30 research outputs found

    JCML: A specification language for the runtime verification of Java Card programs

    Get PDF
    AbstractJava Card is a version of Java developed to run on devices with severe storage and processing restrictions. The applets that run on these devices are frequently intended for use in critical, highly distributed, mobile conditions. They are required to be portable and safe. Often, the requirements of the application impose the use of dynamic, on-card verifications, but most of the research developed to improve the safety of Java Card applets concentrates on static verification methods. This work presents a runtime verification approach based on Design by Contract to improve the safety of Java Card applications. To this end, we propose JCML (Java Card Modelling Language) a specification language derived from JML (Java Modelling Language) and its implementation: a compiler that generates runtime verification code. We also present some experiments and quality indicators. This paper extends previous published work from the authors with a more complete and precise definition of the JCML language and new experiments and results

    On the Extensibility of Formal Methods Tools

    Get PDF
    Modern software systems often have long lifespans over which they must continually evolve to meet new, and sometimes unforeseen, requirements. One way to effectively deal with this is by developing the system as a series of extensions. As requirements change, the system evolves through the addition of new extensions and, potentially, the removal of existing extensions. In order for this kind of development process to thrive, it is necessary that the system have a high level of extensibility. Extensibility is the capability of a system to support the gradual addition of new, unplanned functionalities. This dissertation investigates extensibility of software systems and focuses on a particular class of software: formal methods tools. The approach is broad in scope. Extensibility of systems is addressed in terms of design, analysis and improvement, which are carried out in terms of source code and software architecture. For additional perspective, extensibility is also considered in the context of formal modelling. The work carried out in this dissertation led to the development of various extensions to the Overture tool supporting the Vienna Development Method, including a new proof obligation generator and integration with theorem provers. Additionally, the extensibility of Overture itself was also improved and it now better supports the development and integration of various kinds of extensions. Finally, extensibility techniques have been applied to formal modelling, leading to an extensible architectural style for formal models

    On continuation-passing transformations and expected cost analysis

    Get PDF
    We define a continuation-passing style (CPS) translation for a typed \u3bb-calculus with probabilistic choice, unbounded recursion, and a tick operator - for modeling cost. The target language is a (non-probabilistic) \u3bb-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying the CPS transform of an expression M to the continuation \u3bb v. 0 yields the expected cost of M. We also introduce a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate our translation to Kaminski et al.'s ert-calculus, showing that the latter can be recovered by applying our CPS translation to (a generalization of) the classic embedding of imperative programs into \u3bb-calculus. Finally, we prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason about almost sure termination

    On continuation-passing transformations and expected cost analysis

    Get PDF
    International audienceWe define a continuation-passing style (CPS) translation for a typed-calculus with probabilistic choice, unbounded recursion, and a tick operator-for modeling cost. The target language is a (non-probabilistic)-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying the CPS transform of an expression to the continuation .0 yields the expected cost of. We also introduce a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate our translation to Kaminski et al. 's ert-calculus, showing that the latter can be recovered by applying our CPS translation to (a generalization of) the classic embedding of imperative programs into-calculus. Finally, we prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason about almost sure termination

    Logic-based techniques for program analysis and specification synthesis

    Full text link
    La Tesis investiga técnicas ágiles dentro del paradigma declarativo para dar solución a dos problemas: el análisis de programas y la inferencia de especificaciones a partir de programas escritos en lenguajes multiparadigma y en lenguajes imperativos con tipos, objetos, estructuras y punteros. Respecto al estado actual de la tesis, la parte de análisis de programas ya está consolidada, mientras que la parte de inferencia de especificaciones sigue en fase de desarrollo activo. La primera parte da soluciones para la ejecución de análisis de punteros especificados en Datalog. En esta parte se han desarrollado dos técnicas de ejecución de especificaciones en dicho lenguaje Datalog: una de ellas utiliza resolutores de sistemas de ecuaciones booleanas, y la otra utiliza la lógica de reescritura implementada eficientemente en el lenguaje Maude. La segunda parte desarrolla técnicas de inferencia de especificaciones a partir de programas. En esta parte se han desarrollado dos métodos de inferencia de especificaciones. El primer método se desarrolló para el lenguaje lógico-funcional Curry y permite inferir especificaciones ecuacionales mediante interpretación abstracta de los programas. El segundo método está siendo desarrollado para lenguajes imperativos realistas, y se ha aplicado a un subconjunto del lenguaje de programación C. Este método permite inferir especificaciones en forma de reglas que representan las distintas relaciones entre las propiedades que el estado de un programa satisface antes y después de su ejecución. Además, estas propiedades son expresables en términos de las abstracciones funcionales del propio programa, resultando en una especificación de muy alto nivel y, por lo tanto, de más fácil comprensión.Feliú Gabaldón, MA. (2013). Logic-based techniques for program analysis and specification synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33747TESI

    Declarative theorem proving for operational semantics

    Get PDF
    iAbstract The aim of this Masters Thesis is to propose to SYSteam Nät AB, a local Internet Service Provider (ISP) in Uppsala, Sweden, how to implement IP telephony in their existing IT-infrastructure as a service to their customers. Thus the perspective of the thesis will be that of a local Internet Service Provider. Three general areas are covered in the thesis: Market and Business Model, Technology, and Economics. Important issues for SYSteam Nät AB as an established local broadband Internet Service Provider are to both retain present customers and to attract new customers. Some believe that offering value added services such as IP telephony could do this. Implementation of IP telephony can be done in different ways to fulfil SYSteam Nät’s requirements. The analysis leads to a proposal of how SYSteam Nät could implement IP telephony. This involves many multi-faceted business, technical, and financial issues; each aspect is examined in this thesis. ii Sammanfattnin

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th European Symposium on Programming, ESOP 2019, which took place in Prague, Czech Republic, in April 2019, held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    corecore