
Luís Diogo Couto

PhD Dissertation

On the Extensibility of Formal

Methods Tools

Department of Engineering

On the Extensibility of Formal
Methods Tools

PhD Dissertation
Luı́s Diogo Couto

September 30, 2015

DEPARTMENT OF ENGINEERING

AARHUS
UNIVERSITY AU

On the Extensibility of Formal Methods
Tools

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Luı́s Diogo Couto
January 8, 2016

EBOOK ISBN: 978-87-7507-360-3
DOI: 10.7146/aul.118.106

Abstract

Modern software systems often have long lifespans over which they must
continually evolve to meet new, and sometimes unforeseen, requirements.
One way to effectively deal with this is by developing the system as a series
of extensions. As requirements change, the system evolves through the ad-
dition of new extensions and, potentially, the removal of existing extensions.
In order for this kind of development process to thrive, it is necessary that
the system have a high level of extensibility. Extensibility is the capability
of a system to support the gradual addition of new, unplanned functionalities.
This dissertation investigates extensibility of software systems and focuses on
a particular class of software: formal methods tools. The approach is broad
in scope. Extensibility of systems is addressed in terms of design, analysis
and improvement, which are carried out in terms of source code and software
architecture. For additional perspective, extensibility is also considered in the
context of formal modelling. The work carried out in this dissertation led
to the development of various extensions to the Overture tool supporting the
Vienna Development Method, including a new proof obligation generator and
integration with theorem provers. Additionally, the extensibility of Overture
itself was also improved and it now better supports the development and
integration of various kinds of extensions. Finally, extensibility techniques
have been applied to formal modelling, leading to an extensible architectural
style for formal models.

i

Resumé

Moderne softwaresystemer har ofte en lang levetid, hvor de løbende bliver
udviklet for at imødekomme nye, og sommetider uforudsete, krav. En ef-
fektiv måde at håndtere dette på er ved at udvikle systemet som en række
udvidelser. I takt med at krav ændrer sig, udvikler systemet sig ved tilføjelse
af nye udvidelser og potentielt set, fjernelse af eksisterende funktionalitet.
For at få succes med denne form for udviklingsproces er det nødvendigt
at systemet i høj grad er forberedt på udvidelser. Et systems udvidbarhed
beskriver dets evne til at understøtte gradvis tilføjelse af ny, uplanlagt funk-
tionalitet. Denne afhandling undersøger software systemers udvidbarhed og
fokuserer på en særlig klasse software: værktøjer til formelle metoder. Frem-
gangsmåden er omfangsrig med mange forskellige vinkler. Systemers udvid-
barhed undersøges i forhold til design, analyse og forbedring og gennemføres
i form af kilde-kode og software arkitektur. For at få et yderligere perspek-
tiv betragtes udvidbarhed også i en formel modelleringskontekst. Arbejdet
udført i denne afhandling har ført til udviklingen af forskellige udvidelser
til software-værktøjet, Overture, som understøtter udviklingsmetoden Vienna
Development Method, inklusiv en ny generator af bevisforpligtigelser samt
integration af værktø jer til at bevise egenskaber. Yderligere er Overtures
udvidbarhed blevet forbedret, så værktøjet nu bedre understøtter udvikling
og integration af forskellige former for udvidelser. Endelig er teknikker til
udvidelighed blevet anvendt til formel modellering, hvilket har ført til en
arkitektonisk stil for formelle modeller, der er nemmere at udvide.

iii

Acknowledgements

The work reported in this thesis would not have been possible without the
collaboration and support of several people. My thanks to all of them but I
would like to single out the following.

I thank my supervisor, Peter Gorm Larsen, for the opportunity to pursue
this PhD. His feedback and suggestions were always valuable. I also thank
my co-supervisor, Joey W. Coleman, for his collaboration and feedback.

I thank Nick Battle, Stefan Hallerstede, and Victor Bandur for reviewing
this thesis.

Thanks to the members of the Software Engineering Group, especially
my two officemates Peter W. V. Tran-Jørgensen and Kenneth Lausdahl, with
whom I had many fruitful discussions and collaborations.

Thanks to Richard Payne and Simon Foster for their collaboration on the
COMPASS project.

On a personal note, I would like to thank Augusto Ribeiro who was a
good friend when I first moved to Denmark and continues to be so.

Finally, I would like to thank my parents and sister for their love and
support.

This work was partially supported by the EU Framework 7 Integrated
Project “Comprehensive Modelling for Advanced Systems of Systems”.

v

Contents

Abstract i

Resumé iii

Acknowledgements v

Contents ix

Acronyms xi

I Summary 1

1 Introduction 3
1.1 Context . 3
1.2 Motivation . 5
1.3 Research Objectives . 6
1.4 Research Method . 7
1.5 Evaluation Criteria . 8
1.6 Publications . 9
1.7 Outline and reading guide 10

2 Background 13
2.1 Extensibility and related terms 13
2.2 Other approaches to extensibility 14
2.3 Software Architecture . 16
2.4 Design patterns and data structures 17
2.5 Overture . 18
2.6 Semantics . 19
2.7 Other tools and case studies 20

vii

viii Contents

3 Specific Applications of Extensibility 23
3.1 New Extensions . 24
3.2 Combining Extensions . 27
3.3 Improving Extensibility through Software Architecture . . . 29
3.4 Extensibility in Formal Models 37

4 Generalisations of Extensibility 41
4.1 Generalising the new POG contributions 42
4.2 Technical aspects of extension combination 42
4.3 Reusability principles for formal analyses 44
4.4 Extensible architecture for formal language tools 46
4.5 Strategy pattern-based Modelling 49

5 Foundational Contributions 53
5.1 Extending Proof Rules of VDM 53
5.2 Integrating Proof Automation 57

6 Conclusion 61
6.1 Summary of Contributions 61
6.2 Assessing Contributions 63
6.3 Future Work . 65

II Publications 69

7 The COMPASS Proof Obligation Generator: A Test Case of Over-
ture Extensibility 71

8 Towards Verification of Constituent Systems through Automated
Proof 79

9 Migrating to an Extensible Architecture for Abstract Syntax Trees 87

10 Extending the Overture code generator towards Isabelle syntax 89

11 Towards Enabling Overture as a Platform for Formal Notation
IDEs 103

12 Principles for Reuse in Formal Language Tools 119

Contents ix

13 LPF-Aware Proof Obligation Generation in VDM/Overture 121

14 Combining Harvesting Operation Optimisations using Strategy-
based Simulation 137

Bibliography 147

Acronyms

ACSL ANSI/ISO C Specification Langage

ASM Abstract State Machine

AST Abstract Syntax Tree

CGP Code Generation Platform

CML COMPASS Modelling Language

CSP Communicating Sequential Processes

FM Formal Method

IDE Integrated Development Environment

IR Intermediate Representation

LPF Logic of Partial Functions

PO Proof Obligation

POG Proof Obligation Generator

RCP Rich Client Platform

SA Software Architecture

SMT Satisfiability Modulo Theories

TLAPS TLA+ Proof System

TPP Theorem-Proving Plug-in

UI User Interface

UTP Unifying Theories of Programming

VDM Vienna Development Method

xi

Part I

Summary

1

1
Introduction

“A hallmark — if not the hallmark — of good object oriented de-
sign is that you can modify and extend a system by adding code
rather than hacking it. In short, change is additive, not invasive. Ad-
ditive change is potentially easier, more localized, less error-prone,
and ultimately more maintainable than invasive change.“

–John Vlissides, The C++ Report, February 1998

1.1 Context

Modern software systems stay in use for a very long period of time and are
continuously evolved to deal with new, and possibly unforeseen, require-
ments. Developing systems based on extensions is a way to deal with this.
Extensions may be added or removed from the system over time to deal
with evolving needs over the lifetime of the system. However, in order for
extension-based development to be successful, the system must be designed
and developed to support it. In other words, it must have a high level of
extensibility.

This dissertation examines extensibility of software systems with a focus
on a particular class of software: Formal Methods (FMs) tools. The desire
for extension-based development is easy to understand in an FM setting, both
for experimental research purposes and to better support the evolution of a
method and its supporting tools. Extensibility can also promote heavy reuse
of the existing system which increases developer efficiency. Additionally,
extensions can be a good way to achieve interaction between multiple FM
tools by using dedicated extensions to drive the interaction and allow the
tools themselves to evolve independently.

However, the construction of extensions to FM tools can pose particular
challenges. Consider Figure 1.1 which represents an arbitrary FM tool, FM-

3

4 1 Introduction

Figure 1.1: Extending an FM tool.

T, and a proposed extension to it, FM-Ext. In a non-formal setting, one may
simply employ a plugin-based architecture (or similar) for the system being
extended and directly implement the extension. This may present complica-
tions on its own — for example, the system may not have a plugin-based
architecture or otherwise have low extensibility — but in formal settings,
to ensure the soundness of the functionality being provided by the new ex-
tension, we must provide a soundness proof which may even necessitate
formalising the underlying logic. Furthermore, we must ensure that the new
extension is consistent with the existing ones and is implemented efficiently
due to the extra time and effort already spent ensuring soundness.

In order to achieve high-extensibility FM tools which support consis-
tent and efficient implementation of extensions, we must understand both
the concept of extensibility itself and how to develop extensible systems.
Additionally, and in keeping with the theme of reuse, we focus on existing
systems and how to analyse and, most crucially, improve their extensibility.

We examine software extensibility from two points of view: source code
and Software Architecture (SA). Source code relates to specific, technical
challenges to particular extensions of a system. SA is about the larger picture
of how software is organized and interconnected and affects most qualities of
a software system, including extensibility. The two points of view are con-
nected but it is worth distinguishing between the micro-level (source code)
and the macro-level (SA) issues.

1.2 Motivation 5

This work is carried out within a research group that focuses on tooling
for model-based FMs. The extensibility research utilises the tools developed
at the group as case studies and, as part of the work, the extensibility of those
tools is improved. However, we also consider extensibility in the context of
formal modelling — a good way to gain insights into a topic by abstracting
away unnecessary information through the construction of models. Finally,
as formalists, we are concerned with the foundations of our work and while
that is not a focus, foundational work is performed as necessary.

1.2 Motivation

Extensibility and reuse are frequently desired in software development [17].
When it is possible to reuse and extend existing software artefacts (e.g.,
source code), then new software systems can be developed faster and more
efficiently [38].

Extensibility can increase reusability of a system by promoting the reuse
of the base functionality of the system across its various extensions. This can
lead to a reduction in code duplication as the base functionality is properly
reused rather than copied [63]. Code duplication negatively affects software
maintainability [45] — bugs have to be fixed twice and if one is not aware of
the duplicates, a given bug will not be completely fixed. Therefore, reducing
code duplicates can make software maintenance easier.

Extensibility can also be beneficial to the software development process,
if a system is organised into a core plus extensions. The core contains the
crucial, heavily used components for which maintenance efforts can be pri-
oritised. New features can be added incrementally and independently as ex-
tensions [15]. Furthermore, if such features do not prove worthwhile, they
can be easily removed them from the system. The same holds for experi-
mental research extensions. Another advantage is that multi-developer teams
can divide extensions among their members, allowing each of them to work
independently. This is particularly useful for geographically diverse teams or
teams whose members have significantly different technical backgrounds and
expertise and are thus well suited for developing a particular kind of feature.

While extensibility has several advantages, it can also have disadvantages.
Namely, extensible code may be more complex than its non-extensible equiv-
alent due to an additional cost involved in making the code extensible. This
increase in complexity may raise issues of code maintenance or performance.
Therefore, we must fully understand extensibility in order to make well-

6 1 Introduction

informed decisions about which kinds of trade-offs to make when developing
a system.

The focus on extensibility allows us to improve the reusability of the
developed tools and that is a clear benefit. But we also wish to contribute to
actual new functionality of those tools in order to address research challenges
in other areas. By developing these new functionalities as extensions, not only
is the new feature provided but the extensibility of the system is exercised
and possibly improved. This is an approach with a high level of synergy as
it not only addresses technical challenges in diverse areas but it enhances our
understanding of extensibility in general and of the tools being extended.

1.3 Research Objectives

This section presents the main research objectives. The general objective for
is to gain insight into the phenomenon of extensibility, what influences it
and what are its advantages and disadvantages. We also aim to understand
extensibility from various perspectives. Therefore, the following objectives
have been determined:

Objective 1 — Extensibility analysis of software systems. The 1st objective
relates to extensibility of existing software systems. It consists of analysing
existing software systems in order to assess their extensibility by identi-
fying specific extensibility issues and their causes.

Objective 2 — Extensibility improvements to software systems. The 2nd
objective is also applied to existing systems and complements the one
above by improving extensibility of a software system by providing
solutions or recommendations of how to fix specific extensibility issues.

Objective 3 — Well founded extensions for FM tools. The third objective
is to develop contributions to existing FM tools by implementing exten-
sions for them. This objective allows us to contribute to challenges in
a variety of scientific areas in a way that advances core research on ex-
tensibility. As users of FM, we are interested in these extensions having
solid theoretical foundations. Where such foundations do not exist, we
develop them.

Objective 4 — Extensibility in formal models. Finally, on the topic of FM,
there is a smaller 4th objective of combining extensibility with formal
modelling. The idea is not to model extensibility itself and formally

1.4 Research Method 7

analyse it. Rather, we take extensibility principles from software devel-
opment and apply them to the construction of formal models to show
that standard software engineering extensibility practices can be applied
to the development of formal models.

1.4 Research Method

This thesis is in support of an engineering PhD and the work is carried out
in a research environment that is driven significantly by tool development.
Therefore, the research to be carried out is practical and usually applied to
addressing concrete and specific issues. The research method reflects this.

The research method works in breadth and consists of several distinct but
loosely connected studies regarding extensibility in order to draw and present
results from the whole of them. Some studies go in depth, the work in each
building on previous work. Other studies are smaller and their work stands
alone. This approach allows us to be involved in a variety of research areas
and see how extensibility can be applied to them.

The research group in which this work has been conducted has a track
record of using FM. This plays an important part in the research work, al-
though the focus lies on the use of existing FM rather than the development
of new ones.

Much of this work is driven by the creation of new extensions that allow
us to exercise and address most of the research objectives. These extensions
are based on formal theoretical foundations. However, we do not necessar-
ily develop those theories but instead rely on existing foundations, reusing
as much as possible. We contribute to foundations selectively when it is
necessary to support the main research work. The overall methodology for
development of extensions is as follows:

1. Identify and design a new extension. This supports tooling to address a
specific challenge in one of the research areas the group is involved in.

2. Develop theoretic foundations, where necessary. If an extension pro-
vides a feature that is not supported by an underlying theory we begin
by working out the theory before developing the extension.

3. Develop a new extension, focusing on reuse of the base system as much
as possible. The reuse focus is crucial as it allows us to narrow in on
extensibility. Indeed, it can be more important to ensure that reuse is
heavily carried out, than simply providing the functionality.

8 1 Introduction

4. Throughout the development process, whenever a technical issue is en-
countered, it is documented and analysed, particularly to uncover any
influence it may have on extensibility. This ensures that we carry out an
analysis of the base system as part of the development of the extension.

5. If possible, propose and implement a solution for the extensibility is-
sue. This step is carried out iteratively with the previous two, leading
to cycles of develop→identify→fix. While any kind of issue may be
addressed, focus is on issues in the base system that directly prevent or
hamper development of the extension.

6. Analyse all documented issues and their solutions. Once the extension
has been developed, we focus on identifying which issues were particu-
larly relevant from an extensibility perspective, why were they relevant,
and what were their causes. Additionally, these issues and their solutions
may be specific instances of a more general problem. If so, an effort is
made to generalise the problem and its solution.

7. Once work is completed, it is important to report what has been achieved,
focusing particularly on extensibility issues encountered and their solu-
tions. This ensures that we reflect on the work and properly organize it.
The reflection, in particular may lead to new avenues of research. This
also allows us to crystallize the work by formulating it in the form of
concrete contributions.

1.5 Evaluation Criteria

The output of this work is synthesised as a set of contributions. In order to
assess these contributions, the following evaluation criteria have been chosen.
The first two criteria both support research objectives 1 and 2 but they do so
in different ways, thus ensuring our overall goal of having multiple perspec-
tives on extensibility. The last criterion (and the objective it supports) also
contributes towards having multiple perspectives on extensibility.

Source Code improving and/or analysing extensibility from the perspective
of the source code and implementation of the software system. This
criterion relates to research objectives 1 and 2.

Software Architecture addressing — improvement, analysis or both – ex-
tensibility through a SA perspective. This criterion relates to research
objectives 1 and 2.

1.6 Publications 9

New Extension providing or directly enabling a new feature for existing FM
tools. This criterion relates to research objective 3.

Foundation theoretical foundation work supporting other, practical contri-
butions. This criterion relates to research objective 3.

Modelling apply extensibility to formal modelling contexts. This criterion
relates to research objective 4.

An overview and an assessment of all contributions are carried out in
Sections 6.1 and 6.2, respectively.

1.6 Publications

This section lists work selected for publication throughout the PhD.

1.6.1 Published

The following have been published and are included in this thesis in part II.

[P24] Luı́s Diogo Couto and Richard Payne. The COMPASS Proof Obliga-
tion Generator: A Test Case of Overture Extensibility. 11th Overture
Workshop, August 2013.

[P22] Luı́s Diogo Couto, Simon Foster and Richard Payne. Towards Verifi-
cation of Constituent Systems through Automated Proof. Workshop on
Engineering Dependable Systems of Systems (EDSoS), May 2014.

[P26] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen, Joey W. Coleman and
Kenneth Lausdahl. Migrating to an Extensible Architecture for Abstract
Syntax Trees. 12th Working IEEE / IFIP Conference on Software Archi-
tecture, May 2015.

[P25] Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen. Extending the Over-
ture code generator towards Isabelle syntax. 13th Overture Workshop,
June 2015.

[P23] Luı́s Diogo Couto, Peter Gorm Larsen, Miran Hasanagić, Georgios Ka-
nakis, Kenneth Lausdahl and Peter W. V. Tran-Jørgensen. Towards En-
abling Overture as a Platform for Formal Notation IDEs. 2nd Workshop
on Formal Integrated Development Environment (F-IDE), June 2015.

10 1 Introduction

1.6.2 Submitted

The following has been submitted for publication and is included in this thesis
in part II.

[P28] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Kenneth Lausdahl.
Principles for Reuse in Formal Language Tools. 31st ACM Symposium
on Applied Computing (SAC 2016), April 2016.

1.6.3 Planned

The following are planned for submission and are included in this thesis in
part II.

[P21] Luı́s Diogo Couto, Nick Battle and Peter Gorm Larsen. LPF-Aware
Proof Obligation Generation in VDM/Overture. To be submitted to the
5th International ABZ Conference (ABZ 2016), May 2016.

[P27] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Gareth Edwards.
Combining Harvesting Operation Optimisations using Strategy-based
Simulation. To be submitted to the International Journal of Computers
and Electronics in Agriculture, 2016.

1.6.4 Not included

The following has not been included in this thesis but is available from its
publisher.

[20] Luı́s Diogo Couto. On Extensibility of Software Systems. Department of
Engineering – Electrical and Computer Engineering, Aarhus University,
April 2014.

1.6.5 Other

In addition to the above, the author of this thesis is also co-author of [49, 57,
64, 48] and sole author of [19], but these publications do not form part of the
thesis.

1.7 Outline and reading guide

This thesis is organised in two parts: part I gives a summary of the work
carried out in the PhD mainly based on excerpts from a selection of publi-

1.7 Outline and reading guide 11

cations carried out during the PhD. Part II contains a selection of complete
publications that formed the basis of the PhD.

Part I is meant to give an overview of the contributions of the PhD. Con-
tributions are numbered — e.g. Contribution 1 — and framed so as to stand
out in the text. Part I also presents background material and an evaluation of
the work. As it is mainly based on publications, in order to distinguish the
publications of the PhD from other references, they are prefaced with “P” in
their citation identifiers – e.g. [P24].1

Part I is structured as follows: after this introduction chapter, Chapter 2
presents relevant background material for the rest of the thesis. Then, the
main applied contributions of interest to specific communities are presented
in Chapter 3. Some of these contributions can be generalised and be made
of interest to broader audiences. This is done in Chapter 4, together with
discussions of other contributions of more general interest. Chapter 5 presents
the theoretical foundation work that was necessary to support some of the
other contributions. Finally, Chapter 6 concludes part I by assessing the con-
tributions and discussing future avenues of research.

Part II contains a selection of papers that have been written by the author
of the PhD thesis in collaboration with others. Each chapter presents a single
publication and is prefaced by the bibliographic entry of the publication used
in the rest of the thesis and a brief description of where it was published.
Following that, the publication is presented in its original form.

1 There is one exception: [20], which constitutes the report for the qualifying exam of the
PhD.

2
Background

This chapter presents related work and background information used in the
thesis. Section 2.1 introduces and defines extensibility and Section 2.2 in-
troduces other approaches to the extensibility of formal methods tools. The
remaining sections present background material underlying the work in this
thesis. Most of the topics covered here are independent of each other, facili-
tating the use of this chapter as a reference.

2.1 Extensibility and related terms

The idea of extending software has existed for several decades — some of the
foundations towards it can be seen in the late 1960s [30] and early 1970s [44].
At the 1968 and 1969 NATO Conferences on Software Engineering there
is discussion on both extensibility as a design concept [70] and on how to
develop extensible systems [10]. Towards the end of the 1970s, extensibil-
ity begins to become a concern in its own right, and the idea of explicitly
designing for extensibility [75] emerges.

Broadly speaking, extensibility is the ability to contribute new, unplanned
functionalities or features to a software system without changing the existing
ones. These new features can be achieved through customisation, redefinition,
etc. In this thesis, the following definition of extensibility is used:

Software is extensible if it can be adapted to new, possibly un-
foreseen requirements by addition of new source code and without
modifying the existing sources.

There are two software properties that are closely related with exten-
sibility and must be discussed: modifiability and reusability. Modifiability
measures the extent to which it is possible to modify a system effectively and
efficiently [50]. Reusability measures the ability to use an existing software
component when developing a different software system [60, 68].

13

14 2 Background

Modifiability can be viewed as a counterpart of extensibility. Both prop-
erties seek to address a system’s ability to cope with changing needs or re-
quirements. However, extensibility seeks to do this through augmentation and
without altering the existing source code of the system. To put it another
way, modifiability means it is easy to change the existing implementation,
whereas extensibility means that it is unnecessary to change the existing
implementation.

In this thesis, extensibility is broadly grouped in two kinds: functional ex-
tensibility and data extensibility. Functional extensibility refers to extending
a system in order to provide new functionalities. A fairly common example
from the real world are web browsers and their plugins. On the other hand,
data extensibility is the ability to extend a system in order to cope with ad-
ditional types of data. The existing functionalities of the system (or a subset
of them) thus become available for the new data types, which may be input,
output or both.

This thesis considers extensibility according to two perspectives: source
code and SA. Source code, of course, refers to the implementation of the soft-
ware system. SA refers to how a software system is structured, organised and
intra-connected [6]. These two perspectives are connected as extensible ar-
chitectures are realized through source code. Nonetheless, we distinguish the
extensibility-enabling aspects of both. In both cases, the presence of certain
characteristics and design decisions can help achieve extensibility.

2.2 Other approaches to extensibility

In this section we briefly describe approaches to extensibility taken by other
language-specific FM tools and briefly compare them to the approach taken
by Overture (see Section 2.5 for more about Overture). Due to our focus on
model-based FM, we focus predominantly on those kinds of tools, although
we also describe one instance of generic theorem proving and program lan-
guage verification.

The Rodin [5] tool supports the Event-B method [4] for the development
and analysis of system models. Rodin is based on the Eclipse platform [41]
and is extensible by means of the plugin-based architecture of Eclipse. Fur-
thermore, in Rodin, models are stored in a repository. Rather than storing a
model as an Abstract Syntax Tree (AST), Rodin stores and manipulates the
model in a XML-based database. The model repository was designed with
ease of extensibility in mind. In particular, the repository-based approach
means there is no need to change the syntax of the language in order to extend

2.2 Other approaches to extensibility 15

the Event-B notation. By contrast, in Overture, models are stored as ASTs and
notation extensibility is based on extending the AST itself.

The TLA Toolbox is an Integrated Development Environment (IDE) for
the TLA+ tools. TLA+ is a specification language for modelling and ver-
ifying concurrent systems [61]. The TLA+ tools do not appear to have a
particular focus towards extensibility although some extensions have been
carried out. For example, the TLA+ Proof System (TLAPS) [18] has been
extended by connecting it with Satisfiability Modulo Theories (SMT) solvers
via translation of the TLA+ specification syntax into the input language of
the SMT solvers [66, 67]. In Overture, the implementation of such trans-
lations is facilitated by using a dedicated Code Generation Platform (CGP)
(see Section 2.5).

CoreASM [33] is a tool environment and language for the development
and execution of Abstract State Machines (ASMs) [9]. ASM is a multi-purpose
notation suitable for modelling algorithms, protocols, systems, etc. The Core-
ASM engine executes CoreASM specifications and has an extensible plugin-
based architecture [34]. The plugins progressively extend the language from
the core constructs defined in the interpreter. Example plugins include a de-
bugging component [32] and support for aspect-oriented specification [31].
The plugin architecture is also used to define the ASM language itself: a
kernel provides only the bare essentials for executing the most basic ASMs
and everything else is contributed via plug-ins. By contrast, in Overture, the
complete Vienna Development Method (VDM) languages are part of the core
of the tool.

In the Isabelle theorem prover [72], extensibility is dealt with through
conservative extensions: a logical theory is a conservative extension of an-
other theory if every formula common to both theories that is provable in
the extension is also provable in the base theory. Isabelle contains native
language mechanisms for constructing new theories as conservative exten-
sions of existing ones. Additionally, the Sledgehammer tool [76] allows for
connecting other theorem provers and external tools through translation and
reconstruction of received proofs. In Overture, new constructs can be added
to the language independently. Additionally, it is possible to redefine (or re-
move) existing language constructs. On the other hand, Isabelle can prove the
soundness of its extensions whereas this must be done separately in Overture.

Frama-C is a platform for the verification of C programs [29]. The plat-
form consists of a kernel providing core services and common data structures
shared by all platform plugins. Additionally, plugins support and interact
with each other through the ANSI/ISO C Specification Langage (ACSL) [7].

16 2 Background

Extensions to Frama-C consist of new plugins built on top of the platform,
reusing the kernel and data structures and supporting ACSL through genera-
tion or validation of annotations. Overture has a similar architecture with core
functionality and data structure shared by all plug-ins. However, in Overture,
plugins interact by operating directly on the shared data structure rather than
through annotations.

2.3 Software Architecture

SA can be defined as:

“the structure or structures of the system, which comprise software
components, the externally visible properties of those components,
and the relationships among them.” [6]

There are various ways to visualise the SA of a system [59]. As an ex-
ample, the functionalities of the Overture tool are summarised in Figure 2.1.
Overture is further described in Section 2.5.

Figure 2.1: Logical view of the Overture architecture.

SA is connected to the notion of software quality and quality attributes.
In particular SA greatly influences most of a system’s quality attributes [14]
either by preventing or enabling the system from realising said attributes.

2.5 Overture 17

One of the quality attributes influenced by SA is extensibility. Specifi-
cally, SA influences the extent to which a system is extensible in both its
ability to support new extensions and the ease with which that can be done.
Conversely, the desire for high extensibility influences decisions made about
the architecture of a system.

In this thesis, we are more interested in how SA influences extensibil-
ity. Specifically, we are interested in how an SA limits the extensibility of a
system, how such limitations can be addressed and in the design of SAs that
enable extensibility.

2.4 Design patterns and data structures

Design patterns can be an effective means of achieving extensible software. A
design pattern is a reusable solution to a known recurring problem [40]. The
work of this thesis makes significant use of two design patterns, summarised
below:

• The strategy pattern allows the behaviour of an algorithm to be se-
lected at runtime. It defines a family of interchangeable algorithms and
encapsulates them inside a general strategy. New algorithms can be con-
tributed to the family at any time, provided they follow the definition of
the strategy.

• The visitor pattern allows for detaching an algorithm from the data
structure it is executed on. It also enables adding additional functionality
to a class without changing the implementation of said class.

Data structures also play an important role in the extensibility work re-
ported in this thesis. In terms of extensibility, data structures must both enable
functional extensions and be amenable to data extensibility. When speaking
of data extensibility, we introduce the notion of a hybrid data structure. The
base data structure refers to the data structure with only base elements and the
extended data structure refers to the data structure that contains the elements
introduced as part of the extension. A hybrid data structure is a data structure
where some of its elements are drawn from the base structure and some are
drawn from the extended structure.

18 2 Background

2.5 Overture

Overture is the primary software system upon which the extensibility research
reported in this thesis was carried out. As such, an introduction to the tool,
its goals and uses may be helpful to better understand why particular design
decisions were made while carrying out extensibility work.

Overture is an open source tool for the development and analysis of VDM
models [56, 35] and is freely available online.1 A VDM model consists of a
series of definitions including data and behaviour.

VDM models are defined via textual sources so the initial processing of
a model is similar to that of a programming language — parsing and type
checking. But the kinds of analyses done with VDM tend to be broader in
variety. This is a key reason for desiring extensibility in Overture. New kinds
of analyses can be contributed to the tool as extensions.

In Overture, most analyses are implemented over the Overture AST. An
AST is a data structure that represents the abstract syntax of the VDM model
in tree form, hence its name. From an extensibility perspective, this can be
generalised further. An AST is seen as a tree where the nodes have various
fields for storing information. Nodes are not generic but can belong to one of
several families. In the Overture AST, nodes are sometimes called INodes
after the name of the Java interface that is implemented by all nodes in the
tree and defines a node at the most abstract level.

The Proof Obligation (PO) generation analysis was chosen as an object of
particular study for this thesis as the variety of kinds of obligation is expected
to provide a fertile ground for extensibility experimentation. In VDM, type
checking is statically undecidable. This issue dealt with by generating various
POs — logical predicates that, if discharged, ensure the type-correctness of
a VDM model. In Overture, PO generation is the responsibility of the Proof
Obligation Generator (POG). Like most other analyses in Overture, the POG
is implemented as visitors over the AST.

Another relevant component of Overture is the CGP, used for the devel-
opment of various code generators and model translations. From the VDM
AST, the CGP constructs an Intermediate Representation (IR), which forms
a tree structure that is independent of any particular target language.

Initially, each node in the IR has a one-to-one correspondence to a node
in the VDM AST. Subsequently, the IR is subjected to a series of transfor-
mations in order to change the tree structure into a new form that is easier for
a particular code generator to produce code from.

1 http://overturetool.org/

http://overturetool.org/

2.6 Semantics 19

After the IR has been fully transformed, it is handed over to a language-
specific backend generator in order to finalise the code generation process.
The CGP provides a framework for syntax generation that serves to facilitate
production of code in the target language. This framework is based on the
Apache Velocity template engine and is used for mapping each node in the
IR into concrete syntax [1].

2.6 Semantics

The foundation work carried out in this thesis often relies on the semantics of
VDM. A complete treatment of the semantics is unnecessary for this thesis
(refer to [56] and [8]) but a brief discussion of undefinedness in VDM is in
order.

Undefined values have many sources such as partial operators like di-
vision or, more generally, partial functions. The field has a long history [62]
and there are various approaches to dealing with undefinedness such as Owe’s
“weak logic” [74], Partial Function Logic [77], Logic of Computable Func-
tions [69, 42] or underspecification [43]. In VDM, undefinedness is dealt with
using the three-valued Logic of Partial Functions (LPF) [11, 53] that is based
on Kleene semantics [58] (see [12] for a comparison of approaches to partial
functions).

An important aspect of the Kleene semantic model is the commutativ-
ity laws for logical operators. This is in contrast to McCarthy logic [65]
which also deals with undefinedness but does not have commutativity laws
— expressions are evaluated left-to-right. For an example, consider Table 2.1
where the truth table for disjunction for both McCarthy and Kleene logics is
given, and the row highlighted in grey shows how the two logics differ. Note
that Kleene produces a defined value in a situation where McCarthy does not.

Undefinedness is a source of runtime errors during model interpretation.
Hence, one of the tasks of the POG is to generate POs that guard against it.
For all sources of undefinedness, it is possible to write a definedness predicate
that ensures safe use of the operator. For example, if x is a divisor then such
a definedness predicate is x 6= 0. These predicates are used by the POG
to generate POs that guard against undefinedness. Because the interpreter
is based on McCarthy logic, so is the POG, even though this introduces a
disconnect between the semantics of VDM and those of the obligations.

Generating POs is, naturally, insufficient to ensure runtime safety of the
model. In order to achieve this, the POs must be discharged. In order to
discharge POs we rely on the tool Isabelle [72], a framework for implement-

20 2 Background

A B A or B (McCarthy) A or B (Kleene)
true true true true
true false true true
true ⊥ true true
false true true true
false false false false
false ⊥ ⊥ ⊥
⊥ true ⊥ true
⊥ false ⊥ ⊥
⊥ ⊥ ⊥ ⊥

Table 2.1: Truth table for OR operator in McCarthy and Kleene logics

ing logical formalisms. One such formalism is Isabelle/UTP [37], a mech-
anisation of Unifying Theories of Programming (UTP) [47] in Isabelle. Is-
abelle/UTP allows for the construction and combination of theories and proofs
of their properties. It is upon this framework that the semantics of VDM are
mechanised in order to provide proof support.

2.7 Other tools and case studies

The development of Overture is supported in part by the AstCreator tool [2].
AstCreator generates ASTs from specification files. In addition to the AST
nodes, the tool also generates mechanisms to traverse and manipulate the tree
using visitors [40].

AstCreator also allows for the addition of new nodes to an AST by us-
ing its extension mechanism. This mechanism allows AstCreator to produce
nodes and visitors that allow construction and traversal of hybrid trees, i.e.
tree structures composed of both original AST nodes and new nodes con-
tributed via an AST specification extension file. In addition to adding new
nodes, it is also possible to extend existing nodes by adding new fields to
them.

