bring them 

together better”. 

6.9 “EvoShape is easy to use”. 

EvoShape - Participant 3 - Product Building 

7.1 “In the first generation there is a lot of variety but nothing to use directly as a building 

structure”. 

7.2 “In the second generation there is still variety and quite interesting shapes”. 

7.3 “In the third generation there are no interesting or useful shapes”. 

LBP of 80 shapes - Participant 3 - Product Building 

8.1 “In the first generation there are interesting and complex shapes and the variety is high”. 

8.2 “In the second generation there are nice ideas of shapes, less complex, the variety is 

smaller and it is quite settled”. 

8.3 “In the third generation the shapes are closer to the target already”. 

8.4 “In the fourth generation the shapes are cool but the variety small”. 
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LBP of 40 shapes - Participant 3 - Product Building 

9.1 “In the first generation there is good variety and nice shapes”. 

9.2 “In the second generation there are new ideas of shapes but not much variety”. 

9.3 “In the third generation there are more versions of the same idea”. 

9.4 “The 80 shapes approach has better first generation than the 40 shapes approach – 

better variety and better ideas of shapes”. 

9.5 “I prefer the 80 shapes approach because it gives you more ideas for the whole object – 

considers the whole product, gives more applicable ideas to the whole product”. 

9.6 “LBP approach is useful but not better in every way, but it really has value”. 

EvoShape - Participant 4 - Product Guitar 

10.1 “In the first generation there is not a lot of variety and nothing to inspire the form of a 

guitar”. 

10.2 “In the second generation there is still small variety and not very interesting shapes”. 

10.3 “In the third generation the variety is slightly better and there are some interesting 

shapes”. 

10.4 “In the fourth generation there is still some variety but there are no useful shapes any 

more”. 

11.5 “In the fifth generation there is no variety and no interesting shapes”. 

LBP of 80 shapes - Participant 4 - Product Guitar 

11.1 “In the first generation the variety is high but there are no interesting shapes”. 

11.2 “In the second generation the variety is still good and there are some good ideas to 

inspire”. 

11.3 “In the third generation there is still variety and the shapes are getting more 

interesting”. 

11.4 “In the fourth generation the variety is small but there are some useful shapes”. 
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11.5 “In the fifth generation there is not much variety of shapes but they are very close the 

target”. 

LBP of 40 shapes - Participant 4 - Product Guitar 

12.1 “In the first generation there is good variety but there is no similarity with the target”. 

12.2 “In the second, third and fourth generations there is good variety and the similarity with 

the target is increasing”. 

12.3 “In the fifth generation the variety is very small but the shapes are very close to the 

target”. 

12.4 “GG are finally useful and have improved EvS by guiding the process”. 

12.5 “GG could be improved by creating a database of different classes of shapes and using 

the right class with the right type of target”. 
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Guides for Interactive Evolutionary CAD 

Theodora RETZEPI, Yee Mey GOH, Ian J GRAHAM 

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, 

Loughborough University, Loughborough, LE11 3TU, UK. 

Abstract. 3D object comparison is presented as part of research into guided 
evolutionary Computer-Aided Design (CAD). CAD technology in development 

will combine human interaction and geometric optimization, within an existing 

evolutionary design system (EvoShape). Geometric Guides consist of simple 3D 
target objects (bounding volumes), to which evolving forms are compared. Before 

comparison, objects must be aligned and scaled, a process known as Pose 

Normalization (PN) in the literature. Both PN and object comparison have been 
implemented using standard geometric functions, enabling populations of evolving 

forms to be directed by the Geometric Guides. The algorithms and their 

implementation are presented alongside early results and analysis, discussion on 
limitations and robustness, and their suitability for Interactive Evolutionary CAD. 

Keywords. CAD, Pose Normalization, Object Comparison, Geometric Guides, 

Interactive Evolutionary Computation, Interactive Optimization. 

