4,678 research outputs found

    Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor.

    Get PDF
    Several diseases have threatened tomato production in Florida, resulting in large losses, especially in fresh markets. In this study, a high-resolution portable spectral sensor was used to investigate the feasibility of detecting multi-diseased tomato leaves in different stages, including early or asymptomatic stages. One healthy leaf and three diseased tomato leaves (late blight, target and bacterial spots) were defined into four stages (healthy, asymptomatic, early stage and late stage) and collected from a field. Fifty-seven spectral vegetation indices (SVIs) were calculated in accordance with methods published in previous studies and established in this study. Principal component analysis was conducted to evaluate SVIs. Results revealed six principal components (PCs) whose eigenvalues were greater than 1. SVIs with weight coefficients ranking from 1 to 30 in each selected PC were applied to a K-nearest neighbour for classification. Amongst the examined leaves, the healthy ones had the highest accuracy (100%) and the lowest error rate (0) because of their uniform tissues. Late stage leaves could be distinguished more easily than the two other disease categories caused by similar symptoms on the multi-diseased leaves. Further work may incorporate the proposed technique into an image system that can be operated to monitor multi-diseased tomato plants in fields

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    A New Approach for the Analysis of Hyperspectral Data: Theory and Sensitivity Analysis of the Moment Distance Method

    Get PDF
    We present the Moment Distance (MD) method to advance spectral analysis in vegetation studies. It was developed to take advantage of the information latent in the shape of the reflectance curve that is not available from other spectral indices. Being mathematically simple but powerful, the approach does not require any curve transformation, such as smoothing or derivatives. Here, we show the formulation of the MD index (MDI) and demonstrate its potential for vegetation studies. We simulated leaf and canopy reflectance samples derived from the combination of the PROSPECT and SAIL models to understand the sensitivity of the new method to leaf and canopy parameters. We observed reasonable agreements between vegetation parameters and the MDI when using the 600 to 750 nm wavelength range, and we saw stronger agreements in the narrow red-edge region 720 to 730 nm. Results suggest that the MDI is more sensitive to the Chl content, especially at higher amounts (Chl \u3e 40 mg/cm2) compared to other indices such as NDVI, EVI, and WDRVI. Finally, we found an indirect relationship of MDI against the changes of the magnitude of the reflectance around the red trough with differing values of LAI

    Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    Get PDF
    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels

    Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content

    Get PDF
    ESA’s upcoming satellite Sentinel-2 will provide Earth images of high spatial, spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study addresses the importance of these new bands for the retrieval and monitoring of two important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) and the new red-edge B5 (705 nm) band. The method has been applied to simulated Sentinel-2 data. The resulting green LAI map was validated against field data of various crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, the recently developed “Normalized Area Over reflectance Curve” (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, thereby including the new Sentinel-2 bands in the red-edge region. We found that these new bands significantly improve the accuracy of Ch estimation. Both methods emphasize the importance of red-edge bands for operational estimation of biophysical parameters from Sentinel-2

    Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area

    Get PDF
    In this paper we compare two different methodologies for Fractional Vegetation Cover (FVC) retrieval from Compact High Resolution Imaging Spectrometer (CHRIS) data onboard the European Space Agency (ESA) Project for On-Board Autonomy (PROBA) platform. The first methodology is based on empirical approaches using Vegetation Indices (VIs), in particular the Normalized Difference Vegetation Index (NDVI) and the Variable Atmospherically Resistant Index (VARI). The second methodology is based on the Spectral Mixture Analysis (SMA) technique, in which a Linear Spectral Unmixing model has been considered in order to retrieve the abundance of the different constituent materials within pixel elements, called Endmembers (EMs). These EMs were extracted from the image using three different methods: i) manual extraction using a land cover map, ii) Pixel Purity Index (PPI) and iii) Automated Morphological Endmember Extraction (AMEE). The different methodologies for FVC retrieval were applied to one PROBA/CHRIS image acquired over an agricultural area in Spain, and they were calibrated and tested against in situ measurements of FVC estimated with hemispherical photographs. The results obtained from VIs show that VARI correlates better with FVC than NDVI does, with standard errors of estimation of less than 8% in the case of VARI and less than 13% in the case of NDVI when calibrated using the in situ measurements. The results obtained from the SMA-LSU technique show Root Mean Square Errors (RMSE) below 12% when EMs are extracted from the AMEE method and around 9% when extracted from the PPI method. A RMSE value below 9% was obtained for manual extraction of EMs using a land cover use map

