

 Karlsruhe Reports in Informatics 2010,13
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Formal Verification of Object-Oriented
Software

Papers presented at the International Conference,
June 28-30, 2010, Paris, France

Bernhard Beckert • Claude Marché (Eds.)

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Bernhard Beckert • Claude Marché (Eds.)

Formal Verification of
Object-Oriented Software

Papers presented at the International Conference,
June 28-30, 2010, Paris, France

Published as:
Technical Report,
Department of Informatics,
Karlsruhe Institute of Technology,
2010-13

Editors

Bernhard Beckert
Karlsruhe Institute of Technology
Institute for Theoretical Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany
Email: beckert@kit.edu

Claude Marché
INRIA Saclay - Île-de-France
Parc Orsay Université
4, rue Jacques Monod, F-91893 Orsay Cedex, France
Email: Claude.Marche@inria.fr

Preface

This volume contains the invited papers, research papers, system descriptions,
case studies, and position papers presented at the International Conference on
Formal Verification of Object-Oriented Software (FoVeOOS 2010), that was held
June 28–30, 2010 in Paris, France. Post-conference proceedings with revised
versions of selected papers will be published within Springer’s Lecture Notes in
Computer Science series after the conference.

Formal software verification has outgrown the area of academic case studies,
and industry is showing serious interest. The logical next goal is the verification
of industrial software products. Most programming languages used in industrial
practice are object-oriented, e.g. Java, C++, or C#. FoVeOOS 2010 aimed to
foster collaboration and interactions among researchers in this area.

FoVeOOS was organised by COST Action IC0701 (www.cost-ic0701.org),
but it went beyond the framework of this action. The conference was open to
the whole scientific community. All submitted papers were peer-reviewed, and
of the 35 submissions, the Programme Committee selected 23 for presentation
at the conference.

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
as well as additional referees for their great effort and professional work in the
review and selection process. Their names are listed on the following pages.

In addition to the contributed papers, the programme of FoVeOOS 2010 in-
cluded three excellent keynote talks. We are grateful to June Andronick (NICTA,
Sydney, Australia), Kim G. Larsen (Aalborg University, Denmark), Francesco
Logozzo (Microsoft Research, Redmond, USA) for accepting the invitation to
address the conference.

It was a team effort that made the conference so successful. We partic-
ularly thank Sarah Grebing, Vladimir Klebanov, and Emmanuelle Perrot for
their hard work and help in making the conference a success. In addition, we
gratefully acknowledge the generous support of COST Action IC0701, Microsoft
Research Redmond, the Institut National de Recherche en Informatique et Au-
tomatique (INRIA), and the Karlsruhe Institute of Technology

June 2010 Bernhard Beckert
Claude Marché

III Technical Report, KIT, 2010-13

Program Committee

Gilles Barthe IMDEA Software, Madrid, Spain
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Einar Broch Johnsen University of Oslo, Norway
Gabriel Ciobanu University Alexandru Ioan Cuza, Romania
Dave Clarke Katholieke University Leuven, Belgium
Mads Dam KTH Stockholm, Sweden
Ferruccio Damiani University of Torino, Italy
Sophia Drossopoulou Imperial College, UK
Paola Giannini University Piemonte Orientale, Italy
Dilian Gurov KTH Stockholm, Sweden
Reiner Hähnle Chalmers University of Technology, Gothen-

burg, Sweden
Marieke Huisman University of Twente, The Netherlands
Thomas Jensen IRISA/CNRS, France
Joe Kiniry ITU Copenhagen, Denmark
Viktor Kuncak EPF Lausanne, Switzerland
Dorel Lucanu University Alexandru Ioan Cuza, Romania
Maŕıa del Mar Gallardo University of Malaga, Spain
Claude Marché INRIA Saclay-̂Ile-de-France, France
Julio Mariño University Politecnica de Madrid, Spain
Marius Minea Politehnica University of Timisoara, Romania
Anders Møller University Aarhus, Denmark
Rosemary Monahan NUI Maynooth, Ireland
Wojciech Mostowski University Nijmegen, The Netherlands
Peter Müller ETH Zrich, Switzerland
James Noble Victoria University of Wellington, New Zealand
Olaf Owe University of Oslo, Norway
Ernesto Pimentel Sánchez University of Málaga, Spain
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Erik Poll University of Nijmegen, The Netherlands
António Ravara New University of Lisbon, Portugal
Wolfgang Reif University of Augsburg, Germany
René Rydhof Hansen University of Aalborg, Denmark
Peter H. Schmitt Karlsruhe Institute of Technology, Germany
Aleksy Schubert University of Warsaw, Poland
Gheorghe Stefanescu University of Bucharest, Romania
Bent Thomsen University of Aalborg, Denmark
Shmuel Tyszberowicz University of Tel Aviv, Israel
Tarmo Uustalu Institute of Cybernetics, Tallinn, Estonia
Burkhart Wolff University Paris-Sud (Orsay), France
Elena Zucca University of Genova, Italy

Formal Verification of Object Oriented Software

Technical Report, KIT, 2010-13 IV

Program Co-Chairs

Bernhard Beckert Karlsruhe Institute of Technology, Germany
Claude Marché INRIA Saclay-̂Ile-de-France, France

Organising Committee

Claude Marché (chair) INRIA Saclay-̂Ile-de-France, France
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Emmanuelle Perrot INRIA Saclay-̂Ile-de-France, France

Sponsoring Institutions

COST Action IC0701 “Formal Verification of Object-Oriented Software”
Institut National de Recherche en Informatique et Automatique (INRIA)
Karlsruhe Institute of Technology
Microsoft Research

Additional Referees

Davide Ancona
Mohamed Faouzi Atig
Viviana Bono
Daniel Bruns
Richard Bubel
Jacek Chrzaszcz
João Costa Seco
Delphine Demange
Johan Dovland
David Faitelson

Christoph Feller
Pietro Ferrara
Kathrin Geilmann
Christoph Gladisch
Clément Hurlin
Ioannis Kassios
Ilham Kurnia
Laurent Mauborgne
Keiko Nakata
Mads Chr. Olesen

Gerhard Schellhorn
Martin Steffen
Kurt Stenzel
Volker Stolz
Mark Timmer
Bogdan Tofan
Varmo Vene
Amiram Yehudai
Greta Yorsh

Papers Presented at the Int. Conf., June 2010, Paris, France

V Technical Report, KIT, 2010-13

Table of Contents

Abstracts of Invited Talks

Timing Analysis of Ebedded Software Systems . 1
Kim G. Larsen

The L4.verified Project and its next steps . 2
June Andronick

Clousot: Static contract checking with Abstract Interpretation 5
Francesco Logozzo

Contributed Papers

Adapting Components using Interface Automata Enriched by the
Action Semantics . 7

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir

CVPP: A Tool Set for Compositional Verification of Control-Flow
Safety Properties (System Description) . 22

Marieke Huisman and Dilian Gurov

A Pushdown System Representation for Unbounded Object Creation
(Position Paper/Work in Progress) . 38

Jurriaan Rot, Frank de Boer, and Marcello Bonsangue

Validating Timed Models of Deployment Components with Parametric
Concurrency . 53

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and Silvia Lizeth
Tapia Tarifa

JMLUnit: The Next Generation (System Description) 68
Daniel M. Zimmerman and Rinkesh Nagmoti

Verification Based Test Case Generation for Scoped Memory in
Safety-Critical Java (Position Paper/Work in Progress) 83

Gabriele Paganelli

Towards Testing a Verifying Compiler (Position Paper/Work in Progress) 98
Markus Wagner and Thorsten Bormer

Dynamic Frames in Java Dynamic Logic . 113
Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

Formal Verification of Object Oriented Software

Technical Report, KIT, 2010-13 VI

A Dynamic Logic for Unstructured Programs with Embedded Assertions 128
Mattias Ulbrich

A Refinement Methodology for Object-Oriented Programs 143
Asma Tafat, Sylvain Boulmé, and Claude Marché

Data refinement based testing . 160
David Faitelson and Shmuel Tyszberowicz

Satisfiability Solving and Model Generation for Quantified First-order
Logic Formulas . 176

Christoph Gladisch

An Experience Report on the Verification of Algorithms in the C++
Standard Library using Frama-C (Experience Report/Case Study) 191

Jens Gerlach and Jochen Burghardt

Formal Verification of Industrial C Code using Frama-C: a Case Study
(Experience Report/Case Study) . 205

Dillon Pariente and Emmanuel Ledinot

Verification of Variable Software: An Experience Report (Experience
Report/Case Study) . 220

Crystal Din, Richard Bubel, and Reiner Hähnle

Vótáil: PR-STV Ballot Counting Software for Irish Elections
(Experience Report/Case Study) . 235

Dermot Cochran and Joe Kiniry

SAWJA: Static Analysis Workshop for Java (System Description) 253
Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange,
Thomas Jensen, Vincent Monfort, David Pichardie, and Tiphaine
Turpin

State-based Object Models are more Abstract than Trace-based
Models: Towards a Unified Specification Framework 268

Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch

Controlling the Unknown (Position Paper/Work in Progress) 283
Casandra Holotescu

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic . 298
Christian Engel and Peter H. Schmitt

Specifying Imperative ML-like programs Using Dynamic Logic 314
Séverine Maingaud, Vincent Balat, Richard Bubel, Reiner Hähnle,
and Alexandre Miquel

Papers Presented at the Int. Conf., June 2010, Paris, France

VII Technical Report, KIT, 2010-13

Abstract compilation of object-oriented languages into coinductive
CLP(X): when type inference meets verification . 330

Davide Ancona, Andrea Corradi, Giovanni Lagorio, and Ferruccio
Damiani

Verification of Software Product Lines: Reducing the Effort with
Delta-oriented Slicing and Proof Reuse (Position Paper/Work in Progress) 345

Daniel Bruns, Vladimir Klebanov, and Ina Schaefer

Author Index . 359

Formal Verification of Object Oriented Software

Technical Report, KIT, 2010-13 VIII

Timing Analysis of Embedded Software Systems

Kim G. Larsen

Department of Computer Science,
Aalborg University,
kgl@cs.aau.dk

Embedded software is often applied in safety-criticial systems, e.g. the brak-
ing system of a car or the steering gear of an airplane. Many of these safety-
critical systems are also time-critical, meaning that the calculations performed
by the tasks of the embedded system need not only be functionally correct but
must be carried out in a timely fashion. In this talk we show how real-time model
checking using the verification tool UPPAAL (www.uppaal.com) may be used
to give such timing guarantees.

In particular, real-time model checking may be used for efficient schedula-
bility analysis of tasks providing a less pessimistic and more general analysis
compared with classical scheduling methods for single-processor. We apply the
method to the schedulability analysis of Safety Critical Hard Real-Time Java
programs, based on a translation of programs, written in the Safety Critical Java
profile to timed automata models verifiable by the UPPAAL model checker. The
approach is implemented in the tool SARTS (http://sarts.boegholm.dk/).

However, in order for the schedulability analysis to be reliable and efficient,
safe and tight estimates of the Worst-case execution time (WCET) of tasks
must be provided. We show how real-time model checking and static analy-
sis may be used to obtain safe and tight WCETs for programs running on
platforms featuring caching and pipelining. The method works by construct-
ing a UPPAAL model of the program being analysed and annotating the model
with information from an inter-procedural value analysis. The program model
is then combined with a model of the hardware platform and model checked for
the WCET. Currently support for the platforms ARM7, ARM9 and ATMEL
AVR 8-bit is available. The approach is implemented in the tool METAMOC
(http://metamoc.martintoft.dk/).

1 Technical Report, KIT, 2010-13

The L4.verified Project and its next steps

Extended abstract

June Andronick

NICTA?, Australia

School of Computer Science and Engineering, UNSW, Sydney, Australia

june.andronick@nicta.com.au

The work presented here aims to tackle the general challenge of building
truly trustworthy systems. This requires starting at the operating system (OS)
level, and the most critical part of the OS is its kernel. The kernel is defined
as the software that executes in the privileged mode of the hardware, meaning
that there can be no protection from faults occurring in the kernel, and every
single bug can potentially cause arbitrary damage. The concept of microkernels
follow the idea [4] of minimizing the system’s trusted computing base (TCB)—the
part of the system that can bypass security. A microkernel, as opposed to the
more traditional monolithic design of contemporary mainstream OS kernels, is
reduced to just the bare minimum of code wrapping hardware mechanisms and
needing to run in privileged mode. All OS services are then implemented as
normal programs, running entirely in (unprivileged) user mode, and therefore
can potentially be excluded from the TCB. A well-designed high-performance
microkernel, such as the various representatives of the L4 microkernel family,
consists of the order of 10 000 lines of code, making the trustworthiness problem
more tractable.

The L4.verified project produced, in August 2009, the world’s first formally
proven correct general-purpose microkernel: seL4 [2]. As a microkernel, seL4
provides a minimal number of services to applications: abstractions for virtual
address spaces, threads, inter-process communication (IPC). One of seL4’s key
differentiators is its fine-grained access control. The formal verification, from a
high-level model down to low-level C code, was done using interactive, machine-
assisted and machine-checked proof. Specifically, we used the theorem prover
Isabelle/HOL [3]. Formally, our correctness statement is classic refinement: all
possible behaviours of the C implementation are a subset of the behaviours of the
abstract specification. The main assumptions of the proof are correctness of the
C compiler and linker, assembly code, hardware, and boot code. The verification
target was the ARM11 uniprocessor version of seL4, with an unverified x86 port.
If the assumptions of the verification hold, we have mathematical proof that,
among other properties, the seL4 kernel is free of buffer overflows, NULL pointer
dereferences, memory leaks, and undefined execution. Another key benefit of
a functional correctness proof is that proofs about the C implementation of
?

NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy and the Australian Research Council through the ICT

Centre of Excellence program

Technical Report, KIT, 2010-13 2

the kernel can now be reduced to proofs about the specification for properties
preserved by refinement.

The L4.verified project has demonstrated that with modern techniques and
careful design, an OS microkernel is entirely within the realm of full formal
verification. The next big step in the challenge of building truly trustworthy
systems is to provide a framework to develop secure systems on top of seL4.
Formally verifying programs with sizes approaching 10 000 lines of code is a
significant improvement in what formal methods was previously able to verify
with reasonable effort. However, 10 000 lines of code is still a significant limit on the
application of formal methods to the verification of contemporary software systems.
Modern software systems, beyond very simple embedded systems, frequently
consist of millions of lines of code.

Our vision again follows the idea of minimizing the TCB and comes from
the observation [1] that not all software in a large system necessarily contributes
to a given property of interest, such as isolation or secure communication. Our
approach is to develop methodologies and tools that enable developers to system-
atically (i) isolate the software parts that are not critical to a targeted property,
and prove that nothing more needs to be verified about them for the specific
property; and (ii) formally prove that the remaining critical parts satisfy the
targeted property. This vision builds on, and is enabled by, the formal verification
of the seL4 microkernel. The access control mechanism enforced by seL4 is used
to isolate the identified large untrusted components, in a way that prevents them
from violating a defined security property, leaving only the trusted components
to be formally verified. The first steps of this approach have been demonstrated
on a concrete example system, namely a multilevel secure access device aiming to
isolate networked services of different classification levels. The system’s security
architecture has been designed to minimize the TCB to a single trusted compo-
nent (in addition to the underlying kernel) and formalized in Isabelle/HOL. This
formal security architecture has been used to prove that information cannot flow
from one back-end network to another.

This case study illustrates our vision of how large software systems consisting
of millions of lines of code can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access control guarantees
provided by the verified seL4 microkernel and using it to isolate components such
that their implementation need not be reasoned about.

References

1. J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst., 2:239–247, 2006.

2. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207–220, Big Sky, MT,
USA, Oct 2009. ACM.

3. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

J. Andronick

3 Technical Report, KIT, 2010-13

4. J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. IEEE, 63:1278–1308, 1975.

The L4.verified Project and its next steps

Technical Report, KIT, 2010-13 4

Clousot: Static contract checking with Abstract
Interpretation

Francesco Logozzo1

Microsoft Research, Redmond, WA (USA)
logozzo@microsoft.com

A limiting factor to the adoption of formal methods in the everyday pro-
gramming practice is that tools do not integrate well in the existing program-
ming workflow. The price programmers has to pay to enjoy the benefits of formal
methods include the use non-mainstream languages or non-standard compilers.

The CodeContracts project [2] at Microsoft aims at bridging the gap be-
tween formal specification and verification and a principle of least interference
in the existing programmer’s workflow. The main insight of CodeContracts is
that specifications can be authored as code [1]. Contracts take form of method
calls to a standard library. Therefore CodeContracts enable the programmer to
write down specifications as Boolean expressions in their favorite .NET language
(C#, F#, VB . . .). This has several advantages: semantics of contracts is given
by the IL produced by the compiler, no compiler modification is required, con-
tracts are serialized and persisted as code (no need for separate parsing), all
the IDE support (e.g. intellisense) the programmer is used to is automatically
leveraged.

CodeContracts provide a standard and uniform way to describe contracts
which can then be consumed by several tools. At Microsoft Research, we have de-
veloped a tool to automatically generate the documentation (ccdoc), to perform
runtime checking (ccrewrite) and to perform static checking (cccheck/Clousot).

The static contract checker is based on abstract interpretation. It analyzes
every method in isolation. The precondition of the method is turned into an
assumption and the postcondition into an assertion. For public methods, the ob-
ject invariant is assumed at the method entry and asserted at the exit point. For
each method call, its precondition is asserted, and the postcondition assumed.
The first phase of the analysis process resolves the heap (under some optimistic
hypotheses e.g. on parameter aliasing), providing a scalar view of the program.
On the top of that several value analyses are run to discover facts (including
loop invariants) on the program. Value analyses include a non-null analysis, a
numerical analysis [3], a pointer usage analysis and a container analysis. The
value analyses propagate the initial (abstract) state through the method body
performing a fixpoint computation with widening. The inferred facts are used
to discharge proof obligations. Proof obligations are either explicit assertions in
the code or semantic-induced ones such as non-null dereferences or array index-
ing. If a proof obligation cannot be discharged then the analysis is refined. One
refinement is the use of a more expressive (yet expensive) abstract domain. If
even this fails, then a backward analysis is performed to have a precise yet on
demand handling of disjunctions. If the user turns on the opportune switch, then

5 Technical Report, KIT, 2010-13

Clousot uses the inferred information to extract the method postcondition and
then to push it to all the callers.

CodeContracts can be downloaded at:
http://research.microsoft.com/en-us/projects/contracts/

References

1. Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract
languages. In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied Com-
puting, pages 2103–2110, New York, NY, USA, 2010. ACM.

2. Manuel Fähndrich, Mike Barnett, and Francesco Logozzo. Code Contracts, March
2009.

3. Vincent Laviron and Francesco Logozzo. Subpolyhedra: A (more) scalable approach
to infer linear inequalities. In VMCAI ’09: Proceedings of the 10th International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 229–
244, Berlin, Heidelberg, 2009. Springer-Verlag.

Clousot: Static contract checking with Abstract Interpretation

Technical Report, KIT, 2010-13 6

Adapting Components Using Interface
Automata Enriched by the Action Semantics

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir

Computer Sciences Laboratory (LIFC)
University of Franche-Comté

Besançon, FRANCE
{samir.chouali,sebti.mouelhi,hassan.mountassir}

@lifc.univ-fcomte.fr

Abstract. Reusability is one of the principal purposes of Component-
Based Software Engineering (CBSE) and represents an important charac-
teristic of a high-quality software component. It allows the use of compo-
nents in diverse situations without affecting their codes. In this context,
it is necessary to propose approaches to adapt a component with its envi-
ronment when mismatches occur during their interactions. In this paper,
we present a formal approach based on interface automata strengthened
by the semantics of actions to adapt components. The elimination of mis-
matches is made at the signature, the protocol, and the semantic levels
to ensure more flexible interoperability between components. Interface
automata is a formalism intended to schedule between required and of-
fered services of a component. In this work, the model is enriched by pre
and post-conditions on parameters of component actions1.

Keywords: Reusability, Action semantics, Interface automata, Compo-
nent adaptation

1 Introduction

Component-based systems are made up of collection of interacting entities called
components. The outline of component-based software engineering [19, 9] is to
develop software applications not from scratch but by assembling various library
components. This development approach allows software reuse without changing
components codes. Consequently, one saves on development costs and time and
one can extend component-based systems via plug and play components.

A component is a unit of composition with contractually specified interfaces
and explicit dependencies [19]. An interface describes the services offered or
required by a component without disclosing the component implementation. It
is the only access to the information of a component. Interfaces may describe
components at the level of action signatures (method signatures), behaviors or

1 This work has received support from the The French National Research Agency,
ANR-06-SETI-017 (TACOS).

7 Technical Report, KIT, 2010-13

protocols (scheduling of method calls), action semantics (method semantics),
and the quality of services [12, 20].

Usually interoperability is not guaranteed during the component assembly
and reuse. This is due to possible interface mismatches that may occur, between
components, at the different levels cited above [6]. The reason is that compo-
nents do not match perfectly the requirements of their environment. In this
case, component adaptation should be performed in order to eliminate the re-
sulting interface mismatches and ensure a more flexible interoperability between
components. Software adaptation is the use of software entities, called adaptors,
capable of enabling a correct interaction between components when mismatches
occur at the level of signatures, protocols, and semantics.

Interfaces that expose protocol information of components can be specified
naturally in an automaton-based language like interface automata [1, 2, 3]. It
has the ability to model along a temporal order, both the input requirements
(input actions) and the output behavior (output actions) of a component. The
composition of two interfaces is achieved by synchronizing their shared output
and input actions. An interesting verification approach was also proposed to de-
tect interface incompatibilities that may occur when, from some states in the
synchronized product, one automaton issues a shared action as output which is
not accepted as input in the other. We say that those states are illegal. The pro-
posed compatibility check approach of interface automata is optimistic [1]. Two
interface automata A1 and A2 are compatible if there is an environment pre-
venting their synchronization to enter illegal states. The composition approach
of the other automata-based formalisms describing the interface protocols of
components are considered pessimistic.

In this paper, we focus on adapting components whose behaviors are de-
scribed by interface automata enriched by the semantics of action parameters.
Actions are annotated by pre and post-conditions on parameters. In [8], we
had treated only adaptation at the protocol level. Our purpose was to gener-
ate automatically an adaptor (interface automaton in-the-middle) for exactly
two component interface automata according to a mapping that establishes a
number of rules relating their mismatched input and output actions. The se-
mantic adaptability between mismatched actions is checked before generating
the adaptor by verifying the satisfiability of some implications between pre and
post-conditions of the parameters of the mismatched actions. The automatic
generation of the adaptor takes into account the orderings of actions of both
interfaces and constructs progressively an automaton by consuming output ac-
tions before issuing outputs for their correspondent inputs in the mapping. One
of the aims of this paper and the work in [8] is to bring together the optimistic
composition approach of interface automata and adapting them at the signa-
ture, the protocol and the semantic levels. Therefore, our proposed adaptation
presents a reliable way to interoperate components by verifying the semantics of
their actions besides the elimination of mismatches, its principal role.

The paper is organized as follows. In section 2, we present our extended
formalism based on interface automata approach to verify component interoper-

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 8

ability. In section 3, we describe the minimal specification of the action mismatch
between two components. In section 4, we check the semantic adaptability of the
mismatched actions. In section 5, we specify the adaptation of component be-
haviors using interface automata. Related works to our approach, the conclusion,
and future works are presented in section 6 and 7.

2 Interface Automata Enriched by the Semantics of
Action Parameters

Interface automata (IAs) have been defined by L. Alfaro and T. Henzinger [1],
to model the temporal behavior of software component interfaces. These models
are non-input-enabled I/O automata [13] which means that at every state some
input actions may be non-enabled. Every component interface is described by
one interface automaton where input actions are used to model methods that
can be called, and the end of receiving messages from communication channels,
as well as the return values from such calls. Output actions are used to model
method calls, message transmissions via communication channels, and exceptions
that occur during the methods executions. Local operations are called hidden
actions. The alphabet of an interface automaton is built on the actions names
of a component. This means that for each input action (or provided service) a
in the component signature, there is an element a? in the alphabet and for each
output action (or required service) b, there is an element b!. A hidden action h
is represented by the element h; in the alphabet.

Definition 1 (Interface Automata). An interface automaton A = 〈 SA, IA,
ΣI
A, ΣO

A , ΣH
A , δA 〉 consists of

– a finite set SA of states;
– a subset of initial states IA ⊆ SA. Its cardinality |IA|2≤ 1 and A is called

empty if IA = ∅;
– three disjoint sets ΣI

A, Σ
O
A and ΣH

A of input, output, and hidden actions
names;

– a set δA ⊆ SA ×ΣA × SA of transitions between states.