1. Introduction

For over two decades, Evolutionary Computation has formed the basis of evolutionary 

design systems which are traditionally either automated or interactive, with the latter 

well-suited for messy problems that are hard to evaluate using simulation (e.g. our 

primary application of form ideation within product design). Recently, relatively easy-

to-use CAD applications combining elements of user interaction and engineering 

optimization have appeared in major proprietary CAD systems, particularly in the area 

of topology optimization. Our research interests are related, but are distinctive in 

focusing on highly interactive methods (Interactive Evolutionary Computation) 

supporting more subjective design activities (aesthetic concept generation). 

EvoShape is a CAD application based on Interactive Evolutionary Computation 

(IEC), developed from the original Genetic Algorithm (GA) research described in Case 

et al [1]. It runs within a CAD system, utilizing its geometric modeller and user 

interface. The system relies solely on users to guide the evolution, from a random 

starting population of 3D shapes, by selecting or rating these shapes. The aim is to 

introduce more control by allowing users to create simple guiding geometry at the start 

of the evolution/exploration process. This has required research into Pose 

Normalization and object comparison, both of which have been implemented using 

standard geometric functions available within a CAD system, via its Application 

Programming Interface (API). 



2. Pose Normalization

The CAD application being developed by the authors requires users to create a simple 

3D geometric guide (hereafter, ‘target’), before they start to generate and explore 3D 

shapes (hereafter, ‘forms’). A target, which acts as a soft-constraint, may represent the 

overall proportions sought. To compare the evolving forms with the target, 3D object 

comparison algorithms are being developed (Section 3). For these to work effectively, 

forms need to be aligned with the target; this is commonly referred to in the specialist 

literature as “Pose Normalization” (PN) [2][3][4][5][6]. 

One driver for PN research is the need to search databases of CAD geometry (e.g. 

parts libraries). It is also highly applicable to the object comparison application in the 

IEC design system being developed. Before any processing, and due to arbitrary 3D 

orientation, scale, and position, a 3D alignment that finds the fittest position of each 

form compared to the target is required. PN is thus essential to align the target with the 

evolving forms being generated by the combination of GA and CAD modeller.  

Basic PN has been investigated using readily-available deterministic geometric 

properties such as Center-of-Mass (CoM), Principle Axis (PA) and Bounding Box 

(BB). The results look to offer appropriate efficacy for the application – and objective 

tests to confirm this are being devised. However, sophisticated algorithms have been 

identified in the literature [2] should they be required. Rotation, scaling and translation 

are carried out in that order, and presented in the following sections. 

2.1. Rotation 

Aligning PA of target and form is computationally efficient. It is not perfect, and can 

produce counter-intuitive results, as shown in Figure 1 and detailed in our previous 

paper [7] – but these deviations are rarely significant within the context of the guiding 

application. The principal X Y Z axes of forms and target are identified, and aligned 

with the global axes. This has the effect of ‘standing all the objects up’ (as seen in 

Figure 3). Early user-testing has indicated that users would prefer the original 

orientation of the target to be maintained (some products naturally lie down, 

furniture for instance, and look odd aligned otherwise). The centre of the BB of each 

form is used as the centre of rotation – this works better than using the CoM, resulting 

in less of a jump. Functionally this is unimportant as the third translation step 

accounts for any undue movement of the object, but it produces a more pleasing result 

visually, if users are watching the analysis on screen. 

Figure 1. An object’s Principle Axis (PA) aligned with the Z-axis (left) compared to a more intuitive 

alignment of the object (right), where the PA of the dominant geometry, the cylinder, is used. 



2.2. Scaling and translation 

Firstly, the X, Y and Z lengths of each target and form’s BB are established. Then the 

ratios (X Y Z lengths of the target BB divided by X Y Z lengths of the form BB) are 

calculated, and the form is scaled uniformly according to the smallest ratio of the three. 

This has the advantage of keeping the BB of the form within the BB of the target. It 

produces reasonable scaling estimations, preferred to the results of matching volumes 

(seen in Figure 2), and achieves robustness with typical EvoShape geometry. 

