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Abstract 

Grasslands cover more than 30% of the earth’s terrestrial surface, host a diverse flora and fauna 

and provide the habitat for many endemic animal- and plant-species. However, changes in 

climate and an intensified agricultural use threaten grassland ecosystems in many places. To 

allow an effective conservation of grassland vegetation communities, ecologists monitor 

variations in their plant functional traits (FTs). FTs are morphological, physiological or 

phenological properties of plants, which are measured at the individual plant level. Using FTs 

it is possible to evaluate the responses of vegetation communities to changes in the environment 

(e.g. to climate conditions) and to management actions, such as nutrient supply, cutting 

frequency and grazing intensity. Thereby, FTs enable scientists to assess variations in grassland 

status, independent of the taxonomic identity of the occurring plant species.   

However, manual measurements of FTs are costly as well as time-consuming and often require 

destructive sampling techniques. Grassland ecologists and agronomists are thus seeking for 

novel methods to efficiently monitor and map changes in grassland FTs. Previous studies 

indicate that remote sensing (RS) may provide a universal solution to the mentioned problems 

and further allows to collect spatially contiguous and multitemporal information on functionally 

important plant properties.  

To test the performance of RS systems for detecting FTs, the Rengen Grassland Experiment in 

Germany was selected as study site. Due to more than 70 years of constant fertilization along a 

gradient from limed only to fully fertilized (treated with lime, nitrogen, phosphorus and 

potassium), characteristic plant communities have developed, which differ considerably in their 

FTs. In this experimental setting, the spectral reflectance of five different plant communities 

was collected over a period of three years using an Analytical Spectral Devices Inc. FieldSpec 

3 (FS 3) spectroradiometer. This instrument provides information on the portion of incident 

light reflected from a surface in 2150 sections (i.e. spectral bands) in the visible and infrared 

regions of the electromagnetic spectrum. Within one day distance in time to the acquisition of 

RS data, 23 different FTs were measured using manual methods (i.e. those currently used by 

ecologists).  

The aims of this work were to (1) develop a method to reliably distinguish grassland vegetation 

communities using spectral reflectance measurements, (2) estimate the FTs in these 

communities based on canopy reflectance and (3) evaluate the potential of RS sensors featuring 

different spectral resolutions (i.e. numbers and widths of spectral bands) and ranges (i.e. regions 

of the electromagnetic spectrum measured) for detecting the FTs of grassland.  
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In the first step, it was investigated if and how the five grassland communities can be 

distinguished using 15 different remotely sensed vegetation indices (VIs).  It was found that the 

performance of single VIs for differentiating the studied plant canopies fluctuated considerably 

over time. Consequently, it was not possible to distinguish the communities with a high 

accuracy throughout all phases of their phenological development using solely one VI. 

However, at those points in time when VIs sensitive to one biophysical variable (e.g. to 

biomass) featured only low classification accuracies, VIs sensitive to other variables (e.g. to 

plant water content) still allowed a successful classification. Although these results indicate that 

a differentiation of grassland communities using single VIs is possible, the identification of the 

most suitable VIs at a specific phenological state requires extensive previous analyses. This 

complexity is further enhanced as the performances of VIs for grassland classification 

significantly vary between different growths and years. To solve this problem, a multi-VI 

approach using the random forests algorithm is proposed, which automatically selects the ideal 

sets of VIs for distinguishing grasslands. This approach enables a stable and accurate 

classification of grassland communities throughout the entire growing season, irrespective of 

the plant phenological state.  

In the second step, it was studied how well the FTs of the different grassland communities can 

be estimated based on RS data. Using partial least squares regression (PLSR) it was possible to 

create one single model for estimating one FT of all studied grassland canopies and at all 

phenological stages based on its spectral reflectance. Among the 23 investigated FTs, nine were 

modelled with high accuracy (R² validation, R²val ≥ 0.6), including plant height, fraction of 

photosynthetically active radiation absorbed, carbon-to-nitrogen ratio, tiller fresh matter, 

nitrogen content, compressed sward height, SPAD-value of the leaves, neutral detergent fiber 

content of the plant and leaf area. Models for plant fresh matter, leaf fresh matter, leaf dry matter 

and leaf dry matter content reached moderate accuracies (0.6 > R²val ≥ 0.4). Only low accuracies 

(R²val < 0.4) were determined for the models relating the spectral reflectance to plant dry matter, 

tiller dry matter, plant dry matter content, tiller dry matter content, plant-, tiller- and leaf water 

content, carbon content, leaf-stem-ratio and specific leaf area. It is thus concluded that field 

spectrometry allows to collect information on many (13 of 23) tested FTs of different grassland 

communities over entire growing seasons with moderate to high accuracy. This method is thus 

of large importance for agricultural and ecological research because it makes a cost-efficient, 

time-saving and non-destructive monitoring of FTs possible.  
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Within the third part of this study, the potential of different RS systems for detecting FTs was 

assessed. Based on spectral reflectance data recorded with a full-range FS 3, the bands of the 

half-range field spectroradiometer ASD HandHeld 2 (HH2, 785 bands), the hyperspectral 

satellite sensor EnMAP (EnM, 242 bands) and three multispectral satellite sensors, including 

Sentinel-2 (S-2, 13 bands), Landsat 7 (L 7, seven bands) and RapidEye (RE, five bands), were 

simulated. Thirteen FTs were successfully modeled (R²val > 0.4) using FS 3, 11 using EnM and 

ten using HH 2 data. Based on multispectral information, R²val > 0.4 were reached with S-2 for 

nine, L 7 for four and RE data for none of the 23 FTs. These results show that hyperspectral RS 

systems enable scientists to create models featuring higher accuracies for detecting FTs than 

multispectral systems. We infer that that a broad spectral range of a sensor is an important factor 

for producing accurate estimates of FTs. A high number of spectral bands may further allow to 

improve model performances. 

It is concluded that hyperspectral RS systems provide the potential to collect spatio-temporal 

information on grassland FTs. Such information may support grassland scientists in adapting 

the management strategies to changes in climate and land-use intensity and to secure a 

sustainable cultivation of grassland ecosystems.  
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Zusammenfassung  

Grünland bedeckt mehr als 30% der Landoberfläche der Erde, beheimatet eine artenreiche Flora 

und Fauna und bildet sie das Habitat vieler endemischer Tier- und Pflanzenarten. Jedoch sind 

diese Ökosysteme durch eine Intensivierung der Landwirtschaft sowie durch den Klimawandel 

vielerorts bedroht. Um eine nachhaltige Entwicklung der Vegetationsgesellschaften von 

Grünlandökosystemen zu ermöglichen, bewerten Ökologen Veränderungen der funktionalen 

Merkmale der anzutreffenden Vegetation. Funktionale Merkmale sind morphologische, 

physiologische oder phänologische Pflanzeneigenschaften, die am Individuum (d.h. an einer 

einzelnen Pflanze) gemessen werden. Mit Hilfe dieser Merkmale ist es möglich, die Reaktion 

von Pflanzengesellschaften auf Veränderungen der Umweltbedingungen, insbesondere der 

Bodeneigenschaften und des Klimas, zu quantifizieren. Anhand dieses Ansatzes können daher, 

auch ohne vorherige taxonomische Zuordnung der Arten, Zustandsänderungen der 

Pflanzenbestände erkannt und Entscheidungen zu Düngung, Mahd und Beweidung getroffen 

werden. 

Die manuelle Messung von Funktionalen Merkmalen ist jedoch kostspielig, denn sie erfordert 

einen hohen Arbeitsaufwand sowie eine destruktive Probenentnahme. Daher suchen 

Agronomen und Ökologen nach neuen Verfahren, um Veränderungen der funktionalen 

Merkmale von Grünland überwachen und kartieren zu können. Frühere Untersuchungen deuten 

darauf hin, dass die fernerkundliche Detektion funktionaler Merkmale von Grünlandbeständen 

deren manuelle Erfassung ergänzen oder sogar ersetzen kann. Daher stellt die Fernerkundung 

eine mögliche Lösung der zuvor genannten Probleme dar und kann zudem eine räumliche und 

zeitlich hoch aufgelöste Erfassung von funktionalen Merkmalen ermöglichen.   

Um das Potential der Fernerkundung für eine solche Detektion funktionaler Merkmalen zu 

evaluieren, wurde das Rengen Grasland Experiment als Versuchsstandort gewählt. Durch die 

mehr als 70 Jahre andauernden Unterschiede in der Düngung entlang eines Gradienten von 

ausschließlicher Kalkung bis hin zur Volldüngung (Zugabe von Kalk, Stickstoff, Phosphor und 

Kalium), entwickelten sich charakteristische Pflanzengesellschaften, die sich erheblich in der 

Zusammensetzung ihrer funktionalen Merkmale unterscheiden. In diesem Experiment wurde 

die spektrale Reflexion von fünf verschiedenen Pflanzengesellschaften mit einem Analytical 

Spectral Devices Inc. FieldSpec 3 (FS 3) Spektroradiometer über einen Zeitraum von drei 

Jahren gemessen. Dieses Instrument ermittelt den Anteil des von einer Oberfläche reflektierten 

einfallenden Lichts in 2150 einzelnen Abschnitten (d.h. spektralen Bändern) im sichtbaren 

sowie im infraroten Bereich des elektromagnetischen Spektrums. Innerhalb von maximal einem 
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Tag Abstand zu den Spektralmessungen wurden 23 verschiedene numerische funktionale 

Merkmale mit Hilfe manueller (d.h. der derzeit von Ökologen genutzter) Methoden gemessen.  

Die Ziele der vorliegenden Untersuchung waren (1) eine Methode zu entwickeln, mit der 

verschiedene Intensitätsstufen bewirtschafteter Grünlandbestände anhand ihrer spektralen 

Reflexion unterschieden werden können, (2) die funktionalen Merkmale dieser 

Grünlandbestände mit hyperspektralen Reflexionsmessungen zu ermitteln und (3) das Potential 

von Fernerkundungssensoren mit verschiedenen spektralen Auflösungen (d.h. verschiedenen 

Anzahlen und Breiten der spektralen Bänder) sowie gemessenen Spektralbereichen für eine 

Detektion der funktionalen Merkmale zu evaluieren.  

Dazu untersuchten wir zunächst, wie die Pflanzengesellschaften des Rengen Grasland 

Experiments mit 15 verschiedenen fernerkundlichen Vegetationsindizes (VIs) differenziert 

werden können. Die Güte der einzelnen VIs zur Unterscheidung der Pflanzenbestände variierte 

dabei deutlich über die Zeit. Daher war es mit keinem einzelnen VI möglich, die 

Pflanzengesellschaften während allen phänologischen Stadien sicher zu differenzieren. Sofern 

aber ein VI, der auf Veränderungen bestimmter Pflanzeneigenschaften (z.B. der Biomasse) 

reagiert, schlechte Ergebnisse lieferte, ermöglichten solche VIs, die auf Veränderungen anderer 

Pflanzeneigenschaften (z.B. den Wassergehalt der Pflanze) reagieren, weiterhin eine sichere 

Unterscheidung. Dies zeigt, dass eine Differenzierung der verschiedenen 

Grünlandgesellschaften mit sorgfältig gewählten einzelnen VIs möglich ist. Allerdings 

erfordert die Selektion geeigneter VIs für eine Klassifikation zu bestimmten phänologischen 

Stadien eine umfangreiche vorhergehende Untersuchung. Die Schwierigkeit dabei besteht 

darin, dass die Eignung von VIs für einen solchen Zweck sich deutlich zwischen verschiedenen 

Aufwüchsen sowie Jahren unterscheiden kann. Daher wurde mit Hilfe des Random-Forests-

Algorithmus ein Multi-VI-Ansatz entwickelt, mit dem die für die Differenzierung bestimmter 

Grünlandbestände bestgeeigneten VIs für die entsprechenden phänologischen Stadien 

automatisch selektiert werden. Dadurch wird eine akkurate und über die gesamte 

Wachstumssaison (d.h. unabhängig vom phänologischen Status der Vegetation) stabile 

Unterscheidung von Pflanzengesellschaften ermöglicht.  

Im zweiten Schritt untersuchten wir, wie die numerischen funktionalen Merkmale der 

verschiedenen Grünlandbestände auf Basis von Fernerkundungsdaten ermittelt werden können. 

Mit Hilfe von Partial Least Squares Regression (PLSR) war es möglich, jeweils ein Modell zu 

entwickeln, das die Detektion eines funktionales Merkmals für alle untersuchten 

Pflanzengesellschaften zu allen phänologischen Stadien über Veränderungen in der 
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gemessenen spektralen Reflexion erlaubt. Unter den 23 untersuchten funktionalen Merkmalen 

wurden neun mit hoher Genauigkeit (R² validation, R²val ≥ 0.6) ermittelt, inklusive der 

Pflanzenhöhe, des Anteils der photosynthetisch aktiven absorbierten Strahlung, des 

Kohlenstoff-Stickstoff Verhältnisses, der Frischmasse der Stängel, des Stickstoff-Gehaltes der 

Pflanze, der komprimierten Bestandshöhe, des SPAD-Werts der Blätter, des Gehalts an 

neutraler Detergentienfaser der Pflanze sowie der Blattfläche. Die Modelle für die Detektion 

der Frischmasse der Pflanzen sowie der Frischmasse, der Trockenmasse und des 

Trockenmassegehalts der Blätter erreichten eine moderate Genauigkeit (0.6 > R²val ≥ 0.4). 

Niedrige Genauigkeiten (R²val < 0.4) wurden von den Modellen für die Ermittlung der 

Trockenmasse der Pflanze und des Stängels, des Trockenmassegehalts der Pflanze und des 

Stängels, des Wassergehalts von Pflanze, Stängel und Blättern, des Kohlenstoffgehalts der 

Pflanze, des Blatt-Stängel Verhältnisses sowie der spezifischen Blattfläche erreicht. Diese 

Ergebnisse lassen den Schluss zu, dass mit Hilfe der Feldspektrometrie die Messung vieler (13 

von 23) funktionaler Merkmale verschiedener Grünlandgesellschaften über komplette 

Vegetationszyklen mit moderaten bis hohen Genauigkeiten möglich ist. Somit ist diese 

kostengünstige, zeitsparende und nicht-destruktive Methode für die Beantwortung 

agrarwissenschaftlicher und ökologischer Fragestellungen von großem Wert. 

Im dritten Teil der Arbeit wurde das Potenzial verschiedener Fernerkundungssensoren für die 

Detektion von funktionalen Merkmalen untersucht. Auf Basis von Reflexionsdaten, die mit 

dem FS 3 aufgenommen wurden, wurden die Bänder eines ASD Handheld 2 

Spektroradiometers (HH 2, 725 Bänder), eines hyperspektralen Satellitensensors (EnMAP; 

EnM, 242 Bänder) sowie von drei multispektralen Satellitensensoren, inklusive Sentinel-2 (S-

2, 13 Bänder), Landsat 7 (L 7, acht Bänder) und RapidEye (RE, fünf Bänder) simuliert. Es 

wurden 13 funktionale Merkmale erfolgreich (R²val > 0.4) mit FS 3 Daten, 11 mit EnM Daten 

und zehn mit HH 2 Daten ermittelt. Mit multispektralen Daten hingegen, wurden nur neun 

funktionale Merkmale mit S-2, vier mit L 7 und keins mit RE erfolgreich erfasst. Für die 

Detektion der funktionalen Merkmale erreichten die hyperspektralen Sensoren folglich höhere 

Genauigkeiten als die multispektralen Sensoren. Zudem wird darauf geschlossen, dass die 

Breite des spektralen Messbereichs eines Sensors für die Präzision der Ermittlung funktionaler 

Merkmale von großer Bedeutung ist. Eine größere Anzahl an Spektralbändern ermöglicht eine 

zusätzliche Erhöhung der Genauigkeit der Modelle.  

Diese Ergebnisse zeigen, dass hyperspektrale Fernerkundungssysteme das Potential haben, 

Ökologen flächendeckende Informationen über die funktionalen Merkmale von 
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Grünlandbeständen mit hoher zeitlicher Auflösung zu liefern. Solche Informationen können 

dazu beitragen, die Bewirtschaftung von Grünlandökosystemen an Veränderungen der 

klimatischen Bedingungen und Nutzungsintensitäten anzupassen sowie deren nachhaltige 

Kultivierung sicherzustellen.  
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1 Introduction 

Grasslands cover more than 30% of the earth’s terrestrial surface (Blair et al., 2014). 

Consequently, they represent an important source of forage for livestock  and contribute to the 

livelihoods of more than 800 million people worldwide (FAO, 2008; Psomas et al., 2011). In 

Central Europe, grasslands are further a major source of biodiversity and supply many 

important ecosystem services (Psomas et al., 2011). However, climate change and heavy 

exploitation threaten these ecosystems as well as the survival of many endemic species (EEA, 

2001; Kemp et al., 2013; Theurillat and Guisan, 2001). Thus, several grasslands are now among 

the most threatened ecosystems (Blair et al., 2014). In order to conserve grassland ecosystems 

and to maintain their productivity and health, grassland management needs to be adjusted in 

accordance with changes in climate and intensities of use (Al Haj Khaled et al., 2005). 

Therefore, monitoring and mapping of variations in grassland properties have gained in 

scientific importance.  

In the past decades, plant functional traits (FTs) have been identified as the most promising 

approach for assessing changes in the status of vegetation communities, from species-rich to 

species-poor, from intensive to extensive and across a wide range of agro-climatic regions. FTs 

are measurable morphological, physiological or phenological properties of plants, which 

determine how plants respond to or impact on the local environment (Violle et al., 2007). FTs 

are measured at plant level and are indicators of plant fitness within an ecosystem through their 

effects on growth, reproduction and survival (Schellberg et al., 1999; Weiher et al., 1999).  

In Central Europe, various grassland communities exist that differ considerably in their floristic 

composition. Within these plant communities, plant species predominate that feature 

characteristic morphological, physiological and phenological properties, i.e. FTs. Using FTs it 

is possible to assess the functioning of ecosystems and to monitor their quality, productivity 

and health. Consequently, numerous studies have used this approach to assess the response of 

grassland communities to changes is land management (Cingolani et al., 2005; Craine et al., 

2002; Lavorel et al., 2011). Thereby, FTs were mainly measured using costly and time-

consuming field work as well as destructive sampling techniques (e.g. for estimating N-, C-, 

NDF- and dry matter content), for example according to the protocols given in Cornelissen et 

al., (2003). Even more men-power and financial input are required for deriving regional 

estimates of FTs or for monitoring their development over longer intervals in time. Thus, 

grassland scientists are looking for a cost-efficient, time-saving and non-destructive technique 
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in order to monitor responses of FTs to changes in management and climate on the local and 

regional scale.  

Remote sensing (RS) has been identified as an effective solution for classifying vegetation 

cover and for describing the seasonal and interannual development of vegetation properties 

(Aragón and Oesterheld, 2008). RS is generally defined as “the practice of deriving information 

about the earth’s land and water surfaces acquired from an overhead perspective, using 

electromagnetic radiation in one or more regions of the electromagnetic spectrum […]” 

(Campbell and Wynne, 2011, p. 6). Advantages of RS for vegetation studies include that it is a 

non-destructive technique (Jones and Vaughan, 2012) and that it provides the potential for 

estimating vegetation properties (such as FTs) in the spatial domain (Aragón and Oesterheld, 

2008; He et al., 2006). Furthermore, RS data can easily be recorded iteratively over time (Loarie 

et al., 2007). Several authors have identified that FTs affect the spectral reflectance properties 

of leaves and entire plant canopies (Svoray et al., 2013; Ustin, 2013). This indicates that a RS-

based detection of many FTs may be possible. Thus, RS may provide a universal solution 

allowing ecologists to collect data on FTs on demand for wide areas of the earth’s surface.  

 

1.1 From functional ecology to plant functional traits 

Functional ecology investigates which roles (i.e. functions) plant species play within an 

ecosystem. It thereby pays particular attention to the morphological, physiological and 

phenological characteristics of plants, which determine their performance and survival. It thus 

provides insights into the true processes underlying ecosystem functioning and development. 

Within the 20th century, functional ecology has substantially gained in scientific importance 

and provides valuable information for related scientific disciplines such as agronomy and 

geography. Using functional approaches, numerous studies have investigated the response of 

ecosystems to variations in land-use, land-management and climate (Díaz et al., 2007a, 2007b; 

Lavorel et al., 2011; Pontes et al., 2010). 

Among the most important concepts in functional ecology is the universal adaptive strategy 

theory, which was developed by John Philip Grime, (1977). He proposed to classify plant 

species according to the strategy they pursue to secure their existence within ecosystems. Using 

this method, a direct comparison of plant communities is possible, irrespective of their species 

composition. Thus, this approach can be used on a global, regional and local scale to assess 

ecosystem properties. Of central importance in this theory are three different strategy types, 

which feature also significant differences in their FTs. Competitive (C) strategists predominate 
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in nutrient-rich habitats and tend to feature an early start of growth, a rapid buildup of biomass 

and leaf area as well as a short leaf lifespan (Craine et al., 2001, 2005; Lavorel et al., 1997; 

Pontes et al., 2010). Furthermore, a high specific leaf area, forage value and leaf chlorophyll 

content are common properties of C strategists (Daughtry et al., 2000; Hejcman et al., 2007; 

Lavorel et al., 2007; Poorter and De Jong, 1999; Wright et al., 2005). In contrast, nutrient-

limited environments host mainly species of the conservative strategy (S) type (Craine et al., 

2002; Liancourt et al., 2005). S strategists feature a low plant height, specific leaf area, leaf 

nutrient concentration (particularly N) and nutritive value (Bryant et al., 1983; Cebrian et al., 

1998; Coley et al., 1985; Díaz et al., 2004). On the other hand, characteristic for plants of this 

strategy type are a long leaf lifespan, a high tissue density and a later start of plant growth 

(Lavorel et al., 1997, 2007; Pontes et al., 2010). Plants belonging to the third, i.e. the ruderal 

(R), strategy type prevail in habitats with severely disturbed but potentially productive 

conditions (e.g. overgrazed sites). Ruderal strategists quickly complete their life cycles and 

produce a large number of seeds.  

A related idea used for connecting the functional characteristics of plants to the prevailing site 

conditions (especially to climate and soil properties) is the concept of plant functional types 

(PFTs). In this approach, plants featuring similar morphological, physiological and 

phenological characteristics (i.e. FTs) can be assigned to a common class, i.e. a PFT (Lavorel 

et al., 2007). As PFTs can be defined independently of the species of a plant, it is possible to 

describe plant canopies, which feature little taxonomic overlap (i.e. have little similarity in their 

species composition), according to the predominant PFTs (Lavorel and Garnier, 2002). Using 

this approach, a worldwide uniform comparison of ecosystems as well as a monitoring of their 

reactions to changes in land management or climate are possible. Thus, this method can provide 

important information for scientists to diminish the impacts of variations in climate and 

intensities of agricultural use and to secure the survival of endangered grassland ecosystems.  

 

1.1.1 A deeper look into the concept of plant functional traits 

In order to identify a plant’s PFT or changes in the site conditions using the C-S-R strategy, 

FTs are of uttermost importance. As the measurement of FTs does not require to determine the 

taxonomic identity of a plant, FTs also allow a comparison of ecosystems, irrespective of their 

species composition (Lavorel and Garnier, 2002; McGill et al., 2006). Thus, FTs are considered 

as more objective predictors of ecosystem dynamics and function than species (DeFries et al., 

1995; McGill et al., 2006; Shaver et al., 2007). 
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FTs can be either categorical or numerical. Categorical FTs are characterized by qualitative or 

discrete variables (e.g. life-form, reproductive organs or photosynthetic pathway of a plant), 

whereas numerical FTs are given as quantitative, continuous variables (e.g. height, specific leaf 

area or water content of a plant). Many categorical FTs are easy to collect and are directly linked 

to plant function (Figure 1-1). However, measuring the values of many numerical FTs is more 

complex (e.g. measuring plant weight, leaf area index - LAI, seed mass, etc.).  

 

Figure 1-1. Examples of FTs and associated functions (Lavorel et al., 2007). 

 

Both, categorical and numerical FTs can further be grouped into effect and response traits. 

Effect traits are related to an organism’s impact on ecosystem processes or services, i.e. the 

goods provided by an ecosystem to its inhabitants, including humans (Lavorel et al., 2007). In 

contrast, response traits change as a result of variations in the environmental conditions acting 

upon plants in an ecosystem (Garnier et al., 2001). Thereby, response and effect traits are often 

interrelated to each other (Lavorel and Garnier, 2002). For example, effect traits impact soil 

fertility, which itself acts as environmental filter upon the persistence of species in an ecosystem 

and consequently upon response traits (Figure 1-2). Similarly, leaf nitrogen content, leaf dry 

matter content and specific leaf area are response traits to N supply (Al Haj Khaled et al., 2005; 

Pontes et al., 2010) and at the same time effect traits on soil fertility (De Bello et al., 2009). The 

response of ecosystems on changes in the environmental conditions is thus a complex process 

with impacts on many different effect and response traits.  
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Figure 1-2. Simplification of the FT approach considering soil fertility as an environmental 

filter and its maintenance as an ecosystem service. LNC, leaf lamina N-content; SLA, specific 

leaf area; LDMC, leaf dry matter content; LLS, leaf lifespan (Schellberg and Pontes, 2012). 

 

1.1.2 Plant functional traits and nutrient gradients 

The FTs of grassland ecosystems vary considerably, depending on the availability of soil 

nutrients (Field et al., 1992; West et al., 1997; Wright et al., 2005). Through its impact on FTs, 

soil fertility also influences the community structure, the strategies of species competing for 

resources as well as the processes taking place in an ecosystem (Table 1-1). Grassland nutrient 

management can thus induce bottom-up changes in FTs and species interactions and alter the 

vegetation community structure. Consequently, nutrient supply is among the most important 

management tools for promoting the productivity, quality and health of managed grasslands 

and may be used to conserve the species diversity as well as related ecosystem functions and 

services (Pontes et al., 2010). Within the past decades, studies in grassland ecology have thus 

focused on the response of FTs to differences in nutrient management (Al Haj Khaled et al., 

2005; Duru et al., 2004, 2010, Pontes et al., 2007, 2010).  

Table 1-1. Summary of FTs associated with contrasting soil fertility and their effects on 

community structure and ecosystem processes in perennial grasslands (modified, Lavorel et al., 

2007). 

Level of  
organization 

High fertility Low fertility 

Individual  
FTs 

High specific leaf area, low leaf dry matter content, low 
C:N ratio, high FT plasticity, numerous small seeds with 

high dispersal 

Long-lived species, low specific leaf area, low 
FT plasticity, few large seeds with low 

dispersal 

Species  
interactions 

Predominance of exploitative (C) species,  
rapid depletion of resources 

Predominance of conservative (S) species, 
tolerance to low resource levels 

Community Abundance of forbs and some stoloniferous grasses Abundance of cespituous grasses 

Ecosystem  
processes 

Fast rates of biogeochemical cycling,  
high net primary production 

Slow rates of biochemical cycling,  
low net primary production 

 

 



Introduction 

6 

 

Intensive research in this domain has aimed at identifying the impact of soil nitrogen and 

phosphorus content on numerical traits (Cruz et al., 2002; Duru et al., 2004; Lavorel et al., 2007; 

Schellberg and Pontes, 2012). It was further shown that variations in the FTs of grassland 

communities can be seen as the result of a hierarchy of filters constraining their values. Thereby, 

the expressions of certain FTs along a nutrient gradient may either peak only within a small 

range (X, Y), feature gradual changes (V, W) or are relatively little affected (Z) (cf. Figure 1-3). 