In terms of case studies, from a tool perspective the main case study for
extensibility carried out in this PhD was the Symphony tool [16], developed
as a large set of extensions to Overture. Symphony is a tool for model-based
analysis of Systems-of-Systems and supports the COMPASS Modelling Lan-
guage (CML) [79] — a combination of VDM and Communicating Sequential
Processes (CSP) [46]. From an extensibility perspective, the most relevant as-
pect of Symphony is how it reuses and extends Overture components in order

2.7 Other tools and case studies 21

to process the VDM elements of CML. Symphony provides cases of data
extensibility (the new notation must be supported with a data structure that
extends the existing one) and functional extensibility (Symphony provides
new features that are not available in Overture).

A secondary case study for this PhD was carried out from a modelling
perspective. In order to step away from the software-centric analysis of the
rest of the work and to try and gain a more abstract view on extensibility, a
model-based approach to the problem was made. The goal of this case study
is not the construction of extensible models (or rather, that is not the main
goal). The goal is to model an extensible system with the expectation being
that this more abstract approach yields higher-level insights into the notion of
extensibility.

The problem addressed is the optimisation of harvest operations in the
research area of mechanised agriculture. For a given crop field, there is an
optimal way to harvest it by dividing the field into several rows and harvesting
them in a particular order — a route. In addition to the order of the rows, it is
also important to consider service wagons as the harvester cannot harvest the
entire field — the yield of the field is many times greater than the capacity of
the harvester — and must make multiple offloads while harvesting the field.

From the perspective of extensibility, the solution must be able to sup-
port multiple optimisation algorithms for route planning of the harvester and
the service wagons. Additionally, the system should be extensible to cope
with harvesting of various kinds of crops and eventually other kinds of field
operations.

3
Specific Applications of Extensibility

This chapter contains the practical contributions of the thesis — the specific
problems that were tackled, and their solution, from an extensibility perspec-
tive. These contributions address issues of interest to specific communities
such as the Overture/VDM community. There are three main areas of contri-
butions: the Overture tool, its extension Symphony, and a case study based on
formal modelling of harvest operations. The first two areas allow us to focus
on software extensibility while the formal modelling case study complements
this by providing a more general perspective on extensibility. The first two
areas are intrinsically linked and multiple contributions affect them both. As
such, these contributions are discussed and grouped in a thematic order rather
than the area they target. Certain paragraphs of these discussions go into sig-
nificant technical detail and are prefaced with “Technical implementation
details”. The chapter concludes by presenting the formal modelling work as
it is sufficiently independent from the rest that it can be adequately presented
on its own.

This chapter contains material originally reported in the following publi-
cations:

[P24] Luı́s Diogo Couto and Richard Payne. The COMPASS Proof Obliga-
tion Generator: A Test Case of Overture Extensibility. 11th Overture
Workshop, August 2013.

[P22] Luı́s Diogo Couto, Simon Foster and Richard Payne. Towards Verifi-
cation of Constituent Systems through Automated Proof. Workshop on
Engineering Dependable Systems of Systems (EDSoS), May 2014.

[P25] Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen. Extending the Over-
ture code generator towards Isabelle syntax. 13th Overture Workshop,
June 2015.

23

24 3 Specific Applications of Extensibility

[P26] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen, Joey W. Coleman and
Kenneth Lausdahl. Migrating to an Extensible Architecture for Abstract
Syntax Trees. 12th Working IEEE / IFIP Conference on Software Archi-
tecture, May 2015.

[P27] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Gareth Edwards.
Combining Harvesting Operation Optimisations using Strategy-based
Simulation. To be submitted to the International Journal of Computers
and Electronics in Agriculture, 2016.

[20] Luı́s Diogo Couto. On Extensibility of Software Systems. Department of
Engineering – Electrical and Computer Engineering, Aarhus University,
April 2014.

3.1 New Extensions

One of our goals with respect to Overture is to assess and improve its ex-
tensibility. Our approach to assessing extensibility is via the construction of
a new extension. Although it is a labour-intensive process, it not only yields
a new extension, but provide feedback on the extensibility of a system and
constitutes the basis for an extensibility analysis. Driving the analysis with
the development of a new extension is also effective at uncovering subtle
extensibility issues as they are encountered directly during the development
process.

This kind of extensibility exploration is primarily oriented towards im-
plementation since one is working directly with the source code, although
the analysis is still capable of uncovering extensibility issues related to an
architectural perspective. There is also a potential issue of familiarity with
the source code as someone who is familiar with the source code may suc-
ceed at constructing an extension where someone new to the code would
fail. This can be taken as an extensibility issue since a system that requires
deep knowledge in order to be extended cannot be considered to be easily
extensible, although this particular aspect of extensibility is quite challenging
to measure.

In terms of new extensions, there are various dimensions along which one
can build a new extension:

• One may construct an extension that provides new functionality that
is conceptually related to the rest of the system and relies on the core
functionality of the system to a lesser or greater extent.

3.1 New Extensions 25

• One may provide an alternative version of existing functionality or ex-
tension, perhaps in a complimentary way that allows both versions to
coexist.

• One may also create an extension that implements existing functionality
over a new data type.

The first extension we carried out extended existing functionality over a
new data type. More concretely, the Overture POG for VDM was extended to
support CML as part of the Symphony tool extension of Overture. The main
goal was to have a high level of reuse and directly utilise the Overture POG to
generate all the POs from VDM constructs inside CML directly. Because of
this, the overall structure and behaviour of the extension is heavily influenced
by the base Overture POG and follows the same visitor-based approach.

When developing a new extension, as one identifies and reports on ex-
tensibility issues, it is important to distinguish between extensibility-specific
issues and other, more general, issues that can also negatively impact the
process of constructing an extension. The latter class of issues should not be
reported as extensibility issues. For example, while poor source code read-
ability can hamper the construction of new extensions, it is a more general
issue that reduces overall source code maintainability. Therefore, it should
be documented as such and not as an extensibility-specific issue. In terms of
extensibility-specific issues, however, these can be broadly grouped into two
categories: extensibility-blocking issues and extensibility-hampering issues.

• Extensibility-blocking issues are the more serious group: these are issues
that somehow prevent the construction of the extension in the desired
way.

• Extensibility-hampering issues do not prevent the construction of the
extension but they significantly impede it and the workarounds reduce
the technical quality or efficiency of the final code.

When documenting an extensibility issue and ways to address it, in addi-
tion to the group it belongs to, there are several points worth noting:

• the degree to which the issue reduces or affects extensibility;

• where in the source code of the base system the issue lies;

• what exactly it is that the issue prevents one from achieving;

26 3 Specific Applications of Extensibility

• why that issue prevents extensibility.

In terms of addressing uncovered issues, it is important to propose a fix
and describe how said fix addresses the issue. Ideally, an implementation of
the fix should also be carried out, though that is not always possible due to, for
example, lack of modification rights over the code base of the base system.

Technical implementation details Working on the POG extension revealed
two significant issues with the extensibility of Overture, namely in situations
where the extensions contain visitors that must rely on the base Overture
visitors to process parts of the AST.

1. There is no way to identify a node belonging to the base or extension tree
without using explicit instanceof checks in a manually implemented
decision method. One must use the default cases of visitors to work
around this limitation. This issue is further compounded by the absence
of a default case for base nodes (there are only default cases that match
all nodes and extended nodes). This specific issue can be traced back to
the Overture AST itself and not just the Overture POG.

2. When a base visitor takes over processing of a node, the extended vis-
itor is no longer in control. The control of execution remains with the
base Overture visitors and that control is never relinquished back to the
extended visitor. This becomes a problem for ASTs where a base node
has extended nodes as its children, and this case happens frequently in
the Symphony tool. The hybrid tree is passed to the base visitors, but
they are not capable of processing the extended nodes, causing the POG
to terminate in error.

Contribution 1. Extensibility analysis of the Overture POG carried
out via construction of a new extension. Analysis reveals extensibility-
blocking issues in terms of data type extensibility. The issue lies in
implementation of the visitor pattern and its inability to cope with hybrid
data structures.

In addition to identifying extensibility issues in Overture, it was also pos-
sible to address these issues thus improving the extensibility of the tool. This
was achieved by modifying the original implementation of the visitor pattern
in Overture to allow the base visitors to release execution control back to the
extension visitors.

3.2 Combining Extensions 27

Technical implementation details In order to address this issue, the no-
tion of a main visitor was introduced. All visitor applications are now routed
through the main visitor whereas they were previously locked to the visitor
performing the initial dispatch due to use of the this keyword. Under the
main visitor, applications are realised with a reference (mainVisitor) to
the visitor to apply. The main visitor is a parameter in the base Overture
visitors. When there is no need to utilise the extended visitors, the Overture
visitors simply receive references to themselves as the main visitor parame-
ters.

Technical implementation details When the base visitors are used by the
extension, the extension visitor is set as the main visitor parameter. This
means that every visitor application returns the AST to the control of the
extension. The base visitor simply inspects a node, generates any relevant
POs, and applies the main (i.e. extension) visitor to any sub-nodes. In effect,
the base visitor is called for the use of only one method at a time.

Contribution 2. Extensibility improvement of Overture POG by modi-
fying the implementation of the visitor pattern it used.

This contribution was generalised in Contribution 9 discussed in Sec-
tion 4.1.

3.2 Combining Extensions

An important aspect of extensible systems is the ability of the extensions of
the system to interact in constructive ways. The combination of extensions
is particularly constrained by SA as that is, to some extent, what ultimately
defines how extensions (which are components of the system) are organized
and interact with each other. Provided that the SA enables such combinations,
significant synergistic benefits may be available by having the extensions col-
laborate. However, combining extensions presents its own set of challenges,
some of which are discussed here.

The principal idea behind combination of extensions is to use the combi-
nation to provide new or improved functionalities. One way to achieve this is
by chaining functionalities together. However, in order to achieve this, each
extension must be capable of processing data in accordance with a common
format.

28 3 Specific Applications of Extensibility

However, it may be that, for various reasons, an extension is not capable
of using a common data format. Perhaps it is a legacy extension, or it was
simply never designed with this kind of interoperability in mind, particularly
in terms of its output. In these situations, the extension itself must be modified
in order to support the common format.

In the Overture tool, this issue occurred when attempting to combine the
POG with other extensions. The POG was capable of reading the common
data format (the Overture AST) but its output was VDM concrete syntax
encoded as strings. This made it challenging to combine the POG as an inter-
mediary link in a functionality chain. The approach used to address this issue
was to modify the POG so that it produced an output in the common format
by converting the output format from string to AST.

The conversion from strings to specialized ASTs was possible because the
AST matches the VDM language grammar and the PO predicates themselves
are expressed as VDM predicates. This meant that no changes had to be made
to the POs but only to the variables representing the predicates.

Technical implementation details Additionally, no changes were made to
the behaviour of the POG (expressed in the visitor classes) since, to the out-
side, the PO classes did not change. The conversion work involved changing
the type of the PO predicates from strings to INode (the default type of an
AST node) and rewriting the constructor code of each obligation. Because all
the necessary information for constructing the predicate was already passed
to the PO, the changes simply focused on how that information was used
in constructing the predicate. Therefore, these changes were localised and
no further work was needed to accommodate them. However, the changes
themselves were significant as the structure of the AST classes required more
complex code when constructing a predicate.

Contribution 3. Improvement of extensibility of the Overture POG by
converting its output from a string to an AST. This improvement was
reflected in the Symphony POG at no extra effort since the Symphony
POG was itself an extension of the Overture POG.

The successful conversion of the POs to ASTs enabled the POG to be
combined with a Theorem-Proving Plug-in (TPP) to provide extended static
checking of CML models. This was a particularly strong example of exten-
sibility enabling team-based development as the POG and theorem proving
extensions were developed by different people in different research groups.

3.3 Improving Extensibility through Software Architecture 29

While the POG is responsible for generation of POs, the task of discharg-
ing them falls to the TPP. At its core, the TPP consists of a mechanised
semantic model for CML within Isabelle/UTP. It is essentially a deep embed-
ding of CML, in that an explicit semantics is given to each of the constructs
of CML within Isabelle.

The TPP processes a CML model and its associated POs and automat-
ically generates Isabelle theory files for them by means of syntax transla-
tion. These theory files can then be submitted to Isabelle for discharging
through various automated proof tactics such as auto and sledgehammer,
or the custom-written cml tac tactic that maps a CML formula onto a HOL
formula.

The TPP offers a fully automated mode of interaction with Isabelle where
users simply choose which PO to discharge and all inner workings (such
as tactic selection and result collection) are hidden from them. Furthermore,
because the TPP connects to the Isabelle/Eclipse plugin, the full functionality
of that plugin and, by extension, Isabelle itself also becomes available.

Contribution 4. Combination of the POG and the TPP — separately
developed extensions in the Symphony tool — to provide extended static
checking of CML models.

Contribution 3 and Contribution 4 are generalised in Section 4.2 as Con-
tribution 10 and one potential issue with it is reported as Contribution 11.

3.3 Improving Extensibility through Software Architecture

In Section 3.1, we reported on extensibility on a micro-scale: improving
extensibility of a system component by addressing specific implementation
details. In this section, we present extensibility analysis and improvement in
a macro-scale: addressing larger-scale SA extensibility issues by means of
architectural migration and refactoring. The migration involves restructuring
and redistribution of the various system components, so source code mod-
ification is still present. The source code considerations are not related to
specific implementation details but to the larger picture of how the code is
distributed.1

1 For the rest of this section, we use the term original to refer to the original pre-migration
architecture and extensible to refer to the post-migration architecture.

30 3 Specific Applications of Extensibility

Causes for the poor extensibility of Overture were found in the design
of the AST. A given instantiation of the AST is an internal representation of
a VDM model, and is composed of nodes used to represent the various lan-
guage constructs of VDM. The structure of the AST has a deep influence on
the overall architecture of the tool as every core component depends directly
on it.

Technical implementation details The nodes composing the AST in the
original architecture are handwritten and use a centralised design where core
functionality, such as type-checking and evaluation, is implemented directly
in each node class. As shown in Figure 3.1 any node that can be type-checked
has a typeCheck()method, any node that can be evaluated has an eval()
method, and so on. The type-checking process is invoked directly on the
nodes. Therefore, the original architecture follows the standard approach to
cohesive OO design.

TypeChecker

+typeCheck()

Exp

+typeCheck():Type
+eval():Value

Statement

+typeCheck():Type
+eval():Value

Node

Figure 3.1: Static view of the original architecture showing part of the AST
and the type-checker module.

Similarly to what was described in Section 3.1, issues were encountered
when attempting to extend the tool. Moreover, these issues were encountered

3.3 Improving Extensibility through Software Architecture 31

repeatedly while attempting to construct different extensions, particularly
when extending the underlying data structure of the tool and attempting to
extend the various existing features to support it. These problems were rooted
in larger issues with the original SA.

• adding or changing tool functionality that interacts with the AST re-
quires changes to the nodes themselves. This is problematic since most
of the functionalities of the tool interact with the AST and, therefore, the
AST would be under constant change, imposing the risk of inadvertently
breaking the functionality of other components.

• node classes become very large as the number of different tool function-
alities increases. For example, introducing a code generator for VDM in
the original architecture would require a new codegen() method to
be added to all nodes, mixed in with all other methods in those nodes.

• it is challenging to preserve an existing functionality when it is being re-
placed incrementally, or when an alternative version of the functionality
is being developed. This is because the only way to replace a given func-
tionality without destroying its existing implementation is to directly
alter the invocation of its respective method at every relevant place in
the code.

• maintenance is challenging since modifications to functionality require
updating every affected node. In the case of functionality that applies
to all nodes, this means updating the entire AST. Since the grammar
of the VDM language has a large number of constructs, updating the
entire AST is a tedious and error-prone process that is costly in terms of
development resources.

Contribution 5. Extensibility analysis of the SA of the Overture tool and
identification of various extensibility issues, particularly related to data
structure-driven extensibility.

The recurrence of issues when extending the tool confirmed that the ex-
tensibility problems ran deeper than technical implementation and had to be
addressed at the SA level. To do so, a new SA for the tool was conceived and
the existing code base was migrated towards it. Alternatively, it would have

32 3 Specific Applications of Extensibility

been possible to re-develop the system from scratch but due to the volume of
the code base, it was decided against this.

The extensible architecture was inspired by the SableCC parser gener-
ator [39], specifically its generation of tree nodes and mechanisms to walk
the tree. It was also guided by previous experience developing functional-
ity in Overture. The goal was to develop a common shared AST for Over-
ture [78, 71], and heavy use of the standard visitor pattern was made to
achieve this.

Technical implementation details In the extensible SA, each class that
represents a node of the AST has methods for field access and is equipped
with template-based apply() methods that are specific to the generated
AST. These apply()methods have four variants that support various analy-
sis interfaces.

Technical implementation details The analysis interfaces contain multi-
ple caseNodeType() methods, corresponding to each type of node in the
generated AST. For example, an ANotExp node has a caseANotExp()
method corresponding to it. Each of these caseNodeType() methods is
invoked when its corresponding AST node is visited. These interfaces make it
possible to implement any analysis that had been implemented in the original
design by deriving caseNodeType() visitor methods from the methods
originally embedded in the AST classes. This can be seen in Figure 3.2,
which shows part of the extensible architecture of the AST and type-checker
modules, the latter now subclassing a visitor in the AST module.

Data structure extensibility is achieved by means of the AstCreator tool
and its feature to extend ASTs by adding new fields or nodes via AST specifi-
cations. An extension is entirely new code, and duplicates none of the existing
AST; the extension typically depends upon the base AST through inheritance.
When an extension is generated it creates a set of Java classes for only the new
and the extended nodes. It also includes a new set of analysis interfaces that
handle the new additions.

Technical implementation details The extension does not affect existing
visitors that implement analyses of the base AST, and these visitors may also
be applied to the extended AST. As such, the extended AST nodes need to
support application of both the base and the extended visitors. In order to
achieve this, the apply method of extended AST nodes contains logic to

3.3 Improving Extensibility through Software Architecture 33

TypeCheckerVisitor

Node

+apply(an:Analysis)

Exp Statement

Analysis

+caseExp(node:Node)
...

+caseExp(node:Node)

Figure 3.2: Static view of the extensible architecture showing part of the AST
and the type-checker module.

detect if a visitor was written for the extended AST. When an extended visitor
is applied to an extended node the dispatching proceeds as normal and the
relevant case method is called (see Figure 3.3a). However, if a base visitor
is applied then the closest default method in the base hierarchy is called
(see Figure 3.3b). Naturally, extended visitors work as normal when applied
to base nodes.

As for the migration process itself, it did not need to use the AST exten-
sion features of AstCreator, but did attempt to migrate the original function-
ality in a way that would allow for future extension (though more needed to
be done after the migration was notionally complete — for example, the work
reported in Section 3.1).

Given that the extensible design is visitor-based, tree traversal and analy-
sis were moved out of the AST, and core functionality such as type-checking
and evaluation were placed in separate modules. The old parser was an excep-
tion to the plan of applying a visitor-based design to the migrated functional-
ity, given that it instantiated the AST rather than traversing or analysing it. It
was nevertheless moved to a separate module but its design did not become
visitor-based.

34 3 Specific Applications of Extensibility

Technical implementation details Because all the components were struc-
tured in a similar way, it was clear that as long as the new architecture sup-
ported the type-checker, it would support all of the other components. Thus
the migration of the type-checker was particularly crucial for the overall mi-

:ExtendedExp
:Extended
Visitor

:Base
Visitor

apply(v)

caseExtendedExp(eExp)

defaultExp(eExp)

alt

[else]

[v instanceof
ExtendedVisitor]

(a) Visitor dispatching.

ExtendedTree

BaseTree

ExtendedExp

Node

ExpStatement

(b) Extended AST.

Figure 3.3: Example of visitor dispatching for an extended AST.

3.3 Improving Extensibility through Software Architecture 35

gration process. The type-checker migration moved the type-checker’s func-
tionality out of the nodes and into a separate visitor. The migration of the
functionality started by moving the typeCheck() methods out from inside
the old nodes and into the corresponding caseNodeType() method of the
visitor. The Java compiler was then relied upon to identify auxiliary methods
that were used in each of the caseNodeType() methods that were miss-
ing; these auxiliary methods were placed into an assistant class. While the
assistant classes were useful during the migration to ensure that functionality
was preserved correctly, the use of these assistants was determined to be an
anti-pattern and their class structure has since been simplified.

The migration phases that followed that of the type-checker continued in
the same manner. All of the following phases required less effort to migrate
than the type-checker; ensuring that the details of the target code structure
for the migration were correct was more difficult than actually migrating the
code. Furthermore, no fundamental changes were necessary to migrate the
interpreter in either the structure of the AST in the extensible architecture or
in the functionality of the type-checker.

Contribution 6. Architectural migration of Overture code base. A new,
more extensible SA was conceived for the Overture tool and the code
base was migrated towards it. The new SA successfully supported
various Overture extensions, particularly the Symphony tool.

In terms of assessing the post-migration SA, it can be be considered
successful from an extensibility perspective, as witnessed by the successful
development of the Symphony tool [16] as an extension of Overture support-
ing the CML notation which is itself an extension of VDM. To further assess
the migration, the original and extensible architectures were compared based
on volume and various OO metrics [13].

Volume is used to compare code distribution across both architectures.
To facilitate this comparison, we grouped the Java packages of both architec-
tures into several modules. Each module corresponds to a single well-defined
functionality, although the package groupings in the original version is some-
what subjective since those packages implement multiple functionalities. In
addition, the comparison only includes functionalities that are present in both
architectures. The ast module corresponds to the VDM source tree and
the core module provides User Interface (UI) and common utilities. The
remaining modules provide the functionality for which they are named.

36 3 Specific Applications of Extensibility

The volumes of the modules are presented in Table 3.1. The data shows
the decentralisation effort, with code migrating from the ast and coremod-
ules to the other functionality modules, primarily the type-checker and
the interpreter. The overall volumes of both architectures, discounting
generated code, are similar.

Module pre-[LoC] post-[LoC]

core 3747 0
ast 29998 7311
interpreter 18048 35213
parser 7945 7027
pog 2484 5003
type-checker 5226 17488
combinatorial testing 1210 1746

Total 68658 73788

Table 3.1: Volume distributions pre- and post-migration.

Metric pre- post-

Methods per class 5 6
Depth of Inheritance 0 0
Number of Children 0 0
Efferent Coupling 10 8
Response for Class 20 21
Lack of Cohesion 1 7
Afferent Coupling 3 2
Public Methods 5 5

Table 3.2: OO metrics pre- and post-migration.

The OO metrics for both SAs are summarised in Table 3.2. For all met-
rics, the median value is presented. The changes in the metrics correspond
to design differences between the two SAs such as in efferent and afferent
coupling due to a looser architecture or a large increase in lack of cohesion
due to the introduction of the visitor pattern. Other metrics have changed
little, in part due to similarities between both architectures — both are deeply
influenced by the VDM AST and consist of largely the same code, albeit
distributed differently. Of the metrics with little change, the number of public
methods was somewhat unexpected since the methods are distributed through

3.4 Extensibility in Formal Models 37

more classes now. Possible explanations for this are the fact that the new
public traversal methods overwhelm the measure or that the redistribution of
methods has forced additional methods to be made public.

Contribution 7. Architectural comparison of Overture code base before
and after architectural migration based on source code metrics.

The extensible architecture has continued to support the development of
Overture and has been generalised into a SA proposal for the development of
IDEs for formal languages as reported in Section 4.4 as Contribution 13.

3.4 Extensibility in Formal Models

One of the reasons for investigating extensibility from a non-software per-
spective is to try to gain additional, different kinds of insights into the phe-
nomenon of extensibility. By approaching it from a more abstract perspective
— formal modelling, in this case — we gain more abstract and fundamental
insights into extensibility. Furthermore, the contributions produced are more
fundamental and applicable to a more diverse range of situations. However,
this is a rather vague goal and it is also difficult to assess. Therefore, to help
focus the research work, we established the goal of producing extensible
models and used the harvest optimisation case study (see Section 2.7).

The production of an extensible model shares similarities with that of
extensible software. We are interested in preparing the model for future evo-
lution by enabling it to be extended with new kinds of functionality, data, and
properties.

In the harvest operation case study, the formal model is trying to capture
properties of the operation and rigorously define the participants and the rela-
tions between them. This formal model is also used to support the application
of various optimisation algorithms to the harvest operation problem. From an
extensibility viewpoint, it is this last objective that is most relevant: we sup-
port multiple optimisation algorithms including unforeseen ones. Therefore,
our model is extensible in terms of optimisation algorithms.

Optimisations for the harvest operation vary not only in terms of algo-
rithms but also in terms of what aspect of the operation is being optimised.
This includes the route planning of the harvester and the load planning for
harvesters and other vehicles. Because of the variety of aspects that can be op-
timised, the model not only supports multiple algorithms to optimise the same

38 3 Specific Applications of Extensibility

aspects of the problem, but also supports interaction between optimisations
of different aspects.

The solution proposed lies in strategy pattern-based modelling. This is
an architectural design pattern (or architectural style) for formal modelling
and constitutes Contribution 14, as discussed in Section 4.5. Essentially, it
consists of organising a model into:

• an Execution Engine responsible for advancing model execution;

• a State component responsible for representing domain entities; and

• a set of Strategies responsible for executing the more complex calcula-
tions and decisions in the model.

Unlike other general interest contributions, Contribution 14 was not gen-
eralised from a narrower one. It was conceived independently and then ap-
plied to this case study. It is the opposite progression of other contribution
pairs. Therefore, a reader may consider reading Section 4.5 for further details
about the overall architecture of the model.

The model was developed according to the structure recommended by
the architectural style in Section 4.5. In this model, the Execution Engine
advances the simulation by taking the largest possible step that all participants
in the simulation can take before needing to compute new instructions.

In terms of domain entities, the harvesters are the primary units of the
operation. Routes and coordinated offload points for the harvesters are built
by the employed strategies. The grain vehicles are the service units of the
operation and their main objective is to convey material from the harvesters
to out-of-field storage. The service points coordinate when and where the
wagons must meet the harvesters in order for material to be passed between
the two.

The strategy classes define how certain aspects of the harvest operation
are to be executed, namely in terms of route planning. There are three classes
of strategies: route, deconflict and load.

• A route strategy is responsible for constructing the routes for harvesters.
The routes direct the harvester from its location to a point where it will
next require service.

• A deconflict strategy is responsible for the infield coordination of the ve-
hicles. It is possible that conflicts can arise when a vehicle may block the
path of another vehicle. In this case the deconflict strategy is employed

3.4 Extensibility in Formal Models 39

to determine what course of action (such as planning a new route, or
waiting for the obstruction to pass) is to be taken.

• A load strategy is responsible for assisting the route strategy to find a
location where the harvester can be serviced and for constructing a route
for the service unit from its current position to the service point and then
to the out of field storage.

The interaction between strategies is as follows:

• The deconflict strategy is consulted by the execution engine to assess
whether vehicles can move and to reroute them if they cannot. The
deconflict strategy takes as input the route plans produced by the route
and load strategies but does not otherwise directly interact with these
strategies.

• The load strategy is responsible for assisting the route strategy to find a
location where the harvester can be serviced and for constructing a route
for the service unit from its current position to the service point and then
to the out of field storage. This is done through three specific functions
of the load strategy that are called by the route strategy.

Contribution 8. Formal model of harvest operation optimisation. The
model enables the application of multiple optimisation algorithms to the
harvest operation and the interaction of the optimisation of different as-
pects of the harvest operation. The model is built by application of the
strategy-based modelling architectural style.

4
Generalisations of Extensibility

This chapter presents more general contributions of interest to a broader
audience. Some of the contributions presented here are, in fact, generalisa-
tions of contributions presented in Chapter 3. The idea is that some of the
specific problems solved are in fact instances of more general problems and
the solutions proposed can be generalised and thus they can be of greater
value to those outside the communities targeted by the previous contributions.
We also attempt to identify the situations in which most contributions in this
chapter are most relevant, under the heading “When to use?”. There are three
main areas of contributions: generalising specific extensibility improvements,
combinations of extensions and extensibility in formal models. The specific
extensibility improvement is presented first as it is a stand-alone contribution.
The discussion of extension combinations is broader and takes up three sec-
tions, presenting different perspectives on it. The chapter concludes with the
discussion on extensibility in formal models, which is independent from the
rest.

This chapter contains and adapts material originally reported in the fol-
lowing publications:

[P23] Luı́s Diogo Couto, Peter Gorm Larsen, Miran Hasanagić, Georgios Ka-
nakis, Kenneth Lausdahl and Peter W. V. Tran-Jørgensen. Towards En-
abling Overture as a Platform for Formal Notation IDEs. 2nd Workshop
on Formal Integrated Development Environment (F-IDE), June 2015.

[P28] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Kenneth Lausdahl.
Principles for Reuse in Formal Language Tools. 31st ACM Symposium
on Applied Computing (SAC 2016), April 2016.

[P27] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Gareth Edwards.
Combining Harvesting Operation Optimisations using Strategy-based
Simulation. To be submitted to the International Journal of Computers
and Electronics in Agriculture, 2016.

41

42 4 Generalisations of Extensibility

4.1 Generalising the new POG contributions

The improvement of the extensibility of Overture described in Contribution 2
was in fact an improvement to the extensibility of the visitor pattern. This im-
provement can, in general, be applied to other cases where the visitor pattern
is used. Specifically, in cases where the pattern is being extended to support
hybrid data structures.

When to use? This contribution is based on an improvement of the visitor
pattern and, as such, should be considered in situations where the visitor
pattern is appropriate. A more thorough discussion of the visitor pattern is
available in [40] but, in general, its use is worth considering when there is
a need to detach an algorithm from the class it runs on — in other words,
to separate data and behaviour. As for the extensibility improvement, it is
worth considering in situations where the base data structure is extended
and analyses are created that run on the hybrid data structure while reusing
existing base analyses to process the base elements of the hybrid structure.

Contribution 9. Extensibility improvement of visitor pattern in terms
of its ability to cope with extensions that require or rely on hybrid data
structures.

4.2 Technical aspects of extension combination

Combining extensions can provide significant synergistic benefits and the
combination presented in Section 3.2 is just one example of such. In gen-
eral, extensions can be combined to provide higher-level functionality. These
combinations can be along a chain of processing or with multiple extensions
processing the same initial data or even passing data back and forth between
them.

In all cases of combinations, one of the key technical aspects to achieve
success lies in the format of the data structure(s) used as the input and output
of the various extensions. Ideally, all extensions share a common format
for both input and output in order to maximise combination possibilities.
However, this is complicated by various issues:

1. Some extensions present information to users which may mean that the
output they produce is in a format for reading by humans but unsuitable
for further processing (e.g. strings). One way to address this issue is to

4.2 Technical aspects of extension combination 43

modify the extension to output its data in the common data structure for-
mat. Another component can then be created to produce human-readable
outputs from the common data structure.

2. More generally, existing extensions may not produce (or consume) data
according to the common format. This can be addressed by modifying
said extensions in order to support the common format. If this is not
possible for some reason (for example, poorly understood legacy code
or efficiency concerns), one alternative is to develop a wrapper that con-
verts between the data format used by the extension and the common
data format.

3. The common data format itself may not support the needs of all exten-
sions. As extensions increase in number and diversity, more and more
demands are placed upon the common data format. This can eventually
lead to an inefficient or unmaintainable data format. Therefore, it is im-
portant to separate fundamental data that is needed by most extensions
and more specific data that only a small subset of extensions requires.
This extension-specific data can be placed either in auxiliary data struc-
tures or the common format itself can be extended while under use by
extensions that require the additional data.

All three issues can affect the successful combination of extensions in a
system and in particular issues 2 and 3 need to be balanced against each other
in terms of ensuring that extensions do share the common format, but also
that the format itself does not end up being excessively heavy. Nonetheless,
all issues are addressable thus enabling extension combinations.

When to use? This kind of combination is worth considering when de-
veloping systems that perform distinct but related analyses on the same data.
This allows for a single, efficient data structure to be used in support of the
combination. If several fields of the data structure are used by most analy-
ses, this solution is relevant. On the other hand, if there is little overlap in
the elements of the data structure used by the different extensions, then this
approach is not ideal.

Contribution 10. Supporting extension combinations through common
data structures. The data structure itself should be flexible enough to
support the needs of various extensions. The same extensions themselves

44 4 Generalisations of Extensibility

should be able to consume (and ideally produce) data according to the
format of the common data structure.

When using this kind of extension combination, a common way to address
issue 1 is through the use of pretty-printer backends that read the common
data structure and produce human-readable output. When working with ex-
tensible common data structures, care must be taken when pretty printing
them as the extended data may have a different human-readable format – for
example, the decorations may change, even for the elements already present
in the base structure. In this case, it is possible to develop brand new backends
for the extended data structures. However, this can lead to bloated code in
terms of its volume and unnecessary maintainability issues. This should be
avoided (for example, using extensible backends with parametrizable deco-
rations), since the presence of backends with redundant code constitutes an
anti-pattern.

Contribution 11. Multiple backend anti-pattern. When developing back-
ends for extensible data structures where the extended structure redefines
the way base elements are to be processed, there is a danger of intro-
ducing an anti-pattern in the system by means of multiple, redundant
backends.

4.3 Reusability principles for formal analyses

The combination of extensions presented in Section 4.2 can be generalised
further into a set of reuse principles for formal analysis tools. In addition
to providing an effective way of achieving extension combinations, these
principles enable the reuse of the implementations of the formal analyses
at the core of these extensions. Reuse is achieved both within the context of a
single formal language-specific tool as well as when extending the language
itself. The principles are supported by the AstCreator tool and are described
below.

1. Specification-driven ASTs In language processing, every analysis in-
teracts with the AST, either as input, output or both. For example: a type
checker analyses a tree and produces a tree annotated with type information;
then an interpreter analyses and evaluates it. This makes the AST a central

4.3 Reusability principles for formal analyses 45

component that every analysis depends on. Therefore a language building tool
should provide a convenient way to design, specify and maintain an AST, i.e.
describing its structure as well as its constructs and their relationships.

Keeping the specification of the AST separate from its implementation
follows the notion of separation of concerns. This approach makes it easier to
maintain and extend an AST as the focus is the design of the tree rather than
the implementation of it. Another advantage of this approach is that a single
AST design can, in principle, be implemented in different languages, thus
improving reuse of the AST design. The recommended way to implement
such ASTs is via tool support that automatically generates the implemen-
tation of the tree from the specification. Crucially, such a tool differs from
parser generators in its support of the remaining principles.