The input and output actions of an automaton A are called external actions
uniformly (Σext

A = ΣI
A ∪ ΣO

A) while output actions and internal actions are called
locally-controlled actions (Σloc

A = ΣO
A ∪ ΣH

A). The set of hidden actions ΣH
A may

contain a special action epsilon ε that symbolizes the no-operation event. The
set ΣA refers to the set of all actions of A. We define by ΣI

A(s), ΣO
A (s), ΣH

A(s),
Σext
A (s), Σloc

A (s), the input, output, internal, external, and local actions enabled
at the state s. ΣA(s) denotes the set of all actions enabled from s.

Our approach extends interface automata by considering the action semantic
to ensure a reliable verification of component interoperability. In [1], the check

2 |S | is the cardinality of some set S.

S. Chouali, S. Mouelhi, H. Mountassir

9 Technical Report, KIT, 2010-13

of the component compatibility is made only at the level of signatures and pro-
tocols, which are not sufficient to decide if two interfaces are compatible or not.
Our contribution uses pre and post-conditions over the list of input and output
parameters of components actions. These constraints on actions establish the
semantic level of components interoperability.

The signature of an action a is the action name and the list of its parameters.
An action may have n input parameters (where n ≥ 0) belonging to the set P i

a

and at most one output parameter belonging to P o
a . In the case where an action

a has parameters, its signature is represented by a(i1,...,in)→ (o) where i1,...,in
∈ P i

a and o ∈ P o
a . The absence of parameters (input or output) is denoted by ().

The semantics of external actions is depicted by pre and post-conditions defined
over the list of parameters. Pre and post-conditions are propositional formulae
of the propositional logic3 built up from atomic assertions.

Components are black boxes whereof actions store some data and provide
some externally visible behavior. Thus, the pre and post-conditions of action
parameters have to be well-stated in such way no information about the action
implementation are revealed. For example, given an action that computes the
power of a number n and output the result in a parameter p. A legal post-
condition of the action is “p ≥ 0”. The post-condition “p = n × n” is not allowed.
This is why we assume that, for the rest of the paper, arithmetic operators like
addition and multiplication are not allowed in the action semantics.

Definition 2 (Action Semantics). The semantics Ψa of an external action a
is defined by the tuple 〈PreΨa , PostΨa〉 where

– PreΨa is defined in terms of input parameters. It is set to true if a has no
input parameters (P i

a = ∅);
– PostΨa is defined in terms of both input and output parameters. It is set to

true if a has no parameters (P i
a = P o

a = ∅).

For a parameter p, we define a domain Dp which is a set of values that p can
take. Atomic assertions used in the prepositions have the form p1 * p2 or p *
v where p1, p2, and p are parameters of a given action, * ∈ {=, 6=} and v is
a valuation for the parameter p in Dp. For real and integer parameters, the
operator * is in {=,6=,<,>,≤,≥}.

Given an interface automaton A, we assume that for each transition (s,a,s’)
∈ δA where a is external, the valuations of all parameters p ∈ P i

a ∪ P o
a have to

be defined in Dp and they must not be in contradiction with the precondition
PreΨa and the post-condition PostΨa . We denote by ΨAa , the semantics of the
action a in Σext

A .
The composition of two interface automata may take effect only if their ac-

tions are disjoint, except for shared input and output ones. Shared input and
output actions must have the same number, the same type, the same order of
input and output parameters. The parameter names of two shared actions may
be different. During the composition of two interface automata, shared actions
synchronize and all other actions are interleaved asynchronously.
3 The operators of the propositional logic are {∧,∨,⇐,¬,≡}

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 10

Definition 3 (Composability). Two interface automata A1 and A2 are com-
posable if

ΣI
A1
∩ΣI

A2
= ΣO

A1
∩ΣO

A2
= ΣH

A1
\ {ε} ∩ΣA2 = ΣH

A2
\ {ε} ∩ΣA1 = ∅.

Shared(A1,A2) = (ΣI
A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared input

and output actions of A1 and A2. Suppose that the signature of an action a ∈
Shared(A1,A2) is given by a(i1,...,in) → (o) in A1 and by a(i′1,...,i′n) → (o′) in
A2 then, D ik ⊆ D i′k for 1≤k≤ n and Do ⊆ Do′ in the case where a ∈ ΣO

A1
and

a ∈ ΣI
A2

. Otherwise, D ik ⊇ D i′k for 1≤k≤ n and Do ⊇ Do′ . This property is
called the domain inclusion of the parameters of shared actions.

If all of the assumptions cited above are satisfied for the shared actions
signatures of two interface automata A1 and A2 to be composed, we have to
perform the renaming of parameter names in their pre and post-conditions.

Definition 4 (Parameter Renaming). Given two composable interface au-
tomata A1, A2 where Shared(A1,A2) 6= ∅ and an action a in Shared(A1,A2), the
signature of a is given by a(i11,...,in1) → (o1) in A1 and a(i12,...,in2) → (o2)
in A2. The renaming of the parameters names in the semantics ΨA1

a and ΨA2
a is

defined by the substitution of i12 by i11,...,in2 by in1, and o2 by o1 in Pre
Ψ
A2
a

and
Post

Ψ
A2
a

or the substitution of i11 by i12,...,in1 by in2, and o1 by o2 in Pre
Ψ
A1
a

and Post
Ψ
A1
a

.

We denote by ΨA1/A2
a and ΨA2/A1

a , the semantics of a shared external action
a after the parameter renaming respectively in A1 and A2. We can now define
the synchronized product A1 ⊗A2 properly.

Definition 5 (Synchronized Product). Let A1 and A2 be two composable
interface automata. The product A1 ⊗A2 is defined by

– SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;
– ΣI

A1⊗A2
= (ΣI

A1
∪ΣI

A2
) \ Shared(A1, A2);

– ΣO
A1⊗A2

= (ΣO
A1
∪ΣO

A2
) \ Shared(A1, A2);

– ΣH
A1⊗A2

= ΣH
A1
∪ΣH

A2
∪ Shared(A1, A2);

– ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

• a 6∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2
• a 6∈ Shared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1
• a ∈ Shared(A1, A2)∧((s1, a, s′1) ∈ δA1∧a ∈ ΣO

A1
)∧((s2, a, s′2) ∈ δA2∧a ∈

ΣI
A2

)∧ Pre
Ψ
A1/A2
a

⇒ Pre
Ψ
A2/A1
a

∧ Post
Ψ
A2/A1
a

⇒ Post
Ψ
A1/A2
a

• a ∈ Shared(A1, A2)∧((s1, a, s′1) ∈ δA1∧a ∈ ΣI
A1

)∧((s2, a, s′2) ∈ δA2∧a ∈
ΣO
A2

)∧ Pre
Ψ
A2/A1
a

⇒ Pre
Ψ
A1/A2
a

∧ Post
Ψ
A1/A2
a

⇒ Post
Ψ
A2/A1
a

The incompatibility between A1 and A2 is due to (i) the existence of some
states (s1,s2) in the product A1 ⊗ A2 where one of the two interface automata
outputs a shared action a from the state s1 which is not accepted as input from
the state s2 or vice versa, or (ii) from that states they synchronize on the action
signatures but their semantics do not match according to Definition 5. These
states are called illegal states.

S. Chouali, S. Mouelhi, H. Mountassir

11 Technical Report, KIT, 2010-13

Definition 6 (Illegal States). Given two composable interface automata A1

and A2, the set of illegal states Illegal(A1,A2) ⊆ SA1×SA2 in A1⊗A2 is defined
by {(s1, s2) ∈ SA1 × SA2 | ∃ a ∈ Shared(A1, A2). the following condition holds}

(a ∈ ΣO
A1(s1) ∧ a 6∈ ΣI

A2(s2)) ∨ (a ∈ ΣO
A1(s1) ∧ a ∈ ΣI

A2(s2)
∧(Pre

Ψ
A1/A2
a

6⇒ Pre
Ψ
A2/A1
a

∨ Post
Ψ
A2/A1
a

6⇒ Post
Ψ
A1/A2
a

))

!
∨

(a ∈ ΣO
A2(s2) ∧ a 6∈ ΣI

A1(s1)) ∨ (a ∈ ΣO
A2(s2) ∧ a ∈ ΣI

A1(s1)
∧(Pre

Ψ
A2/A1
a

6⇒ Pre
Ψ
A1/A2
a

∨ Post
Ψ
A1/A2
a

6⇒ Post
Ψ
A2/A1
a

))

!

The reachability of states in Illegal(A1, A2) do not implies that A1 and A2

are not compatible. The existence of an environment E (an interface automaton)
that produces appropriate inputs for the product A1 ⊗ A2 ensures that illegal
states will not be entered and then A1 and A2 can be used together. The com-
patible states, denoted by Comp(A1,A2), are states from which the environment
can prevent entering illegal states.

Definition 7 (Compatibility). Given two composable interface automata A1

and A2, A1 and A2 are compatible if and only if the initial state of their product
A1 ⊗A2 is compatible.

The composition A1 ‖ A2 of two compatible interface automata A1 and A2 is
defined by (i) SA1‖A2 = Comp(A1,A2), (ii) IA1‖A2 = IA1⊗A2∩ Comp(A1,A2), (iii)
Σ∗A1‖A2

= Σ∗A1⊗A2
where * ∈ {O, I,H}, and (iv) δA1‖A2 = δA1⊗A2 ∩ Comp(A1,A2)

× ΣA1‖A2 × Comp(A1,A2).
The verification steps in this approach are the same as those detailed in [1]

except that we consider the semantics of actions. The proposed algorithm of
the compatibility decides if two interface automata are compatible by checking
if their composition is non-empty. Our extentions do not increase the linear
complexity of the previous proposed one. Finally, we add that the associative
criterion of the composition operator ‖ holds between three interface automata
and it is undefined when some of them are not composable.

3 Interface Mismatches

The definitions of component interface mismatches [7, 5, 6] are essentially due to
the reuse of components in a system design which is often harmed by mismatch
cases such as: (i) names of exchanged messages between components do not
correspond which may lead to deadlock situations, components regularly interact
on the same action names; (ii) the orderings of messages or actions in both
component protocols do not correspond; (iii) an action in a component that has
no counterpart in the other one, or correspond to more than one action.

For interface automata, the behavioural mismatch cannot be detected by ap-
plying the synchronized product between two composable interface automata as
it was defined in Definition 4, because the case where there is no correspondence

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 12

between the action names leads to them being absent from the set of shared
actions. Thus, all of mismatched actions are interleaved asynchronously in the
product. To avoid this constraint, our adaptation specification starts by estab-
lishing an abstract way to denote the composition requirements. We corroborate
the explicit description of interactions between components thanks to rules. They
relate the mismatched actions used in different components which are supposed
to implement some interactions. Rules relate actions even if they do not really
label some transitions in the automaton as required by the optimistic approach
of interface automata.

The minimal adaptor specification of two interface automata A1 and A2 is the
set of rules called a mapping. The mapping does not represent any behavioural
detail about the adaptor.

Definition 8 (Rules and Mappings). A rule α for two composable interface
automata A1 and A2, is a couple 〈L1, L2〉 ∈ (2Σ

O
A1 × 2Σ

I
A2) ∪ (2Σ

I
A1 × 2Σ

O
A2)4

such that (L1 ∪ L2)∩Shared(A1, A2) = ∅ and if |L1| > 1 (or |L2| > 1) then |L2|
= 1 (or |L1|= 1);

A mapping Φ(A1, A2) for two composable interface automata A1 and A2 is
a set of rules αi, for 1 ≤ i ≤ |Φ(A1, A2)|.

According to Definition 8, a rule in our approach deals with one-to-one,
many-to-one, and one-to-many correspondences between actions. More clearly,
the adaptation may in general relate either an action or a group of actions of
one automaton with one action in the other. For instance, a client authenticates
itself by sending first its user name and then a password while the server accepts
both data in a single login shot. We denote the set of the mismatched actions
by MismatchΦ(A1, A2) = {a ∈ Σext

A1
∪ Σext

A2
| ∃ α ∈ Φ(A1, A2) . a ∈ Π1(α) ∨ a

∈ Π2(α)}5.
Given two composable interface automata A1 and A2 and a mapping Φ(A1,

A2), if Φ(A1, A2) = ∅, the adaptation of A1 and A2 has no sense and their
synchronization is defined by their product A1⊗A2 as it was defined in section 2.
Otherwise, we proceed on two steps:

– we check first the semantic adaptability between the mismatched actions in
the mapping Φ(A1, A2);

– if the semantic adaptability check was successfully made without giving rise
to incompatibilities, we generate the adaptor of A1 and A2 according to
the mapping Φ(A1, A2). If the generated adaptor is non-empty and it is
compatible with both of A1 and A2, we say that A1 and A2 are adaptable.

4 Semantic Adaptability

The semantic adaptability between the mismatched actions of two composable
interface automata has to be made before generating the adaptor. The mis-
4 For some set S, 2S is its power set.
5 Π1(〈a, b〉) = a and Π2(〈a, b〉) = b are respectively the projection on the first element

and the second element of the couple 〈a, b〉.

S. Chouali, S. Mouelhi, H. Mountassir

13 Technical Report, KIT, 2010-13

matched actions have to respect some constraints at the level of their seman-
tics. Let us consider two interface automata A1 and A2 and a given mapping
Φ(A1, A2). To perform the semantic adaptability check between A1 and A2 ac-
cording to Φ(A1, A2), it is required that for each rule α = 〈L1, L2〉 ∈ Φ(A1, A2)
the following conditions hold:

1.
∑
a∈L1

| P i
a | =

∑
b∈L2

| P i
b |;

2.
∑
a∈L1

| P o
a | =

∑
b∈L2

| P o
b |;

3. if |L1| = 1 and | L2| ≥ 1 where L1 = {a}, L2 = {b1, ..., b|L2|}, and P o
a = {oa}

then there exists exactly one action bk ∈ L2 (1≤k≤ | L2 |) such that P o
bk

=
{obk}, P o

bl
= ∅ for 1≤l≤ | L2 | and l 6=k, and the two output parameters oa

and obk have to satisfy the domain inclusion condition:
– if L1 ⊆ ΣO

A1
, then Doa ⊆ Dobk

;
– else Doa ⊇ Dobk

;
θα denotes the tuple (a,bk). If P o

a = {}, (a,bk) is not defined;
4. the condition is analogous to the previous one with |L1|≥ 1 and |L2| = 1

where L1 = {a1, ..., a|L1|} and L2 = {b};
5. there exists a function ϕi

α :
⋃
a∈L1

P i
a →

⋃
b∈L2

P i
b that associates each input

parameter p of actions in L1 with an input parameter q of actions in L2.
The function ϕi

α have to satisfy the domain inclusion condition:
– if L1 ⊆ ΣO

A1
, then Dp ⊆ Dϕi

α(p) where p ∈ ⋃
a∈L1

P i
a ;

– else Dϕi
α(p) ⊆ Dp where p ∈ ⋃

a∈L1
P i
a.

The first and the second conditions state that the number of input (respec-
tively output) parameters of actions in L1 is equal to the number of input (re-
spectively output) parameters of actions in L2. The third condition states the
relations between the output parameter of the action a ∈ L1 and the one of the
action bk ∈ L2. We assume that the other actions in L2 \ {bk} have no output
parameters. The intuition behind these conditions is to avoid conflicts between
the pre and post-conditions during the semantic adaptability check by ensuring
the equality between the number of input and output parameters.

The renaming of the input and output parameter in the semantics of actions
in MismatchΦ(A1, A2) is defined as follows.

– For all a ∈ L1 and b ∈ L2, it is defined by the substitution of each input
parameter i of a in Pre

Ψ
A1
a

and Post
Ψ
A1
a

by ϕi
α(i) or the substitution of each

input parameter i’ of b in Pre
Ψ
A2
b

and Post
Ψ
A2
b

by ϕi
α
−1(i′)6 if ϕi

α is defined.
– If the tuple θα = (a,b) exists, it is defined by the substitution of the output

parameter oa in Post
Ψ
A1
a

by ob or the substitution of the output parameter
ob in Post

Ψ
A2
b

by oa.

We denote by ΨA1,α
a and ΨA2,α

b respectively the semantics of actions a in
Π1(α) and actions b in Π2(α) after the parameter renaming.

6 For a function f, we define by f −1 its inverse function.

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 14

1 2 3

456

login!

error?
ok?

re
q

!

arg!finish!

te
rm

in
a

te
?

Client

login

ok

terminate

req

arg

error finish

1 2 3 4

56

7 8

usr? pass?

Server

connected!

open?

close?

terminate!

admin-md?
usr?

error!

usr

pass

value

close

terminate

admin-md connected error

Fig. 1. A variant of a client/server system

Definition 9 (Semantic Adaptability). Given two interface automata A1

and A2 and a non empty mapping Φ(A1, A2), the semantic adaptability of a
rule α in Φ(A1, A2) is defined by the following conditions:

1. if Π1(α) ⊆ ΣO
A1

, then0BB@
V

a∈Π1(α)

Pre
Ψ
A1,α
a

⇒ V
b∈Π2(α)

Pre
Ψ
A2,α
b

∧V
a∈Π1(α)

Post
Ψ
A1,α
a

⇐ V
b∈Π2(α)

Post
Ψ
A2,α
b

1CCA
2. if Π1(α) ⊆ ΣI

A1
, then the condition is analogous to the first one by inversing

the implications.

We say that A1 and A2 are semantically adaptable according to the mapping
Φ(A1, A2) if the semantic adaptability of each rule α ∈ Φ(A1, A2) holds.

The semantic adaptability conditions are stated in a similar way as the se-
mantic compatibility of the shared actions defined in Definition 5 except that
for adaptation, we treat sets of mismatched actions associated by the rules of
the mapping.

Example 1. Let us consider the two composable interface automata Client and
Server shown in Figure 1 and a mapping Φ(Client,Server) = {〈 {login}, {usr,
pass}〉, 〈{finish}, {close}〉, 〈{ok}, {connected}〉 〈{req,arg}, {open}〉 }. The set
Shared(A1, A2) = {error,terminate}.

After authentication, Client sends a request req ! to open a file in read-only
or write mode. After that, it sends an action arg ! containing the name of a file
to be open. Server receives the two actions by executing an action open? that
open the file in readonly or write mode. After using the file, Client sends a signal
finish! indicating to Server that the file is ready to be closed (action close?).
Finally, Server sends a signal terminate! to terminate the session. The action
admin-md? is a super signal received from the administrator of the system to

S. Chouali, S. Mouelhi, H. Mountassir

15 Technical Report, KIT, 2010-13

Table 1. The signatures of actions in MismatchΦ(Client,Server)

Client Server

α1 login(uname,passwd,lu,lp)→(exist) usr(username,lengthu)→()
pass(password,lengthp)→(exist)

α2 ok(msg)→() connected(logmsg)→()

α3 req(read)→() open(readonly,filename)→(open)
arg(file)→(status)

α4 finish()→(status) close()→(closed)

Table 2. The semantics of actions in MismatchΦ(Client,Server)

Client Server

PreΨClient
login

≡ 1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10 PreΨServer
usr

≡ 1 < lengthu ≤ 30

PostΨClient
login

≡ exist = 1 ∨ exist = 0 PostΨServer
usr

≡ true

PreΨServer
pass

≡ 6 ≤ lengthp ≤ 10

PostΨServer
pass

≡ exist = 1 ∨ exist = 0

PreΨClient
ok

≡ true PreΨServer
connected

≡ true

PostΨClient
ok

≡ true PostΨServer
connected

≡ true

PreΨClient
req

≡ read = 0 ∨ read = 1 PreΨServer
open

≡ readonly = 0 ∨ readonly = 1

PostΨClient
req

≡ true PostΨServer
open

≡ open = 1 ∨ open = 1

PreΨClient
arg

≡ true

PostΨClient
arg

≡ status = 0 ∨ status = 1

PreΨClient
finish

≡ true PreΨServer
close

≡ true

PostΨClient
finish

≡ status = 0 ∨ status = 1 PostΨServer
close

≡ closed = 0 ∨ closed = 1

open a super user session. When a client username is received by the server after
receiving the admin-md ! signal from an administrator, then an error is detected.

The mismatched actions are described and classified by the rules in Ta-
ble 1. The function ϕi

α2
is defined by {msg 7→logmsg}. The function ϕi

α4
is not

defined. The function ϕiα1
is defined by and {uname 7→username, lu 7→lengthu,

passwd 7→password, lp 7→lengthp}. The function ϕi
α3

is defined by {read 7→readonly,
file 7→filename}. The function ϕi

α4
is empty. θα1 = (login,pass), θα2 is not defined,

θα3 = (arg,open), and θα4 = (finish,close). The parameters uname, passwd, user-
name, password, msg, logmsg, file, and filename are strings. The parameters lu,
lp, lengthu, lengthp, read, readonly, status, open, and closed are integers. As the
reader can conclude, the conditions to perform the semantic adaptability check
hold for all α in Φ(A1, A2):

– for all α ∈ Φ(A1, A2),
∑
a∈Π1(α) |P i

a| =
∑
b∈Π2(α) |P i

b| and
∑
a∈Π1(α) |P o

a | =∑
b∈Π2(α) |P ob |;

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 16

– the domain inclusion conditions are satisfied for θ∗ and ϕi∗ where * ∈ Φ(Client,
Server).

The semantics of the mismatched actions respectively for Client and Server
are listed in Table 2. After unifying the mismatched actions in MismatchΦ(Client,
Server), the reader can easily verify the semantic adaptability for all α in
Φ(Client, Server) holds. For example, for the rule α1, Pre

Ψ
Client,α1
login

⇒ (Pre
Ψ

Server,α1
usr

∧ Pre
Ψ

Server,α1
pass

) is satisfiable ((1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10) ⇒ (1 < lu ≤ 30 ∧
6 ≤ lp ≤ 10)). Also, Post

Ψ
Client,α1
login

⇐ (Post
Ψ

Server,α1
usr

∧ Post
Ψ

Server,α1
pass

) is satisfiable

((exist = 1 ∨ exist = 0)⇐ (true ∧ (exist = 1 ∨ exist = 0))). We can deduce that
Client and Server are semantically adaptable according to Φ(Client,Server).

5 Adaptor Specification and Construction

After verifying the semantic adaptability between two composable interface au-
tomata A1 and A2 according to a mapping Φ(A1, A2), we treat in this section
the IA specification and construction of their adaptor. The adaptor must be
composable with A1 and A2 and satisfy the event reordering of both A1 and A2.

Given an interface automaton A, we denote by ΘS
A(s) ⊆ S∗A the set of suc-

cessor finite runs θ = s1a1s2a2...sn such that s1 = s, sn is the initial state or a
state that has no outgoing transitions, and for all 1 ≤ i < n, there is a transition
(si, ai, si+1) ∈ δA. We denote by ΘP

A(s) ⊆ S∗A the set of predecessor finite runs
θ = s1a1s2a2...sn is defined exactly as ΘS

A(s) except s1 = i where i ∈ IA and
sn = s. The set ΘA of all finite runs of A equals to ΘS

A(i) where i ∈ IA. We say
that a succession of transitions s1a1s2a2...sn (for n ≥ 2) is included in a run σ in
ΘS
A(s) or ΘP

A(s) (denoted by the operator v), if all transitions of s1a1s2a2...sn
are transitions of σ.

Definition 10 (Adaptor). Given two composable interface automata A1, A2,
and a mapping Φ(A1, A2), an adaptor for A1 and A2 according to the mapping
Φ(A1, A2) is an interface automaton Ad = 〈 SAd, IAd, ΣI

Ad, ΣO
Ad, ΣH

Ad, δAd 〉
such that

– ΣI
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩(ΣO

A1
∪ΣO

A2
)};

. for all a ∈ ΣI
Ad, ΨAda = ΨA1

a if a ∈ ΣO
A1

. Otherwise, ΨAda =ΨA2
a ;

– ΣO
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩(ΣI

A1
∪ΣI

A2
)};

. for all a ∈ ΣO
Ad, ΨAda = ΨA1

a if a ∈ ΣI
A1

. Otherwise, ΨAda =ΨA2
a ;

– ΣH
Ad ⊆ {ε};

– δAd ⊆ SAd ×ΣI
Ad ∪ΣO

Ad ∪ {ε} × SAd;
– Shared(Ad,A1) =

⋃
α∈Φ(A1,A2)

Π1(α);
– Shared(Ad,A2) =

⋃
α∈Φ(A1,A2)

Π2(α);
– For all s ∈ SAd and σ ∈ ΘP

Ad(s), if there exist r1a1...rnans v σ and α ∈
Φ(A1, A2) such that Πi(α) ⊆ ΣO

Ai
for i ∈ {1, 2} and Πi(α) ⊆ ⋃

k∈1..n{ak},
then for all ρ ∈ ΘS

Ad(s), there exists sb1...bmtm v ρ such that Π3−i(α) ⊆
ΣI
A3−i and Π3−i(α) ⊆ ⋃

l∈1..m{bl}.