The centre of the base of each form’s BB is used as its local origin within each cell 

of a 4 x 3 grid, and to co-locate the target before object comparison. This works better 

than using the CoM, producing a more even spacing between forms (Figure 3). 

Figure 2. Scaling using BBs (upper): the BBs of the white forms do not exceed the BB of the brown targets. 

Scaling by volume (lower) is less satisfactory, and the form BBs generally exceed that of the target. 

Figure 3. A population of 12 white forms and brown target 

after PN, compared to the same population beforehand (left). 



3. Object Comparison

Once form and target are aligned, Boolean operators are used to calculate how closely 

they match. Our approach is based on the principle of non-intersecting volumes, i.e. 

any material volume outside the intersection of the two objects counts as a penalty. 

This can arise from target material not within the objects’ intersection, and material 

from the form not within the objects’ intersection. The sum of these two volumes acts 

as an Objective Function representing how closely the two objects match, shown 

graphically in Figure 4 and mathematically in equation (1). The sum non-intersecting 

volumes tend to zero as the evolving forms more closely match the target. 

𝑺𝒇 = (𝑽𝒕𝒂𝒓𝒈𝒆𝒕 - (𝑽𝒕𝒂𝒓𝒈𝒆𝒕 ⋂ 𝒇𝒐𝒓𝒎)) + (𝑽𝒇𝒐𝒓𝒎 - (𝑽𝒕𝒂𝒓𝒈𝒆𝒕 ⋂ 𝒇𝒐𝒓𝒎))  (1)

This can be simplified to: 𝑆𝑓 = 𝑉𝑡𝑎𝑟𝑔𝑒𝑡+ 𝑉𝑓𝑜𝑟𝑚 − 2(𝑉𝑡𝑎𝑟𝑔𝑒𝑡 ⋂ 𝑓𝑜𝑟𝑚).

 𝑆𝑓 is the Objective Function of an evolving form.

 𝑉𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑉𝑓𝑜𝑟𝑚 are the volumes of target and form.

 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 ⋂ 𝑓𝑜𝑟𝑚 is the intersecting volume of target and form.

Figure 4. From left to right: target; form; after PN; intersection; non-intersecting volumes 

Figure 5. Max fitness, Y, vs generation, X, shows evolution of three different (random) starting populations. 



4. Results

The IEC design system’s aim is not to ‘find the target’, but this task is used here to 

assess the efficacy of the PN and object comparison. A form’s % match with the 

target is sometimes used as a more intuitive expression than fitness functions. 

Figure 5 shows that starting populations affect outcome. The graph shows one 

starting population achieves a maximum fitness corresponding to a 99% match 

(with the Cylinder target) after 4 generations. With 12 objects in each population 

this amounts to 48 total forms evaluated. A different starting population reaches the 

same fitness but not until the 18
th
 generation (G18). A third reaches only a 97%

peak in G15 but then settles at 96%. For this reason, the data presented in Figure 6 

for four different targets are the mean of three different random starting 

populations. The graphs also show that maximum fitness drops at certain points – 

Figure 7. Evolved populations alongside their target shapes, in order of effectiveness: Cylinder, G15 (upper- 

left); Broken Ice Cream, G20 (upper-right); Counter, G20 (lower-left); Roof, G15 (lower-right). 

Figure 6. % match, Y, vs. generation, X, shows the evolution guided by four different targets. 



this will be addressed by introducing a GA technique called ‘elite replacement’, 

where the fittest member is automatically carried over into the next population. 

5. Conclusions

Our PN and object comparison algorithms, implemented with standard geometric 

functions, successfully enable meaningful objective function allocation to evolving 

forms. Simple targets (Cylinder, Broken Ice Cream in Figure 7) produce excellent 

results – accurate and efficient. The plain cylindrical target populations converge at 

G15 with a 97% average match and a 99% best. The inverted cone shape target 

populations average 45% by G20 (80% best). The system is less effective as target 

complexity increases, particularly where targets cannot be represented with single 

geometric primitives (e.g. Counter, 38% average by G20, 70% max), especially where 

these kinds of targets occupy a low % of their BB (e.g. Roof, 11% mean match in G15, 

but no improvement over time, or convergence). Although the fitness of some of these 

populations is still rising at G20, our belief is that object comparison methods should 

be investigated further in order to improve efficacy. 