 

Figure 1-3. Theoretical response of numerical FTs to nutrient gradient in a grassland 

community. Temporal variation of FT attributes during growth is not considered (Schellberg 

and Pontes, 2012). 

 

The structure of grassland communities as well as the values of the FTs may also vary over 

time. These temporal shifts exacerbate the establishment of explicit linkages between grassland 

FTs and ecosystem properties (McIntyre and Lavorel, 2001; Rusch et al., 2003; Westoby et al., 

1999). Furthermore, spatial heterogeneity resulting from the interaction between various 

management factors (i.e. nutrient management and grazing or cutting regime) and site 

environmental conditions, increases the complexity of the relations between FTs and ecosystem 

status (Adler et al., 2001; Hirata, 1998; Janzen, 1984; Yasuda et al., 2003). Thus, changing the 

grassland management regime in order to conserve grassland ecosystems is a complex task, 

which requires a monitoring of the response of a grassland community to a set of management 

actions in the spatial domain. Nevertheless, FTs have been widely used to assess changes in 

grassland ecosystems due to their great potential for enhancing our understanding of ecosystem 

function (Schellberg and Pontes, 2012). 
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1.2 Remote sensing of vegetation - basic concepts 

In the past decades, remotely sensed information has played a major role for monitoring and 

mapping vegetation at the local, regional and global scale. RS thereby relies on the principle 

that the properties of plants influence the amount of solar radiation reflected by a plant canopy 

in specific wavelengths or wavelength regions (Steiner et al., 2008; West et al., 2003). This 

reflected radiation is measured by the RS sensor in defined portions of the spectrum. Of special 

importance for vegetation studies are thereby the ultraviolet (UV), visible (VIS) and infrared 

(IR) wavelength regions, as given in Table 1-2. The spectral reflectance can be interpreted in a 

way that allows scientists to estimate specific vegetation properties. 

Table 1-2. The range of the ultraviolet (UV), visible (VIS) and infrared (IR) regions of the 

electromagnetic spectrum. 

Region name Sub-region name Wavelength range (nm) 

Ultraviolet (UV) 
 

300-379 

Visible light (VIS) 
 

380-739 

 
Blue 400-499 

 
Green 500-599 

 
Red 600-739 

Near infrared (NIR) 
 

740-1399 

Shortwave infrared (SWIR) 
 

1400-2500 

 
Near shortwave infrared (nSWIR) 1400-1799 

 
Far shortwave infrared (fSWIR) 1800-2500 

Middle infrared 
 

2501-4999 

Thermal infrared   5000-15000 

 

1.2.1 Multispectral and hyperspectral remote sensing 

RS information in the VIS and IR regions of the spectrum can be recorded using different types 

of sensors, including multispectral and hyperspectral systems. These two sensor-types feature 

characteristic differences in their number of bands (i.e. sections of the electromagnetic spectrum 

measured in single channels of the RS sensor) and their bandwidths (i.e. the range of 

wavelengths a band is sensitive to). Multispectral systems measure radiation reflected by the 

earth’s surface in approximately 3 to 15 bands, whereas hyperspectral systems provide spectral 

information in hundreds or even thousands of bands. Thereby, the bandwidths of multispectral 

systems are generally broader than those of hyperspectral systems. The spectral detail of a RS 

sensor has a large influence on the spectral signatures measured for the same plant canopy 

(Figure 1-4).  



Introduction 

8 

 

 

Figure 1-4. Spectral signatures of pasture derived from hyperspectral FS 3 (a), simulated HH 

2 (b) and EnM (c) as well as from multispectral S-2 (d), L 7 (e) and RE (f) data. The number 

of spectral bands and spectral detail decreases from (a) to (f). Data were simulated using an 

average of 2689 spectra and the algorithm described in chapter 4.2.3.   

 

Previous studies have shown that for distinguishing various types of grasslands as well as for 

monitoring changes in most of their FTs, broadband RS systems (i.e. most multispectral 

sensors) have significant limitations (Numata et al., 2008; Roberts et al., 1993; Thenkabail et 

al., 2012, 2004b, 2002; van Leeuwen and Huete, 1996). These limitations are caused as 

broadband sensors average spectral information over a wide range of wavelengths, resulting in 

a loss of critical spectral detail (Blackburn, 1998; Hansen and Schjoerring, 2003). Hyperspectral 

systems overcome this problem by measuring reflectance in a high number of narrow 

wavebands (Curran, 1989; Numata et al., 2008; Thenkabail et al., 2012). Thus, these sensors 

have successfully been used for detecting vegetation stress (Carter, 1994, 1998), plant biomass 

(Thenkabail, 2003), green vegetation cover (McGwire et al., 2000) as well as the chlorophyll 

content (Blackburn and Steele, 1999) and many chemical components of plants or leaves (Bauer 

et al., 1981; Blackburn and Steele, 1999; Curran, 1994; Peñuelas et al., 1993, 1995). 

Consequently, detecting many FTs of grasslands may be possible using hyperspectral RS 

systems (Homolová et al., 2013; Roelofsen et al., 2013; Ustin and Gamon, 2010).  
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1.2.2 Remote sensing sensors and platforms 

RS sensors may be used as ground-based systems or may be mounted aboard different 

platforms, including satellites, manned aircrafts or unmanned aerial vehicles (UAVs). All of 

these platforms enable a collection of data with different properties regarding their areal 

coverage (the area viewed in one image or observation), their spatial resolution (the areal detail 

resolved) and their temporal resolution (the revisiting time of a sensor to the same area). 

Usually, an increase in one of these attributes (e.g. the spatial resolution) leads to the sacrifice 

of other attributes, such as temporal resolution or areal coverage (Rocchini et al., 2010). Thus, 

all RS systems have certain advantages and disadvantages and the selection of effective sensors 

depends upon the targeted application (e.g. the needed spatial or temporal resolution) as well 

as on the practical circumstances (e.g. the budget, the expertise of the analyzing team and the 

availability of data).  

Until the early second millennium, satellite RS was constrained to the use of multispectral 

sensors (Psomas et al., 2011). However, with the launch of the Hyperion hyperspectral sensor 

(in 2000) as well as with the planned launches of Environmental Mapping and Analysis 

Program (EnMAP) and Hyperspectral Infrared Imager (HyspIRI) imaging spectrometers, a new 

era of hyperspectral RS has started (Göttlicher et al., 2011; Richter et al., 2012; Thenkabail et 

al., 2004b). Current research thus aims at exploring the opportunities of hyperspectral imaging 

systems for detecting a wider range of vegetation properties and to compare their performance 

to traditional multispectral sensors. However, difficulties in enabling meaningful comparisons 

between multispectral and hyperspectral systems are introduced by differences in their spatial 

resolution, viewing geometry and sensor calibration as well as by the atmospheric conditions 

at the times of sensor overpass (Geerken et al., 2005; Lu, 2006; Psomas et al., 2011).  

To develop methods for detecting FTs using RS data, ground-based field spectroradiometers 

have been identified as good solution (Ferner et al., 2015; Mutanga et al., 2015; Sibanda et al., 

2015, 2016; Thenkabail et al., 2000). Full-range field spectroradiometers can measure 

reflectance in thousands of narrow wavebands located in the spectral region between 350 and 

2500 nm. These systems are lightweight and can be easily carried across fields to collect RS 

information at precisely defined locations. Thus, they allow a cost-efficient generation of multi-

temporal datasets and provide hyperspectral data, in which spatial inaccuracies (e.g. due to 

failures in orthorectification) are minimized (Feilhauer and Schmidtlein, 2011). Furthermore, 

up-scaling of models developed based on field spectroradiometer data to satellite data is 

possible, when the spatial resolutions of both instruments are well above the size of individual 
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plants (Hansen and Schjoerring, 2003; Psomas et al., 2011; Verrelst et al., 2009; Xavier et al., 

2006). Thus, field spectroradiometers have successfully been used as surrogate for air- and 

spaceborne RS systems to assess their potential for detecting vegetation properties of grasslands 

(Feilhauer and Schmidtlein, 2011; Hansen and Schjoerring, 2003; Rossini et al., 2012; Xavier 

et al., 2006; Anderson et al., 2004).  

 

1.2.3 The spectral reflectance of grassland vegetation 

Solar irradiation reaching a plant canopy may interact in different ways with the plant leaves, 

tillers or the underlying soil (Curran, 1989; Kumar et al., 2001). Figure 1-5 shows that the 

incident light may either be directly reflected back to the sky from the leaf, may be transmitted 

through the leaf, may be involved in multiple reflections within the canopy before being 

reflected back to the sky or may penetrate the canopy before being reflected back by the soil. 

Furthermore, parts of the incoming radiation are absorbed in different layers of the plant canopy 

and may be re-emitted by the plant leaves as fluorescence radiation.  

 

Figure 1-5. a) Illustration of interactions of radiation with a plant canopy with randomly 

oriented leaves, showing the multiple scattering events. The incident sunlight may either be 

directly reflected back to the sky from a leaf (A), with a small fraction being transmitted through 

the leaf, or else it may be involved in a secondary (B), or even tertiary (C) reflection before 

finally being reflected back to the sky. Similarly, some of the reflections may involve the soil 

(D). b) Simplification of the real canopy as layers, where the downward radiation is attenuated 

by absorption and scattering at each layer, while the upward radiation flux is the sum of all 

upwardly scattered radiation (modified, Jones and Vaughan, 2012). 

 

The radiation exiting vegetation is further dependent upon canopy structural features, such as 

the distribution of leaf angles and the LAI as well as on plant biochemistry, phenology and 

physiology (Asner, 1998; Carter and Knapp, 2001; Gitelson and Merzlyak, 1996; Goel, 1988; 
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Numata et al., 2008). As these factors significantly vary between plant species, floristic 

composition of the vegetation community further influences the reflected spectral signal (Asner, 

1998; Asner and Martin, 2009; Hill et al., 2004; Knyazikhin et al., 2012). Thus, a complex 

interaction between the radiation and the vegetation as well as the underlying soil determines 

the spectral signature of a plant canopy (Blackburn, 1998; Jackson and Pinter, 1986; Lorenzen 

and Jensen, 1988; Pinter et al., 1985; Schut et al., 2002). 

In addition, canopy reflectance is influenced by diurnal, seasonal and inter-annual changes in 

the solar zenith- and azimuth-angles as well as by the viewing geometry, i.e. the sensor angle 

and height, of a RS system (Egbert and Ulaby, 1972; Gamon et al., 2006; Stagakis et al., 2010; 

Cochrane, 2000; Jackson and Pinter, 1986; Pinter et al., 1985). These can be mathematically 

expressed as the bidirectional reflectance distribution function (BRDF) (Barnsley et al., 1997; 

Diner et al., 1999; Verstraete et al., 1996). Although time series over longer intervals (i.e. 

several years) theoretically provide sufficient sampling of the range of illumination and viewing 

conditions to estimate the BRDF effects, these are confounded with seasonal variations in the 

properties of the vegetation (Los et al., 2005). Thus, BRDF effects are difficult to quantify.  

Despite the uncertainties caused by BRDF effects and the complex interactions between 

radiation and plant canopies, differences in the spectral signatures of various vegetation types, 

such as grass monocultures, meadows and pasture or other materials, such as soil, exist (Figure 

1-6). Especially the VIS- and IR-sections of the electromagnetic spectrum allow a detection of 

many different plant properties, including FTs (Curran, 1989; Thenkabail et al., 2000, 2004b, 

2012). Therefore, RS may be suited to produce datasets of great value for agronomists and 

ecologists (Kawamura et al., 2008). 

 

Figure 1-6. Reflectance of different vegetation types and bare soil. Spectra were collected using 

an ASD FieldSpec 3 (FS 3) spectroradiometer on June 23, 2016 in Bonn, Germany. 
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1.3 Classification of grassland vegetation using remote sensing 

Grassland management strongly relies on accurate maps of the distribution of relevant 

vegetation communities and on information about changes in their properties throughout the 

growing season (Cingolani et al., 2004; Posse and Cingolani, 2004). Although it is relatively 

simple to classify broad vegetation types, such as different biomes, using multispectral RS 

sensors, difficulties occur when distinguishing the optically more similar grassland 

communities from each other  (Numata et al., 2008; Thenkabail et al., 2004a; Ustin and Gamon, 

2010). Thus, detailed maps of grassland community distribution and spatio-temporal 

information on their phenological status are up to date rarely available. However, such datasets 

would allow to monitor grassland production for large areas and to identify long-term changes 

in the spatial distribution of grassland ecosystems (Aragón and Oesterheld, 2008; Gianelle and 

Vescovo, 2007).  

In recent years, the increasing availability of hyperspectral RS data has opened new 

perspectives for the characterization of grassland types across different spatial scales with 

comprehensive temporal coverage. Hyperspectral RS has successfully been used to classify 

vegetation canopies featuring different species compositions, Ellenberg indicator values, C-S-

R strategy types, burned and unburned sites, grazed and ungrazed vegetation and management 

regimes (Fava et al., 2009; Harris et al., 2003; Magiera et al., 2013; Oldeland et al., 2010; 

Rahman and Gamon, 2004; Schmidtlein, 2005; Schmidtlein et al., 2012; Schmidtlein and 

Sassin, 2004; Sibanda et al., 2015, 2016; Trigg and Flasse, 2000). However, the availability of 

these datasets also provides the opportunity to distinguish plant functional types (PFTs) of 

grasslands (Field, 1991; Field et al., 1992). Thus, Ustin and Gamon, (2010) have proposed the 

concept of optical types, which allows to establish a direct link between reflected radiation, 

PFTs and the environmental conditions. Consequently, RS may allow a global characterization 

of grassland ecosystems based on their functioning. 

However, the high dimensionality of hyperspectral remotely sensed information exacerbates 

the selection of the most effective wavebands for grassland classification. Thus, datamining 

techniques, including principal component analysis (PCA), lambda-lambda R² models and 

stepwise discriminant analysis have been applied to identify effective wavebands for 

differentiating vegetation (Aragón and Oesterheld, 2008; Thenkabail et al., 2004b). These 

studies showed that the best few narrow wavebands, located within the most relevant regions 

of the electromagnetic spectrum, enable RS scientists to effectively distinguish vegetation 

types. Adding more bands only marginally increases the classification accuracy. For this reason, 
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normalized VIs incorporating the most relevant bands for differentiating grasslands perform 

similarly well compared to complex datamining algorithms. Furthermore, the use of ratios in 

VI-calculation, diminishes BRDF effects and emphasizes relevant spectral information (Jensen, 

2007). 

On the other hand, classification accuracies achieved using a single VI substantially vary over 

time (Aragón and Oesterheld, 2008; Poças et al., 2012; Sánchez-Azofeifa et al., 2009; Zutta, 

2003). Thus, successfully distinguishing grasslands is not possible using solely one VI at all 

phenological stages. However, other regions of the spectrum provide additional spectral 

information, which may be suited to classify grassland communities at these points in time 

(Asner and Heidebrecht, 2003). Finding a method, which identifies the ideal VIs for 

distinguishing different grassland communities over a growing season is thus of great 

importance.    

 

1.4 Remote sensing of grassland plant functional traits  

In previous studies, RS data have successfully been related to morphological (Numata et al., 

2008), phenological and biochemical properties of vegetation relevant to plant function 

(Daughtry et al., 2000; Field, 1991; Inoue and Penuelas, 2001; Yoder and Pettigrew-Crosby, 

1995; Numata et al., 2008; Xavier et al., 2006; Thenkabail et al., 2012). This suggests that FTs 

affect the spectral reflectance of leaves and canopies (Svoray et al., 2013; Ustin, 2013). As the 

expressions (numerical or categorical values) of FTs are strongly linked to environmental 

resource constraints (i.e. to a lack of nutrients limiting plant growth), RS may provide data that 

help to optimize the fertilization of grasslands, support agricultural production and, at the same 

time, maintain ecosystem functioning (Magiera et al., 2013; Ustin and Gamon, 2010). 

However, FTs fluctuate throughout the entire growing season. Thus, acquiring multitemporal 

data for relating spectral measurements to FTs is important in order to capture the entire range 

of FT expressions (Karnieli et al., 2002; Psomas et al., 2011; Xavier et al., 2006). A study by 

Ling et al., (2014) showed that a model developed using information from a sufficiently large 

timeframe (in the order of several years) can be used to estimate plant biochemical properties, 

such as N-content, irrespective of the vegetation phenological state. These results indicate that 

detecting many other FTs may be possible over entire growing seasons and years using RS 

measurements. Thus, RS of FTs has a vast potential for providing spatio-temporal information 

on grassland functioning and enable scientists to create valuable datasets for agricultural and 
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ecological research as well as for ecosystem management (Aragón and Oesterheld, 2008; 

Cingolani et al., 2004; Paruelo et al., 2004). 

Up to date, only few scientists have tried to estimate the FTs of species-rich grassland-stands 

using RS technology (Homolová et al., 2013; Roelofsen et al., 2013). In these studies, field 

spectroradiometers were the most widely used instruments because they allow a clear 

registration between the measured field of view (FOV, i.e. the size of the area a detector is 

sensitive to reflected radiation) and the manually sampled vegetation. They further provide a 

wide spectral range and a high spectral resolution. Models including such high spectral detail 

provided promising results for estimating a number of FTs (Roelofsen et al., 2013). 

Thereby, the detection of FTs is complex as changes in one FT (e.g. plant biomass) are strongly 

related to changes in others (e.g. to leaf area or plant dry matter) and vice versa (Figure 1-7; 

Göttlicher et al., 2011). This makes it difficult to disentangle the interactions between spectral 

reflectance and a set of mutually changing FTs and to identify wavelengths that are sensitive 

solely to single functional properties.  

 

Figure 1-7. Vegetation morphology and structure, vegetation biochemistry and physiology as 

well as vegetation phenology are interrelated to each other (double arrows) and determine 

values of single FTs. These single FT values are expressed as the FT composition of a plant. 

FT composition can be aggregated to the plant community. This community FT composition 

finally influences the spectral reflectance.  

 

Additionally, the spatial resolution of most RS sensors is above the size of an individual plant. 

This implies that the spectral signal is composed of radiation reflected by a number of plants, 

featuring individual sets of FT expressions. For this reason, FTs need to be aggregated to the 

community in order to allow a correct registration of the studied plant canopy and the measured 

spectral signal (Roelofsen et al., 2013). Thereby, establishment of a community trait value is 

not straight-forward because FTs vary greatly among individual plants, even over short 

distances both, horizontally as well as vertically within the canopy (De Bello et al., 2009). 

Previous research showed that FTs related to nutrient availability are best estimated when 
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expressed on a mass-base (mg g-1 dry matter), compared to a canopy-surface- (g m-² canopy 

surface) or a leaf-surface-base (mg m-2 leaf surface) (Roelofsen et al., 2013). These findings 

suggest that sampling the entire vertical dimension of the canopy (or extracting entire plants) 

enable creating the strongest relations between canopy reflectance and FTs (cf. Figure 1-5 b). 

 

1.4.1 Relevant spectral regions for estimating plant functional traits 

To support grassland scientists in adapting the management according to the local reactions of 

ecosystems to changes in the environmental conditions, several key-FTs exist that are the most 

relevant for maintaining grassland quality, species diversity and agricultural production (Starks 

et al., 2006; Zhao et al., 2007). Among these are plant height (PH), fresh matter, LAI, the 

fraction of photosynthetically active radiation absorbed (fPARabs), chlorophyll content, the 

concentrations of nitrogen (N) and carbon (C) as well as the contents of water in leaves and 

canopies (Bacour et al., 2006; Hansen and Schjoerring, 2003; Huber et al., 2008; Richter et al., 

2012; Thenkabail et al., 2000, 2012; Vallentine, 1990). Of further importance for grazing 

animals is forage quality, as determined by the nutrient detergent fiber (NDF) content (Bailey 

et al., 1996; Kawamura et al., 2008; Reid et al., 1992; Schauer et al., 2005).  

Due to their large importance in agriculture and ecology, many previous studies have addressed 

plant biophysical variables related to plant function. The results of these investigations are 

summarized in Table 1-3. As many substances feature mutual relationships (i.e. high 

correlations between FTs; e.g. if water content increases, frequently also chlorophyll content 

increases), band regions relevant for their detection overlap (Knyazikhin et al., 2012; Numata 

et al., 2008; Psomas et al., 2011; Stagakis et al., 2010).  

Variations in PH, chlorophyll content (expressed as SPAD), plant fresh matter (PFM) and C-

content have been observed to be strongly related to the spectral reflectance in the red-edge 

(720-760 nm) and NIR regions. Changes in the expressions of other FTs, including plant-, tiller- 

and leaf water content (PWC, TWC and LWC) as well as of leaf fresh matter (LFM), N-and 

NDF-content were mostly related to bands in the NIR and SWIR-regions of the spectrum. For 

estimating plant, tiller and leaf dry matter (PDM, TDM and LDM), wavelengths in the SWIR 

appeared to contain the most valuable information. To derive fPARabs based on spectral 

reflectance, the visible domain was the most important. Other FTs, such as leaf area (LA), 

specific leaf area (SLA), plant, tiller and leaf dry matter content (PDMC, TDMC and LDMC) 

as well as leaf-stem-ratio (LS), tiller fresh matter (TFM) and C/N-ratio were less intensively 

studied.  
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Table 1-3. Bands relevant for detecting FTs as well as the model accuracies reached in previous 

studies. 

FT Bands R² Source 

PH 763, 793, 872, 882, 905, 915, 946, 956, 966, 
1124 

0.68 Xavier et al., (2006) 

SPAD 430-600, 620-750, 750-1000 

 

>0.74, <0.86 Rossini et al., (2012); Stagakis et al., 
(2010); Thenkabail et al., (2004b) 

LA - - - 

PWC 950-1250, 1390-1800, 2000-2350 

 

- Clevers et al., (2008); Elvidge, (1990); 
Numata et al., (2008) 

TWC 970, 1200, 1400, 1940 - Kumar et al., (2001) 

LWC 970, 1200, 1400, 1700, 1940, 2005, 2035, 
2235, 2280, 2295, 2345 

0.4 Hunt Jr., (1991); Kumar et al., (2001); 
Ripple, (1986); Roelofsen et al., (2013) 

SLA - - - 

PDMC - - - 

TDMC - - - 

LDMC - - - 

LS - - - 

PFM 600-700, 740-1000 0.3970; 
0.5730 

Tucker, (1977); Wang et al., (2008) 

TFM - 0.3546 Wang et al., (2008) 

LFM 1205, 1710 -0.4649; 
0.6378 

Psomas et al., (2011); Wang et al., (2008) 

PDM 1672, 2045, 2218; 2000-2400 0.3747, 
0.5231 

Asner, (1998); Elvidge, (1990); Numata et 
al., (2008); Roberts et al., (1993); Wang et 

al., (2008) 

TDM 1672; 2000-2400 0.2767, 
0.4328 

Asner, (1998); Elvidge, (1990); Roberts et 
al., (1993); Wang et al., (2008) 

LDM 1672; 2000-2400 -0.4657, 
0.5950 

Asner, (1998); Elvidge, (1990); Roberts et 
al., (1993); Wang et al., (2005) 

N 480, 550-750, 840, 1230-1350, 1400-1680, 
2050-2350 

>0.72; <0.9 Kumar et al., (2001); Ling et al., (2014); 
Thenkabail et al., (2012); Shibayama and 

Akiyama, (1986) 

C 550, 780-1400 - Roelofsen et al., (2013) 

C/N - - - 

NDF, 
lignin 

514, 580, 700, 955, 1120, 1160, 1200, 1420, 
1540, 1690, 1736, 1780, 1820; 1300-1900, 

1900-2500 

< 0.74; 0.15-
0.39 

Elvidge, (1990); Numata et al., (2008); 
Roelofsen et al., (2013) 

CSH, 
biomass 

400-750, 780-1000, 1100 - 1250, 1540-1650, 
2045- 2218 

>0.69, <0.96; 
<-0.52, >-0.93 

Fava et al., (2010); Lorenzen and Jensen, 
(1988); Numata et al., (2008); Tucker, 

(1977); Wang et al., (2008) 

LAI, 
fPARabs 

500-550, 620-750, 680, 2280 >0.57, < 0.95 

 

Asner, (1998); Broge and Leblanc, (2000); 
Hunt Jr., (1991); Rossini et al., (2012); 

Darvishzadeh et al., (2011); Wang et al., 
(2008) 

 

Furthermore, Table 1-3 shows that the model accuracies reached (expressed as the coefficient 

of determination, R²) for detecting the same FT vary considerably between studies. Thereby, 

the strength of the relations between reflectance data and FTs were heavily influenced by the 

spectral and spatial resolutions of the sensors used as well as by the architecture and the 

phenological stage of the vegetation communities (Feilhauer and Schmidtlein, 2011; Ling et 
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al., 2014; Poças et al., 2012; Sánchez-Azofeifa et al., 2009; Zutta, 2003; Numata et al., 2008). 

Additionally, for deriving biophysical information on mixed species canopies, lower accuracies 

were achieved than for grass monocultures (Kawamura et al., 2008). Generally, high accuracies 

(R² > 0.6) were reached for detecting PH, SPAD, N-content and CSH, whereas it was shown 

that LWC, PFM, PDM, TDM and LDM of vegetation canopies are relatively difficult to 

estimate using RS.  

 

1.4.2 Estimating plant functional traits based on hyperspectral reflectance data 

To relate the biophysical and biochemical properties of vegetation to remotely sensed data, 

statistical models have found wider application than their physically-based counterparts (e.g. 

radiative transfer models, RTMs) (Thenkabail et al., 2012). For developing statistical models, 

data on specific vegetation properties are first measured using manual sampling methods and 

subsequently related to the spectral reflectance by means of statistical mathematics. Although 

these models are difficult to transfer between regions or even between different times at the 

same location, high model fits can be achieved for defined areas at a known phenology 

(Feilhauer and Schmidtlein, 2011).  

A widely used approach based on statistical modelling for deriving plant properties are VIs 

(Fava et al., 2009; Hansen and Schjoerring, 2003; Tucker, 1977; Rouse Jr. et al., 1974). For 

calculating a VI, a small set of bands (frequently two) is combined mostly as a normalized ratio 

and related to a plant variable, i.e. a plant morphological or biochemical property. Advantages 

of utilizing VIs for estimating plant properties are that they require a low number of spectral 

bands and little computational effort. On the other hand, this approach has its limitations in 

assessing subtle variations in specific plant properties because it makes use only of a small part 

of the spectral information available in hyperspectral data (Psomas et al., 2011). Models based 

on multiple linear regression exploit more detail in spectral information and frequently produce 

better accuracies for estimating plant properties than VIs (Darvishzadeh et al., 2008b; Psomas 

et al., 2011). These models create a mathematical function describing the relations between a 

plant property and the information contained in the spectral signatures of the studied vegetation. 

However, multiple linear regression models may be subject to overfitting (i.e. an overestimation 

of model accuracy) when dealing with high numbers of independent variables (Lindberg et al., 

1983; Lorber et al., 1987; Næs and Martens, 1984). Thus, VIs and regression models are not 

suited when a high number of spectral bands (as available in hyperspectral data) is used to 

estimate plant properties, such as FTs.  