S. Chouali, S. Mouelhi, H. Mountassir

17 Technical Report, KIT, 2010-13

α β γ δ ε

ζηθϑι

login? usr! pass! connected?

ok!

req?arg?open!finish?

close!

login

usr

pass

req

arg

open

finish

close

connectedok

Fig. 2. The adaptor Adaptor for Client and Server

The last condition of Definition 10 states that for all σ ∈ ΘA, if ∃α ∈
Φ(A1, A2) such that the output actions (enabled as input in Ad) of α are present
in σ then they are succeed by there correspondent input actions (enabled as out-
put in Ad).

Property 1. An adaptor Ad for two interface automata A1 and A2 according to
a mapping Φ(A1, A2) is composable with A1 and A2.

The property can be easily verified according to Definition 10. The composi-
tion of A1 and A2 is performed by synchronizing first Ad with either A1 or A2,
computing their composition according to our extended approach, and then by
composing the resulting composition with the remaining automaton. We suppose
that the actions of the adaptor have the same signatures and semantics as actions
in MismatchΦ(A1,A2). If the composite interface automaton A1 ‖ Ad ‖ A2 is non
empty then A1 and A2 are compatible after their adaptation at the protocol and
the semantic levels.

Our presented algorithm presented in [8] constructs an adaptor for two com-
posable interface automata A1, A2, and a given non empty mapping Φ(A1, A2).
The algorithm is basically a loop which reads in parallel A1 and A2 and con-
structs as one goes along the set of states and the set of transitions of the adaptor.
The algorithm is executed by respecting the reordering of events of both inter-
faces A1 and A2. The algorithm marks and removes from the generated graph
all the fragments of runs that do not respect the last condition of Definition 10.
If the result of the algorithm is non-empty then we check that the generated
adaptor Ad is compatible with both of A1 and A2. In that case, we say that the
two A1 and A2 are adaptable. If A1 ‖ Ad ‖ A2 is non empty we say that A1 and
A2 are compatible after their adaptation by Ad.

The part of the algorithm that constructs the set of states and transitions
has the time complexity O(|SA1 × SA2 |.(|δA1 |+ |δA2 |)). The time complexity of
the part that removes the undesired run fragments is linear in the number of
states of the generated states.

Example 2. As the reader can conclude, Adaptor is composable with both Client
and Server presented in Example 1 and it satisfies all the items of Definition 10.
Our proposed algorithm in [8] generates exactly the same interface automaton

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 18

shown in Figure 2. Suppose that the semantic compatibility between the shared
actions error and terminate holds, then Adaptor is compatible with both Client
and Server. The composite interface automaton (Client ‖ Adaptor) ‖ Server is
non empty which makes Client and Server compatible after their adaptation.

6 Related Works

Several techniques of adaptation show how to automatically derive adaptors in
order to eliminate mismatches between components during their interactions. In
[21], the authors propose an interesting approach based on finite state machines
to adapt components specified by interfaces describing component protocol and
action signatures. This approach deals with one-to-one relations between ac-
tions. In [14], the authors propose the Smart Connectors approach which allows
the construction of adaptors using the provided and required interfaces of the
components in order to resolve partial matching problems in COTS component
acquisition.

In [5], the authors have proposed a formal approach based on calculus to
generate automatically adaptors using the Prolog language. In [10], Hemer has
proposed, using template from the CARE language, to define adaptation strate-
gies for modifying and combing components. In [15], the authors have proposed
a model of adaptors expressed in the B formal method, allowing to define the in-
teroperability between components. In [17] the authors introduce the concept of
parameterized contracts and a model for component interfaces, they also present
algorithms and tools for specifying and analyzing component interfaces in or-
der to check interoperability and to generate adapted component interfaces.
Finally, Bosch [4] gives a large overview on adaptation mechanisms including
non-automated approaches can be found in [11, 18].

The approaches described above propose solutions for the component adap-
tation based on different specification formalisms of component interfaces. Our
approach is different from the others, because we propose a solution to adapt
particular components that are specified by interface automata. This formalism
allows to exploit optimistic approach [1] to check to component interoperability.
This adaptation approach deals with the signature, the semantic, and the proto-
col levels, and deals also with possibly complex adaptation scenarios : one-to-one
and one-to-many correspondences between actions.

7 Conclusion and Future Works

In this paper, we propose a formal approach for the automatic development of
component adaptors, allowing the elimination of mismatches between interact-
ing components. Our component interfaces are described by interface automata
enriched by the action semantics. We propose to describe in interface automata
component information at three levels: signature, semantic(signature and seman-
tic of offered and required actions), and component protocol(interactive behavior
that the component follows). We specify a correspondence mapping between the

S. Chouali, S. Mouelhi, H. Mountassir

19 Technical Report, KIT, 2010-13

mismatched actions of two components as a first abstract specification of the
adaptor. This mapping deals with one-to-one and one-to-many correspondences
between the actions. A compatibility check after adaptation is made on the set
of mismatched action in a similar way as the set of shared actions. We propose
an algorithm that generates automatically the adaptor for two composable in-
terface automata according to a fixed mapping. The generated adaptor allows
to eliminate mismatches at the signature, semantic and the protocol levels. The
proposed algorithms were implemented in Java in order to validate them, and
we plan to propose a complete tool in the future works.

We are developing a tool that implements a framework checking the compat-
ibility between interface automata at the protocol and the semantic levels [16].
We plan also to implement the proposed adaptation approach in our framework.

References

[1] L. Alfaro and T. A. Henzinger. Interface automata. ACM Press, 9th Annual
Aymposium of FSE (Foundations of Software Engineering), pages 109–120, 2001.

[2] L. Alfaro and T. A. Henzinger. Interface theories of component-based design. In
the proceeding of the First International Workshop of Embedded Software (EM-
SOFT), LNCS, 2211:148–165, 2001.

[3] L. Alfaro and T. A. Henzinger. Interface-based design. NATO Science Series :
Mathematics, Physics, and Chemistry, Engineering Theories of Software Intensive
Systems, 195:83–104, 2005.

[4] J. Bosch. Design and use of software architectures - adopting and evolving a
product-line approach. Addison-Wesley, Reading, MA, USA, 2000.

[5] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, 74:45–54, 2005.

[6] C. Canal, J. Murillo, and P. Poizat. Software adaptation. Special Issue on Software
adaptation, 12(1):9–31, 2006.

[7] C. Canal, P. Poizat, and G. Salaün. Synchronizing behavioural mismatch in
software composition. Proc. of FMOODS’06, LNCS, 6:63–77, 2006.

[8] S. Chouali, S. Mouelhi, and H. Mountassir. Adapting component behaviours using
interface automata. IEEE Computer Society proceedings, Euromicro SEAA 2010
conference, September 2010.

[9] G. T. Heineman and H. M. Ohlenbusch. An evaluation of component adapta-
tion techniques. In The International Workshop on Component-Based Software
Engineering, 1999.

[10] D. Hemer. A formal approach to component adaptation and composition. In
Proceedings of the Twenty-eighth Australasian conference on Computer Science
ACSC ’05 Newcastle, Australia, pages 259–266, 2005.

[11] S. Kent, C. Ho-Stuart, , and P. Roe. Negotiable interfaces for components. Journal
of Object Technology, TOOLS USA proceedings 1, pages 249–265, 2002.

[12] D. Konstantas. Interoperation of object oriented application. In Proceedings of
Object-Oriented Software Composition, Oscar Nierstrasz and Dennis Tsichritzis,
Prentice Hall, pages 69–95, 1995.

[13] N. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed algorithms.
In the proceeding of the 6th ACM Symp. Principles of Distributed Computing,
pages 137–151, 1987.

Adapting Components using Interface Automata Enriched by the Action Semantics

Technical Report, KIT, 2010-13 20

[14] H. Min, S. Choi, and S. Kim. Using smart connectors to resolve partial matching
problems in cots component acquisition. LNCS, Springer-Verlag, Berlin, Ger-
many, 3054:40–47, 2004.

[15] I. Mouakher, A. Lanoix, and J. Souquières. Component Adaptation: Specifica-
tion and Verification. In 11th International Workshop on Component Oriented
Programming (WCOP 2006), page 8, ECOOP 2006, Nantes, France, 07 2006.

[16] S. Mouelhi, S. Chouali, and H. Mountassir. Refinement of interface automata
strengthened by action semantics. ENTCS, FESCA09 of the European joint con-
ference on Theory and Practice of Software (ETAPS’09), 253-1:111–126, March
2009.

[17] R. Reussner. Automatic component protocol adaptation with the coconut/j tool
suite. Future Generation Computer Systems, 19(5):627–639, 2003.

[18] H. Schmidt and R. Reussner. Generating adaptors for concurrent component pro-
tocol synchronisation. In the proceeding of the Fifth IFIP International Conference
on Formal Methods for Open Object-Based Distributed Systems, pages 213–229,
2002.

[19] C. Szyperski. Component software: Beyond object oriented programming. Addi-
son Wesley, 1999.

[20] P. Wegner. Interoperability. ACM Computing Survey, 28:285–287, 1996.
[21] D. Yellin and R. Strom. Protocol specifications and components adaptors. ACM

Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

S. Chouali, S. Mouelhi, H. Mountassir

21 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification
of Control–Flow Safety Properties

Marieke Huisman1 and Dilian Gurov2?

1 University of Twente, Netherlands
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. This paper describes CVPP, a tool set for compositional ver-
ification of control–flow safety properties for programs with procedures.
The compositional verification principle that underlies CVPP is based
on maximal models constructed from component specifications. Max-
imal models replace the actual components when verifying the whole
program, either for the purposes of modularity of verification or due to
unavailability of the component implementations at verification time. A
characteristic feature of the principle and the tool set is the distinction
between program structure and behaviour. While behavioural properties
are more abstract and convenient for specification purposes, structural
ones are easier to manipulate, in particular when it comes to verifica-
tion or the construction of maximal models. Therefore, CVPP also con-
tains the means to characterise a given behavioural formula by a set of
structural formulae. The paper presents the underlying framework for
compositional verification and the components of the tool set. Several
verification scenarios are described, as well as wrapper tools that sup-
port the automatic execution of such scenarios, providing appropriate
pre– and post–processing to interface smoothly with the user and to
encapsulate the inner workings of the tool set.

1 Introduction

To enable verification of realistic software, verification techniques have to be
compositional and algorithmically decidable. Compositionality ensures that the
verification task can be split up in smaller pieces, while algorithmic decidability
ensures that verification can be done automatically, without any user interac-
tion. Moreover, for many application domains, compositionality and algorithmic
decidability are essential.

For example, in a dynamically reconfigurable distributed system, components
can join and leave the system at run–time dynamically. For such an open system,
appropriate verification techniques are necessary to support safe downloading,
i.e., to determine without any user interaction whether a newly arriving compo-
nent will not corrupt the well–functioning of the global system. These techniques
require the relativisation of the correctness of the system on the specifications

? Partially funded by the EU FET project FP7–ICT–2009–3 HATS.

Technical Report, KIT, 2010-13 22

and the local correctness of its components. This relativisation can also be used
for the purposes of modularity. Modular verification is a means of controlling
the complexity of verifying large software. It allows an independent local evolu-
tion of the implementations of individual modules without affecting the global
correctness of the program.

The CVPP tool set is designed to tackle exactly this kind of verification
problems by supporting an algorithmic technique for compositional verification.
Its focus is on control–flow safety properties of programs with (possibly recur-
sive) procedures. Such properties typically describe sets of allowed sequences
of method invocations, and are conveniently expressed in temporal logic. The
underlying program model is that of flow graphs, abstracting completely from
program data to allow efficient algorithmic modular verification. However, the
model can be enhanced with exception information or multi–threading. Even
though the tool set is developed with compositionality in mind, it can also be
used for non–compositional control–flow verification problems of programs with
procedures. In particular, it allows to reduce infinite–state verification of be-
havioural properties to finite–state verification of structural properties.

Abstracting away from all data may seem like a severe restriction, but still
many useful properties can be expressed, such as:

– there are no calls to non–atomic methods within atomic transactions;
– in a voting system, candidate selection has to be finished, before the vote

can be confirmed;
– a method that changes sensitive data is only called from within a dedicated

authentication method, i.e., unauthorized access is not possible;
– in a door access control system, the password has to be checked before the

door is unlocked, and it can only be changed if the door is unlocked.

Extending the technique with data over finite domains will allow for a wider
range of properties and possible applications, but needs to be combined with
abstraction techniques to control the complexity of verification. Such an exten-
sion will be investigated in future work.

The present paper describes CVPP, its underlying compositional verification
framework, and its implementation. We describe three important verification
scenarios: (i) open system verification, (ii) modular verification, and (iii) non–
compositional verification. We also discuss the encapsulation of the inner work-
ings of CVPP by means of wrapper tools that automate the various scenarios.

Previous work by the authors on tool support and case studies has been
reported in 2004 [15]. The current version of the tool set, discussed in this pa-
per, includes later extensions: (i) an inliner to abstract private methods [10],
(ii) more general program models concerning exceptions, threads and open
flow graphs [14,12], and (iii) a property translation from behavioural to struc-
tural properties [11,12]. The last extension allowed local assumptions to be be-
havioural, whereas before they had to be structural. Further, we have unified
the inputs and outputs to allow interoperability of the individual tools, and
have started to work on wrapper tools, automating the verification scenarios.

M. Huisman, D. Gurov

23 Technical Report, KIT, 2010-13

Related Work Maven is a modular verification tool addressing temporal proper-
ties of procedural languages in the context of aspects [8]. A non–compositional
verification method based on a program model closely related to ours is pre-
sented by Alur and others [3]. It proposes a temporal logic CaRet for nested calls
and returns (generalised to a logic for nested words in [1]) that can be used to
specify regular properties of local paths within a procedure that skips over calls
to other procedures.

Most of the existing work on modular verification of safety properties is based
on Hoare logic. Müller was the first to propose a sound modular Hoare–style
verification technique for object–oriented languages [17]. A typical verification
tool within this line of work is Spec# [4].

Recent work by Alur and Chauhuri proposes a unification of Hoare–style
and Manna–Pnueli–style temporal reasoning for procedural programs, presenting
proof rules for procedure–modular temporal reasoning [2].

Organisation Sections 2 and 3 sketch the tool set’s theoretical background and
underlying verification method. Section 4 describes the different tools that make
up CVPP, followed by a description of typical verification scenarios in Section 5.
Section 6 exemplifies some typical verification tasks when using CVPP. We con-
clude with possible extensions that would make CVPP applicable to a larger class
of problems (without changing the underlying methodology).

2 Program Model and Logic

This section summarises the program model and logic that underlies CVPP. For
a more detailed account, the reader is referred to [13].

As mentioned earlier, a characteristic feature of CVPP is the distinction be-
tween structural and behavioural properties. Usually, we are interested in prop-
erties of the behaviour of a program, while its structure is just a means for
accomplishing the desired behaviour. Furthermore, the same behaviour can be
produced by several structures. It is thus more natural and more abstract to
specify programs with behavioural properties than with structural ones.

However, algorithmic techniques for program analysis and verification are
computationally considerably more expensive on the level of program behaviour
than on the level of program structure. Program correctness problems are there-
fore often phrased in terms of the program structure rather than in terms of
its behaviour. Furthermore, many behavioural properties have natural struc-
tural counterparts, e.g., tail recursion, while other behavioural properties can
be characterised through finite sets of structural ones (see Section 3). Therefore,
CVPP is set up in such a way that structural properties can be used whenever
this is possible and meaningful.

2.1 Model and Logic

Our program model is control–flow based and thus over–approximates actual
program behaviour. It defines two different views on programs: a structural and

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 24

a behavioural one. Both views are instantiations of the general notions of model,
defined below. Notice in particular that these instantiations yield a structural
and a behavioural version of the logic, and that this enables a uniform treatment
of structure and behaviour whenever possible.

Definition 1. (Model) A model is a structure M = (S,L,→, A, λ), where S is
a set of states, L a set of labels, →⊆ S × L× S a labelled transition relation, A
a set of atomic propositions, λ : S → P(A) a valuation, assigning to each state
s the set of atomic propositions that hold in s. An initialised model is a pair
(M, E), with M a model and E ⊆ S a set of entry states.

As property specification language we use the fragment of the modal µ-calculus [16]
with boxes and greatest fixed-points only. This temporal logic is capable of char-
acterising simulation (cf. [13]) and is thus suitable for expressing safety proper-
ties. Throughout, we fix a set of labels L, a set of atomic propositions A, and a
set of propositional variables V .

Definition 2. (Logic) The formulae of our logic are inductively defined by:

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φ
where p ∈ A, a ∈ L and X ∈ V .

Satisfaction on states (M, s) |= φ is defined in the standard fashion [16]. For
instance, formula [a]φ holds of state s in model M if φ holds in all states
accessible from s via an edge labelled a. A model (M, E) satisfies a formula φ,
denoted (M, E) |= φ, if all its entry states E satisfy φ. The constant formulae
true (denoted tt) and false (ff) are definable. For convenience, we use p⇒ φ to
abbreviate ¬p∨φ. We assume that formulae have pair–wise distinct fixed–point
binders, and unless stated otherwise, are closed and guarded (cf. [22]).

2.2 Control–Flow Structure and Behaviour

Control–Flow Structure We abstract away from all data, therefore program
structure is defined as a collection of control–flow graphs (or flow graphs), one for
each of the program’s methods. Let Meth be a countably infinite set of method
names. A method graph is an instance of the general notion of model.

Definition 3. (Method graph) A method graph for m ∈ Meth over a finite set
M ⊆ Meth of method names is an initialised model (Mm, Em), where Mm =
(Vm, Lm,→m, Am, λm) is a finite model and Em ⊆ Vm a non–empty set of entry
points of m. Vm is the set of control nodes of m, Lm = M ∪{ε}, Am = {m, r},
and λm : Vm → P(Am) is defined so that m ∈ λm(v) for all v ∈ Vm (i.e., each
node is tagged with its method name). The nodes v ∈ Vm with r ∈ λm(v) are
return points.

Example 1. Figure 1 shows a simple Java class and the (simplified) flow graph
it induces. The flow graph consists of two method graphs - one for method even
and one for method odd. Entry nodes are depicted as edges without source.

M. Huisman, D. Gurov

25 Technical Report, KIT, 2010-13

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

even

even, r reven,rr odd, odd,

odd

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }}

 return false;

class Number {

Fig. 1. A simple Java class and its flow graph

Flow graph interfaces are defined as pairs I = (I+, I−), where I+, I− ⊆
Meth are finite sets of names of provided and (externally) required methods,
respectively3. A flow graph G with interface I is denoted G : I. The flow graph
of a program is essentially the (disjoint) union] of its method graphs. Flow
graphs can only be composed if their interfaces match. A flow graph is closed if
I− = ∅, i.e., it does not require any external methods. Satisfaction, instantiated
to flow graphs, is called structural satisfaction |=s.

Example 2. Consider the flow graph in Example 1. The property “on every path
from a program entry node, the first encountered call edge goes to a return
node” is formalised by the structural formula νX. [even] r ∧ [odd] r ∧ [ε]X, in
effect specifying that the program is tail–recursive.

Control–Flow Behaviour Next, we instantiate models on the behavioural level.
Transition label τ designates internal transfer of control, m1 callm2 designates
an invocation of method m2 by method m1, and m2 retm1 designates the cor-
responding return.

Definition 4. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V, L,→, A, λ). The behaviour of G is defined as the initialised model
b(G) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = V × V ∗,
i.e., states are pairs of control points v and stacks σ (also called configurations),
Lb = {m1 k m2 | k ∈ {call, ret}, m1,m2 ∈ I+}∪{τ}, Ab = A, λb((v, σ)) = λ(v),
and →b⊆ Sb × Lb × Sb is defined by the rules:

[transfer] (v, σ) τ−→b (v′, σ) if m ∈ I+, v ε−→m v′, v |= ¬r
[call] (v1, σ) m1 call m2−−−−−−→b (v2, v′1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1 v
′
1,

v1 |= ¬r, v2 |= m2, v2 ∈ E
[return] (v2, v1 · σ) m2 ret m1−−−−−−→b (v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

3 We only require I− to contain methods that are not provided by I+. This is different
from our earlier work (e.g., [13]), but in line with the tool set implementation.

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 26

The set of initial configurations is defined by Eb = E × {ε}, where ε denotes
the empty sequence over V .

The definition is easily extended to open flow graphs (see [12]). Flow graph
behaviour can alternatively be defined via pushdown automata (PDA) [13, Def.
34] and approximated with the related notion of pushdown systems (PDS). We
exploit this by using PDS model checking for verification of behavioural prop-
erties (see [6]). Currently, our tool set relies on the external tool Moped [19];
however, this requires the properties to be translated in LTL.

Example 3. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite–state behaviour. One example execution
of the program is represented by the following path (in the branching structure)
from an initial to a final configuration:

(v0, ε)
τ−→b (v1, ε)

τ−→b (v2, ε)
even call odd−−−−−−−→b (v5, v3)

τ−→b (v6, v3)
τ−→b

(v7, v3)
odd call even−−−−−−−→b (v0, v9 · v3) τ−→b (v1, v9 · v3) τ−→b

(v4, v9 · v3) even ret odd−−−−−−−→b (v9, v3)
odd ret even−−−−−−−→b (v3, ε)

Also on the behavioural level, we instantiate the definition of satisfaction: we
define G |=b φ as b(G) |= φ. The resulting behavioural logic is powerful enough to
express the class of security policies defined by finite state security automata [18].

Example 4. For the flow graph from Example 1, the behavioural formula even⇒
νX. [even call even] ff ∧ [τ]X expresses the property “in every program execution
starting in method even, the first call is not to method even itself”.

Extensions This section presents the basic program model and logic, considering
only normal, sequential control–flow. Extensions with exceptions and with multi–
threaded behaviour (with synchronisation on locks) exist [14], and are supported
in CVPP. The extension to open flow graphs mentioned above is also supported.
In ongoing work we address further extensions to Boolean programs, as well as
to richer fragments of the µ–calculus; this is not incorporated in CVPP yet.

3 Framework for Compositional Verification

The compositional verification method underlying our tool set is based on the
computation of maximal models from component specifications and the instan-
tiation of components with these models when model checking global system
properties. For finite–state systems, this approach was introduced in [9] and
since then it has become a standard technique for reducing the verification of
correctness of property decompositions to model checking.

Maximal Models for Compositional Verification A model is said to be maximal
for a given property φ, if it satisfies φ and simulates (w.r.t. a suitable property-
preserving simulation relation ≤) all models satisfying φ. For models in the sense

M. Huisman, D. Gurov

27 Technical Report, KIT, 2010-13

of Definition 1 and formulae in the logic from Definition 2, maximal models exist
and are unique up to isomorphism (see [13]). To compute a maximal model for a
property φ, we present the formula as a modal equation system (see [5]), which
is then transformed into a canonical form, the so–called simulation normal form.
A formula φ in simulation normal form can be directly mapped into a (finite)
model M that simulates all models that satisfy φ; i.e., for any model M′: M′ ≤
M⇔M′ |= φ. Due to this close connection between simulation and satisfaction,
we obtain the following sound and complete verification principle [13]:

Compositional verification principle for models: to show M1]M2 |= ψ,
it suffices to show M1 |= φ (i.e., component M1 satisfies a suitably
chosen local assumption φ) and Mφ]M2 |= ψ (i.e., component M2,
when composed with the maximal model Mφ for φ, satisfies the global
guarantee ψ).

Completeness of the principle implies that no false negatives exist: ifMφ]M2 |=
ψ fails, then there is indeed a model M such that M |= φ but M]M2 6|= ψ.

Adaptation of this principle to flow graphs (as models) and structural and
behavioural properties presents us with certain difficulties. Given a structural
or behavioural flow graph property φ, there is no guarantee that the maximal
model of φ is a legal flow graph structure or behaviour.