2. Contract-based AST analysis Contract-based analysis is crucial to en-
able runtime reuse and further ensure analysis interoperability. The formal
tool is aware of the contract and thus is capable of applying any analysis
that conforms to the contract. Therefore, to achieve reuse, all formal analyses
should conform to the same contract. The contract must specify the input and
output of the analysis as well as the means through which the analysis handles
each kind of node in the AST. However, the input and output may not be the
same for all kinds of analysis so the contract must be parameterisable in terms
of input and output. One possible way to define the contract is via interfaces
in object-oriented settings. Like the AST implementation, the contract should
be generated from the AST specification.

3. Hybrid tree support Extending a language implies reusing the base tree
as is without modifying it. Extensions can only add elements to the AST.
They can neither change the existing structure nor delete elements from it.
Language extensions should also be specification-driven. A language exten-
sion specification either adds additional attributes to nodes already defined by
the base language or it adds new syntactic categories or extends existing ones.
Together the specification of the base and the extended tree define nodes that
can be used to form hybrid trees: tree structures that consist of nodes defined
by both specifications.

4. Compatibility between base and extended analyses Extending a lan-
guage also means that the formal analyses for the language also need to be
extended. In this situation, it must be possible to define extended analyses that

46 4 Generalisations of Extensibility

reuse the base analyses without modifying them. Furthermore, we require
analyses to be compatible — meaning that the base and extended analyses
should be able to combine in order to process the hybrid tree. The contract
for an extended analysis must be compatible with the contract of the base
analysis and is also derived from the extension specification. Alternatively,
the extended analysis may process the base nodes in a different way that is
implemented from scratch.

When to use? This contribution is of particular interest to FM tool builders
interested in language extensions and, more generally, to developers of language-
based tools who are interested in performing language extensions with di-
rect reuse of complex, handwritten software components that process the
language.

Contribution 12. Set of tool-supported principles that enable reusability
of implementations of formal analyses.

4.4 Extensible architecture for formal language tools

The combination of extensions discussed in Section 4.2 is particularly well
suited for the development of tools for FM notations. In this section, we
present a way to use these principles in combination with a strong reuse phi-
losophy as described in Section 4.3 to propose an extensible platform-based
architecture for the development of FM IDEs.

The key idea is to use extension combinations based around an AST as the
common data structure to provide the actual functionalities of the tool. How-
ever, these principles are taken significantly further in providing higher reuse
capabilities. Additionally, an IDE platform should also provide capability to
construct the UI features of a tool.

In order to facilitate development of functionalities as extensions, a plat-
form should provide a common data structure as well as mechanisms to
construct it (normally, a parser) and manipulate it, thus ensuring consistent
implementation of the various extensions. Together, these three elements con-
stitute what we call the language core of the platform. Similarly, a platform
should enable the construction of a UI for the FM tool. Due to the inherent
complexities in developing UIs, the recommendation is to use an existing
UI framework and provide a way to simplify access and use of the relevant
features of said framework (such as editors or error messages).

4.4 Extensible architecture for formal language tools 47

The language core encapsulates and handles any language and notation-
related concerns, including parsing, representation and analysis, in order to
facilitate decoupling between the implementations of the core language and
the UI. In addition to the general benefits of separation of concerns, the lan-
guage core also opens the possibility of migrating the IDE implementation to
another UI technology as well as providing the base tool functionalities for
command line access, batch processing or as an external tool to be accessed
by others.

The language core consists of a set of classes that provide an extensi-
ble AST and are automatically generated by the AstCreator tool, as well as
a parser for constructing concrete ASTs from model sources. In addition,
AstCreator also generates machinery for traversing and processing trees in a
consistent way in the form of a visitor framework [40]. Most kinds of analyses
of the AST such as type checking or interpretation are implemented using the
visitor framework.

In the Overture platform, UI features are provided by the Eclipse Rich
Client Platform (RCP). As part of the platform, Overture contains a set of
extensions to the Eclipse RCP that are used to help build the UI components
of the IDE. The Eclipse RCP is a generic framework for building rich client
applications using the Eclipse OSGi [3] plugin model and UI toolkits. It is
powerful and generic but comes with a cost: significant amounts of boilerplate
source code and configuration files must be written in order to prepare it to
build an IDE.

The Overture Eclipse extensions automate some of the configuration and
preparation work by providing the aforementioned boilerplate code targeting
FM notations. The extensions provide an extensible application framework on
top of the RCP. It significantly reduces the amount of code that needs to be
written in order to contribute an extension to the IDE. To put it another way,
the RCP API is very wide and the Overture Eclipse Extensions summarise a
portion of it, thus giving developers faster access to the functionality at the
cost of some flexibility. However, the Overture extensions are fully interop-
erable with the RCP so any other extension that requires direct access to the
RCP can still be used. Broadly speaking, the Overture Eclipse extensions can
be divided into three groups:

• a set of UI elements for editors, launch configurations, etc. that interact
directly with the Eclipse RCP.

• a set of project elements that represent the FM model and associated
concepts such as source units, according to the Eclipse project model.

48 4 Generalisations of Extensibility

Also included are connectors and providers for accessing these various
entities from within the IDE.

• a set of builders that interact with the language core in order to process
language sources to construct an internal representation of the model
and load it into the project elements.

Both the builders and the project elements are developed according to
standard Eclipse conventions so that new versions of these packages for other
notations may be contributed.

In order to further increase the usefulness of the platform, we introduce
several extensibility features to the language core. The idea is to allow the
same core (and associated analyses) to support a base language as well as
extensions to the language itself, thus promoting even more reuse. These
features are based on the set of reusability principles described in Section 4.3.

The basic principles of extensibility in the Overture language core are
related to the generation of ASTs from specification files, similar to parser
generators like SableCC [39]. In addition to generating the classes represent-
ing the tree structure, it is important to generate auxiliary machinery to allow
developers to implement analyses of the AST in a consistent manner.

The main way to construct extensions in the language core is by extending
the AST. Generally speaking, an AST is extended by adding new subtrees
that are either entirely new or that contain some existing base nodes. In addi-
tion, the extended tree needs to reuse the existing base node classes wherever
possible.

In addition to extending the tree itself, it is important to also extend
the analysis machinery. Particularly, this extended machinery needs to be
able to analyse trees made up of extension and base nodes. Furthermore, the
extended analysis machinery needs to reuse the base machinery when pro-
cessing base nodes — this is essential for achieving reuse of functionalities
already implemented as base analyses.

Whether speaking of a tree made of only extension nodes or a hybrid tree
with extension and base nodes or even a base tree, the AST classes have a
limited ability to enforce the structure of each particular instantiation of the
tree. It is the syntax of the language, as encoded in the parser, that ultimately
controls which trees are admissible. Along the same lines, it is the parser that
controls which base nodes are reused when constructing hybrid trees as the
extended tree specification can only set an upper limit on this.

This platform-based architecture has been successful in supporting the
development of the Overture IDE and allowed not only its continued evo-

4.5 Strategy pattern-based Modelling 49

lution but it has also supported the development of new IDEs on top of the
platform such as the Symphony IDE.

When to use? Platform-based IDEs are suited for FM notations, particu-
larly when there is a need for high reuse and extensions to the formal notation
itself. One aspect that makes formal notations particularly suited to platform-
based IDEs is that FM frequently consist of a multitude of distinct analyses
to be performed on the same formal model and it is desirable to have these
analyses implemented in a consistent way. Non-FM tools in similar situations
may also benefit from the use of platform-based architectures.

Contribution 13. Platform-based architectural description for develop-
ment of formal notation IDEs. The platform consists of a core that
ensures consistent implementation of various formal analyses and frame-
work extensions that facilitate access and usage of a UI framework. A key
feature of the platform are the extensibility principles that enable a single
platform to support multiple formal notations.

4.5 Strategy pattern-based Modelling

In this section we present an architectural style for formal modelling based
on the strategy pattern [40]. The main goal of the style is to enable the
development of formal models where the primary kinds of extensions are
alternative realisations of the same functionality. The style was developed
for the VDM++ notation but it can be used with other formal notations that
provide support for OO features.

The style divides the elements of the data into separate data elements,
execution elements and processing elements. These elements correspond to
three sets of classes, as shown in Figure 4.1.

Execution Engine is responsible for coordinating and advancing simulation
of the model. It is also responsible for connecting the other sets of
classes.

State classes represent data in the model and are used to model the domain
entities of the problem. They hold minimal functionality other than basic
data access. Due to the use of formal modelling notations, we can use
features such as invariants to express and verify properties about the data
itself and thus gain valuable insights about it.

50 4 Generalisations of Extensibility

Strategies are responsible for processing data and making decisions that are
needed during model execution. Various kinds of strategies may be de-
fined to handle different aspects of the problem. Strategies are defined by
their contracts and once again, we can leverage the features of a formal
notation such as pre- and post-conditions to formally define the contract.
This enables us to initially verify the feasibility of the contract and when
concrete versions of a strategy have been implemented, we can verify
their adherence to the contract.

Broadly speaking, the three sets of classes interact as shown in Figure 4.2.
The Execution Engine is responsible for advancing the simulation of the
model. It uses the State and domain classes to populate the model with initial
data and then progresses the simulation according to the execution rules that
have been implemented (this varies greatly depending on the model). When-
ever a non-trivial decision or result must be calculated, the model extracts the
relevant data from the State and passes it to the relevant strategy. The strategy
calculates an answer that is used by the engine to update the state or progress
the simulation as appropriate.

A particular model may have multiple kinds of strategies defined and
these may interact directly by calling operations from each other. However,
it is worth noting that this kind of interaction is typically very difficult or im-
possible to enforce1 so it is recommended to clearly define which operations
of a strategy are meant to be called by other strategies and document their
purpose and assumptions on their use.

1 This holds for formal notations in the style of VDM++. Other notations may be capable
of enforcing the interactions.

Figure 4.1: Model structure realised as a UML class diagram

4.5 Strategy pattern-based Modelling 51

When to use? The main advantage of this style lies in its use of the
strategy pattern as it allows for different alternatives to the same function-
ality to be explored. For example, different algorithms may be compared for
performance or for the quality of their results (see Section 3.4 for an example
with optimisation). Another possibility is to develop different versions of an
algorithm that are more amenable to different kinds of analyses such as the-
orem proving or model checking. Therefore, this architectural style may be

Figure 4.2: Model execution realised as a UML sequence diagram

52 4 Generalisations of Extensibility

used whenever doing formal models that aim to explore different alternatives
in terms of algorithms for the same functionality.

Contribution 14. Strategy-based architectural style for formal mod-
elling. The style consists of separation between data, execution and data
processing and facilitates formal analysis and comparison of different
alternatives for the same functionality.

5
Foundational Contributions

This chapter discusses contributions at a more theoretical or foundational
level and how these can be used to support extensibility at more applied
levels. There are two areas of contributions: a theoretical extension of the
proof rules for VDM and leveraging of a mechanisation of the semantics of
VDM as a way to help provide automated proof support. The two topics are
independent of each other and are presented as such. The extension to the
proof rules is presented first, followed by the discussion of proof support.

This chapter contains material originally reported in the following publi-
cations:

[P25] Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen. Extending the Over-
ture code generator towards Isabelle syntax. 13th Overture Workshop,
June 2015.

[P21] Luı́s Diogo Couto, Nick Battle and Peter Gorm Larsen. LPF-Aware
Proof Obligation Generation in VDM/Overture. To be submitted to the
5th International ABZ Conference (ABZ 2016), May 2016.

5.1 Extending Proof Rules of VDM

The Overture POG was the target of an extension providing additional func-
tionality. Specifically, the POG was extended to provide support for gener-
ation of POs according to the principles of Kleene-based LPF. The original
POG followed McCarthy logic with left-to-right evaluation of boolean oper-
ators and “short-circuiting” evaluation of expressions when the left branch is
sufficient to determine the overall value. This is because McCarthy’s is the
logic used in the Overture interpreter and the POG is used, in part, to protect
against interpretation errors in specification execution.

In essence, the extension provides an alternative and complementary func-
tionality — it is not akin to providing a different implementation or algorithm

53

54 5 Foundational Contributions

since the generated POs are different. In order to support this extension, how-
ever, it was necessary to work out the proof rules for this alternate way of
calculating proof obligations.

The fundamental change in the generation of LPF POs lies in how com-
posite boolean expressions are manipulated. This means that the behavior of
the POG must be altered when it is applied to elements such as:

• and binary expressions

• or binary expressions

• => binary expressions

• forall quantified expressions

• exists quantified expressions

• if then else and cases expressions

The proof rules for the various boolean operators are summarised in Ta-
ble 5.1 along with their respective definedness predicates. We omit any dis-
cussion of the negation operator as it is the same in both versions of the POG
since the definedness of negation is identical in McCarthy and LPF. Note
that, for the conjunction, disjunction and implication operators, two separate
predicates must be generated for McCarthy logic.

The conjunction (and) and disjunction (or) operators are duals of each
other. So, whereas a disjunction holds if either of its members is true, a con-
junction is false if either of its operands is false. Extending this to LPF, a
conjunction is defined if either of its operands is false or if all of the operands
are defined whereas a disjunction is defined if either of its operands is true
or if all operands are defined. The definedness predicates for conjunction and
disjunction are shown in rows 1 and 2 of Table 5.1.

The implication operator (=>), unlike disjunction and conjunction, does
not have an absorbing element and therefore we cannot apply the LPF exten-
sion directly. However an implication can be unfolded into disjunctive normal
form through the following equivalence: P ⇒ Q ≡ ¬P ∨ Q. From there, it
follows that the definedness predicate for the implication operator is as shown
in row 3 of Table 5.1.

The universal and existential quantifiers are generalizations of the con-
junction and disjunction operators respectively so the rules for handling them
are also generalizations of rules for dealing with conjunction and disjunction.

5.1 Extending Proof Rules of VDM 55

logic expression LPF (Kleene) McCarthy

δ(P and Q) ¬P ∨ ¬Q ∨ (δ(P) ∧ δ(Q)) δ(P)
P → δ(Q)

δ(P or Q) P ∨Q ∨ (δ(P) ∧ δ(Q)) δ(P)
¬P → δ(Q)

δ(P => Q) ¬P ∨Q ∨ (δ(P) ∧ δ(Q)) δ(P)
P → δ(Q)

δ(forall x : T(x) (∃x : Tx · ¬P (x)) ∀x : Tx · δ(P (x))
& P(x)) ∨∀x : Tx · δ(P (x))

δ(exists x : T(x) (∃x : Tx · P (x)) ∀x : Tx · δ(P (x))
& P(x)) ∨∀x : Tx · δ(P (x))

Table 5.1: Logical expressions and their LPF and McCarthy definedness
predicates.

A universally quantified expression is defined if it is false for at least one
of its values or if it is defined for all values. We write its definedness predicate
as shown in row 4 of Table 5.1. Conversely, the rule for existential quantifiers
is an extension of the rule for disjunction where just one of the expressions is
true. Its definedness predicate is shown in the last row of Table 5.1.

We also consider the case of nested binary operators. In the McCarthy
POG, these are not particularly interesting as the operators (and their subex-
pressions) are simply processed left to right. As the subexpressions are en-
countered, any relevant POs are generated and additional context information
is generated and prepended to subsequent definedness predicates. This con-
text information ensures the subexpression has the relevant truth value that
ensures the subsequent subexpressions are evaluated. The overall effect of
this is that the further to the “right” an inconsistency is, the more complex the
resulting PO is.

Nested operators are handled differently by the LPF POG. In LPF sub-
expressions are not treated separately. Thus for an expression with nested
operators, a single PO is still generated. The difference lies in the definedness
condition which now apply to more complex operands. As an example, for
A and B and C the definedness predicate is ¬A ∨ ¬(B ∧ C) ∨ δ(A) ∧
δ(B and C). Of course, δ(B and C) can be unfolded to: ¬B∨¬C∨δ(B)∧
δ(C). In that sense, there is still a degree of left to right processing taking
place. However, this is only in the PO generation phase. At the proof stage,

56 5 Foundational Contributions

the PO may be manipulated in such a way that, for example, proving ¬C is
sufficient to discharge the whole PO. In a McCarthy setting, with multiple
POs, this simple proof is not sufficient to discharge all of them. A direct
comparison between the multiple McCarthy POs and the single LPF PO can
be seen in Table 5.2.

Expression A and B and C

δ(A)
McCarthy A => δ(B)

A => B => δ(C)

Kleene ¬A ∨ ¬(B ∧ C) ∨ δ(A) ∧ (¬B ∨ ¬C ∨ δ(B) ∧ δ(C))

Table 5.2: POG comparison for nested conjunctions.

In terms of implementation, it required fairly small adjustments to the
base Overture POG to change the logic supported from McCarthy to LPF.
With LPF it is possible to avoid the use of certain “guarding expressions”. The
main advantage of supporting LPF is that it is more powerful to use LPF in
proofs. In general, fewer POs are generated using LPF logic. However, some
of them are more complex and closer to the semantic definition of definedness
in LPF. The main drawback of using LPF for the POG is that the Overture
interpreter is currently not able to use LPF and thus that even though LPF
PO generation and discharge ensures the consistency of a specification, its
interpretation may still yield runtime errors and specification writers must
be aware of this issue, particularly when executing elements of a model that
contain expressions that are handled differently in LPF. Also, LPF POs are,
in general, longer and more verbose than their McCarthy counterparts. In any
case, the work carried out serves as a valuable test of POG extensibility in
terms of alternate functionalities and may be valuable input for others who
have existing POGs about the relatively minor adjustments needed to be able
to explore other logics supporting undefinedness.

Contribution 15. Proof rules for PO generation according to the seman-
tics of LPF supporting a new extension for the Overture POG.

5.2 Integrating Proof Automation 57

5.2 Integrating Proof Automation

In VDM, POs can act as a check on the intuition and designs of the modeller,
ensuring that a model is both feasible and can be executed in the interpreter
without yielding runtime errors. This allows the modeller to focus on design
considerations and delay the proving of properties and model consistency to
when PO discharge is attempted. While this makes POs valuable, in order for
them to be truly useful as part of a tool-supported workflow, there is a need
for automated proof support.

In order to achieve automated proof support, and keeping in line with the
general theme of reuse, the Overture tool support for VDM was connected
with an existing theorem prover, namely Isabelle [72]. There are various
reasons for choosing Isabelle (see Section 2.6), but the most relevant one
is the existence of a CML embedding — HOL-UTP-CML [36] — that, due to
its close connection to VDM, can be used to help provide the desired proof
support.

In order to provide Isabelle-based proof support for VDM, it is necessary
to export a VDM model (and its associated POs) to Isabelle. The approach
chosen is to adapt and reuse the HOL-UTP-CML embedding to create HOL-
UTP-VDM, an Isabelle embedding of the VDM-SL dialect.

Contribution 16. Adaptation of HOL-UTP-VDM Isabelle embedding,
based on existing HOL-UTP theories, thus providing automated proof
support for VDM.

In order to take advantage of the embedding in the context of the Overture
tool and VDM in general, it is necessary to translate VDM models into it.
While it would have been possible to adapt the existing translation of CML
models, this was a good opportunity to both explore the extensibility of the
code generation platform of Overture and, furthermore, assess whether it
is beneficial to use the platform to perform model translations rather than
using handwritten translations. As such, the existing translation was adapted
and re-implemented by means of extending the Overture CGP to translate
VDM models into Isabelle syntax. As part of this work, an extensibility
analysis of the Overture CGP was also carried out, similar to the analysis
described in Contribution 1. Various issues were uncovered by this analysis
and subsequently addressed.

The translation targets the HOL-UTP-VDM Isabelle embedding that is
very similar to VDM in the sense that the majority of constructs in VDM are

58 5 Foundational Contributions

present in the embedding. Therefore, after constructing the initial IR for the
VDM model, there is a relatively small number of operations that need to be
performed over the IR in order to carry out the translation.

The first set of operations is also the simplest and most common: direct
syntax translations. These translations can be applied directly to the initial IR
nodes that already map directly to a construct in the embedding. A few of
them are shown in Table 5.3. In general, the syntax of a construct in HOL-
UTP-VDM is the same as the one in VDM, with the following differences:

• all constructs are delimited by " to identify them as user-defined syntax
in Isabelle

• variable names are delimited by ˆ to mark them as model variables

• types are prefixed by @ to mark them as model types

• string literals are delimited by ’’

• certain operators (such as in @set) are prefixed by @ to further dis-
ambiguate them

VDM Isabelle embedding
x "ˆxˆ"
int "@int"
f(1) "f(1)"
"foo" "’’foo’’"
if b then s1 else s2 "if ˆbˆ then ˆs1ˆ else ˆs2ˆ"
x in set y "ˆxˆ in @set ˆyˆ"

Table 5.3: Example VDM constructs and their HOL-UTP-VDM counterparts.

The second set of operations consists of tree transformations, of which
the first is reordering of definitions. Isabelle does not allow forward refer-
encing in its definitions so any dependency of a definition must be processed
before the definition itself. When generating the syntax, the CGP processes
definitions in the IR in the order in which they appear so it is necessary to
reorder the IR nodes according to their dependency relation.

The final operation over the IR is also related to dependency handling,
specifically the dependencies between mutually recursive functions. It is pos-
sible to define mutually recursive functions in Isabelle but they must be placed

5.2 Integrating Proof Automation 59

together in a single definition block and identified as being mutually recur-
sive. Because VDM has no such restrictions, mutually recursive functions
may be spread through the definition list. As part of the translation to the
embedding, these functions are identified, grouped and placed into an IR node
that has been newly-defined for this purpose.

Contribution 17. Translation rules for VDM models into the HOL-UTP-
VDM Isabelle embedding.

6
Conclusion

6.1 Summary of Contributions

In this section, the contributions of the PhD are summarised and visualised in
order to provide an overview. The contributions are visualised as a graph in
Figure 6.1. Each contribution is a vertex in the graph. Three kinds of relations
are established between contributions, all as edges:

generalise contribution has been developed by generalising its predecessor;

instantiate the opposite relation of generalise; and

build on contribution builds on top of work reported as its predecessor.

There are 6 distinct graphs, surrounded by boxes. Each corresponds, to
some extent, to an independent vein of work. There are few connections
between contributions of different blocks. This is reflective of the discrete
nature and the research methodology which consisted of several independent
experiments.

Contribution 15 is in a standalone block. A reason for this is that the
contribution itself is somewhat coarse as it represents both the foundation
work to support an experimental extension and the extension itself. One could
divide it into two, with the extension building on the theory. However, there is
nothing particularly worthwhile in the extension itself so it was not separated.

Contributions 5 to 7 represent the deepest continuous work in the PhD.
Together, they culminated in the fairly large refactoring effort which led to
the revised, extensible architecture for Overture — a major piece of work.

Contributions 1, 2 and 9 also represent a continuous flow of work, with 2
building upon 1 — essentially, Contribution 1 identifies various issues which
Contribution 2 addresses — and Contribution 9 generalises the solutions
reported as Contribution 2.

61

62 6 Conclusion

POG Extensibility

Extension Combinations

Architectural Refactoring

Optimisation + FM Proof Automation

LPF

C1

C2

builds on

C9

generalise

C3

C10

generalise

C11

build on

C12

generalise

C13

generalise

build on

C4

generalise C5

C6

build on

C7

build on

C14

C8

instantiate

C16

C17

build on C15

Figure 6.1: Contributions visualised as graphs.

Finally, Contributions 3, 4 and 10 to 13 represent the single largest chunk
of work in the PhD. Contributions 3 and 4 combined to address specific exten-
sibility issues in the Overture code base. Together those combinations led to a
general solution for combining extensions, which constitutes Contribution 10.
Specific issues that must be considered when attempting this solution were
formulated as Contribution 11. Finally, the solution eventually led to a set of
principles for reuse in FM tools (Contribution 12) and an architectural pro-
posal for platform-based IDEs (Contribution 13). Therefore, we began with
an Overture IDE with extensibility issues and through addressing those issues
and reflecting on those solutions, we eventually reached a general architec-
tural solution for extensible IDEs which not only underpins the development
of Overture but can be used by other FM tool builders.

6.2 Assessing Contributions 63

6.2 Assessing Contributions

This section assesses the contributions of the thesis in several ways. First, in
Figure 6.2, contributions are related individually with all evaluation criteria.
Conversely, Figure 6.3, shows how all contributions together are distributed
across the evaluation criteria. The section is concluded by a qualitative as-
sessment of the various contributions.

Contributions are related to the evaluation criteria of Section 1.5 in Fig-
ure 6.2. The figure presents an informal ranking that indicates how each
individual contribution fulfils the criteria. The scale indicates to what extent
each criterion is fulfilled — the closer to the edge of the circle, the greater the
contribution. The process of evaluating contributions was done by the author
of the thesis so it is naturally subjective. It is based primarily on the author’s
insights although, when possible external information such as subsequent
uses or feedback from publication reviewers has been taken into account.

Figures 6.2a to 6.2e show the assessments for each individual evaluation
criterion. Figure 6.2f overlays all the previous figures and thus shows an
overall assessment for all criteria.

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(a) Source Code

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(b) Software Architecture

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(c) New Extension

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(d) Foundation

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(e) Modelling

[C1]

[C2]

[C3]
[C4][C5]

[C6]

[C7]

[C8]

[C9]

[C10]

[C11]

[C12] [C13]
[C14]

[C15]

[C16]

[C17]

(f) Combined Criteria

Figure 6.2: Relation between individual contributions and evaluation criteria.

64 6 Conclusion

Figure 6.3 provides an additional relation between contributions and eval-
uation criteria, in this case showing how the various contributions combined
are distributed across the evaluation criteria.

32.43 %

Source Code

25.68 %

Software Architecture

22.97 %

New Extension

12.16 %

Foundation

6.76 %

Modelling

Figure 6.3: Combined contributions distributed across evaluation criteria.

We now go through the contribution for the various evaluation criteria and
provide qualitative assessments for each criterion. The two most successfully
fulfilled criteria are SA and Source Code. These were the two primary objec-
tives of the PhD, particularly considering the applied nature of the PhD and
the focus on tool development.

In terms of Source Code, some of the most important contributions are
Contribution 2 and its generalisation (Contribution 9). In fact, it was this
contribution that provided the impetus for the idea of generalising certain
contributions. In terms of impact, perhaps the most significant contribution
was number 3. It supported several pieces of additional work by third parties
around POs. For example, work has been carried out to translate VDM-SL
models into Alloy [51] in order to discharge certain POs, which is made
possible by the new internal PO format [73].

SA was perhaps the most successfully fulfilled evaluation criterion. The
main branch of work that stands out here is the one represented by Contribu-
tions 5 to 7. It explored various dimensions of extensibility in SA including

6.3 Future Work 65

analysis, design, migration and comparison. The work has also had impact as
it was fundamental to several subsequent developments of Overture including
the construction of the Symphony IDE.

In terms of New Extensions, the thesis provided three kinds of extensions:
data-based extensions, where an existing feature was extended to a new data
structure (Contribution 2), a functional extension where an alternate ver-
sion of existing functionality was provided (Contribution 15) and extensions
where new functionality was provided (Contributions 4 and 17).

Modelling and Foundation were fulfilled by fewer contributions. How-
ever, both criteria were assessing secondary and supporting research goals. In
the case of Foundation, the work that was carried out, while a small portion
of the PhD, fitted quite well with the rest and satisfied the stated goal of
selective development of foundational work. For Contribution 15, we have
an ideal example of a well-founded extension — the theory work was rel-
atively straightforward and the new tool extension supporting it was also
developed rapidly, thus taking advantage of the increased implementation
speed afforded by extensibility. Contributions 16 and 17 represented signif-
icantly larger foundational work, although extensibility was also leveraged
when implementing the translation rules once they had been developed.

As for Modelling, it was the most isolated piece of work in the PhD.
We were successful in terms of applying extensibility principles to formal
modelling and demonstrating it through a case study application. However,
that work never fed or contributed to any other branch of the PhD. Perhaps
it would have been better to design a formal modelling goal that would have
ensured more interaction with the other areas of the PhD.

To summarise, we feel as though three of the evaluation criteria were quite
successfully fulfilled, with SA being perhaps the strongest one. On the other
hand, the fulfilment of the Modelling criterion left something to be desired,
in terms of feeding into other areas of the PhD and the topic of extensibility
in general.

6.3 Future Work

The possibilities for future work following up on the work presented here fall
in two categories:

• technical work that directly builds on some of the existing contributions;

• new challenges or directions uncovered during the PhD studies.

66 6 Conclusion

In terms of technical work to progress, there is a chance to have a great
impact by evolving the Isabelle integration with VDM. For starters, the em-
bedding itself can be taken further by moving to a dedicated VDM embedding
that includes support for the remaining VDM dialects. This would be a large
piece of work, including theoretical foundations as there are many issues
with the semantics of VDM++ and VDM-RT that need clarification. From
an extensibility perspective, it would allow the exploration of extensibility in
the context of theorem proving by attempting to use extensibility techniques
in the development of embeddings to support the three VDM dialects. Work
on a new embedding is already under way but it is not yet sufficiently mature
to form part of this thesis.

Further work can also be done on the Overture side, in terms of improving
the integration. Currently, Overture generates a set of theories and proof goals
for Isabelle. But the proof results are not communicated back to Overture.
One can envisage a tool-supported workflow where POs are discharged di-
rectly through the Overture UI, with all the Isabelle interaction hidden from
the user in the background. On the theoretical side, there is an interesting
challenge in terms of translating results from Isabelle back to the syntax
of VDM, which would be useful to present counter-examples or to provide
meaningful proof states for failed discharge attempts.

Another branch of work that can serve as basis for future research is the
platform-based architecture for IDEs. The original publication suggested a
few avenues for future work and of those, we would highlight the develop-
ment of standard mechanisms for integrating external tools. For additional
work, the UI side of the platform is under-developed when compared to
the core. A possible evolution would be decoupling the UI from the Eclipse
framework as it brings significant maintenance costs when the Eclipse frame-
work evolves. Migrating the platform to another UI framework would also
be a good way to assess the portability of the core. An alternative to another
UI framework would be migrating the platform to the web and providing
browser-based tooling instead. One advantage of this approach would be to
make it easier to enable and deploy new extensions and make them available
to users faster. It would also be easier to track usage of extensions to judge
whether they should be kept or removed.

In terms of future challenges, we would like to focus on the combination
of extensibility and formal models. In this PhD we have investigated how
to take extensibility principles from software development and apply them
to the construction of formal models. The next challenge to address is how
these models feed back into software. We propose taking the extensibility

6.3 Future Work 67

principles, applying them to models and then take those models into realised
systems in order to investigate how to preserve extensibility. In other words,
how to answer the question of how extensible models can lead to extensible
software. If we opt for solutions based on code generation, the extensibil-
ity of generated code is another interesting avenue for research. Finally, the
production of these extensible models leading to extensible systems could be
formulated as a series of methodological guidelines or as part of a system
development workflow.

More generically, there are many other experimental extensions that come
to mind, some of which could be developed as part of further extensibility
analyses. Examples include integration of Rely/Guarantee [54, 55, 52] tech-
niques in Overture or a plugin for computing metrics for VDM models (this
would require foundational work). But what we would like to end on is the
idea that development of these extensions, and others we cannot foresee, is
greatly supported by the various extensibility improvements to Overture that
have been carried out over the course of this PhD.

Part II

Publications

69

7
The COMPASS Proof Obligation Generator: A

Test Case of Overture Extensibility

The paper presented in this chapter has been accepted as a peer-reviewed
workshop paper.

[P24] Luı́s Diogo Couto and Richard Payne. The COMPASS Proof Obli-
gation Generator: A Test Case of Overture Extensibility. 11th
Overture Workshop, August 2013.

71

The COMPASS Proof Obligation Generator:
A test case of Overture Extensibility

Luis Diogo Couto1 and Richard Payne2

1 Aarhus University
lcouto@iha.dk

2 Newcastle University
richard.payne@ncl.ac.uk

Abstract. Proof obligation generation is used as a compliment to type checking
for the verification of consistency of VDM specifications. The Overture toolset
includes a Proof Obligation Generator (POG). Overture is designed to be a highly
extensible platform. CML, a new language designed for modelling systems of
systems is based in part on VDM. The CML tools are themselves built on Over-
ture. We evaluate the extensibility and potential for reuse of Overture by reporting
our experiences in developing a POG for CML as an extension of the Overture
POG. During this process, we alter the existing Overture POG visitors in order to
make them more extensible and reusable.

1 Introduction

Type checking is statically undecidable in VDM [1]. VDM specifications can be gen-
erally divided into 3 sets: on the one end we have correct or “good” specifications; on
the other end we have incorrect or “bad” specifications; and between these two ends,
we have undecidable specifications.

The VDM type checker can handle the first 2 sets on its own (it accepts correct
specifications and rejects incorrect ones). Specifications from these 2 sets will not have
any associated proof obligations. But for the third set, the undecidable specifications,
we need the assistance of a Proof Obligation Generator (POG).

The POG therefore picks up where the type checker leaves off and generates a series
of proof obligations related to the elements that make the specification undecidable.
Discharging these obligations helps prove the internal consistency and correctness of
the specification.

The Overture platform, an open source tool for VDM, has a POG for VDM as part
of its toolset, although there is no support yet for discharging proof obligations [9].

The COMPASS project seeks to develop tools and practices for modelling Systems
of Systems (SoS) [4], including the COMPASS Modelling Language (CML) and a sup-
porting toolset built on top of Overture [3]. Part of the COMPASS toolset will include
a POG for CML, developed as an extension of the Overture one.

In this paper, we consider the extensibility of the Overture POG and discuss the
issues in the reuse of the Overture toolset. In Section 2, we provide a brief introduction
to CML, Section 3 describes the CML POG, we discuss the extensibility of the Overture
POG and issues for future development effort in Section 4. Counclusions are drawn in
Section 5.

72 7 The COMPASS Proof Obligation Generator: A Test Case of Overture Extensibility

2 The COMPASS Modelling Language

The CML is the first language to be designed specifically for the modelling and analysis
of SoS [10]. It is based on the languages VDM [6], CSP [7] and Circus [11]. A CML
model comprises a collection of types, functions, channels and processes. Each process
encapsulates a state and operations written in VDM and interacts with the environment
via synchronous communications in CSP. A semantic model for CML using UTP [8] is
in development as part of the COMPASS project [2].