Introduction 

18 

 

Hence, more sophisticated datamining methods, such as partial least squares regression (PLSR) 

or principal component regression (PCR) have gained in attention within the RS community. 

Specifically PLSR approaches using a selection of predictor variables were identified as 

valuable techniques for relating vegetation properties to hyperspectral reflectance 

(Darvishzadeh et al., 2008a; Feilhauer and Schmidtlein, 2011; Kawamura et al., 2008; Martens 

and Martens, 2000). As a first step in these algorithms, a subset of spectral reflectance data 

containing relevant but uncorrelated spectral bands is created. This subset is then summarized 

as a few latent vectors (similar to principal components) and used for prediction of a dependent 

variable (i.e. a plant property) in linear statistic models, such as regression. Thus, PLSR in 

combination with band selection procedures provides an effective solution for coping with 

multicollinearity (i.e. with mutual information of adjacent spectral bands) while preserving 

relevant components of hyperspectral RS data for detecting vegetation properties (Chen et al., 

2009; Darvishzadeh et al., 2008b; Feilhauer et al., 2010; van der Heijden et al., 2007). 

Consequently, PLSR was intensively used within the past decades to estimate the quality, 

biomass and LAI of vegetation, the chlorophyll-, N-, phosphorus- and NDF-content of 

vegetation or single plants and most recently to detect the FTs of grassland communities 

(Darvishzadeh et al., 2008b; Ferner et al., 2015; Kawamura et al., 2008; Ramoelo et al., 2013; 

Roelofsen et al., 2013; Schut et al., 2005, 2006; Zhao et al., 2007). These results show that 

PLSR is a good choice for detecting the expressions of FTs of grassland along nutrient gradients 

throughout several growing seasons and years.  

 

1.5 Research aims and objectives 

To reliably monitor the changes in ecosystem properties and functions, data availability on FTs 

in the spatial and temporal (i.e. seasonal and annual) domain is of large importance (Aragón 

and Oesterheld, 2008; Lavorel et al., 2007). Providing the opportunity to collect spatially 

contiguous data using novel hyperspectral imaging systems, RS may be a suitable technique for 

identifying the extent and the spatial variation of FTs according to changing environmental 

conditions at all possible scales (Schellberg and Pontes, 2012). Thus, RS may add to 

improvements in precision agriculture, where time-critical information on crop growth, water 

status and changes in community structure allow more timely management interactions (Jones 

and Vaughan, 2012). In addition, research identifying specific spectral regions relevant for 

estimating key FTs can support decisions concerning the design of future RS sensors or allow 

an improved utilization of available sensors for mapping FTs.  
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Up to date, few authors have tried to assess the FTs of species-rich grassland communities 

dominated by different PFTs using their spectral reflectance (Homolová et al., 2013; Roelofsen 

et al., 2013). None of these studies have thereby observed the relations between FTs and 

reflectance properties over several growing seasons. The main aims of this research were  

(1) to investigate how grassland communities dominated by different PFTs can be distinguished 

over a growing season and several years using VIs, 

 (2) to detect the response of grassland FTs to variations in nutrient management using spectral 

reflectance measurements, 

(3) to study which current or planned multispectral and hyperspectral ground-based or 

spaceborne RS systems are suitable for detecting these FTs and 

(4) to test whether RS can provide information to grassland managers, which allows to adapt 

management strategies in order to support a sustainable agricultural use of grassland under 

changing climate conditions and intensities of use.  

 

1.6 Thesis structure and outline 

As shown in Figure 1-8, this dissertation is separated into five main parts. Chapter 1 is a general 

introduction and provides an overview on functional ecology, the concept of FTs and the 

operating principles of RS of vegetation. It further lists ideas on how field-based estimates of 

the status of grassland FTs can be complemented or even replaced using remotely sensed 

information. Additionally, the general aims of this thesis are listed and the study area is 

presented. 

Chapter two is published as peer reviewed article in the journal “Remote Sensing” (Hollberg 

and Schellberg, 2017). It shows how five intensity levels of grassland can be best distinguished 

at several points in time using 15 different remotely sensed VIs. These VIs were selected 

because they are sensitive to the most important plant properties affecting the spectral 

reflectance (i.e. the biomass, LAI, chlorophyll content, water content and chemical composition 

of plants) and include bands from a wide range of wavelength regions. Spectral reflectance was 

measured on 38 dates throughout the growing seasons 2012-2014 using a ground-based ASD 

FieldSpec 3 (FS 3) spectroradiometer. Subsequently, the VIs were calculated and their potential 

for distinguishing the different grassland canopies at different phenological stages and in 

several years was assessed. Additionally, a multiple VI approach was developed, which adds to 

a more stable classification of grassland communities over time.   
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Figure 1-8. Structure of this thesis and content of the five chapters. 

 

Chapter three is internally reviewed, revised and ready for submission as research article to the 

journal “Remote Sensing of Environment” (Hollberg et al., 2017a). The study describes how 

spectral reflectance needs to be acquired, processed and analyzed to estimate the expressions 

of numerical FTs. Therefore, manual measurements of twenty-three different FTs and the 

associated spectral reflectance were recorded in five different grassland canopies. The dataset 

was collected on 29 dates throughout the growing seasons 2012-2014. A PLSR model was 

developed for estimating each single FT based on canopy reflectance and subsequently assessed 

for its accuracy. Finally, the most relevant spectral regions for studying each FT were identified.  

The following (fourth) chapter is an article that is internally reviewed, revised and dedicated 

for submission to the journal “International Journal of Applied Earth Observation and 

Geoinformation” (Hollberg et al., 2017b). In this study, it is examined which current and 

planned satellite sensors can be used to detect the FTs of different grassland communities. FS 

3 derived reflectance data were resampled to the resolutions of the ASD Handheld 2 (HH 2), 

Environmental Mapping and Analysis Program (EnM), Sentinel-2 (S-2), Landsat 7 Enhanced 

Thematic Mapper + (L 7) and RapidEye (RE) sensors. Subsequently, PLSR models were 

created for the 23 FTs using the raw FS 3 data and the resampled spectral bands. In the next 

step, the accuracies for deriving the FTs achieved by each sensor were evaluated. Finally, it 

was shown which sensors are suitable for detecting single FTs of grassland vegetation and what 

influences spectral range and resolution have on the model performances.   
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The fifth chapter is a general conclusion. It points out if and how hyperspectral RS may support 

grassland ecologists in assessing the response of grassland communities to changes in nutrient 

management or climate. Furthermore, perspectives for future research are presented. 

 

1.7 The Rengen Grassland Experiment 

To test the strengths of the relations between FTs and spectral reflectance, it was necessary to 

select a study site, which features a wide range of different agriculturally used grassland 

communities along a gradient in management intensity level. Ideally, this study site should be 

well-documented in terms of its vegetation composition and its soil properties. Furthermore, 

floristic composition of the investigated communities should not substantially change 

throughout the time of the study. Our choice was the Rengen Grassland Experiment (RGE), 

which is located in Rhineland Palatinate, Germany (Figure 1-9).  

 

Figure 1-9. Location of the RGE (data: OSM, 2014; map: Hollberg, J.L., 2014). 

 

The experiment was established in 1941 and comprises five fertilization levels, including lime 

only (Ca), lime and nitrogen (CaN), lime, nitrogen and phosphorus (CaNP) and lime, nitrogen, 

phosphorus and potassium as CaNPKCl and CaNPK2SO4, respectively. The experiment 

consists of 50 single fertilized plots (i.e. ten replicates per treatment) and five unfertilized 

control plots (Table 1-4, Figure 1-10).  
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Table 1-4. Amounts of nutrients (kg ha-1) supplied annually to the treatments since 1941 

(modified, Schellberg et al., 1999). 

 Treatment 

Nutrient Ca CaN CaNP CaNPKCl CaNPK2SO4 

CaO 1000 1309 1309 1309 1309 

N 0 100 100 100 100 

P2O5 0 0 0 80 80 

K2O 0 0 0 160 160 

Mg 67 67 75 90 75 

 

 

Figure 1-10. Image of the Rengen Grassland Experiment. Annotations indicate fertilization.0 

represents unfertilized control plots (modified, Hejcman et al., 2010a). 

 

All plots are managed as a two-cut system. Due to differences in fertilization, grassland 

communities have developed that feature significantly different species compositions (Hejcman 

et al., 2010a). Consequently, plants in these communities vary in their pace of phenological 

development, their morphology as well as in their chemical composition and physiology (Figure 

1-11; Chytrý et al., 2009; Hejcman et al., 2007). Plant communities in the Ca- and CaN-

treatments develop slower in green leaf area than those in the NP(K)-treatments and produce 

relatively low amounts of biomass (Hejcman et al., 2010b; Schellberg et al., 1999). However, 

these communities maintain green leaf area over long periods in time, whereas senescence starts 

in the NP(K) treated communities in June (growth one, cf. Figure 1-11) and September (growth 

two). More details on the vegetation composition and the biophysical properties of the single 
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plots of the experiment can be found in chapters 2.2.1; 3.2.1 and 4.2.1 as well as in Chytrý et 

al., (2009); Hejcman et al., (2007) and Schellberg et al., (1999). Details on the soil properties 

existing at the site can be found in Hejcman et al., (2010a).  

 

Figure 1-11. Optical characteristics of the grassland communities in the Rengen Grassland 

Experiment over a growing season (Photo: Hollberg, J.L., 2014).
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2 Distinguishing intensity levels of grassland fertilization using vegetation 

indices 

Abstract 

Monitoring the reaction of grassland canopies on fertilizer application is of major importance 

to enable a well-adjusted management supporting a sustainable production of the grass crop. 

Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands 

by costly and time-consuming field surveys, which only provide low temporal and spatial data 

density. Grassland mapping using remotely-sensed VIs has the potential to contribute to solving 

these problems. In this study, the potential of VIs for distinguishing five differently-fertilized 

grassland communities was explored. Therefore, we collected the spectral signatures of these 

communities in a long-term fertilization experiment (since 1941) in Germany throughout the 

growing seasons 2012-2014. Fifteen VIs were calculated and their seasonal developments 

investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland 

communities varies throughout the growing season. Thus, the selection of the most promising 

single VI for grassland mapping was dependent on the date of the spectra acquisition. A random 

forests classification using all calculated VIs reduced variations in classification accuracy 

within the growing season and provided a higher overall precision of classification. Thus, we 

recommend a careful selection of VIs for grassland mapping or the utilization of temporally-

stable methods, i.e., including a set of VIs in the random forests algorithm. 

 

2.1 Introduction 

Grasslands are the largest of the earth’s four major vegetation types and belong to the world’s 

most productive agricultural lands (Price et al., 2001). Grass swards are known for their high 

spatial and temporal variability (Schut et al., 2002) and therefore require intensive monitoring 

to enable a management that is well adjusted to the prevailing environmental conditions. Maps 

displaying the phenological status of grassland allow creating a spatio-temporal model of 

grassland production (Gianelle and Vescovo, 2007). Such information is crucial for adjusting 

the nutrient management in order to mitigate water pollution (through leaching of soil nutrients) 

and to conserve the flora and fauna of grassland ecosystems. Commonly, grassland agronomists 

evaluate the phenological status, the quality and the spatial distribution of grasslands in costly 

and time-consuming field surveys, as described in Cornelissen et al., (2003). The methods 

defined in this handbook require destructive sampling and allow only a low spatial and temporal 

data density. Research developing non-destructive, cost-effective and time-saving methods for 
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grassland mapping and monitoring is urgently needed. These goals can be reached using a 

combination of minor field sampling efforts and RS (Aragón and Oesterheld, 2008). 

Among the available RS methods, VIs are frequently used for assessing different grasslands 

types (e.g. Hill, 2013; Wardlow et al., 2007). Classification of these types based on VIs requires 

consideration of the timing of data acquisition in relation to growth stage, as well as of type, 

wavelength and bandwidth of the VI used. Aragón and Oesterheld, (2008) have shown that 

classification accuracy of grasslands depends on the date of the spectral observation. The reason 

for these changes in classification accuracy is that the optical properties of grassland vegetation 

are underlying permanent variations (Psomas et al., 2011). These variations in the individual 

VIs throughout a growing season are caused by changes in the vegetation’s biophysical 

properties as a result of weather conditions in interaction with management actions (Poças et 

al., 2012). VIs composed of NIR and VIS light strongly correlate with biomass (Fava et al., 

2009), LAI and chlorophyll content (Daughtry et al., 2000; He et al., 2006). Thus, VIs based 

on these wavelengths are capable of distinguishing vegetation canopies, as long as they differ 

significantly in these variables. In contrast, spectral reflectance at longer wavelengths (between 

1300 and 2500 nm) is highly influenced by water absorption of plants (Asner, 1998; Kumar et 

al., 2001). This relation between plant water content and absorption of incoming radiation 

affects the spectral reflectance of plants. Thus, selecting VIs sensitive to the vegetation’s water 

content may enable a successful classification at times when those VIs appear relatively similar, 

which are sensitive to other crop variables, such as biomass, LAI or chlorophyll content. 

Further, VIs more sensitive to nitrogen and lignin content, as well as to morphological and 

physiological properties indicating plant stress may improve classifications at times when 

grasslands differ in these variables. 

Furthermore, bandwidth and spectral resolution have a major impact on the ability of VIs to 

distinguish grassland communities. Although several efforts have been made to classify 

grasslands using broadband data (Adams et al., 1995; Lucas et al., 1993; Roberts et al., 2002), 

it was found that they are not spectrally distinct in the broadband system throughout all times 

of a growing season (Numata et al., 2008). It was also shown that the utilization of hyperspectral 

data may significantly improve the quality of maps displaying the distribution of different 

grassland communities. Novel or planned hyperspectral satellite missions (such as Hyperion, 

EM and HyspIRI) may open new perspectives for mapping grasslands using narrowband VIs 

and are of special importance for distinguishing grassland types and management 

characteristics as well as for monitoring these plant communities (Price et al., 2001). 
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Hyperspectral RS can provide a cost-effective, time-saving and non-destructive method for 

mapping differences in growth dynamics as induced by fertilizer application as well as the 

spatial distribution of grassland communities at high spatial and temporal resolution. However, 

multitemporal studies investigating the performance of hyperspectral and broadband VIs for 

mapping Central-European grasslands are still missing. Basic research into this direction 

necessitates not only a high temporal, but also a high spatial and spectral resolution of RS data 

across clearly-defined grassland communities. These requirements are not met using satellite 

data only, because frequent cloud cover and low spatial coverage of hyperspectral satellite 

systems prevents acquiring dense time series in Central Europe. The solution lies in utilizing 

field spectroradiometers, which can acquire hyperspectral data on demand for dates when cloud 

cover is low. To collect spectra of clearly separable grassland communities, we identified a 

fertilizer experiment on grassland as the ideal setting. 

The above-mentioned deficits in the classification of grassland types make clear that studies are 

required where the criteria growth stage, bandwidth and type of VI are rigorously tested. 

Therefore, the aim of this study was to identify single VIs providing the most valuable 

information at specific points in time that enable grassland scientists to distinguish between 

differently-managed grassland communities. Furthermore, we introduce a novel approach in 

grassland research, which uses multiple VIs sensitive to changes in different plant properties 

for classifying grasslands. Accordingly, our key hypotheses were: 

1. Each plant community on grassland is characterized by a unique VI development 

throughout the growing season. 

2. The performance of each VI for distinguishing such plant communities varies 

throughout the growing season. 

3. VIs sensitive to a certain plant property (e.g., chlorophyll content) may allow a 

successful classification at times when VIs sensitive to other plant properties (e.g., 

water content, biomass, etc.) fail to classify correctly. 

4. Combining several VIs for grassland classification allows a temporally more stable 

classification of communities than using one single VI because for distinguishing 

communities at a point in time, a set of optimal VIs is selected. 

To test these hypotheses, we collected a series of spectral signatures of five species-rich 

grassland communities in a long-term fertilization experiment for 38 dates during the growing 

seasons of 2012–2014. Subsequently, we calculated 15 broadband and narrowband VIs and 

tested the performance of each single VI for distinguishing these five communities using the 
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Welch test (Welch, 1938). In addition, multiple VIs for classifying the same grassland 

communities using the random forests algorithm were tested (Breiman, 2001). Finally, we 

compared the classification accuracy achieved using single VIs and the Welch test to the 

performance reached by the random forests algorithm. 

 

2.2 Materials and methods 

2.2.1 Study area 

The RGE is a long-term fertilization experiment, which was set up in 1941. It is located near 

the village of Rengen (Rhineland-Palatinate, Germany) in the Eifel Mountains, approximately 

60 km west of Koblenz. The experiment is located at the position 50°14′21.6″N, 6°49′34.6″E 

at an elevation of 475 m asl. The temperate, maritime climate at the site features an annual mean 

precipitation of 811 mm and a mean annual temperature of 6.9 °C (Rengen Experiment 

Meteorological Station). A detailed description of the experiment is given in Schellberg et al., 

(1999). In brief, the experiment was set up on a formerly wet heathland site in randomized block 

design. In 1941, the area was grubbed, and a mixture of grasses and herbs was sown. Five 

fertilizer treatments have been applied annually: lime only as calcium oxide (CaO, Ca), lime 

and nitrogen (CaO/N, CaN), lime, nitrogen and phosphorus (CaO/N/P2O5, CaNP) and lime, 

nitrogen, phosphorus and potassium (CaO/N/P2O5/KCl, CaNPKCl and CaO/N/P2O5/K2SO4, 

CaNPK2SO4, respectively). The plots in this experiment are representative of grassland fields 

on farms under different management intensities and stand for fields of a similar type spread 

all across European grassland areas. Treating the plots with different types of fertilizer resulted 

in significant differences in plant and soil nutrient content (for more details, see Hejcman et al., 

2010b). 

This work was conducted on five plots of the RGE with a size of 3 m × 5 m (Figure 2-1). The 

plots were harvested twice annually, i.e., once at the beginning of July and once in the middle 

of October. Previously-published data from this experiment (Hejcman et al., 2007; Schellberg 

et al., 1999) indicate that dry matter production increased gradually from Ca, CaN, CaNP, 

CaNPK2SO4 to the CaNPKCl treatment and that biomass production in the first cut is higher 

than in the second cut. Furthermore, long-term fertilization resulted in significant differences 

in the floristic compositions of the communities. The vegetation in the Ca and CaN treatments 

mostly resemble the montane meadow of Geranio-Trisetetum (Polygono-Trisetion), whereas 

the CaNP plot features a transitional type between Poo-Trisetetum and Arrhenateretum (both 
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from the Arrhenatherion alliance) (Chytrý et al., 2009). In the NPK treatments, vegetation 

corresponded to the mesotrophic Arrhenateretum meadows (Chytrý et al., 2009). 

All of these differences in the properties of plant canopies have strong effects on their optical 

characteristics. Generally, a more rapid change in visual appearance at the beginning of the 

growing seasons is observed in the NPK-treated plots each year. These plots develop rapidly in 

green biomass and reach high LAIs and a bright green canopy. Later, in June, senescence of 

plants commences, which leads to higher contributions of senesced yellow plant material. In 

contrast, development in green biomass in the Ca and CaN treatment is usually much slower, 

but the color of these canopies remains green, even later in the growing season. 

 

2.2.2 Spectral measurements 

Field spectroradiometers have successfully been used for discriminating differences in 

grassland types caused by management practices or climatic variability (Price et al., 2001; 

Psomas et al., 2005). In addition, there is evidence in the literature that field spectroradiometer 

data are highly correlated with satellite data (Poças et al., 2012) and relatively free of 

atmospheric effects (Thenkabail et al., 2000). Thus, we collected spectral measurements in the 

RGE during the growing seasons of 2012–2014 (Table 2-1) using an FS 3 spectroradiometer 

(Analytical Spectral Devices Inc., Boulder, CO, USA). This instrument covers a spectral range 

between 350 nm and 2500 nm in 1-nm steps, with a 3-nm full width at half maximum (FWHM) 

at a wavelength of 700 nm and 10 nm at 1400 nm and 2100 nm (ASD Inc. (ed.), 2010).  

Table 2-1. Number of data collection days between 2012 and 2014 by growth. 

 
No. of Acquisition Days 

2012 2013 2014 

Growth one 4 7 8 

Growth two 7 6 6 

 

The spectroradiometer was mounted on a motor-driven rail-crane that automatically moved 

along a rail track next to the five plots. It was equipped with a photoelectric guard (light barrier) 

to ensure a systematic sampling of spectral properties at the same position (Figure 2-1; cf. 

Gamon et al., 2006). From this vehicle, spectra of the vegetation were measured on three 

circular spots within each plot from a height of 2 m above ground at nadir position, resulting in 

a field of view (FOV) of 90 cm in diameter per spot (Figure 2-1). On each measuring day, 

between twelve and thirty-three spectra per plot were acquired between 10:00 a.m. and 4:00 

p.m., i.e., between 210 minutes before and 150 minutes after solar noon. Spectra were recorded 
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under clear (sunny) conditions, which ensured that influences of clouds were minimal. The 

spectral reflectance of the plant canopies was calculated based on a Spectralon® 400 cm2 white-

reference zenith polymer target (95% reflectance, Labsphere Inc., North Hutton, NH, USA) 

always after three measurements were taken. 

 

Figure 2-1. Setup of the automated field observation system with its components (a) and 

arrangement of fertilizer treatments and monitored plots (b). 

 

2.2.3 Calculation of the temperature sum 

It is well known that changes in plant development are closely related to changes in weather 

variables, such as precipitation and accumulated temperature (Poças et al., 2012; Ritchie and 

NeSmith, 1991), and not to the date or day of year. Thus, we decided to use the temperature 

sum (T∑) as the temporal variable. T∑ was calculated for the years 2012-2014 based on the 

average daily temperatures given in the 1 × 1 km mosaic, provided by Deutscher Wetterdienst 

(DWD, 2015) according to the method by Ernst and Loeper, (1976). Daily mean temperatures 

above 0°C were added up. To correct for low solar irradiation during the winter months, a 

weight factor of 0.5 was assigned to January, 0.75 to February and 1 to the remaining months 

(Ernst and Loeper, 1976). As a starting point of the growing season, a value of 200 °C d was 

assumed. At this point and before the onset of the second growth in July, T∑ was set to zero to 

provide equal scales for the first and the second growth. 
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2.2.4 Calculation of the vegetation indices 

Based on the spectral measurements, 12 narrowband and 3 broadband VIs were calculated 

(Table 2-2). Therefore, five bands of the multispectral RE satellites were simulated using their 

spectral response function (BlackBridge (ed.), 2012):  

 𝛾𝑥 =
∫ 𝛾𝑛

𝑛

𝑛0
∗ 𝜌𝑛

𝜌𝑡
 (2.1) 

where γx is the reflectance of the simulated RE band, n is the band number of the spectral 

measurement, γn is the reflectance of band n, ρn is the response of band n, given in the spectral 

response function, and ρt is the sum of values given in the response function of band x. RE 

appeared to us as an interesting broadband sensor because its spatial resolution (6.5 m) is higher 

than spatial resolution of other broadband systems (e.g., Landsat 7, 8 or S-2) and was thus better 

comparable to the high spatial resolution of field spectroradiometer data. We selected these VIs 

because they are sensitive to different plant properties, contained different spectral information 

and are commonly used in grassland science. The VIs that were used can be grouped into three 

categories according to Table 2-2: 

1. VIs sensitive to green vegetation, biomass and leaf area, 

2. VIs sensitive to plant chlorophyll content, 

3. VIs sensitive to the plants’ content in lignin, N, water, pigments or to plant physiological 

performance and phaeophytization (environmental stress). 

To display the temporal development of the VIs as smoothed curves, first daily averages for 

each VI were calculated. Subsequently, the local polynomial smoothing algorithm (loess) 

(Cleveland et al., 1992), which is implemented in the ggplot2 (Wickham and Chang, 2016) 

package for R (R Development Core Team, 2015), was used to create smoothed VI curves. 
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Table 2-2. Selected VIs for discriminating differently fertilized grassland plots. 

VI VI Full Name Formula Sensitivity Source 

GNDVI Green normalized difference vegetation index 
(NIR − GREEN)

(NIR + GREEN)
 Green vegetation/biomass, LAI Gitelson et al., (1996) 

nGNDVI 
Narrowband green normalized difference vegetation 

index 

(780 nm − 550 nm)

(780 nm + 550 nm)
 Green vegetation/biomass, LAI Gitelson et al., (1996) 

NDVI Normalized difference vegetation index 
(NIR − RED)

(NIR + RED)
 Green vegetation/biomass, LAI Rouse Jr. et al., (1974) 

nNDVI Narrowband normalized difference vegetation Index 
(800 nm − 670 nm)

(800 nm + 670 nm)
 Green vegetation/biomass, LAI Rouse Jr. et al., (1974) 

nREP Narrowband red edge position 700 +
40 ×

670 𝑛𝑚 + 780 𝑛𝑚
2

− 700 nm

740 𝑛𝑚 − 700 𝑛𝑚
 Chlorophyll Guyot et al., (1988) 

LCI Leaf chlorophyll index 
(NIR − RE)

(NIR − Red)
 Chlorophyll Datt, (1999) 

nLCI Narrowband leaf chlorophyll index 
(850 nm − 710 nm)

(850 nm + 680 nm)
 Chlorophyll Datt, (1999) 

nNPCI Narrowband normalized pigment chlorophyll index 
(680 nm − 430 nm)

(680 nm + 430 nm)
 Chlorophyll Peñuelas et al., (1994) 

nNDLI Narrowband normalized difference lignin index 
log

1
1754 nm

−  log
1

1680 nm

log
1

1754 nm
+  log

1
1680 nm

 Lignin content Serrano et al., (2002) 

nNDNI Narrowband normalized difference nitrogen index 
log

1
1510 nm

−  log
1

1680 nm

log
1

1510 nm
+  log

1
1680 nm

 Nitrogen content Serrano et al., (2002) 

nPRI Narrowband photochemical reflectance index 
(550 nm − 530 nm)

(550 nm + 530 nm)
 

Physiology (photosynthesis, 

pigments) 
Peñuelas et al., (1994) 

nWC Narrowband water content 
1193 nm

1126 nm
 Water content/water stress Underwood et al., (2003) 

nWI Narrowband water index 
900 nm

970 nm
 Water content Peñuelas et al., (1997) 

nSIPI Narrowband structure intensive pigment index 
(800 nm − 450 nm)

(800 nm + 650 nm)
 Pigments Peñuelas et al., (1995) 

nNPQI Narrowband normalized phaeophytization index 
(415 nm − 435 nm)

(415 nm + 435 nm)
 Phaeophytization Barnes et al., (1992) 



Distinguishing intensity levels of grassland fertilization using vegetation indices 

32 

 

2.2.5 Welch test 

Using Welch’s t-test (Welch, 1938), we determined how well the different grassland 

communities can be distinguished at different points in time using certain VIs. The Welch test 

essentially delivers similar results as a two-sample t-test, but does not assume a normal 

distribution and equal variances of the samples, which were not given in our dataset. The Welch 

test was calculated for each VI for a given T∑ by testing the VI value measured in one plot 

against the VI value measured in all other plots. The VI value of a certain plot at a certain T∑ 

was assumed to be different from the remaining plots if p was estimated <0.01. The results of 

the five plots were summarized, and the classification accuracy was calculated for each T∑. 