Maximal Flow Graphs from Structural Specifications For structural properties
this problem can be solved for a given flow graph interface I, because we can
characterise precisely the flow graphs having interface I as models through a
structural formula θI in our logic. Let I = {m1,m2} be a closed flow graph
interface. A model is a flow graph with this interface exactly when it satisfies the
formula θI = (νX.m1∧ [m1,m2, ε]X)∨ (νY.m2∧ [m1,m2, ε]Y), which essentially
expresses that edges in the flow graph do not cross method boundaries. Then,
for every structural formula φ, the maximal model of the formula φ ∧ θI is
a flow graph Gφ,I that simulates structurally all flow graphs with interface I
that satisfy φ. We term this flow graph the maximal flow graph for formula φ
and interface I, and the compositional verification principle formulated above
still applies for flow graphs and structural properties. The above compositional
verification principle can then be adapted to structural properties of flow graphs,
yielding the following sound and complete compositional verification principle,
presented as a proof rule (see [13] for technical details):

(struct− comp)
G1 |=s φ Gφ,IG1

] G2 |=s ψ

G1] G2 |=s ψ
G1 : IG1

Maximal Flow Graphs from Behavioural Specifications In the case of behavioural
flow graph properties, however, there is no such way to characterise in our logic
all models that constitute behaviours of flow graphs with a given interface (in-
tuitively, this is because the logic is not capable of expressing context–free prop-
erties). Furthermore, these models are infinite–state and cannot be constructed

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 28

explicitly; what we actually need is a way to construct the maximal flow graph
for a given behavioural formula φ and interface I. It turns out, however, that in
general there is no such single flow graph, but rather a set of flow graphs having
the property that every flow graph satisfying φ is simulated by some flow graph in
the set. To compute such a set, we have developed a translation from behavioural
flow graph properties φ to equivalent sets of structural properties ΠI(φ) for a
given interface I. The translation is based on a tableau construction that con-
ceptually amounts to symbolic execution of the behavioural formula, collecting
structural constraints along the way. By keeping track of the subformulae that
have been examined, recursion in the structural constraints is identified and cap-
tured by fixed–point formulae (for details see [11]). Combining this translation
with maximal flow graph generation for structural properties yields the follow-
ing sound and complete compositional verification principle for flow graphs and
behavioural properties, presented as a proof rule:

(beh− comp)
G1 |=b φ

{Gχ,IG1
] G2 |=b ψ

}
χ∈ΠIG1

(φ)

G1] G2 |=b ψ
G1 : IG1

In addition, we have also developed a “mixed” rule [13], where local structural
assumptions are combined with global behavioural guarantees.

The presented proof rules are flexible, so that they allow reasoning about
a combination of concrete components (i.e., given through their implementa-
tion) and abstract components (i.e., given though their specification), both at
the structural and the behavioural levels. Section 5 shows typical verification
scenarios, where these proof rules are applied for open system and modular
verification. A possible instantiation of this approach is to choose individual
methods as components. The proof rules then give rise to a procedure–modular
verification technique for temporal properties, see [20].

4 Tool Support for Compositional Verification

This section describes the different internal data formats and tools within the
CVPP tool set. It also exemplifies the different input formats used. A high–level
overview of CVPP’s architecture is shown in Figure 2 (where rounded boxes
denote data formats, squared boxes tool components, and dashed lines denote
external formats or tools).

As program input format, currently the Java bytecode format is used. Inter-
nally, there are three important data formats:

– Model : the program model representation, containing nodes, edges, a valua-
tion and a set of entry points.

– Formula: the property representation. We support behavioural and struc-
tural formulae in our logic, both in recursive and in equation system form.

M. Huisman, D. Gurov

29 Technical Report, KIT, 2010-13

− structure
− behaviour
− eqsys

− Moped
− CWB

Model MaxMod

− CCS/PDA
− inline

Graph
− compose

AnalyserProgram

ModCheck
− simplify
− convert

Formula

− CWB/LTL
− beh2struct

Formula

Fig. 2. The CVPP tool set architecture

– Interface: the interface representation, containing lists of provided and of
externally required methods. Interfaces are used as auxiliary information by
almost all tool components, and therefore we did not include it explicitly in
Figure 2.

The components of the tool set are the following:

– Analyser: from Java classes to flow graphs. Java bytecode classes are ab-
stracted into flow graphs. The tool is build on top of the Soot framework [21].

– Graph: transformations on the program model representations. The main
operations supported are flow graph composition, pretty printing in different
formats (in particular as CCS process terms and as PDS of the induced
behaviour), and inlining of private methods. The use of the latter operation,
called Graph Inliner, is briefly explained in Section 5.1 (see also [10]).

– Formula: transformations on the property representations. The main opera-
tions supported are the simplification of formulae, the conversion from one
property format to another (such as the translation of our logic from re-
cursive to equation system form, needed for maximal model construction),
pretty printing as a CWB or LTL formula (as input for Moped), as well as
the characterisation of behavioural formulae by structural ones. The latter
operation is referred to as Beh2Struct. In addition, we allow properties to be
expressed using so–called patterns. Patterns provide abbreviations for com-
monly used specification constructs. They increase readability and make the
property more independent of the interface. The Formula component trans-
lates patterns into our logic.

– MaxMod: the maximal model construction as described in Section 3. This
component uses formulae expressed as equation systems.

– ModCheck: model checking, using external tools: for structural properties we
use CWB, the Edinburgh Concurrency Workbench [7], while for behavioural
properties we rely on Moped, a PDS model checker for LTL [19].

To conclude this section, we show how the examples from Section 2 are writ-
ten in CVPP’s input formats. Consider again the flow graph from Figure 1. The
method graph of method even is written as follows:

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 30

interface for Number: provided even, odd
struct. formula Ex. 2: nu X.(([even] r) /\ ([odd] r) /\ ([eps] X))

beh. formula Ex. 4: meth(even) => nu X.(([even call even] ff) /\ ([tau] X))

Fig. 3. Examples in CVPP’s input format

node 0 meth(even) entry edge 0 1 eps
node 1 meth(even) edge 1 2 eps
node 2 meth(even) edge 1 4 eps
node 3 meth(even) ret edge 2 3 odd
node 4 meth(even) ret

Figure 3 exemplifies how interfaces and structural and behaviour properties are
written in CVPP’s input format.

5 Typical Verification Scenarios

Section 3 presented several compositional verification principles; this section
describes in detail some typical scenarios supported by CVPP and these ver-
ification principles. In addition, we also describe how CVPP can be used for
non–compositional verification. This is in particular interesting for behavioural
properties: by means of the translation of behavioural properties into structural
ones, CVPP provides an effective way to reduce the verification problem for be-
havioural properties to the computationally simpler problem for structural ones.

5.1 Open System Verification

The most general application of the proof rules presented in Section 3 is to open
system verification, where some components are given by an implementation
(referred to here as concrete components), while others are only given by a
specification (abstract components). This can typically happen with dynamically
reconfigurable or evolving software, where some components are either not known
or simply not statically fixed at verification time.

Thus, verification of a global property of an open system has to be rel-
ativised on the local specifications of the abstract components. For instance,
if all specifications are behavioural, this is achieved by consecutively applying
rule (beh− comp) on every abstract component. The implementations of the ab-
stract components, once available, are checked against their local specifications.

An additional complexity stems from the detail of information in the con-
crete components. Often these will contain information about private methods,
that are not visible to other components. In contrast, the abstract components
and global properties are typically described at the level of the public interface.
Therefore, the implementation details in the concrete components are abstracted
away, by using the Graph Inliner, to the publicly visible behaviour, before com-
posing the components.

M. Huisman, D. Gurov

31 Technical Report, KIT, 2010-13

The overall verification task thus divides into two independent tasks, sup-
ported by our tool set as follows:

1. Local correctness: Check whether the implementation, once available, of ev-
ery abstract component meets its local specification as described below in
Section 5.3.

2. Global correctness:
(a) for every concrete component, from its implementation, extract a flow

graph using the Analyser, and use the Graph Inliner to construct its pub-
licly visible behaviour;

(b) for every abstract component, if its local specification is behavioural,
translate the property to an equivalent set of structural ones using Beh-
2Struct;

(c) for every structural property, being either a local specification of an
abstract component itself or resulting from step 2(b), compute a maximal
flow graph using MaxMod;

(d) for all instantiations of abstract components by corresponding constructed
maximal flow graphs, and instantiations of concrete components by their
extracted flow graphs, compose the graphs using Graph to produce a
global flow graph of the system, and model check the latter against the
global specification as described below in Section 5.3.

5.2 Modular Verification

In the modular software design paradigm the goal is to verify the modules of a
software system locally, i.e., independently of each other, and then to combine
the local correctness arguments into a global correctness proof of the whole sys-
tem. In our verification framework, modular verification is simply an instance of
the more general case of open system verification described above, with modules
as components and where all components are abstract. This eliminates task 2(a)
and simplifies conceptually task 2(d).

One can view the notion of module on different levels of granularity. One
(rather extreme) case in procedural programming languages is when every pro-
cedure itself is considered a module and is equipped with a specification. In this
case we obtain procedure–modular verification, similar to many Hoare logic based
verification approaches. We have recently shown on a case study that it is indeed
possible and convenient to reason at this level of granularity about control–flow
safety properties of an application [20].

5.3 Non–compositional Verification

The open system and modular verification scenarios above give rise to several
non-modular verification tasks. In addition, CVPP also can be used to rea-
son in a fully non-compositional setting. This is in particular useful to rea-
son about behavioural properties. Due to unbounded recursion, verification of
behavioural properties for procedural programs is infinite–state, even when all

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 32

data is abstracted away as in our program model. On the other hand, verifica-
tion of structural properties is finite–state. Thus, by applying our translation
from behavioural to sets of structural properties, one can reduce verification of
behavioural properties to a finite number of finite–state verification tasks.

With our tool set, given a Java application and a property specification (ei-
ther behavioural or structural), perform the following steps:

1. extract the flow graph of the application using the Analyser (and if necessary,
use the Graph Inliner to abstract away from implementation details);

2. if the property is structural, cast the flow graph as a CCS term using Graph,
and model check the term against the property using the CWB;

3. if the property is behavioural, there are two alternatives: either

(a) cast the flow graph as a pushdown system using Graph, and model check
it against the property using Moped; or

(b) translate the property to an equivalent set of structural ones using Beh-
2Struct, and perform step 2 for each one of these.

Step 3(b) is particularly meaningful in settings where the behavioural specifica-
tions are known in advance (such as the security policies of mobile platforms)
and are relatively stable; the property translation can then be applied prior to
the verification task itself.

5.4 Wrapper Tools for Standard Verification Scenarios

The different scenarios described above require the use of several of the tools
of CVPP in a particular pre–defined order. Therefore, to make CVPP easier to
use, and to hide away the internal formats and translations within the tool set,
wrapper tools are being developed that perform the typical verification scenarios
automatically. A wrapper implements a pre– and a post–processor that trans-
lates input and output of the tool set, and performs the different verification
steps automatically. The post–processor appropriately handles feedback from
the model checkers: when a structural property is violated, it is indicated where
in the program this violation occurs; when a behavioural property is violated
the model checking counter example is translated back into a program trace.

The first wrapper tool that we developed is ProMoVer [20]. This automates
procedure–modular verification of Java programs annotated with global and
method–local specifications. ProMoVer is evaluated on a small but realistic case
study: we verified the absence of calls to non–atomic methods within Java Card
transactions for a Java Card electronic purse application4. In the near future,
we plan to develop wrapper tools for the other scenarios.

4 A web–based interface to ProMoVer is available from:
http://www.csc.kth.se/˜siavashs/ProMoVer/promover.php.

M. Huisman, D. Gurov

33 Technical Report, KIT, 2010-13

v0 v1 even

even

v4 v7

odd

ε ε

ε ε oddeven, odd,rr

odd
odd

v2v3 even, r

ε, even, odd
odd

odd

v6
odd,r

ε, even, odd

ε, even, odd

ε, even, odd

v5

Fig. 4. Maximal flow graph for “the first call is not to method even itself”

6 Executing the Verification Scenarios

To illustrate how CVPP is used, this section discusses how parts of the different
verification scenarios described in the previous section are applied on concrete
examples. For a larger example discussing our experiences with ProMoVer for
the verification of the safe use of the Java Card transaction mechanism in an
e-commerce application for smart cards, we again refer the reader to [20].

6.1 Generating Maximal Flow Graphs for a Behavioural Property

One important subtask in the compositional verification scenarios discussed in
the previous section is the construction of maximal flow graphs from a be-
havioural specification of a component; see steps 2(b,c) of the open system
verification scenario. As explained in Section 3, this is achieved by translat-
ing the behavioural property into an equivalent set of structural ones, and by
constructing a maximal flow graph for each of the latter.

For example, consider a component specified by an interface where meth-
ods even and odd are provided and no external methods are required, and
by the behavioural property “in every program execution starting in method
even, the first call is not to method even itself” formalised in Example 4.
Providing this interface and formula to Beh2Struct, and optimising the result
with the simplification facility of Formula, we obtain one structural formula:
even ⇒ νX. [even]ff ∧ [ε]X. To compute a maximal flow graph, we first apply
the conversion facilities of Formula to transform the formula into a modal equa-
tion system, which is then passed on, together with the original interface, to
MaxMod. The resulting maximal flow graph is shown in Figure 4. Notice that
the method graphs for even and odd are isomorphic, but the graph of method
even has two entry nodes while the graph of method odd has four; as a result,
the former restricts the behaviour in that, once called, method even can only
call method odd as a first method call, while the latter makes no restrictions on
the behaviour whatsoever. This maximal flow graph can now be substituted for
the given component when model checking global system properties.

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 34

6.2 Closed System Model Checking of a Behavioural Property

Consider again the component of the previous subsection, described by the in-
terface where methods even and odd are provided and no external methods are
required, and by the behavioural property in Example 4. We want to show that
the class Number defined in Example 1 is an appropriate implementation of this
component. This is an instance of the non-compositional verification scenario in
Section 5.3. Thus, using the Analyser, we first extract the flow graph, resulting in
the flow graph as in Figure 1. For this application, there is no difference between
public and private interface, thus there is no need to use the Graph Inliner.

The property is behavioural, thus we have a choice (cf. step 3, Section 5.3).
(a) We can model check the behavioural property directly. We use Graph to
produce the PDS from the flow graph, and Formula to transform the property to
an LTL formula. Then Moped is used to verify that class Number indeed respects
this property. (b) As in the previous subsection, we can compute the structural
formula that characterises the behavioural formula by using Beh2Struct. We use
Graph to pretty print the flow graph as CCS term and Formula to pretty print the
formula in CWB’s input format. Then CWB is used to verify that class Number
indeed respects this structural property.

7 Conclusion

CVPP is a tool set for compositional verification of control–flow safety prop-
erties of procedural programs. It supports a completely automatic verification
method based on maximal models. The underlying general compositional ver-
ification principle instantiates to two important verification scenarios, namely
open system verification and modular verification. By means of an algorithmic
translation of behavioural into structural properties, the tool is also applicable
to non–compositional verification, allowing infinite–state PDA model checking
to be reduced to standard finite–state model checking. The various scenarios can
be supported by wrapper tools, such as ProMoVer, that encapsulate the inner
workings of the tool set and provide a smooth interface to the user.

The largest CVPP case study so far is the verification of absence of illicit
applet interactions in a smart card application [13,6]. This has been redone with
the later extensions of the tool set. It is future work to develop more case stud-
ies, similar in size and complexity, but taking advantage of the different wrapper
tools. For all three verification scenarios appropriate wrappers will be developed.
Further, we plan to provide support for other property specification formalisms,
in particular security automata. Also, support for flow graph extraction from
source code will be improved, developing a modular and extensible tool. Other
extensions concern the program model, where we plan to add data to flow graphs
to represent Boolean programs faithfully, and to develop a solution for multi–
threaded programs. Finally, we plan to extend the logic to include liveness prop-
erties; these become meaningful when the flow graphs model program behaviour
faithfully, or at least provide under–approximations of the guaranteed behaviour.

M. Huisman, D. Gurov

35 Technical Report, KIT, 2010-13

Acknowledgements We thank everybody who contributed to CVPP: Irem Ak-
tug (Analyser), Christoph Sprenger (MaxMod), Siavash Soleimanifard (ProMoVer),
and Afshin Amighi (property simplification). We are also indebted to Stefan
Schwoon, who extended the input language of Moped to serve our needs.

References

1. R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. In Logic in Computer Science (LICS
’07), pages 151–160, Washington, DC, USA, 2007. IEEE Computer Society.

2. R. Alur and S. Chaudhuri. Temporal reasoning for procedural programs. In Veri-
fication, Model Checking, and Abstract Interpretation (VMCAI ’10), volume 5944
of LNCS, pages 45–60. Springer, 2010.

3. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic for nested calls and
returns. In Tools and Algorithms for the Analysis and Construction of Software
(TACAS ’04), volume 2998 of LNCS, pages 467–481. Springer, 2004.

4. M. Barnett, K.R.M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In CASSIS 2004, volume 3362 of LNCS. Springer, 2004.

5. G. Boudol and K. Larsen. Graphical versus logical specifications. Theoretical
Computer Science, 106:3–20, 1992.

6. G. Chugunov, L.-Å. Fredlund, and D. Gurov. Model checking of multi-applet Java-
Card applications. In Smart Card Research and Advanced Application Conference
(CARDIS ’02), pages 87–95. USENIX Publications, 2002.

7. R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification tool for
finite state systems. In International Symposium on Protocol Specification, Testing
and Verification, pages 287–302. North-Holland Publishing Co., 1990.

8. M. Goldman and S. Katz. MAVEN: Modular aspect verification. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’07), volume
4424 of LNCS, pages 308–322. Springer, 2007.

9. O. Grumberg and D. Long. Model checking and modular verification. ACM
TOPLAS, 16(3):843–871, 1994.

10. D. Gurov and M. Huisman. Interface abstraction for compositional verification. In
Software Engineering and Formal Methods (SEFM ’05), pages 414–423, 2005.

11. D. Gurov and M. Huisman. Reducing behavioural to structural properties of pro-
grams with procedures. In Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI ’09), volume 5403 of LNCS, pages 136–150. Springer, 2009.

12. D. Gurov and M. Huisman. Reducing behavioural to structural properties of pro-
grams with procedures. 2010. Full version, submitted, available upon request.

13. D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of sequential
programs with procedures. Information and Computation, 206(7):840–868, 2008.

14. M. Huisman, I. Aktug, and D. Gurov. Program models for compositional verifica-
tion. In International Conference on Formal Engineering Methods (ICFEM ’08),
volume 5256 of LNCS, pages 147–166. Springer, 2008.

15. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of
illicit applet interactions: a case study. In Fundamental Approaches to Software
Engineering (FASE ’04), volume 2984 of LNCS, pages 84–98. Springer, 2004.

16. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Technical Report, KIT, 2010-13 36

17. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer, 2002.

18. F. B. Schneider. Enforceable security policies. ACM Trans. Infinite Systems Se-
curity, 3(1):30–50, 2000.

19. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München, 2002.

20. S. Soleimanifard, D. Gurov, and M. Huisman. Procedure–modular verification
of control flow safety properties. In Workshop on Formal Techniques for Java
Programs (FTfJP ’10), 2010.

21. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java Optimization Framework. In CASCON ’99, pages 125–135, 1999.

22. I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. In Logic in Computer Science (LICS ’95), pages 14–24. IEEE, 1995.

M. Huisman, D. Gurov

37 Technical Report, KIT, 2010-13

A Pushdown System Representation
for Unbounded Object Creation

Jurriaan Rot1, Frank de Boer1,2, Marcello Bonsangue1,2

1 LIACS – Leiden University
2 Centrum voor Wiskunde en Informatica (CWI)
jrot@liacs.nl,frb@cwi.nl,marcello@liacs.nl

Abstract. We introduce a block-structured programming language which
supports object creation, global variables, static scope and recursive pro-
cedures with local variables. Because of the combination of recursion,
local variables and object creation, the number of objects stored dur-
ing a computation is potentially unbounded. However, we show that a
program can be viewed as a type of pushdown automata, for which the
halting problem as well as LTL and CTL model checking are decidable.

Key words: object creation, model checking, pushdown systems, push-
down automata

1 Introduction

From the 1960s onwards imperative programming has evolved with the intro-
duction of high-level programming constructs for mastering the complexity of
software by abstraction, encapsulation and modularity. The initial description
of computation in terms of assignment statements to change a program state,
sequential and conditional composition, and conditional looping [10] has been
extended with procedures in combination with block structures which enable the
construction and declaration of complex state changes abstracting from the con-
crete implementation [19]. Pointers are a very flexible programming mechanism,
allowing manipulation of dynamically growing and potentially unbounded data
structures. In the eighties mainstream imperative programming languages added
the support of objects [23], a collection of procedures acting on an encapsulated
state, having an identity that can be referred to by other objects. Other powerful
programming techniques like inheritance and polymorphism enable code reuse,
and are crucial for programming-in-the-large [22].

The increasing flexibility in programming comes, however, with an increasing
complexity in reasoning about programs. Model checking is a technique for ex-
haustively checking a (model of a) program for possible errors [4]. Traditionally,
in order to guarantee termination of a model checking procedure, finite-state
models are required, and thus only programs over finite data domains are con-
sidered. But to program with dynamical data structures, objects may need to
be created, removed and modified when moving from a state to another in a

Technical Report, KIT, 2010-13 38

computation. Thus, by their very nature, objects are unbounded: for example,
during a recursive computation new objects can be created infinitely often. In
order to achieve finite-state models for object-oriented programs, different types
of abstraction and restrictions of programs have been considered (see related
work below). Typically one disallows object creation and considers only a finite
number of objects already existing before the computation starts, or allows for
object creation only within restricted forms of recursion. However, the neces-
sity to restrict programs before their analysis limits the applicability of model
checking techniques to modern imperative programming languages.

In this paper we introduce a simple block-structured programming language
which supports object creation, global variables, static scope and recursive pro-
cedures with local variables. In order to focus on the main issues, we restrict to
a single but unbounded data structure, namely that of object identities. Other
finite data domains could have been added without problem, but would have
increased the complexity of the model without strengthening our main result.
Although very simple, the language is powerful enough to encode the control
flow of high-level imperative programming languages including closed class-based
object-oriented programs, like Java. Because of the combination of recursion with
local variables, a program may have infinitely many different states. Since we
allow to store object references into local variables, the number of objects stored
during a computation is potentially unbounded.

For our language we define two semantics: a concrete one that is infinite state,
and a symbolic one that is also infinite state but is based on an enhanced version
of the model of recursive procedures with local variables via a suitable pushdown
system [12]. A pushdown system is a simple type of pushdown automaton used
to generate behavior rather than to accept languages [5]. It provides a finite rep-
resentation generating infinite state systems, where a state consists of a control
part and a stack. In our model of a pushdown system global variables and the
current local variables form the control states, whereas the current executing
statement is on top of the stack. Actually it is more common to model only the
global variables in the control state, while the local variables and the control
point are (part of) the top of the stack (see e.g. [21]). We chose our approach
for convenience in the proofs, but it can easily be modified to the more common
approach. In our model, when a procedure is called, a copy of the current local
variables is stored on the stack to recover the original values after the procedure
returns, and the local variables in the control state are initialized again. In order
to achieve finitely many control states, we abstract from the concrete identities
of the objects, but maintain their symmetries, i.e. the equality relation among
object identities [13]. Our main result is that the concrete and the symbolic
semantics are strongly bisimilar.

Reachability for an infinite state system is generally undecidable. However,
for a pushdown system it turns out that both the halting problem and reach-
ability are decidable [16]. In fact, it is possible to model check pushdown sys-
tems against linear-time or branching-time temporal formulas. For linear-time

J. Rot, F. de Boer, M. Bonsangue

39 Technical Report, KIT, 2010-13

temporal formulas the complexity is even of the same order as for finite state
systems [5].

This paper is organized as follows. In Section 2, we introduce the syntax
of our language and give an informal description of its semantics. Section 3
provides a concrete execution model using a transition system on infinite states,
and in Section 4 we describe the construction for the symbolic semantics based
on pushdown systems. The relationship between these two models is studied in
Section 5. Finally, the last section discusses some relevant consequences of our
result, and possible future steps.

Related work. Currently there are several model checkers for object oriented
languages. Java Path Finder [14] is basically a Java Virtual Machine that exe-
cutes a Java program not just once but in all possible ways, using backtracking
and restoring the state during the state-space exploration. Even if Java Path
Finder is capable of checking every Java program, the number of states stored
during the exploration is a limit on what can be effectively checked. As with
JCAT [9], Java source code can be translated into Promela, the input language
of SPIN [15]. Since Promela does not support dynamic data structures, they
have to allocate fixed-size heaps and stacks.