As CML and the COMPASS tool platform are based upon VDM and Overture,
the Abstract Syntax Tree (AST) generated by the COMPASS parser is extended from
the Overture AST. The ASTCreator tool, a part of the Overture platform, is used to
automatically generate ASTs for VDM dialects, which is extended to support CML.
This reuse allows us to directly reuse elements of the Overture platform, including the
type checker, interpreter and POG.

Being partly based upon VDM, the CML POG will generate those VDM Proof
Obligation (PO)s generated by the Overture platform. As such, we aim to reuse and
extend the Overture POG.

3 The COMPASS Proof Obligation Generator

3.1 Structure

The COMPASS POG is built on two sets of classes: visitors [5] and proof obligations.
This structure was inherited from the existing Overture POG.

The ProofObligation class and its various subclasses are responsible for holding
proof obligation data. Each different type of proof obligation has its own subclass (for
example NonZeroObligation is a class for representing proof obligations that an ex-
pression must evaluate to something other than zero). There are also a related set of
classes for storing data related to the proof obligation context. For example, the PO-
FunctionContextDefintion stores the various syntactic elements of a function required
for function-related proof obligations.

The other set of classes are the visitors. They are responsible for traversing the CML
AST and generating the various proof obligations. Whereas the proof obligation classes
can be thought of as holding the data, the visitor classes implement the behavior of the
POG. Unlike the proof obligation classes, whose type hierarchy is dictated by the proof
obligations we want to generate, the visitor hierarchy reflects the CML ast. We have
4 kinds of visitors, each responsible for a subset of AST nodes (POGProcessVisitor
is responsible for traversing processes, etc.). At runtime we need an instance of each
visitor type and we also need to move between them and so every visitor has a pointer
to its parent visitor.

3.2 Behavior

The COMPASS POG is built as a series of visitors. The overall behaviour is rela-
tively simple. The main visitor (ProofObligationGenerator) initializes the various

73

sub-visitors and applies them to the AST. Whenever one of the sub-visitors encoun-
ters a node it cannot handle (e.g. the process visitor encounters an expression) it will
pass the node up to the main Visitor who will then re-apply the correct sub-visitor.

This behavior is shown in the SysML sequence diagram in Figure 1.

pog: ProofObligationGenerator

initalise ()

paragraph.apply(declAndDefVisitor)

declAndDefVisitor :
POGDeclAndDefVisitor

caseAFunctionParagraphDefinition (paragraph)

def.apply(overturePOG)

overturePOG :
PogParamDefintionVisitor

caseAExplicitFunctionDefinition (def)

ProofObligationList
ProofObligationList

: Caller

new ProofObligationGenerator()

generatePOs()

ProofObligationList

Fig. 1: Sequence diagram representing COMPASS POG visit

3.3 Reuse

Our main goal for reuse was to be able to directly utilise the Overture POG to generate
all the Proof Obligations from VDM constructs directly. Because of this, the overall
structure and behavior of the COMPASS POG are heavily influenced by the Overture
POG. The entire visitor style of passing AST nodes between the various is lifted from
Overture.

However, rather then simply passing a node up to their root, CML visitors must pass
the node up to the Overture visitors. For example, the CML expression visitor must
handle new CML expressions and then call the Overture expression visitor to handle
the VDM expressions. There are two main issues with this approach.

The first issue is that there is no way to immediately identify a node as being from
Overture or CML without using instanceof checks in a manually implemented de-
cision method. One must use the default cases of visitors to work around this limitation.
We can set up a for default case for CML nodes and another default case for all nodes
(including the extended ones) . This of course limits our ability to handle default cases.

74 7 The COMPASS Proof Obligation Generator: A Test Case of Overture Extensibility

It would be good if we had 3 default cases available: extended, non-extended and all
nodes. This limitation seems to be in the AST itself and not the Overture POG

The second issue we encountered was with the Overture POG visitors. When we
pass a node to the Overture visitors, we are no longer able to control what happens. The
AST goes under control of the Overture visitors and that is never relinquished. Their
default cases are to call the root Overture visitor and its default case is to simply return
null. The issue of course comes when you have both VDM and non-VDM nodes in
a branch of the AST, which happens quite often. When the AST is passed to Overture,
its visitors will not know how to handle the VDM nodes. Of course, this means that at
best our POG will be unable to produce the proof obligations for these hybrid trees and
at worst, it will die (this will be the most frequent outcome).

To handle this second issue, we had to alter the existing Overture POG to enable
its visitors to release the AST back to COMPASS. We introduce the notion of a main
visitor. The main visitor is the one that is called on most (any non-parent) calls of the
apply() method. Previously these calls were of form node.apply(this). Now
they become node.apply(mainVisitor). This main visitor becomes a parame-
ter in the Overture visitors. To preserve compatibility with existing Overture plugins,
we rename the altered visitors to ParamVisitor and create new subclasses of these
parametrized visitors with the old visitor names. In these cases, the visitor receives a
reference to itself as the main visitor parameter.

When the Overture visitors are used by COMPASS the COMPASS visitor is set
as the main visitor parameter. This means that every apply() method will return
the AST to COMPASS. Now, all decisions belong to COMPASS. The Overture visitor
will simply unpack the node, generate any relevant proof obligations and apply the
COMPASS visitor to any sub-nodes. In effect, the Overture visitor is called for the use
of only one method at a time.

4 Discussion

The current version of the COMPASS POG generates the majority of VDM POs as gen-
erated in Overture. This is due to the reuse of the Overture Expression visitor, the ability
to reuse the majority of the Overture declaration and definition visitors (apart from the
Operation syntactic elements which differ in CML), and the reuse of ProofObligation
and POContext classes. As mentioned above, this to reuse these elements required
some effort. Whilst this reuse has been useful and reduced the amount of effort to gen-
erate VDM-related POs, there are two main dimensions in which the reuse is insufficient
for a CML POG.

– We shall need to address the CSP syntactic elements of CML and the resultant POs
not covered in VDM. The CML visitors currently have placeholders for most of the
process and action CML language elements, influenced by the Overture visitors.
Further language development effort is required to define the POs resulting from
CML, not present in VDM.

– The current format of storing POs is adequate when their use is limited to printing
to the screen. However, as the POs will be used by other analysis tools, storing POs

75

as strings is not appropriate. This is due to the fact that storing POs in this way
allows only one form of PO representation, limiting the use the toolset can make
from the generated POs. To address this issue, the PO representation format will
be reimplemented in the form of its own AST, which will be an extended subset
of the existing CML expression nodes. This new PO format will be composed of
one PO expression (the assertion to be proved) and a set of PO expressions holding
the context information. Work on this new format is underway, beginning with its
implementation in Overture.

When tackling these issues, we should consider how much effort should be made
in making changes in the Overture POG (which can be reused in the COMPASS tool
platform) and how much is COMPASS-specific. Effort placed in the former case may
slow down development of the COMPASS POG, however this will aid in future Over-
ture reuse. However, we must be careful not to add complexity to Overture where it
is not necessary for VDM. Our initial thought would be to make COMPASS-specific
POG changes for the first issue above, and make changes in the Overture for the second
issue.

The COMPASS toolset proposes the incorporation of several analysis tools as plu-
gins to reason over properties of a CML model. The POG, therefore, is a clear source
of such properties and thus the proof obligations generated must be made available to
the analysis plugins and the analysis results must be related to the PO in the COMPASS
toolset. Different plugins will need the proof obligation in different syntaxes and the
new AST format will help with that. We can simply develop new visitors that traverse
the PO AST and generate the relevant syntax. A clear example of this need for exten-
sibility is the use of the proof assistant Isabelle3. To be of use, the proof obligations
must be made available in Isabelle compatible syntax, refer to the relevant part of the
CML model, and be associated with the result of any proof generated in Isabelle. The
connection between proof obligations and their respective Isabelle proofs, particularly
across multiple versions of a model is a problem currently under study.

5 Conclusion

We have presented a POG for CML, developed as an extension of the Overture POG. In
developing, we have gained insight into the current extensibility and potential for reuse
of Overture.

Overall, reuse is definitely possible and is quite powerful. However, it is not a par-
ticularly easy task. There were several issues with extending the Overture POG and
were it not for existing familiarity with Overture, the task would have been extremely
complicated.

We also benefited greatly from being able to alter existing Overture code. The visitor
context swaps (particularly, return going from Overture back to COMPASS) were very
challenging and without changes to the existing code, it would have been impossible to
implement the COMPASS POG with proper reuse. It is clear to us that more work must
be done to improve the extensibility of Overture.

3 http://isabelle.in.tum.de

76 7 The COMPASS Proof Obligation Generator: A Test Case of Overture Extensibility

It is also worth mentioning that the development of these extended versions of Over-
ture plugins can be quite challenging. It will be interesting to see how the combination
of all Overture and COMPASS plugins turns out.

Acknowledgements

The authors wish to thank Peter Gorm Larsen and Joey Coleman for reviews on the
manuscript. Nick Battle implemented the original Overture POG and is currently work-
ing on the AST version. His work is greatly appreciated. Simon Foster is developing the
Isabelle plugin for COMPASS and his ideas on the format for proof obligations have
been a great help.

The work presented here is supported by the EU Framework 7 Integrated Project
"Comprehensive Modelling for Advanced Systems of Systems" (COMPASS, Grant
Agreement 287829). For more information see http://www.compass-research.
eu.

References
1. Hans Bruun, Flemming Damm, and Bo Stig Hansen. An Approach to the Static Semantics

of VDM-SL. In VDM ’91: Formal Software Development Methods, pages 220–253. VDM
Europe, Springer-Verlag, October 1991.

2. Jeremy Bryans, Andy Galloway, and Jim Woodcock. CML definition 1. Technical report,
COMPASS Deliverable, D23.2, September 2012.

3. Joey W. Coleman, Anders Kaels Malmos, Peter Gorm Larsen, Jan Peleska, Ralph Hains,
Zoe Andrews, Richard Payne, Simon Foster, Alvaro Miyazawa, Cristiano Bertolini, and An-
dré Didier. COMPASS Tool Vision for a System of Systems Collaborative Development
Environment. In Proceedings of the 7th International Conference on System of System En-
gineering, IEEE SoSE 2012, volume 6 of IEEE Systems Journal, pages 451–456, July 2012.

4. Comprehensive Modelling for Advanced Systems of Systems, 2011. http://www.compass-
research.eu/.

5. R.Johnson E.Gamma, R.Helm and J.Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, 1995.

6. John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef. Vali-
dated Designs for Object–oriented Systems. Springer, New York, 2005.

7. Tony Hoare. Communication Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey 07632, 1985.

8. Tony Hoare and Hi Jifeng. Unifying Theories of Programming. Prentice Hall, April 1998.
9. Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl, and

Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. ACM Software Engi-
neering Notes, 35(1), January 2010.

10. J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and S. Perry. Features
of CML: a Formal Modelling Language for Systems of Systems. In Proceedings of the
7th International Conference on System of System Engineering, volume 6 of IEEE Systems
Journal. IEEE, July 2012.

11. Jim Woodcock and Ana Cavalcanti. The semantics of Circus. In Proceedings of the 2nd
International Conference of B and Z Users on Formal Specification and Development in Z
and B, ZB ’02, pages 184–203, London, UK, UK, 2002. Springer-Verlag.

77

8
Towards Verification of Constituent Systems

through Automated Proof

The paper in this chapter has been accepted as a peer-reviewed workshop
paper.

[P22] Luı́s Diogo Couto, Simon Foster and Richard Payne. Towards Ver-
ification of Constituent Systems through Automated Proof. Work-
shop on Engineering Dependable Systems of Systems (EDSoS),
May 2014.

79

Towards Verification of Constituent Systems
through Automated Proof

Luı́s Diogo Couto
Aarhus University, Denmark

ldc@eng.au.dk

Simon Foster
University of York, United Kingdom

simon.foster@york.ac.uk

Richard Payne
Newcastle University, United Kingdom

richard.payne@ncl.ac.uk

Abstract—This paper explores verification of constituent sys-
tems within the context of the Symphony tool platform for Systems
of Systems (SoS). Our SoS modelling language, CML, supports
various contractual specification elements, such as state invariants
and operation preconditions, which can be used to specify
contractual obligations on the constituent systems of a SoS. To
support verification of these obligations we have developed a proof
obligation generator and theorem prover plugin for Symphony.
The latter uses the Isabelle/HOL theorem prover to automatically
discharge the proof obligations arising from a CML model. Our
hope is that the resulting proofs can then be used to formally
verify the conformance of each constituent system, which is turn
would result in a dependable SoS.

I. INTRODUCTION

A System of Systems (SoS) [1] is a collection of seman-
tically heterogeneous, independent, and distributed constituent
systems (CSs) which are co-ordinated to achieve an overall
goal. Independence means that no CS can exert control on
another CS, only influence its behaviour by offering potential
opportunities should synergy be reached. Since CSs are dy-
namic and heterogeneous, often changing their capabilities and
services, such synergy is achieved by negotiation of contracts
between a set of CSs, which impose binding conditions on
the behaviour of each CS. Since failure of such an agreement
will result in degradation of the SoS, it is important that each
CS has some measure of certainty in its ability to fulfil its
requirements, which in turn will lead to a dependable SoS.

System of Systems Engineering (SoSE) therefore requires
languages with which we can accurately model CSs to predict
their behaviour, and tools which enable their verification.
Such languages should have a sound theoretical background
to ensure that they can be assigned a consistent behaviour,
and the ability to handle the composition of heterogeneous
constituents. To this end the COMPASS Modelling Language
(CML) [2] has been developed, a formal modelling language
for SoSs. CML reproduces the style of the VDM-SL [3] formal
specification language, whilst integrating CSP [4] process
modelling constructs from the Circus [5] language. CML has a
formal semantics based in Hoare and He’s Unifying Theories
of Programming (UTP) [6], in its denotational, operational, and
axiomatic flavours. Along with the associated Symphony1 tool
platform, CML allows SoSs and CSs to be formally modelled,
tested, and verified in a controlled environment.

This paper focuses on two closely related components
of Symphony, the Theorem Prover Plugin (TPP) and Proof

1Symphony can be downloaded from http://symphonytool.org/

Obligation Generator (POG). A theorem prover can be applied
to verify a software system, that is mathematically demonstrate
that required properties are met through mechanically verified
proof. In the case of CSs, we need to verify that the internal
functionality and pattern of interaction is guaranteed to fulfil
the contract. In Symphony this verification can be facilitated
through the POG which generates proof goals upon which the
correctness of the CS model depends. CML has a number of
facilities for specifying contractual obligations, such as type
invariants, pre- and post-conditions for functions and opera-
tions, and system state invariants. These can then variously be
used to specify contractual obligations for a CS model, and the
application of the POG in concert with the TPP can be used to
verify that the system satisfies those obligations. Our thesis is,
therefore, that these technologies provide a way forward for
mechanically verifying that a CS model fulfils its contractual
obligations to the wider SoS.

In the remainder we outline our contributions. Section II
gives more background to our baseline technology. Section III
discusses related work. Section IV discusses the combined
POG and TPP framework, and how it can be used to verify a
CS model. Section V demonstrates an example CS, and how
we envisage verifying it for a wider SoS. Finally in Section VI
we conclude and outline future work.

II. BACKGROUND

CML is a language for modelling constituent systems and
their composition in an SoS. Systems are modelled using
CML processes, which are stateful reactive entities that can be
executed concurrently, and exchange messages over channels
in the style of the CSP process calculus [4]. A CML model
consists of a collection of user defined types, functions, chan-
nels, and processes. A process, in turn, consists of private state
variables, operations that act on these variables, and actions
that specify reactive behaviour using operators from CSP. CML
processes can be parallel composed to represent concurrent
execution, enabling description of a complete SoS.

CML has a formal mathematical foundation [7] based in
the UTP semantic framework [6], which allows processes
to be given a precise semantics. UTP allows us to tackle
semantic heterogeneity in SoSE by decomposing a modelling
language semantics into its theoretical building blocks, such as
state, concurrency, discrete time, and mobility, which can then
be formalised as “UTP theories”. UTP theories then act as
components with which we can construct semantic models for
languages and provide links between similar languages based
on common theoretical factors.

80 8 Towards Verification of Constituent Systems through Automated Proof

Fig. 1: Semantically supported Symphony tool platform

Development of CML models is aided through the as-
sociated Symphony tool platform. Symphony is an Eclipse-
based development environment that provides a parser, syn-
tax highlighting, a type checker, simulator, model checker,
and a variety of other tools for variously constructing and
verifying CML models. Though consisting of independently
developed components, the different tools share a common
semantic foundation given by the UTP denotational model.
This “semantic stack” is shown in Figure 1, with the Symphony
platform and associated components positioned on top. Within
the UTP relational calculus several computational paradigms
have been formalised as UTP theories (Contracts, Processes,
etc.), and these have been in turn composed to produce
the CML denotational semantics. Finally, reference semantics
have been produced that underlie the various tools, including
the operational semantics, which underlies the simulator and
model checker, and various axiomatic semantics, such as a
Hoare calculus [8]. Since this formal link exists from each
tool down into the unified semantic basis we can have a
degree of certainty that the various evidences produced can
be consistently composed to verify a CS model.

To support such verifications we have created a theo-
rem prover plugin, based on the Isabelle/HOL [9] interac-
tive theorem prover. Isabelle/HOL is ideal for this kind of
verification since proofs can be independently checked with
respect to a secure axiomatic core; a facet of the “LCF
architecture”. Our theorem prover is based in a mechanised
semantic framework for UTP called Isabelle/UTP [10] that
provides a strong theoretical grounding for CML, ensuring its
consistency. We have mechanised a partial semantic model
for CML in Isabelle/UTP, a collection of associated proof
tactics, and a visitor that translates the CML Abstract Syntax
Tree (AST) into Isabelle definitions that can then be used to
support proof. Our current approach to proof in CML is to,
where possible, convert CML to equivalent HOL formulae, and
perform the proof using Isabelle’s variety of existing tactics
and laws, effectively transferring results from HOL to UTP.
In line with the UTP framework, the theorem prover is fully
extensible: we can add support for additional programming
concepts, and associated tactics as required in the future.

Alongside the theorem prover, Symphony contains a POG
that generates, for a given CML document, a collection of
proof goals that must be satisfied to prove certain high level
properties of the model, such as internal consistency, contrac-
tual correctness of operations, and termination. The TPP can
then be used to attempt discharge of these proof obligations,
resulting in concrete proof objects for the properties. We are

currently working towards a formal axiomatic semantics for
these proof obligations based on the current implementation,
which will allow the integration of these proof objects with
other evidences in the tool-chain.

III. RELATED WORK

The Symphony tool platform is an extension of the open
source Overture IDE [11] for VDM based modelling. The
Symphony POG is an adaptation of the POG for Overture [12]
to also handle CML proof obligations. Previous efforts to
generate and discharge Proof Obligations (POs) for VDM
include [13] and [14], which connect VDMTools and Overture
POs respectively to the HOL4 theorem prover [15]. These at-
tempts were limited to the functional subset of VDM. We use a
similar mapping for CML types and expressions, whilst adding
support for CML’s imperative and concurrent constructs.

The area of theorem proving tools includes a number of
options including Isabelle/HOL [9] (which we use); PVS2

combining a specification language with a theorem prover;
Coq [16], a proof assistant based on intuitionistic logic;
specialised verification systems such as Spec], which is based
on the Boogie verification language [17] and supported by the
Z3 SMT solver [18]; and the Rodin3 tool for Event-B which
includes an automated theorem prover.

We choose Isabelle for several reasons. It is based on
Higher Order Logic which is ideal for embedding a language
like CML. The LCF architecture ensures proofs are correct
with respect to a secure logical core. It has a large library
of mathematical structures related to program verification,
such as relational calculus and lattice theory. It integrates
powerful proof facilities, such as the auto tactic for automated
deduction, integration of first-order automated theorem provers
(like Z3) in the sledgehammer tool [19], and counterexample
generators like nitpick. We can directly harness many of these
proof facilities by our transfer based proof tactics. Finally,
Isabelle has been integrated into Eclipse in the form of
Isabelle/Eclipse4, an IDE which we reuse in Symphony.

IV. PO GENERATION AND DISCHARGE IN SYMPHONY

The Symphony POG is an extension of the Overture
POG for the Vienna Development Method (VDM) [12], and
therefore many proof goals generated are derived from VDM.
However, the POG has been developed with an extensible
visitor [20] based architecture that will enable the addition of
further goals as they are researched. The current proof goals
fall broadly into the following categories: safe usage of partial
operators; safe usage of functions with pre-conditions; type
compatibility due to union types, type invariants and subtypes;
and satisfiability of implicitly defined functions and operations.

To illustrate the use of POs in Symphony, we present a
simple example based on a well known partial operator case:
division by zero. Consider the following CML function:� �
division : int * int → real
division (x,y) == x / y
� �

2http://pvs.cdl.sri.com
3http://event-b.org
4http://andriusvelykis.github.io/isabelle-eclipse/

81

Fig. 2: Failed PO discharge.

For this function, the POG generates an obligation stating that,
for all inputs to the function, the value of the divisor (y) will
not be 0, thus ensuring the function executes successfully. This
is represented in the logical formula below:� �
PO1: forall x:int, y:int & (y <> 0)
� �
This states that for all variables x and y of type int, y is
not equal to 0. This is not satisfiable, and so an attempt to
discharge this PO will fail as shown in Figure 2. The function
must be enriched with a pre-condition, using the pre keyword,
in order for the discharge to be possible:� �
division : int * int → real
division (x,y) == x / y
pre y <> 0
� �
The additional information offered by the pre-condition alters
the PO and now the theorem prover plug-in is able to discharge
the revised PO as shown in Figure 3. It is of course not possible
to prove that an arbitrary integer is different from zero, but it
is trivial to prove that a non-zero integer is different from zero.

Fig. 3: Successful PO discharge.

The aforementioned example was trivial but, in general, it is
quite important to ensure that, when adding a pre-condition,
said pre-condition is sufficient to allow the discharge of any
POs generated for the function.

The addition of the pre-condition has another effect. One
must now ensure that, whenever the function is called its
pre-condition is respected. Therefore, a new kind of PO is
generated. Consider the following function and PO:� �
divby2: int → real
divby2 (x) == division(x,2)
� �� �
PO2: forall x : int & pre_division(x,2)
� �
Since divby2 calls division, a PO is generated to
ensure that the pre-condition of division, given by
pre_division, is satisfied. This kind of obligation, called
pre-condition obligation is generated at all points
in the model where the function is called.

Fig. 4: Auto-generated theory files.

While the example shown was very simple, pre-conditions
(and invariants) can be as complex as necessary. They are
expressed in the functional subset CML and thus have the
full expressive power of CML’s first-order logic. In addition
to helping ensure consistency of the model, pre-conditions and
invariants are also used to specify additional properties

In fact, the methodology we propose is based precisely
on specifying desired properties and requirements of a model
through pre- and post-conditions as well as invariants. The
POs, once generated and discharged, stand as proof that the
model respects the specified properties.

Discharging POs is the task of the TPP. At its core, the
TPP consists of a mechanised semantic model for CML within
Isabelle/UTP. It is essentially a deep embedding of CML, in
that we give an explicit semantics to each of the operators of
CML processes within Isabelle.

The TPP will process a CML model and its associated POs
and automatically generate Isabelle theory files for them (see
Figure 4). These theory files can then be submitted to Isabelle
for discharging through various automated proof tactics such
as auto and sledgehammer, or the cml tac tactic that maps
a CML formula onto a HOL formula.

Because the TPP connects to the Isabelle/Eclipse plug-in,
the full functionality of that plug-in and, by extension, Isabelle
is available to the user . This includes the ability to write and
discharge model-specific conjectures directly in the Isabelle
encoding of the model. However, to perform this kind of work
requires significant knowledge of Isabelle and its syntax.

Therefore, the POG will be the primary source of goals
to discharge. Furthermore, the TPP offers a fully automated
mode of interaction with Isabelle where users simply choose
which PO to discharge and all inner workings (such as tactic
selection and result collection) are hidden from them.

We envisage two main functionalities for the plug-ins Quick
check and Proof Session. Quick check will be a fully automated
process, simply presenting a list of Proof Obligations (POs)
(including their predicates) in CML and linked to the relevant
model elements. The process of generating POs is quick,
therefore this may be performed frequently during initial model
development, to gain useful feedback about the model.

The Proof Session will be the main functionality of the
plug-ins. It creates a snapshot of the model (a timestamped,

82 8 Towards Verification of Constituent Systems through Automated Proof

read-only copy of the model’s CML sources), generates POs
and translates the model and POs into Isabelle theories. The
POs are displayed in a similar manner to the quick check
version but can now be submitted to the TPP for discharge.
At the moment only cml tac is available, though we hope to
enable automated use of additional tactics when attempting to
discharge POs. Regardless, the output of a proof attempt will
be captured from Isabelle and displayed to the user. Also, the
results of a proof session will be stored along with the model
snapshot, thus verifying the model’s correctness.

These two functionalities combine to form the following
work-flow: as a user works on a model, he can quick check for
POs as a way to gain early insights into the of the model. Each
PO can be seen of as a possible inconsistency and merely by
manual inspection they can guide the user in terms of adding
necessary pre-conditions or guards to the model.

Once a set of changes has been completed, the user
may use the proof session functionality to verify the model’s
correctness. Each set of POs and their associated proofs are
only valid for the particular version of the model they were
generated from so it makes little sense to attempt manual
proofs on a volatile model. Regardless of when it is attempted,
the proof session for the average user will be fully automated.
The user simply initiates a proof session and selects POs for
discharging either manually or in batch. Typically some POs
will be successfully discharged whereas others will fail to
discharge. These should indicate a problem with the model
and action must be taken by the user (for example, by adding
a guard or correcting program logic) to alter the model in a
way that allows the PO to be discharged. Then, the set of
completed PO goals can be used as a formal proof of the
constituent system’s correctness.

For advanced users who are comfortable interacting with
Isabelle/Eclipse directly, the full theorem proving perspective
gives them direct access to the tool so that manual proofs may
be attempted. Users can also specify and discharge additional
model-specific conjectures.

V. VERIFICATION OF EXAMPLE CONSTITUENT SYSTEM

We illustrate the use of the Symphony tool platform POG
and TPP with a simple example CS from a Railway Signal
System of Systems (SoS). The SoS in question aims to ensure
the safe and correct movement of trains on a section of
railway tack. Naturally such a SoS poses several dependability
concerns and the integrator of the SoS requires several safety
properties to hold throughout the life of each of the systems.

The Railway Signal SoS comprises several constituents
including a Route Rule Engine, several Track Actuators, Trains
and Dwarf Signal systems. In this paper, we look at one of the
constituent systems – the Dwarf Signal system – in detail and
consider the safety properties of that system.

From the perspective of the SoS integrator, there is a
requirement that the procured constituent systems provide a
safe service. The constituent system designer must, therefore,
provide evidence of this safety. Using model-based techniques,
we define a formal model of the Dwarf Signal – which may be
used as a contract to which the the signals must conform. The
Dwarf model used in this paper is based upon that introduced
in [21], and a typical signal may be seen in Figure 5.

Fig. 5: Picture of railway signal, with lamps indicated

The Dwarf Signal model is defined in CML with several
datatypes, functions, a single Dwarf process with state vari-
ables, operations and actions. The main datatype, DwarfType
shown below, has several fields relating to the transitions
which are to be made in the Dwarf Signal. For example,
the currentstate field dictates the collection of lamps
currently lit, and the desiredproperstate field repre-
sents the next state the Dwarf Signal should reach. The set of
possible signal states that may be reached is defined by the
ProperState datatype, which is constrained to be one of
for constant values: dark, stop, warning and drive
– each a set of lamps.

� �
types
LampId = <L1> | <L2> | <L3>
Signal = set of LampId
ProperState = Signal
inv ps == ps in set {dark, stop, warning, drive}

DwarfType :: lastproperstate : ProperState
turnoff : set of LampId
turnon : set of LampId
laststate : Signal
currentstate : Signal
desiredproperstate : ProperState

inv d == NeverShowAll(d) and MaxOneLampChange(d)
and ForbidStopToDrive(d) and DarkOnlyToStop(d)
and DarkOnlyFromStop(d)

values
dark: Signal = {}
stop: Signal = {<L1>, <L2>}
warning: Signal = {<L1>, <L3>}
drive: Signal = {<L2>, <L3>}
� �

There are several safety properties to which the Dwarf Signal
must adhere. These are defined in terms of functions referred
to in the DwarfType invariant – including, for example,
NeverShowAll which requires that the currentstate
should never have all three lamps lit. The Dwarf pro-
cess, outlined below has a single state variable: dw of type
DwarfType, and four operations: Init, which initialises
the dw state variable; SetNewProperState, allowing the
next desired properstate to be set; and two operations for
changing the lamps lit in the signal – TurnOn and TurnOff.

83

� �
process Dwarf = begin
state
dw : DwarfType

operations
Init : () ==> ()
Init() == (...)

SetNewProperState: (ProperState) ==> ()
SetNewProperState(st) == (...)

TurnOn: (LampId) ==> ()
TurnOn(l) == (...)

TurnOff : (LampId) ==> ()
TurnOff(l) == (...)
... end
� �

Each operation is defined in more detail in terms of pre- and
post-conditions, dictating the conditions in which the operation
may be called and the guarantees it makes if those conditions
are met. The Init operation, defined in more detail below,
has a body which initialises the dw state variable, with a post-
condition requiring that various fields of the dw variable are
updated. The operation body – an assignment to the dw state
variable – must respect the safety properties of the Dwarf
Signal, in the form of the type invariant described above.� �
Init : () ==> ()
Init() ==

dw := mk_DwarfType(stop, {}, {}, stop, stop, stop)
post dw.lastproperstate = stop and dw.turnoff = {}

and dw.turnon = {} and dw.laststate = stop
and dw.currentstate = stop
and dw.desiredproperstate = stop
� �

The remainder of the CML operations are defined in a similar
manner – with pre- and post- conditions. In addition to these
operation definitions, the CML model contains actions which
dictate the ordering of internal events and operation calls. At
present, the POG does not handle these features of CML, and
thus they are omitted from this paper.

Executing the Symphony POG, we obtain several POs,
which are generated by the Init, SetNewProperState,
TurnOn and TurnOff operations. The POs fall into two
PO types: ensuring that the postcondition holds given the
body of the operation; and ensuring subtype consistency. It
is the second of these which ensures that the DwarfType
type invariant (and thus the safety properties of the Dwarf
Signal) holds when setting a new value of the dw variable.
The generated subtype POs (PO1 and PO2) and postcondition
PO (PO3) for the Init operation are shown below.� �
PO1: inv_ProperState(stop)

PO2: ((inv_DwarfType(mk_DwarfType(stop, {}, {}, stop
, stop, stop)) and inv_ProperState(stop)) and
inv_ProperState(stop))

PO3: (((dw.lastproperstate) = stop) and (((dw.
turnoff) = {}) and (((dw.turnon) = {}) and (((dw
.laststate) = stop) and (((dw.currentstate) =
stop) and ((dw.desiredproperstate) = stop))))))
� �

Using the Symphony tool platform, we generate these POs,
and attempt to discharge them. In Figure 6 below, we show

Symphony in the POG perspective with the POs represented
in the Isabelle syntax used by the TPP. In the figure, the list
of POs is given in the right hand pane, with a pane showing
the PO definition in CML below. In the figure, we see that
several of the POs have been discharged – these relate to the
Init operation above – as denoted by the green ticks.

Fig. 6: Progress on POs generated for Dwarf model

By discharging all POs for the Dwarf Signal model, we
provide a contractual model which is verified to be both
internally consistent and, through encoding the safety prop-
erties which must be met by a signal, is safe with respect
to the requirements placed on that contract. At present, whilst
those POs shown are successfully discharged by the Symphony
TPP, several are not. These relate to those POs which rely
upon the value of the Dwarf process state variable dw at
a given point of time. This may be either an issue with
the PO expressions themselves (where the VDM-based PO
expressions require further adaption to CML), or due to the
early stage of development of the TPP proof tactics. We discuss
these areas as future work in the next section.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have outlined two Symphony tool plat-
form plugins which enable automated proof support for CML
POs. The Symphony POG reuses and expands upon the Over-
ture POG, also resulting in improvements in the Overture Tool.
The TPP is the first attempt at tightly integrating a theorem
prover into the VDM family of tools, providing a more useful
tool for users wishing to discharge CML POs and general
theorems. We have also shown how both plug-ins can be used
in combination to formally verify the integrity of constituent
systems of an SoS specified with CML. There are clearly many
areas of future work, both short-term improvements to the
two plugins, and also longer-term directions and scoping of
the work in the fields of SoS and dependability-related issues.
Below, we discuss several such directions for further work.

This paper demonstrated the verification of constituent
system models. An interesting issue would be the verification
of an actual implementation, with respect to realistic system
properties. Whilst clearly not in the scope of this paper,
we would consider the work of this paper in context with
other system engineering activities. In particular; positioning
constituent system verification with respect to the work of
Holt et al [22] on SoS requirements engineering and the

84 8 Towards Verification of Constituent Systems through Automated Proof

specification of SysML contracts and translation to CML [23]
may provide the means to more realistic property verification.

The current CML TPP focuses on VDM-style proof obli-
gations which deal with issues such as subtyping and internal
consistency. In the future we will extend this with a more
comprehensive calculus, such as a Hoare logic [8] or a
weakest precondition calculus, which would both expand on
the existing proof obligations. This would also allow us to
reason directly about CML process and state behaviour, and
therefore provide fuller support for reasoning about contracts.

Another extension to the proof obligations relates to scaling
our approach from the level of constituent systems to the
SoS-level, thus ensuring that the verified constituent systems
interact in a manner that ensures the desired behaviour of the
overall SoS.