The overall accuracies for the two growths were calculated by averaging each VI’s accuracy at 

each T∑. Subsequently, the Welch test accuracies were plotted using local polynomial 

smoothing (loess) (Cleveland et al., 1992) in the ggplot 2 package (Wickham and Chang, 2016) 

in R (R Development Core Team, 2015). 

 

2.2.6 Random forests classification 

Random forests (Breiman, 2001) is a classification method based on classification and 

regression trees. To classify data, in the first step, a random sample with known output classes 

is extracted from the dataset. Based on this random sample, a number of binary decisions (splits) 

are made, which at the end, achieves the highest possible purity of the output classes. At each 

split, a number of variables is tested as the splitting variables. More splits are performed until 

the highest possible purity of the output classes is reached. This network consisting of a few to 

some hundreds of splits is called a tree. Subsequently, a number of additional trees is grown 

based on other random samples. The sum of trees grown by this principle is called a random 

forest. Usually, approximately 63% of the samples of the complete dataset are used for growing 

the trees, and the remaining 37% of the samples are left for model validation. Finally, the 

decision of an observation belonging to a class is made based on the number of trees within a 

forest assigning the value of the observation to that class. 

In this study, all 15 VIs were tested as split variables at each node. A number of n = 200 trees 

for creating the forest was identified to be sufficient. To investigate the classification accuracy, 

the Out-Of-Bag (OOB) error was calculated. This error indicates the accuracy reached by the 

forest by testing the decisions created by the forest against the validation dataset. Subsequently, 

OOB errors for each T∑ were plotted using lines created by the smooth.spline function in R 

(Chambers and Hastie, 1992). Furthermore, the variable importance indicating the probability 
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of a VI being used in the classification at a split was calculated by dividing the number of splits 

based on one VI by the total number of splits in a tree. The average importance of the VIs of 

each growth revealed their overall importance and was further tested for significance using a 

two-paired t-test. Furthermore, variable importance by T∑ was plotted for five selected VIs 

using the local polynomial smoothing algorithm (loess) (Cleveland et al., 1992) in the ggplot 2 

package (Wickham and Chang, 2016) in R (R Development Core Team, 2015). 

 

2.3 Results 

The results of this multi-temporal study are presented in the following sections separately for 

pooled data on growth one and growth two. Treating the two growths individually was 

necessary because they varied significantly in their development. This implies important 

consequences for the classification of the grassland communities.  

 

2.3.1 Seasonal curves of the vegetation indices 

In Figure 2-2, the developments of narrowband red edge position (nREP), leaf chlorophyll 

index (LCI), NDVI, narrowband water index (nWI) and narrowband water content (nWC) by 

T∑ within the five plant communities are shown. These VIs were selected for visual 

presentation because they represent the best performing VIs for each group averaged over both 

growths according to Section 2.4, as well as the best performing VIs of each growth. The shape 

of the curves of all VIs measured in the Ca, CaN and CaNP treatment were more similar in 

growth two than in growth one. This was mostly related to the lower amplitude of changes in 

VIs that we observed in growth two. 

The curves of nREP, LCI, NDVI and nWI increased at the beginning of both growths in all 

plots. Thereby, the slopes of the curves derived for the NP(K)-treated plots were steeper than 

those in the Ca and CaN plot, but the CaNP treatment did not reach as high VI values as the 

NPK treatments. The T∑ at which peaks of these four VIs in the NP(K)-treated plots were 

reached differed between the VIs and between the two growths. The highest values in these 

four VIs were found at higher T∑s in growth one than in growth two. Furthermore, the 

chlorophyll- and biomass-related VIs (nREP, LCI and NDVI) reached their peaks earlier than 

the water-related nWI. Towards the end of both growths, values of the four VIs decreased 

steeply in the NPK treatments. In contrast, VIs in the Ca and CaN plots remained relatively 

stable. Opposed to the four previously-mentioned VIs, the curve of nWC decreased at the 

beginning of both growths. Thereby, the highest decline rates were observed in the NP(K) 
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treatments, which reached their minimum later in growth one than in growth two. Afterwards, 

nWC in the NP(K) treatments began to rise. nWC in the Ca and CaN treatments decreased 

slower than in the NP(K) treatments at the beginning of both growths, but remained relatively 

stable towards their end. 

  

Figure 2-2. Smoothed curves of temporal development of (a) nREP, (b) LCI, (c) NDVI, (d) nWI 

and (e) nWC in growing seasons one and two.  

 

In growth one, curves in the Ca, CaN and CaNP treatments featured differences in their values 

of nREP, LCI and nWC throughout most phases of the growing season. However, the curves 

measured in the CaNPKCl and CaNPK2SO4 treatments were similar in these three VIs. At the 

same time, these treatments differed considerably in nWI, particularly at the end of growth one. 

At the beginning of growth one, NDVI values were different between the plots. At later stages, 

NDVI values in the five plots became relatively similar. In growth two, larger differences 

between the CaNPKCl and the CaNPK2SO4 treatment were identified for nREP, LCI and NDVI 
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than in growth one. In contrast, both NPK treatments showed similar courses of their curves for 

nWI and nWC. 

  

2.3.2 Distinguishing the grassland communities using the Welch test 

Although time courses of many VIs tested in this study followed similar patterns, uncertainty 

remained for how the identified differences have influenced the accuracy for classifying the 

grassland plots using one VI at a time. Table 2-3 displays the overall accuracies of the single 

VIs achieved using the Welch test. In the first growth, nWC significantly differed between the 

five plots in 91% of the cases and provided the highest rates of discrimination, followed by 

nWI, nLCI, narrowband structure intensive pigment index (nSIPI) and LCI. The weakest 

accuracy was achieved by narrowband normalized phaeophytization index (nNPQI), followed 

by narrowband photochemical reflectance index (nPRI), narrowband normalized pigment 

chlorophyll index (nNPCI) and narrowband green normalized difference vegetation index 

(nGNDVI). In the second growth, significant differences in the VIs between the plots were most 

frequently found using LCI, nWI, nREP, nSIPI and nWC. As in growth one, the lowest 

classification rates in the second growth were reached with nPRI, nNPQI and NPCI. 

Regarding the differences in classification accuracy reached by the broadband and narrowband 

versions of VIs, results between the two growths differed. In growth one, broadband NDVI and 

GNDVI outperformed their narrowband versions, whereas the opposite was found in growth 

two. 

Table 2-3. Ranks and overall accuracies of the 15 VIs for the first and the second growth, as 

determined by the Welch test (12 < n < 33, p = 0.01, α = 0.99). 

Growth 
one 

Index nWC nWI nLCI nSIPI LCI nNDLI NDVI nNDNI  

Accuracy 0.91 0.85 0.84 0.84 0.83 0.83 0.80 0.80  

Index nNDVI nREP GNDVI nGNDVI nNPCI nPRI nNPQI  Average 

Accuracy 0.79 0.79 0.76 0.75 0.73 0.68 0.41  0.77 

Growth 
two 

Index LCI nWI nREP nSIPI nWC nLCI nNDLI nNDNI  

Accuracy 0.76 0.75 0.72 0.71 0.71 0.67 0.64 0.64  

Index nGNDVI nNDVI NDVI GNDVI nNPCI nNPQI nPRI  Average 

Accuracy 0.62 0.62 0.61 0.61 0.46 0.46 0.44  0.63 

 

The probability for nREP, LCI, NDVI, nWC and nWI to distinguish plots at different T∑s 

correctly is shown in Figure 2-3. At the beginning of the first growth, accuracies of LCI, NDVI, 

nWI and nWC were above 80% and further increased to more than 95%. The accuracy of nREP 

was about 50% at the onset of growth, but drastically increased during the initial stages of 
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growth one and successfully separated more than 95% of the plots at a T∑ of 450 °C d. 

Afterwards, the accuracies of nREP, LCI and NDVI dropped to levels between 65% and 70%. 

Accuracies of nWC and nWI remained more stable, making them the strongest and second 

strongest VI, respectively. At the end of growth one, the accuracy of the chlorophyll-related 

VIs started to increase earlier than the accuracy of the water-related VIs. Thus, they achieved 

similar accuracies, like the water-related VIs. 

 

Figure 2-3. Accuracies of nREP, LCI, NDVI, nWI and nWC to distinguish plots at different 

T∑s.  

 

During the onset of the second growth, the highest classification accuracies were reached using 

nWI (above 90%). Similar to the previous growth, the accuracies of all VIs (except for nREP) 

increased until T∑s of 400–450 °C d were reached. Afterwards, all VIs’ accuracies dropped, 

except for nREP, which remained constant at this time. As LCI recovered as the first VI, it was 

the best performing VI between 800 and 1150 °C d. The water-related VIs recovered in their 

accuracies the latest. At the end of growth two, nREP steeply increased and outperformed the 

other four VIs. 

 

2.3.3 Random forests classification 

The random forests classification was performed to investigate how the utilization of several 

VIs improves the classification accuracies, compared to single VIs. The error rate of the 

classification was expressed as OOB error, which is shown as a function of T∑ in Figure 2-4. 

It was observed that OOB errors in the second growth (12%) were higher than in the first growth 

(5%). Furthermore, the classification error in growth one remained relatively stable (between 
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2.5% and 6%). In contrast, OOB errors in growth two varied significantly with the T∑ ranging 

between 2.5% and 17.5%. 

 

Figure 2-4. Random forests: Out-Of-Bag (OOB) errors of growths one and two. 

 

To identify the probability of a VI for being selected as a split variable in random forests, the 

variable importance was calculated and averaged for each growth (Figure 2-5). The results of 

the t-test (cf. Table A 1) indicate significant differences in the VIs’ importance. In the first 

growth, nWI reached the highest importance (16% of the decisions made) and was selected 

significantly more frequently than all other VIs, except for nREP, which ranked second. LCI, 

nSIPI, nWC and narrowband normalized difference lignin index (nNDLI) outperformed NDVI, 

nGNDVI, nNDVI, GNDVI, PRI, nNPCI and nNPQI significantly. Medium to low importance 

(between 6% and 4%) was found for nNDNI, nLCI, NDVI, nGNDVI, nNDVI and GNDVI. 

These VIs have been of significantly higher importance than nNPCI and nNPQI. During the 

second growth, the differences in importance between the VIs were lower than in the first 

growth. However, similar VIs influenced the classification the strongest: nREP, nWI, LCI, 

nSIPI and nWC were of significantly higher importance than nLCI, nNDVI, GNDVI, NDVI, 

nPRI and nNPQI. Of medium to low importance were nNDNI, nNPCI, nGNDVI, nNDLI, 

nLCI, nNDVI, GNDVI and NDVI. nNPQI and nPRI were of significantly lower importance 

(2.9% and 3.5%, respectively) than all other VIs. 
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Figure 2-5. Overall importance of the VIs in the random forests classification for growth one 

(a) and growth two (b). The error bars indicate the standard deviation in overall importance 

calculated from the importance derived for the single T∑s. 

 

Figure 2-6 shows the variations in importance of nREP, LCI, NDVI, nWI and nWC throughout 

the growing season. At the beginning of growth one, nREP was most important for the 

classification. However, at T∑s above 400 °C d, the importance of all biomass and chlorophyll-

related VIs (nREP, LCI and NDVI) decreased, whereas the importance of the water-related VIs 

(nWI and nWC) increased. Thus, at T∑s larger than 600 °C d, nWI was of the highest 

importance, followed by nWC or nREP. After a T∑ of 900 °C d was reached, the importance 

of nWI and nWC decreased. Consequently, the classification was more influenced by 

chlorophyll-related VIs (particularly LCI and nREP) at T∑s larger than 1150 °C d. During the 

entire first growth, NDVI was among the VIs with the lowest importance. 

At the onset of the second growth, nREP was the most important VI. However, over time, the 

importance of LCI and nWI increased and exceeded nREP at T∑s larger than 650 °C d. Similar 

to nWI, nWC increased in importance at the beginning of the second growth, but did not reach 

the high levels of nREP, LCI and nWI. At T∑s larger than 950 °C d, the importance of nWI 

decreased. Thus, during the remaining period of growth two, LCI or nREP featured the highest 

importance. Similar to growth one, NDVI had a minor impact on the classifications throughout 

the entire growth. 
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Figure 2-6. Importance of nREP, LCI, NDVI, nWI and nWC in growth one and growth two.  

 

2.4 Discussion 

2.4.1 Critical reflection on the experimental settings 

In this work, the performance of 15 different VIs for distinguishing five differently-fertilized 

grassland communities (Ca, CaN, CaNP, CaNPKCl and CaNPK2SO4) was tested. Constant 

fertilization lead to a characteristic plant species composition in each plot, which differed 

between treatments and changed only marginally between years (Hejcman et al., 2007). 

Similarly, biomass production varied between the plots; the lowest biomass was produced in 

the Ca treatment, followed by CaN, CaNP and the NPK treatments (Hejcman et al., 2010b; 

Schellberg et al., 1999). 

Because observations were made in three years, it was assured that annual fluctuations in 

precipitation or radiation were captured in the dataset. This setup, as well as the utilization of 

T∑ as the temporal variable secured that no climatic or management factors influenced the 

species composition and the biomass development. Minor disturbances such as lodging of 

plants (especially at the end of the first growth in the NPK-treated plots) and the naturally-

occurring variability of the plant canopies was diminished by acquiring measurements at three 

different locations within each plot. Stagakis et al., (2010) identified significant effects of the 

sensor viewing angle and the sensor height on the spectral reflectance measured over plant 

communities. In this study, the utilization of the crane system allowed systematic measurements 

from a 2-m height and nadir position, which widely eliminated these effects. Changing cloud 

cover (Gamon et al., 2006; Roelofsen et al., 2013), as well as changes in solar elevation angle 

(Stagakis et al., 2010) are often considered as additional confounding factors of the spectral 
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measurements. Diurnal changes in solar elevation were adapted by acquiring spectra between 

10:00 a.m. and 4:00 p.m. and averaging this information for an entire day. Visual inspection of 

VI values recorded on the single days revealed that they were relatively stable. Furthermore, 

acquiring data in a large interval in time covered the daily occurring variance in spectral signal 

and further stabilized VI values. However, seasonal changes in solar elevation may have altered 

the irradiation conditions. However, we assume that these effects were minimized by utilizing 

VIs because their use significantly lowers the impact of illumination conditions and cloud cover 

(Jensen, 2007). Additionally, frequent measurements of the white reference panel ensured that 

reflectance was adapted for changes in solar irradiance. 

 

2.4.2 Seasonal curves of the vegetation indices 

Based on multitemporal measurements of five different VIs (nREP, LCI, NDVI, nWI and nWC) 

sensitive to different biophysical parameters, differences in the VI development over time were 

investigated. Comparing both growths, similar developments were observed. However, lower 

maxima of positively-developing VIs (nREP, LCI, NDVI and nWI), as well as higher minima 

for negatively-developing VIs (nWC) were observed in growth two. The reason behind this is 

that growth rates were lower in the second growth, resulting in lower intensities of green 

vegetation reflectance and lower amounts of water stored in plants. As observed by other 

scientists (Psomas et al., 2005; Rossini et al., 2012), VIs followed strong seasonal dynamics 

throughout the growing season. In the NPK-fertilized plots, VIs related to biomass, as well as 

to chlorophyll and water content, such as nREP, LCI, NDVI and nWI, passed through a rapid 

increase at the beginning of both growths. At later stages, nREP, LCI and NDVI decreased as 

a result of starting senescence in the NPK-treated plots. This was supported by Asner, (1998), 

who found significant effects of senescent grass components on the NIR reflectance, which has 

been used for the calculation of these VIs. In contrast, nWI remained at a high level for a longer 

time, indicating that water content remained stable at the onset of senescence. At the time, 

NP(K) fertilized plots started senescing, all four VIs in the Ca and CaN plots increased because 

these plots host slow-growing species (Chytrý et al., 2009; Hejcman et al., 2007). Such species 

not only increase in their biomass over a longer time-span, but also remain relatively constant 

in their water and chlorophyll content. nWC developed contrary to the four other VIs due to its 

negative response to water content. 
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2.4.3 Testing the classification accuracy of the fifteen vegetation indices using the Welch test 

To test the ability of every single VI for distinguishing the five different vegetation 

communities, a Welch test was performed for each T∑. The average of the Welch tests’ results 

allowed an estimation of the overall classification accuracy of each VI in the individual 

growths. It was shown that classification performance of all VIs (except nNPQI) was lower in 

growth two than in growth one. The explanation for this is that VI curves in the second growth 

featured lower amplitudes and were less distinct from each other. These relatively low 

amplitudes were caused by a lower and more similar sward height and biomass production in 

growth two (Table A 2). 

At the beginning of both growths, classification accuracies were relatively low. We assume that 

this was caused by small differences in canopy biomass occurring at this stage. This is supported 

by measurements of Compressed Sward Height (CSH), which are highly correlated to canopy 

biomass (Harmoney et al., 1997). CSH featured a standard deviation between the five 

communities of 2.93 cm in the initial stage (464 °C d, 2014) and 18.21 cm in the final stage 

(464 °C d, 2014) of growth one (Table A 2). Similarly, a standard deviation of 1.18 cm was 

shown at the beginning (210 °C d, 2014) and 4.57 cm at the end (1353 °C d, 2014) of growth 

two (Table A 2). Furthermore, it is likely that subtle differences in the reflectance of the plant 

canopies in the early stages of both growths have been concealed by the influence of soil on the 

reflectance signal (Numata et al., 2008). At later stages of the two growths, biomass increased 

steadily, which mitigated the contribution of soils to the spectral reflectance (Norman et al., 

1985; Schut et al., 2002). Combined with increasing differences in biomass occurring between 

the different fertilizer treatments, an increase in the classification accuracies was achieved. 

However, as soon as biomass production in the NPK-treated plots languished, classification 

accuracies dropped, as canopies were optically more similar. 

Due to the onset of senescence in the NPK-treated plots, on the one hand, and the constant 

abundance of green biomass in the Ca and CaN plots, on the other hand, classification rates at 

the ends of both growths increased. This contradicts with results published by Fava et al., 

(2009), who stated that the senescence of vegetation lowers the differences between VIs. We 

assume that the postponed onset of senescence in the Ca and CaN plots led to increased 

classification accuracies in this study. This is supported by Sánchez-Azofeifa et al., (2009), who 

demonstrated that the ability to distinguish plant types based on spectral information is strongly 

dependent on their phenological stage. 
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During the first growth, the most successful separation in this experiment was achieved using 

nWC and nWI, which are known to respond to plant water content. The high overall 

classification rates of nWI and nWC were caused by the relatively stable classification accuracy 

in the middle of the growth. This stability was caused by differences in water holding capacity 

of the canopies because canopies featuring low biomass production (Ca and CaN treatments) 

desiccate earlier after rain events than the canopies of highly productive communities (NPK 

treatments). VIs coined for detecting changes in biomass, such as NDVI as well as nNDVI, 

GNDVI and nGNDVI, achieved lower classification accuracies. The reason for the poor 

performance of these VIs is the strongly decreasing classification accuracy in the middle of the 

growths. An explanation for this decrease in classification accuracy are the saturation effects of 

these VIs, which were observed under high LAIs (Cho et al., 2007; Lorenzen and Jensen, 1988; 

Wang et al., 2005). Interestingly, LCI, which is related to chlorophyll content, was less affected 

by saturation in the middle of the growth and seems to be more suitable for mapping grasslands 

featuring high LAIs than the previously-mentioned VIs. In the final stage of growth one, the 

classification accuracies of nREP and LCI increased and reached the accuracy level of nWI and 

nWC. This behavior is explained by the good performance of these VIs for distinguishing the 

senescing NPK treatments from the Ca and CaN treatments. nNPQI (related to 

phaeophytization), nPRI (indicating plant vitality) and nNPCI (related to chlorophyll content) 

achieved the lowest accuracies. 

During the second growth, the highest classification accuracies were achieved by LCI, followed 

by nWI and nREP, which confirms the strong performances of these VIs, which was already 

found in growth one. The relatively good performances of LCI and nREP compared to the water 

content-related VIs in growth two leads to the assumption that the lower LAIs support the 

utilization of chlorophyll- or biomass-related VIs. Again, our results indicate that nNPQI, nPRI 

and nNPCI, as well as the nGNDVI, nNDVI, NDVI and GNDVI are not well-suited for 

classifying the studied grassland communities. Finally, nWI and nSIPI, provided high 

classification accuracies for both growths, which suggests that these VIs are relatively stable 

for the classification of grasslands along nutrient gradients. 

No clear result was obtained whether broadband or narrowband VIs provide the highest 

accuracies for classifying the studied grassland communities. In growth one, broadband NDVI 

and GNDVI outperformed the narrowband versions, whereas in growth two, the narrowband 

versions provided higher classification accuracies. These results contradict the findings made 

by Thenkabail et al., (2004b), who found an increased classification accuracy using exclusively 
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narrowbands to separate weeds, shrubs, crops and grasses in Africa compared to a classification 

using exclusively broadbands. This suggests that the selection of broadband or narrowband VIs 

for achieving optimal classification is also dependent upon the timing of spectral data 

acquisition. 

 

2.4.4 Random forests classification 

We applied a random forests classification to investigate how much the inclusion of all 15 VIs 

improved the classification of the five plots compared to single VIs. Our results show that 

classification accuracy increased by 4% in growth one and 12% in growth two in comparison 

to the strongest VI using the Welch test. Furthermore, the classification accuracy achieved by 

random forests was more stable (remaining always above 82%) than the best performing VIs 

identified using the Welch test. In growth one, classification rates varied marginally over time, 

whereas OOB errors in growth two fluctuated between 2.5% and 17.5%. These variations in 

growth two and the resulting lower overall accuracy were most likely caused by larger 

influences of soil reflectance on the signal (Schut et al., 2002) at the beginning of growth two, 

as well as by smaller differences in between the plots’ canopy biomass in the green-up phase 

(Table A 2). The increasing classification accuracy at the end of growth two was caused by the 

onset of senescence in the NPK-treated plots, whereas the other plots remained stable in their 

amount of green leaf area (Idso et al., 1980). 

Variable importance indicates the frequency a VI is selected inside a random forest. In growth 

one, nWI was the most important VI, followed by nREP and LCI. Our results show that other 

VIs, such as nSIPI, nNDLI, nNDNI and nLCI, carry additional important information for 

improving the classification. Interestingly, other biomass-related VIs (i.e., NDVI, nGNDVI, 

nNDVI and GNDVI), as well as water-related VIs (i.e., nWC) were of relatively low importance 

compared to the Welch test. We assume that nWI as a water-related VI, as well as nREP and 

LCI as chlorophyll-related VIs carried similar information and lead to the low importance of 

these VIs. Of minor importance were nPRI, nNPCI and nNPQI, which indicates that these VIs 

marginally support the classification. In the second growth, the ranking in importance of the 

VIs was similar, but the weight of the VIs was more evenly distributed. This even distribution 

supports the assumption that especially if classification accuracy was low using single VIs, the 

addition of VIs sensitive to other biophysical variables increased the classification accuracy. 

Therefore, nREP as the most important VI was closely followed by nWI, LCI, nSIPI and 

nNDNI. As biomass-related VIs were less influenced by the high LAIs in growth two, nGNDVI 
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and nNPCI increased in importance compared to growth one. As these two VIs included similar 

information as nNDVI, GNDVI and NDVI, the latter VIs were of lower importance. As 

observed in the first growth, nPRI and nNPQI were rarely selected by random forests. 

Using nREP, LCI, NDVI, nWI and nWC, the importance of the VIs under changing T∑s was 

investigated. In growth one, the results of variable importance widely confirmed our findings 

made using the Welch test. It was shown that the importance of water-related VIs was relatively 

stable at times when biomass- and chlorophyll-related VIs saturated due to high LAIs of the 

grass canopies (Cho et al., 2007; Lorenzen and Jensen, 1988; Wang et al., 2005). NDVI was of 

low importance throughout the entire first growth, which confirms its low classification 

accuracy identified using the Welch test. Throughout the entire second growth, the chlorophyll-

related VIs, nREP and LCI, were relatively stable in their importance. However, nWI and nWC 

added valuable information especially at T∑s between 400 and 1000 °C d, indicating that these 

VIs are particularly important when LAIs in the canopies are high and obscure differences in 

biomass or chlorophyll content. Again, NDVI was of minor importance. 

 

2.5 Conclusions 

This study presents an approach for classifying grassland communities along a gradient from 

intensive to extensive fertilizer management in a two-cut-system using a set of 15 remotely-

sensed VIs. It was shown that VIs are useful to identify differences between the grassland 

communities at different times throughout a growing season. Each VI featured characteristic 

fluctuations over time in the individual plots. It is well documented for this particular 

experiment that plots differ significantly in their biophysical properties, such as biomass 

production, LAI and chlorophyll content. Hence, we conclude that the tested VIs were sensitive 

to these properties. 

The different time courses of VI development have far-reaching consequences for the use and 

interpretation of VIs when classifying grassland. None of the VIs was able to feature constantly 

high classification accuracies throughout the entire growing season. However, while 

classification accuracies of VIs sensitive to one biophysical variable decreased, the accuracies 

of other VIs remained more stable allowing higher classification accuracies. Biomass- or 

chlorophyll-related VIs, such as nREP, NDVI or LCI, provided good results when plants had 

further developed in the intensively-managed plots than in the extensively-managed plots. 

However, at later stages when the extensively-managed plots caught up in development, water 

content-related VIs, such as nWI or nWC, were the better alternative for a classification because 



Distinguishing intensity levels of grassland fertilization using vegetation indices 

45 

 

biomass-related VIs were affected by saturation effects. Further, classification in the second 

growth was more difficult than in the first growth, due to less distinct differences in biophysical 

characteristics in between the plant communities. Thereby, the classification performed 

particularly weak when slow-growing canopies had fully developed and fast-growing canopies 

had not yet entered senescence. At this stage, nWI and nWC did not reach the high classification 

accuracies of growth one, so that none of the VIs separated the communities reliably. 

This problem was solved by applying all 15 VIs in the random forests algorithm. A time series 

of random forest models using the best VIs for classifying the plant communities was created. 

As spectral information in this procedure was used more effectively, classification accuracies 

increased in both growths, but most considerably in the second growth. Furthermore, our 

multitemporal analysis has shown that classification accuracies using this approach remained 

relatively stable throughout the entire first growth. Although classification rates in the second 

growth varied to some degree, significant improvements were made compared to the utilization 

of single VIs. These results suggest that the selection of an appropriate VI (depending on the 

plant development) is essential for classifying grasslands using single VIs. However, an 

alternative using random forests was promising, because it yielded a more robust grassland 

classification. 

The utilization of this multi-VI approach for grassland mapping at larger spatial extent could 

improve the separation of designated plant communities in respect to their floristic composition 

and plant properties. Future research should be guided towards testing random forests classifiers 

using VIs for grassland mapping with aerial or satellite imagery for other grassland 

communities featuring higher or lower temporal variability in biomass production and spectral 

reflectance. Results of such studies may significantly improve existing monitoring techniques 

(e.g., using single VIs), allow a more detailed grassland mapping and contribute to a sustainable 

management of grassland ecosystems.
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3 Can we detect grassland plant functional traits based on canopy reflectance?  