Bandera [8] is an integrated collection of tools for model-checking concur-
rent Java software using state-of-the art abstraction, partial order reductions
and slicing techniques to reduce the state space. It compiles Java source code
into a reduced program model expressed in the input language of other exist-
ing verification tools. For example, it can be combined with the SAL (Symbolic
Analysis Laboratory) model checker [18] that uses unbounded arrays whose sizes
vary dynamically to store objects. In order to explore all reachable states model
checking is restricted to Java programs with a bounded (but not fixed a priori)
number of objects.

Model checking of a possibly unbounded number of objects but for a language
with a restricted form of recursion (tail recursion) and no block structure has
been studied using high level allocation Büchi automata [11], a generalization of
history dependent automata [17] that enables for a finite state symbolic seman-
tics very similar to ours. Full recursion, but with a fixed-size number of objects
is instead considered in jMoped [12], using a pushdown structure to generate an
infinite state system.

The current state of the art of model checking approaches for languages
with object creation and full recursion in terms of concrete memory addresses,
require an a priori bound on the size of the heap for reachability analysis (e.g.
[6]). In order to overcome this problem, the main contribution of this paper is
the precise abstraction of the heap in terms of equivalence classes of program
variables which refer to the same memory address.

2 A simple imperative language with object creation

This section introduces a simple programming language that supports object
creation, global and local variables, and recursive procedures. To simplify the

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 40

presentation it is restricted to a single data structure, that of object identities.
A program consists of a finite set of procedures, each acting on some global and
local state. Procedures can store identities in global or local variables, compare
them, and call other procedures.

We assume a finite set of program variables V ranged over by x, y, . . . such
that V = G ∪ L, where G is a set of global variables {g1, g2, . . . , gn} and L is a
set of local variables {l1, l2, . . . , lm}, with G and L disjoint. For P a finite set of
procedure names {p0, . . . , pk}, a program is a set of procedure declarations of the
form pi :: Bi, where Bi, denoting the body of the procedure pi, is a statement
defined by the following grammar

B ::= x := y | x := new | B;B | [x = y]B | [x 6= y]B | B +B | p .

Here x and y are program (local or global) variables in V , and p is a procedure
name in P . The procedure p0 ∈ P is called the initial procedure of a program.

The language is statically scoped. The assignment statement x := y assigns
the identity stored in y (if any) to x. If x was already referring to an object
identity, this gets lost. In particular, if x is the only variable of the program
referring to an object o, then after an assignment x := y, the object o cannot be
referenced anymore and gets lost forever. The statement x := new creates a new
object that will be referred to by the program variable x. As for the ordinary
assignment, the old value of x is lost. In a program execution, a program variable
x is said to be defined if there was an assignment or object creation statement
earlier in the execution with the variable x at left–hand side. Sequential composi-
tion B1;B2, conditional statements [x = y]B and [x 6= y]B and nondeterministic
choice B1 +B2 have the standard interpretation. A procedure call p means that
the body B associated with p is executed next on the same global state but on
a new fresh local state. After the procedure body terminates, its local state is
destroyed forever and the previous local state (from which the procedure has
been called) is restored. Changes to the global state, however, remain.

More general boolean expressions in conditional statements can be obtained
by using sequential composition and nondeterministic choice. In fact (b1 ∧ b2)B
can be written as (b1)b2B, whereas (b1 ∨ b2)B as (b1B) + (b2B). Negation of
a boolean expression b can be obtained by transforming b into an equivalent
boolean expression in conjunctive disjunctive normal form, for which negation
of the simple expression [x = y] and [x 6= y] is defined as expected.

Ordinary while, skip, and if-then-else statements can be expressed easily in
the language, using recursive procedures, conditional statements and nondeter-
ministic choice. For the sake of simplicity, we allow creation and assignment of a
single object identity only; generalizations to simultaneous assignments and ob-
ject creation can be added in a straightforward manner. We assume automatic
garbage collection of object identities that are not referenced anymore by any
global variables or instances of local variables in a program execution.

The language does not directly support parameter passing. However, it is
worthwhile to note that we can model procedures with call-by-value parame-
ters by means of global variables. Let p(v1, . . . , vn) be a procedure with formal

J. Rot, F. de Boer, M. Bonsangue

41 Technical Report, KIT, 2010-13

parameters v1, . . . , vn. We see the formal parameters as local variables and in-
troduce for each parameter vi a corresponding global variable gi (which does not
appear in the given program). Every procedure call p(x1, . . . , xn) can be modeled
by the statement g1 := x1; . . . ; gn := xn; p whereas the body B of p(v1, . . . , vn)
can be modeled by v1 := g1; . . . ; vn := gn;B. A similar approach can be taken to
model procedures with return values. Finally, method calls x.m(x1, . . . , xn) then
can be modeled by introducing the called object x as an additional ’parameter’
of the procedure m.

3 Transition System Semantics

In this section, we introduce a semantics of the programming language which
is defined in terms of an explicit representation of objects by natural numbers.
This representation allows a simple implementation of object creation. A program
state of a program is a function

s : V −→ N⊥,

where N⊥ = N∪{⊥} (⊥ is used to denote “undefined”). To model object creation
we distinguish a global “system” variable c which is used as a counter, and is
not used by programs. We implicitly assume that s(c) 6= ⊥, for every state s.

A configuration of a program is a pair 〈s, S〉 where s is a program state and
S is a stack of statements and local states. An execution step of a program is a
transition from a configuration C to a configuration C ′, denoted by C −→ C ′.
The possible execution steps are given below. For modeling state updates we
use multiple assignments of the form s[x1, . . . , xn := v1, . . . , vn], where xi and
xj are distinct, for i 6= j. The head of a stack is separated from the tail with
the right-associative operator •; for example, S′ = e • S is the stack consisting
of head e and tail S.

〈s,B1;B2 • S〉 −→ 〈s,B1 •B2 • S〉 (1)

s(y) 6= ⊥
〈s, x := y • S〉 −→ 〈s[x := s(y)], S〉 (2)

〈s, x := new • S〉 −→ 〈s[x, c := c, c+ 1], S〉 (3)

s(x) = s(y) s(x) 6= ⊥
〈s, [x = y]B • S〉 −→ 〈s,B • S〉 (4)

s(x) 6= s(y) s(x) 6= ⊥ s(y) 6= ⊥
〈s, [x 6= y]B • S〉 −→ 〈s,B • S〉 (5)

〈s,B1 +B2 • S〉 −→ 〈s,Bi • S〉 (i ∈ {1, 2}) (6)

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 42

〈s, pi • S〉 −→ 〈s′, Bi • s • S〉 (7)

where s′(l) = ⊥, for every local variable l and s′(g) = s(g), for every global
variable g.

〈s, s′ • S〉 −→ 〈s[l̄ := s′(l̄)], S〉 (8)

where l̄ denotes the sequence of local variables l1, . . . , lm and s′(l̄) denotes the
sequence of values s′(l1), . . . , s′(lm).

For technical convenience only, a procedure call pushes onto the stack as local
environment the entire state. Further, we assume a distinguished global variable
’nil’ such that s(nil) = ⊥, for every state s. The following corollary states some
basic properties of the semantic rule 8.

Corollary 1. If 〈s, s′ • S〉 −→ 〈s′′, S〉 then for every x, y ∈ V :

1. x and y are both global implies s′′(x) = s′′(y) iff s(x) = s(y),
2. x and y are both local implies s′′(x) = s′′(y) iff s′(x) = s′(y),
3. x is global and y is local implies s′′(x) = s′′(y) iff s(x) = s′(y).

Proof. It suffices to observe that by definition of the rule 8 we have s′′(g) = s(g)
and s′′(l) = s′(l), for every global g and every local l. ut

Further, we have the following invariance property about the flow of infor-
mation between the current state and the stacked states.

Lemma 1. For every computation 〈s0, p0〉 −→∗ 〈s, S〉, variable z, local variable
l and local state s′ appearing in S, we have s(z) = s′(l) iff there exists a global
variable g such that s(z) = s′(g) and s′(l) = s′(g).

Proof. The proof is by induction on the length of the computation. The basis of
the induction is trivial because the stack of the initial configuration only contains
the statement p0.

It suffices to show that every production respects the property. First note that
for any rule except 7, no new states are added to the stack so we only need show
that the resulting state still satisfies the equivalence. In rule 1, 4, 5 and 6 we have
s = s′ so the equivalence holds by the induction hypothesis. In the assignment
rule 2, the resulting state is s[x := s(y)]. Now if z ≡ x (≡ denotes syntactic
identity) then s[x := s(y)](z) = s(y) and if z 6≡ x then s[x := s(y)](z) = s(z).
In both cases, the result follows from the induction hypothesis. In rule 3, the
resulting state is s[x, c := c, c + 1]. It follows that s[x, c := c, c + 1](y) = s(y)
and s[x, c := c, c + 1](x) 6= s(y), for all y 6≡ x. The result then follows from the
induction hypothesis. Rule 7, the procedure call, adds the state s to the top of the
stack. Since the values of the locals are ⊥ in the resulting state, and the values
of globals in the resulting state are equal to their value in s, by the induction
hypothesis the equivalence holds for every state in the resulting stack including
s. Lastly for rule 8 does not alter the globals. For the locals, the result follows
from the induction hypothesis for the popped abstract state. Note that there
exists a computation 〈s0, p0〉 −→ 〈s′, S〉, where s′ denotes the popped abstract
state. ut

J. Rot, F. de Boer, M. Bonsangue

43 Technical Report, KIT, 2010-13

4 Pushdown System Semantics

The above semantics gives rise to an infinite state system because of unbounded
recursion, and because of the representation of objects by natural numbers used
to model unbounded object creation. Since we can only test objects for equal-
ity we can reduce this state-space by the introduction of equivalence classes of
variables, that is, two variables belong to the same equivalence class if they de-
note the same object. However local variables can generate again an unbounded
number of equivalence classes. We show in this section how we can restrict to
an apriori finite number of equivalence classes of variables by the introduction
of so-called “freeze” variables, which will be used to compare the partitions of
variables before and after executing a procedure call. This will allows for a real-
location of the global variables with respect to the local variables of the caller.
To do this, we associate with each global variable g a fresh and unique local
variable g′ (which we assume does not appear in the given program).

An abstract program state now consists of a partition of global and local
variables (including the freeze variables). To facilitate easy treatment of such a
partition, we represent it as a function

σ : V −→ |V |+ 1

where |V | is the cardinality of the set of variables V , and |V | + 1 is identified
with the set {0, . . . , |V |}. Thus two (distinct) variables x and y belong to the
same equivalence class iff σ(x) = σ(y). We use zero for the equivalence class of
variables which are undefined, e.g., σ(nil) = 0, for every abstract state σ.

A configuration of a program now is a pair 〈σ,Σ〉 where σ is an abstract state
as defined above and Σ is a stack of statements and abstract states. Because
of the way we model partitions of the set of variables V , rules 1, 2, 4, 5 and 6
directly apply in this model and are therefore not repeated here. The rule for
object creation is modified as follows.

〈σ, x := new •Σ〉 −→ 〈σ′, Σ〉 (9)

where σ′ = σ, if all indices except zero are used in σ, else σ′ = σ[x := i], where
i 6= 0 is the smallest index not already used by σ.

This new rule for object creation describes it in terms of an update of the
current partition of the variables V by isolating the variable x. This is achieved
by assigning to the variable x an index different from zero not in use. Note that
in case such an index does not exist the partition represented by σ consists of
singleton sets only and therefore is not affected by object creation, i.e., we do
not need to assign a new index to x because it is already isolated.

The rule for procedure calls is modified as follows.

〈σ, pi •Σ〉 −→ 〈σ′, Bi • σ •Σ〉 (10)

where σ′ = σ[l̄ := 0̄][g′ := σ(g)], g′ denotes the sequence g′1, . . . , g
′
n of freeze

variables and σ(g) denotes the sequence of indices σ(g1), . . . , σ(gn). Note that
σ[l̄ := 0̄](l) = 0, for every local variable l ∈ L.

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 44

A procedure call now additionally initializes the freeze variables by the values
of their corresponding global variables and stores the old abstract state onto the
stack. Note that execution of Bi does not affect the freeze variables.

Finally, the rule for returns from a procedure call is modified as follows.

〈σ, σ′ •Σ〉 −→ 〈σn, Σ〉 (11)

where σ0 = σ′ and for 0 < i ≤ n (where n is the number of globals) we define
σi by the following cascade of if-then-else statements:

– if σ(gi) = 0 then σi = σi−1[gi := 0] else
– if σ(gi) = σ(gj), for some j < i, then σi = σi−1[gi := σi−1(gj)] else
– if σ(gi) = σ(g′), for some freeze variable g′, then σi = σi−1[gi := σ′(g)] else
– if in σi−1 all indices except 0 are used then σi = σi−1 else
– σi = σi−1[gi := k′], where k′ 6= 0 is the smallest index not already used by
σi−1.

Upon return, which consitutes the ’heart of the matter’, we need to update
the stored partition σ′ by reallocating the global variables according to the new
partition described by σ. We do so by means of the freeze variables which rep-
resent in σ the partitioning of the global variables in σ′ and as such form a
reference point for comparison with the local variables in σ′. In other words,
a partition in σ′ containing global variables is represented in σ by the corre-
sponding freeze variables. Therefore, in case in σ a global variable gi is identified
with a freeze variable g′ we have to identify it with all the local variables which
belong to the partition of g in σ′. This is simply obtained by setting the index
of gi to σ′(g). Note that in fact σ′(g) = σ(g′). However, σ′(g) = σ′(g′) does not
hold in general because the freeze variable g′ represents the initial value of its
global variable g which may have been affected by the computation which led to
σ′. Further, we observe that the choice of a particular freeze variable does not
affect the reallocation because if two distinct freeze variables are identified in
σ, then so are their corresponding global variables in σ′. Finally, we note that
global variables which are “drifted away“ from these freeze variables can only
denote objects which are different from those denoted by the local variables in
σ′. Therefore for these variables new partitions have to be created. In order to
obtain suitable indices for these global variables we have defined the overall up-
date of σ′ incrementally by processing the global variables one by one. For each
global variable gi its reallocation is defined by σi as follows: if gi is undefined
in σ then so it is in σi, else if gi is identified by σ with some already processed
gj (j < i) then we set its index to that of gj in σi−1, else if gi is identified by
σ with some freeze variable then we set its index to that of the corresponding
global variable in σ′. In case none of the above holds then we have to create a
new partition for gi as in the new rule for object creation.

Example 1. We give an example of a derivation which illustrates the procedure
call and return. The state is represented as a partition. We assume p is a pro-
cedure name with body p :: B = g2 := new. Furthermore g1, g2 are global
variables, l1, l2 are local variabes.

J. Rot, F. de Boer, M. Bonsangue

45 Technical Report, KIT, 2010-13

〈{{g1, l1}, {g2, l2}}, p •Σ〉 −→
(call) 〈{{g1, g′1}, {g2, g′2}, {l1, l2}}, g2 := new • {{g1, l1}, {g2, l2}} •Σ〉 −→
(creation) 〈{{g1, g′1}, {g′2}, {g2}, {l1, l2}}, {{g1, l1}, {g2, l2}} •Σ〉 −→
(return) 〈{{g1, l1}, {g2}, {l2}}, Σ〉

The first transition step pushes the current state unto the stack. The new
state separates all the local variables l1 and l2 (this set is indexed by zero which
indicates ”undefinedness“) and introduces the freeze variables. The execution
of g2 := new in the next transition step isolates the variable g2. Finally, upon
returning, g1 is still identified with l1 but both l2 and g2 are now isolated. It is
important to note that in the above computation we can also replace l1 and l2
by freeze variables of earlier procedure calls.

Each set of variables identified by an abstract state defines an object. Further,
as explained above, two sets of variables Vi and Vi+1 identified by the respective
abstract states σi and σi+1, which are stored consecutively (from bottom to top)
on a given stack Σ, define the same object if and only if there exists a global
variable g ∈ Vi for which its freeze variable g′ is in Vi+1. The equivalence relation
induced by this relation between the sets of variables stored on a given a stack
Σ represents the objects generated by Σ. Figure 1 depicts a chain of sets of
variables which denote the same object.

The following corollary states some basic properties of the semantic rule 8.

Corollary 2. If 〈σ, σ′ •Σ〉 −→ 〈σ′′, Σ〉 then for every x, y ∈ V :

1. x and y are both global implies σ′′(x) = σ′′(y) iff σ(x) = σ(y)
2. x and y are both local implies σ′′(x) = σ′′(y) iff σ′(x) = σ′(y)
3. x is global and y is local implies σ′′(x) = σ′′(y) iff there exists a global

variable g such that σ′(y) = σ′(g) and σ(x) = σ(g′)

Proof. The equivalences follow immediately from the construction of σ′′, stated
in rule 8. ut

Clearly the above semantics can be represented as a pushdown system (PDS).
A pushdown system is a triplet P = (Q,Γ,∆) where Q is a finite set of control
locations, Γ is a finite stack alphabet, and ∆ ⊆ (Q×Γ)× (Q×Γ ∗) is a finite set
of productions. A transition (q, γ, q′, γ̄) is enabled if control is at location q and
γ is at the top of the stack then control can move to location q′ by replacing γ
by the possible empty work of stack symbols γ̄.

In our case, for a given program p1 :: B1, . . . , pn :: Bn, the set of control
locations is defined by the finite abstract state space V −→ |V | + 1. In order
to define the stack alphabet we introduce the finite set

⋃k
i=1 cl(Bi) of possible

reachable statements where the closure of a statement B, denoted as cl(B), is
defined as follows.

– cl(x := y) = {x := y}
– cl(x := new) = {x := new}
– cl(B;B) = cl(B) ∪ cl(B)

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 46

V

= {...,g',...}

= {...,g,...}

V

n

j

V

V

i+1

i

Fig. 1. Chain in a Stack

– cl([x = y]B) = {[x = y]B} ∪ cl(B)
– cl([x 6= y]B) = {[x 6= y]B} ∪ cl(B)
– cl(B +B) = cl(B) ∪ cl(B)
– cl(p) = {p}

The stack alphabet Γ is then defined by the union of the abstract state space
and the above set of possible reachable statements. Finally, it is straightforward
to transform the rules of the above semantics into rules of a pushdown system,
simply by removing the common stack tail from the left- and righthand sides.

5 Equivalence between the two models

In this section the behavioural equivalence between the two models is shown
by establishing bisimilarity, which is widely accepted as the finest behavioural
equivalence one would want to impose. A (binary) symmetric relation R on the
states of a transition system which satisfies

if P −→ P ′ then there is a Q′ such that Q −→ Q′ and (P ′, Q′) ∈ R,

is called a bisimulation relation [20].
This definition applies to a single transition system – in our case, we use it

to establish equivalence between the two models. The states of the transition
system are pairs of configurations, and the transitions are execution steps of the
respective models.

We first define the following relation between abstract and concrete states.

J. Rot, F. de Boer, M. Bonsangue

47 Technical Report, KIT, 2010-13

Definition 1. We define s ∼ σ by s(x) = s(y) iff σ(x) = σ(y), for every pair
of variables x and y.

Next we extend this relation to stacks and configurations as follows.

Definition 2. We define S ∼ Σ inductively by

– if S and Σ are both empty then S ∼ Σ
– if S ∼ Σ then B • S ∼ B •Σ, for any statement B
– if s ∼ σ and S ∼ Σ then s • S ∼ σ •Σ

We define 〈s, S〉 ∼ 〈σ,Σ〉 by s ∼ σ and S ∼ Σ.

In order to prove equivalence of the concrete and abstract semantics, we intro-
duce the freeze variables also as auxiliary variables into the concrete semantics.
We do so by implicitly assuming that the rule for procedure calls additionally
initializes each freeze variable to the value of its corresponding global variable.
Note that this does not affect the behaviour of the program (which is assumed
not to contain freeze variables). It therefore suffices to relate this concrete se-
mantics extended with freeze variables and the abstract semantics.

Theorem 1. The above relation 〈s, S〉 ∼ 〈σ,Σ〉 is a bisimulation relation for
reachable configurations 〈s, S〉 for which there exists an initial configuration
〈s0, p0〉 such that 〈s0, p0〉 −→∗ 〈s, S〉.
Proof. Let 〈s, S〉 ∼ 〈σ,Σ〉, where 〈s, S〉 is a reachable configuration. We must
show that for every execution step applicable to one configuration, there is an
execution step for the other configuration such that the resulting configurations
are again related by ∼.

If the top of the stack is any statement except S +S, it uniquely determines
the next step for both models. We choose the same step for both models for
the case S + S, so we can consider the resulting configurations of applying an
execution step to both configurations. If the execution steps have preconditions
(rules 2, 4, 5) then satisfaction of these preconditions must be equivalent in s
and σ. It is easy to see this follows from the definition of the relation ∼ on states.
Now we can establish execution steps 〈s, S〉 −→ 〈s′, S′〉 and 〈σ,Σ〉 −→ 〈σ′, Σ′〉.
It rests to prove that the resulting configurations are again equivalent –

〈s′, S′〉 ∼ 〈σ′, Σ′〉

must hold.
We prove the equivalence by considering all semantic rules. We consider the

main rules for object creation, procedure calls and returns.
Rule 3 (z := new). For variables x and y distinct from z, we have s′(x) = s(x),

σ′(y) = σ(y), s′(x) 6= s′(z) and σ′(x) 6= σ′(z). This proves s′ ∼ σ′. Next observe
that S′ and Σ′ equals S and Σ, respectively. So we obtain the desired result.

Rule 7 (call p). By definition we have s′(l) = ⊥ and σ′(l) = 0, for every local
variable l, and s(g) = s′(g) and σ(g) = σ′(g), for every global variable g. It

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 48

follows that s ∼ σ implies s′ ∼ σ′. Further, by definition S′ and Σ′ equals s • S
and σ •Σ, respectively. By assumption, s ∼ σ and S ∼ Σ, and so by definition
s • S ∼ σ •Σ.

Rule 8. By definition S and Σ equals s′′ • S′ and σ′′ • Σ′, respectively, for
some states s′′ and σ′′. From the assumption S ∼ Σ it thus follows that s′′ ∼ σ′′
and S′ ∼ Σ′. Remains to prove that s′ ∼ σ′. We distinguish the following three
cases:

1. x and y are both global variables:

s′(x) = s′(y)
(Corollary 1.1)⇐⇒ s(x) = s(y)
(Assumption)⇐⇒ σ(x) = σ(y)
(Corollary 2.1)⇐⇒ σ′(x) = σ′(y)

2. x and y are both local variables:

s′(x) = s′(y)
(Corollary 1.2)⇐⇒ s′′(x) = s′′(y)
(Assumption)⇐⇒ σ′′(x) = σ′′(y)
(Corollary 2.2)⇐⇒ σ′(x) = σ′(y)

3. x is global and y is local:

s′(x) = s′(y)
(Corollary 1.3)⇐⇒ s(x) = s′′(y)

(Lemma 1)⇐⇒ s(x) = s′′(g) and s′′(g) = s′′(y), for some global variable g
(Freeze var.)⇐⇒ s(x) = s(g′) and s′′(g) = s′′(y), for some global variable g
(Assumption)⇐⇒ σ(x) = σ(g′) and σ′′(g) = σ′′(y) for some global variable g
(Corollary 2.3)⇐⇒ σ′(x) = σ′(y)

Note that because of the introduction of freeze variables in the concrete se-
mantics we indeed have s′′(g) = s(g′) (this can be proved in a straightforward
manner by induction on the length of the computation).

This concludes the proof of Theorem 1. ut

6 Conclusions

Pushdown systems naturally model the control flow of sequential computation
in programming languages with local variables and recursive procedures. In this
paper we provided a generalization of this model by adding unbounded object
creation. We have shown that imperative programs with object creation, re-
cursive procedures, and local variables without any restriction can be given a
symbolic semantics through a finite pushdown system such that the infinite state
system generated is strongly bisimilar to the ordinary operational semantics of
the program.