Just as pre-conditions and invariants can be used to specify
the properties that the POG and TPP verify, we need a
mechanism that allows these tools to reason about correctness
at the SoS level. We see two distinct possibilities here: the first
is to introduce a new CML construct that allows one to specify
invariants over the entire SoS, thus being able to “see” inside
all constituents. The second approach is to take the existing
POs that verifies a system and use them to also verify the
interface of a constituent. Afterwards, one must establish a
means by which these verified interfaces can be combined to
establish global SoS properties. Of the two approaches, the
second one seems closer to the spirit of SoS engineering, and
we believe CS refinement provides a way forward here.

We are also currently working on a tool for CS refinement,
which combines with the theorem prover and can be used to
formally demonstrate contractual satisfaction. This will reuse
the POG to enumerate and discharge refinement provisos
which must often be satisfied to ensure validity of a refinement
step. Refinement will be principally supported by Isabelle,
though we are also exploring the use of model generation
tools to aid automation. For example, the Maude rewriting
logic engine [24] has previously been applied to automated
refinement [25], which we hope to adapt for CML. Such
advances over the current technology are feasible because of
our extensible approach to semantics provided by UTP.

Finally, though both plug-ins presented here are still at
an early development stage, work is ongoing on various
improvements. While the TPP and its associated Isabelle the-
ories support a significant subset of CML (types, expressions,
functions, and operations), work is ongoing on increasing the
coverage of the plug-in. The proof tactics are also under further
development in order to discharge increasingly complex goals.
Moreover we wish to expose more of Isabelle’s native proof
facilities in the TPP, such as sledgehammer and nitpick, so
as to bring their full weight to bear in discharging or refuting
proof obligations. Parallel to this there is work to formalise
the proof obligations in Isabelle with respect to the CML
semantics. Finally, we hope to produce guidance to the user
of how to interpret failure when a PO cannot be discharged.

ACKNOWLEDGEMENTS

This work is supported by EU Framework 7 Integrated
Project “Comprehensive Modelling for Advanced Systems of

Systems” (COMPASS, Grant Agreement 287829). For more
information see http://www.compass-research.eu.

REFERENCES

[1] H. Kopetz, “System-of-Systems Complexity,” in Proc. 1st Workshop on
Advances in Systems of Systems, 2013, pp. 35–39.

[2] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa,
and S. Perry, “Features of CML: a Formal Modelling Language for
Systems of Systems,” in Proc. 7th Intl. Conference on Systems of
Systems Engineering (SoSE). IEEE, July 2012.

[3] C. B. Jones, Systematic Software Development Using VDM. Prentice-
Hall, 1990.

[4] T. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
[5] J. C. P. Woodcock and A. L. C. Cavalcanti, “A Concurrent Language

for Refinement,” in IWFM’01: 5th Irish Workshop in Formal Methods,
ser. BCS Electronic Workshops in Computing, July 2001.

[6] T. Hoare and J. He, Unifying Theories of Programming. Prentice Hall,
1998.

[7] J. Fitzgerald, P. G. Larsen, and J. Woodcock, “Foundations for Model-
based Engineering of Systems of Systems,” in Complex Systems Design
and Management, M. A. et al., Ed. Springer, January 2014, pp. 1–19.

[8] S. Canham and J. Woodcock, “CML Definition 3 — Hoare Logic,”
COMPASS Deliverable, D23.4d, Tech. Rep., September 2013.

[9] T. Nipkow, M. Wenzel, and L. Paulson, Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, ser. LNCS. Springer, 2002, vol. 2283.

[10] S. Foster, F. Zeyda, and J. Woodcock, “Isabelle/UTP: A mechanised
theory engineering framework,” in 5th Intl. Symposium on Unifying
Theories of Programming, 2014.

[11] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and
M. Verhoef, “The Overture Initiative – Integrating Tools for VDM,”
SIGSOFT Software Engineering Notes, vol. 35, no. 1, Jan 2010.

[12] L. Couto and R. Payne, “The COMPASS Proof Obligation Generator: A
test case of Overture Extensibility,” in Proc. 11th Overture Workshop,
2013.

[13] S. Agerholm and K. Sunesen, “Reasoning about VDM-SL Proof Obli-
gations in HOL,” IFAD, Tech. Rep., 1999.

[14] S. Vermolen, “Automatically Discharging VDM Proof Obligations us-
ing HOL,” Master’s thesis, Radboud University Nijmegen, Computer
Science Dept., August 2007.

[15] K. Slind and M. Norrish, “A brief overview of HOL4,” in TPHOLs, ser.
LNCS, vol. 5170. Springer, 2008, pp. 28–32.

[16] Y. Bertot and P. Castéran, Coq’Art: the calculus of inductive construc-
tions. Springer, 2004.

[17] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs,”
in Formal Methods for Components and Objects. Springer, 2006.

[18] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS,
ser. LNCS, vol. 4963. Springer, 2008.

[19] J. C. Blanchette, L. Bulwahn, and T. Nipkow, “Automatic proof and
disproof in Isabelle/HOL,” in FroCoS, ser. LNCS, vol. 6989. Springer,
2011, pp. 12–27.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Elements of Reusable Object-Oriented Software., ser. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1995.

[21] S. Foster and J. Woodcock, “A Dwarf Signal in CML,” COMPASS
Whitepaper WP04, Tech. Rep., September 2013.

[22] J. Holt, “Model-based Requirements Engineering for System of Sys-
tems,” in Proc. 7th Intl. Conference on Systems of Systems Engineering
(SoSE). IEEE, July 2012.

[23] J. Bryans, J. Fitzgerald, R. Payne, and K. Kristensen, “SysML Contracts
for Systems of Systems,” June 2014, to appear in IEEE SoSE 2014.

[24] M. Clavel, F. Duán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and J. Quesada, “Maude: specification and programming in rewriting
logic,” Theor. Comp. Sci., vol. 285, no. 2, pp. 187–243, 2002.

[25] A. Griesmayer, Z. Liu, C. Morisset, and S. Wang, “A framework for
automated and certified refinement steps,” Innovations in Systems and
Software Engineering, vol. 9, no. 1, pp. 3–16, 2013.

85

9
Migrating to an Extensible Architecture for

Abstract Syntax Trees

The paper in this chapter has been accepted as a peer-reviewed conference
paper.

[P26] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen, Joey W. Coleman
and Kenneth Lausdahl. Migrating to an Extensible Architecture for
Abstract Syntax Trees. 12th Working IEEE / IFIP Conference on
Software Architecture, May 2015.

The content of this chapter has been excluded due to copyright restrictions.
The paper can be obtained though the respective publisher.

87

10
Extending the Overture code generator towards

Isabelle syntax

The paper in this chapter has been accepted as a peer-reviewed workshop
paper.

[P25] Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen. Extending the
Overture code generator towards Isabelle syntax. 13th Overture
Workshop, June 2015.

89

Extending the Overture code generator towards Isabelle
syntax

Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen

Department of Engineering, Aarhus University, Denmark
{ldc,pvj}@eng.au.dk

Abstract. Overture has a Code Generation Platform (CGP), designed with ex-
tensibility in mind but this extensibility has never been thoroughly tested before.
In this paper, we explore the extensibility of the Overture CGP by developing
code generation support targeting an Isabelle embedding of VDM. We compare
our solution to an existing hand-coded VDM to Isabelle translation based on di-
rect traversals of the VDM AST and show that using the CGP led to a decrease
in code volume of 86%. We also report various extensibility improvements that
have been incorporated into the CGP as part of our work.

Keywords: VDM, code generation, Isabelle, extensibility

1 Introduction

The Overture tool1 for VDM [6] has a Code Generation Platform (CGP) that was origi-
nally developed targeting the Java language but was designed with extensibility in mind.
The intent of the CGP is to make it easy to contribute new Code Generation (CG) sup-
port for new languages to Overture [12]. Currently, the CGP supports the original Java
code generation as well as an experimental generation of C++. The extensibility fea-
tures of the CGP have never been thoroughly tested since C++ generation is similar to
Java generation.

In this paper, we further explore the extensibility of the CGP by developing exper-
imental support for generation of Isabelle syntax, which differs from Java more signif-
icantly than C++ does. The reason for this is that Java and C++ are both imperative
OO languages and Isabelle is not. The process for developing this translation is also
generalised into a standard methodology for developing CGP extensions.

There are two reasons for choosing Isabelle: there is already a usable existing em-
bedding of VDM in Isabelle that we can reuse and a corresponding translation that runs
on Overture models [3]. This translation was handwritten and as such will provide a
good basis of comparison to see if it is really worthwhile to use the CGP. The compar-
ison shows that using the CGP leads to a code volume reduction of 86%.

The remainder of this paper is structured as follows: the code generation platform as
well as the existing Isabelle embedding and translation are described in section 2. The
steps taken by the developer to construct the new CG extension are described in sec-
tion 3. Relevant details of the Isabelle translation are discussed in section 4. The results

1 http://overturetool.org

90 10 Extending the Overture code generator towards Isabelle syntax

2 L. D. Couto and P. W. V. Tran-Jørgensen

of the work in terms of the new Isabelle translation and extensibility improvements to
the CGP are reported in section 5 and evaluated in section 6. Finally, we discuss future
work in section 7 and conclude in section 8.

2 Background

2.1 Isabelle Embedding
This subsection presents the target language of the translation: an Isabelle embedding of
VDM. Isabelle [13] is a framework for implementing logical formalisms and the VDM
embedding being targeted is one such formalism. It was originally developed for the
COMPASS Modelling Language (CML) [15] in the COMPASS project [7] and is built
on an Isabelle mechanisation [8] of the UTP semantics used for CML [10].

CML is a combination of VDM and CSP [9]. In particular, the types, values, ex-
pressions and functions of CML are lifted from VDM. State is similar although it is
handled somewhat differently – state in CML is composed of multiple independent
variables much like VDM++ rather than a single record structure. Additionally, CML
does not support the let be st construct due to its non-deterministic nature. The
remaining differences between CML and VDM are related to the reactive and Object
Oriented (OO) features of the language. Neither are relevant for this translation.

The Isabelle embedding of CML/VDM is a deep embedding, which means that it
gives an explicit semantics to each construct of CML/VDM in Isabelle. In other words,
rather than translating from VDM to another formalism, each construct in VDM is
defined in the embedding and then given a semantics using formalisms available in
Isabelle – specifically, higher-order logic.

Furthermore, the parsing capabilities of Isabelle give significant flexibility when
defining the syntax of the VDM constructs in the embedding. The end result is that the
embedding has its own syntax which is quite similar to that of the VDM language itself.
The primary differences lie in separator characters such as " to distinguish between
Isabelle and VDM syntax, ˆ to identify VDM variables and @ to identify VDM types.

In addition to the syntactical similarities there is also a near one-to-one correspon-
dence between constructs in the source and target languages which facilitates the trans-
lation process. However, while CML has OO features the embedding does not support
OO so it is suitable for representing VDM-SL models only.

Finally, we briefly describe the manually written existing translation, based on the
visitor framework of the Abstract Syntax Tree (AST). The translation visitors traverse
the AST and produce an intermediate data structure used to store relevant translation
information for each node including its syntax and dependencies. Afterwards, the data
structure is used to generate the Isabelle syntax, either with direct conversion to strings
or with auxiliary methods and classes for the processing of more complex nodes. Fur-
ther details about the existing Isabelle translation as well as the embedding are available
in [7].

2.2 Code Generation Platform
The reason for using the CGP, and what makes it a viable solution for developing code
generators, is found in the way the CGP represents and works with the generated code.

91

Overture Isabelle code generation 3

From the VDM AST the CGP constructs an Intermediate Representation (IR) of the
generated code, which forms a tree structure that is independent of any particular target
language.

Initially, each node in the IR has a one-to-one correspondence to a node in the
VDM AST. Subsequently, the IR is subjected to a series of transformations in order to
change the tree structure into a new form that is easier for a particular code generator to
produce code from. More specifically, each transformation represents a rewriting of the
IR with the purpose of changing the IR into a form where each node in the resulting tree
structure maps easily into the target language. One advantage of this approach is that
transformations operate directly on the IR, and therefore they can be shared among code
generators. As an example, the Java and C++ code generators use many of the same
transformations to eliminate functional-styled constructs in the IR such as quantified
expressions and collection comprehensions.

The IR is generated from an AST specification file using the AstCreator tool [1].
In addition to the IR nodes, the AstCreator also generates mechanisms to walk the
tree using visitors [5] as well as functionality to change the tree structure by allowing
parts of it to be replaced. Transformations are themselves implemented as extensions to
the visitors generated by the AstCreator. What characterises a transformation is that in
addition to traversing the tree structure, it also manipulates it.

After the IR has been fully transformed, it is handed over to a language-specific
backend generator in order to finalise the code generation process. The CGP provides
a framework for syntax generation that serves to facilitate production of code in the
target language. This framework is based on the Apache Velocity template engine and
used for mapping each node in the IR into concrete syntax [14]. This is handled by
the template manager, which associates each type of IR node to a template file, that
describes the code to be produced.

Code generators extending the CGP may need extra nodes in addition to those al-
ready defined by the platform. Therefore, the CGP allows new nodes to be added via
the AstCreator extension mechanism [4]. This mechanism allows the AstCreator to
produce nodes and visitors that allow construction and traversal of hybrid trees, .i.e.
tree structures composed of both IR nodes defined within the CGP and new nodes con-
tributed via an AST specification extension file. In addition to adding new nodes, the
CGP also allows existing IR nodes to be extended to include new fields. Finally, the
template manager can be redefined to support syntax generation of new nodes added by
the user.

3 Methodology

Based on the description of the CGP in subsection 2.2 we now outline the steps used to
develop the Isabelle syntax generator. These steps constitute a general methodology for
development of code generation support in Overture using the CGP. Others who want
to use the CGP to develop code generation support for another target language may
benefit from following these steps.

We start out by listing the steps to be carried out by the developer and afterwards
we elaborate on each of them.

92 10 Extending the Overture code generator towards Isabelle syntax

4 L. D. Couto and P. W. V. Tran-Jørgensen

1. Set up the CGP extension
2. Add new nodes
3. Transform the IR
4. Generate syntax
5. Validate the translation

The first step in the process is only necessary once. The remaining steps are done
in an iterative manner. The approach is to start with a very small VDM example and go
through the steps until the example is completely translated. Afterwards, the example
should be expanded as little as possible and the steps repeated. This is done iteratively
until the new CGP extension is complete.

Step 1 - Set up the CGP extension: Broadly speaking, the setting up of the CGP
extension consists of subclassing the base code generator class – CodeGenBase –
that is the common extension point of the CGP. The base code generator is responsible
for driving the code generation and providing access to the IR and various settings. It
is also responsible for storing data used and generated throughout the code generation
process.

Next, it is necessary to construct a new template manager for the extension. This
can be done by subclassing the base template manager. This will provide access to the
basic CGP template structure which manages an initial collection of template locations.
If additional template locations are necessary, the template manager can be used to
configure them.

Finally, it is worth setting up a basic test infrastructure to drive the development
process. This test infrastructure is responsible for processing a VDM source, passing
the respective AST to the code generator and validating the translation outcome.

Step 2 - Add new nodes: If the target language construct being translated is sufficiently
different from those of the base IR, then it is likely that a code generator needs extra
nodes. If necessary, these can be provided by extending the IR as described in subsec-
tion 2.2. Once the extension is defined, the AstCreator tool must be invoked in order to
generate the extension nodes.

Step 3 - Transform the IR: Constructs that are not supported by the code generator need
to be transformed away, using either base IR nodes or extended nodes generated in the
previous step. This is done by implementing one or more necessary transformations. It
is recommended that transformations be as small as possible so that each transforma-
tion only changes the IR in terms of one concept such as removing comprehensions or
reordering definitions.

Step 4 - Generate syntax: Once the IR is in a form suitable for code generation, syntax
can be generated using the syntax generation framework of the CGP. This is done by
creating the Apache Velocity template files for each of the nodes that is to be translated
and updating the template manager accordingly.

93

Overture Isabelle code generation 5

Step 5 - Validate the translation: Validation of the translation should be done by
means of the test infrastructure by comparing the translation output to a reference. Al-
ternatively, executable translated code may also be compiled and executed to ensure
it produces the right result. This test should then be stored to use as regression in the
continued development of the CGP extension.

4 Translations and Transformations

The Isabelle embedding we are targeting is very similar to VDM in the sense that most
constructs in VDM are present in the embedding. As such, the initial version of the
IR is already close to what is needed for generation – most nodes in the IR already
map directly to a construct in the target language. Therefore, there is a relatively small
number of operations that need to be performed over the tree.

The first set of operations is also the simplest and most common: direct syntax trans-
lations. These translations can be applied directly to the initial IR nodes that already
map directly to a construct in the embedding. A few of them are shown in Table 1.
These translations take advantage of the fact that the Isabelle embedding of VDM de-
fines its own syntax which is quite close to that of VDM. In general, the syntax is the
same as that of source VDM, except for the following:

– all constructs are delimited by " to identify them as user-defined syntax in Isabelle
– variables names are delimited by ˆ to mark them as model variables
– types are prefixed by @ to mark them as model types
– string literals are delimited by ’’

VDM Isabelle embedding
x "ˆxˆ"
int "@int"
f(1) "f(1)"
"foo" "’’foo’’"
if b then s1 else s2 "if ˆbˆ then ˆs1ˆ else ˆs2ˆ"

Table 1: VDM constructs and their Isabelle embedding counterparts.

To achieve these translations, all that is necessary is to specify the target syntax
in the Velocity templates and the CGP handles everything else. Most templates are
simple since most translations only need to add minor pieces of Isabelle syntax. A
few translations require some extra logic – for example, sequences of type char are
handled differently from all other sequences – and this is achieved through a handful of
auxiliary static methods callable from within the template engine.

The second set of operations consists of tree transformations, of which the first is
reordering of definitions. Isabelle does not allow forward referencing in its definitions
so any dependency of a definition must be processed before the definition itself. When

94 10 Extending the Overture code generator towards Isabelle syntax

6 L. D. Couto and P. W. V. Tran-Jørgensen

generating syntax, the CGP processes definitions in the IR in the order in which they
appear so it is necessary to reorder the IR nodes according to their dependency relation.
For example, consider the VDM functions shown in Listing 1.1. The initial IR generated
for this example would have to be re-ordered as shown in Figure 1.

�
1 f : int -> int
2 f (x) == if x = 0 then 0 else g(x);
3
4 g : int -> int
5 g (x) == x/x;
� �

Listing 1.1: A simple forward dependency example.

Root

f g

Transformation

Root

g f

Fig. 1: Dependency sorting transformation.

Dependency sorting is implemented as a CGP transformation that takes an IR mod-
ule node (the top level element of the IR), constructs a dependency graph of its defini-
tions and then applies a topological sort algorithm [2].

The final operation over the IR is also related to dependency handling, specifically
the dependencies between mutually recursive functions. Isabelle can cope with mu-
tually recursive functions but these must be identified as such and grouped together
for processing.2 In order to provide grouping of mutually recursive functions, we con-
struct another transformation that constructs a dependency graph for the function defi-
nitions and afterwards applies an algorithm for computing strongly connected compo-
nents [11]. Thus, the VDM functions in Listing 1.2 would be transformed as shown in
Figure 2.

2 Although Isabelle supports them, the VDM embedding cannot currently cope with mutually
recursive functions. However, we have implemented the transformation nonetheless as it was
a good way to test the extensibility of the CGP.

95

Overture Isabelle code generation 7

�
1 odd: nat -> bool
2 odd (x) == if x = 0
3 then false
4 else even(x-1);
5
6 even : nat -> bool
7 even (x) == if x = 0
8 then true
9 else odd(x-1);
� �

Listing 1.2: A simple example of mutual recursion.

Root

f g

Transformation

Root

MutRecGroup

f g

Fig. 2: Mutual recursion grouping transformation.

It is worth noting that the base IR module node does not support mutual recursion
groups. As such, we extended the IR to add a new field for it. The mutual recursion
transformation takes a base module node as its input and produces an extended module
node.

5 Results

5.1 New Isabelle Generation

This section presents the translation from VDM to Isabelle. The translation is demon-
strated by means of a complete example, shown in Listing 1.3. Much of the translation
is straightforward syntax conversion, however, the example demonstrates the two main
issues discussed in section 4: reordering definitions due to dependencies and grouping
mutually recursive functions.

96 10 Extending the Overture code generator towards Isabelle syntax

8 L. D. Couto and P. W. V. Tran-Jørgensen

Functions g() and f() shown in lines 3-7 of the VDM model are translated to
functions f() and g() in the Isabelle embedding shown in lines 5-13. Note that the
two functions have changed to that f() comes before g() in the Isabelle source. This
is because f() is a dependency of g() and so must be processed first.

Functions odd() and even() shown in lines 9-17 of the VDM model are also
translated to functions in the Isabelle embedding, shown in lines 15-31. However, the
functions in the embedding are delimited by the begin mutrec and end mutrec
keywords which identify them as a block of mutually recursive functions. In Isabelle,
such functions must be delimited as they are processed together.

5.2 Code Generation Extensibility Improvements

In addition to constructing the new extension, a series of improvements to the extensi-
bility of the CGP were also carried out. The first set of extensibility improvements had
minor impact on the CGP and was related to changing the visibility of various classes
and class members. Prior to this work, we were uncertain of which parts of the CGP
needed to be exposed to extensions. While it would have been possible to simply expose
everything, that would make the CGP too complex to use. By carrying out this work we
were able to discover which features to expose and were able to safely keep the rest
encapsulated inside the CGP.

As an example of the above, the template manager has a field that defines the folder
structure used so store template files. This field was not visible to extensions and that
forced an extension to follow the same structure as the base CG with no ability to rede-
fine it. By making the field visible to subclasses, it became possible for each extension
to define its own template folder structure.

The second change to increase extensibility had greater impact on the design of
the CGP and was related to transformation application. Originally, the CGP was only
capable of transforming the internal part of a node. In other words, the root node of
the tree could not be changed. This was insufficient for our extension because it was
necessary to have a different class at the root of the tree. To address this, the CGP was
modified to support transformations that convert between different node types at the
root of the tree and thus it became possible to perform transformations between any
two arbitrary trees. This new kind of transformation was named total transformation
and the existing ones were preserved as partial transformations. One advantage of the
partial transformation is that it can rely on the root node of the tree to remain the
same and know what kind of node it is. This reduces the amount of conversions that
are required to perform the transformation. The total transformation is more powerful
but will always take as input and produce as output a generic tree node. The CGP was
enriched with functionality to help cope with this by converting between generic and
specific root nodes via the adapter pattern [5].

6 Evaluation

To assess the effectiveness of using the CGP for Isabelle translation, a simple compar-
ison of volume – measured in Lines of Code (LoC) – was performed between the two

97

Overture Isabelle code generation 9

�
1 functions
2
3 g : nat -> nat
4 g (x) == f(x);
5
6 f : nat -> nat
7 f (x) == x;
8
9 odd: nat -> bool

10 odd (x) == if x = 0
11 then false
12 else even(x-1);
13
14 even : nat -> bool
15 even (x) == if x = 0
16 then true
17 else odd(x-1);
� �

(a) VDM model.

�
1 theory A
2 imports utp_cml
3 begin
4
5 cmlefun f
6 inp x :: "@nat"
7 out "@nat"
8 is "ˆxˆ"
9

10 cmlefun g
11 inp x :: "@nat"
12 out "@nat"
13 is "f(ˆxˆ)"
14
15 begin_mutrec
16
17 cmlefun odd
18 inp x :: "@nat"
19 out "@bool"
20 is "if (ˆxˆ = 0)
21 then false
22 else even((ˆxˆ - 1))"
23
24 cmlefun even
25 inp x :: "@nat"
26 out "@bool"
27 is "if (ˆxˆ = 0)
28 then true
29 else odd((ˆxˆ - 1))"
30
31 end_mutrec
32
33 end
� �

(b) Isabelle translation.

Listing 1.3: VDM model and respective Isabelle translation.

versions. LoC is an imperfect measure of volume and does not particularly capture ef-
fort or productivity. However, it can be effectively and accurately measured and does
provide a reasonable measure of the size of an implementation, which is sufficient for
our comparison.

Table 2 presents a summary of results. In this table, Manual refers to the origi-
nal visitor-based translation and CGP refers to the translation we have implemented.
The comparison does not consider components from the original translation that are re-

98 10 Extending the Overture code generator towards Isabelle syntax

10 L. D. Couto and P. W. V. Tran-Jørgensen

sponsible for processing CML-exclusive elements that have no counterpart in VDM. To
facilitate comparison, we have broadly grouped the sources of both versions into three
groupings:

data Refers to classes implementing the intermediary data representation between source
and target syntax

process Refers to classes that are used to help process or analyse the intermediary
representation

syntax Refers to classes that provide or define the target syntax for final translation
printing

Manual CGP ∆LoCabs ∆LoCrel

data 981 27 954 97.25%
process 2427 538 1889 77.83%
syntax 1395 86 1309 93.84%

Total 4803 651 4152 86.45%

Table 2: Volume comparison between translation implementations measured in LoC.

Looking at the data in Table 2, it is clear that utilising the CGP allows for an imple-
mentation with much less volume – a reduction of 86%. There are gains in every group-
ing but the largest ones are in the internal representation – 97%. This is because the
Manual version utilises a handwritten data structure, whereas the CGP version reuses
the IR and the only code necessary is that for defining the necessary data extensions.
Likewise, most of the machinery for processing both the source language and the IR is
reused from the CGP. Particularly, the construction of the IR from the source AST is
handled entirely by the CGP. The syntax grouping is also much smaller in the CGP ver-
sion – a reduction of 93% –since it uses the template engine in the CGP which allows
for significantly more concise expression of syntax.

7 Future Work

In the future, there are two main avenues for improving this work: the translation itself
and the extensibility of the CGP. Beginning with the translation, the most immediate
improvement is to expand the coverage of VDM constructs. This is to some extent tied
to the support of the embedding but there is a significant number of supported con-
structs that are not translated. For most of these it is only a matter of adding the relevant
templates, although there is also the matter of making the dependency calculator more
generic, which should not present a problem.

On the topic of the embedding, it would be worthwhile to switch to a pure VDM
embedding. While the similarities between CML and VDM make the current embed-
ding suitable for an initial translation, it would be beneficial to migrate to a dedicated

99

Overture Isabelle code generation 11

embedding for VDM that could be maintained and evolved separately as necessary.
Furthermore, the current embedding contains multiple definitions supporting the reac-
tive aspects of CML that are unnecessary from a VDM perspective. Finally, a dedicated
VDM embedding would allow for syntax that is even closer to that of VDM. Work is
already underway on adapting the CML embedding into a pure VDM one.

Returning to the translation, there is a potentially problematic issue in that it is only
possible to generate syntax for all definitions of the same kind together in one pass. This
is a problem when needing to print definitions of various kinds according to the order of
dependencies. The issue is related to the IR being structured as lists of definitions of the
same kind. It would need to be altered to support generic definition lists – for example,
type and function definitions would be stored in the same list.

In terms of translation, it would also be worthwhile to translate proof obligations
along with the model thus allowing them to be discharged in Isabelle. The proof obli-
gations are encoded as ASTs using only the expression subset of VDM. Therefore it
should be possible to translate them with the existing machinery and require only some
additional syntax to turn them into proof goals for Isabelle.

With regards to the CGP itself, the work presented in this paper has suggested two
improvements to be carried out. The first is an architectural refactoring of the CGP. At
the moment the CGP is directly tied to the Java code generator and that component must
be reused as part of reusing the CGP. While this does not limit the ability to construct
new extensions, it does expose a significant amount of Java-related functionality that
is not necessary. Therefore, it would be beneficial to refactor the code generator into
a core component that provides the CGP and a javacg component that provides code
generation to Java.

Another improvement is related to transformations of the IR. Currently, a new ex-
tension must provide all of its transformations and develop them from scratch. It stands
to reason that some translations are required for multiple extensions – for example, de-
pendency sorting may be needed in other target languages – so it would be beneficial to
reuse existing transformation. However, most transformations make assumptions about
the target language and the order in which transformations are applied. This makes it
quite challenging to reuse them since none of these assumptions hold in all situations.

8 Conclusion

This paper has presented a VDM to Isabelle translation using the code generation plat-
form of Overture. The initial results show that the translation can be written with a sig-
nificantly smaller amount of code (86%). Additionally, the use of the platform confers
various benefits such as improved maintainability of the intermediary data structure and
more easily adjustable syntax (via templates instead of Java strings). Also, any general
improvements made to the CGP will be propagated to the translation as well.

The successful development of the Isabelle translation stands as proof of the ex-
tensibility of the CGP. Some issues were identified and addressed in order to increase
extensibility. Specifically, a more generic transformation mechanism was implemented
with support for changing the root node of the tree.

100 10 Extending the Overture code generator towards Isabelle syntax

12 L. D. Couto and P. W. V. Tran-Jørgensen

Our initial results show that it is quite worthwhile and beneficial to use the CGP for
syntactical translations. The work presented here not only validates the extensibility of
the CGP but it also provides a good basis for developing a complete VDM to Isabelle
translation.

Acknowledgements

The authors would like to thank Simon Foster, Richard Payne and Sune Wolff for their
valuable insight and comments on this paper.

References

1. ASTCreator (2014), https://github.com/overturetool/astcreator
2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-

Hill Higher Education, 2nd edn. (2001)
3. Couto, L.D., Foster, S., Payne, R.: Towards Certification of Constituent Systems through

Automated Proof. In: Workshop on Engineering Dependable Systems of Systems (EDSoS)
(May 2014)

4. Couto, L.D., Tran-Jørgensen, P.W.V., Lausdahl, J.W.C.K.: Migrating to an Extensible Archi-
tecture for Abstract Syntax Trees. In: 12th Working IEEE / IFIP Conference on Software
Architecture (May 2015)

5. E.Gamma, R.Helm, R., J.Vlissides: Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series, Addison-Wesley Publishing
Company (1995)

6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

7. Foster, S., Payne, R.J.: Theorem Proving Support - Developers Manual. Tech. rep., COM-
PASS Deliverable, D33.2b (September 2013)

8. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineering frame-
work. In: Unifying Theories of Programming, pp. 21–41. Springer (2015)

9. Hoare, T.: Communication Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey 07632 (1985)

10. Hoare, T., Jifeng, H.: Unifying Theorieses of Programming. Prentice Hall (April 1998)
11. JGraphT (2015), http://jgrapht.org/
12. Jørgensen, P.W., Couto, L.D., Larsen, M.: A Code Generation Platform for VDM. In: The

Overture 2014 workshop (June 2014)
13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-order

logic, vol. 2283. Springer Science & Business Media (2002)
14. Apache Velocity (2015), http://velocity.apache.org/
15. Woodcock, J., Cavalcanti, A., Fitzgerald, J., Larsen, P., Miyazawa, A., Perry, S.: Features

of CML: a Formal Modelling Language for Systems of Systems. In: Proceedings of the 7th
International Conference on System of System Engineering. IEEE (July 2012)

101

11
Towards Enabling Overture as a Platform for

Formal Notation IDEs

The paper in this chapter has been accepted as a peer-reviewed workshop
paper.

[P23] Luı́s Diogo Couto, Peter Gorm Larsen, Miran Hasanagić, Georgios
Kanakis, Kenneth Lausdahl and Peter W. V. Tran-Jørgensen. To-
wards Enabling Overture as a Platform for Formal Notation IDEs.
2nd Workshop on Formal Integrated Development Environment
(F-IDE), June 2015.

103

To appear in EPTCS. c© Luı́s Diogo Couto et. al.

Towards Enabling Overture as a Platform for Formal
Notation IDEs

Luı́s Diogo Couto Peter Gorm Larsen Miran Hasanagić Georgios Kanakis
Kenneth Lausdahl Peter W. V. Tran-Jørgensen

Department of Engineering, Aarhus University,
Finlandsgade 22, 8200 Aarhus N, Denmark

{ldc,pgl,miran.hasanagic,gkanos,lausdahl,pvj}@eng.au.dk

Formal Methods tools will never have as many users as tools for popular programming languages
and so the effort spent on constructing Integrated Development Environments (IDEs) will be orders
of magnitudes lower than that of programming languages such as Java. This means newcomers to
formal methods do not get the same user experience as with their favourite programming IDE. In or-
der to improve this situation it is essential that efforts are combined so it is possible to reuse common
features and thus not start from scratch every time. This paper presents the Overture platform where
such a reuse philosophy is present. We give an overview of the platform itself as well as the exten-
sibility principles that enable much of the reuse. The paper also contains several examples platform
extensions, both in the form of new features and a new IDE supporting a new language.

1 Introduction

The Vienna Development Method (VDM) is one of the most mature Formal Methods (FM) [26, 15].
The method focuses on the development and analysis of a system model expressed in a formal language.
The formality of the language enables developers to use a wide range of analytic techniques, from testing
to mathematical proof, to verify the consistency of a model and its correctness with respect to an existing
statement of requirements. The VDM modelling language has been gradually extended over time. Its
most basic form (VDM-SL), standardised by ISO [29] supports the modelling of the functionality of
sequential systems. Extensions support object-oriented modelling and concurrency (VDM++) [16], real-
time computations [36] and distributed systems (VDM-RT) [43, 42]. All these dialects of VDM are
supported by the Overture platform [30].1

The mission of the Overture open-source project is twofold:

• To provide an industrial-strength tool that supports the use of precise abstract models in any VDM
dialect for software development.

• To foster an environment that allows researchers and other interested parties to experiment with
modifications and extensions to the tool and the different VDM dialects.

As is the case with other FM tools, the Overture Integrated Development Environment (IDE) con-
sists of a common Abstract Syntax Tree (AST) representing the model and various plug-ins providing
the different kinds of analysis available in VDM as shown in fig. 1. The broad variety of analysis pos-
sible is common in many formal methods. In such cases, it is important to ensure that all analyses
are implemented in a consistent way to facilitate maintenance. Such consistency would also aid in the
development and integration of new functional extensions.

1See http://overturetool.org.