 

Abstract 

This study presents an approach to detect variations in FTs of different grassland communities 

under field conditions using hyperspectral reflectance measurements. FTs are phenological, 

morphological or physiological properties of plants, which are measured on the single 

individual. In order to assess the response of grassland communities to changes in management 

or environmental conditions, ecologists measure the FTs of grasslands using destructive 

sampling techniques in time-consuming and expensive field surveys. Hyperspectral RS may 

offer an efficient alternative to these approaches. 

The presented study was conducted in a long-term fertilization trial (since 1941), in which 

different levels of fertilization from limed only to full NPK-fertilization were applied. In the 

five different investigated treatments, grassland communities differing considerably in their 

FTs have developed. Spectral data and plant samples were collected from these communities 

throughout the growing seasons of 2012-2014. Subsequently, the strengths of the relations 

between spectral data and 23 different FTs were tested using PLSR. The accuracy (R²val) for 

detecting the FTs ranged between 0.1 and 0.8. PH, fPARabs, C/N-ratio, TFM, N-content, CSH, 

SPAD, NDF-content and LA were estimated with R²val ≥ 0.6. Models for PFM, LFM, LDM and 

LDMC reached moderate accuracies (0.4 ≤ R²val < 0.6). R²val < 0.4 (i.e. low accuracies) were 

calculated for TDMC, PDMC, PDM, TDM, PWC, TWC, LWC, C-content, L-S-ratio and SLA. 

These results show that 13 of the 23 FTs can be detected with moderate or high accuracy from 

hyperspectral reflectance data. This underlines the potential of RS to support ecologists in 

assessing the response of grassland communities to changes in management regime and climate. 

 

3.1 Introduction 

Grasslands cover the largest share among all agriculturally used areas in Europe, represent a 

major source of forage for livestock and are thus of particular importance for the production of 

meat and milk (Eurostat (ed.), 2017; O`Mara, 2012; Price et al., 2001). Furthermore, grasslands 

are home to a large number of endemic species (Hopkins and Holz, 2006). However, non-

adjusted management of grassland ecosystems may have negative impacts on the environment. 

These include the pollution of water bodies due to an inaccurate fertilizer application, the 

emission of greenhouse gasses into the atmosphere, the reduction of plant species diversity and 

the enhancement of soil erosion due to overgrazing (Bai et al., 2001; Pimentel, 2006; Tilman et 

al., 2002; Velthof and Oenema, 1995). Thus, grassland science is looking for methods, which 
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support land managers in enabling a cost-effective and sustainable milk and meat production 

and, at the same time, help to conserve these ecosystems. To understand the response of 

grassland communities to management actions, ecologists monitor the vegetation’s 

phenological, morphological, biochemical or physiological properties, referred to as FTs. FTs 

are usually measured for individual plants, can be up-scaled to the canopy (community traits) 

and be used comparatively across species (Violle et al., 2007). Thus, FTs help us understanding 

how single plants or entire grassland ecosystems respond to changes in the environmental 

conditions and management (Díaz et al., 2004; Kleyer et al., 2008; Lavorel and Garnier, 2002).  

This study investigates exclusively numerical FTs, which are measured as continuous variables 

(e.g. plant height, leaf area, biomass, etc.). The response of these FTs to differences in nutrient 

supply has previously been extensively studied (Al Haj Khaled et al., 2005; Cruz et al., 2002; 

Duru et al., 2004; Pontes et al., 2010). It was shown that nutrient supply has a large impact on 

the expressions of FTs and that they vary over time (Al Haj Khaled et al., 2005; Schellberg and 

Pontes, 2012). Consequently, FTs can be used as indicators for successional changes of 

grasslands in response to management actions or changes in climate (Cousins et al., 2003; 

Kahmen et al., 2002).  

Currently, data on FTs is obtained by field surveys, which are referenced only to a certain point 

in time and require destructive as well as time-consuming and costly sampling methods 

(Cornelissen et al., 2003; Homolová et al., 2013). RS has the potential to complement, extend 

or even replace these manual measurements of many FTs, providing spatially contiguous data 

of large areas at a high temporal resolution and at low costs (Homolová et al., 2013). Thus, RS 

may provide an efficient solution to map and monitor FTs. 

Historically, the application of satellite RS to detect FTs was limited by the low spectral 

resolution of sensors (Schaepman et al., 2009). However, the development of satellite-borne 

hyperspectral sensors, such as Hyperion (operated between 2001 and 2017), HISUI (launch 

planned in 2017), EnM (launch planned in 2019) and HyspIRI (launch planned around 2022) 

has opened new perspectives for satellite RS of FTs. Thus, Ustin and Gamon, (2010) stated in 

their review that many FTs sensitive to nutrient gradients may be detected by hyperspectral RS 

measurements. Thereby, the main challenge is to relate the spectral reflectance in particular 

bands of the electromagnetic spectrum to FTs, which are of importance for ecologists to assess 

ecosystem function (Schaepman et al., 2009).  

Many studies have shown that plant morphology, plant phenological status and species 

composition are related to the spectral reflectance of vegetation (Danson et al., 1992; Goel, 
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1988; Myneni et al., 1989; Psomas et al., 2005; Sánchez-Azofeifa et al., 2009; Schmidt et al., 

2004; Verrelst et al., 2009). Furthermore, several functionally important compounds such as 

pigments, water content and canopy N-content can be detected using RS (Feret et al., 2008; 

Fuentes et al., 2001; Gitelson et al., 2005; Inoue and Penuelas, 2001; Serrano et al., 2000; Sims 

and Gamon, 2002; Trombetti et al., 2008; Zhang et al., 2013). To obtain insights into which 

spectral regions are valuable to detect specific FTs and to enable optimal sensor designs, 

ground-based field spectrometry has proven to be indispensable (Houborg et al., 2015). These 

systems were successfully used to collect RS data with a high spectral resolution and a broad 

spectral range and link these measurements to chemical, morphological and structural 

properties of grassland vegetation (Asner, 1998; Ferner et al., 2015; Kumar et al., 2001).   

Up to date, no study has tested RS technology to detect the FTs of mixed grasslands along a 

fertilizer gradient during all phenological stages of vegetation development over several years. 

However, differences in phenology and vegetation composition (as induced by nutrient supply) 

significantly affect the spectrum-trait-relations and represent a substantial complication for 

utilizing RS in studies of FT detection (Houborg et al., 2015). Developing a method for 

estimating FTs using spectral reflectance measurements, which is stable for the phenological 

development and the floristic composition of grasslands, will allow a systematic monitoring of 

grassland ecosystems using RS. Such information will provide data for ecologists to adapt 

management strategies throughout the entire growing season and support an adjusted 

fertilization as well as an ecologically and economically sustainable use of grasslands.  

The objective of this study was to examine the overall capability of hyperspectral RS for 

estimating different FTs of species-rich grassland communities. For this purpose, we aimed to 

(1) identify the response of the spectral reflectance to differences in FT expressions of grassland 

communities as induced by nutrient status, (2) calibrate and validate models for estimating these 

FTs based on their spectral reflectance and (3) test these relations over several growing seasons 

and years. 

Therefore, we collected data on numerical FTs and measured the spectral signatures of 

grassland vegetation during three growing seasons. All FTs were related to reflectance using 

statistical modelling techniques such as PLSR. Finally, FTs detectable by RS measurements as 

well as the most important spectral regions for estimating these FTs were identified.   
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3.2 Materials and methods 

3.2.1 Study area 

The RGE has been selected as study site. It exists since 1941 and is located in the Eifel 

Mountains (Rhineland-Palatinate, Germany, 50°13`N, 6°51`E) at an elevation of 475 m. The 

site features a temperate, maritime climate with a mean annual precipitation of 811 mm and a 

mean annual temperature of 6.9 °C (RGE Meteorological Station). In 1941, the formerly wet 

heathland site has been grubbed and a mixture of grasses and herbs was sown thereafter. The 

experiment was established in a randomized block design and consists of 55 plots. This study 

was conducted on a subset of five plots, i.e. a series of the five fertilizer treatments next to each 

other as shown in Figure 3-1. The limitation of the experiment to five plots was necessary due 

to the high demand of labor for processing plant samples. However, previous experiments have 

shown that FTs within the same treatment do not significantly vary (data not shown). Since 

1941, five different fertilizers have been applied annually in these 15 m² plots arranged along a 

transect of 26 m in length (Figure 3-1). Yearly cutting of grass swards was performed in early 

July and in late October. All other management factors were held constant.  

 

Figure 3-1. Setup of the five fertilizer treatments used in this study: lime as calcium oxide (Ca), 

lime and nitrogen (CaN), lime, nitrogen and phosphorus (CaNP) and lime, nitrogen, 

phosphorus and potassium (CaNPKCl and CaNPK2SO4). 

 

The long-term application of different fertilizers has led to changes in the soil nutrient contents 

of the treatments, including P (significantly higher in P treated plots) and K (significantly higher 

in NPK-treated plots), while N- and C-contents were similar in all plots (Hejcman et al., 2010b). 

The differences in soil nutrient content have caused significant shifts in the floristic 

compositions of the plant communities (Chytrý et al., 2009; Hejcman et al., 2007, 2010a). 

Today’s plant communities are stable between years but vary from montane meadows of 

Geranio-Trisetetum (Polygono-Trisetion alliance) in the Ca and CaN treatments, transitional 

types between Poo-Trisetetum and Arrhenateretum (both from the Arrhenatherion alliance) in 

the CaNP treatment to mesotrophic Arrhenateretum meadows in the CaNPKCl and the 

CaNPK2SO4 treatments (Chytrý et al., 2009). These differences in floristic composition in 

interaction with differences in the nutrient management between plots have caused a gradient 
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of dry matter production, with the Ca treatment having the lowest dry matter production, 

followed by CaN, CaNP and both NPK treatments (Schellberg et al., 1999). Differences in the 

floristic composition and dry matter production have far-reaching impacts on the expressions 

of FTs within the plant communities, which are expected to be strong enough to cause 

significant alterations in the spectral reflectance signals   

 

3.2.2 Spectral measurements 

We selected a FS 3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) 

for measuring spectral reflectance. This instrument was used successfully in a previous study 

for linking FTs to reflectance (Roelofsen et al., 2013) and provides the opportunity to collect 

spectral data at a high temporal resolution. The instrument covers a spectral range between 350 

and 2500 nm with a resolution of 3 nm FWHM at a wavelength of 700 nm and 10 nm FWHM 

at wavelengths of 1400 and 2100 nm (ASD Inc. (ed.), 2010). The sampling interval is 1.4 nm 

between 350 and 1000 nm and 2 nm between 1000 and 2500 nm. All bands are interpolated to 

1 nm steps leading to in total 2150 spectral bands (ASD Inc. (ed.), 2010).  

To prevent confounding effects caused by differences in observation height and angle, as well 

as to ensure that spectral measurements are repeatedly taken at the same position, the 

spectroradiometer was mounted aboard a motor-driven vehicle equipped with a light barrier 

(Figure 3-2 a; cf. Gebhardt et al., 2006). This vehicle was operated on a 30 m rail-track along 

the five plots. The sensor-head was affixed at the end of a boom to measure canopy radiance at 

nadir position at 2 m height above ground, which yields a FOV of 0.64 m² (Figure 3-2 b). Plots 

were measured in three single subplots (a, b, c) to account for plot-internal variability.  

Data were recorded on sunny days (to minimize influences of clouds and atmospheric water 

vapor) in approximately biweekly intervals in both growths during the growing seasons 2012-

2014. This resulted in a total of 29 days of spectral measurements (Table 3-1), which was 

sufficient for detecting major changes in vegetation development and variations in FTs. On 

each measurement day, 12 to 39 single measurements within each plot were recorded between 

10 am and 4 pm. Spectral reflectance was calculated using the collected radiance of the dark 

current (collected approx. every 15 minutes), the white reference (collected for each plot) as 

well as the radiance of the plant canopies. White reference radiance was acquired at 30 cm 

above a Spectralon® zenith polymer target (95% reflectance; Labsphere Inc., North Hutton, 

NH, USA).  
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Table 3-1. Number of days, on which spectra, FTs, fraction of photosynthetically active 

radiation absorbed (fPARabs) and compressed sward height (CSH) were sampled per growth. 

Year Growth Spectra FTs fPARabs CSH 

2012 1 4 4 4  

2012 2 5 4 5  

2013 1 4 4 3 1 

2013 2 4 4 3 2 

2014 1 6 6 6 6 

2014 2 6 6 6 5 

total 1, 2 29 28 27 14 

 

To enhance spectral information, splice correction (Stevens and Ramirez-Lopez, 2013) at 1000 

and 1800 nm (filter size=25 bands) and a smoothing filter using second order polynomial 

transformation (Savitzky and Golay, 1964) with a filter size of 31 bands between 350 and 

1350 nm, 51 bands between 1350 and 1800 nm and 101 bands between 1800 and 2500 nm were 

applied. After preprocessing, spectra were averaged for each day and plot (reducing 2689 single 

measurements to 189 averaged spectra) to account for small-scale variations in grass canopies 

and for bidirectional reflectance effects. Since the sensitivity of hyperspectral reflectance 

towards variations in FTs can be further enhanced using spectral transformations (Knox et al., 

2011; Schlerf et al., 2010), such as continuum removal (Mutanga et al., 2004; Schmidt and 

Skidmore, 2003) and derivative spectra (Ferner et al., 2015; Roelofsen et al., 2013; Rollin and 

Milton, 1998), we tested these preprocessing techniques using the continuum removal function 

(Stevens and Ramirez-Lopez, 2013) and the diff() function in R statistical software (R 

Development Core Team, 2015). 

 

Figure 3-2. a) Setup of the measuring system and one plot with respective subplots (a, b, c). 

b) Viewing geometry (angle of view, field of view and height) of the sensor.  
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3.2.3 Manual measurements of plant functional traits 

FTs (Table 3-2) were recorded on 28 days throughout the growing seasons 2012-2014 (cf. Table 

3-1) on the same (± one) day of spectral data acquisition to ensure that canopies were measured 

at the same development stage. In each subplot (cf. Figure 3-2 a, 5 m²), ten individual plants 

were randomly selected taxon-free for subsequent analysis in the laboratory. In preliminary 

tests, a sample size of ten plants per subplot (i.e. 30 per plot) has shown to be sufficient to cover 

the heterogeneity within plots and provide a stable mean.  

Table 3-2. FTs acquired based on manual measurements, including definition, unit, and 

measuring instrument (I= incoming solar radiation below (s) and above (i) canopy). 

FT Definition Unit Instrument Formula 

PH Plant height cm yardstick - 

SPAD SPAD value - 
SPAD meter (Minolta 502, 

Marunouchi, Japan) 
- 

LA Overall area of plant leaves cm² 
Scanner (Epson Expression 

1100, Suwa, Japan) 
- 

PWC Plant water content % - ((PFM-PDM)/PFM)*100 

TWC Tiller water content % - ((TFM-TDM)/TFM)*100 

LWC Leaf water content % - ((LFM-LDM)/LFM)*100 

SLA Specific leaf area cm² g-1 - LA/LDM 

PDMC Plant dry matter content % - PDM/PFM*100 

TDMC Tiller dry matter content % - TDM/TFM*100 

LDMC Leaf dry matter content % - LDM/LFM*100 

LS Leaf-tiller ratio - - LDM/SDM 

PFM Plant fresh matter % 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

TFM Tiller fresh matter g - PFM-LFM 

LFM Leaf fresh matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

PDM Plant dry matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

TDM Tiller dry matter g - PDM-LDM 

LDM Leaf dry matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

N N (g) per g dry matter % 
Elemental analyzer (Euro 
EA 3000, Redavalle, Italy)  

- 

C C (g) per g dry matter % 
Elemental analyzer (Euro 
EA 3000, Redavalle, Italy)  

- 

C/N C (g) per N (g) - - C/N 

NDF Fiber content per unit dry matter % 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

CSH Compressed sward height cm Rising plate meter - 

fPARabs 
Fraction of photosynthetically active 

radiation absorbed  
µmol s-1 m-2 

Ceptometer (Delta-T 
Devices Sun Scan SS1, 

Cambridge, UK) 
Is/Ii 

 

Sampling of plants was conducted in the entire plots (not solely in the spectroradiometer FOV) 

to maintain plant density within the plots. Furthermore, we assumed that FT values are 
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relatively homogenous throughout the entire vertical dimension of the plant canopy and that 

even lowermost layers of vegetation influence the spectral signal due to persistent gaps in the 

upper canopy layers (cf. Roelofsen et al., 2013). Thus, it was decided to extract complete plants 

for subsequent analysis.  

In the laboratory, PH, SPAD, LA, PFM, TFM, LFM, PDM, TDM and LDM were measured. 

Subsequently, the remaining FTs were calculated according to the formulas given in Table 3-2. 

To estimate dry matter products, samples were dried for 48 hours at 60°C. For C-, N- and NDF- 

analysis, plants collected within each subplot were combined to one sample. Afterwards, the 

plant material was grinded for 120 seconds at a frequency of 30 tilts per second in a ball mill 

(Retsch MM 400, Haan, Germany). For analysis of C- and N- content, aliquots of 0.2 g ± 

0.005 g were weighed, wrapped in zinc capsules (5 x 9 mm, IVA Analysetechnik GmbH & Co 

KG, Meerbusch, Germany) and analyzed in an elemental analyzer (Euro EA 3000, Redavalle, 

Italy). NDF analysis was performed using the grinded plant material according to van Soest et 

al., (1991).  

Ten measurements of CSH were taken within each plot using a rising plate meter (30 cm 

diameter, 238 g, pressure of 3.4 kg m-²). To estimate fPARabs, ten measurements of incoming 

radiation above canopy and ten measurements at the bottom of the canopy were recorded using 

a Sun Scan SS1 ceptometer. To enable comparison with spectral data, the measurements of FTs 

taken at each date were averaged for each plot (later used to develop one model per FT for all 

plots, i.e. a general model) or subplot (later used to develop one model per FT for each single 

plot, i.e. a specific model), respectively. According to the mass-ratio hypothesis (Grime, 1998), 

up-scaling of plant properties to the community level is possible if sufficiently large sample 

sizes are acquired. This was given in this study, as preliminary tests have shown. To evaluate 

temporal variability of FTs on the plot level, coefficients of variation (CV) were calculated. 

 

3.2.4 Relating plant functional traits to spectral reflectance 

Among the statistical approaches for modelling single dependent variables based on a high 

number of independent variables, PLSR has been identified as an effective approach (Wold et 

al., 2001). First, this method is less prone to problems related to correlated predictor variables 

(multicollinearity) than multiple regression analysis or constraint ordination (Schmidtlein et al., 

2012). Second, PLSR is able to summarize data effectively because it takes account of only 

those variations in predictors that are related to the target variable (Homolová et al., 2013). 

Third, it performs particularly well when the number of explanatory variables is large compared 
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to the number of observations (Wold et al., 2001). Thus, PLSR has been successfully applied 

to relate biophysical information (such as FTs) to hyperspectral datasets (Ferner et al., 2015; 

Hansen and Schjoerring, 2003; Ramoelo et al., 2013; Roelofsen et al., 2013; Schmidtlein et al., 

2012). 

PLSR was performed in R (R Development Core Team, 2015) using backward selection of 

predictors implemented in the autopls package (Schmidtlein et al., 2015). For mitigating effects 

of shadows and bidirectional reflectance, brightness normalization according to Feilhauer et al., 

(2010) was used. Logarithmic transformation was applied to PH, LA, PWC, TWC, TDMC, 

PFM, TFM, LFM, PDM, TDM, C/N-ratio, NDF-content and CSH to reach normal distribution 

of data. Afterwards, reflectance measured at wavelengths highly influenced by water absorption 

between 1336 and 1550 nm and 1776 and 1999 nm (Clevers et al., 2008; Curran, 1989) and 

regions distorted by sensor noise between 350 and 364 nm and 2361 and 2500 nm were 

excluded from further analysis, leaving 1557 bands.  

The resulting spectral reflectance curves, its derivatives and the continuum removed spectra 

were tested individually as independent variables and the expressions of each single FT as 

dependent variables. Based on the independent variables, PLSR creates LVs comparable to 

principal components having a good representation of predictors as far as correlated to the 

dependent variable (Schmidtlein, 2005). It thereby reduces the dimensionality of spectral data 

by applying a linear transformation (Vinzi et al., 2010). Backward selection of bands was 

performed using the automated iterative search criterion with filters based on significance in 

jackknifing, thereby removing 25% of predictors per iteration. Further, important wavelengths 

for predicting the dependent variables were identified using weighted regression coefficients. 

Model validation was based on leave-one-out cross validation (LOO CV). Using LOO CV, N 

(total number of observations) iterative calibrations and validations of the model were 

performed, thereby retaining one observation in each iteration to validate the model.  

 

3.3 Results 

 

3.3.1 Manual measurements of plant functional traits 

Among the 23 measured FTs, large differences were observed regarding their CV (Table 3-3). 

This variability documents changes in FTs, which occurred due to differences in plant 

development and species composition, which in turn were determined by the given levels in 

fertilization. Highly variable FTs (CV > 0.5) were PH, LA, LS, PFM, TFM, LFM, PDM, TDM, 

LDM and CSH. Moderate variability (0.2 ≤ CV ≤ 0.5) was observed for fPARabs, C/N-ratio, N-
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content, TDMC, PDMC and SLA, whereas SPAD, NDF-content, LDMC, PWC, TWC, LWC 

and C-content were relatively stable (CV <0.2). Concerning the effect of fertilization on FTs, 

the largest variability over time was observed in the NPK fertilized plots, whereas the Ca- and 

CaN treatment featured lower variations in most of the FTs (data not shown).  

Table 3-3. Mean, minimum (Min), maximum (Max), standard deviation (SD), coefficient of 

variation (CV) and number of observations (N) of FTs measured during the growing seasons 

2012-2014.   

 
Mean Min Max SD CV N 

PH 34.95 6.89 101.11 23.13 0.66 138 

SPAD 36.10 23.67 49.12 5.46 0.15 138 

LA 17.67 1.51 89.52 14.30 0.81 139 

PWC 0.72 0.39 0.93 0.12 0.16 126 

TWC 0.70 0.48 0.92 0.09 0.13 126 

LWC 0.65 0.26 0.78 0.10 0.15 136 

SLA 204.19 59.80 619.39 90.29 0.44 137 

PDMC 0.31 0.13 0.51 0.08 0.25 126 

TDMC 0.31 0.14 0.52 0.07 0.24 126 

LDMC 0.34 0.22 0.53 0.06 0.18 136 

LS 0.93 0.16 2.37 0.55 0.60 126 

PFM 0.73 0.12 2.86 0.57 0.78 138 

TFM 0.53 0.05 2.64 0.54 1.03 138 

LFM 0.20 0.03 0.85 0.13 0.67 138 

PDM 0.19 0.03 0.75 0.14 0.73 126 

TDM 0.12 0.01 0.68 0.11 0.98 126 

LDM 0.07 0.01 0.25 0.04 0.67 137 

N 1.65 0.75 3.32 0.55 0.33 134 

C 44.80 41.36 47.04 0.99 0.02 134 

C/N 30.65 13.35 59.25 10.23 0.33 134 

NDF 0.55 0.39 0.73 0.07 0.13 134 

CSH 11.65 2.30 28.11 7.16 0.61 69 

fPARabs 0.73 0.05 1.00 0.27 0.37 130 

 

3.3.2 Spectral reflectance of the different fertilizer treatments  

In Figure 3-3, spectral signatures that were measured in 2014 are displayed. No data collected 

in 2012 and 2013 is presented in this illustration because it was observed that development in 

reflectance over time showed the same characteristics with only slight shifts due to variations 

in annual phenological development (data not shown). Spectral reflectance differed between 

the five grassland communities (Figure 3-3). At the beginning of both growths, Ca and CaN 

treatments featured low reflectance in the NIR region (750-1400 nm), whereas reflectance in 

the red region (620-720 nm) was relatively high. In the NP(K)-fertilized communities, the 

opposite was observed. With advancing time, red reflectance in the Ca and CaN treatments 

dropped and NIR reflectance increased. NIR reflectance peaked between 45% and 60% in the 
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NP(K) treatments and values between 40% and 50% in the Ca and CaN treatments. In the final 

stages of both growths, red reflectance in the NP(K) treated plots increased and NIR reflectance 

decreased, whereas these spectral regions remained stable in the Ca and CaN-plots. Relatively 

high reflectance in the near shortwave infrared (nSWIR; 1400-1800 nm) and far short wave 

infrared (fSWIR; 1800-2500 nm) was measured in the Ca and CaN treatment at the beginning 

of both growths. In these plots, SWIR reflectance dropped over time whereas it remained stable 

or even increased in the NP(K) treated plots.     

Differences in reflectance between the two growths were observed in the initial growth stage. 

In the second growth, NIR reflectance increased more quickly than in growth one and reached 

its peak three to four weeks after cutting the grass (July 31). In contrast, in growth one an 

increasing NIR reflectance was observed for about six weeks after the onset of the growing 

season. More time elapsed after this peak in growth two, and so a distinctly larger drop in NIR 

reflectance in the NPK-fertilized plots was observed.  

 
Figure 3-3. Spectral reflectance of grassland canopies in 2014 in growth one (left) and 

growth two (right). 
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3.3.3 Detecting plant functional traits using spectral reflectance measurements – model 

results 

To test the relations between spectra and FTs, PLSR models for each FT were created for the 

raw, first derivation and continuum removed spectra using data collected from all treatments 

and years. The average R²cal and R²val show that the FTs were estimated with the highest 

accuracy using first derivation spectra, followed by raw spectra and continuum removed spectra 

(Table 3-4).  

Table 3-4. Averaged model fits as R² in calibration (R²cal) and validation (R²val) using raw 

spectra, first derivation spectra and continuum removed spectra for predicting all 23 FTs. 

Spectral preprocessing R²cal R²val 

Raw spectra 0.50 b 0.42 b 

first derivation 0.56 a 0.49 a 

Continuum removal 0.40 c 0.35 c 
a, b, c significantly different groups according to two-tailed t-test (n=23, p=0.05) 

 

To test whether specific PLSR models (i.e. models stratified by plant community) outperform 

the general model (i.e. a model using data from all treatments), specific models were calculated 

using first derivation spectra. As sample sizes for the specific models were low, FTs and spectra 

were calculated for each subplot individually to ensure a more robust statistical analysis. Model 

accuracies of the specific models are shown in Table 3-5. The results indicate that no significant 

difference in the model accuracy between the specific models and the general model exists 

(n=21, p=0.05, data not shown). Considering these findings, we decided to focus on general 

models created using first derivation spectra in the following parts of this study.   

Table 3-5. Averaged model fits as R² in calibration (R²cal) and validation (R²val) for predicting 

all 23 FTs using first derivation spectra, calculated for every treatment individually (specific 

models). 

Treatment/model type R2
cal R2

val 

Ca 0.57 0.45 

CaN 0.52 0.42 

CaNP 0.58 0.49 

CaNPKCl 0.57 0.49 

CaNPK2SO4 0.55 0.46 

Average fit (specific models) 0.56 0.46 

 

Of the 23 models, 17 used data from the full range of wavelengths (VIS, NIR, nSWIR and 

fSWIR), whereas five (TFM, CSH, PFM, LDM, TWC and SLA) models did not include fSWIR 

data. nSWIR data was not used in three models (LDM, TWC and LWC). Wavelengths from 

the VIS portion of the spectrum were used in 22 of the 23 models while NIR reflectance was 
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used in all models. The important role of VNIR for modeling the majority of FTs from RS data 

is underlined when looking at the frequency of waveband selection (Figure 3-4). Most often 

selected were the VIS and NIR region in the 23 models – especially bands around 1130 nm, the 

regions around 390, 980, 1370 nm as well as the regions between 500 and 570 nm and 680 and 

700 nm. However, also bands in the nSWIR region around 1580 nm were selected for 13 

models while fSWIR reflectance was less frequently used.   