J. Rot, F. de Boer, M. Bonsangue

49 Technical Report, KIT, 2010-13

Applications to static analysis. Starting from an initial stack containing the
initial procedure p0, a program P is executed and eventually terminates when
the stack is empty. If we consider a singleton alphabet symbol labeling all tran-
sitions of our pushdown system, we obtain an ordinary pushdown automaton
(with acceptance by empty stack). Clearly, the language accepted by this push-
down automaton is non-empty if and only if there exists an execution of the
program P that terminates. Since the emptiness problem is decidable for push-
down automata [16], we have an algorithm for deciding termination of programs
in our language. Similarly, because the halting problem for pushdown automata
is decidable, we have an algorithm for deciding if a program blocks, for example
because of an assignment with an undefined variable at the right-hand side.

Applications to model checking. More recently, the problem of checking ω-regular
properties (like those expressible in linear-time temporal logics or linear-time
µ-calculus) or properties expressed as formulas of the alternation-free modal
µ-calculus (including CTL properties) of pushdown systems have been shown
to be decidable, leading to efficient model checkers for the generated infinite
state systems (see e.g. [5,12]). For instance, to verify whether a program P
in our language satisfies a linear time temporal formula φ, we first derive a
symbolic pushdown system for P with finitely many control states and stack
symbols, then construct the finite state Büchi automaton for the negation of
φ, and finally use the algorithm of [5] to check if there is no execution of the
program P that satisfies the negation of φ. Interestingly, the complexity of this
model checking problem for a fixed LTL formula is polynomial in the size of
the pushdown system, a complexity that is not much worse than that for finite
transition systems [5].

In the future we plan to investigate the integration of our technique with
jMoped, a Java model checker based on pushdown systems [12]. As for the model
checking, there are at least two directions that could be explored. On the one
hand we intend to look for extension of temporal logic with support for a prim-
itive for object creation (and destruction) [11,3]. On the other hand, we would
like to investigate model checking of some non ω-regular properties, allowing,
for example, matching of procedure calls and returns. While the problem is in
general undecidable, it seems possible to turn our pushdown systems into visi-
bly pushdown automata, a class of pushdown automata with desirable closure
properties and interesting tractable decision problems [1].

Language considerations. We have presented a language that supports unbounded
object creation by using recursive procedures with global and local variables. The
language can not be extended with higher-order features like passing procedures
and internal procedures as parameters of procedure calls, as well as it cannot
include features like call-by-name parameter passing because the halting prob-
lem for these two class of programs is known to be undecidable [7]. It would be
interesting, however, to see what happens if we change static scope to dynamic
scope or if we disallow internal procedures as parameters.

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 50

Our language does not have any concrete data but for object identities, and
does not support object fields. Data can be added but in order to model com-
putations by a finite pushdown system, we need to consider only finite data
domains. The language can be extended with object fields f1, . . . , fn, by sim-
ply adding expressions of the form x.f as variables, and as such they will be
included in the partitions. More general navigation expressions can be reduced
to the above in the obvious way.

The language does not have a syntactic construct to destroy object identi-
ties. We can give a concrete semantic for it without the needs of inspecting the
call-stack (for example by storing in extra variables the names of the objects
destroyed and assuming they will not be reused, so that local variables in the
stack can be reset when a procedure returns). This observation can be combined
with the concept of chains in the stack of variables referring to the same object
to allow deletion within the pushdown system representation, by simply keeping
track of the chains which refer to deleted objects. This way of deletion would
work also for encoded object fields, which implies on-the-fly garbage collection.
We plan to work out the details in a future work.

Finally, our language is sequential. It is not a problem to add bounded con-
currency within the body of a procedure by using, e.g. a parallel operator of the
form B1||B2, as we can give an interleaving semantic to it using rules of the form

〈s,B1 • S〉 −→ 〈s,B • S〉
〈s,B1||B2 • S〉 −→ 〈s,B||B2 • S〉 and

〈s,B2 • S〉 −→ 〈s,B • S〉
〈s,B1||B2 • S〉 −→ 〈s,B1||B • S〉

However for more global notions of concurrency, like threads, we need to store
the local variables of the program for each thread. Therefore, to keep the stack
alphabet and the number of control states finite in our pushdown system, we have
to restrict to a bounded number of threads [2]. It can be interesting to combine
our results with those of [6], so to allow reachability analysis of multithreaded
programs.

We leave these considerations for future work.

References

1. R. Alur, P. Madhusudan. Visibly pushdown languages. In Proc. of Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 202-211, ACM, 2004.

2. F.S. de Boer and I. Grabe. Automated Deadlock Detection in Synchronized Reen-
trant Multithreaded Call-Graphs. In Proc. of 36th Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture
Notes in Computer Science, pages 200-211, Springer, 2010.

3. M.M. Bonsangue, A.Kurz. Pi-Calculus in Logical Form, In Proc 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pp. 303-312, IEEE, 2007.

4. C. Baier and J.-P. Katoen. Principles of Model Checking The MIT press, 2008.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking In Proceedings Concur 97, volume 1243 of
Lecture Notes in Computer Science, pp. 135–150, Springer, 1997.

J. Rot, F. de Boer, M. Bonsangue

51 Technical Report, KIT, 2010-13

6. A. Bouajjani, S. Fratani, S. Qadeer. Context-Bounded Analysis of Multithreaded
Programs with Dynamic Linked Structures. In Proc. Intern. Conf. on Computer
Aided Verification (CAV’07 volume 4590 of Lecture Notes in Computer Science,
Springer 2007.

7. E.M. Clarke. Programming language constructs for which it is impossible to obtain
good Hoare-like axioms. Journal of the ACM 26:126-147, 1979.

8. J. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pǎsăreanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Pro-
ceedings 22nd International Conference on Software Engineering, pp. 439-448. IEEE
Computer Society, 2000.

9. C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java
programs. Software - Practice and Experience, 29(7):577–603, 1999.

10. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Automatic
Computation, 1976.

11. D. Distefano, J.-P. Katoen, A. Rensink. Who is Pointing When to Whom? In
Proceedings of 24th Int. Conf. on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2004) volume 3328 of Lecture Notes in Computer
Science, pp. 250-262, Springer 2004.

12. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In Proceedings of CAV 2001, volume 2102 of Lecture Notes in Computer Science, pp.
324–336, Springer, 2001.

13. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
Proceedings of 14th LICS, pp. 214-224, IEEE Computer Society Press, 1999.

14. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, 2000.

15. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–94, 1997.

16. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 3rd edition, 2006.

17. U. Montanari and M. Pistore. An Introduction to History Dependent Automata.
In Proceeding 2nd Workshop on Higher-Order Operational Techniques in Semantics,
volume 10 of Electonic Notes in Theoretical Computer Science, pp. 170-188, Elsevier,
1998.

18. D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java Model Checking In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering. pp.
253–256. IEEE, 2000.

19. B. Randell and L.J. Russell. ALGOL 60 Implementation: The Translation and Use
of ALGOL 60 Programs on a Computer. Academic Press, 1964.

20. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science 8(5):447-479, 1998.

21. S. Schwoon. Model-checking pushdown systems. PhD thesis, Technische Univer-
sität München, 2002.

22. R. Sebesta. Concepts of Programming Languages. Addison-Wesley, 9th edition,
2009.

23. B. Stroustrup The C++ Programming Language.

A Pushdown System Representation for Unbounded Object Creation

Technical Report, KIT, 2010-13 52

Validating Timed Models of Deployment
Components with Parametric Concurrency ?

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,olaf,rudi,sltarifa}@ifi.uio.no

Abstract. The concurrent object model has advantages to thread-based
concurrency with respect to compositionality and verification. In the con-
current object model, each object conceptually encapsulates a processor.
When concurrent objects are deployed, the available processing resources
are naturally more restricted. This paper proposes an abstract model of
deployment components in terms of concurrent object groups with a re-
stricted number of concurrent processing resources. Deployment compo-
nents are parametric in the amount of concurrency they provide; i.e., they
vary in the number of processor resources. We give a formal semantics
of deployment components in rewriting logic, extending the semantics
of Creol, and characterize equivalence between deployment components
which differ in concurrent resources in terms of test suites. Our semantics
is executable on Maude, which allows simulations and test suites to be
applied to a deployment component with different concurrency resources.

1 Introduction

Software systems today are increasingly developed to be highly configurable. A
development method which attempts to systematize this variability, is software
product line engineering [23]; in a product line, different software systems (or
products) may be instantiated with different features. To illustrate this approach
to software development, consider software for cell phones. Products for different
cell phones and service subscriptions are produced by selecting among features
such as call forwarding, answering machine, text messaging, etc. In addition to
this software variability, products often need to be adapted to different hardware
or deployment scenarios. Examples of such variability are found in operating
systems, which can be adapted to specific hardware and even to the different
numbers of available kernels; web shops, which are deployed on a varying num-
ber of servers and may even dynamically perform load balancing between these
servers; and information systems within, e.g., healthcare or finance, which may
run on a single computer, in a distributed set-up, or even on the cloud. Software
product lines raise new challenges for the performance analysis of component-
based applications [27]. In this paper, we apply performance analysis to models

? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats-project.eu).

53 Technical Report, KIT, 2010-13

of object-oriented components or systems in deployment scenarios which vary in
the amount of concurrent resources they can provide to the given component.

This work is based on Creol [10,18], a modeling language for distributed con-
current objects which communicate by asynchronous method calls and futures.
Creol’s operational semantics is given in rewriting logic [20] and is executable on
Maude [9]. Concurrent objects are reminiscent of Actors [2] and Erlang [4]: Ob-
jects are inherently concurrent, conceptually each object has a dedicated proces-
sor, and there is at most one activity in an object at any time. This concurrency
model has attracted attention as an alternative to multi-thread concurrency
in object-orientation (e.g., [6]), and been integrated with, e.g., Java [26] and
Scala [13]. Concurrent objects support compositional verification of concurrent
software [3,10], in contrast to multi-threading [1]. A particular feature of Creol is
its cooperative scheduling of method activations inside concurrent objects. Re-
cently, Creol’s notion of cooperative scheduling and asynchronous method calls
has been integrated in Java by means of concurrent object groups [24].

This paper generalizes the idea of concurrent object groups to deployment
components which are parametric in the amount of concurrent activity they al-
low within a time interval. Creol is extended with notions of timed execution and
deployment components, which are integrated into Creol’s operational seman-
tics. This integration is non-trivial in that it must capture parametric concur-
rent activities within time frames in terms of an interleaving semantics in order
to execute the models in Maude. We characterize the equivalence of different
deployment scenarios, varying in the concurrency resources of the deployment
components, in terms of test suites of timed observable behavior and use Maude
to run tests for our models. This allows the timed behavior of concurrent object
models under restricted concurrency assumptions to be validated and compared.

Paper overview. Sect. 2 presents a timed version of Creol, and Sect. 3 the
deployment components with parametric concurrency. Sect. 4 illustrates the lan-
guage by an example. Sect. 5 explains the operational semantics of timed Creol
in terms of rewriting logic. Sect. 6 presents testing and simulation results in the
context of the example, Sect. 7 discusses related work, and Sect. 8 concludes.

2 Concurrent Objects in Creol

Creol is an abstract behavioral modeling language for distributed active objects,
based on asynchronous method calls and processor release points. In Creol, ob-
jects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activi-
ties (processes) in the called object. This section briefly introduces Creol (for
further details see, e.g., [10, 18]). Objects are dynamically created instances of
classes, declared attributes are initialized to some arbitrary type-correct values.
An optional init method may be used to redefine the attributes. Active behav-
ior, triggered by an optional run method, is interleaved with passive behavior,

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 54

Syntactic categories.
C, I, m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;] M}
Sg ::= I m ([I x])

M ::= Sg == [I x;] { s }
g ::= b | x? | g ∧ g | g ∨ g
s ::= s; s | x := e | release | await g | x.get | return e
| if b then { s } [else { s }] | while b { s } | skip

e ::= x | b | new C (e) | [e]!m(e) | x.get | this | null | now
Fig. 1. The syntax of core Timed Creol. Terms such as e and x denote lists over the
corresponding syntactic categories and square brackets denote optional elements.

triggered by method calls. Thus, an object has a set of processes to be executed,
which stem from method activations. Among these, at most one process is active
and the others are suspended on a process queue. The scheduling of processes
is by default non-deterministic, but controlled by processor release points in a
cooperative way. Creol is strongly typed: for well-typed programs, invoked meth-
ods are supported by the called object (when not null), such that formal and
actual parameters match. This paper assumes that programs are well-typed.

Figure 1 gives the syntax for a core subset of Timed Creol (omitting, e.g.,
inheritance). A program consists of interface and class definitions and a main
method to configure the initial state. IF defines an interface with name I and
method signatures Sg . A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of type I), and methods M . (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types I.
M defines a method with signature Sg and a list of local variable declarations
x of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters.

Statements. Assignment x := e, sequential composition s1; s2, skip, if,
while, and return e constructs are standard. The statement release un-
conditionally release the processor by suspending the active process. In contrast,
the guard g controls processor release in the statement await g, and consists of
Boolean conditions that may contain attributes and return tests x? (see below).
If g evaluates to false, the current process is suspended and the execution thread
becomes idle. In this case, any enabled process may be chosen from the pool of
suspended processes. The scheduling of processes is cooperative in the sense that
processes explicitly yield control and execution in one process may enable the
further execution in another. Explicit signaling is redundant.

Expressions e include declared variables x, Boolean expressions b, and object
creation new C(e). The specially reserved read-only variable this refers to the
identifier of the object and now refers to the current clock value (explained
below). Note that remote access to attributes is not allowed. (The full language
includes a functional expression language with standard operators for data types

E. Broch Johnsen et al.

55 Technical Report, KIT, 2010-13

such as strings, integers, lists, sets, maps, and tuples. These are omitted in the
core syntax, and explained when used in the examples.)

Communication in Creol is based on asynchronous method calls, denoted
e!m(e), and future variables. (Local calls are written !m(e).) After making an
asynchronous call x := e!m(e), the caller may proceed with its execution without
blocking on the method reply. Here x is a future variable, and e and e are
expressions. Thus, a future variable x refers to a return value which has yet
to be computed. There are two operations on future variables, which control
synchronization in Creol. First, the guard await x? suspends the active process
unless a return to the call associated with x has arrived. This blocks execution in
the process, but allows other processes to be executed. Second, the return value
is retrieved by the expression x.get, which blocks all execution in the object
until the return value is available. The statement sequence x := o!m(e); v :=
x.get encodes a blocking call, abbreviated v := o.m(e) (often referred to as a
synchronous call), whereas the statement sequence x := o!m(e); await x?; v :=
x.get encodes a non-blocking, preemptable call, abbreviated await v := o.m(e).

Time. We consider a discrete time model, comparable to a system clock
which updates every n milliseconds. With this granularity of time, an object
which executes a statement may, but need not observe that time has advanced.
The expression now returns the present time, i.e., the global clock’s value in the
current state. Time values are totally ordered by the less-than operator; com-
paring two time values result in a Boolean value suitable for guards in await
statements. In the model, the passage of time is implicitly observable via such
await statements. From an object’s local perspective, time can advance by ei-
ther evaluating statements or by awaiting the passage of time. This model of time
combined with Creol’s blocking and non-blocking synchronization semantics, is
powerful enough to express both process- and object-wide progress statements.

3 Deployment Components with Parametric Concurrency

Creol’s object model is inherently concurrent, which means that for the actual
deployment of a program it is necessary to map the logical concurrency of the
model to physical computing resources. For this purpose, we introduce a notion
of deployment component into the modelling language, which abstracts from the
number and speed of the physical processors available to the component by a
notion of concurrent resource. The granularity of the global time model defines
the points in time when the executing system is observable. Concurrent resources
may be consumed in parallel or in sequential order, which reflects the number
of processors and their speeds relative to the granularity of the time intervals
of the model. Thus, the logical concurrency model of the concurrent objects is
controlled by their associated deployment component. A deployment component
is parametric in the computational resources it offers to a group of dynamically
created objects, which allows easy configuration of concurrent resources.

The execution inside a deployment component can be understood as follows.
Let n be a natural number. Resources are modelled by a data type Resource

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 56

which extends the natural numbers with an “unlimited resource” ω, such that
resource consumption is captured by subtraction, where ω−n = ω. Within a time
slot, a deployment component with r concurrent resources is able to execute up
to n execution steps in parallel, where n ≤ r. Consider a deployment component
D instantiated with r resources and let G be the set of concurrent objects which
currently reside in the deployment component. Let A ⊆ G be a subset of the
concurrent objects on the component, such that objects in A are able to perform
an execution step in their current state. Provided |A| ≤ r, every object in A may
consume a resource, leaving r′ = r − |A| resources available on the component.
If there are remaining resources (r′ > 0) , another cycle of execution steps may
be performed for r′ within the time slot by repeating this procedure.

In the modelling language, a deployment component D is declared by as-
sociating a name to a given quantity of concurrent resources r, capturing the
actual processing capacity of D. For simplicity in this paper, a deployment com-
ponent is a static entity, in contrast to class declarations which act as tem-
plates for dynamic generation of objects. A component is introduced by the
syntax component D(r), where D is the name of the component and r, of sort
Resource, represents the concurrent resources of the component. The set of
concurrent objects residing on the components, representing the logically con-
current activities, may grow dynamically. Thus, when objects are created, we
require that they reside inside a deployment component. The syntax for object
creation is extended with an optional clause to specify the targeted deployment
component: new C(e) in D. This expresses that C will reside in the component
D. Objects generated by a parent object residing in a component D will also re-
side inD unless otherwise specified by an in clause. Thus the behavior of a Creol
model which does not statically declare additional deployment components, can
be captured by a main deployment component with ω resources.

4 Example: A Distributed Shopping Service

We consider a simple model of a web shop (see Fig. 2). Clients connect to the
shop by calling the getSession method of an Agent object. An Agent hands
out Session objects from a dynamically growing pool. Clients call the order
method of their Session instance, which in turn calls the makeOrder method
of a Database object that is shared across all sessions. After completing the
order, the session object is added to the agent’s pool again. This scenario models
the architecture and control flow of a database-backed website, while abstracting
from many details (load-balancing thread pools, data model, sessions spanning
multiple requests, etc.), which can be added to the model should the need arise.

In the implementation of the Database class, an order takes a minimum
amount of time, and should be completed within a maximum amount of time.
The timing behavior of the database is configurable via the class parameters
min and max. Line 8 implements the delay while processing the order, Line 9
calculates and returns the success status of the order (i.e., whether a timeout
occurred). Note that a component with unlimited resources, will complete all

E. Broch Johnsen et al.

57 Technical Report, KIT, 2010-13

1 interface Agent { Session getSession(); Void free(Session session);}
2 interface Session { Bool order(); }
3 interface Database { Bool makeOrder(); }
4

5 class Database(Nat min, Nat max) implements Database {
6 Bool makeOrder () {
7 Time t:=now;
8 await now >= t + min;
9 return now <= t + max; }

10 }
11 class Agent(Database db, Set[Session] available) implements Agent{
12 Session getSession() {
13 if isempty(available) {
14 return new Session(this, db); }
15 else { session:=choose(available);
16 available:=remove(session,available);return session;}}
17 Void free(Session session){available:=add(available,session);}
18 }
19 class Session(Agent agent, Database db) implements Session {
20 Bool order() {return db.makeOrder(); agent.free(this); }
21 }

Fig. 2. A web shop model in Creol.

orders in the minimum amount of time, just as expected. In the Agent class, the
attribute available stores a set of Session objects. (Creol has a datatype for
sets, with operations isempty to check for the empty set, denoted {}, choose
to select an element of a non-empty set, and remove and add to remove or add
an element to a set.) When a customer requests a Session, the Agent takes
a session from the available sessions if possible (Line 15), otherwise it creates a
new session (Line 14). The method free inserts a session in the available
sessions of the Agent, and is called by the session itself upon completion of an
order. Section 6 shows how to run this example on a deployment component.

5 Operational Semantics

The semantics of Creol is defined in rewriting logic (RL) [20], and Creol models
can be analyzed using the rewrite tool Maude [9]. In a rewrite theory (Σ,E,L,R),
the signature Σ defines the ground terms, E defines equations between terms, L
is a set of labels, and R a set of labeled rewrite rules. Rewrite rules apply to terms
of given sorts, specified in (membership) equational logic (Σ,E). When modeling
computational systems, different system components are typically modeled by
terms of suitable sorts and the global state configuration is a set of these terms.
RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations
defining the term language. A conditional rewrite rule crl [name]: t→ t′ if c
may be understood as a local transition rule allowing an instance of the pattern
t to evolve into the corresponding instance of the pattern t′, where the condition
c is a conjunction of rewrites and equations that must hold for the main rule
to apply (the name identifies the rule). When auxiliary functions are needed,

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 58

these can be defined in equational logic, and thus evaluated in between the state
transitions [20]. In a conditional equation ceq t = t′ if c the condition c must
similarly hold for the equation to apply. Both rewrite rules and equations may be
unconditional, denoted by the keywords rl and eq, respectively. Given an ini-
tial configuration, Maude supports simulation and breadth-first search through
reachable states and model checking of finite reachable states for desired prop-
erties. In this paper, Maude is used as an interpreter for Creol’s operational
semantics in order to simulate and test Creol models.

The States. Following Maude conventions runtime objects are represented by
terms of the form 〈o : C| . . . , Att: x, . . .〉, where o is the identifier, C the
class, and the object contains a set of attributes such that Att is the name and
x the current value of an attribute. Variables are slanted, whereas constant parts
of a term’s syntax are in typewriter style. As before, t denotes a collection of
terms t, either a list or a set depending on the context. Let Emp be the empty
list and ∅ the empty set. In the rules below, all numbers are natural numbers
(e.g., in counters and time) except resources which are of sort Resource.

A state configuration is a set which consists of a global clock, deployment
components, objects, classes, invocation messages, and futures. The associative
and commutative union operator on configurations is denoted by whitespace
and the empty configuration by none. The entire configuration lives inside curly
brackets; thus, in the term {cn} the variable cn captures the entire configuration.
The global clock is a term 〈 t : Clock | limit : l 〉 where t is the current time and
l the time limit we consider in an execution of the semantics. A deployment
component is a term 〈 dc : Comp | Free : r,limit : l 〉 where dc is the identifier of the
component, r the (non-negative) number of available computing resources, and
l the maximum number of resources which can be consumed before the clock
advances.

An object is a term 〈 o : C | Att : a,Pr :{l | s},PrQ : w,Lcnt : f,Comp : dc 〉where o is
the object’s identifier and C its class, the object’s state is given by the attribute
mapping a (i.e., a single binding a associates a value with a declared variable),
a process {l |s} consists of a mapping l of local variable bindings and a list s
of statements. The set w of (suspended) processes represents the process queue.
The counter f is used to ensure that futures created by the object have unique
identifiers, and dc is the deployment component associated with the object.

A class is a term 〈C : Class | Prm : x,Att : a,Mtds : M,Ocnt : y 〉, where C is the
identifier, x the list of formal parameters, a maps declared attributes to initial
(default) values, and M the set of method definitions of the form 〈m : Mtd |
Prm : x, Att : l, Code : s 〉 . Here, m is the method name, x formal parameter list,
l the mapping of local variables to initial (default) values, and s a sequence of
statements. The counter y will ensure that created objects get unique identifiers.

An invocation message is a term invoc(o,n,m,d) where o is the callee, n the a
future to which the call’s result shall be returned,m the method name, and d lists
the call’s actual parameter values. A future is a term 〈n : Fut | Done : b,Value : d 〉
where n is the identifier, b a Boolean flag indicating whether the future’s reply
value has been received, and d the reply value.