104 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

2 The Overture Platform IDE

AST

Syntax Highlighting

Syntax Check

Type Check

Refactoring

Interpreter

(with debug features)

Test Automation

External Executable Code

Real-Time Log Viewer

Interactive Proof

Automatic Proof

Proof Obligation

Generation

Reverse Engineering

UML

SysML

Available Prototype available Not yet started

AADL

Alloy

Completion

Code Generation
GUI

Generators

Model Checking

Figure 1: Overture Tool Components

In addition to the above, this platform-based architecture allows for the reuse of common features
across all extensions. This reuse can be taken further by supporting language extensions that would
allow other formal notations to reuse the same platform. Recently, Overture has been re-factored to
enable such a reuse [8, 12]. The main contribution reported in this paper is the Overture platform itself
and its extensibility principles which are described in sections 2 and 3. An extensible platform facilitates
the development of new features for an IDE and in section 4 we demonstrate how several features of the
Overture IDE have been developed on top of the platform. Furthermore, in section 5 we demonstrate
how the platform has been integrated with an external tool.

The extensibility principles of the Overture platform also affect the notation itself. The platform
is capable of supporting a base language (VDM in the case of Overture) as well as multiple notation
extensions. This allows for the development of IDEs for new notations with heavy reuse of common
features. Section 6 describes one such IDE, which also includes integration with several external tools.

Open issues remain in the platform, most notably in terms of integration with external tools. Section 7
lays out future work for addressing some of these issues and also summarises the paper. It is our hope that
this paper demonstrates the advantages of platform-based IDE development and that it can be beneficial
for multiple FM tool builders to share a common platform.

Other examples of FM platforms with comparable functionalities include the Asmeta tool set for
ASM [4, 3], the Rodin platform for Event-B [1, 2, 14] or TLAToolbox for TLA+ [28, 41]. The extension
philosophies of the software tools differ as do the actual extensions that are available. A detailed com-
parison is beyond the scope of this article, but more information about these platforms and the modelling
languages they support can be found by following the references provided. The general philosophy of
reuse has also been employed effectively for theorem provers [39].

105

Luı́s Diogo Couto et. al. 3

Overture Platform

Overture Eclipse Extensions

Project Elements

UI ElementsBuilders

Overture Language Core

Analysis

AST

Eclipse RCP

Parser

Figure 2: The Overture Platform.

2 The Overture Platform

2.1 Overview

The Overture platform supports the development of FM IDEs. It was originally developed to support
the development of the Overture IDE for VDM but has since evolved into a more general platform. It is
comprised of two parts: the Overture Language Core and the Overture Eclipse Extensions, as shown in
fig. 2.

2.2 Overture Language Core

The language core encapsulates and handles any language and notation-related concerns, including pars-
ing, representation and analysis, in order to facilitate decoupling between the core language and User
Interface (UI) implementations. In addition to the general benefits of separation of concerns, the lan-
guage core also opens the possibility of migrating the IDE implementation to another UI technology
as well as providing the base tool functionalities for command line access, batch processing or as an
external tool to be accessed by others.

The language core consists of an extensible AST that is automatically generated by the AstCreator
tool2, as well as a parser for constructing the AST from model sources. In addition, AstCreator also

2See http://github.com/overturetool/astcreator

106 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

4 The Overture Platform IDE

generates machinery for traversing and processing trees in a consistent way in the form of a visitor
framework [21]. Any kind of analysis of the AST such as type checking or interpretation should be
implemented using the visitor framework.

One of the key features of the language core is its extensibility mechanism which allows language
extensions or new languages to be implemented in the Overture platform while reusing as much existing
code as possible. This mechanism is described in further detail in section 3

2.3 Overture Eclipse Extensions

The Overture platform also consists of a set of extensions to the Eclipse Rich Client Platform (RCP)
that are used to help build the UI components of the IDE. The Eclipse RCP is a generic framework for
building rich client applications using the Eclipse OSGi plug-in model and UI toolkits. It is is powerful
and generic but comes with a cost: significant amounts of boilerplate source code and configuration files
must be written in order to prepare it to build an IDE.

The Overture Eclipse extensions automate some of the configuration and preparation work by provid-
ing the aforementioned boilerplate code targeting FM notations. The extensions provides an extensible
application framework on top of the RCP. It significantly reduces the amount of code that needs to be
written in order to contribute an extension to the IDE. To put it another way, the RCP API is very wide
and the Overture Eclipse Extensions summarise a portion of it, thus giving developers faster access to
the functionality at the cost of some flexibility. However, the Overture extensions are fully interoperable
with the RCP so any other extension that requires direct access to the RCP can still be used.

There are other frameworks similar to the Overture extensions in the Eclipse project, such as the
Dynamic Languages Toolkit (DLTK) [13] and Xtext [45]. DLTK is designed to support the implementa-
tion of IDEs for dynamic programming languages and Xtext is designed to support the implementation
of IDEs for for Domain-Specific Languages (DSLs) or small programming languages. Neither frame-
work is particularly suitable for VDM – VDM is similar in notation to a statically typed general-purpose
programming language – which was the original target language to be supported by the Overture IDE.

Broadly speaking, the Overture Eclipse extensions can be divided into three groups:

• a set of UI elements for editors, launch configurations, etc. that interact directly with the Eclipse
RCP.

• a set of project elements that represent the FM model and associated concepts such as source units,
according to the Eclipse project model. Also included are connectors and providers for accessing
these various entities from within the IDE.

• a set of builders that interact with the language core in order to process language sources to con-
struct an internal representation of the model and load it into the project elements.

Both the builders and the project elements are developed according to standard Eclipse conventions
so that new versions of these packages for other notations may be contributed.

Currently, the Overture Platform primarily supports the Overture IDE. The Overture IDE is com-
prised of Eclipse plug-ins that use components implemented with the language core to perform analysis
of the VDM AST and UI components that wrap the analysis and use the Eclipse extensions to implement
the interaction with the user.

107

Luı́s Diogo Couto et. al. 5

3 Extension Principles of the Overture Language Core

The basic principles of extensibility in the Overture language core are related to the generation of ASTs
from specification files, similar to parser generators like SableCC [20]. In addition to generating the
classes representing the tree structure, it is important to generate auxiliary machinery to allow developers
to implement analysis of the AST in a consistent manner.

The main way to construct extensions in the language core is by extending the AST. Generally
speaking, an AST is extended by adding new subtrees that are either entirely new or that contain some
existing base nodes. In addition, the extended tree needs to reuse the existing base node classes wherever
possible.

In addition to extending the tree itself, it is important to also extend the analysis machinery. Partic-
ularly, this extended machinery needs to be able to analyse trees made up of extension and base nodes.
Furthermore, the extended analysis machinery needs to reuse the base machinery when processing base
nodes – this is essential for achieving reuse of functionalities already implemented as base analysis.

Whether speaking of a tree made of only extension nodes or a hybrid tree with extension and base
nodes or even a base tree, the AST classes have a limited ability to enforce the structure of each particular
instantiation of the tree. It is the syntax of the language, as encoded in the parser, that ultimately controls
which trees are admissible. Along the same lines, it is the parser that controls which base nodes are
reused when constructing hybrid trees as the extended tree specification can only set an upper limit on
this.

The extensibility principles of the Overture language core are primarily realised through the AstCre-
ator tool. AstCreator provides provides an automated way of generating trees and auxiliary machinery
from specification files as shown in fig. 3. The tool is capable of taking an existing AST as well as an
extension specification and generating the extension nodes and visitor framework upon which to imple-
ment analyses.3 Both nodes and visitors are aware of the base classes thus ensuring interoperability with
the base trees.

It is also possible to use AstCreator to build a completely new AST supporting a language that is
unrelated to VDM (see section 4.1 for an example). In this case, a new base tree and visitor framework
will be produced and it will not be possible to reuse existing components of the language core. As such,
we focus on the case where the new language being supported is an extension of an existing notation
where it is possible to reuse parts of the base AST, and the corresponding analysis. Typically, constructs
like arithmetic or logical expressions or imperative statements can be reused. This leads to hybrid trees
where nodes from the base and extended trees are blended together.

The semantics of such a language extension should be implemented as various AST analyses such as
type checking or interpretation. Each analysis should be implemented as an independent component that
processes the tree in a consistent way. The visitor framework that is generated as part of the extension
provides a way to achieve this. Since the visitor framework itself is extension-aware it enables selective
and controlled reuse of existing base analyses as necessary. The extension-aware visitor is illustrated in
fig. 4.

An example of these extension principles at work can be seen in the Symphony IDE, as described in
section 6.

3AstCreator is also capable taking a base and extension specification and producing both sets of classes, though this is done
less frequently.

108 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

6 The Overture Platform IDE

AST
Creator

Extended Tree
Description

+
Base Tree

Hybrid Tree

Extension-aware
visitors

Figure 3: Extending AST specifications.

4 Functionality extensions

New functionality can be contributed in the Overture platform either by using the language core, the
Eclipse extensions or a combination thereof. The language core provides the necessary mechanisms
to interact with the AST as well as extending it, whereas the Eclipse extensions provide the means to
expose functionality to the user. In this section, we provide examples of how both can be used to add
new functionality to Overture.

4.1 The code generation platform

The code generation platform aims to facilitate integration of VDM code generators into Overture with
minimum effort [27]. Like many other Overture components, the code generation platform interacts
with the language core by analysing a type checked VDM AST in order to generate code in some target
language. Currently, the code generation platform is used to develop VDM code generation support to
Java and C++, and in addition, there is ongoing work on generating Isabelle/HOL syntax [11].

In order to promote reuse the code generation platform works with an Intermediate Representa-
tion (IR) of the generated code, which is independent of any particular target language. In addition, the
code generation platform provides mechanisms for rewriting or transforming the IR into a semantically
preserving form that is easier for a particular backend to code generate. Furthermore, since transfor-
mations work directly on the IR it becomes easier for different backends to use and contribute new

109

Luı́s Diogo Couto et. al. 7

baseV:BaseVisitorextT:ExtendedTree extV:ExtendedVisitor baseT:BaseTree

process()

process()

apply(baseB)
apply(baseB)

process()

apply(extV)
caseAExtNode(extT)

Figure 4: Extended AST and analysis.

functionality to analyse and modify the IR.
The code generation platform allows new nodes to be added to the IR as well as extending existing

nodes with additional fields as enabled by AstCreator, which is used for the specification of the IR. The
Isabelle/HOL code generator exploits this, since mutually recursive functions must be grouped explicitly
in Isabelle/HOL and therefore the code generator adds function groups to the IR. This is done in a supple-
mentary tree extension file and demonstrates how users of the code generation platform can extend and
change the IR as needed. Although most of the work involved in developing code generation support in-
cludes traversing and transforming the IR, thus interacting with the language core, the Eclipse extensions
provide the necessary mechanisms to read preferences and configure the code generation process.

4.2 Interpreting implicit specifications using ProB

In VDM functions and operations can be either explicitly or implicitly (using pre and post conditions)
defined. An explicit description defines how the output is obtained from the input, which enables the
description to be evaluated directly in the VDM interpreter [33]. Implicit descriptions, on the other
hand, only specify the constraints that must be met but without defining how the output is obtained.
Therefore, attempting to evaluate an implicit description in the interpreter yields a runtime error. To
avoid restricting analysis of implicit descriptions to static analysis only, Overture has recently integrated
the ProB constraint solver in order to enable evaluation of implicit descriptions [32].

Interpretation of implicit descriptions adds an additional step to the model execution where the pre
and post state as well as the constraints imposed by the implicit description, is converted to ProB syntax
to form a formula, which is submitted to the ProB constraint solver. This formula is constructed as a

110 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

8 The Overture Platform IDE

string by analysing the type checked AST.
If ProB is able to find a solution to the given problem the solution is converted back to VDM format

and used throughout subsequent execution of the model. Intercepting the interpretation of implicit de-
scriptions is primarily enabled through extension of the language core, and interacting with ProB via an
external Java API.

4.3 VDMTools integration

VDMTools [17] is an industrial strength IDE, maintained by the SCSK corporation, for analysing models
written in VDM. Among many features also supported by Overture, VDMTools provides extensive
semantic checking, execution and Java/C++ code generation of models written in VDM. To facilitate
use of different IDEs, Overture provides an option to export an Overture VDM project to a VDMTools
compatible format. This plugin is developed through the Eclipse extensions that are used to convert meta
data from an Overture project to a format compatible with VDMTools.

4.4 Combinatorial Testing

Combinatorial Testing (CT) in VDM provides automated generation and execution of a large collection
of tests as an extension to the language core functionality [31]. The addition of CT in Overture has
trigged several changes to the language core components. First, the AST was extended to support the
trace nodes. Second, the type checker was updated to support type checking of both traces and generated
tests. Finally, the interpreter was extended to support trace expansion as well as test execution.

In addition to extending the language core a CT view has been added to Overture as a new Overture
Eclipse plugin extension. This plugin serves to provide a convenient way for users to inspect the test
execution results, filtering large collections of tests in order to obtain a reduced representable subset of
tests, and re-executing tests individually.

5 Building a Co-Simulation tool with the Overture Platform

The Crescendo tool supports collaborative modelling and co-simulation of Cyber Physical Systems
(CPSs) [18], and has been developed by extending the Overture platofrm. This extension enables co-
simulation between co-models, which are composed of a discrete time model described in the VDM-RT
language, and a continues time model described using differential equations. The extension is com-
posed of a co-simulation engine that connects an extended version of the VDM interpreter [33] from the
Overture tool with the simulator in 20-Sim [9].

The Crescendo tool primarily extends the Overture platform using ordinary Eclipse extension points
for: builders, debug related UI and views. However, it also uses Overture Eclipse extensions for e.g.
editors, and debugging related components.

An extension was also made to the language core by extending the VDM interpreter used for evalu-
ating and debugging with two main features: a) the ability to only simulate until a certain time bound,
and b) the ability to detect when a shared co-simulation variable is accessed. This is necessary in order
to support co-simulation such that the two simulators can synchronize their time steps.

111

Luı́s Diogo Couto et. al. 9

6 Building a new IDE with the Overture Platform

Thus far, this paper has shown how to contribute extensions to the Overture IDE and how to extend
existing components to support co-simulation with an external tool. These examples consist of extensions
that either make very small or no changes to the VDM language, in terms of new syntax, the semantics
thereof or the concepts introduced. This makes the extensions relatively simple to support in comparison
to an extension for a new full-blown FM notation, especially considering the wide variety of formal
notations as well as their associated semantics, paradigms and problem domains.

It is possible to use the Overture platform to build an IDE for a new notation that shares nothing with
the VDM language. However, this means that the new IDE will be unable to reuse much of the language
core since the AST and associated analyses will be entirely different. On the other hand, when building
an IDE for a notation that reuses or shares parts of VDM, then the relevant parts of the language core can
be reused. The remainder of this section shows how such reuse was achieved in the construction of the
Symphony tool [7] in the COMPASS EU FP7 Project. Symphony supports the COMPASS Modelling
Language (CML) notation [44] that was introduced in the COMPASS project and combines VDM with
Communicating Sequential Processes (CSP) [22].

The syntax of CML differs significantly from that of VDM, especially as it relates to the new con-
structs inherited from CSP. As such, it was necessary to construct a parser to recognize CML notation.
Tools such as ANTLR [38] greatly aid in parser construction and Symphony has an ANTLR parser
built from scratch that processes CML sources to construct ASTs that are compliant with the Overture
language core.

The static analysis of CML ASTs (type checking and proof obligation generation) significantly reuses
relevant Overture components [10]. In the case of proof obligations, reuse led to reduction in lines of
code from 2596 to 978 as well as a reduction in duplicate code from 37.2% to 3.1%. In general, any
existing analysis for VDM was reused whenever possible. A good example lies in the processing of
VDM expressions inside CSP actions – also an example of hybrid tree processing.

The validation of CML models could not reuse Overture components so easily since the paradigms
of CML notation are different from those of VDM. In particular, CML is a process algebra and its
models are interpreted as sequences of events, as opposed to VDM’s imperative approach based on state
transformations.

Due to the difference in paradigms between the languages, significant portions of the Symphony
interpreter had to be built from scratch. However, in spite of the differences in behaviour, the Symphony
interpreter still manages to reuse the Overture one for evaluating expressions and reused statements.

For all cases of reuse in Symphony, the same basic principle applies: the extended analysis processes
the hybrid tree and when it encounters a base node, it submits the node to its counterpart base analysis,
with a mechanism in place for the extension to re-assume control and preventing the base analysis from
hijacking the analysis of the remaining tree.

Finally, it is important to discuss the underlying semantics of the various analyses as it should be
ensured that consistent semantics are in place across all components of the tool, lest errors be introduced
in the overall results due to gaps between the various semantics. In the COMPASS project this was
addressed by using the Unifying Theories of Programming [23] that provides a common framework for
the various semantic models used in the project. This work eventually led to a mechanisation of a subset
of CML in Isabelle [19].

Most functionalities of the Symphony IDE were implemented as Eclipse plug-ins using a combi-
nation of the Overture language core (exported via a counterpart Symphony core) and the Overture
Eclipse extensions (used to build the main UI components of the Symphony IDE). In addition to

112 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

10 The Overture Platform IDE

its native functionalities, the Symphony IDE also uses its various plug-ins to integrate externals tools
such as Maude [5, 6], Isabelle [37] (via Isabelle/Eclipse [24]), FORMULA [25], RT-Tester [40] and
ProB[34, 35]. The most relevant external tool integrations are shown in fig. 5. Note how this aims at
following the principle of reusing existing functionality rather than re-developing from scratch.

Figure 5: The COMPASS tools

7 Concluding Remarks and Future Work

This paper has described the Overture IDE and its underlying platform. We have shown the extensibility
principles of the platform and demonstrated how they support multiple functional extension plug-ins.
Furthermore, we have demonstrated how the platform can support notation extensions and, as such, be
used as a basis platform by other FM tool builders. The ability to reuse existing functionality and build
on the work of other teams can help improve the quality of FM tools in general.

Going forward, there are various potential improvements that can be made to the Overture platform
and we discuss a few of them here. The first improvement is in terms of the AstCreator tool’s specifi-
cation files. At the moment, AstCreator is only capable of generating the Java code for the AST from
a fairly simple tree specification file. This is by design. AstCreator does not aim to address issues of
parsing when tools such as ANTLR already do an excellent job of it. However, it may be beneficial to
integrate AstCreator with parser generators. Either by deriving an AstCreator specification file from the
parser generator grammar or by creating a stub grammar from the AstCreator specification.

Another potential improvement lies in making more use of the code generation platform when inte-
grating external tools. Integration with external tools often consists of translating the VDM syntax into

113

Luı́s Diogo Couto et. al. 11

that of the external tool and submitting it to the tool as is done for example in the ProB integration. These
translations are often implemented manually using the visitor framework. However, by using the code
generation platform, significant gains may be attained in terms of the amount of code that is necessary.
We are currently undertaking work in this direction and early results are very promising [11].

The final improvement under consideration is also related to external tool integration, but is a some-
what open-ended question at the moment. Integration of external tools is currently done on a case-by-
case basis. Each external tool is integrated in its own way with entirely handwritten code. While the
syntax translation issue may be addressed, the invocation of the external tool, passing of data to it and
collection of results is completely non-standardized. This is mostly a consequence of all external tools
having different ways of accessing them. However, at a high-level, most external tool interactions can be
reduced to a general case such as external command invocation, protocol-based communication or API
access. It would be beneficial to have mechanisms in the platform to help deal with each of the general
cases. Another alternative would be a methodological approach where guidelines are produced to help
developers implement each kind of integration in a consistent manner.

Acknowledgments

The authors wish to thank Stefan Hallerstede for valuable feedback. Partial funding for the work reported
here was provided by the COMPASS project (Grant Agreement 287829) as well as the INTO-CPS project
(Grant Agreement 644047).

References

[1] Jean-Raymond Abrial (2010): Modeling in Event-B - System and Software Engineering. Cambridge Univer-
sity Press, doi:10.1017/CBO9781139195881. Available at http://www.cambridge.org/uk/catalogue/
catalogue.asp?isbn=9780521895569.

[2] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta & Laurent
Voisin (2010): Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), pp. 447–466,
doi:10.1007/s10009-010-0145-y.

[3] (2015): The Asmeta tool set for ASM. http://asmeta.sourceforge.net.

[4] Egon Börger & Robert F. Stärk (2003): Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer, doi:10.1007/978-3-642-18216-7.

[5] M. Clavel, F. Durn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer & J. F. Quesada (1999): The Maude
System. In: Rewriting Techniques and Applications, Springer, LNCS1631, doi:10.1007/3-540-48685-2 18.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & Car-
olyn L. Talcott, editors (2007): All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. Lecture Notes of Computer Science 4350, Springer-Verlag,
doi:10.1007/978-3-540-71999-1.

[7] Joey W. Coleman, Anders Kaels Malmos, Peter Gorm Larsen, Jan Peleska, Ralph Hains, Zoe Andrews,
Richard Payne, Simon Foster, Alvaro Miyazawa, Cristiano Bertolini & André Didier (2012): COM-
PASS Tool Vision for a System of Systems Collaborative Development Environment. In: Proceedings
of the 7th International Conference on System of System Engineering, IEEE SoSE 2012, pp. 451–456,
doi:10.1109/SYSoSE.2012.6384150.

[8] Joey W. Coleman, Anders Kaels Malmos, Claus Ballegaard Nielsen & Peter Gorm Larsen (2012): Evolution
of the Overture Tool Platform. In: Proceedings of the 10th Overture Workshop 2012, School of Computing
Science, Newcastle University.

114 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

12 The Overture Platform IDE

[9] Controllab products (2013): http://www.20sim.com/. 20-Sim official website.

[10] Luı́s Diogo Couto & Richard Payne (2013): The COMPASS Proof Obligation Generator: A test case of
Overture Extensibility. In: Proceedings of the 11th Overture Workshop.

[11] Luı́s Diogo Couto & Peter W. V. Tran-Jørgensen (2015): Extending the Overture code generator towards
Isabelle syntax. In: Proceedings of the 13th Overture Workshop, Center for Global Research in Ad-
vanced Software Science and Engineering, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-
Ku, Tokyo, Japan, pp. 48–59. Available at http://grace-center.jp/wp-content/uploads/2012/05/
13thOverture-Proceedings.pdf. GRACE-TR-2015-06.

[12] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen, Joey W. Coleman & Kenneth Lausdahl (2015): Migrating to
an Extensible Architecture for Abstract Syntax Trees. In: 12th Working IEEE / IFIP Conference on Software
Architecture.

[13] Eclipse (2015): Dynamic Languages Toolkit. Available at http://eclipse.org/dltk/.

[14] (2015): Event-B and the Rodin Platform. http://www.event-b.org.

[15] John Fitzgerald & Peter Gorm Larsen (2009): Modelling Systems – Practical Tools and Techniques in Soft-
ware Development, Second edition. Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, doi:10.1017/CBO9780511626975. ISBN 0-521-62348-0.

[16] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat & Marcel Verhoef (2005): Validated
Designs for Object–oriented Systems. Springer, New York, doi:10.1007/b138800. Available at http:
//overturetool.org/publications/books/vdoos/.

[17] John Fitzgerald, Peter Gorm Larsen & Shin Sahara (2008): VDMTools: Advances in Support for Formal
Modeling in VDM. ACM Sigplan Notices 43(2), pp. 3–11, doi:10.1145/1361213.1361214.

[18] John Fitzgerald, Peter Gorm Larsen & Marcel Verhoef, editors (2014): Collaborative Design for Embedded
Systems – Co-modelling and Co-simulation. Springer, doi:10.1007/978-3-642-54118-6. Available at http:
//link.springer.com/book/10.1007/978-3-642-54118-6.

[19] Simon Foster, Frank Zeyda & Jim Woodcock (2015): Isabelle/UTP: A mechanised theory engineering frame-
work. In: Unifying Theories of Programming, Springer, pp. 21–41, doi:10.1007/978-3-319-14806-9 2.

[20] Etienne M. Gagnon & Laurie J. Hendren (1998): SableCC, an Object-Oriented Compiler Framework. In:
Proceedings of the Technology of Object-Oriented Languages and Systems, TOOLS ’98, IEEE Computer
Society, Washington, DC, USA, pp. 140–154, doi:10.1109/TOOLS.1998.711009.

[21] E. Gamma, R. Helm, R. Johnson & R. Vlissides (1995): Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series , Addison-Wesley Publishing Company.

[22] C.A.R Hoare (1978): Communicating Sequential Processes. Communications of the ACM 21(8),
doi:10.1145/359576.359585.

[23] Tony Hoare & He Jifeng (1998): Unifying Theories of Programming. Prentice Hall, doi:10.1007/11768173.

[24] Isabelle/Eclipse (2015): Isabelle/Eclipse. Available at http://andriusvelykis.github.io/

isabelle-eclipse/.

[25] Ethan K. Jackson, Dirk Seifert, Markus Dahlweid, Thomas Santen, Nikolaj Bjørner & Wolfram Schulte
(2009): Specifying and Composing Non-functional Requirements in Model-Based Development. In Alexan-
dre Bergel & Johan Fabry, editors: Software Composition, Lecture Notes in Computer Science 5634,
Springer Berlin Heidelberg, pp. 72–89, doi:10.1007/978-3-642-02655-3 7.

[26] Cliff B. Jones (1999): Scientific Decisions which Characterize VDM. In J.M. Wing, J.C.P. Woodcock &
J. Davies, editors: FM’99 - Formal Methods, Springer-Verlag, pp. 28–47, doi:10.1007/3-540-48119-2 2.
Lecture Notes in Computer Science 1708.

[27] Peter W. V. Jørgensen, Luı́s D. Couto & Morten Larsen (2014): A Code Generation Platform for VDM. In:
The Overture 2014 workshop.

115

Luı́s Diogo Couto et. al. 13

[28] Leslie Lamport (2002): Specifying Systems, The TLA+ Language and Tools for Hardware and Software En-
gineers. Addison-Wesley. Available at http://research.microsoft.com/users/lamport/tla/book.
html.

[29] P. G. Larsen, B. S. Hansen et al. (1996): Information technology – Programming languages, their environ-
ments and system software interfaces – Vienna Development Method – Specification Language – Part 1: Base
language. International Standard ISO/IEC 13817-1.

[30] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl & Marcel Verhoef
(2010): The Overture Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), pp. 1–6,
doi:10.1145/1668862.1668864.

[31] Peter Gorm Larsen, Kenneth Lausdahl & Nick Battle (2010): Combinatorial Testing for VDM. In: Proceed-
ings of the 2010 8th IEEE International Conference on Software Engineering and Formal Methods, SEFM
’10, IEEE Computer Society, Washington, DC, USA, pp. 278–285, doi:10.1109/SEFM.2010.32. ISBN 978-
0-7695-4153-2.

[32] Kenneth Lausdahl, Hiroshi Ishikawa & Peter Gorm Larsen (2015): Interpreting Implicit VDM Specifications
using ProB. In: Proceedings of the 12th Overture Workshop, Technical Report Series CS-TR-1446, Comput-
ing Science, Newcastle University, pp. 1–15. Available at http://www.cs.ncl.ac.uk/publications/
trs/papers/1446.pdf.

[33] Kenneth Lausdahl, Peter Gorm Larsen & Nick Battle (2011): A Deterministic Interpreter Simulating A Dis-
tributed real time system using VDM. In Shengchao Qin & Zongyan Qiu, editors: Proceedings of the 13th
international conference on Formal methods and software engineering, Lecture Notes in Computer Science
6991, Springer-Verlag, Berlin, Heidelberg, pp. 179–194, doi:10.1007/978-3-642-24559-6 14. Available at
http://dl.acm.org/citation.cfm?id=2075089.2075107. ISBN 978-3-642-24558-9.

[34] Michael Leuschel & Michael Butler (2003): ProB: A model checker for B. In: FME 2003: Formal Methods,
Springer, pp. 855–874, doi:10.1007/978-3-540-45236-2 46.

[35] Michael Leuschel & Michael Butler (2005): Automatic refinement checking for B. In: Formal Methods and
Software Engineering, Springer, pp. 345–359, doi:10.1007/11576280 24.

[36] Paul Mukherjee, Fabien Bousquet, Jérôme Delabre, Stephen Paynter & Peter Gorm Larsen (2000): Exploring
Timing Properties Using VDM++ on an Industrial Application. In J.C. Bicarregui & J.S. Fitzgerald, editors:
Proceedings of the Second VDM Workshop. Available at www.vdmportal.org.

[37] Tobias Nipkow, Lawrence C Paulson & Markus Wenzel (2002): Isabelle/HOL: a proof assistant for higher-
order logic. 2283, Springer Science & Business Media, doi:10.1007/3-540-45949-9.

[38] Terence Parr (2007): The Definitive ANTLR Reference: Building Domain-Specific Languages. Pragmatic
Bookshelf.

[39] Lawrence C. Paulson (2010): Three Years of Experience with Sledgehammer, a Practical Link between Au-
tomatic and Interactive Theorem Provers. In Renate A. Schmidt, Stephan Schulz & Boris Konev, editors:
Proceedings of the 2nd Workshop on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh,
Scotland, UK, July 14, 2010, EPiC Series 9, pp. 1–10.

[40] Jan Peleska, Elena Vorobev & Florian Lapschies (2011): Automated Test Case Generation with SMT-Solving
and Abstract Interpretation. In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann & Rajeev Joshi,
editors: Nasa Formal Methods, Third International Symposium, NFM 2011, NASA, Springer LNCS 6617,
Pasadena, CA, USA, pp. 298–312, doi:10.1007/978-3-642-20398-5 22.

[41] (2015): The TLA Toolbox. http://research.microsoft.com/en-us/um/people/lamport/tla/

toolbox.html.

[42] Marcel Verhoef (2009): Modeling and Validating Distributed Embedded Real-Time Control Systems. Ph.D.
thesis, Radboud University Nijmegen.

[43] Marcel Verhoef, Peter Gorm Larsen & Jozef Hooman (2006): Modeling and Validating Distributed Em-
bedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias Nipkow & Emil Sekerinski, editors:

116 11 Towards Enabling Overture as a Platform for Formal Notation IDEs

14 The Overture Platform IDE

FM 2006: Formal Methods, Lecture Notes in Computer Science 4085, Springer-Verlag, pp. 147–162,
doi:10.1007/11813040 11.

[44] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa & S. Perry (2012): Features of CML: a
Formal Modelling Language for Systems of Systems. In: Proceedings of the 7th International Conference on
System of System Engineering, IEEE, doi:10.1109/SYSoSE.2012.6384144.

[45] Xtext (2015): Xtext. Available at https://eclipse.org/Xtext/.

117

12
Principles for Reuse in Formal Language Tools

The paper in this chapter has been accepted as a peer-reviewed conference
paper.

[P28] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Kenneth Laus-
dahl. Principles for Reuse in Formal Language Tools. 31st ACM
Symposium on Applied Computing (SAC 2016), April 2016.

The content of this chapter has been excluded due to copyright restrictions.
The paper can be obtained though the respective publisher.

119

13
LPF-Aware Proof Obligation Generation in

VDM/Overture

The paper in this chapter is planned for submission to a peer-reviewed con-
ference.

[P21] Luı́s Diogo Couto, Nick Battle and Peter Gorm Larsen. LPF-Aware
Proof Obligation Generation in VDM/Overture. To be submitted to
the 5th International ABZ Conference (ABZ 2016), May 2016.

121

LPF-Aware Proof Obligation Generation in
VDM/Overture

Luís Diogo Couto1, Nick Battle2, and Peter Gorm Larsen1

1 Aarhus University, Department of Engineering
{ldc,pgl}@eng.au.dk

2 Fujitsu UK
nick.battle@uk.fujitsu.com

Abstract. For specification languages such as VDM, the presence of union types
and invariants makes type-checking statically undecidable and thus insufficient to
ensure consistency of specifications. VDM uses a 3-valued logic and undefined-
ness is dealt with by automatically generating Proof Obligations (POs) that, once
discharged, ensure internal consistency of a specification, i.e. undefined values
do not occur. The Overture/VDM tool has a Proof Obligation Generator (POG)
but until now it has used McCarthy’s 3-valued logic. This follows the left to right
evaluation approach used by most programming languages. However, standard
VDM uses the Logic of Partial Functions (LPF) with commutativity for logic
operators that is convenient for carrying out proofs. This paper investigates the
possibility of extending the existing Overture POG so that it generates POs that
ensure consistency of the model under LPF. The work presented here should also
be applicable to other formal methods that include McCarthy style generation of
POs.
Keywords: VDM, LPF, Proof obligations, logics, tool support

1 Introduction

Dealing with undefined values in the analysis of formal specifications has been an ac-
tive area of research for many years, with different semantic approaches [1]. For most
computer-based languages the expressiveness of the language makes it impossible for
static type checking to determine whether all terms are defined. In order to ensure that
terms denote it is possible to automatically generate Proof Obligations (POs) that, if
dischargeable, guarantee this. In this paper the difference in POs generated due to dif-
ferent three-valued semantic models (McCarthy [2] versus Kleene [3]) is explored using
VDM.

Proof Obligation Generators (POGs) [4,5] have been developed for both major
VDM tools: VDMTools [6] and Overture [7]. These POGs use the left-to-right Mc-
Carthy logic, the same as the interpreters for the executable subsets of VDM [8,9]. How-
ever, the formal semantics of VDM [10] uses Logic of Partial Functions (LPF) [11,12,13]
which is based on the Kleene semantics with commutativity for logic operators. From
a proof perspective this introduces a disconnect between the model and the obliga-
tions being discharged since the semantics of the two are not identical. Therefore, it

122 13 LPF-Aware Proof Obligation Generation in VDM/Overture

is worthwhile considering whether it is possible to provide an option for the POG to
accommodate LPF semantics.

Many other formal methods also have the notion of proof obligations although some
of them give them different names. For example in the Prototype Verification System
(PVS) they call them Type-Correctness Conditions (TCCs) [14]. Here definedness pred-
icates are also used as guards in exactly the same way as is done for the existing Over-
ture POG using the McCarthy logic. Another example is Event-B where proof obliga-
tions are primarily used to verify properties of a model [15].

In this paper we use VDM both for the object level and for the meta level languages.
The object language will be used to present examples and sources of undefinedness.
The meta-language applies to objects and will describe definedness conditions and be-
haviour of the POG. so in order to distinguish them we use the mathematical VDM syn-
tax –∀x : Tx · P(x)– for the meta-level and the ASCII syntax –forall x : T(x)
& P(x)– for the object-level3.