 

Figure 3-4. Number of times (# selected) a band was used in PLSR models for detecting the 

23 FTs. 

 

Thereby models of single FTs featured differences in their complexity regarding the number of 

LVs and the number of selected bands (Table 3-6). This complexity was not related to model 

performance, i.e. complex models were not necessarily the best performing ones and vice versa. 

However, FTs showing high variability (cf. Table 3-3) were modeled with higher accuracy 

(average R²val 0.54) than intermediately variable FTs (average R²val 0.51) and FTs featuring low 

variability (average R²val 0.43). 

Models predicting PH, fPARabs, C/N-ratio, TFM, N-content, CSH, SPAD, NDF-content and 

LA performed well (R²val ≥ 0.6, Table 3-6). Models for TFM and CSH thereby only included 

bands from the visible region (350-700 nm), the red-edge position (around 740 nm) as well as 

from the NIR and nSWIR regions (Figure 3-5). For estimating PH, fPARabs, C/N-ratio, SPAD, 

NDF-content and LA, all regions of the measured spectrum were used.  

Moderately high fits (R²val ≥ 0.4, < 0.6) were achieved for PFM, LFM, LDM and LDMC. 

Models relating LFM and LDMC to first spectral derivation incorporated bands from all 

spectral regions (VNIR, nSWIR, fSWIR), while PFM and LDM models were mainly based on 

bands from the VNIR.  

Model fits for estimating PDM, TDMC, PWC, TWC, PDMC, TDM, LWC, C-content, LS-ratio 

and SLA were poor (R²val < 0.4). For modelling PDM, TDMC, PDMC, TDM, LS, PWC and C-
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content, bands distributed across the entire range of the recorded spectrum were used. To relate 

spectral data to LWC, bands from VNIR and fSWIR were of importance. TWC estimation was 

based on bands in the VNIR region. The model for estimating SLA reached the lowest accuracy 

and incorporated bands from the red edge region, NIR and nSWIR.  

Table 3-6. PLSR model results on plot level, including number of predictors (# pred.), number 

of observations (N), number of latent vectors (# LV), R² in calibration (R²cal) and validation 

(R²val) as well as normalized root mean square error in calibration (nRMSEcal) and validation 

(nRMSEval).  

  # pred. N # LV R²cal R²val nRMSEcal [%] nRMSEval [%] 

PH 149 138 4 0.82 0.80 11.57 11.85 

fPARabs 590 130 7 0.85 0.79 9.63 10.71 

C/N 97 134 3 0.76 0.75 10.98 11.27 

TFM 140 138 4 0.74 0.71 13.47 14.14 

N 331 134 4 0.74 0.71 10.45 11.09 

CSH 442 69 3 0.74 0.70 16.50 17.38 

SPAD 398 138 2 0.66 0.67 12.84 12.83 

NDF 93 134 7 0.72 0.65 15.47 17.13 

LA 223 139 9 0.77 0.65 10.56 12.67 

PFM 787 138 3 0.61 0.56 16.41 17.16 

LFM 297 138 8 0.65 0.53 13.05 15.03 

LDM 42 137 7 0.59 0.52 15.02 15.08 

LDMC 331 136 5 0.58 0.49 16.45 17.00 

PDM 60 126 4 0.45 0.38 20.79 23.44 

TDMC 347 126 2 0.42 0.38 23.78 24.61 

PWC 135 126 5 0.45 0.35 19.33 20.40 

TWC 24 126 2 0.40 0.34 29.06 28.49 

PDMC 117 126 2 0.39 0.34 30.1 31.14 

TDM 11 126 6 0.41 0.32 29.23 31.39 

LWC 397 136 5 0.34 0.22 22.48 25.42 

C 1050 134 5 0.39 0.21 26.87 31.56 

LS 11 126 2 0.24 0.20 32.26 32.62 

SLA 126 137 2 0.15 0.10 56.62 53.57 
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Figure 3-5. Weighted regression coefficients (W. coef.) for all 23 FT models (grey), indicating 

the influence of a band in the regression model. The spectrum shown in all figures is the average 

of all spectra collected (black). 
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3.4 Discussion 

In this study, the relations between spectral reflectance and 23 different FTs of five Central-

European grassland canopies were analyzed. Measurements of reflectance and FTs were 

recorded along a gradient in fertilization from limed only to full (NPK) application on 29 dates 

throughout the growing seasons 2012-2014.   

Previous studies have shown that spectral reflectance is influenced by a variety of factors, 

including solar irradiation intensity and direction as well as by the sensor viewing geometry 

(Disney et al., 2006; Lobell et al., 2002; Ross, 1981; Stagakis et al., 2010; Widlowski et al., 

2004). To cope with diurnal variations in the angle of solar irradiation, we sampled each plot at 

different times throughout each sampling day. Furthermore, fluctuations in irradiation intensity 

caused by changing atmospheric conditions were assumed to be low because field 

spectroradiometer data is relatively free of atmospheric effects (Thenkabail et al., 2002). 

Differences in observation geometry influencing reflectance, including sensor height and 

observation angle, were minimized by using a crane system providing a fixed sensor detent. In 

addition, the high number of measurements from different years ensured that variability in 

climatic factors (i.e. precipitation, temperature as well as the sum of incoming solar irradiation) 

and all phenological stages of plants were covered. We found the largest variations in FTs in 

the NPK-treatments. In these treatments, nutrient limitation was low and plant species pursuing 

intense and rapid development in biomass and LAI (i.e. C-strategists in CSR strategy scheme; 

Grime, 1977) predominated. In contrast, stress strategists (S-type; Grime, 1977) were more 

abundant in the Ca- and CaN-treatments. Plants of this type are limited in growth and thus 

feature lower FT variability (Aerts and Chapin III, 2000; Ryser, 1996; Westoby et al., 2002).  

Sampling of plants from areas outside of the sensor’s FOV was necessary to prevent thinning 

of vegetation during this multitemporal study. However, as a sample size of ten individual 

plants per subplot provided a stable mean, we assume that the spatial heterogeneity of FTs 

occurring within the plots was covered. Thus, we are confident that, although the sampled area 

of reflectance (recorded in 0.64 m² of each subplot) and FT data (sampled in the entire subplots) 

did not match, the calculation of means in reflectance and FTs were representative for the entire 

canopies.  

We identified PH, TFM, CSH, LA, PFM, LFM, LDM, PDM, TDM and LS-ratio as highly 

variable FTs. These FTs were mostly related to plant height, LAI and biomass and exhibited 

distinct changes over the growing season. These differences in the seasonal variations depended 

upon soil nutrient supply, with the NPK-treatments showing the largest variations. Intermediate 
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variabilities caused by soil nutrient status and seasonal development were observed for fPARabs, 

C/N-ratio, N-content, TDMC, PDMC and SLA. Low variations were characteristic for SPAD, 

NDF-content, LDMC, PWC, TWC, LWC and C-content.  

A comparison of the plots’ mean spectral reflectance highlighted differences in the optical 

properties induced by different fertilization levels and phenological developments. It is usually 

assumed that changes in VIS and NIR reflectance are mainly caused by variations in green LAI, 

green biomass and chlorophyll content, whereas longer wavelengths respond to other 

parameters, such as the proportion of senescent plant material (Asner, 1998; Homolová et al., 

2013; Lorenzen and Jensen, 1988; Stagakis et al., 2010). At the beginning of the two 

investigated growths, in each year NIR reflectance in the NPK-treatments significantly 

increased, whereas reflectance in the SWIR and the red region remained relatively low. The 

increase in NIR reflectance at the beginning of both growths was related to the presence of fast 

growing plants, which dominated in these plots. At the same time, a slow development of NIR 

reflectance as well as a relatively high red and SWIR reflectance were measured in the Ca- and 

CaN-treatments, in which plants pursuing a more conservative strategy type predominated (C-

type in CSR strategy scheme; Grime, 1977). The slow development of green biomass, LAI and 

chlorophyll content caused low rates of increase in NIR as well as a slow decrease in red and 

SWIR reflectance in these plots. At the end of each growth, in the NPK-treatments senescence 

commenced, and so reduced the fraction of green material in the canopy. As a result, reflectance 

decreased especially in the region between 900 and 1000 nm, increased in the red and fSWIR-

range and remained relatively stable between 1000 and 1400 nm. These results confirm the 

findings of previous studies (Asner, 1998; Elvidge, 1990; Roberts et al., 1993). In contrast, 

reflectance in Ca- and CaN-treatments remained relatively stable until the end of both growths. 

This was caused by the dominance of slow growing species, which start late in their growth but 

feature a long leaf life span (Lavorel et al., 2007; Pontes et al., 2010).   

 

3.4.1 Overall model performance and important spectral regions 

The average fits of PLSR models obtained using raw, continuum removed and first derivation 

spectra revealed that the latter mentioned spectral data worked best for estimating the majority 

of FTs. This good performance of first derivation spectra has also been observed in other studies 

using band selection techniques for detecting biochemical plant properties (Smith et al., 2003; 

Yoder and Pettigrew-Crosby, 1995). We assume that derivation calculation suppresses other 

factors interfering with the spectral response to changes in plant properties such as soil 

reflectance, diurnal and seasonal changes in solar irradiance as well as shadow effects within 
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the canopy (Cho et al., 2010; Huang et al., 2004; Laba et al., 2005; Ramoelo et al., 2011; Rollin 

and Milton, 1998; Schlerf et al., 2010).  

The comparison between models created using data stratified by treatment (specific models) 

and models using pooled data for all treatments (general models) revealed that there were no 

significant differences in model performances. This was surprising because we expected that 

stratified models may enable higher model accuracies. We assume that stratification of models 

in this study did not enable improved accuracies because data were collected in all phenological 

stages of the vegetation. This multitemporal sampling scheme had the effect that a large range 

in FT expressions occurred in each plot, which caused the stratification to be non-effective. We 

further conclude that the autopls band selection process is able to identify bands that are robust 

against confounding factors (e.g. to different canopy structures, biomass and species 

compositions).  

Our analysis further revealed that spectral reflectance from all regions of the measured spectrum 

was useful for detecting most (13) of the 23 estimated FTs. Thereby, NIR was used in all 23, 

VIS in 22, nSWIR in 20 and fSWIR in 17 models. Similarly, Thenkabail et al., (2004a) observed 

that the entire range of wavelengths is important for estimating many plant properties. As most 

frequently selected regions, we identified 365 to 394 nm, 515 to 544 nm, 635 to 664 nm, 665 

to 694 nm, 935 to 964 nm, 1115 to 1144 nm, 1205 to 1234 nm, 1551 to 1580 nm, 1581 to 

1610 nm and 1611 to 1640 nm. This again underlines the high importance of the VIS and NIR 

portions of the spectrum for deriving plant properties such as FTs (Wang et al., 2008). 

Accuracies for estimating single FTs were highly variable, ranging from R²val 0.1 for SLA to 

R²val 0.8 for PH. This wide span in accuracy shows that hyperspectral RS is not a suitable 

solution to detect all FTs. A comparison between the coefficients of determination reached by 

the PLSR-models and the measured variability of FTs using CV suggests that highly variable 

FTs are frequently detected with higher accuracies than less variable FTs. Thus, RS may be a 

good choice for estimating especially highly variable FTs of grassland with high temporal 

resolution and so support ecologists in monitoring changes in ecosystem functioning.  

Using RS for FT monitoring was successful for 13 of our models (R²val ≥ 0.4), which suggests 

that these FTs can be estimated throughout entire growing seasons. Such temporally stable 

models were also produced by Ling et al., (2014) for N-content of different species-rich 

grassland communities. Our results further suggest that, although different growth rates, levels 

of stress and site attributes exist for mixed grassland canopies (Jacquemoud et al., 2009; 

Schmidt et al., 2004; Verrelst et al., 2009), the flexible PLSR algorithm is able to disentangle 
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multiple relations within datasets and select single bands mostly related to one FT. However, 

for models performing with low and moderate accuracies, no bands were found within the 

measured spectrum that were highly correlated to the respective FT, or else these were 

confounded by other canopy characteristics (e.g. canopy structure or changes in other FTs).   

Although previous studies have shown that the underlying soil may have strong effects on 

canopy reflectance (Asner, 1998; Feilhauer and Schmidtlein, 2011; Lorenzen and Jensen, 

1988), we assume that soil reflectance had only minor effects on our spectral dataset because 

LAI and fractions of canopy cover were relatively high. However, senescent material may have 

exacerbated estimation of FTs at the end of both growths, particularly in the NPK-treatments. 

Nevertheless, it was shown that PLSR was able to select band combinations that were only 

marginally affected by senescent material and litter and thus modelled more than 50% of the 

recorded FTs with moderate to high accuracy. 

However, PLSR model validation by LOO-CV is not entirely free from effects of over-fitting, 

i.e. increasing the model fit by including additional bands without actually improving prediction 

accuracy (Allen, 1974). Thus, it should be noted that model accuracies tend to be optimistic. 

However, by using the entire dataset for model calibration and validation, this approach 

minimizes randomness in the observations used for training and evaluation and provides 

balanced estimates of model errors (Darvishzadeh et al., 2008a; Efron and Gong, 1983; Schlerf 

et al., 2005).  

 

3.4.2 Accuracies of individual models for detecting plant functional traits  

Model accuracies were high (R²val > 0.6) for nine of the 23 measured FTs. PH was estimated 

with the highest precision (R²val = 0.8), which is particularly important as it is frequently used 

as a proxy for plant competitive ability (Duru et al., 2010; Homolová et al., 2013). This good 

model performance for estimating PH was expected because other authors, such as Ollinger, 

(2011), state that morphological FTs, such as PH, show persistent and stable relations to canopy 

reflectance. As found in previous studies, models for estimating fPARabs, N-content, TFM and 

SPAD also featured relatively good performances (Ling et al., 2014; Roelofsen et al., 2013; 

Rossini et al., 2012; Wang et al., 2008). Furthermore, C/N-ratio, CSH, NDF-content and LA 

were modelled precisely using PLSR. This gives strong evidence that these nine FTs can be 

derived throughout the entire growing season for different species-rich plant communities and 

thus effectively be mapped and monitored using RS data. 
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Moderate model accuracies (0.4 ≤ R²val < 0.6) were achieved for four FTs, including LDM, 

LDMC, PFM and LFM. This was comprehensible because these FTs have been influenced by 

adhesive water brought by precipitation events, which occurred prior to sampling. These rain 

events strongly influenced sample weight, which made it difficult to identify spectral bands 

reacting to water content in plant tissue, irrespective of the amount of adhesive water.  

Low accuracies (R²val < 0.4) were found for ten FTs. Estimation of PDM and TDM reached 

lower accuracies than those obtained by Wang et al., (2008). The main reason might be that 

both FTs were recorded for single plants of species-rich canopies in the presented study, 

whereas Wang et al., (2008) studied rice monocultures. Furthermore, as stated already above, 

a number of FTs, including PDMC, TDMC, PWC, LWC and TWC, may have been difficult to 

estimate due to the influences of adhesive water on sample weight. Additionally, accuracies for 

detecting these FTs may have decreased due to interferences in their effects on the spectral 

signatures with other plant variables, such as biomass and canopy structure. A low accuracy for 

detecting C-content was expected, because this FT is difficult to detect on canopy levels using 

optical RS data (Patenaude et al., 2005). As LDM was measured with moderate and TDM with 

low accuracy, poor performance for estimating LS-ratio using our spectral dataset was 

expected. In addition, model accuracy for deriving SLA was low. This observation is confirmed 

by Homolová et al., (2013), who state that detecting SLA using spectral is more difficult than 

detection of most other FTs.  

 

3.5 Conclusions 

In this study, the relations between spectral reflectance and 23 FTs of five different species-rich 

grassland communities were examined throughout three years. Using PLSR, it was possible to 

detect 13 FTs based on hyperspectral reflectance data with high or moderate accuracy (R²val > 

0.4). These results underline the large potential of RS as non-destructive technique to provide 

information on selected FTs with high temporal resolution and at low costs.  

It was further demonstrated that one PLSR model can be fitted to estimate a FT of different 

plant communities when data from all phenological stages are included. This makes a prior 

stratification of vegetation into single subsets unnecessary. Among the spectral regions used in 

the models, NIR and VIS were the most important. However, spectral data from the nSWIR- 

and fSWIR-range provided additional information for estimating the majority of the tested FTs. 

Thus, for this purpose, the entire spectral region between 350 and 2500 nm has proven to be 

valuable.  
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It is concluded that RS can support grassland ecologists in deriving detailed information on 

plant responses to changes in the environmental conditions and to monitor the development of 

grassland ecosystems. Such information may allow grassland scientists to adapt nutrient 

management to variations in climate as well as to changes in the intensities of use. Future 

research should be guided towards the development of operational RS-based estimates of FTs 

on regional, local and global scales. Such attempts may include assessments of the ability of 

modern imaging spectrometers aboard novel RS satellites to provide information on FTs.  
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4 The potential of remote sensing sensors featuring different spectral 

resolutions and ranges for detecting the plant functional traits of grassland 

vegetation 

 

Abstract 

Recent studies have revealed the vast potential of hyperspectral RS data for detecting FTs. 

However, it remains unanswered, which particular ground-based and spaceborne RS sensors 

are suitable for this purpose. The objective of this study was to assess the potential of six 

different RS systems featuring different spectral ranges and resolutions for estimating FTs.  

Therefore, ground-based FS 3 spectroradiometer data was collected throughout the growing 

seasons 2012-2014. This dataset was used to simulate the reflectance of the hyperspectral HH 

2, EnM as well as of the multispectral S-2, L 7 and RE sensors. Within one day distance in time 

to the acquisition of RS data, FTs were measured manually. Finally, PLSR was used to relate 

single FTs to each sensor’s spectral reflectance.   

Using hyperspectral systems it was possible to estimate 13 (FS 3), 11 (EnM) and ten (HH 2) 

FTs with acceptable precision (R²val > 0.4). Among the multispectral sensors, S-2 reached the 

highest average accuracy providing R²val larger than 0.4 for nine FTs. Only four FTs were 

successfully detected using L 7 and none using RE data. These results show that hyperspectral 

systems perform better than multispectral systems for estimating the majority of tested FTs. 

Although most important information was located in the VIS and NIR regions of the spectrum, 

including longer wavelengths (i.e. SWIR) led to an increased accuracy for estimating many 

FTs. For improving the detection of FTs it was thus more efficient to cover a broad spectral 

range than to include a high band number within a limited spectral range. Large differences in 

the model accuracies were found between the single FTs. FTs related to green biomass or LAI 

as well as to chlorophyll and NDF-content were detected with high accuracies using 

hyperspectral systems (R²val > 0.6). In contrast FTs related to plant water-, dry matter- and C-

content as well as to leaf area or LS-ratio were more difficult to detect (R²val ≤ 0.6).  

 

4.1 Introduction 

Grassland scientists commonly evaluate the development and state of grassland ecosystems 

based on their FTs. FTs are defined as morphological, physiological and phenological plant 

properties, which indicate the performance of plants in an ecosystem under given environmental 
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conditions (Violle et al., 2007). However, FTs are currently recorded using field-methods (e.g. 

as described in Cornelissen et al., (2003)), which often require labor-intensive, costly and 

destructive sampling procedures. Thus, grassland agronomists and ecologists are looking for 

non-destructive methods that can provide cost-effective estimates of FTs. Such methods would 

facilitate information collection for ecological research and add to an improved grassland 

management under changing environmental conditions and intensities of use, for instance 

through a more precise application of fertilizer. As contactless technique, RS is a powerful and 

versatile tool for estimating plant properties, such as FTs, because it can reduce the amount of 

labor and costs associated with sampling and analysis and enable researchers to collect data at 

different spatial scales (Hansen and Schjoerring, 2003; Kawamura et al., 2008; Peñuelas and 

Filella, 1998).  

For deriving biophysical variables of vegetation using remotely sensed information, 

multispectral (i.e. broadband) VIs have been used the most frequently (e.g. Brantley et al., 2011; 

Elvidge and Chen, 1995; Shen et al., 2008). Although selected plant properties and FTs (e.g. 

biomass and chlorophyll content) can successfully be derived using these systems, multispectral 

sensors have limitations to detect many other FTs due to a lack in spectral detail (Atzberger et 

al., 2011; Glenn et al., 2008; Gong et al., 2003; Govaerts et al., 1999; Haboudane et al., 2004; 

Hansen and Schjoerring, 2003; Hunt Jr. et al., 2013; Sampson et al., 2001; Steininger, 2000). 

Hyperspectral RS sensors paired with suited algorithms to extract important information from 

these high-dimensional datasets have been observed to enable increased estimation accuracies 

compared to multispectral systems (Broge and Leblanc, 2000; Elvidge and Chen, 1995; 

Thenkabail, 2001). Thus, hyperspectral RS has gained in importance in science in the past 

decades and may enable scientists to derive FTs with high accuracy (Homolová et al., 2013; 

Ustin and Gamon, 2010). First attempts for assessing key FTs based on hyperspectral 

reflectance data were undertaken in chapter 3 and in Roelofsen et al., (2013). In these studies, 

PLSR was identified as an effective algorithm for relating FTs to vegetation spectral properties. 

However, it remains unclear how spectral range and resolution influence the accuracy for 

estimating FTs using RS data and which planned or operational sensors may be suitable for this 

purpose. 

To answer this question, we used FS 3 data to simulate the reflectance of five different RS 

systems, including the hyperspectral HH 2- and EnM-sensors as well as the multispectral S-2-, 

L 7- and RE-sensors. Although the spectral properties of field spectroradiometer data differ 

from actual satellite data due to the position of field spectroradiometers close to the canopy and 
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different sensor geometries (Feilhauer and Schmidtlein, 2011), these devices have been 

identified as valuable data-source for investigating the potential of different RS sensors for 

detecting vegetation properties (Feilhauer et al., 2013; Feilhauer and Schmidtlein, 2011; 

Mutanga et al., 2015; Rossini et al., 2012). Using simulated data further provides the advantages 

to minimize spatial inaccuracies between RS and plant data and to deliver information collected 

with the same viewing geometry (spatial resolution and angle). Furthermore, field 

spectroradiometer datasets can be acquired with high temporal resolution and directly on 

demand.  

The objective of this study was to test the model performances for the prediction of twenty-

three FTs based on reflectance data measured with a FS 3 spectroradiometer as well as on 

simulated HH 2, EnM, S-2, L 7 and RE data. The results will support decisions regarding the 

selection of suitable RS sensors to estimate FTs and allow an assessment of the impact of 

spectral range and resolution on the detection accuracies. Additionally, valuable information 

for the design of future RS sensors dedicated to monitor vegetation is provided. This research 

is thus an important step to enable RS scientists to produce spatiotemporal datasets on FTs and 

support ecologists in adjusting grassland management under changing climate conditions and 

intensities of use. Therefore, we have focused on the following hypotheses:  

1. FTs related to biomass, LAI or chlorophyll content can be detected with high accuracies 

using RS systems, whereas FTs related to dry matter, dry matter content or water content 

are more difficult to estimate. 

2. The performance of a sensor for predicting FTs depends on its number of spectral bands, 

its bandwidth and its spectral range. 

3. Hyperspectral RS systems (i.e. FS 3, HH 2 and EnM) provide higher accuracies for 

detecting FTs than multispectral systems (i.e. S-2, L 7 and RE).  

To answer these questions, field spectroradiometer data and manual samples of FTs were 

collected in different intensity levels of grassland throughout the growing seasons of 2012-

2014. In the next step, spectral reflectance of five different RS systems was simulated based on 

the measured spectral signatures. Subsequently, PLSR models relating the spectral reflectance 

to FTs were developed for each sensor. Finally, the performances of the different RS systems 

for detecting FTs were assessed and suggestions for the selection of efficient sensor systems 

for an application in grassland ecology are given. 
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4.2 Materials and methods 

4.2.1 Study area 

Data were collected in the RGE. This experiment was identified as ideal study site because it 

features a broad range of plant communities differing in their FTs. Furthermore, the fertilization 

experiment allows a systematic sampling of spectral signatures and plant samples in clearly 

defined and well-documented vegetation communities. The experiment is located at 50°13`N 

and 6°51`E at an elevation of 475 m in Rhineland Palatinate, Germany. A temperate-maritime 

climate with an annual precipitation of 811 mm and a mean annual temperature of 6.9 °C 

prevails at the site (RGE meteorological Station).  

The experiment was established in 1941 in randomized block design and has been managed 

constantly since then. The site today consists of 55 plots, which are treated with different 

fertilizers, including Ca, CaN, CaNP, CaNPKCl and CaNPK2SO4 in ten replicates as well as of 

five unfertilized control plots. Each plot has a size of 3 × 5 m² (Figure 4-1). Grass swards in all 

plots were cut in July and in October, which leads to two subsequent growths. Thereby, more 

biomass is produced in growth one than in growth two (Schellberg et al., 1999). 

As a result of differences in fertilizer application, grassland communities have developed, 

which vary in their floristic composition as well as in their biophysical and chemical properties 

(Chytrý et al., 2009; Hejcman et al., 2007, 2010a; Schellberg et al., 1999; Šmarda et al., 2013). 

The communities in the Ca- and CaN-treatments were assigned to the montane meadows of 

Geranio-Trisetetum (Polygono- Trisetion alliance) (Chytrý et al., 2009). Communities in the 

CaNP-fertilized plots belong to a transitional type between Poo-Trisetetum and Arrhenateretum 

(both from the Arrhenatherion alliance). The CaNPKCl and CaNPK2SO4 treatments are 

characterized by communities belonging to the mesotrophic Arrhenateretum meadows (Chytrý 

et al., 2009).  

Due to high labor demand for collecting and processing of in-situ data, we had to limit our study 

to one replicate of each treatment. However, the variation in plot floristic composition and 

biomass development among replicates of the same treatment was observed to be small (Chytrý 

et al., 2009; data not shown). Hence, we assume that the five selected plots are sufficient to 

reliably represent the FTs and the spectral signatures of the other replicates.  
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4.2.2 Collection of reflectance spectra 

Field spectroradiometers have been successfully used in various studies for investigating the 

relations between spectral reflectance and grassland biophysical parameters (Ferner et al., 2015; 

Roelofsen et al., 2013). Furthermore, these systems can be used to simulate other sensors and 

compare their performance in establishing relations between spectral data and plant properties, 

such as FTs (Inoue et al., 2012; Mutanga et al., 2015; Ustin et al., 2009). In this experiment, 

hyperspectral RS data were collected using a FS 3 spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, CO, USA). The device measures reflected radiance in a spectral range 

between 350 and 2500 nm and has a spectral resolution of 3 nm FWHM at a wavelength of 

700 nm and 10 nm at wavelengths of 1400 and 2100 nm (ASD Inc. (ed.), 2010). However, 

measured spectral data are interpolated to 1 nm intervals yielding 2150 single bands. Spectral 

signatures of the five grassland communities were recorded on 29 dates during the growing 

seasons 2012-2014. This number of days ensured that all vegetative and reproductive growth 

stages of the vegetation were covered throughout several years.  