E. Broch Johnsen et al.

59 Technical Report, KIT, 2010-13

rl [skip] : 〈 o : C | Pr : {l | skip;s}, Comp : dc 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Pr : {l | s}, Comp : dc 〉 〈 dc : Comp | Free : r − 1 〉 .

rl [assign] : 〈 o : C | Att : a,Pr:{l | x:=e;s},Comp : dc 〉 〈 t :Clock |〉 〈 dc :Comp | Free: r 〉
−→ if x ∈dom(l) then 〈 o : C | Att : a,Pr : {l[x 7→ [[e]]t

(a◦l),none
] | s},Comp : dc 〉

else 〈 o : C | Att : a[x 7→ [[e]]t
(a◦l),none

],Pr : {l | s},Comp : dc 〉 fi
〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉 .

rl [if-then-else] : 〈 o : C | Att : a,Pr:{l | if e th s1 el s2 fi;s} 〉 〈 t : Clock |〉
−→ if [[e]]t

(a◦l),none
then 〈 o : C | Att : a, Pr : {l | s1;s} 〉

else 〈 o : C | Att : a, Pr : {l | s2;s} 〉 fi 〈 t : Clock |〉 .

crl [return] : 〈 o : C | Att : a, Pr : {l | return(e);s}, Comp : dc 〉 〈 t : Clock |〉
〈n : Fut | Done : false, Value : ⊥ 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l | s}, Comp : dc 〉 〈n : Fut | Done : true, Value : [[e]]t

(a◦l),none
〉

〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉 if n = l(destiny) .

rl [release] : 〈 o : C | Pr:{l | release;s},PrQ : w 〉
−→ 〈 o : C | Pr:idle,PrQ : w ∪{{l | s}}〉 .

crl [await1] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a, Pr : {l | s} 〉 cn 〈 t : Clock |〉 } if [[e]]t

(a◦l),cn .

crl [await2] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a, Pr : {l | release;await e;s} 〉 cn 〈 t : Clock |〉 } if ¬[[e]]t

(a◦l),cn .

crl [activate] : {〈 o : C | Att : a, Pr : idle, PrQ : w ∪{{l | s}} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a,Pr : {l | s},PrQ : w 〉 cn 〈 t : Clock |〉 } if ready(s,(a ◦ l),cn,t) .

crl [async-call] : 〈 o : C | Att : a, Pr : {l | x:=e!m(e);s}, Lcnt : f, Comp : dc 〉
〈 t : Clock |〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a,Pr : {l[x 7→ n] | s},Lcnt : f + 1,Comp : dc 〉 〈 dc : Comp | Free : r − 1 〉
invoc([[e]]t

(a◦l),none
,n,m,[[e]]t

(a◦l),none
) 〈n : Fut | Done : false,Value : ⊥ 〉 〈 t : Clock |〉

if n:=label(o, f)∧ o 6= [[e]]t
(a◦l),none

.

rl [bind-method] : invoc(o,n,m,d) 〈 o : C | PrQ : w 〉
〈C : Class | Mtds:(M ∪{〈m : Mtd | Prm : x,Att : l,Code : s 〉})〉
−→ 〈 o : C | PrQ: w ∪{{l[destiny7→ n,x 7→ d]|s}}〉
〈C :Class | Mtds:(M ∪{〈m : Mtd | Prm: x,Att: l,Code: s 〉})〉 .

crl [receive-comp] : 〈 o : C | Att: a,Pr:{l | x:=e.get;s},Comp: dc 〉
〈n :Fut | Done:true,Value: d 〉 〈 dc :Comp | Free: r 〉
−→ 〈 o : C | Att : a,Pr:{l | x:=d; s},Comp : dc 〉 〈n : Fut | Done : true,Value : d 〉
〈 dc : Comp | Free : r − 1 〉 if n = [[e]]t

(a◦l),none
.

rl [object-creation] : 〈 o : C | Att : a,Pr : {l | x :=new B(e);s},Comp : dc 〉
〈 t : Clock |〉 〈 dc : Comp | Free : r 〉 〈B : Class | Prm : x,Att : a1,

Mtds : M ∪{〈init : Mtd | Prm : Emp,Att : ∅,Code : s1 〉 },Ocnt : g 〉
−→ 〈 o : C | Att : a,Pr : {l | x:=newId(B, g);s},Comp : dc 〉 〈B : Class | Prm : x,Att : a1,

Mtds : M ∪{〈init : Mtd | Prm : Emp,Att : ∅,Code : s1 〉 },Ocnt : g + 1 〉
〈newId(B, g) : B | Att : a1[this7→ newId(B,g),x 7→ [[e]]t

a◦l,none
], Pr : {∅ | s1},

PrQ : ∅, Lcnt : 0, Comp : dc 〉 〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉 .
Fig. 3. A timed rewriting logic semantics for Creol. In the rewrite rules, the variable r
ranges over non-zero natural numbers to ensure that resource values are non-negative.

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 60

Evaluating Expressions. Given a substitution s, a time t, and a configuration cn,
denote by [[e]]ts,cn a confluent and terminating reduction system which reduces an
expression e to a data value. Let [[now]]ts,cn = t. Let [[x?]]ts,cn = true if [[x]]ts,cn = n
and there is a future 〈n : Fut | Done : true,Value : d 〉 in cn (for some value d),
otherwise [[x?]]ts,cn = false. The remaining cases are fairly straightforward,
looking up values for declared variables in s. The reduction of an expression
always happens in the context of a given process, object state, and configuration.
Thus, s = a ◦ l, the composition of the object state a and the local variable
bindings l, the time t is the current global time, and the configuration cn is the
current global configuration of the system (ignoring the object itself).

The Rules. The rewrite rules of the operational semantics transform state con-
figurations into new configurations, and are given in Fig. 3. In the presentation of
a rule, we follow the convention of Full Maude [9] and hide attributes in runtime
objects unless they are needed for that specific rule.

Rule skip consumes a skip in the active process and a resource in its deploy-
ment component. Rule assign evaluates an expression e and assigns the value to
a variable x in the local state l or in the attributes a, as appropriate, consuming
a resource in its deployment component. Rules if-then-else branches the execu-
tion depending on the value obtained by evaluating the expression e. (We omit
the rule for while, which unfolds the while loop using an if-expression.)

Process suspension and activation. Rule return puts the return value into
the future associated with the call (via the destiny-variable which refers to the
appropriate future) and marks the flag done as true in that future. This operation
consumes a resource. Rule release suspends the active process by placing it on
the process queue. We denote by idle the idle active process. Rule await1
consumes the await statement in the case where the guard evaluates to true in
the current state of the object, rule await2 adds a release statement to the
process in order to suspend the process in the case where the guard evaluates to
false. Rule activate selects a process from the process queue if the statement list
of this process is ready to execute. A process is ready if it would not directly be
suspended again or block the processor (the formal definition is given in [18]).

Communication and object creation. Rule async-call sends an invocation mes-
sage to the callee with the actual method parameters and the identity of a future
in which to place the method’s return value. The caller creates the future asso-
ciated with the call, with a unique identity label(o, f) constructed from the
caller’s own identity o and a local counter f . The future’s Done attribute is
initially false and the return value is undefined (i.e., ⊥). This operation con-
sumes a resource. Rule bind-method consumes an invocation method and places
the process corresponding to the method call in the process queue of the callee.
Note that we use a reserved local variable destiny to store the identity of
the future associated with the call. Rule receive-comp dereferences the future
variable n in the case where the future’s Done attribute is true. Note that if
this attribute is false the reduction in this object is blocked. This operation
consumes a resource. Finally, object-creation creates a new object with a unique
identifier newId(B, g) constructed from the class identifier B and a local counter

E. Broch Johnsen et al.

61 Technical Report, KIT, 2010-13

eq canAdv(cn′, t) = true . //cn’ contains no objects or messages
eq canAdv (msg cn, t) = false . //messages are instantaneous
eq canAdv(〈 o : C | 〉 〈 dc : Comp | Free : 0 〉 cn, t) //no more resources

= canAdv(〈 dc : Comp | Free : 0 〉 cn,t).

eq canAdv(〈 o : C | Pr:{l | n.get;s)}〉 //o is blocked, value not available
〈n : Fut | Done : false 〉 cn,t) = canAdv(〈n : Fut | Done : false 〉 cn,t).

ceq canAdv(〈 o : C | Att : a,Pr : idle,PrQ : w 〉 cn,t) //no ready processes
= canAdv(cn,t) if noneready(w,a,cn,t).

eq canAdv(〈 o : C | 〉 cn, t) = false [owise] .

eq Adv(〈 dc : Comp | Free : r,limit : max 〉 cn)
= 〈 dc : Comp | Free : max,limit : max 〉 Adv(cn).

eq Adv(cn) = cn [owise] .

crl [progress] : {cn 〈 t : Clock | limit : limit 〉 }
−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 } if canAdv(cn,t)∧ t < limit .

Fig. 4. Advancing the clock. Here, msg denotes a message, r ranges over non-zero nat-
ural numbers (as before), and cn’ ranges over message- and object-free configurations.

g. The object’s state is generated from default values for state attributes, ex-
tended with the actual values for this and the class parameters. In order to
instantiate the remaining attributes, the init method is loaded (we assume
that this method reduces to skip if unspecified in the class definition, and that
it asynchronously calls run if the latter is specified.) This operation consumes a
resource. Note that the new object inherits the deployment component of its cre-
ator. The rule for object creation in a named deployment component differs from
object-creation only on this point, and is omitted from the presentation.

Advancing time. We capture a run-to-completion semantics for concurrent exe-
cution within the resource bounds of deployment components: all objects must
finish their actions as soon as possible if resources are available. In order to
capture timed concurrent execution with an interleaving semantics, time cannot
advance freely. Time advance is regulated by a predicate canAdv, ranging over
configurations and time (see Fig. 4), which can be explained as follows:

– For simplicity, we here assume that invocation messages do not take time.
Therefore, time may not advance when a message is on its way. (A timed
model of communication may be obtained by introducing explicit delays in
the model, associated with specific method calls, see Sect. 4.)

– If a deployment component has remaining resources and one of the compo-
nent’s objects o may perform an action, then time may not advance. There
are three cases:
1. the active process in o is blocked on a value that has become available,
2. the active process in o is idle, but a suspended process of o can be

activated. (The predicate noneready in the equation expresses that for
all processes {l|s} ∈ w, we have ¬ready(s, a ◦ l, cn, t).)

3. the active process in o is not blocked.
– If a deployment component has run out of resources, none of its objects can

proceed, and hence time can advance.

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 62

class SyncClient(Agent a,Nat c){
Void run {
Time t := now;
Session s := a.getsession();
Bool result := s.order();
await now >= t + c; !run(); } }

class PeriodicClient(Agent a,Nat c){
Void run {
Time t := now;
Session s := a.getsession();
Fut(Bool) rc:= s!order();
await now >= t + c;
!run();
await rc?; Bool r := rc.get; } }

component shop(10)
Void main() {

Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
PeriodicClient c := new PeriodicClient(a, 5); }

Fig. 5. Deployment environment and client models of the web shop example.

If there can be no activity in any object and no messages are in transit, then
time may advance. Time advance is captured by the rewrite rule progress in
Fig. 4, which updates the global clock. Once time has advanced, the deployment
components get their resources refreshed for the next cycle of computation. This
is done by an auxiliary function Adv defined in Fig. 4, which updates a con-
figuration by resetting the free resources of each deployment component to the
specified limit. Observe that for simplicity we here advance time with a single
unit. It is of course straightforward to add an attribute delta which allows larger
increments. However, this may lead to incompleteness for search in the timed
models [21]. Furthermore, we add a limit to the global clock and only consider
execution sequences up to this limit in time in order to ensure termination of
model execution.

6 Simulating and Testing the Example

The web shop example of Section 4 is now extended by specifying a deploy-
ment component and an environment in order to obtain testing and simulation
results. Figure 5 shows how the web shop may be deployed: a deployment com-
ponent shop is declared with 10 resources available for objects executing inside
shop. The initial system state is given by the main method, which creates
a single database, with 5 and 10 as its minimum and maximum time for or-
ders, an Agent instance, and (in this example) one client outside of shop.
The classes SyncClient and PeriodicClient model customers of the shop.
PeriodicClient initiates a session and periodically calls order every c time
units; SyncClient sends an order c time units after the last call returned.

Figure 6 displays the results of two sets of simulation runs over 100 clock
cycles. For synchronous clients, 5 to 25 clients and 10 to 50 resources on the shop
deployment unit were used. From about 15 clients, the number of requests scales
linearly with the resources, indicating that the system is running at full capacity
even at 50 resources. With larger numbers of clients, the number of successful
requests decreases since communication costs also increase with the client load.
For the periodic case, the system gets overloaded much more quickly since clients
will have several pending requests; hence, only up to ten periodic clients were

E. Broch Johnsen et al.

63 Technical Report, KIT, 2010-13

Fig. 6. Number of total and successful requests, depending on the number of clients
and resources, for synchronous (left) and periodic (right) clients.

simulated. It can be seen that the system becomes completely unresponsive
quickly when flooded with requests.

Testing Timed Observable Behavior. In software testing, a formal model can
be used both for test case generation and as a test oracle to judge test out-
comes [16]. For example, test case generation from formal models of communi-
cation protocols can ensure that all possible sequences of interactions specified
by the protocol are actually exercised while testing a real system. Using formal
models for testing is most widely used in functionality testing (as opposed to
e.g. load testing, where stability and timing performance of the system under
test is evaluated), but the approaches from that area are applicable to formally
specifying and testing timing behavior of software systems as well [15].

In this paper, we model and investigate the effects of specific deployment
component configurations on the timing behavior of timed software models. The
test purpose in this scenario is to reach a conclusion on whether redeployment
on a different configuration leads to an observable difference in timing behavior.
Both model and system under test are Creol models of the same system, but
running under different deployment configurations. In our example, the client
object(s) model the expected usage scenario; results about test success or failure
are relative to the expected usage. As conformance relation we use trace equiv-
alence. This simple relation is sufficient since model and system under test have
the same internal structure, hence we do not need to test for input enabled-
ness, invalid responses etc. In our case, traces are sequences of communication
events, i.e. method invocations and responses annotated with the time of occur-
rence, which are recorded on both the model and the system under test and then
compared after the fact (off-line testing).

Running the model with five SyncClients (see Figure 5) but with an infi-
nite number of resources in the deployment unit results in a trace 〈10, t〉, 〈15, t〉,
〈20, t〉, . . . (where each tuple contains 〈response time, success〉). Deploying with
50 resources results in the same trace, whereas running with 20 units results in a
trace 〈12, t〉, 〈17, t〉, 〈22, t〉, . . . Assuming that model and system under test have
identical untimed behavior, we conclude that a system without resource limits

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 64

and a deployment unit of 50 units behave equivalently under the assumed work-
load, whereas deploying with 20 units will lead to observably different behavior.

7 Related Work

The concurrency model provided by concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate
asynchronously, is increasingly attracting attention due to its intuitive and com-
positional nature (e.g., [2–4, 6, 10, 13, 26]). A distinguishing feature of Creol is
the cooperative scheduling between asynchronously called methods [18], which
allows active and reactive behavior to be combined within objects as well as
compositional verification of partial correctness properties [3,10]. Creol’s model
of cooperative scheduling has recently been generalized to concurrent object
groups in Java [24] by restricting to a single activity within the group. In this
paper, we further generalize the notion of concurrent object groups to a resource-
constrained deployment component, where the allowed activity in a group per
time interval is parametric in terms of concurrent resources, using a time model
which simplifies the one presented in [19]. This allows us to abstractly model the
effect of deploying concurrent object groups on deployment components with
different amounts of processing capacity.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement and modelling. Measurement-based
approaches apply to existing implementations, using dedicated profiling or trac-
ing tools like, e.g., JMeter or LoadRunner. Model-based approaches allow ab-
straction from specific system intricacies, but depend on parameters provided by
domain experts [11]. A survey of model-based performance analysis techniques
is given in [5]. Formal systems using process algebra, Petri Nets, game theory,
and timed automata (e.g., [7,8,12,14]) have been applied in the embedded soft-
ware domain, but also to the schedulability of tasks in concurrent objects [17].
That work complements ours as it does not consider resource restrictions on the
concurrency model, but associates deadlines with method calls.

Work on modelling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance and time,
Petriu and Woodside [22] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion of
resource context, which reflects the set of resources used by an operation. CSM
aims to bridge the gap between UML specifications and techniques to gener-
ate performance models [5]. Closer to our work is M. Verhoef’s extension of
VDM++ for simulation of embedded real-time systems [25], in which architec-
tures are explicitly modelled using CPUs and buses, and resources are bound
to the CPUs. However, the underlying object models and operational semantics
are very different. VDM++ is based on multithread concurrency, preemptive
scheduling, and a strict separation between synchronous method calls and asyn-
chronous signals, in contrast to our work with concurrent objects, cooperative
scheduling, and caller decisions about synchronization. In contrast to our fairly

E. Broch Johnsen et al.

65 Technical Report, KIT, 2010-13

succinct rewriting logic semantics, the extension to VDM++ is embedded into
VDM++ itself and defined in terms of 100 pages of VDM++ specifications [25].

8 Conclusions and Future Work

This paper reports initial work on resource requirements and timing for the
deployment of object-oriented components. We extend Creol with a notion of
deployment component which is parametric in its concurrent resources per time
unit and formalize the operational semantics of object execution on deployment
components in rewriting logic. Based on this formalization, we use the Maude
rewrite engine to validate resource requirements that are needed to maintain the
behavior of the concurrent objects when deployed with restricted resources.

The proposed model of deployment components is simple and flexible. The
time granularity is defined implicitly by the use of time outs, allowing several
statements to be executed in one time interval. In contrast, the execution cost
of basic statements is fixed (abstracting from the evaluation of expressions).
With a single resource, at most one basic statement can be executed inside a
deployment component in a time interval. With multiple resources, all resources
are used within the time interval if possible. This proposed resource model does
not describe component scheduling policies, and abstracts from processor swap-
ping costs. The model may be refined by associating deadlines to method calls
and by defining explicit scheduling policies [17]. Furthermore, the model may
be extended with the dynamic creation of deployment components as well as
reconfiguration in terms of object mobility and resource adjustments, as well as
stronger analysis methods such as, e.g., bisimulation techniques.

The abstract notion of resource proposed in this paper reflects computational
limitations of concurrent or interleaved activity. Combined with the flexible time
model, the proposed resource model can express interesting non-functional sys-
tem properties, as illustrated by the example. Whereas most work on perfor-
mance analysis assumes a fixed underlying architecture, we believe approaches
such as the one presented in this paper address a need in software product lines
which may vary in the underlying architecture of products.

References

1. E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In Proc. FOSSACS’02, LNCS 2303,
pages 5–20. Springer, Apr. 2002.

2. G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge, Mass., 1986.

3. W. Ahrendt and M. Dylla. A verification system for distributed objects with
asynchronous method calls. In Proc. Intl. Conf. on Formal Engineering Methods
(ICFEM’09), LNCS 5885, pages 387–406. Springer, 2009.

4. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

Validating Timed Models of Deployment Components with Parametric Concurrency

Technical Report, KIT, 2010-13 66

5. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering, 30(5):295–310, 2004.

6. D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.
7. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource inter-

faces. In Proc. 3rd Intl. Conf. on Embedded Software (EMSOFT’03), LNCS 2855,
pages 117–133. Springer, 2003.

8. X. Chen, H. Hsieh, and F. Balarin. Verification approach of metropolis design
framework for embedded systems. Intl. J. of Parallel Prog., 34(1):3–27, 2006.

9. M. Clavel et al. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187–243, Aug. 2002.

10. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP’07, LNCS 4421, pages 316–330. Springer, Mar. 2007.

11. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proc. ICSE’09, pages 111–121. IEEE, 2009.

12. E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Inf. and Comp., 205(8):1149–1172, 2007.

13. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3):202–220, 2009.

14. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous
pi-calculus. ACM TOPLAS, 24(5):566–591, 2002.

15. A. Hessel, et al. Testing real-time systems using UPPAAL. In Formal Methods
and Testing, LNCS 4949, pages 77–117. Springer, 2008.

16. R. M. Hierons, et al. Using formal specifications to support testing. ACM Com-
puting Surveys, 41(2), 2009.

17. M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani. Schedulability of
asynchronous real-time concurrent objects. Journal of Logic and Algebraic Pro-
gramming, 78(5):402–416, 2009.

18. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

19. E. B. Johnsen, O. Owe, J. Bjørk and M. Kyas. An Object-Oriented Component
Model for Heterogeneous Nets. LNCS 5382, pages 257–279. Springer, 2008.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

21. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In Proc. 6th Intl. Workshop on Rewriting Logic and its Applications
(WRLA’06), ENTCS 176: 5–27. Elsevier, 2007.

22. D. B. Petriu and C. M. Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Software and
System Modeling, 6(2):163–184, 2007.

23. K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

24. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In Proc. ECOOP 2010. To appear in LNCS, Springer, 2010.

25. M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. 14th Intl. Symposium on
Formal Methods (FM’06), LNCS 4085, pages 147–162. Springer, 2006.

26. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. OOP-
SLA’05, pages 439–453. ACM Press, 2005.

27. S. M. Yacoub. Performance analysis of component-based applications. In Proc.
Software Product Lines (SPLC’02), LNCS 2379, pages 299–315. Springer, 2002.

E. Broch Johnsen et al.

67 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

Daniel M. Zimmerman and Rinkesh Nagmoti

Institute of Technology
University of Washington Tacoma
Tacoma, Washington 98402, USA

dmz@acm.org, rinkeshn@u.washington.edu

Abstract. Designing unit test suites for object-oriented systems is a
painstaking, repetitive, and error-prone task, and significant research has
been devoted to the automatic generation of test suites. One method for
generating unit tests is to use formal class and method specifications as
test oracles and automatically run them with developer-provided data
values; for Java code with formal specifications written in the Java Mod-
eling Language, this method is embodied in the JMLUnit tool. While
JMLUnit can provide reasonable test coverage when used by a skilled
developer, it suffers from several shortcomings including excessive mem-
ory utilization during testing and the need to manually write significant
amounts of code to generate non-primitive test data objects. In this pa-
per, we describe a successor to JMLUnit that can rapidly generate and
execute millions of tests, using supplied test data of only primitive types,
without consuming unreasonable amounts of memory. We also present
results from initial test runs and comparisons with the original JMLUnit.

1 Introduction

Unit testing has been an important validation technique in software development
processes for many years. In a typical unit testing process, a developer designs
a set (or suite) of unit tests and runs them on the system under test. Each
individual unit test is designed to demonstrate that some subset of the software
(the unit being tested) performs appropriate actions and generates appropriate
outputs given particular inputs and a particular starting state. The existence
of a comprehensive unit test suite provides evidence for the stability, reliability,
and security of the system, though it cannot guarantee the system’s correctness.

Unfortunately, designing test suites is a painstaking, repetitive, and error-
prone task, especially for large, complex software systems. Test developers can
easily overlook critical situations that need testing or develop a test suite with
poor coverage—that is, one that tests an insufficient fraction of a system’s code
or functionality. Moreover, the manual development and maintenance of test
suites (regardless of quality) represents a significant portion of the development
and maintenance costs for a complex software project.

To address both the coverage and cost issues, there has been significant re-
search effort devoted to the automatic generation of high-coverage unit test suites

Technical Report, KIT, 2010-13 68

using techniques ranging from purely random test generation to the use of sym-
bolic execution to find critical execution paths. While some of these techniques
can provide reasonable test coverage at low cost, they all have various limitations
and have seen little adoption by software developers.

This work focuses on improving one particular unit test generation technique
that has been adopted by developers who use the Java Modeling Language (JML)
to specify their software systems, namely the specification-based test generation
embodied in the JMLUnit tool. After providing some background information
about unit testing, JML, and the JMLUnit tool, we describe the limitations of
JMLUnit for testing complex systems. We then explain how we improve upon the
existing tool and present coverage results from tests generated by both the old
and new tools to demonstrate our improvements. The goals of this work are to
make the JMLUnit tool more effective and easier to use and, more importantly,
to provide a platform upon which to conduct experiments with new test data
generation techniques that are currently under development.

2 Background

2.1 Unit Testing

Unit testing is, essentially, the execution of individual components of a system
(the units) in specific contexts to see whether they generate expected results. A
single unit test has two main parts: the test data, which are the actual values
for software entities such as method parameters that will be used to set up
the state of the unit under test, and the test oracle, which is a piece of code
that determines whether the behavior of the unit is “correct” when it is set up
with the test data and executed. A system under test (hereafter, SUT) typically
requires many unit tests, which are collectively called a test suite. The quality,
or coverage, of a particular test suite can be measured in several ways [16]; for
example, code coverage is the percentage of the executable code in the SUT that
is actually executed when running the test suite.

The simplest way to create unit tests is to rely on human judgment: a devel-
oper sits down with a piece of software, decides what test data should be used
and how to determine whether each test has passed or failed, and encodes this
information manually. Despite the fact that many techniques for automated test
data and test oracle generation have been developed over the last several years,
most unit test generation is still done by hand, even in large systems. For exam-
ple, the open-source Eclipse Development Platform1 contains several thousand
hand-written unit tests.

There are several ways to generate both test data and test oracles automat-
ically. One such way, the focus of this work, is embodied in the JMLUnit tool
(described in Section 2.3); we will briefly describe some others in Section 6.

1 http://www.eclipse.org/

D. M. Zimmerman, R. Nagmoti

69 Technical Report, KIT, 2010-13

2.2 The Java Modeling Language

The Java Modeling Language (JML) [13] is a specification language for Java
programs. It supports class and method contracts in a Design by Contract [14]
style, as well as more sophisticated properties up to and including full math-
ematical models of program behavior. Several tools work with JML, including
compilers, static checkers, test generators, and specification generators [6].