    Modelling Net Primary Productivity and Above-Ground Biomass for Mapping of Spatial Biomass Distribution in Kazakhstan

    Get PDF
    Biomass is an important ecological variable for understanding the responses of vegetation to the currently observed global change. The impact of changes in vegetation biomass on the global ecosystem is also of high relevance. The vegetation in the arid and semi-arid environments of Kazakhstan is expected to be affected particularly strongly by future climate change. Therefore, it is of great interest to observe large-scale vegetation dynamics and biomass distribution in Kazakhstan. At the beginning of this dissertation, previous research activities and remote-sensing-based methods for biomass estimation in semi-arid regions have been comprehensively reviewed for the first time. The review revealed that the biggest challenge is the transferability of methods in time and space. Empirical approaches, which are predominantly applied, proved to be hardly transferable. Remote-sensing-based Net Primary Productivity (NPP) models, on the other hand, allow for regional to continental modelling of NPP time-series and are potentially transferable to new regions. This thesis thus deals with modelling and analysis of NPP time-series for Kazakhstan and presents a methodological concept for derivation of above-ground biomass estimates based on NPP data. For validation of the results, biomass field data were collected in three study areas in Kazakhstan. For the selection of an appropriate model, two remote-sensing-based NPP models were applied to a study area in Central Kazakhstan. The first is the Regional Biomass Model (RBM). The second is the Biosphere Energy Transfer Hydrology Model (BETHY/DLR). Both models were applied to Kazakhstan for the first time in this dissertation. Differences in the modelling approaches, intermediate products, and calculated NPP, as well as their temporal characteristics were analysed and discussed. The model BETHY/DLR was then used to calculate NPP for Kazakhstan for 2003–2011. The results were analysed regarding spatial, intra-annual, and inter-annual variations. In addition, the correlation between NPP and meteorological parameters was analysed. In the last part of this dissertation, a methodological concept for derivation of above-ground biomass estimates of natural vegetation from NPP time-series has been developed. The concept is based on the NPP time-series, information about fractional cover of herbaceous and woody vegetation, and plants’ relative growth rates (RGRs). It has been the first time that these parameters are combined for biomass estimation in semi-arid regions. The developed approach was finally applied to estimate biomass for the three study areas in Kazakhstan and validated with field data. The results of this dissertation provide information about the vegetation dynamics in Kazakhstan for 2003–2011. This is valuable information for a sustainable land management and the identification of regions that are potentially affected by a changing climate. Furthermore, a methodological concept for the estimation of biomass based on NPP time-series is presented. The developed method is potentially transferable. Providing that the required information regarding vegetation distribution and fractional cover is available, the method will allow for repeated and large-area biomass estimation for natural vegetation in Kazakhstan and other semi-arid environments

    Detecting Plant Functional Traits of Grassland Vegetation Using Spectral Reflectance Measurements