To limit effects of changing observation angles and sensor heights, we used an automatic rail-

based crane system along the five investigated plots (Figure 4-1). This setup allowed repeated 

sampling of spectral reflectance at exactly the same positions from nadir in 2 m height above 

ground (25° viewing angle), resulting in a field of view of 0.64 m². Within each plot, reflectance  

was measured in three different subplots (a, b, c) to account for naturally occurring spatial 

variability in grassland (Butterfield and Malmström, 2009; Psomas et al., 2011). These 

measurements were repeated in each of the five plots between 12 and 33 times on each 

measurement day between 10 am and 4 pm. To mitigate variations of incoming solar radiation, 

collection of RS data was conducted under clear, cloud-free weather-conditions. Radiance of a 

Spectralon ® zenith polymer white reference target (95% reflectance; Labsphere Inc., North 

Hutton, NH, USA) was recorded after every three measurements to adapt reflectance recordings 

to changes in irradiation conditions. The entire spectral dataset included 2689 measurements.  

To smooth the transitions between the three sensors integrated in the spectroradiometer (VNIR: 

350-1000 nm, SWIR-1:1000-1800 nm, SWIR-2:1800-2500 nm), splice correction (Stevens and 

Ramirez-Lopez, 2013) with a filter size of n=25 bands was performed. To reduce high-

frequency noise in the spectral signal, second order polynomial filters (Savitzky and Golay, 

1964) with a size of 31 bands between 350 and 1350 nm, 51 bands between 1350 and 1800 nm 

and 101 bands between 1800 and 2500 nm were applied.  
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Figure 4-1. Setup of the rail system and the crane. The single fertilizer treatments Ca, CaN, 

CaNP, CaNPKCl and CaNPK2SO4 are separated into three subplots (a-c). The sensor field of 

views are indicated by circles. 

 

4.2.3 Simulation of different remote sensing sensors 

We decided to test the performance of six different sensors for detecting the FTs in a 

multitemporal analysis. The following six sensors were selected because they (1) are mainly 

designed for assessing plant biophysical properties, (2) have a high spatial resolution that is 

suitable for detecting FTs at the field scale, (3) feature large differences in band numbers and 

(4) measure reflectance in differently broad ranges of the spectrum (Figure 4-1).  

Table 4-1. The five tested sensors, including their year launched, spectral range, full width half 

maximum (FWHM), spatial resolution, band number as well as the source of the spectral 

response functions (SRF) used for sensor simulation.. 

Platform Sensor 
Year 

launched 
Spectral 

range (nm) 
FWHM 
(nm) 

Spatial res. 
(m) 

No. of 
bands Source of SRF 

Ground FS 3 - 350-2500 3/10 - 2150 - 

Ground HH 2 - 325-1075 3 - 725 - 

Satellite EnM 2019 420-2450 >8, <12 30 242 * 

Satellite S-2 2015 443-2190 >15, <180 >10, <60 13 ESA, 2015 

Satellite L 7 1999 450-2350 >60, <260 >15, <60 8 USGS (ed.), 2016 

Satellite RE 2008 440-850 >55, <90 6.5 5 BlackBridge (ed.), 2012 

* Personal communication, Segl, K. 2016 October 27, 2016. 

To simulate the half range spectroradiometer HH 2, spectral reflectance of the FS 3 was cut off 

at 1075 nm. Reflectance of EnM, S-2, L 7 and RE was simulated based on FS 3 measurements 

and the appropriate SRF (Table 4-1) applied in the given formula: 

  𝛾𝑥 =
∫ 𝛾𝑛

𝑛𝑚𝑎𝑥
𝑛0

∗𝜌𝑛

∑𝜌𝑛
   (4.1) 

where γx is the reflectance of the simulated band of the satellite sensor, n is the total band 

number of the spectral measurement, γn is the reflectance of band n, 𝜌𝑛 is the response of band 
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n, given in the SRF, and ∑𝜌𝑛 is the sum of relative reflectance given in the SRF of a given 

band. 

Spectral information between 350-365 nm, 1330-1440 nm, 1790-1990 nm and 2360-2500 nm 

was severely affected by noise and thus excluded from further analyses. This reduced the 

number of bands to 1683 for the FS  3, 711 for the HH 2, 192 for EnM, 12 for S-2, 8 for L 7 

and 5 for RE. For all sensor simulations, reflectance data averaged for the plot level for each 

measurement day was used (in total 189 averaged spectra).  

 

4.2.4 Manual measurements and calculations of plant functional traits 

For the purpose of relating spectral data to FTs, extensive in-situ measurements in the grass 

crops have been realized in the growing seasons 2012-2014. A total of 23 FTs were derived 

(Table 4-2).  

FTs measured at the plant level: Seven of these FTs were measured on individual plants, from 

which ten additional FTs were calculated. Therefore, at the maximum in one day distance in 

time from the spectral measurements, ten plants per subplot (30 per plot) were randomly 

selected and removed. On the one hand, pre-trials have shown that this sample size is sufficient 

to scale up FTs to the community level (cf. mass-ratio hypotheses; Grime, 1998). On the other 

hand, the relatively low number of extracted plants ensured that vegetation in the plots was not 

considerably thinned out. To maintain vegetation density in the FOV of the spectroradiometer, 

vegetation sampling was conducted in the entire subplots. On each individual plant, PH, PFM 

and LFM as well as the SPAD value and the LA were measured. To estimate PDM and LDM, 

fresh material was dried for 48 hours at 60 °C and subsequently weighed. Based on the seven 

FTs measured for individual plants, ten more FTs were calculated according to Table 4-2. 

Results were finally averaged per plot. 

FTs measured at the subplot level: Four FTs were measured at the subplot level. Therefore, 

dried plant material of the ten extracted individual plants (per subplot) was mixed and 

subsequently grinded for 120 seconds and 30 tilts per second using a ball mill (Retsch MM 400, 

Haan, Germany). To measure plant C- and N-content, samples of 0.2 g (± 0.005 g) from the 

grinded plant material were wrapped in Zn capsules (5 x 9 mm, IVA Analysetechnik GmbH & 

Co KG, Meerbusch, Germany). The material was then analyzed in a Euro EA 3000 elemental 

analyzer (Redavalle, Italy). C/N-ratio was calculated as the simple quotient of C- divided by N-

content on a dry matter basis. NDF-content was determined for the grinded plant material 

according to van Soest et al., (1991). Finally, FTs were averaged at plot level. 
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FTs measured at the plot level: CSH and fPARabs were recorded at the plot level. Therefore, 

ten measurements of CSH per plot were derived on 14 dates using a rising plate meter (30 cm 

diameter, 238 g, pressure of 3.4 kg * m-²).  CSH is highly correlated to the biomass of grassland 

canopies (Harmoney et al., 1997). Furthermore, ten measurements of fPARabs per plot were 

recorded on 27 days. Both, CSH and fPARabs were subsequently averaged at plot level.  

Table 4-2. Definition, unit and used instrument for manual measurement of FTs; I= incoming 

solar radiation below (s) and above canopy (i). The levels indicate whether a FT was measured 

for individual plants, the subplot or the plot (adapted from chapter 3.2.3). 

Level FT Definition Unit Instrument Formula 

In
d

iv
id

u
al

 

PH Plant height cm yardstick - 

SPAD SPAD value of two leaves  - 
SPAD meter (Minolta 502, 

Marunouchi, Japan) 
- 

LA Area of plant leaves cm² 
Scanner (Epson Expression 

1100, Suwa, Japan) 
- 

PWC Plant water content % - ((PFM-PDM)/PFM)*100 

TWC Tiller water content % - ((TFM-TDM)/TFM)*100 

LWC Leaf water content % - ((LFM-LDM)/LFM)*100 

SLA Specific leaf area cm² g-1 - LA/LDM 

PDMC Plant dry matter content % - PDM/PFM*100 

TDMC Tiller dry matter content % - TDM/TFM*100 

LDMC Leaf dry matter content % - LDM/LFM*100 

LS Leaf-tiller ratio - - LDM/SDM 

PFM Plant fresh matter % 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

TFM Tiller fresh matter g - PFM-LFM 

LFM Leaf fresh matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

PDM Plant dry matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

TDM Tiller dry matter g - PDM-LDM 

LDM Leaf dry matter g 
Scale (Sartorius BP 110 S, 

Göttingen, Germany) 
- 

Su
b

p
lo

t 

 

N N (g) per g dry matter % 
Elemental analyzer (Euro 
EA 3000, Redavalle, Italy) 

- 

C C (g) per g dry matter % 
Elemental analyzer (Euro 
EA 3000, Redavalle, Italy)  

- 

C/N C (g) per N (g) % 
Elemental analyzer (Euro 
EA 3000, Redavalle, Italy)  

C/N 

NDF 
Neutral detergent fiber content 

per unit dry matter 
% 

Scale (Sartorius BP 110 S, 
Göttingen, Germany) 

- 

  

CSH 
Compressed sward height cm Rising plate meter - 

P
lo

t 

fPARabs 
Fraction of photosynthetically 

active radiation absorbed  
µmol s-1 m-2 

Ceptometer (Delta-T 
Devices Sun Scan SS1, 

Cambridge, UK) 
Is/Ii 
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4.2.5 Data analysis 

We selected brightness normalized PLSR (Feilhauer et al., 2010) using backward selection of 

predictor variables as implemented in autopls package for R (Schmidtlein et al., 2015) for 

relating the spectral reflectance of the six sensors to the 23 FTs. This choice had several reasons. 

First, recent studies have shown that PLSR is a valuable technique for deriving highly accurate 

models of grassland FTs based on hyperspectral RS data (chapter 3.2.3; Roelofsen et al., 2013). 

Second, PLSR performs well when relating spectral information to plant properties because it 

is less affected by collinearity and model overfitting than multiple regression techniques 

(Chong and Jun, 2005; Kawamura et al., 2008; Ramoelo et al., 2013; Schmidtlein et al., 2012). 

Third, PLSR efficiently summarizes high-dimensional (i.e. hyperspectral) information and has 

also proven to be a good choice when relating a low number of observations to a high number 

of predictor variables (which is the case when processing hyperspectral reflectance data) 

(Bolster et al., 1996; Psomas et al., 2011; Wold et al., 2001). Brightness normalization 

according to Feilhauer et al., (2010) was applied to limit effects of seasonal shifts in irradiation 

intensity as well as shadows within the canopy (Middleton, 1991; Shibayama and Wiegand, 

1985). As PLSR requires normal distribution of dependent variables (i.e. FTs), PH, LA, PWC, 

TWC, TDMC, PFM, TFM, LFM, PDM, TDM, C/N-ratio, NDF-content and CSH were 

transformed using decadal logarithm.  

In PLSR, a set of latent vectors (similar to principal components) is created representing the 

most important spectral information for predicting the dependent variable (a FT). For creating 

these latent vectors, we applied backward selection of bands with an automated search criterion, 

which removes 25% of the predictors in each iteration based on significance jackknifing. Thus, 

irrelevant information for predicting a variable was removed from LVs and only important 

information was included in the models (Feilhauer et al., 2010). Model validation was 

performed using LOO-CV. This method allows a balanced estimation of model accuracy 

(Darvishzadeh et al., 2008a; Schlerf et al., 2005). In LOO-CV, models are calibrated using all 

but one observations. The remaining observation is subsequently used for model validation. To 

produce the best possible PLSR models, calibration and validation were performed iteratively 

until the most suitable compromise between model fit and parsimony enabling a minimal root-

mean-squared error was found (Feilhauer and Schmidtlein, 2011). PLSR models were created 

for every FT and sensor using pooled data from all plots, both growths and all three years. 

Creating one model for all treatments has shown to provide equal or higher accuracies than 

producing several models stratified by plant communities (cf. chapter 3). Thus, we derived 

twenty-three models for each of the six sensors (138 models in total). To compare the average 
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performance of the six sensors, a two-tailed t-test comparing the R²val for all FTs of one sensor 

to those of the five other sensors was used. 

 

4.3 Results 

4.3.1 Overall accuracies of the partial least squares regression models by sensor 

The average performance of the models based on hyperspectral data (FS 3, HH 2 and EnM) 

significantly outperformed the models created based on multispectral data (Figure 4-2). 

Thereby, FS 3 data achieved the highest average R²val (0.42) for detecting the set of 23 FTs and 

performed best for detecting 14 FTs. Nevertheless, a two sample t-tests showed that data of 

simulated HH 2 and EnM reflectance were on average not significantly less accurate than the 

FS 3 data for estimating FTs (Figure 4-2).  

 

Figure 4-2. Boxplots representing the performance of models created for all FTs by sensor. 

Letters a-f represent significant differences (paired t-test, n=23, p=0.05). 

 

4.3.2 Model accuracies achieved by the tested sensors for detecting single functional traits 

Large differences in model performances were observed between the single FTs (Table 4-3). 

Our data show that PH, CSH and fPARabs were detected with high accuracies of R²val > 0.6 

using FS 3, HH 2, EnM and S-2 data. Pearson correlation between the number of bands of the 

six sensors and the averaged R²val of the 23 FTs was estimated as λPearson=0.64. This shows that 

the decreasing band number of the sensor systems lead to significantly lower model fits. 

Although hyperspectral sensors reached higher R² values for most of these FTs, it is interesting 

that S-2 achieved the highest accuracy for detecting PH. Other FTs, such as SPAD, TFM, C/N-

ratio and NDF-content were also detected with high accuracy using hyperspectral data. 

Acceptable accuracies (0.4 < R²val < 0.6) were reached for TDMC with FS 3 and HH 2, for 

TWC and PDMC with FS 3 and EnM and for PDMC and LDMC with FS 3 data only. Using 
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the L 7 sensor, four FTs, including PH, SPAD, NDF-content and CSH were detected with 

acceptable accuracy, but none with high accuracy. No FT was detected with high or acceptable 

accuracy using the RE sensor.  

Table 4-3. PLSR model statistics for the 23 FTs by sensor, including number of observations 

(N), number of predictors (# pred.), number of latent vectors (# LV), normalized root mean 

squared errors in calibration (nRMSEcal) and validation (nRMSEval) as well as coefficients of 

determination in calibration (R²cal) and validation (R²val).  

 
FT N # pred. # LV 

nRMSEcal 
[%] 

nRMSEval 

[%] 
R²cal R²val # pred. # LV 

nRMSEcal 
[%] 

nRMSEval 
[%] 

R²cal R²val 

     FS 3 HH 2 

 PH 138 1135 6 10.78 11.83 0.82 0.78 269 6 9.83 10.34 0.81 0.78 

 fPARabs 130 259 7 10.63 10.45 0.79 0.73 261 7 12.85 13 0.73 0.66 
 C/N 134 348 6 11.36 10.87 0.77 0.74 108 7 11.85 12.71 0.73 0.67 
 TFM 138 709 9 12.26 13.47 0.75 0.68 242 6 11.91 12.52 0.73 0.68 

 N 134 40 7 10.66 11.23 0.75 0.71 168 7 11.27 11.59 0.72 0.67 
 CSH 69 195 5 13.27 16.27 0.81 0.75 399 4 14.73 16.18 0.75 0.69 
 SPAD 138 358 7 12.99 14.2 0.71 0.65 63 7 12.98 13.44 0.67 0.62 
 NDF 134 210 6 15.68 16.66 0.64 0.6 112 7 15.02 15.7 0.67 0.62 
 LA 139 203 3 23.92 28.02 0.33 0.31 175 5 19.93 21.83 0.4 0.31 

 PFM 138 43 7 16.17 17.97 0.65 0.59 113 5 12.98 13.47 0.68 0.64 
 LFM 138 1135 2 108.43 95.38 0.04 -0.01 711 12 21.7 18.95 0.43 0.2 
 LDM  137 1135 2 116.39 100.08 0.04 -0.04 711 12 19.5 19.22 0.44 0.2 
 LDMC 136 216 7 17.89 17.52 0.51 0.46 126 5 22.4 23.59 0.42 0.33 
 PDM 126 9 5 23.05 25.5 0.4 0.33 34 2 35.35 38.09 0.3 0.25 
 TDMC 126 33 5 18.3 19.25 0.5 0.45 711 17 13.21 17.13 0.66 0.4 

 PWC 126 1683 2 59.02 52.57 0.1 0.02 575 2 62.26 51.97 0.06 -0.01 
 TWC 126 29 4 20.8 21.73 0.46 0.42 9 8 20.54 20.06 0.41 0.28 
 PDMC 126 298 7 22.59 25 0.5 0.41 10 2 47.94 50.09 0.17 0.13 
 TDM 126 216 10 15.71 18.12 0.52 0.34 12 2 30.19 30.31 0.33 0.27 
 LWC 136 387 6 23.99 24.72 0.29 0.19 575 2 60.86 47.34 0.05 0 
 C 134 72 5 35.99 38.8 0.21 0.13 78 2 56.17 55.26 0.13 0.1 
 LS 126 557 4 33.19 34.14 0.21 0.14 175 3 32.25 32.89 0.2 0.12 
 SLA 137 37 2 45.4 47.47 0.18 0.15 242 3 38.93 43.66 0.2 0.13 

     EnM S-2 

 PH 138 41 7 9.67 10.24 0.83 0.79 12 5 10.3 10.81 0.82 0.8 

 fPARabs 130 43 8 10.49 11.21 0.78 0.73 12 6 15.47 16.11 0.66 0.61 
 C/N 134 18 6 10.77 11.16 0.77 0.75 9 9 16.37 18.1 0.63 0.54 
 TFM 138 48 5 14.12 15.37 0.71 0.67 12 4 17.11 17.48 0.61 0.57 
 N 134 18 6 12.55 12.37 0.71 0.69 12 10 15.81 16.81 0.59 0.51 
 CSH 69 13 6 13.89 16.16 0.81 0.74 12 8 13.43 15.82 0.78 0.69 
 SPAD 138 17 7 15.66 16.82 0.67 0.63 9 5 19.5 20.68 0.58 0.53 
 NDF 134 129 9 15.59 16.51 0.7 0.6 12 4 16.93 17.56 0.61 0.57 
 LA 139 36 3 29.78 31.95 0.31 0.3 9 4 27.67 30.3 0.31 0.21 
 PFM 138 64 5 15.87 16.93 0.65 0.6 12 4 17.87 19.53 0.58 0.53 
 LFM 138 192 4 50.31 49.06 0.13 0.05 9 6 39.07 38.58 0.19 0.07 
 LDM 137 129 2 111.2 82.13 0.03 -0.03 12 3 82.14 78.29 0.06 -0.04 

 LDMC 136 64 7 21.52 21.39 0.44 0.34 9 2 33.83 27.25 0.17 0.09 
 PDM 126 9 2 35.78 36.88 0.3 0.26 9 4 31.92 31.35 0.3 0.22 
 TDMC 126 27 5 24.84 26.25 0.44 0.38 9 3 33.49 31.89 0.25 0.19 
 PWC 126 144 2 53.81 50.53 0.1 0.03 12 2 56.06 46.37 0.06 -0.02 
 TWC 126 12 6 19.08 20.65 0.5 0.43 10 2 46.46 49.49 0.2 0.15 
 PDMC 126 22 7 19.46 21.29 0.5 0.41 7 3 52.13 41.58 0.16 0.09 
 TDM 126 26 5 25.67 30 0.4 0.31 7 4 31.41 31.85 0.31 0.23 
 LWC 136 108 3 61.94 66.03 0.08 0.02 12 2 68 50.99 0.04 -0.02 
 C 134 9 3 43.27 41.36 0.14 0.09 7 5 54.34 55 0.14 0.05 

 LS 126 72 4 34.11 36.06 0.21 0.13 9 2 60.87 63.14 0.08 0.02 
 SLA 137 129 3 41.48 45.51 0.23 0.16 9 5 37.64 42.5 0.22 0.13 
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Table 4-3 (continued). PLSR model statistics for the 23 FTs by sensor, including number of 

observations (N), number of predictors (# pred.), number of latent vectors (# LV), normalized 

root mean squared errors in calibration (nRMSEcal) and validation (nRMSEval) as well as 

coefficients of determination in calibration (R²cal) and validation (R²val). 

FT N # pred. # LV 
nRMSEcal 

[%] 
nRMSEval 

[%] 
R²cal R²val # pred. # LV 

nRMSEcal 
[%] 

nRMSEval 

[%] 
R²cal R²val 

    L 7 RE 

PH 138 5 3 22.07 20.79 0.49 0.44 5 2 38 39.72 0.06 0.02 

fPARabs 130 6 3 26.88 28.54 0.43 0.37 5 3 46.44 41.2 0.07 -0.01 

C/N 134 4 3 23.57 19.03 0.38 0.29 4 1 30.58 28.73 0.13 0.08 

TFM 138 6 3 26.87 22.63 0.36 0.29 4 2 81.61 65.56 0.01 -0.03 

N 134 6 3 29.79 22.64 0.23 0.14 5 3 41.02 44.17 0.12 0.07 

CSH 69 5 3 19.71 20.51 0.56 0.49 3 1 104.45 88.38 0.01 -0.06 

SPAD 138 5 4 20.9 21.45 0.5 0.46 5 3 27.58 25.08 0.26 0.23 

NDF 134 5 4 21.57 21.68 0.44 0.43 5 2 46.29 37.86 0.02 -0.02 

LA 139 5 2 60.69 58.61 0.13 0.08 5 2 82.97 56.5 0.05 0.06 

PFM 138 4 3 29 27.15 0.37 0.31 5 3 51.04 39.51 0.05 -0.01 

LFM 138 6 3 68.14 72.89 0.07 0 5 3 44.27 46.52 0.15 0.1 

LDM 137 6 3 89.8 69.16 0.05 -0.05 5 3 66.1 52.03 0.08 -0.01 

LDMC 136 4 1 127.64 124.41 0.04 0.01 3 1 48.36 44.86 0.13 0.1 

PDM 126 5 3 29.25 26.88 0.28 0.19 5 3 50.96 43.45 0.06 -0.01 

TDMC 126 4 1 49.9 51.27 0.19 0.17 3 1 43.57 40.93 0.21 0.18 

PWC 126 4 1 205.09 178.86 0.01 -0.02 3 1 91.12 85.09 0.05 0.01 

TWC 126 4 2 46.61 48.39 0.2 0.16 3 1 54.92 52.15 0.15 0.12 

PDMC 126 4 2 51.25 51.69 0.17 0.11 3 1 64.17 58.78 0.11 0.07 

TDM 126 5 3 27.16 26.03 0.31 0.22 4 1 92.03 88.14 0.02 -0.03 

LWC 136 4 1 235.83 213.29 0.01 -0.01 3 1 70.39 55.47 0.04 -0.01 

C 134 4 3 62.94 64.17 0.12 0.06 4 3 62.89 62.14 0.1 0.03 

LS 126 6 2 60.46 68.61 0.07 0 5 2 208.3 83.86 0.01 -0.06 

SLA 137 5 3 59.8 53.86 0.12 0.07 3 1 162.74 140.67 0.02 -0.02 

 

4.3.3 Number of bands and spectral regions used for modelling of plant functional traits 

For model calibration of only four FTs more than 50% of the bands of the FS 3 were used 

(Figure 4-3). This number increased to five for HH 2 and six for EnM. For S-2, L 7 and RE, all 

models included more than 50% of the respective sensor’s spectral bands, which indicates that 

these sensors produced few redundant spectral information. However, low prediction 

accuracies of multispectral systems also show that important information for estimating FTs 

was missing. 

The number of bands selected by autopls differed considerably between FTs (Table 4-3). 

Especially the models created using FS 3 and EnM data frequently integrated similar spectral 

regions and featured strong relations between the numbers of bands used for prediction (Figure 

4-3). Different spectral bands were included in the models created based on HH 2 data because 

this system did not use the entire spectral range of the previously mentioned sensors. We did 

not display model results of the multispectral systems in Figure 4-3 because the majority of 
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bands was used for modelling all FTs. For predicting eight (PH, SPAD, LDMC, TFM, C/N-

ratio, NDF-content, CSH and fPARabs) of the 13 FTs detected with acceptable or high accuracy 

(R²val > 0.4) using the FS 3 data, bands from all regions of the spectrum, i.e. UV and VIS (350-

700 nm), NIR (700-1400 nm), nSWIR (1400-1800 nm) and fSWIR (1800-2360 nm), were used. 

For detecting TWC and PFM, backward selection identified only bands from the NIR and the 

nSWIR regions to provide significant additional information. NIR and fSWIR data did not carry 

no relevant information for improving model performance for predicting PDM and N-content. 

Solely nSWIR and fSWIR data were used for detecting PFM. No highly correlated spectral 

information was found for LA, PWC, LWC, SLA, LS-ratio, LFM, PDM, TDM, LDM and C-

content, as R²val < 0.4 indicate.   
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Figure 4-3. Bands selected in the PLSR models to detect the single FTs for FS 3, HH 2 and 

EnM sensors, indicated by vertical grey bars. The shown spectrum (black) is based on the 

average of all spectra simulated for the concerning sensor.   
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Figure 4.3 (continued). Bands selected in the PLSR models to detect the single FTs for FS 3, 

HH 2 and EnM sensors, indicated by vertical grey bars. The shown spectrum (black) is based 

on the average of all spectra simulated for the concerning sensor.   
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4.4 Discussion 

In the presented study, the potentials of six RS sensors featuring various bandwidths, band 

numbers and spectral ranges were investigated for estimating 23 FTs of five different grassland 

communities. To exclude effects of sensor noise and differences in the spatial and radiometric 

resolution from our analysis, the entire spectral dataset was acquired using a FS 3 field 

spectroradiometer. Subsequently, the reflectance of a HH 2 field spectroradiometer as well as 

the reflectances of the satellite sensors EnM, S-2, L 7 and RE were simulated using their SRFs.  

Acquisition of spectral measurements using a field spectroradiometer allowed us to (1) 

minimize BRDF effects by collecting spectral data several times on each day, (2) ensure that 

the spectral measurements and vegetation samples were solely acquired in the defined plots, (3) 

collect data with sufficient temporal resolution to cover all growing stages of vegetation and 

(4) use data collected at exactly the same time and vegetation stage for sensor comparison. The 

utilization of an automated crane system further ensured that samples were recorded from a 

constant viewing geometry, i.e. sensor angle and height (Stagakis et al., 2010). Collection of 

spectral signatures in three different positions within each plot has shown in previous tests to 

cover the naturally occurring variance in reflectance within plots and was thus representative 

of the plots’ average spectral properties. Furthermore, 30 plant samples acquired within each 

plot were observed in preliminary trials to provide stable means of FTs. Thus, representative 

models on the plot level were created, although spectral measurements did not exactly resemble 

the positions of the plant samples. As the spatial resolutions of the real satellite sensors differ 

from those of our field spectroradiometer measurements, our results may only provide a gross 

estimation of real sensor accuracy. However, it was shown that up-scaling of models using field 

spectroradiometer data to satellite data is possible, when the spatial resolutions of both 

instruments are well above the size of individual plants (Psomas et al., 2011; Verrelst et al., 

2009). As this requirement was fulfilled here, we are confident that the produced results provide 

an insight into the potential of the different satellite sensors for detecting grassland FTs. 

