66,677 research outputs found

    Towards a new regulatory system for the atmospheric environment

    Get PDF

    CO2 Highways for Europe: Modelling a Carbon Capture, Transport and Storage Infrastructure for Europe. CEPS Working Document No. 340/November 2010

    Get PDF
    This paper presents a mixed integer, multi-period, cost-minimising model for a carbon capture, transport and storage (CCTS) network in Europe. The model incorporates endogenous decisions about carbon capture, pipeline and storage investments. The capture, flow and injection quantities are based on given costs, certificate prices, storage capacities and point source emissions. The results indicate that CCTS can theoretically contribute to the decarbonisation of Europe’s energy and industrial sectors. This requires a CO2 certificate price rising to €55 per tCO2 in 2050, and sufficient CO2 storage capacity available for both on- and offshore sites. Yet CCTS deployment is highest in CO2-intensive industries where emissions cannot be avoided by fuel switching or alternative production processes. In all scenarios, the importance of the industrial sector as a first-mover to induce the deployment of CCTS is highlighted. By contrast, a decrease in available storage capacity or a more moderate increase in CO2 prices will significantly reduce the role of CCTS as a CO2 mitigation technology, especially in the energy sector. Furthermore, continued public resistance to onshore CO2 storage can only be overcome by constructing expensive offshore storage. Under this restriction, reaching the same levels of CCTS penetration would require a doubling of CO2 certificate prices

    Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    Get PDF
    ‘Capture Ready’ is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially in the developing world. We propose that fossil fuel plants issue tradable Capture Options to acquire financing. The Capture Option concept could move CCS forward politically in countries such as China, speed up CCS technology development, help Capture Ready investors diversify risk, and offer global warming investors an alternative investment opportunity. As a detailed case study, we assess the value of a Capture Option and Capture Ready plant for a 600 MW supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations. The gross value of Capture Ready varies from CNY3m (0.4m)toCNY633m(0.4m) to CNY633m (84.4m) at an 8% discount rate and the Capture Option is valued at CNY113m (15.1m)toCNY1255m(15.1m) to CNY1255m (167.3m) for two of the four scenarios analyzed

    Balancing climate change mitigation and environmental protection interests in the EU Directive on carbon capture and storage

    Get PDF
    The EU Climate and Energy Package highlights the potential contradictions between the climate change imperative of reducing GHGs emissions and the importance to maintain environmental integrity. While the package supports climate change mainstreaming, it remains to be seen to what extent it succeeds in achieving internal environmental integration between climate change mitigation and other environment- protection objectives. Directive 2009/31/EC on the capture and geological storage of carbon dioxide (hereinafter the CCS Directive) offers a paradigmatic example of this potential conflict. One of the main regulatory challenges arising from the CCS Directive relates to finding the proper balance between the different interests involved and the not-fully-consistent objectives of environmental protection, climate change mitigation, and energy security. The present article will discuss this regulatory challenge and examine how the CCS Directive’s regulatory framework for CCS permits a combination of the various interests at stake and the giving of proper weight to concerns about environmental protection. The role that the precautionary principle in conjunction with the proportionality principle may have in balancing climate change mitigation and environment-protection interests will be considere

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Carbon Capture; Transport and Storage in Europe: A Problematic Energy Bridge to Nowhere?

    Get PDF
    This paper is a follow up of the SECURE-project, financed by the European Commission to study “Security of Energy Considering its Uncertainties, Risks and Economic Implications”. It addresses the perspectives of, and the obstacles to a CCTS-roll out, as stipulated in some of the scenarios. Our main hypothesis is that given the substantial technical and institutional uncertainties, the lack of a clear political commitment, and the available alternatives of low-carbon technologies, CCTS is unlikely to play an important role in the future energy mix; it is even less likely to be an “energy bridge” into a low-carbon energy futureCarbon Capture, Transport, Storage

    The Limits of Liability in Promoting Safe Geologic Sequestration of CO2

    Get PDF
    Deployment of new technologies is vital to climate change policy, but it invariably poses difficult tradeoffs. Carbon capture and storage (“CCS”), which involves the capture and permanent burial of CO2 emissions, exemplifies this problem. This article provides an overview of CCS in Part I, focusing on geologic sequestration, and analyzes the scientific work on the potential for releases of CO2 and brine from sequestrian reservoirs. Part II evaluates the comparative advantages of government regulation and common law liability. Part III examines the relative efficiencies of different doctrines of common law liability when applied to likely releases from sequestrian sites. The authors propose a hybrid legal framework in Part IV that combines a traditional regulatory regime with a novel two-tiered system of liability that is calibrated to objective site characteristics.The Kay Bailey Hutchison Center for Energy, Law, and Busines
    corecore