5.1. Related and future work 

The next step in the research is combining g-guides with user-selection; to investigate 

and develop the human-machine interaction strategies which best complement the 

evolutionary design process. There are two broad approaches: larger populations, or 

more generations. The former involves processing larger populations ‘behind-the-

scenes’ and using the g-guides to select a subset of 12 forms to present to the user. The 

latter option involves keeping the population sizes at 12, using g-guides to evolve the 

majority of populations but presenting every n
th

 generation to the user. The results 

presented in this paper suggest that larger populations will have the greatest benefit. 

Progress on this aspect of the research will be presented at the conference. 
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Abstract. 3D model alignment (‘Pose Normalization’ in the literature) is 
investigated as part of wider research into guided evolutionary Computer-Aided 
Design. CAD technology in development will combine human interaction and 
geometric optimization, within an evolutionary design system. Evolving shapes 
will be influenced by simple pre-set geometric fuzzy-constraints – internal voids 
and external bounding geometry created by users. To compare evolving candidate 
shapes with these pre-set constraints they must first be aligned (rotated, scaled, and 
co-located). A shortlist of five promising alignment techniques is described. 
Benchmark data generated using standard CAD functions (centre of gravity, 
principle axes etc.) will be presented at the conference. 
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1. Introduction 

Evolutionary Computation (EC) is often used for engineering and design problems that 
are too complex to tackle deterministically, and is generally focused on optimization 
and the later stages of design. EC is usually either automatic or interactive, with the 
latter well-suited for messy problems that are hard to model (e.g. the authors’ primary 
area of interest of ideation within product design). Usable Interactive Evolutionary 
Computation (IEC) systems for design are emerging, but our research interests are 
distinct in focusing on Computer-Aided Design (CAD) methodologies to support early-
stage concept generation by combining engineering optimization and IEC. 

EvoShape (Figure 1) is a CAD application based on IEC, developed from original 
research into a Genetic Algorithm (GA) based system described in Graham et al [1]. It 
runs within a CAD environment, utilizing its geometric modeller and User Interface. 
Users guide the evolutionary process, from a random starting population of 3D shapes, 
purely through shape selection or rating. 

The intention is to introduce more control to the users by allowing them to create 
simple guiding geometry at the start of the shape evolution process. This intention has 
resulted in the need to investigate 3D alignment techniques, the five most promising of 
which, shortlisted from a study of around 10, are analysed and compared in this paper. 
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Figure 1. EvoShape. 

2. Pose Normalization 

The CAD application being developed by the authors requires users to create simple 
bounding geometry and internal voids, before they start to generate and explore 3D 
shapes. Bounding geometry may represent the overall proportions sought, and the voids 
could represent components within the products. To compare the evolving shapes with 
these soft-constraints, 3D form-comparison algorithms are being developed. But for 
these to work effectively, candidate and target shapes need to be aligned; this is 
commonly referred to in the literature as “Pose Normalization” (PN) [2,3,4,5,6]. 

2.1. Principal Component Analysis Methods 

Farrugia et al [3] investigate various PN techniques for 3D vehicle models, concluding 
that there are two main techniques for rotational normalization: 

• Principal Component Analysis (PCA) algorithm 
• Computation of the symmetrical planes of a 3D model. 
The symmetrical nature of vehicles should support the use of the symmetrical 

plane method but there is only one symmetrical plane on each vehicle. Farrugia et al [3] 
tested four different PCA methods on a downloaded database. These methods are: 

• Principal Component Analysis (PCA) 
• Centre of Gravity-PCA (CoG-PCA) [5] 
• Normal-PCA (NPCA) [6] and 
• Continuous-PCA (CPCA) [7] 
The CoG-PCA method calculates the CoG of each mesh face rather than the actual 

vertices. In NPCA technique, the principal axes are identified by the covariance of the 
mesh face and not by the vertex points. The CPCA is the PCA method applied to an 
infinite continuous point set rather than a traditional discrete point set. 