PLSR was used to relate the response of remotely sensed information to changes in FTs. For 

validating our model results, LOO-CV was applied. This method may be affected by problems 

of overfitting for datasets with a large number of predictors (Allen, 1974), and thus tends to 

provide optimistic prediction accuracies, especially for hyperspectral data. However, it has the 

advantage to create almost unbiased estimations of target variables based on the input data 

(Luntz and Brailovsky, 1969). We further argue that overfitting in this study may be limited 

due to the creation of a relatively low number of latent vectors used in the PLSR models.  
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4.4.1 Overall Performances of the six tested sensors for detecting plant functional traits 

Best suited for detecting FTs were hyperspectral sensors, i.e. FS 3, EnM and HH 2, which 

provided data to successfully estimate 13, 11 and ten FTs, respectively (R²val > 0.4). This 

confirms the results of previous studies that hyperspectral systems with narrow bands allow 

improved insights into variations in specific chemical compounds, compared to multispectral 

data (Blackburn, 1998; Stagakis et al., 2010; Thenkabail et al., 2004a). However, also simulated 

S-2 data featured R²val greater than 0.4 for estimating nine of the 23 tested FTs. Only three FTs 

were detected with acceptable accuracies using L 7 and none using simulated RE bands. This 

shows that these two sensors are not suitable for deriving FTs of mixed grasslands on a 

multitemporal scale.  

The performance for detecting FTs was thereby related to a sensor’s band number 

(λPearson=0.64). Similar findings were made by Cho et al., (2007) and Thenkabail et al., (2004a), 

who observed that accuracies for detecting biophysical or chemical plant properties increase 

with the band number of a sensor. Furthermore, the presented study shows that the spectral 

range of a RS system strongly influences its performance for detecting FTs: although the HH 2 

sensor exhibits a significantly higher number of bands (711) than EnM (192), slightly better 

(albeit non-significant) model fits were achieved by data based of the latter RS system. In 

addition, the 1683 bands of the FS 3 did not enable a significantly higher average accuracy than 

HH 2- and EnM-bands. We assume that the closely spaced bands of FS 3 and HH 2 did not 

carry additional information and hence did not lead to increased model accuracies (Broge and 

Leblanc, 2000; Thenkabail et al., 2000, 2002). Interestingly, although S-2 had a significantly 

lower number of bands (11), this sensor yielded comparable accuracies to hyperspectral sensors 

for some FTs (i.e. PH, NDF-content and CSH), but performed significantly weaker on average. 

This observation is supported by Kawamura et al., (2008), who showed that for detecting 

biomass and fiber content a high spectral detail in the red-edge region (as provided by S-2) may 

contain most of the important information. The low accuracies of models based on L 7 and RE 

data are caused by the missing spectral detail as well as by limitations in their spectral range.  

These results show that hyperspectral data is needed for creating stable relations between 

spectral reflectance and the majority of investigated FTs. Thereby for estimating FTs, a very 

high band number (thousands of spectral bands) does not always perform significantly better 

than 100-200 bands located in relevant regions of the spectrum. Although, on average half-

range (365-1075 nm) data were not significantly less suited for predicting FTs, improvements 
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in the strength of the relations for predicting a number of FTs were achieved by adding bands 

at longer wavelengths than 1075 nm.  

 

4.4.2 Accuracies reached for detecting individual plant functional traits 

FTs were predicted with R²val ranging between -0.06 and 0.8. As we collected datasets in 

species-rich grasslands, the accuracies for estimating many of the FTs were relatively low 

compared to other studies, which collected data in grass monocultures (cf. Table 1-3; 

Kawamura et al., 2008). Although, applying first derivations of spectra may enable improved 

model accuracies (cf. chapter 3), it was decided not to use this technique. Instead, we intended 

to compare raw reflectance of different sensors rather than to maximize model accuracies. 

Thereby, we created one single model using pooled data from 5 plant communities and six 

growths within three years. This was preferred because we aimed at creating models which 

were applicable to a large variety of plant communities, vegetation phenological stages, 

growths, years and weather conditions.  

FTs related to biomass (i.e. PH, CSH, PFM and TFM), LAI (i.e. fPARabs), chlorophyll content 

(i.e. SPAD, N-content and C/N-ratio) and fiber content (i.e. NDF-content) were detected with 

relatively high accuracies. This was expected because several studies have shown that grassland 

biomass can be detected fairly well using remotely sensed data (Boschetti et al., 2007; 

Kawamura et al., 2008; Psomas et al., 2011). Furthermore, strong correlations between spectral 

data and LAI, chlorophyll content, N-content and NDF-content were also observed by other 

scientists (Darvishzadeh et al., 2008b; García‐Ciudad et al., 1993; Hansen and Schjoerring, 

2003; Ling et al., 2014; Redshaw et al., 1986; Rossini et al., 2012; Stagakis et al., 2010).  

FTs related to dry matter content (i.e. PDMC, TDMC and LDMC) as well as to water content 

(i.e. PWC, TWC and LWC) were more difficult to detect. We assume that rain events before 

plant sample collection may have severely influenced the water content of samples because 

these events attached large amounts of adhesive water to the plant leaves. This adhesive water 

was not detected isolated from water contained in the plants using RS information. Similarly, 

adhesive water may have also been responsible for the low model accuracies for detecting LFM. 

Furthermore, PDM, TDM and LDM were difficult to detect. We argue that the estimation of 

these FTs was exacerbated because dry matter of senesced vegetation resembles dry matter of 

green vegetation. However, the spectral signatures between senescent and green vegetation 

distinctly differ. As LS-ratio was calculated based on LDM and TDM, low accuracy for 

detecting this FT is reasonable. C-content varied only marginally between treatments and over 
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time and these changes appeared to be too small to be evident in the spectral signatures, as bad 

performance of models for detecting this FT indicate. Low model accuracies for detecting LA 

and SLA were also expected because LA was measured on individual plants, regardless of stand 

density (which also plays an important role for the relations between LA and spectra). Poor 

performances to estimate SLA using remotely sensed data are also reported in Homolová et al., 

(2013). 

 

4.5 Conclusions 

Spectral resolution and spectral range – these two parameters have a strong impact on the 

performance of RS systems for detecting FTs. We showed that hyperspectral remotely sensed 

information allows significantly higher accuracies for deriving FTs than multispectral 

information. Thus, up to 13 of 23 tested FTs could be estimated with acceptable or high 

accuracies (R²val > 0.4) using hyperspectral RS data. By simulating different hyperspectral and 

multispectral RS sensors, it was shown that with decreasing band number, the amount of 

successfully detected FTs significantly dropped. However, more important than band number 

was that the spectral bands were located in relevant sections of the spectral range between 350 

and 2500 nm. Among the most accurately detected FTs were those related to biomass, LAI, 

chlorophyll content or fiber content, whereas FTs related to plant water content, dry matter 

content, leaf area, leaf-stem ratio or C-content were more difficult to detect.  

We conclude that modern hyperspectral satellite sensors featuring a high spectral, spatial and 

temporal resolution as well as a broad spectral range (such as EnM) have the potential to 

monitor changes in many important FTs in the spatial domain. These products can contain per-

pixel estimates on the status of single FTs, which may be further analyzed in the ecological 

context, e.g. for indicating shifts in the growth conditions due to management or climate, for 

deducing other site attributes, such as Ellenberg indicator values, or for creating maps of plant 

C-S-R strategy types. Furthermore, successful monitoring of FTs and the supply of spatially 

contiguous information on grassland status are of large value for precision agriculture and may 

thus add to a more sustainable agricultural use of these ecosystems.   

The next steps in research should aim at transferring models based on field spectrometry to real 

satellite imagery. An important question to be answered is if large components of noise 

occurring when collecting earth observation data with a very high spectral and spatial resolution 

from space can be diminished to recognize subtle changes in the reflectance of plant canopies 

caused by variations in the FTs. 



 

86 

5 General conclusions and outlook 

In Central Europe, centuries of agricultural use of grasslands have led to the development of 

unique ecosystems. These represent the habitat for many endemic species and provide 

important ecosystem services, e.g. as a source of fodder for livestock. The current condition of 

grassland ecosystems can only be maintained if their management is adapted to increasing 

pressures caused by changes in climate and in the intensities of use. However, plant 

communities found in these ecosystems are complex in their floristic composition and their 

responses to management actions. As the conventional taxonomic approach based on species 

classification has shown to be little effective for assessing changes in the state, quality and 

health grassland vegetation, ecologists and agronomists use FTs. Current techniques for 

estimating many grassland FTs require a manual and destructive data collection and cause high 

monetary and temporal costs. Thus, agronomists and ecologists are seeking for novel methods 

for solving these problems. RS may provide a universal solution to derive estimates of FTs on 

local and regional scale with high temporal resolution. 

In this thesis, the potential of RS for monitoring changes in the FTs of grassland was explored. 

Under progressive climate change and transformations in grassland use, such estimates are 

necessary to support grassland managers to conserve the diversity and productivity of these 

ecosystems and to prevent negative effects on the underlying soils and adjacent water bodies.  

 

5.1 How can we distinguish grassland intensity levels using remote sensing? 

Depending on the given biotic and abiotic site-conditions, grassland communities are composed 

of characteristic stakes of plant species pursuing certain CSR-strategies (Grime, 1977). Under 

temperate-maritime climate conditions, species rapidly developing in LA and biomass (i.e. 

species belonging to the competitive strategy (C) type) are dominant in nutrient-rich habitats. 

In contrast, species developing slower in these parameters, but featuring a long reproductive 

phase and low SLA (i.e. species of the conservative strategy (S) type) are characteristic for 

nutrient-limited habitats. Accordingly, plants belonging to different PFTs and featuring 

differences in their FTs predominate, depending on the soil nutrient status at a site. The optical 

characteristics of CSR-strategy types and PFTs differ from each other according to their FTs. 

In other words, intensity levels of grasslands, are dominated by different PFTs, which 

consequently feature different expressions of FTs.  

As VIs respond to these differences in the FTs, they can be used to distinguish grassland 

intensity levels. However, expressions of numerical FTs may vary throughout a growing 
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season. The performance of each VI for separating grassland intensity levels thus depends on 

its sensitivity to certain FTs that differ between grassland communities at a given phenological 

state. For example, VIs sensitive to green LA and green biomass can reliably be used to 

distinguish grasslands as long as the communities feature significant differences in these FTs. 

However, during some phases of phenological development, plant communities may exhibit 

similar values in these variables. At these phases, VIs sensitive to other FTs (e.g. to plant water 

content or fiber content), may allow a more successful classification. Consequently, mapping 

studies of grassland vegetation using single VIs require a prior assessment of their individual 

phenological state to identify the best VIs for grassland separation. 

To overcome this drawback of single VIs, a multiple VI approach was developed using random 

forests. This algorithm selects the ideal set of VIs for distinguishing different grassland intensity 

levels from each other according to their phenological state and allows a relatively stable 

grassland classification. Thus, this approach helps to improve classification accuracies and, at 

the same time, simplifies the selection of efficient VIs for distinguishing grassland intensity 

levels. 

 

5.2 Monitoring of plant functional traits using remote sensing – lessons learned 

Hyperspectral RS has shown to be an effective tool for assessing changes in the FTs of different 

grassland intensity levels throughout the entire growing season (cf. chapter 3). As non-

destructive, cost-efficient and time-saving technique, field spectroscopy enables grassland 

managers to record spectral data on demand. Field spectroradiometers can be transported and 

used even at remote locations and are of great value for improving grassland management 

techniques on a local scale. Additionally, our results suggest that RS of FTs for small-scale 

agriculturally used areas may also be possible using UAVs, which can collect imagery featuring 

a high spatial and spectral resolution from low flight altitudes. FTs of larger areas may best be 

monitored using space-borne platforms, which provide hyperspectral data with lower spatial 

resolutions.  

To enhance information content of RS data to detect FTs, different transformations of spectra 

as well as analysis techniques can be applied. Spectral derivations have shown to allow 

improved estimates of FTs compared to raw spectra and continuum removed spectra and may 

be used to limit bidirectional reflectance effects occurring in multitemporal datasets. Although 

difficulties remain in understanding the absorbance, transmittance and reflectance processes 

existing in the studied species-rich (i.e. complex) grassland canopies, our empirical approach 
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using PLSR has shown to provide moderately to highly accurate models for many important 

FTs. Furthermore, our results show that the flexible algorithm of PLSR allows creating one 

statistical model for assessing one FT of different grassland communities throughout entire 

growing seasons. These findings also suggests that the models are transferable between 

different grassland canopies and consequently also to other regions. In addition, it is shown that 

RS is an efficient technique to monitor FT development.  

However, accuracies of the created models were highly variable. Using spectral reflectance 

measurements, FTs related to plant morphology (i.e. PH and fPARabs), biomass (i.e. CSH and 

TFM) and chlorophyll content (i.e. N-content, C/N-ratio and SPAD value) as well as FTs 

related to NDF-content and LA can be estimated with high accuracy (R²val > 0.6). Moderate 

accuracies (≥ 0.4 in R²val) were reached for estimating PFM, LFM, LDM and LDMC. Finally, 

PWC, TWC, LWC, PDMC, TDMC, PDM, TDM, C-content, L-S-ratio and SLA were detected 

with low accuracies (R²val < 0.4).  

These findings are of great importance for grassland scientists because they underline the 

potential of RS to provide spatiotemporal data on grassland development. Such datasets are 

currently rarely available but urgently needed. Combining RS with ecological theory may thus 

contribute to a sustainable use of grassland ecosystems. 

 

5.3 How to estimate numerical plant functional traits using hyperspectral remote sensing 

As stated in chapter 3, an estimation of many (13 of 23 tested) important numerical FTs of 

grassland communities is possible by relating their manually measured expressions to 

hyperspectral RS data. To allow such estimates over entire growing seasons, the following 

procedures should be conducted: 

1. The first step is the collection of RS data and the manual measurement of FTs. To allow a 

monitoring of FTs over time, it is necessary to collect spectral signatures and FT expressions 

over the entire growing seasons of several years and to integrate these observations in 

flexible statistical models, e.g. using PLSR. It is thereby important that the manual samples 

and RS data match in time to ensure that both datasets were collected at the same 

phenological state. To consider the spatial heterogeneity naturally occurring within 

grassland communities, a number of both, RS estimates and manual samples of FTs, should 

be collected within each vegetation stand at each sampling date. Furthermore, RS systems 

measure reflectance typically above the spatial extent of single grasses or forbs. Therefore, 
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FTs of a number of plants should be recorded in order to produce stable estimates of 

community mean FTs.  

2. The strength of the relations between RS data and FTs could be increased by using first 

derivation spectra. We assume that BRDF effects and variations in incoming solar radiation 

were diminished by this technique, which lead to a more efficient use of spectral 

information. To delete random noise, smoothing of the spectral signatures (e.g. according 

to Savitzky and Golay, 1964) and a correction of sensor offset (i.e. by splice correction, cf. 

Stevens and Ramirez-Lopez, 2013) are also recommended.  

3. PLSR was identified as an efficient algorithm to relate the spectral reflectance of grassland 

canopies to manual measurements of FTs. This algorithm can solve problems related to the 

high dimension of hyperspectral RS data, such as effects of overfitting. Furthermore, 

backward selection of predictors removes redundant information or bands uncorrelated to 

the target variables (i.e. FTs) from the models and thus limits effects of multicollinearity. 

In addition, PLSR was flexible enough to produce one model for relating RS data to a FT 

and to cover different plant communities throughout the growing seasons of several years.  

4. For model calibration and validation, LOO-CV was identified as appropriate approach. As 

models developed using this method may be subject to overfitting (i.e. a too positively 

calculated model accuracy caused by a high number of integrated independent variables), 

the dimensionality of spectral data was minimized using LVs. Using LOO-CV, we were 

thus able to create a balanced assessment of the sets of relevant bands for detecting each FT 

and to compare model accuracies produced by different RS sensors efficiently.  

 

5.4 Which spectral range and resolution are suitable for remote sensing of plant functional 

traits? 

Although large efforts have been made in recent years to detect grassland FTs using field 

spectroradiometers, it remained unclear, which available satellite sensors provide the potential 

to produce contiguous spatial information in this domain. In chapter 4 of this thesis, this topic 

is addressed. It was shown that traditional broadband satellite sensors, such as RE and L7, are 

not suited for monitoring FTs due to their low spectral resolutions (i.e. low band numbers and 

broad bandwidths) and their limited spectral ranges. Nevertheless, modern multispectral 

systems providing higher spectral resolutions and covering a wider range of wavelengths (such 

as S-2) may allow improved results and enable moderate to high accuracies for mapping 

selected FTs. 
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However, new-generation hyperspectral satellite sensors, such as EM (planned launch in 2019), 

have the greatest potential for providing spatiotemporal information on important FTs. These 

systems may even produce comparable accuracies for estimating many important FTs to full-

range field spectroradiometers (providing the 10-fold number of spectral bands) and mostly 

higher accuracies than half-range field spectroradiometers (providing the 5-fold number of 

spectral bands). For the design of future hyperspectral sensors, these findings suggest that pure 

band number is not the main determinant for producing highly accurate estimates of FTs. In 

fact, it is more important to cover relevant spectral regions within a broad spectral range. 

Thereby, a number of approximately 200 bands distributed across the spectral range between 

350-2500 nm is suitable for mapping many FTs with moderate to high accuracy.  

New imaging spectrometers, such as EnM or HyspIRI, may thus allow observing changes in 

FTs due to transitions in management on the short-term as well as to variations in climate on 

the long-term. Furthermore, hyperspectral RS may provide information on the nutrient status 

of grasslands at different spatial scales. Such datasets are of large value for precision agriculture 

because they can support grassland managers in applying fertilizers according to the identified 

nutrient-demand of the plants and can consequently help to maximize yields. Finally, such 

precise dosage of nutrients will contribute to maintaining the soil quality and species diversity 

of grassland ecosystems and, at the same time, prevent negative side effects on adjacent water 

bodies.  

 

5.5 Recommendations for future studies and outlook 

Although it was shown that RS may allow to gather insights into the status and functional 

properties of grassland, more research is needed to map the current distribution of different 

grassland communities and to monitor changes in their functioning on a global scale.  

As stated in chapter 2, distinguishing different intensity levels of grassland is possible using the 

proposed multiple VI approach. For developing and testing this approach, clearly separable 

vegetation communities were used. However, when applying airborne or satellite-borne RS 

systems in classification studies, problems related to mixed pixels (i.e. a mixture of land-cover 

classes, e.g. grassland communities, occurring within one pixel) exist. These problems may 

even increase when RS systems featuring coarse spatial resolutions are used for mapping the 

global distribution of grassland types. A solution for the mixed pixel problem may provide 

multiple endmember spectral mixture analysis (MESMA). This technique can be applied to 

identify the proportions of different grassland communities within one pixel. Using MESMA it 
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is thus possible to create estimates of land-cover-types on the sub-pixel level and consequently 

to produce maps of the occurrence of grassland communities, which are also comparable across 

different spatial scales.  

To detect the FTs of the different studied grassland intensity levels using RS, an empirical 

modelling approach based on PLSR was used. The results, as given in chapter 3, demonstrate 

that the detection of many (13 of 23 tested) grassland FTs is possible using field spectrometry. 

Thereby, the developed PLSR-models have shown to be valid over a wide range of European 

grasslands and phenological stages at one experimental site. However, it still needs to be 

addressed if and how these models can be transferred between different regions and climatic 

conditions in order to enable scientists to detect changes in the FTs of grassland communities 

globally and on different scales. 

Physically based RTMs may allow such an application of RS data for detecting FTs over a wide 

range of grassland types and environmental (i.e. climate and soil) conditions. For example, 

recent studies have attained promising results in the derivation of different FTs, such as LAI 

and biomass, of species-rich grassland canopies using RTMs (e.g. Atzberger et al., 2013; 

Darvishzadeh et al., 2011; Kattenborn et al., 2017). Thus, RTMs may provide the potential to 

estimate some of those ten FTs, which were not successfully detected using PLSR. However, 

much research still needs to be undertaken to explore the full potential of these modelling 

approaches for estimating FTs.  

Besides the transferability of models between regions, it further remains unanswered, which 

impact the spatial resolution of a RS sensor has on its possible accuracy for estimating FTs. For 

this purpose, UAVs may provide valuable datasets because they can produce imagery from 

different altitudes, i.e. featuring different spatial resolutions, using the same sensor. Such 

scaling studies may represent the next step for transferring models developed using ground-

based or airborne RS data to satellite systems.  

In addition, future research may also focus on investigating the potential of active RS sensors, 

such as radar and lidar, for detecting FTs. High accuracies using these systems were especially 

reached for retrieving the water content and the morphological properties of vegetation (cf. 

Bork and Su, 2007; Jones and Vaughan, 2012). Thus, following studies may investigate the 

fusion of optical and radar or lidar RS data in order to increase the accuracies for detecting 

many FTs. 

Although first attempts have been made to connect ecological theory with RS data, it is yet not 

clearly identified how direct relationships between these two fields in research can be 
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established. The concept of “optical types” stated in Ustin and Gamon, (2010) was a first 

approach on connecting PFTs (i.e. plants exhibiting similar sets of FTs) with remotely sensed 

information. In this respect, it is still subject to research how strongly certain FTs influence the 

spectral signal and so determine the classification of a plant as a specific optical type. Thus, 

enabling clearly defined sets of FTs affecting the optical type of a plant may further add to a 

more direct applicability of RS for ecological studies. Thereby, it needs to be considered which 

FTs are detectable by RS and how important these FTs are for assessing ecosystem functioning.  

Finally, the use of RS in grassland ecology needs to be supported and promoted. Therefore, RS 

data or RS-based estimates of FTs need to be made available to the concerning stakeholders, 

including scientists (i.e. agronomists and ecologists), government authorities and farmers. 

Furthermore, programs need to be established, which aim at assessing changes in grassland FTs 

in the spatial domain and on an operational scale. Such estimates may add to a warning system, 

which identifies unintended trends in grassland development and enables grassland managers 

and legislative institutions to undertake measures preventing negative effects on grassland 

health, production and species-richness. Thus, RS can support an efficient agricultural 

valorization of grassland ecosystems and at the same time enable their sustainable use. 
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7 Appendices 

Table A 1. Performance of the fifteen VIs for distinguishing the five grassland communities in 

Growth 1 and Growth 2 (Welch test with α= 0.9; * p < 0.1, ** p < 0.05, 

Growt

h 1 

 nWI 
nRE

P 

LC

I 

nSI

PI 

nW

C 

nNDL

I 

nND

NI 
nLCI 

NDV

I 

nGND

VI 

nND

VI 

GND

VI 

nPR

I 

nNP

CI 

nNP

QI 

nWI - - ** ** *** *** *** *** *** *** *** *** *** *** *** 

nREP - - - * ** ** *** *** *** *** *** *** *** *** *** 

LCI ** - - - - - ** *** *** *** *** *** *** *** *** 

nSIPI ** * - - - - - ** ** ** ** *** *** *** *** 

nWC *** ** - - - - - - * * * ** *** *** *** 

nNDLI *** ** - - - - - - * * * ** *** *** *** 

nNDNI *** *** ** - - - - - - - - - * ** *** 

nLCI *** *** *** ** - - - - - - - - ** ** *** 

NDVI *** *** *** ** * * - - - - - - * ** *** 

nGND

VI 
*** *** *** ** * * - - - - - - * * *** 

nNDVI *** *** *** ** * * - - - - - - - ** *** 

GNDVI *** *** *** *** ** ** - - - - - - - ** *** 

nPRI *** *** *** *** *** *** * ** * * - - - - - 

nNPCI *** *** *** *** *** *** ** ** ** * ** ** - - - 

nNPQI *** *** *** *** *** *** *** *** *** *** *** *** - - - 

Growt

h 2 

 nRE

P 
nWI 

LC

I 

nSI

PI 

nW

C 

nND

NI 

nNPC

I 

nGND

VI 

nND

LI 
nLCI 

nND

VI 

GND

VI 

ND

VI 
nPRI 

nNP

QI 

nREP - - - - * ** *** *** *** *** *** *** *** *** *** 

nWI - - - - - * ** ** ** ** ** *** *** *** *** 

LCI - - - - - * *** ** ** *** *** *** *** *** *** 

nSIPI - - - - - - ** ** ** *** *** *** *** *** *** 

nWC * - - - - - * - - ** ** ** *** *** *** 

nNDNI ** * ** - - - - - - - - - - ** ** 

nNPCI *** ** *** ** * - - - - - - - - *** *** 

nGND

VI 
*** ** ** ** - - - - - - - - - * ** 

nNDLI *** ** ** ** - - - - - - - - - * * 

nLCI *** ** *** *** ** - - - - - - - - ** *** 

nNDVI *** ** *** *** ** - - - - - - - - *** *** 

GNDVI *** *** *** *** ** - - - - - - - - * ** 

NDVI *** *** *** *** *** - - - - - - - - * * 

nPRI *** *** *** *** *** ** *** * * ** *** * * - - 

nNPQI *** *** *** *** *** ** *** ** * *** *** ** * - - 



 

 

 

Table A 2. Averages and standard deviations of the Compressed Sward Height (CSH) 

measurements for 2013 and 2014. 

Year Growth T∑ (°C·d) CSH (cm) SD (CSH) 

2013 

1 947 20.59 10.63 

2 

964 6.49 2.51 

1077 4.62 2.15 

1378 6.98 2.95 

2014 

1 

464 5.52 2.93 

560 7.75 4.23 

757 18.12 8.47 

883 17.72 10.09 

1017 17.18 9.64 

1307 24.5 18.21 

2 

210 5.17 1.18 

804 10.54 5.37 

972 12.94 4.90 

1174 13.28 4.97 

1353 11.21 4.57 

 

 

Figure A 1. The crane system installed at the Rengen Grassland Experiment (adapted, Photo: 

Vittek, M., 2013). 



 

 

 

 

Figure A 2. Aerial imagery of the Rengen Grassland Experiment on October 2014. Optical 

differences between the single grassland plots are observed (Photo: Bareth, G., 2014). 

 

  



 

 

 

Table A 3. Band selection frequency. Band regions were expressed in 30 nm wide intervals. 

Count represents the average frequency of single bands for detecting the 23 PFTs of each band 

region. 

Bands (nm) Rank Count  Bands (nm) Rank Count 

1551-1580 1 12  995-1024 28 4 
1581-1610 2 9  2001-2030 29 3 

365-394 3 9  845-874 30 3 
1115-1144 4 8  905-934 31 3 

665-694 5 7  1055-1084 32 3 
515-544 6 7  2031-2060 33 3 
635-664 7 7  425-454 34 3 

1611-1640 8 6  725-754 35 2 
1205-1234 9 6  2301-2330 36 2 

935-964 10 6  2271-2300 37 2 

1731-1760 11 5  2241-2270 38 2 

1701-1730 12 5  1671-1700 39 2 
1145-1174 13 5  2121-2150 40 2 

1085-1114 14 4  605-634 41 2 
1175-1204 15 4  785-814 42 2 

695-724 16 4  965-994 43 2 
1325-1354 17 4  1235-1264 44 2 

395-424 18 4  2331-2360 45 2 
1761-1790 19 4  2061-2090 46 2 
1025-1054 20 4  1295-1324 47 2 

815-844 21 4  455-484 48 2 
1641-1670 22 4  575-604 49 2 

485-514 23 4  875-904 50 2 
755-784 24 4  2181-2210 51 1 

1265-1294 25 4  2151-2180 52 1 

2091-2120 26 4  2211-2240 53 1 

545-574 27 4     

 

 

 