The next section provides the basic background information about three-valued log-
ics to enable the reader to understand the rest of the paper. Afterwards, Section 3 in-
troduces examples of POs for both logical approaches. The main contributions of this
paper are discussed in Section 4, where we explore the new option for generating POs
using the LPF approach that has been implemented in the Overture POG as a prototype.
Afterwards Section 5 presents future work which could take the results from this paper
further. Finally, Section 6 provides concluding remarks.

2 Three-Valued Logics

Partial operators such as division exist in most computer-based languages. For all partial
operators it is possible to write a definedness predicate that will ensure safe use of the
operator. If for example x is used as a divisor that definedness predicate is “x <> 0”
whereas if we lookup the n’th element in a sequence list by writing “list(n)” the
definedness predicate would be “n in set inds list” to ensure that n is a valid
index in the sequence.

McCarthy logic evaluates expressions from left-to-right and if the value of a logi-
cal expression can be determined by a subexpression, the evaluation of the remaining
subexpression(s) is not carried out. This kind of short-circuiting strategy is used in most
programming languages and also in the current versions of the VDM interpreters. This
means that users need to “guard” the use of partial operators by writing a “guarding
expression” on the left-hand-side. Thus if one used for example division by a variable
“x” then one would write “x <> 0 and ...” to guard it. From a user perspective
this can be useful, but for proving properties about specifications it would be simpler if
there was more symmetry in the evaluation of logical operators. This is symmetry is not
present in McCarthy logic and that can be seen for example from the truth table com-
paring McCarthy logic and LPF for disjunction (where ⊥ indicates undefined), shown
in Table 1:

3 Note that T(x) and Tx indicate the type information of x and x , including invariant restric-
tions, in the object and meta-level languages respectively.

123

A B A or B (McCarthy) A or B (Kleene)
true true true true
true false true true
true ⊥ true true
false true true true
false false false false
false ⊥ ⊥ ⊥
⊥ true ⊥ true
⊥ false ⊥ ⊥
⊥ ⊥ ⊥ ⊥

Table 1: Truth table for OR operator in McCarthy and Kleene logics

where the row highlighted in grey shows where LPF differs from McCarthy logic. Sim-
ilar differences can be seen in the truth tables for the other logic operators and their
quantified generalisations. It is natural to expect that fewer proof obligations would be
generated if one uses LPF but it is also clear that the nature of POs generated will be
different. We explore these issues further in the rest of this paper.

3 Proof Obligations in McCarthy and Kleene Logics

The current Overture POG generates POs that guard against inconsistency in a VDM
specification. It does so by constructing a series of definedness predicates (in the form of
VDM boolean expressions) that ensure undefined values do not occur and thus ensuring
the consistency of the specification.

The POG generates various different kinds of obligation, each of which checks for
a particular kind of inconsistency. Fundamentally, a PO will consist of the definedness
predicate that guards against that particular inconsistency and the necessary scoping
information (such as quantification of variables) to allow the predicate to be discharged.

This PO-driven approach has several benefits, particularly from a user’s perspective
as parallels can be established between POs and “potential problems” in a specification.
As such, POs can be used as a quick check of the potential inconsistencies present in
a specification. Further, manual inspection of POs may yield useful insights into the
specification and guide the user’s work on it.

However, because the POG is driven by POs, care must be taken to ensure that the
obligations properly cover all possible inconsistencies. To achieve this, one must go
through all VDM elements and identify all possible sources of inconsistency. Typically,
a source of inconsistency corresponds to a possibly undefined value in a VDM element.
These sources of inconsistency are then related to a definedness predicate. Given a
possibly undefined element E , we utilize the notation δ(E)[16] as a meta-operator to
refer to the predicate that ensures the definedness of E . The compilation of a reference
document for all undefined elements is ongoing in Overture and an example of it can
be seen in Figure 1.

124 13 LPF-Aware Proof Obligation Generation in VDM/Overture

Division by Zero
Description: Division is undefined for divisors of value 0. A PO must guard

against this by forcing the divisor to be different from 0.
Occurrences: Any VDM expression representing a division: either x / y

or x div y, no matter where it occurs.
Definedness: δ(e/x) ⇐⇒ x <> 0

Fig. 1: Inconsistency Reference for Division by Zero

It should be noted that some elements of VDM are undefined under similar circum-
stances. For example, the hd (head) and tl (tail) sequence operators are both undefined
for empty sequences. Because multiple inconsistencies can arise from the same kind of
source, they can be guarded against with the same kind of obligation and definedness
predicate.

This PO-driven approach also influences reasoning about the POG itself, which
is frequently done in terms of missing obligations, incorrect obligations and so forth.
While this can be an intuitive way of reasoning, one must be careful to ensure that all
relevant aspects of PO generation are considered, particularly the coverage of inconsis-
tency sources.

As stated in Section 1, the current version of the Overture POG (henceforth referred
to as the McCarthy POG) is implemented according to McCarthy’s 3-valued logic [2]
because the interpreter also uses that logic and the POG is used, in part, to protect
against interpretation errors in specification execution.

Due to its choice of logic, the McCarthy POG must address each inconsistency
source independently. So, for each source of inconsistency, a distinct PO will be gener-
ated. For example, the VDM function shown in Listing 1, taken from [17], yields two
separate POs, as shown in Listing 2.

Listing 1: A VDM function with two sources of inconsistency.�
f: int -> bool
f(x) == x/x = 1 or (x+1)/(x+1) = 1
� �

Listing 2: Two non-zero proof obligtations.�
PO1: (forall x:int &

x <> 0)

PO2: (forall x:int &
(not ((x / x) = 1) =>
(x + 1) <> 0))
� �

The reasoning behind the first PO is clear. An occurrence of division by x introduces
a possibly undefined value that must be guarded against. PO2 is similar but there is an
important distinction: the first part of the implication, which corresponds to the negated
left hand side of the body of f. In essence, PO2 is only relevant if the first part of

125

the disjunction in the body of f is false because otherwise the right side will not be
evaluated. When generating PO2, the POG takes into account the McCarthy-style left-
to-right evaluation of the expression. It is also worth noting that both POs have the
same kind of definedness predicate (x <> 0), which is natural since they both protect
against the same kind of inconsistency (division by zero).

Neither PO in Listing 2 can be discharged. For example, for PO1 it is not possible
to prove that an arbitrary integer is different from zero. The only way to discharge
these POs would be to expand the specification with guards such as the ones shown
in Listing 3. This would be obfuscating the specification with additional checks that
are unrelated to the behavior and properties of the specification but simply help ensure
run-time consistency.

Listing 3: A VDM function with guards on its sources of inconsistency.�
f_guards: int -> bool
f_guards(x) ==
(x <> 0 => x/x =1) or (x+1 <> 0 => (x+1)/(x+1) = 1)
� �
The function in Listing 3 would indeed yield POs that can be discharged but a cost

has been paid in the form of the guard conditions. Thus, it could be interesting if one
can avoid such guards. Particularly if the only reason for their existence is the current
choice of logic, but still be able to generate POs that can be successfully discharged.
The way to achieve this is by utilizing the LPF logic.

The primary difference between the LPF and McCarthy lies in operators that com-
bine logical expressions. In McCarthy logic, expressions are evaluated left to right with
short-circuiting and that affects the undefinedness of composite logical expressions. It
is for this reason that the McCarthy POG must take a stepwise approach. Each subex-
pression must be processed individually and each source of undefinedness must be ad-
dressed by itself with a dedicated PO that protects against it. The connection between
subexpressions in a composite expression is then handled with contexts that restrict the
variables of the subsequent POs (note again how this connects with left to right evalua-
tion).

To continue our illustration, consider once again the function in Listing 1. In the
McCarthy POG, this yielded two obligations (see Listing 2), even though it contains a a
single expression. However, if the function is analyzed with the LPF POG, a single PO
would be produced, as shown in Listing 4.

Listing 4: LPF proof obligation.�
(forall x:int &

((((x / x) = 1)
or (((x+1) / (x+1)) = 1))
or ((x <> 0) and ((x+1) <> 0))))
� �

For LPF, there is only one obligation that is somewhat more complex than either of
the two McCarthy POs and that can be discharged. This is because, in the LPF POG,
the definedness predicate is generated for the entire disjunction rather than simply for
each division by zero subexpression. This is the main advantage of LPF: there are more

126 13 LPF-Aware Proof Obligation Generation in VDM/Overture

sophisticated ways to specify definedness and the ability to do so for more elements
of VDM. In the case of simple expressions (such as a single x/x expression) the LPF
POG behaves in the same manner as the McCarthy POG. However, for composite logic
expressions, the truth tables for each operator can be used to enforce the definedness of
the entire expression.

An LPF definedness predicate is shown in the PO in Listing 4. In LPF, a disjunc-
tion is defined if either of its operands is true or if both are defined. Therefore, the
definedness predicate must enforce that. The sub-predicate x<>0 and (x+1)<>0
has an obvious mapping to the 2 McCarthy obligations shown in Listing 2 but the other
clauses are new.

It is worth noting that, in a McCarthy setting, the evaluation of the PO shown in
Listing 4 could be problematic as it may involve undefined calculations. The solution is
to discharge these LPF obligations with a proof tool that also supports LPF. Regardless,
the result of the LPF POG is a PO that can potentially be discharged without the need
for guards. However, to further reinforce this point, imagine now that the function is
altered in the manner shown in Listing 5.

Listing 5: A VDM function with one source of inconsistency.�
functions
f : int -> bool
f (x) == 1/x = 1 or true
� �

Now there is only one source of inconsistency and the McCarthy POG generates
just one obligation, shown in Listing 6 but the same problem as before remains: the
obligation cannot be discharged.

Listing 6: Non-zero proof obligation for revised function.�
(forall x:int & x <> 0)
� �

However, the LPF POG has a more interesting output, shown in Listing 7. It is not
possible to prove x<>0, but true can certainly (and trivially) be proven.

Listing 7: LPF Proof Obligation for revised function.�
(forall x:int &

(((((1 / x) = 1))
or (true))
or (x <> 0)))
� �

The example function in Listing 5 is certainly artificial but it illustrates the larger
point: LPF has more sophisticated ways of dealing with undefinedness. If that sophis-
tication is properly leveraged, it is possible to generate dischargeable obligations in
situations where otherwise it would not be.

4 Generating Proof Obligations

The difference between the LPF and McCarthy approaches lies in the POG execution
for composite expressions. In particular, the approaches differ in how they process con-

127

texts. Thus, the notion of contexts needs a careful examination. Most VDM elements
have the potential to be extracted as contextual information. In essence, context infor-
mation is used by the POG to incorporate any restrictions on values present at any given
point in the specification, i.e. what context an expression shall be considered in. For ex-
ample, when analyzing the else clause of an if then else expression, the context
information will tell the POG that the test condition for the if expression is false.

As the POG traverses a VDM specification, contextual information is collected as
necessary. Then, once an inconsistency is found, any relevant contextual information is
combined with the definedness predicate. In the example above, the left-hand-side of
the disjunction was extracted as contextual information and when a PO was generated
for the right-hand-side, the context was prepended to the definedness predicate, as an
implication.

A VDM element may be a source of both context and inconsistency so the flow of
execution for the POG is to analyze an element, generate any relevant obligations and
afterwards, add the element to the context, if appropriate.

In addition to being used to constrain the values of variables, contexts are used
for another purpose: construction of scoping information. When the POG encounters a
source of inconsistency, it is only aware of that particular VDM element so the actual
PO that is produced at that point will simply be the definedness predicate guarding
against the inconsistency (for example x <> 0). However, in order for the predicate
to be valid and dischargeable, its variables must be quantified and contexts are used
for this. Whenever the POG encounters an element that introduces variables (such as
in a function declaration), context information is extracted to quantify the introduced
variables in any subsequent obligations variables (for example, in the case of a function
declaration this takes the form of a universal quantification over the arguments of the
function and their respective types).

When the inconsistency source is encountered and the definedness predicate ex-
tracted, the context information will be prepended to the predicate to form the final PO.
So given a definedness predicate δ(x), and contextual information of the form ∀x :Tx ·,
the final PO will be ∀x :Tx · δ(x). Note that the capture of variables is intentional as it
gives meaning to the final PO and ensures that it is dischargeable

In order to ensure that context generation is correct in Overture, a reference for con-
texts is maintained, similar to the work carried out for inconsistencies. This reference
relates every VDM element with any restricting or scoping contexts it extracts [18].
An example of such a reference is shown in Figure 2. Note that handling of context
extraction at top-level (e.g. for functions) is exactly the same for McCarthy and LPF
POGs.

4.1 LPF Extension

In this section, we present the main contribution of our work: generation of VDM POs
in an LPF context and how this changes the behavior of the POG compared to the
McCarthy version. The fundamental change in the generation of LPF POs lies in how
composite boolean expressions are manipulated. This means that the behavior of the
POG must be altered when it is applied to elements such as:

128 13 LPF-Aware Proof Obligation Generation in VDM/Overture

Explicit Function Definitions
Description: Function parameters (and return values) must be introduced in the con-

text in order for any POs resulting from the function body to be valid.
Type: Scoping
Forms to prepend:

– For parameters x1, x2, . . . “forall x1:T(x1), x2:T(x2) ... &”
should be prepended to the definedness predicate.

– If the function has a return value that is referred to in the post condition, then
“exists r : T(r) &”, where r stands for the result value, should also
be prepended.

Fig. 2: Context Reference for Explicit Function Definition

– and binary expressions
– or binary expressions
– => binary expressions
– forall quantified expressions
– exists quantified expressions
– if then else and cases expressions

For any composite expression, the McCarthy version of the POG will process the
left subexpression, then generate any relevant context information, and use it while
processing the right subexpression. This flow of execution maps directly onto the left
to right stepwise evaluation of expressions and is shown below for the function4 that
processes disjunctions:

PogMcCarthy_OR : Exp × Ctxt → PO -set

PogMcCarthy_OR (mk_ (l ,OR, r), c) 4
let newc = MakeImpliesCtxt (l , c),

lpos = PogMcCarthy (l , c) in
lpos ∪ PogMcCarthy (r ,newc);

MakeImpliesCtxt : Exp × Ctxt → Exp

MakeImpliesCtxt (e, c) 4
let imp = mk_ (e, IMP,NIL),

mk_ (ce, op,NIL) = c in
mk_ (ce, op, imp);

The treatment of individual expressions and generation of definedness predicates
(the pogUnaryExp function) does not change as the sources of inconsistency remain

4 The PogMcCarthy function simply dispatches the input to the appropriate sub-function.

129

the same. The difference lies in the treatment of composite expressions. When a com-
posite expression is analysed, the LPF POG will construct a definedness predicate for
the entire expression rather than processing it in a stepwise fashion. Because of this,
subexpressions are never added to the context in the LPF POG They are instead anal-
ysed and any relevant definedness predicates are produced. This can be seen below (note
that absence of context generation at the expression level):

PogLPF_OR : Exp × Ctxt→̃PO -set

PogLPF_OR (mk_ (l ,OR, r), c) 4
let popreds = PogLPF (l) ∪ PogLPF (r) in
if popreds 6= {}
then [MakeOrLPF (l , r , popreds, c)]
else {}

The actual generation of an LPF PO for any given operator is fairly straightforward.
In general, all operators follow the same pattern: either a subset of the subexpressions
has a specific truth value or all subexpressions must be defined. Therefore, one must
generate predicates that force whatever particular truth values are needed (these are
typically constant for each operator). One must also generate the definedness predicates
for all subexpressions and combine them, typically by means of a conjunction (the
chain function). The entire process of generating a PO is shown (for the or operator)
below5. Essentially this is the construction of the POs in a disjunctive normal form.

MakeOrLPF : Exp × Exp × PO -set× Ctxt→̃PO

MakeOrLPF (l , r , preds, c) 4
let lf = makeEquals (l , true),

rf = makeEquals (r , true),
alld = Chain (preds,AND) in

let orpo = mk_ (lf ,OR,mk_ (rf ,OR, alld)) in
AddScope (orpo, c);

Chain : Exp-set× BOP→̃Exp

Chain (s, op) 4
if card s = 1
then let e ∈ s in

e
else let e ∈ s in

mk_ (e, op,Chain (s \ {e}, op));

MakeEquals : Exp × Exp→̃Exp

MakeEquals (e1, e2) 4
mk_ (e1, EQUALS, e2);

5 The addScope function simply adds quantifiers over any variables introduced — the scoping
context functionality is retained.

130 13 LPF-Aware Proof Obligation Generation in VDM/Overture

4.2 Handling the Remaining Logical Operators

For the remaining logical operators in VDM, we will not go into as much detail as we
did for disjunction. However, in general, what has been presented in the previous sub-
section also applies to the remaining logic operators. These are shown in Table 2 along
with their respective definedness predicates. We omit any discussion of the negation
operator as it is the same in both versions of the POG since the definedness of negation
is identical in McCarthy and LPF.

logic expression LPF Definedness Predicate

δ(P and Q) ¬P ∨ ¬Q ∨ (δ(P) ∧ δ(Q))
δ(P or Q) P ∨Q ∨ (δ(P) ∧ δ(Q))
δ(P => Q) ¬P ∨Q ∨ (δ(P) ∧ δ(Q))
δ(forall x : T(x) & P(x)) (∃x : Tx · ¬P(x)) ∨ ∀x : Tx · δ(P(x))
δ(exists x : T(x) & P(x)) (∃x : Tx · P(x)) ∨ ∀x : Tx · δ(P(x))

Table 2: Logical expressions and their LPF definedness predicates.

The conjunction operator (and) is the dual of the disjunction operator (or) shown
before. So, whereas a disjunction holds if either of its members is true, a conjunction is
false if either of its operands is false. Extending this to LPF and considering the truth
tables, a disjunction is defined if either of its operands is false or if all of the operands
are defined. The definedness predicate for conjunction is shown in row 1 of Table 2.

The implication operator (=>), unlike disjunction and conjunction does not have an
absorbing element and therefore we cannot apply the LPF extension directly. However
an implication can be unfolded to a disjunctive normal term in the following manner:
P ⇒ Q ≡ ¬P ∨ Q . From there, it follows that the definedness predicate for the
implication operator is as shown in row 2 of Table 2.

The universal and existential quantifiers are generalizations of the conjunction and
disjunction operators respectively so the rules for handling them will also be general-
izations of rules for dealing with conjunction and disjunction. A universally quantified
expression will be defined if it is false for at least one of its values or if it is de-
fined for all values. We write its definedness predicate as shown in row 3 ofTable 2.
Conversely, the rule for existential quantifiers is an extension of the rule for disjunction
where just one of the expressions is true. Its definedness predicate is shown in row 4
of Table 2.

However, when dealing with quantified expressions there is another issue that must
be consider: that of the quantifier bindings themselves. Take, for example, the fol-
lowing predicate: forall x in set {y | y: int & y >0} & P(x). The
POG will generate an obligation to ensure that the binding set is finite since the se-
mantics of VDM does not allow infinite sets as values6. That is one of many possible

6 Please note that this finiteness restriction does not apply to the POs themselves. Only to values
in the specification so that it may be executed.

131

inconsistencies in the bindings of a predicate7. Due to this, for the McCarthy POG,
bindings are the first element of a quantified expression to be analyzed. Afterwards,
they are added to the context scope and the predicate of the quantified expression is
analyzed. When going from a McCarthy POG to an LPF-based one the handling of the
bindings is unchanged. In the semantics of VDM, a quantified expression is considered
undefined if its bindings are undefined [10].

We also consider the case of nested binary operators. In the McCarthy POG, these
are not particularly interesting as the operators (and their subexpressions) are simply
processed left to right. Any relevant POs are generated as normal and context informa-
tion (of the restricting kind) is generated and prepended to each definedness predicate
as necessary. This has the effect that, further to the “right” an inconsistency is, the more
complex the resulting PO shall be.

Nested operators are handled differently by the LPF POG. In LPF sub-expressions
are not treated separately. Thus for an expression with nested operators, a single PO
will still be generated. The difference lies in the definedness condition which will now
apply to more complex operands. As an example, for A and B and C the definedness
predicate will be ¬A ∨ ¬(B ∧C) ∨ δ(A) ∧ δ(B and C). Of course, δ(B and C) can
be unfolded to: ¬B ∨ ¬C ∨ δ(B) ∧ δ(C). In that sense, there is still a degree of left
to right processing taking place. However, this is only in the PO generation phase. At
the proof stage, the PO may be manipulated in such a way that, for example, proving
¬C is sufficient to discharge the whole PO. In a McCarthy setting, with multiple POs,
this simple proof would not be sufficient to discharge all of them. A direct comparison
between the multiple McCarthy POs and the single LPF8 PO can be seen in Table 3.

Expression A and B and C

δ(A)
McCarthy A => δ(B)

A => B => δ(C)

Kleene ¬A ∨ ¬(B ∧ C) ∨ δ(A) ∧ (¬B ∨ ¬C ∨ δ(B) ∧ δ(C))

Table 3: POG comparison for nested conjunctions.

4.3 Other Expressions

Finally, we consider non-logical operators such as the if then else. In general, the
definedness of such elements is independent from the logical semantics being used. The
definedness predicates for these expressions must be extracted directly from the VDM
semantics. In the case of if then else, we say that it is defined if the test condition
is defined and either the then or else clauses are defined [10], depending on the value

7 Since one can utilize most VDM elements when specifying the bindings for a predicate, most
kinds of inconsistencies can occur in bindings.

8 Kleene refers to the semantic treatment of LPF that is used in VDM.

132 13 LPF-Aware Proof Obligation Generation in VDM/Overture

of the test condition: δ(if A then B else C) ⇐⇒ δ(A)∧(A∧δ(B)∨¬A∧δ(C)).
This is the treatment given to if then else expressions by the McCarthy POG so
there is no change when moving to LPF. The cases expression is defined as a series
of if then else expressions so it is also unchanged. As for other VDM elements,
in general, if they are not defined in terms of logical operators, their treatment by the
POG remains unchanged. When handling terminination of recursive functions [5] the
POs are also the same in McCarth and LPF settings. Thus, the difference between the
two POGs is really only with respect to the logical expressions.

5 Future Work

As a part of the COMPASS project [19]9 the POG for the CML language (containing
both VDM and CSP elements) is being connected to the Isabelle theorem prover [20].
In the future we plan to examine the difference in proving the POs generated using Mc-
Carthy logic and the ones generated based on LPF logic by using this theorem prover.
We believe that this will be rather straigthforward as its semantics is defined in Unified
Theory of Programming (UTP) and both McCarthy and LPF logics have been incorpo-
rated already [21].

Another possibility is to use this work as the basis for exploring POs in VDM++
and the ways Kleene logic affects them. This becomes particularly challenging if one
also considers aspects of inheritance and concurrency present in VDM++.

The main follow-up to this work is to enable LPF support in the interpreter for
the executable subset of VDM. Since one of the primary uses of the POG is to ensure
that runtime errors do not occur when interpreting a specification, the interpreter must
utilize the same logic system as the POG. The work presented here is a good starting
point for such improvements as it identifies the main points in VDM where LPF and
McCarthy differ and what those differences are. When extending the interpreter to deal
with LPF, one would also need to concurrently evaluate the multiple possibilities of an
expression and then not report undefinedness errors until it is clear that none of them
will be sufficient to yield a defined value. If a defined value is found, then the remain-
ing possibilities must be discarded. This substantially increases the complexity of the
interpreter and, since we would still like it to be deterministic. A preliminary possibil-
ity would be to wait until all evaluations terminate and then resort to a predetermined
order when selecting which result to present. However, this approach may reduce the
performance of the interpreter and would not be feasible for dealing with quantifiers
over infinite sets.

6 Concluding Remarks

In this paper we have demonstrated that it requires fairly small adjustments to the Over-
ture VDM POG to change the logic supported from McCarthy to LPF. With LPF there
are “guarding expressions” which can be avoided as the example from Listing 1 demon-
strates. The main advantage of supporting LPF is clearly that it is more powerful to use

9 See also http://www.compass-research.eu/ for information about this project.

133

LPF in proofs. In general fewer POs are generated using LPF logic. However, some of
them are more complex and closer to the semantic definition of definedness in LPF. The
main drawback of using LPF for the POG is that the Overture interpreter is currently
not able to use LPF and thus that even though LPF PO generation and discharge ensures
the consistency of a specification, its interpretation may still yield runtime errors and
specification writers must be aware of this issue, particularly when executing elements
of a model that contain expressions that are handled differently in LPF. Also, LPF POs
are, in general, longer and more verbose than their McCarthy counterparts. In any case
we hope that the work presented here may be valuable input for others who have exist-
ing pogs about the relatively minor adjustments needed to be able explore other logics
supporting undefinedness.

Acknowledgments The work described in this paper is partially supported by the com-
mission of the European communities Project Comprehensive Modelling for Advanced
Systems of Systems (COMPASS, grant agreement 287829). The authors are grateful to
their many collaborators in the project. We would also like to thank Joey Coleman for
feedback on the work reported in this paper.

References

1. Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficzny (1920) 169–171 Translated
as (On three-valued logic) in Polish Logic 1920–39, S. McCall (ed.), Oxford U.P., 1967.

2. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In: Western Joint Com-
puter Conference. (1961) Then published in: Computer Programming and Formal Systems
(P.Braffort, D.Hirstberg eds.) North Holland 1967, 33–70.

3. Kleene, S.: Introduction to Mathematics. North Holland (1952) Republished in 1957, 59,
62, 64, 71.

4. Aichernig, B.K., Larsen, P.G.: A Proof Obligation Generator for VDM-SL. In Fitzgerald,
J.S., Jones, C.B., Lucas, P., eds.: FME’97: Industrial Applications and Strengthened Foun-
dations of Formal Methods (Proc. 4th Intl. Symposium of Formal Methods Europe, Graz,
Austria, September 1997). Volume 1313 of Lecture Notes in Computer Science., Springer-
Verlag (September 1997) 338–357 ISBN 3-540-63533-5.

5. Ribeiro, A., Larsen, P.G.: Proof Obligation Generation and Discharging for Recursive Def-
initions in VDM. In Song, J., Huibiao, eds.: The 12th International Conference on Formal
Engineering Methods (ICFEM 2010), Springer-Verlag (November 2010)

6. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal Model-
ing in VDM. ACM Sigplan Notices 43(2) (February 2008) 3–11

7. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1) (January 2010)
1–6

8. Larsen, P.G., Lassen, P.B.: An Executable Subset of Meta-IV with Loose Specification. In:
VDM ’91: Formal Software Development Methods, VDM Europe, Springer-Verlag (March
1991)

9. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating A Distributed
real time system using VDM. In Qin, S., Qiu, Z., eds.: Proceedings of the 13th international
conference on Formal methods and software engineering. Volume 6991 of Lecture Notes
in Computer Science., Berlin, Heidelberg, Springer-Verlag (October 2011) 179–194 ISBN
978-3-642-24558-9.

134 13 LPF-Aware Proof Obligation Generation in VDM/Overture

10. ISO: Information technology – Programming languages, their environments and system
software interfaces – Vienna Development Method – Specification Language – Part 1: Base
language (December 1996)

11. Cheng, J.: A Logic for Partial Functions. PhD thesis, Department of Computer Science,
University of Manchester (1986) UMCS-86-7-1.

12. Jones, C.B., Middelburg, K.: A typed logic of partial functions reconstructed classically.
Technical Report 89, Department of Philosophy, Utrecht University (April 1993)

13. Fitzgerald, J.S., Jones, C.B.: The connection between two ways of reasoning about partial
functions. Inf. Process. Lett. 107(3-4) (July 2008) 128–132

14. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In Kapur,
D., ed.: 11th International Conference on Automated Deduction (CADE). Volume 607 of
Lecture Notes in Artificial Intelligence., Saratoga, NY, Springer-Verlag (June 1992) 748–
752

15. Hallerstede, S.: On the purpose of event-b proof obligations. Formal Aspects of Computing
23(1) (2011) 133–150

16. Jones, C.: Systematic Software Development Using VDM. Prentice-Hall (1986)
17. Jones, C., Lovert, M., Steggles, J.: A Semantic Analysis of Logics That Cope with Partial

Terms. In Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Ric-
cobene, E., eds.: Abstract State Machines, Alloy, B, VDM, and Z. Volume 7316 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2012) 252–265

18. Couto, L.D., Larsen, P.G., Battle, N.: Overture Proof Obligations Reference Guide (in prepa-
ration). Technical Report TR-008, The Overture Project, www.overturetool.org

19. Fitzgerald, J., Larsen, P.G., Woodcock, J.: Modelling and Analysis Technology for Systems
of Systems Engineering: Research Challenges. In: INCOSE, Rome, Italy (July 2012)

20. Foster, S., Woodcock, J.: Unifying Theories of Programming in Isabelle. In Liu, Z., Wood-
cock, J., Zhu, H., eds.: Unifying Theories of Programming and Formal Engineering Meth-
ods, International Training School on Software Engineering, Held at ICTAC 2013, Shanghai,
China, 26–30 August, 2013, Advanced Lectures. Volume 8050 of Lecture Notes in Computer
Science., Springer (2013) 109–155

21. Bandur, V., Woodcock, J.: Unifying theories of logic and specification. In Iyoda, J.,
de Moura, L.M., eds.: Formal Methods: Foundations and Applications, 16th Brazilian Sym-
posium, SBMF 2013, Brasilia, Brazil, 29 September–4 October, 2013, Proceedings. Volume
8195 of Lecture Notes in Computer Science., Springer (2013) 18–33

135

14
Combining Harvesting Operation Optimisations

using Strategy-based Simulation

The paper in this chapter is planned for submission to a peer-reviewed jour-
nal.

[P27] Luı́s Diogo Couto, Peter W. V. Tran-Jørgensen and Gareth Ed-
wards. Combining Harvesting Operation Optimisations using
Strategy-based Simulation. To be submitted to the International
Journal of Computers and Electronics in Agriculture, 2016.

137

Combining Harvesting Operation Optimisations using

Strategy-based Simulation

Luis Diogo Couto1, Peter W. V. Tran-Jørgensen1, and Gareth T. C. Edwards2

1Aarhus University, Department of Engineering , {ldc,pvj}@eng.au.dk
2Kongskilde , gtce@kongskilde.com

October 15, 2015

Abstract

Modelling and simulation can help with decision sup-
port or planning activities by allowing efficient explo-
ration of multiple scenarios in a situation where test-
ing in a real setting is impractical. This exploration
is normally done by varying numerical parameters in
the model such as physical dimensions or speed in
order to find the optimal configuration. When calcu-
lating optimised routes for harvesters and other ve-
hicles in a harvest operation, the choice optimisation
algorithm is an important part of the problem, but
traditional modelling and simulation techniques do
not allow us to vary the algorithm across simulations
as easily. In this paper the strategy pattern from
the field of software engineering is used to address
this problem. The strategy pattern allows experi-
ments with different combinations of planning algo-
rithms to be analysed effectively. This approach can
be adopted in other planning activities where multi-
ple algorithms need to be considered.

Keywords: Harvesting Operation; Optimisation;
Strategy Pattern; Design patterns; Vienna Develop-
ment Method; Modelling; Simulation

1 Introduction

There are various steps to calculating optimised so-
lutions for harvest operations, including partitioning

of the field and calculating optimised coverage plans
for harvesters and route plans for other vehicles. One
approach to the problem often involves the use of var-
ious optimisation algorithms that produce coverage
plans for the harvesters [16, 3]. However, planning
of harvester routes is just one part of the harvest-
ing operation. Path planning for wagons (or other
similar) that service the harvesters must often also
be developed. Algorithms exist for optimising ser-
vice plans [10]but they are independent from those
of harvesters. This independence makes it difficult
to explore in detail how the various types of algo-
rithms interact and combine to produce a complete
solution for the harvest operation.

As an example, little research has previously been
conducted into how harvesting and loading algo-
rithms can affect operational execution times of har-
vesting operations. Examples of planning tools for
operations often employ a single algorithm; such as
in-field unloading [14] or single point unloading [4].
Farmers will generally choose a plan with which they
are familiar without considering alternatives.

In this paper, we seek to explore how different
optimization algorithms can be combined. We will
explore this using a model based on mathematical
formalisms in combination with the strategy pattern
from software engineering. The strategy pattern is
used in the model to encode different optimization
algorithms. A novel aspect here is that the strategies
representing the different kinds of algorithms (har-

1

138 14 Combining Harvesting Operation Optimisations using Strategy-based Simulation

vest routing and wagon path planning) co-exist and
collaborate to produce the final solution.

1.1 Background

From an operational research perspective, the harvest
operation is an example of an output material flow
(OMF) operation where material is removed from the
field and transported to another location [1]. The
machinery utilised within the OMF operation can be
divided into two groups; Primary Units (PUs) which
perform the main task i.e. harvesting the crop, and
Service Units (SUs) which service the PUs by receiv-
ing harvested material and transporting it away. The
capacity of the PU is many times smaller than the ex-
pected yield of the field, and therefore a PU unloads
either to a nearby SU or directly or to an out of field
storage point.

The planning of the tasks of the PUs and SUs are
often considered separately [9], with coverage plans
being developed for PUs [16, 3] and path plans being
developed for SUs [10]. However, the tasks are spa-
tially and temporally dependant on one another, so
in order for efficient plans to be produced the plans
must be developed concurrently [15].

To assist with the planning of in-field operations,
fields can be decomposed in to a number of tracks
or rows. Many methods have been proposed for the
decomposition of fields [14, 11, 18, 8]. Fields are typ-
ically divided into headlands which encircle the field
and can be used for turning and working rows which
transect the main area of the field. By confining all
field traffic to drive along these predefined rows, the
trafficked area of the field can be limited which has
been shown to produce benefits on increased yield
and better soil structure [17].

In the above mentioned approaches, the planning
for the various kinds of vehicles is performend indep-
dently as well the decomposition of the field. In our
work, we consider all vehicles simultaneously when
planning, although field decomposition is still done
separately.

A different approach to optimisation was carried
out in a EU project called DESTECS, using VDM
to perform design space exploration by sweeping pa-
rameters of models of cyber-physical systems [6].

Among other things, the DESTECS project pro-
poses methodological guidelines for modelling fault-
tolerant cyber-physical systems, which also involve
the use of the strategy pattern to model faulty be-
haviour as well guarding against it [2]. This is sim-
ilar to the presented approach, in that the strategy
pattern is used in the DESTECS project to explore
different behaviours of a system. However, while the
DESTECS project used the strategy pattern to make
a system more fault-tolerant, in this work the strat-
egy pattern is used to help find optimised solutions
to use in a harvest operation.