All these developments of the PCA differ from the original PCA only in the 
computation of the covariance matrix and they have been studied because many 
researchers have shown that the PCA technique may lead to inconsistent results. 

Using the experimental results given by the authors, the CoG-PCA method was 
more effective regarding the computation time. The CPCA method had slightly better 
performance [8] than the CoG-PCA and noticeably better performance than the PCA 
and NPCA. Regarding reflection normalization, PCA was inadequate [9] while NPCA 
had inaccurate results in the three axes’ identification.  



The CPCA-based PN method, in some cases can be un-successful in detecting 
some specific characteristics of 3D models such as symmetries, but they should be 
sufficiently effective when applied to IEC design systems. 

2.2. Combined Pose Estimation (CPE) 

Axenopoulos et al [4] combine plane reflection symmetry and recti linearity2 to attain a 
3D model alignment using the PCA method. Firstly, the 3D object is translated by 
locating the centre of the mass to the centre of the coordinate system, and then is scaled 
to fit within a bounding sphere. The object generates 2D views, and 2D rotation-
invariant functionals are applied for each view. Rotation estimation takes place using a 
novel CPE method which combines the CPCA with plane symmetry and recti linearity. 

If there are two or three planes of symmetry the transformation is kept as it is, 
otherwise the algorithm needs to be corrected using recti linearity. Recti linearity is 
invariant to scaling, translating and rotating. PCA and recti linearity are taking place at 
the same time and the one that produces the best rotation estimation is chosen. 

After alignment, a set of 2D black/white views is extracted, and from each 2D 
view a descriptor vector is also extracted. These vectors are converted to a one-
descriptor vector which describes the shape of the object. View-based similarity is 
computed by matching each 2D view between 3D models, so that the 3D models to be 
properly aligned in a coordinate frame. 

The experimental results given by Axenopoulos et al [4] prove that CPE produce 
accurate rotation estimation results compared with the comparative techniques, and 
should achieve robustness in IED systems that use simple models. However, using the 
centre of the mass for translation normalization will not produce consistent alignment 
in more complex objects, as analysed in a later section. 

2.3. Reflective Symmetry 

A reflective symmetry computed on panoramic 3  views is used for a novel pose 
normalization method, as described by Sfikas et al. [10]. The symmetry plane of a 3D 
model is detected and the first axis of the model is computed. The other principal axes 
are computed by calculating the variance of the panoramic views. First, on a chosen 
cylinder the surface of the model is projected and aligned with a principal axis in space. 
A panoramic view representation is created by unfolding the 3D model over a 2D 
image plane. The 3D model’s plane of symmetry is defined by the axis of the 
projection cylinder and the axis of maximum reflective symmetry. The 3D model’s 
centroid is used to achieve translation normalization, and scale normalization is 
followed so that the 3D model exactly fits inside the unit sphere. A rotation of the 
symmetry plane takes place by orientating the surface so that it includes the Z axis, and 
the plane of symmetry is detected in the panoramic image where the symmetry score 
graph is extracted, as shown in Figure 2. 
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Figure 2. Panoramic images representing symmetric planes and associated symmetry score graphs [10]. 

Experimental results show that this method is accurate and with good performance 
but cannot handle complex 3D objects because symmetry detection either focuses on 
small fragments or bigger abstract areas of the 3D objects. In IEC design systems that 
use simple 3D models the reflective symmetry algorithm should achieve robustness. 
But systems with more complex models could produce inefficient alignments when 
using this method. 

2.4. Non-rigid Shapes 

Papadakis [2] describes the use of One-Class Support Vector Machines (OCSVM) to 
increase the consistency of translation and scale normalization under non-rigid shapes. 

In translation normalization, the centre of mass of a 3D model is usually computed 
and located to the coordinates’ origin. However, this technique is not effective in 3D 
objects that are articulated or have extruding parts and outliers (Figure 3). 