    Get PDF
    Changes in climate and an intensified agricultural use threaten grassland ecosystems in many places. To allow an efficient conservation of grassland vegetation communities, ecologists monitor variations in their plant functional traits (FTs). FTs are morphological, physiological or phenological properties of plants, which are measured at the individual plant level. However, manual measurements of FTs are costly as well as time-consuming and often require destructive sampling techniques. Grassland ecologists and agronomists are thus seeking for novel methods to monitor and map grassland FTs. Remote sensing (RS) may provide a solution to the mentioned problems and allows to collect spatially contiguous and multitemporal information on FTs. To test the performance of RS systems for detecting FTs, the Rengen Grassland Experiment in Germany was selected as study site. Due to more than 70 years of constant fertilization along a gradient from limed only to fully fertilized (treated with lime, nitrogen, phosphorus and potassium), five different plant communities have developed, which differ in their FTs. The spectral reflectance of these plant communities was collected for a period of three years using an ASD Field Spec 3 (FS3) spectroradiometer. Furthermore, 23 different FTs were measured using manual sampling methods. Firstly, it was investigated if and how the five grassland communities can be distinguished using 15 different remotely sensed vegetation indices (VIs). It was found that the performance of single VIs for differentiating the studied plant canopies fluctuates over time. Consequently, it was not possible to distinguish the communities with high accuracy throughout all phases of their phenological development using one VI. To solve this problem, a multi-VI approach using the random forests algorithm is proposed, which automatically selects the ideal sets of VIs for distinguishing grasslands. This technique allows a stable and accurate classification of grassland communities for the entire growing season. Secondly, it was studied how well the FTs of the different grassland communities can be estimated based on FS3 data. Using partial least squares regression (PLSR) it was possible to create one single model for estimating one FT of all studied grassland canopies at all phenological stages based on the spectral reflectance. Among the 23 investigated FTs, nine were modelled with R squared in validation (R2val) larger than 0.6, four with R2val larger than 0.4 and 10 with R2val lower than 0.4. It is concluded that RS allows a cost-efficient, time-saving and non-destructive monitoring of many FTs for a range of plant communities. Thirdly, the potential of different RS systems for detecting FTs was assessed. Based on spectral reflectance data recorded with a full-range FS 3, the bands of two hyperspectral and three multispectral RS sensors were simulated. Using PLSR and hyperspectral RS, 13 FTs were modeled with R2val larger than 0.4 using FS 3, 11 using EnMAP and ten using ASD HandHeld 2 data. Based on multispectral information, R2val larger than 0.4 were reached with Sentinel-2 for nine, Landsat 7 for four and RapidEye for none of the 23 FTs. These results show that hyperspectral RS systems outperform multispectral systems in detecting the FTs of grassland vegetation. It is concluded that hyperspectral RS systems have the potential to collect spatio-temporal information on grassland FTs. Such information may support grassland scientists in adapting the management to changes in climate and land-use intensity and to secure a sustainable agricultural production

    Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery

    Get PDF
    Spatial information on crop nutrient status is central for monitoring vegetation health, plant productivity and managing nutrient optimization programs in agricultural systems. This study maps the spatial variability of leaf chlorophyll content within felds with differing quantities of nitrogen fertilizer application, using multispectral Landsat-8 OLI data (30 m). Leaf chlorophyll content and leaf area index measurements were collected at 15 wheat (Triticum aestivum) sites and 13 corn (Zea mays) sites approximately every 10 days during the growing season between May and September 2013 near Stratford, Ontario. Of the 28 sites, 9 sites were within controlled areas of zero nitrogen fertilizer application. Hyperspectral leaf refectance measurements were also sampled using an Analytical Spectral Devices FieldSpecPro spectroradiometer (400–2500 nm). A two-step inversion process was developed to estimate leaf chlorophyll content from Landsat-8 satellite data at the subfeld scale, using linked canopy and leaf radiative transfer models. Firstly, at the leaf-level, leaf chlorophyll content was modelled using the PROSPECT model, using both hyperspectral and simulated mulitspectral Landsat-8 bands from the same leaf sample. Hyperspectral and multispectral validation results were both strong (R2=0.79, RMSE=13.62 μg/cm2 and R2=0.81, RMSE=9.45 μg/cm2, respectively). Secondly, leaf chlorophyll content was estimated from Landsat-8 satellite imagery for 7 dates within the growing season, using PROSPECT linked to the 4-Scale canopy model. The Landsat-8 derived estimates of leaf chlorophyll content demonstrated a strong relationship with measured leaf chlorophyll values (R2=0.64, RMSE=16.18 μg/cm2), and compared favourably to correlations between leaf chlorophyll and the best performing tested spectral vegetation index (Green Normalised Diference Vegetation Index, GNDVI; R2=0.59). This research provides an operational basis for modelling within-feld variations in leaf chlorophyll content as an indicator of plant nitrogen stress, using a physically-based modelling approach, and opens up the possibility of exploiting a wealth of multispectral satellite data and UAV-mounted multispectral imaging systems
    corecore