The strategy pattern is a design pattern [7] with
two key features. First, the strategy pattern allows
selection of different algorithms to be done at exe-
cution time and; secondly, it defines a family of in-
terchangeable algorithms. Essentially this allows one
to execute the same functionality in different ways.
Broadly speaking, the strategy pattern consists of
a contract that defines the functions of a strategy
in terms of their inputs and outputs including the
properties that these functions may have. Given this
contract, a specific strategy must provide an imple-
mentation of the function that obeys the input and
output properties of the contract, but which is free
to use whatever algorithms are desired.

The strategy pattern is based on object-oriented
(OO) features [13], as enabled by the VDM++ formal
modelling language [5]. VDM++ is the OO dialect
of the Vienna Development Method (VDM). VDM
is one longest-established formal methods for the de-
velopment of computer-based systems. The method
focuses on the development and analysis of a sys-
tem model expressed in a formal language. Broadly
speaking, a VDM++ model consists of a series of def-
initions for types, functions, operations, etc. The OO
features of VDM++ allow for structuring the model
into classes and provide standard OO mechanisms
such as inheritance.

In addition to allowing for an effective implemen-
tation of the strategy pattern, the object-oriented
features of VDM++ have other useful benefits, in-
cluding the ability to add new versions of a strategy
that reuse parts of an existing strategy by changing
only those parts that must be different. Addition-
ally, object-orientation facilitates modularity and en-

2

139

capsulation which, while not essential to develop the
model, make it easier to do so.

The use of VDM++ promotes a high-level ap-
proach that abstracts away details that are of little
importance to harvesting operations. The formal se-
mantics underpinning the VDM language allow us to
have confidence in the results and that there are no
errors in the language and tool that can “contam-
inate” the result. Additionally, VDM has features
that enable us to describe the properties of the model
and its functions, and these properties are constantly
checked during model execution. For example, in the
model the capacity is expressed as a floating point
number, which must always be positive and smaller
than 1. VDM invariants allow us to attach such a
property to the capacity variable in order to ensure
that the model never violates this. While it is a sim-
ple example, VDM allows us to express any arbitrary
property that can be described in terms of first-order
logic.

1.2 Paper structure

The remainder of this paper is structured as follows:
in section 2 we present the approach taken in our
work: an executable formal model of the harvest
operation based on the strategy pattern. Following
that, in section 3, we report the results of applying
the model to a case study of a real field. The re-
sults are then discussed in section 4. We conclude
the paper in section 5.

2 Materials and Methods

2.1 Formal Model

The model was developed according to the structure
shown in Figure 1.1 The Execution Engine is respon-
sible for coordinating the simulation and is connected
to both the State and the three Strategy classes. The
State contains the physical entities involved in the
harvest operation. The harvesters are the PUs of the

1The complete formal model is available in the appendix
and can be explored with the Overture tool, available from
http://overturetool.org/.

operation. Coverage plans and coordinated service
points are developed for the harvesters by the em-
ployed strategies. The SUs are tractors with grain
wagons whose main objective within the harvest op-
eration is to convey material from the harvesters to
the out-of-field storage. The service points coordi-
nate when and where the SUs must meet the PUs in
order for material to be passed between the two.

Figure 1: Model structure realised as a UML class
diagram.

Both the harvesters and the grain wagons are
modelled by their physical parameters such as their
working/non-working speed, storage capacity and
material offload rate. These parameters are speci-
fied in the initialisation of the model. The storage
point is the out-of-field storage point where all ma-
terial from the field must be transported to in order
for the harvest operation to be completed. This too
is modelled by using its capacity.

The strategy classes define how certain aspects of
the harvest operation are executed. In Figure 1 these
strategies are represented by the Route Strategy, De-
conflict Strategy and Load Strategy classes, respec-
tively.

2.1.1 Route strategy:

A route strategy is responsible for constructing the
routes for harvesters. The routes direct the harvester
from its location to a point where it will next require
a service. A similar approach to the planning of route
for harvester was also utilised in [14]. In this way the
routes for multiple harvesters can be constructed in
a consecutive manner.

As already stated the construction of routes for the
harvester and grain wagon are dependent on one an-

3

140 14 Combining Harvesting Operation Optimisations using Strategy-based Simulation

other, therefore the route strategy must call functions
from the loading strategy to ensure that the harvester
is able to be serviced at the end of the route. The
route strategies are allowed to produce more than
one possible route for the harvester, these are later
distinguished by the load strategy as appropriate.

Two route strategies have been implemented
within the model: Predefined Route strategy and
Greedy Route strategy.

The Predefined Route strategy enables the model
to execute coverage plans that have been developed
externally, provided they are represented as a se-
quence of rows to harvest. This strategy receives the
assignment of a sequence of rows to a harvester as
an input. A route is constructed which navigates the
harvester along the sequence of rows, inserting service
points where they are needed.

The Greedy Route strategy employees a search al-
gorithm on the field to create a short route for the
harvester which will end with the harvester being as
full as possible and in a position where it can be ser-
viced. An extra constraint is also implemented with
the strategy that every row must be harvested in its
entirety and that all headland rows must be harvested
before work rows can be harvested.

2.1.2 Deconflict strategy:

A deconflict strategy is responsible for determining
if a vehicle can move along its route, or calculating
new routes if this is not possible. In the Simple De-
conflict strategy a vehicle to reroute is chosen non-
deterministically.

A deconflict strategy is responsible for the infield
coordination of the vehicles. It is possible that con-
flicts can arise when a vehicle may block the path of
another vehicle. In this case the deconflict strategy is
employed to determine what course of action (such as
planning a new route, or waiting for the obstruction
to pass) is to be taken.

The Simple Deconflict strategy ensures that two
vehicles cannot travel towards each other either along
the same row or along two adjacent rows.

2.1.3 Load strategy:

A load strategy is responsible for assisting the route
strategy to find a location where the harvester can
be serviced and for constructing a route for the grain
wagon from its current position to the service point
and then to the out of field storage.

This is done through three functions of the load
strategy that are called by the route strategy:
isDoneExtendingRoute(), isRouteServiceable(),
and finaliseRoute().

isDoneExtendingRoute() checks if it is possible
to extend a harvesters route. A common reason why
it would not be possible to extend a harvester route
is if there are no more remaining rows in the field to
be harvested, or if the harvester is full.

finaliseRoute() modifies a harvesters route to
ensure the final position of the harvester is valid. For
example if harvesting the full length of the final row
of a harvesters route will mean that the harvester will
exceed its capacity, the route is modified so that the
service point is required partially along the length of
the final row.

isServiceable() checks that a grain wagon is able
to converge on the service point that is required by
the harvesters route, for example that there is a pre-
viously harvested row adjacent to the service point
in which the grain wagon can drive.

Four different versions of the load strategy have
been developed in the model. These cover the four
basic ways in which harvesters are unloaded during
grain harvests.

The Single Point Unload version requires the har-
vester to transport material directly to the out of
field storage point without using a grain wagon. It
is important that the harvester must avoid the event
of becoming full without a navigable path to the out
of field storage. This strategy limits the amount of
traffic in the field, which could offer benefits when
reducing soil compaction.

The Headland Unload version limits the grain
wagon to only travelling in the headland areas of the
field. The harvester must avoid becoming full in the
middle of the field as a grain wagon would not be
able to meet it, therefore service points must be co-
ordinated before the harvester becomes full while it

4

141

is turning in the headland area.

The Infield Static Unload version allows the grain
wagons to drive in the working areas of the field in or-
der to meet the harvester. Service points are planned
for the latest possible moment to ensure that the har-
vester is full when it passes its load.

The Infield Moving Unload version is similar to the
Infield Static Unload strategy, however the harvester
and the grain wagon are both moving when the load
is being passed. As the machines remain in motion
it is imperative that the grain wagon is travelling in
the same direction as the harvester when they meet
at the service point.

The Route, Load and Deconflict strategies are rep-
resented in Figure 1 by their contracts. The various
concrete versions of each strategy must conform to
this contract. Figure 2 shows how the various load
strategies are realised based on the ILoadStrategy

class that defines the contract. Whenever the model
is executed, a concrete strategy of each kind must be
provided to the Execution Engine.

Figure 2: Load strategy hierarchy realised as a UML
class diagram.

Not all versions of a strategy can be used in all
situations. In order to cope with this, a notion of
strategy feasibility has been introduced. The strat-
egy feasibility check is implemented as a function in
each of the strategies and invoked at the beginning of
model execution in order to check if the field meets
the requirements of the strategy configuration. The
advantage of this approach is that the feasibility of
each version of a strategy is encapsulated in that ver-
sion itself, so the remaining parts of the model need

not be aware of its specific details.

The concrete versions of strategies can be used to
model different optimisation algorithms and therefore
vary in implementation detail as well as the restric-
tions they impose on the harvest operation.

2.2 Model Execution

In order to execute the model, it is first necessary to
configure the harvest operation by loading both the
field and the resources, i.e. the State, and also one of
each class of strategy to guide the Execution Engine
during the simulation. Once this is done, the model is
executed and whenever the Execution Engine reaches
a point where it needs to make a decision that de-
pends on a strategy, it will consult whatever strategy
it has loaded and the output of the strategy will be
used to further advance the model. As an example,
consider Figure 3. In this figure, the Execution En-
gine needs to know what vehicles are movable at a
given point in time. One particular version of the
strategy may allow the harvesters to move because
they can offload in the work rows. Another version
may not allow the harvesters to move because they
can only offload in the headlands and they cannot
fully harvest the next work row.2 In this way, differ-
ent versions of a strategy lead to different outcomes
in the model.

One of the key features of the model is the ability to
explore strategy combinations and how their interac-
tions affect the performance of the harvest operation.
One way to do this is by fixing 2 kinds of strate-
gies and varying the remainder (for example, load
strategies) thus investigating how a particular aspect
of optimisation affects the overall harvest operation.
Conversely, if external restrictions dictate the use of
a particular strategy, then the other strategies may
be manipulated to find the best solution within the
restrictions. For a small number of strategies, testing
the different scenarios of interest can be done with
manually written tests. However, when the number
of scenarios to be tested is large then an automated
combinatorial testing feature for VDM can be used

2In both of these examples, the route strategy consults the
load strategy as part of its calculation of movable vehicles.

5

142 14 Combining Harvesting Operation Optimisations using Strategy-based Simulation

Figure 3: Load strategy hierarchy realised as a UML
class diagram.

to concisely specify the various combinations and au-
tomatically generate and execute the corresponding
tests [12].

2.3 Simulation Visualisation

As part of model execution a log of all the important
events in the harvest operation is produced. Logged
events include vehicle movement, harvesting of a row,
passing load between harvesters and grain wagons,
etc. Once execution is complete this log can be in-
spected in order to get a full understanding of the
harvest operation outcome. This log can also be seen
as a harvesting plan since it contains detailed instruc-
tions of when and where the different vehicles must
go.

In order to better understand what occurred during
the simulation, the log can also be analysed. How-
ever, as manual inspection of the log is difficult a
proof-of-concept visualization tool was developed to
analyse the log and replay the simulation as shown
in Figure 4. The figure shows a representation of the
field and movement of vehicles across the field. The
status of the rows in the field is updated as the sim-
ulation progresses.

Figure 4: Simulation visualisation.

3 Results

This section demonstrates the approach by report-
ing results of executing various simulations with the
model in order to explore the interactions between all
possible combinations of the strategies described in
subsection 2.1. Every execution was performed with
the same resources and on the same field. The focus
is not on changing the parameters of the simulation
such as number of harvesters or harvester capacity
but in changing the strategy versions used in each
simulation.

The simulations were carried out on a repre-
sentation of a real field located in the vicinity of
the Research Center at Foulum, Denmark (56°29’N,
9°35’E).3 The yield of the field is simulated and is
lower for headland rows than for working rows, as is
typical in real fields (due to excess soil damage, lower
nutrients, etc.). The yield is further constrained such
that a complete lap of the field can be made without
exceeding the harvester capacity, and no single work-
ing row can exceed the capacity of the harvester. The
field, partitioned into rows, is shown inFigure 5.

The results of the simulations are summarised in
Table 1. Each row in the table represents a particu-
lar simulation, indexed by the Sim. (Simulation) col-
umn. The Route and Load columns identify the com-

3The model has been applied to representations of various
other fields, both real and invented. However, these results
are not reported here as the focus of this paper is on strategy
interaction and not field analysis.

6

143

Figure 5: Agro Park field.

bination of strategies used in each particular simula-
tion (the same deconflict strategy – Simple Deconflict
– is used for all simulations). The Op. Time (Op-
erational Time) column reports the duration of the
harvest operation in seconds and serves as an indica-
tion of how well a combination of strategies performs.
Finally the Exec. Time (Execution Time) column re-
ports the actual, physical time in seconds it takes to
execute the simulation.

The simulation was executed using a Java 7
code-generated version of the model on a Fujitsu
LIFEBOOK U772 laptop with a 1.7GHz Intel Core i5
processor and 8Gb of memmory running a Windows
7 Professional Edition operating system.

4 Discussion

Table 1 shows that for the field subject to analysis,
for most of the unloading strategies the Greedy Route
strategy produces a better solution, than the Prede-
fined Route strategy as indicated by the operational
time. This is due to the harvesters route used as an
input for the Predefined Route strategy being devel-
oped as a coverage plan that ignores the coordination
of the service units. As the Greedy Route strategy
was able to enquire the constraints of the unload-
ing strategy while developing the harvesters route,
the final solution is more integrated and allows for
more efficient operations. This indicates that it may

be advantageous to use optimisation approaches that
consider both harvesters and service units when de-
veloping routes.

The Infield Moving Unloading strategy offers the
best operational times for both of the routing strate-
gies. This unloading strategy is likely to offer the
best solution as it allows the harvester to be com-
pletely full when it offloads and does not require the
harvester to stop. It is also worth noting that the
model allows this hypothesis that the solution seems
to be independent of route strategy choice to be con-
firmed. As further route strategies are added, it will
be possible to continue checking if this still holds.

In terms of actual execution times, most combina-
tions yield similar results for Greedy and Predefined
strategies. The exception is for the Single Point Un-
load strategy, where the Greedy version has a signif-
icantly higher execution time. This is mostly due to
the fact that many more routes have to be computed
for this particular combination, which makes it signif-
icantly slower than its Predefined Route counterpart.

5 Conclusions

In this paper, it has been shown how optimisation
algorithms for different aspects of the harvest opera-
tion encoded as strategies can be combined. This was
achieved using a combination of the strategy pattern
and formal modelling and simulation. The model
can be executed with different strategy combinations,
yielding harvest times that can be used to compare
the combinations. More detailed analysis is also en-
abled by analysing a log file that is generated for
each execution, and which contains all major events
for that particular harvest.

The execution of the model has been demonstrated
on a representation of a real field and a comparison
for the field under analysis has been made based on
the results for 8 strategy combinations.

These results can be generalised to other kinds of
problems where there is a need to combine and com-
pare multiple algorithms for the same operation, but
where there is a significant amount of data and com-
putation required in order to produce meaningful re-
sults.

7

144 14 Combining Harvesting Operation Optimisations using Strategy-based Simulation

Sim. Route Load Op. Time [s] Exec. Time [s]

1 Greedy Headlands 425.558 12.619
2 Predefined Headlands 497.38 13.417
3 Greedy In Field Static 420.694 12.319
4 Predefined In Field Static 463.484 13.912
5 Greedy In Field Moving 410.298 7.056
6 Predefined In Field Moving 446.854 7.25
7 Greedy Single Point 679.498 26.977
8 Predefined Single Point 623.347 4.421

Table 1: Results summary.

Looking forward, the work presented in this paper
can be taken further by moving the harvester control
to a distributed setting. The current version of the
model assumes a global view of the harvest opera-
tion and directly controls the resources involved in
it. In the future, we will take a distributed view of
the harvest operation, where the resources involved
must exchange information and coordinate with each
other. To carry out this work we will take the model
further by changing to a dialect of VDM called VDM-
RT that extends VDM++ with support for modelling
of distributed systems.

Acknowledgements

The work described in this paper was partially car-
ried out in the context of the Danish High Technology
Foundation research project Off-line and on-line lo-
gistics planning of harvesting processes. We would
like to thank all our colleagues on the project for
their valuable contributions and feedback, particu-
larly Peter Gorm Larsen, Claus Grn Srensen, Diony-
sis Bochtis and Morten Bilde.

References

[1] DD Bochtis and CG Sørensen. The vehicle rout-
ing problem in field logistics part i. Biosystems
Engineering, 104(4):447–457, 2009.

[2] Jan F. Broenink, John Fitzgerald, Carl Gamble,
Claire Ingram, Angelika Mader, Jelena Marincic,
Yunyun Ni, Ken Pierce, and Xiaochen Zhang.
Methodological guidelines 3. Technical report,
The DESTECS Project (INFSO-ICT-248134),
October 2012.

[3] Gareth Edwards, Martin P Christiansen, Dion-
ysis D Bochtis, and Claus G Sørensen. A test
platform for planned field operations using lego
mindstorms nxt. Robotics, 2(4):203–216, 2013.

[4] Gareth Edwards, Martin Andreas Falk Jensen,
and Dionysis D Bochtis. Coverage planning
for capacitated field operations under spatial
variability. International Journal of Sustain-
able Agricultural Management and Informatics,
1(2):120–129, 2015.

[5] John Fitzgerald, Peter Gorm Larsen, Paul
Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems.
Springer, New York, 2005.

[6] John Fitzgerald, Peter Gorm Larsen, and Mar-
cel Verhoef, editors. Collaborative Design for
Embedded Systems – Co-modelling and Co-
simulation. Springer, 2014.

[7] E. Gamma, R. Helm, R. Johnson, and R. Vlis-
sides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley
Publishing Company, 1995.

8

145

[8] IA Hameed, DD Bochtis, CG Sørensen, Al-
lan Leck Jensen, and Rene Larsen. Optimized
driving direction based on a three-dimensional
field representation. Computers and electronics
in agriculture, 91:145–153, 2013.

[9] Martin Andreas Falk Jensen. Operations plan-
ning for agricultural machinery under capac-
ity constraints. PhD thesis, Aarhus University,
2014.

[10] Martin Andreas Falk Jensen, Dionysis Bochtis,
Claus Grøn Sørensen, Morten Rufus Blas, and
Kasper Lundberg Lykkegaard. In-field and inter-
field path planning for agricultural transport
units. Computers & Industrial Engineering,
63(4):1054–1061, 2012.

[11] Jian Jin and Lie Tang. Optimal coverage path
planning for arable farming on 2d surfaces.
Transactions of the ASABE, 53(1):283, 2010.

[12] Peter Gorm Larsen, Kenneth Lausdahl, and
Nick Battle. Combinatorial Testing for VDM. In
Proceedings of the 2010 8th IEEE International
Conference on Software Engineering and Formal
Methods, SEFM ’10, pages 278–285, Washing-
ton, DC, USA, September 2010. IEEE Computer
Society. ISBN 978-0-7695-4153-2.

[13] Bertrand Meyer. Object-oriented Software Con-
struction. Prentice-Hall International, 1988.

[14] Timo Oksanen and Arto Visala. Coverage path
planning algorithms for agricultural field ma-
chines. Journal of Field Robotics, 26(8):651–668,
2009.

[15] Stephan Scheuren, Stefan Stiene, Ronny Har-
tanto, Joachim Hertzberg, and Max Reinecke.
Spatio-temporally constrained planning for co-
operative vehicles in a harvesting scenario. KI-
Künstliche Intelligenz, 27(4):341–346, 2013.

[16] Mark Spekken and Sytze de Bruin. Optimized
routing on agricultural fields by minimizing ma-
neuvering and servicing time. Precision agricul-
ture, 14(2):224–244, 2013.

[17] Jeff Tullberg. Tillage, traffic and sustainabilitya
challenge for istro. Soil and Tillage Research,
111(1):26–32, 2010.

[18] Rodrigo S Zandonadi. Computational Tools for
Improving Route Planning in Agricultural Field
Operations. PhD thesis, University of Kentucky,
2012.

9

146 14 Combining Harvesting Operation Optimisations using Strategy-based Simulation

Bibliography

[1] Apache Velocity homepage. http://velocity.apache.org/. Accessed:
August 2015.

[2] The ASTCreator tool homepage. http://overturetool.org/astcreator/.
Accessed: 2015-08-21.

[3] Eclipse Equinox homepage. http://www.eclipse.org/equinox/. Accessed:
September 2015.

[4] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[5] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in
Event-B. STTT, 12(6):447–466, 2010.

[6] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[7] P Baudin, Jean-Christophe Filliâtre, Claude Marché, and B Monate. ACSL: ANSI/ISO
C Specification Language. CEA LIST and . . . , 2008.

[8] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie.
Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994.

[9] E Börger and R F Stärk. Abstract State Machines: A Method for High-level System
Design and Analysis ; with 19 Tables. Springer Science & Business Media, 2003.

[10] J. N. Buxton and B. Randell, editors. Software Engineering Techniques: Report of a
Conference Sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct. 1969,
Brussels, Scientific Affairs Division, NATO. 1970.

[11] J.H. Cheng. A Logic for Partial Functions. PhD thesis, Department of Computer
Science, University of Manchester, 1986.

[12] J.H. Cheng and C.B. Jones. On the usability of logics which handle partial functions. In
C. Morgan and J. Woodcock, editors, Proceedings of the Third Refinement Workshop.
Springer-Verlag, 1990.

[13] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6):476–493, 1994.

[14] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley Professional, 2001.

[15] Paul Clements and Linda Northrop. Software product lines: practices and patterns.
2002.

[16] Joey W Coleman, Anders Kaels Malmos, Peter Gorm Larsen, Jan Peleska, Ralph Hains,
Zoe Andrews, Richard Payne, Simon Foster, Alvaro Miyazawa, Cristiano Bertolini,
and André Didier. COMPASS Tool Vision for a System of Systems Collaborative

147

http://velocity.apache.org/
http://overturetool.org/astcreator/
http://www.eclipse.org/equinox/

148 Bibliography

Development Environment. In Proceedings of the 7th International Conference on
System of System Engineering, IEEE SoSE 2012, pages 451–456, July 2012.

[17] Bernard Coulange. Software Reuse. Springer Science & Business Media, 2012.
[18] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts,

and Hernán Vanzetto. TLA+ Proofs. In 18th International Symposium On Formal
Methods-FM 2012, volume 7436, pages 147–154. Springer, 2012.

[19] Luı́s Diogo Couto. Introducing the Overture Architecture Guide. In Proceedings of the
12th Overture Workshop, June 2014.

[20] Luı́s Diogo Couto. On Extensibility of Software Systems. Technical report, Department
of Engineering – Electrical and Computer Engineering, Aarhus University, April 2014.

[P21] Luı́s Diogo Couto, Nick Battle, and Peter Gorm Larsen. LPF-Aware Proof Obligation
Generation in VDM/Overture. In 5th International ABZ Conference, May 2016. To be
submitted.

[P22] Luı́s Diogo Couto, Simon Foster, and Richard Payne. Towards Verification of Con-
stituent Systems through Automated Proof. In Workshop on Engineering Dependable
Systems of Systems (EDSoS), May 2014.

[P23] Luı́s Diogo Couto, Peter Gorm Larsen, Miran Hasanagić, Georgios Kanakis, Kenneth
Lausdahl, and Peter W V Tran-Jørgensen. Towards Enabling Overture as a Platform
for Formal Notation IDEs. In Proceedings of the 2nd Workshop on F-IDE, June 2015.

[P24] Luı́s Diogo Couto and Richard Payne. The COMPASS Proof Obligation Generator:
A test case of Overture Extensibility. In Proceedings of the 11th Overture Workshop,
2013.

[P25] Luı́s Diogo Couto and Peter W V Tran-Jørgensen. Extending the Overture code gen-
erator towards Isabelle syntax. In Proceedings of the 13th Overture Workshop, June
2015.

[P26] Luı́s Diogo Couto, Peter W V Tran-Jørgensen, Joey W. Coleman Coleman, and Kenneth
Lausdahl. Migrating to an Extensible Architecture for Abstract Syntax Trees. In 12th
Working IEEE / IFIP Conference on Software Architecture, May 2015.

[P27] Luı́s Diogo Couto, Peter W V Tran-Jørgensen, and Gareth Edwards. Combining
Harvesting Operation Optimisations using Strategy-based Simulation. Computers and
Electronics in Agriculture, 2016. To be submitted.

[P28] Luı́s Diogo Couto, Peter W V Tran-Jørgensen, and Kenneth Lausdahl. Principles for
Reuse in Formal Language Tools. In 31st ACM Symposium on Applied Computing,
April 2016.

[29] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-c. In Software Engineering and Formal Methods, pages
233–247. Springer, 2012.

[30] Robert C. Daley and Jack B. Dennis. Virtual Memory, Processes, and Sharing in
MULTICS. Commun. ACM, 11(5):306–312, May 1968.

[31] Marcel Dausend and Alexander Raschke. Introducing Aspect–Oriented Specification
for Abstract State Machines. In Abstract State Machines, Alloy, B, TLA, VDM, and Z,
pages 174–187. Springer, 2014.

[32] Marcel Dausend, Michael Stegmaier, and Alexander Raschke. Debugging Abstract
State Machine Specifications: An Extension of CoreASM. In Proceedings of the
Posters and Tool Demo Session, iFM 2012 & ABZ 2012, Pisa, Italy, 2012.

Bibliography 149

[33] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. CoreASM: An extensible
ASM execution engine. Fundamenta Informaticae, 77(1-2):71–104, 2007.

[34] Roozbeh Farahbod, Vincenzo Gervasi, Uwe Glässer, and George Ma. CoreASM plug-
in architecture. In Rigorous Methods for Software Construction and Analysis, pages
147–169. Springer, 2009.

[35] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

[36] Simon Foster and Richard J Payne. Theorem Proving Support - Developers Manual.
Technical report, COMPASS Deliverable, D33.2b, September 2013.

[37] Simon Foster, Frank Zeyda, and Jim Woodcock. Isabelle/UTP: A mechanised theory
engineering framework. In Unifying Theories of Programming, pages 21–41. Springer,
2015.

[38] William B Frakes and Kyo Kang. Software reuse research: Status and future. IEEE
transactions on Software Engineering, (7):529–536, 2005.

[39] Etienne M Gagnon and Laurie J Hendren. SableCC, an Object-Oriented Compiler
Framework. In Proceedings of the Technology of Object-Oriented Languages and
Systems, TOOLS ’98, pages 140–154, Washington, DC, USA, 1998. IEEE Computer
Society.

[40] E Gamma, R Helm, R Johnson, and R Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, 1995.

[41] Erich Gamma and Kent Beck. Contributing to Eclipse: principles, patterns, and plug-
ins. Addison-Wesley Professional, 2004.

[42] Michael Gordon, Robin Milner, and Christopher P Wadsworth. Edinburgh LCF.
Lecture Notes in Computer Science, 78, 1979.

[43] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. In
Jan van Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes in
Computer Science, pages 366–373. Springer Berlin Heidelberg, 1995.

[44] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of
the ACM, 13(4):238–241, 1970.

[45] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring main-
tainability. In Quality of Information and Communications Technology, 2007. QUATIC
2007. 6th International Conference on the, pages 30–39. IEEE, 2007.

[46] Tony Hoare. Communication Sequential Processes. Prentice-Hall International,
Englewood Cliffs, New Jersey 07632, 1985.

[47] Tony Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, April
1998.

[48] Claire Ingram, Richard Payne, John Fitzgerald, and Luı́s Diogo Couto. Model-
based Engineering of Emergence in a Collaborative SoS: SysML & Formalism. In
Proceedings of INCOSE, USA, 2015.

[49] Claire Ingram, Richard Payne, Simon Perry, Jon Holt, Finn Overgaard Hansen, and
Luı́s Diogo Couto. Modelling patterns for systems of systems architectures. In Systems
Conference (SysCon), 2014 8th Annual IEEE, pages 146–153. IEEE, 2014.

[50] ISO. ISO/IEC 25010:2011,Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models.
ISO, 2011.

150 Bibliography

[51] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
Heyward Street, Cambridge, MA02142, USA, revised edition, February 2012. ISBN-
10: 0262017156.

[52] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems, 5(4):596–619, October
1983.

[53] C. B. Jones and C. A. Middelburg. A typed logic of partial functions reconstructed
classically. Acta Informatica, 31(5):399–430, 1994.

[54] Cliff B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981.

[55] Cliff B. Jones. Specification and Design of (Parallel) Programs. In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World Congress, pages
321–332. IFIP, 1983.

[56] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall
International, Englewood Cliffs, New Jersey, second edition, 1990.

[57] Peter W V Jørgensen, Luı́s Diogo Couto, and Morten Larsen. A Code Generation
Platform for VDM. In Proceedings of the 12th Overture Workshop, June 2014.

[58] S.C. Kleene. Introduction to Mathematics. North Holland, 1952.
[59] Philippe B Kruchten. The 4+ 1 view model of architecture. Software, IEEE, 12(6):42–

50, 1995.
[60] Charles W Krueger. Software Reuse. ACM Comput. Surv., 24(2):131–183, June 1992.
[61] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and

software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.
[62] Jan Łukasiewicz. O logice trójwartościowej. Ruch Filozoficzny, pages 169–171, 1920.

Translated as (On three-valued logic) in Polish Logic 1920–39, S. McCall (ed.), Oxford
U.P., 1967.

[63] Andrian Marcus, Jonathan Maletic, et al. Identification of high-level concept clones in
source code. In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, pages 107–114. IEEE, 2001.

[64] Paolo Masci, Luı́s Diogo Couto, Peter Gorm Larsen, and Paul Curzon. Integrating the
PVSio-web modelling and prototyping environment with Overture. In Proceedings of
the 13th Overture Workshop, June 2015.

[65] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Western Joint
Computer Conference, 1961.

[66] Stephan Merz and Hernán Vanzetto. Automatic verification of TLA+ proof obligations
with SMT solvers. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 289–303. Springer, 2012.

[67] Stephan Merz and Hernán Vanzetto. Harnessing SMT Solvers for TLA+ Proofs. In 12th
International Workshop on Automated Verification of Critical Systems (AVoCS 2012),
volume 53. EASST, 2012.

[68] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997.

[69] Robin Milner, Lockwood Morris, and Malcolm Newey. A logic for computable func-
tions with reflexive and polymorphic types. In Proceedings of Conference on Proving
and Improving Programs, 1975.

Bibliography 151

[70] Peter Naur and Brian Randell, editors. Software Engineering: Report of a Confer-
ence Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968,
Brussels, Scientific Affairs Division, NATO. 1969.

[71] Jacob Porsborg Nielsen and Jens Kielsgaard Hansen. Development of an Over-
ture/VDM++ Tool Set for Eclipse. Master’s thesis, Technical University of Denmark,
Informatics and Mathematical Modelling, August 2005.

[72] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer Science & Business Media,
2002.

[73] Daniel Novais and Eduardo Pessoa. Translating from VDM To Alloy. Technical report,
Department of Informatics – University of Minho, 2015.

[74] O Owe. An Approach to Program Reasoning Based on a First Order Logic for Partial
Functions. Technical Report 89. Technical report, Institute of Informatics, University
of Oslo, 1985.

[75] D L Parnas. Designing Software for Ease of Extension and Contraction. IEEE Trans.
Softw. Eng., 5(2):128–138, March 1979.

[76] Lawrence C Paulson. Three Years of Experience with Sledgehammer, a Practical Link
between Automatic and Interactive Theorem Provers. In Renate A Schmidt, Stephan
Schulz, and Boris Konev, editors, Proceedings of the 2nd Workshop on Practical As-
pects of Automated Reasoning, PAAR-2010, Edinburgh, Scotland, UK, July 14, 2010,
volume 9 of EPiC Series, pages 1–10, 2010.

[77] Gordon D Plotkin. Types and partial functions. Post-Graduate Lecture Notes,
Department of Computer Science, University of Edinburgh, 1985.

[78] P van der Spek, N Plat, and C Pronk. Syntax Error Repair for a Java-based Parser
Generator. SIGPLAN Not., 40(4):47–50, 2005.

[79] J Woodcock, A Cavalcanti, J Fitzgerald, P Larsen, A Miyazawa, and S Perry. Features
of CML: a Formal Modelling Language for Systems of Systems. In Proceedings of the
7th International Conference on System of System Engineering. IEEE, July 2012.

	Skabelon ScienceTech Forside engelsk - Lille titel
	118-99Z_Book Manuscript-379-1-2-20160108
	Abstract
	Resumé
	Acknowledgements
	Contents
	Acronyms
	I Summary
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Research Objectives
	1.4 Research Method
	1.5 Evaluation Criteria
	1.6 Publications
	1.7 Outline and reading guide

	2 Background
	2.1 Extensibility and related terms
	2.2 Other approaches to extensibility
	2.3 Software Architecture
	2.4 Design patterns and data structures
	2.5 Overture
	2.6 Semantics
	2.7 Other tools and case studies

	3 Specific Applications of Extensibility
	3.1 New Extensions
	3.2 Combining Extensions
	3.3 Improving Extensibility through Software Architecture
	3.4 Extensibility in Formal Models

	4 Generalisations of Extensibility
	4.1 Generalising the new POG contributions
	4.2 Technical aspects of extension combination
	4.3 Reusability principles for formal analyses
	4.4 Extensible architecture for formal language tools
	4.5 Strategy pattern-based Modelling

	5 Foundational Contributions
	5.1 Extending Proof Rules of VDM
	5.2 Integrating Proof Automation

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Assessing Contributions
	6.3 Future Work

	II Publications
	7 The COMPASS Proof Obligation Generator: A Test Case of Overture Extensibility
	8 Towards Verification of Constituent Systems through Automated Proof
	9 Migrating to an Extensible Architecture for Abstract Syntax Trees
	10 Extending the Overture code generator towards Isabelle syntax
	11 Towards Enabling Overture as a Platform for Formal Notation IDEs
	12 Principles for Reuse in Formal Language Tools
	13 LPF-Aware Proof Obligation Generation in VDM/Overture
	14 Combining Harvesting Operation Optimisations using Strategy-based Simulation
	Bibliography