To alleviate this problem, Papadakis [2] considers the surface of a 3D object as a 
collection of 3D points and use OCSVM to compute the decision surface and find the 
volume constrained within the boundaries of the decision surface. The centre of the 
object is the centroid of the distribution of the volume. The algorithm is identifying 
parts that are extremely small regarding the whole shape and that could derive negative 
results during the computation of the translation and scale.  

In scale normalization, fitting a 3D model with these characteristics inside a unit 
cube is not effective due to the possible presence of outlying parts (Figure 3). 

 

Figure 3. Left: Translation normalization using the centroid of the surface of the object, example in an object 
with and without extruding parts. Right: Scale normalization to the unit cube [2]. 



To normalize the scale, they calculate the average distance of the distribution of the 
object from its centre and scale the object in order this distance to be unit.  

In the presence of non-rigid transformations, a method similar to the one described 
by Sfikas et al. [10], that depends on the symmetrical properties of the objects, 
becomes less descriptive. Many state-of-the-art approaches cannot accommodate 3D 
objects with articulations or extrusions, because the assumption that the centre of a 3D 
object is the centre of mass of the surface is not robust. The OCSVM methodology 
alleviates this problem and can probably be applied to IEC design systems that handle 
complex 3D objects with extruding and outlying parts, performing more consistent 
translation and scale normalization. 

2.5. Planar-Reflective Symmetry Transform 

Podolak et al. [11] describe a planar reflective symmetry transform (PRST) for 3D 
models that captures a continuous measure of the reflectional symmetry of a shape 
respectfully to all potential planes. This transform is computed by a Monte Carlo 
sampling algorithm which is constant under transformations, and determines the centre 
of symmetry as well as the principal symmetry axes which are essential for aligning 
models in a canonical system. 

As shown in Figure 4, the darkest point (which indicates the greatest symmetry) is 
the centre of the object, and the main lines are the main axes. Alignments are usually 
computed with PCA using the centre of mass as the origin and the principal axes as the 
orientation. However, the results are not always correct (Figure 4). 

Figure 4. The PRST captures the degree of symmetry of arbitrary shapes with respect to reflection through 
all planes in space. The centre of mass and PCA axes are drawn in dotted green (they move depending on the 
presence of handles). The centre of symmetry and principal symmetry axes using PRST are shown in solid 
red (they remain constant under transformation of the shape) [11]. 

 
Podolak et al. [11] produce better alignments using PRST and introducing the 

centre of symmetry (COS) as well as the principal symmetry axes (PSA). The plane 
with maximal symmetry is the first PSA, the maximal symmetry perpendicular to the 
first is the second PSA and the plane which is perpendicular to both first and second 
axis is the third PSA. Finally, the intersection of those three planes is the centre of 
symmetry. This algorithm should achieve efficient normalization when applied in IEC 
design systems as the centre of symmetry and principal symmetry axes remain constant 
under transformation of shapes. 



3. Conclusions 

The main driver for PN research is the need to search databases of CAD geometry (e.g. 
parts libraries). Conveniently, it is also applicable to shape-comparison applications in 
the IEC design system being developed. Here, PN is essential to align pre-set guiding 
geometry with evolving forms generated by the combination of GA and CAD modeller. 
Five suitable PN candidates for IEC design system research were presented and 
compared. Since the IEC design system generates quite abstract and complex 3D 
models, the PCA-based PN method is recommended. This should be combined with a 
robust method similar to OCSVM to find the best ‘centre’ of objects for translation. 

3.1. Related and Future Work 

Basic PN functionality has been achieved using the CAD functions available through 
an Application Programming Interface (centre of mass, minimized bounding box, and 
principle axes). It is likely that this approach is not sufficiently accurate for the 
application, hence the parallel research into more sophisticated PN techniques. The 
next step is to develop shape-comparison algorithms, which will be used to allocate 
objective functions to evolving shapes – these will be combined with user scores to 
direct the evolutionary process. The results of this work will be presented at the 
conference for interest, and for future benchmarking purposes. 
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