The Common JML tool suite is the original, and still most widely used, set
of JML tools. It supports Java language versions up to 1.4 and includes a type
checker (jml), a compiler (jmlc) that compiles JML annotations into runtime
checks, a runtime assertion checker (jmlrac), a version of Javadoc (jmldoc)
that generates documentation including JML specifications, and a unit testing
framework (JMLUnit, described below).

Support for modern Java (1.5 and later) syntax in JML—including generic
types, enhanced for loops, and annotations—is currently being developed in
OpenJML,2 based on the current OpenJDK3 codebase, and JMLEclipse,4 based
on the Eclipse Development Platform.

2.3 JMLUnit

JMLUnit [7] is a unit testing framework for JML-annotated code. It takes ad-
vantage of JML runtime assertion checking (hereafter, RAC) to enable the au-
tomatic construction of test oracles that classify tests into three categories: suc-
cessful (or passed), unsuccessful (or failed), and meaningless. Successful and un-
successful tests are familiar concepts to developers experienced in unit testing.
In the JMLUnit context, a successful test is one where a method is called and no
RAC errors occur; this means that the method conforms to its specification with
respect to that call. An unsuccessful test is one where a method is called with its
precondition satisfied and a RAC error occurs during the method’s execution;
this means that the method does not conform to its specification, because once
its precondition has been satisfied it must execute correctly without violating
any assertions.

Meaningless tests, on the other hand, are not likely to be familiar to most
unit testing practitioners. In the context of JMLUnit, a meaningless test is one
where a method is called without its precondition satisfied, causing a RAC error
before the method is executed. In JML (and other Design by Contract-based
specification techniques), a method call is explicitly permitted to generate any
result whatsoever when it is called without its precondition satisfied, ranging
from an unchanged system state to a catastrophic system failure. Since any
result of such a test must be acceptable by definition, there is no way for such
a test to fail; a test that cannot fail gives no useful information and is therefore
meaningless.

2 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
3 http://openjdk.java.net/
4 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/JmlEclipse/

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 70

Of course, test oracles generated from the JML specifications present in the
SUT are necessarily limited by the scope of those specifications. Some JML spec-
ifications are not executable, so the runtime checker cannot catch all possible
specification violations (though the range of violations it can catch is extensive).
The more detailed and precise executable specifications exist for a method, the
better the ability of the generated test oracles to discern the correctness of that
method. Methods or classes with no executable specifications—that is, with only
informal specifications or with formal specifications that cannot be checked at
runtime—cannot be effectively tested using such test oracles. However, the prob-
lem of writing good executable class and method specifications, while extremely
important, is beyond the scope of this work; we proceed under the assumption
that good executable specifications are present in at least a reasonable fraction
of any system we intend to test.

In addition to constructing a test oracle for every method in the SUT, JML-
Unit also constructs a limited set of test data for each method. It uses a default
set of values for each primitive type in the Java language as well as the String
type, which it treats as a primitive type for testing purposes. For example, the
default set of values for the int type is {-1, 0, 1} and the default set of values
for the String type is {null, ""} ("" is the empty string). JMLUnit allows the
developer to augment these default sets with additional values; the test code it
generates has a clearly delineated “test data supply section” where the devel-
oper can specify data values to be used in addition to the defaults. Typically,
JMLUnit generates two test classes (one containing the test oracles and one con-
taining the test data) per class under test; however, there is also an option to
relegate the test data for all classes under test to a single “test data generator”
class. JMLUnit does no automatic test data generation for non-primitive types,
relying solely on the developer to write the code that generates such test data.

The tests generated by JMLUnit are executable by JUnit,5 one of the first and
most widely used automated test execution frameworks for Java-based systems.
They exhaustively use all combinations of the generated test data as parameters
to each method under test. For example, consider method m in Figure 1, which
takes one int parameter and one String parameter. JMLUnit has 3 default int
values and 2 default String values, so m will be called 6 times during testing if
only default values are used. If the default values are augmented with i additional
int values and s additional String values, m will be called (3 + i)(2 + s) times.

JMLUnit includes a custom JUnit test runner (jml-junit) that provides
detailed reporting of test results and correctly handles meaningless tests; JUnit
itself has no integrated concept of meaningless tests. The JUnit framework is
also integrated into the Eclipse IDE and JMLUnit tests can be run directly from
inside Eclipse, though doing so causes meaningless tests to be reported as passed
tests and the test results to be reported with less detail.

5 http://www.junit.org/

D. M. Zimmerman, R. Nagmoti

71 Technical Report, KIT, 2010-13

public class Exemplar {

public Exemplar(String s0, String s1, String s2, String s3,

byte b, char c, Other o, Thing t) {

// constructor body omitted

}

public int m(int one, String two) {

// method body omitted

}

}

Fig. 1. An exemplar of a Java class skeleton.

3 Shortcomings of JMLUnit

In the hands of a skilled developer, JMLUnit can generate tests with good cov-
erage; however, it has several limitations that make it somewhat impractical to
use for large, complex systems. One of these is that it does not attempt to au-
tomatically generate non-primitive test data, leaving that task entirely to the
developer. This requires the developer to manually write methods that return
specific test objects in response to specific requests. In its generated test classes,
JMLUnit provides skeletons for these methods, which are intended to return
specific test data objects indexed by integers.

Consider class Exemplar in Figure 1, which has a constructor with the same
signature as one we used in our experiments. When JMLUnit generates tests
for the Exemplar constructor, it creates a method to provide objects of class
Thing for the last constructor parameter. The developer must fill in the body of
that method so that, whenever JMLUnit requests the Thing with index n, the
method returns whatever the developer has decided the nth Thing should be. In
most cases, it is important that the test object be a fresh copy, because the order
in which tests are run is not known a priori and reuse of test objects can cause
test results to unintentionally depend on the order in which the tests are run.
Similarly, it is important that the test objects be constructed deterministically,
because otherwise the test results might vary across test runs even if nothing
in the SUT has changed. This leads to an implementation style where data
generation methods are large switch statements, with the developer writing
code in each case of the switch statement to generate a single test object; in
fact, the skeleton code generated by JMLUnit is exactly such a switch statement
with a default case that generates no test data. Such code requires considerable
developer effort both to write and to maintain.

In addition to requiring data generation methods as above, JMLUnit does not
provide a reasonable way to specify distinct test data sets for distinct contexts.
For the Exemplar above, JMLUnit generates and provides extension points for
String, char and byte data sets, as well as providing extension points for the
developer to generate data for Other and Thing; however, it only provides one
such data set and extension point for each type. Thus, if the 4 String parame-

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 72

ters s0 . . . s3 have significantly different requirements (e.g., s0 must be parsable
as a number while s2 must be a capitalized last name with certain length re-
strictions), the developer must add test data to the single String data set that
satisfies all these requirements. This results in many meaningless tests where
numeric strings are used as names and vice-versa.

The most critical shortcoming of JMLUnit, however, is its memory utiliza-
tion. Since it relies on JUnit as its execution engine, JMLUnit must construct an
entire JUnit test suite in memory, including all the test data to be used, before
a single test is run. As described above, JMLUnit exhaustively tests all com-
binations of the generated test data for each method under test; thus, a single
method that takes multiple parameters can result in extremely large numbers of
tests. For the Exemplar constructor, if the developer gives no additional values
beyond the default sets for the primitive types and String and generates 2 test
objects for each of the Other and Thing types, JMLUnit generates a total of
384 tests. However, in a more realistic scenario where the developer adds, e.g., 3
char values, 2 byte values, and 2 String values to the default sets and generates
4 test objects for each of the object types, JMLUnit generates 102,400 tests.

The combinatorial explosion caused by adding additional test values is not
problematic in itself; each of those 102,400 tests would execute quite quickly on
any modern machine. However, the fact that JMLUnit is forced to construct
the entire test suite in memory before executing the tests is a serious problem,
because it makes such test suites completely impractical to execute even on
extremely capable hardware. We attempted to run such a test suite for a case
study (described in Section 5) on our test machine, an Apple Xserve with two
3.0GHz quad-core Xeon processors and 18GB of memory; even allowing the Java
virtual machine to use 16GB of heap space, we found that it exhausted available
memory before giving the results of a single test.

4 JMLUnitNG: Improvements to JMLUnit

In order to test more complex systems with less developer intervention, we have
created a new tool called JMLUnitNG. The new tool addresses the shortcomings
described in the previous section while preserving most of the basic operating
principles of the original JMLUnit.

4.1 Test Data Generation

The first shortcoming we address is the lack of non-primitive test data gener-
ation. To test Exemplar, we need test data of class Thing. Thing has at least
one constructor, either the default no-argument constructor provided by Java in
the absence of any constructor code or an explicit constructor that takes zero or
more parameters.

If Thing has a default constructor, we can construct Things by using that
default constructor. If Thing has explicit constructors, tests will be generated for
each of them when we generate tests for class Thing itself; thus, construction of a

D. M. Zimmerman, R. Nagmoti

73 Technical Report, KIT, 2010-13

number of Things will necessarily be attempted as part of the testing process. We
can use the Thing constructors and their test data to generate Things for use as
test data in other contexts; if there are k tests generated for Thing constructors,
that gives us at most k Things for testing other (non-constructor) methods of
Thing and methods of other classes under test that take Thing parameters. We
have at most k instances, rather than exactly k instances, because some of the
constructor tests may be meaningless or may fail; such tests do not result in the
creation of Things suitable for further testing.

We use Java reflection to generate these instances. Like JMLUnit, JML-
UnitNG generates two classes—one containing test oracles and another contain-
ing test data—per class under test. In each test data class, JMLUnitNG creates
an inner class that iterates over the instances that are successfully created during
constructor tests. When we run JMLUnitNG on class Exemplar, which takes a
Thing as a constructor parameter, JMLUnitNG inserts code into the test data
class for Exemplar that uses Java reflection to search for the test data class
for Thing. Later, when running the tests on Exemplar, JMLUnitNG can then
find the test data class for Thing (if it exists on the classpath) and use it to
obtain Things for testing. The developer can also directly specify Things, as in
the original JMLUnit. If JMLUnitNG finds the test data class for Thing when
the tests are run, and reflective test object generation is enabled, the generated
Things are used in addition to the developer-specified Things; if not, only the
developer-specified Things are used.

There are three main issues that arise when using reflection and constructor
test cases to generate test data. The first issue is that it is possible to have cyclic
dependencies; for example, a constructor (not necessarily the only constructor) of
class X takes a parameter of class Y and a constructor (again, not necessarily the
only one) of class Y takes a parameter of class X. This issue can be addressed in a
straightforward, though perhaps not optimal, way: use cycle detection flags when
instantiating objects, such that if an instance of X is requested when another
instance of X is already in the process of being generated, the cycle is detected
and stopped by providing a default (that is, generated by a default constructor)
or developer-specified instance of X instead of dynamically constructing one from
test data.

The second issue is that constructing test data reflectively does not take
polymorphism into account. For example, given a method on a chessboard class
that takes a Piece as a parameter, JMLUnitNG will attempt to generate Piece
objects but will not attempt to generate, e.g., Bishop or Knight objects even if
those classes extend Piece and have test data generators. This issue is difficult to
address in the general case, such as when determining what types to generate for
a method that takes an Object as a parameter. It can be addressed for certain
classes, e.g., the Java Collections Framework, with simple test data generation
rules (such as “generate an ArrayList where a List is required”). It can also be
addressed for specific test scenarios by analyzing the inheritance relationships
during test generation for only the classes under test; then, given a method with
a parameter of type Piece, the subtypes of Piece that are explicitly under test

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 74

would be generated as test data for the method while the subtypes of Piece
that are not under test would not be.

The third issue is that constructing test data reflectively does not account
for interrelationships among classes under test. For example, Exemplar takes
instances of Other and Thing as parameters; suppose it requires that the Other
and Thing passed to it be related to each other in a specific way (such as shar-
ing an identification number or other such attribute). In that case, reflectively
constructing the Other and Thing to pass to the Exemplar constructor will not
establish that relationship. However, this is an issue that is also encountered in
developer-designed test data, where complicated setup operations may be neces-
sary; therefore, we accept it as a limitation of the reflective test data generation
approach.

We will show in Section 5 that, despite these issues, the use of reflection to
generate test data objects from primitive types provides a significant improve-
ment in automatic test coverage over the original JMLUnit.

4.2 Context-Dependent Test Data

The second shortcoming we address is the lack of context-dependent test data.
As previously mentioned, JMLUnit provides default sets of data for primitive
types, and extension points for the developer to specify additional data values
for primitive types as well as data for non-primitive types. However, it only
provides one such extension point per type, per class under test. Though the
extension points do allow some flexibility—they take a parameter to designate
how far nested a loop is in which a type is being used, for example—they do not
allow a developer to specify specific sets of data to be used in specific contexts.

The main reason to specify sets of data for specific contexts is to help contain
the combinatorial explosion of tests. If two of the String parameters to the
Exemplar constructor are names, and the other two must be parsed as numbers
or other reference codes, using the same set of Strings for all 4 parameters will
result in many meaningless tests. Specifying a set of Strings for the names and
another set of Strings for the numbers/reference codes allows the developer to
reduce the number of meaningless tests, and thus reduce the time it takes to run
the test suite.

JMLUnitNG provides extension points for the developer to specify an indi-
vidual set of test data for each parameter of each method under test. These ex-
tension points have data types and method signatures embedded in their names
to uniquely associate each with a context; for example, method Exemplar.m(),
declared as int m(int one, String two), would have extension points with
names like int one m int String (int data to be used for the one parameter
of the method with signature m(int, String)) in the generated test class. For
non-primitive types, these extension points invoke the reflective data generation
code described earlier by default.

In addition to these extension points, JMLUnitNG also provides “global”
extension points that allow the developer to add test data for all occurrences
of a given type, as in the original JMLUnit; such global extension points have

D. M. Zimmerman, R. Nagmoti

75 Technical Report, KIT, 2010-13

names like char for all. The test data that is actually used at runtime for
a given method parameter consists of the default test data set generated by
JMLUnitNG, the global test data set associated with the data type, and the
test data set associated specifically with that method parameter.

The addition of custom test data sets for individual method parameters al-
lows developers to fine-tune their test suites and to easily integrate data from
external test data generators into the system.

4.3 Iterators and Lazy Test Generation

The third shortcoming we address is JMLUnit’s excessive memory utilization.
There are two main causes of memory utilization when running automated tests:
the need to generate all the tests in a test suite before executing the suite, and the
recording of information about executed tests using in-memory data structures.

Since the tests generated by JMLUnit are extremely repetitive—each method
is called many times, with parameter lists generated by taking the cross product
of the test data sets for its parameter types—an ideal way to execute them
would be to lazily generate the parameter lists as they are needed, rather than
marshaling the parameter lists for all the individual method calls in memory
as part of setting up the test suite. Unfortunately, the JUnit test execution
engine does not support lazy parameter list generation; while it does have the
ability to run parameterized tests, where a single test method is run repeatedly
with multiple parameter lists, it requires the parameter lists to be stored in
a two-dimensional array in memory, making it impossible to save memory by
parameterizing the tests.

In order to enable lazy parameter list generation, we replaced JUnit with
TestNG,6 a Java-based test execution engine that is similar in concept to JUnit
but has a different feature set. Like JUnit, TestNG supports the use of arrays
as data sources for parameterized test methods; however, it also supports the
use of iterators for this purpose. When it encounters a test method that uses
an iterator as a data source, it executes the test method with parameter lists
provided by the iterator until the iterator is empty. This allows us to implement
lazy parameter list generation; by using iterators over primitive test data sets
and the previously-discussed iterators that generate test objects of non-primitive
types, we can create combined iterators that generate parameter lists for test
methods while only keeping a single parameter list in memory at a time.

TestNG also supports another critical feature that helps to avoid excessive
memory utilization: it allows the use of custom test listeners to record detailed
information about executed tests, including the parameters used for testing and
the exception, if any, that caused the test to fail or be skipped. Thus, instead of
recording every test result in memory and processing that information at the end
of a test suite’s execution, as the previous version of JMLUnit does, we can record
test results to disk in a streaming fashion as the tests are executed, with as much
detail as we choose. As distributed, TestNG does record every test execution in

6 http://www.testng.org/

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 76

memory—even if the default test listeners are disabled—in order to present a
basic test report at the end of execution. However, with only minor changes to
the TestNG source code, we were able to eliminate this in-memory recording
while maintaining the ability to use other desirable TestNG features. With our
modified version of TestNG, we can run test suites of essentially arbitrary size
in a reasonable amount of memory, provided that there is sufficient disk space
to log their results; we have successfully run hundreds of millions of tests using
less than 1 GB of Java heap space.

The switch from JUnit to TestNG as a test execution environment therefore
allows us to eliminate all the memory issues associated with JMLUnit. It also
removes the need for a custom test runner that understands meaningless tests,
because TestNG natively supports the concept of a skipped test; we simply record
the meaningless tests as skipped, by intercepting the appropriate JML assertion
errors and wrapping them in TestNG SkipExceptions. In addition, because
TestNG supports functionality such as dependencies among tests and multiple
forms of parallel testing, it provides a robust platform upon which to perform
future automated test generation experiments.

5 Results

We have run our current version of JMLUnitNG on two different sets of Java
classes. Both are relatively small; one is a small set of classes that implements
chess pieces, and the other is a set of core classes from the Kiezen op Afstand
(KOA) Internet-based remote voting system [12] constructed for the Dutch gov-
ernment by the Security of Software group at Radboud University Nijmegen.

The chess piece classes are largely testable in isolation, though they have
a dependency on a Team class7 that is used to indicate whether each piece is
black or white and to enable the pieces to determine their legal directions of
movement. The piece classes, which are named for the pieces whose movements
they model, have methods that take no more than 3 parameters; the majority of
their methods take fewer than 2 parameters. The piece classes tested here share
a common interface (Piece) but do not take advantage of inheritance to factor
out the common functionality of chess pieces into a shared parent class; thus,
they all have similar structure.

The KOA classes, by contrast, are highly interrelated, with some taking in-
stances of multiple others as constructor and method parameters. They also
have a significantly greater number of method parameters on average, making
the combinatorial explosion of test method calls more pronounced. The classes
in the KOA system model components of the Dutch election system: District
represents a voting district; KiesKring represents a kieskring, which is a region
containing a collection of voting districts that are counted together for the pur-
pose of proportional representation in the lower house of the Dutch parliament;
Candidate stores information about a single candidate for office; KiesLijst

7 This is a class in the chess code tested here, because we are working with a version
of JML that only handles Java 1.4 constructs; it would be an enum in modern Java.

D. M. Zimmerman, R. Nagmoti

77 Technical Report, KIT, 2010-13

Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Candidate 197 0 0 0 0
CandidateList 659 0 0 0 0
District 98 13 74 13.3 75.5
KiesKring 299 29 207 9.7 69.2
KiesLijst 431 45 173 10.4 40.1
VoteSet 745 0 0 0 0

Total 2429 87 454 3.6 18.7

Table 1. Results for KOA classes with JMLUnit (Orig) and JMLUnitNG (New)

Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Bishop 367 0 247 0 67.3
King 390 0 270 0 69.2
Knight 362 0 242 0 66.9
Pawn 403 0 273 0 67.7
Queen 368 0 248 0 67.4
Rook 360 0 240 0 66.7
Team 10 1 8 9.1 80

Total 2260 1 1528 0 67.6

Table 2. Results for Chess classes with JMLUnit (Orig) and JMLUnitNG (New)

stores a list of candidates for a particular kieskring; and CandidateList stores
information about the entire set of candidates, across all regions, for a single
election.

We use EMMA,8 a code coverage tool for Java, to measure the coverage of
the tests generated by JMLUnit and JMLUnitNG. EMMA measures coverage
in terms of basic blocks, which are sequences of bytecode instructions without
any jumps or jump targets, rather than in terms of lines of source code. When a
Java program is run under EMMA, it generates a report that lists all the classes
loaded by the virtual machine, their methods, the number of basic blocks in each
method, and the number of those blocks that were executed during the run.

Tables 1 and 2 show the block coverage provided by JMLUnit and JML-
UnitNG, based on the data in the EMMA reports. Both sets of generated tests
were run with default settings and without modifying the generated code. For
the chess classes, 165 tests were automatically generated by JMLUnit and 7,108
were automatically generated by JMLUnitNG; for the KOA classes, 686 tests
were automatically generated by JMLUnit and 3,017 were automatically gener-
ated by JMLUnitNG. The disparity—JMLUnitNG generates fewer tests for the
KOA classes than for the chess classes, while JMLUnit does the opposite—is
due to the fact that the constructors for the chess classes have significantly less

8 http://emma.sourceforge.net

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 78

Class Total Blocks Covered Blocks % Covered

Candidate 197 118 59.9
CandidateList 659 74 11.23
District 98 75 76.5
KiesKring 299 239 79.9
KiesLijst 431 266 61.7
VoteSet 745 167 22.4

Total 2429 939 38.7

Table 3. Results for KOA classes with JMLUnitNG and provided primitive data values

restrictive preconditions; while the default test data generate many possible pa-
rameter lists for constructing test objects, significantly fewer of those satisfy the
constructor preconditions for the KOA tests than for the chess tests.

Since JMLUnit has no way to construct objects on which to call test methods,
it fails to provide any test coverage other than for object constructors that take
only primitive values (or accept null, which JMLUnit uses as a default). By
contrast, JMLUnitNG covers significant fractions of the systems under test with
no developer intervention.

Adding primitive and String data to the JMLUnit tests, for either set of
classes, does not improve their coverage because JMLUnit still does not con-
struct test objects. Adding primitive and String data to the JMLUnitNG chess
tests does not improve the coverage significantly, because the default values for
the primitive types are sufficient to test nearly everything that can be tested by
JMLUnitNG; the polymorphism limitation mentioned in Section 4.1 prevents
JMLUnitNG from automatically generating useful tests for the methods that
handle capturing of pieces, which take parameters of type Piece (an interface
shared by all the pieces), or for methods like equals. However, adding primitive
and String data for the JMLUnitNG KOA tests has a significant impact, as the
added data can be chosen to satisfy constructor preconditions that are not sat-
isfied by the default data. Table 3 shows that block coverage more than doubled
when a few carefully-selected primitive and String data values were added to
the test data set; JMLUnitNG generated 1,351,351 tests for that run.

The test runs with default data ran in less than 10 seconds each; however,
the JMLUnitNG test run with added data required approximately 3 hours to
complete the 1,351,351 tests. We believe that the execution time can be dra-
matically improved through optimization of the reflective test data generation
process, as well as by parallelizing the test executions. However, the completion
of a million-test run is itself a dramatic improvement over the original JMLUnit
tool; it would have exhausted the available 16 GB of Java heap space during the
attempt and generated no results, while JMLUnitNG used less than 768 MB of
heap space and reported that all the tests passed.

D. M. Zimmerman, R. Nagmoti

79 Technical Report, KIT, 2010-13

6 Related Work

As previously mentioned, considerable research has been (and continues to be)
devoted to automatic test generation, most of it to the generation of test data
rather than test oracles. We have insufficient space here to give even a complete
overview of the current state of the art. We thus describe only the most closely
related of the existing automated test generation systems.

Test oracles can be derived from a behavioral specification of the SUT, such
as structured documentation [15], a formal model [9], or inline specification state-
ments written in languages such as JML (as we have used here). Regardless of
the type of behavioral specification, the basic idea is the same as we have em-
ployed: a test oracle is generated for each unit based on the specification of that
unit; tests that are run with data that would violate the unit’s requirements
(preconditions, assumptions) are ignored, and a test is considered to pass if the
unit’s specification is not violated by the test execution.

Most automated test data generation falls into one or more of the following
categories: randomness-based, where test data are generated randomly; optimi-
zation-based, where test data are optimized over multiple test runs based on
coverage observations; code-driven symbolic execution-based, where symbolic ex-
ecution [11] is used to compute test data that will exercise particular execution
paths of the SUT; specification- or model-based, where constraint solving is used
to generate test data based on a logical analysis of a specification or model of
the SUT; and verification-based, where test cases are generated from attempts to
formally verify the SUT. The latter two are most closely related to our approach.

Specification- and model-based test data generation methods, implemented
in tools such as BZ-TT [1], JML-Testing-Tools [3] and UniTesK [4], use a log-
ical analysis to compute partitions of the variables that fulfill the explicit case
distinctions present in a formal specification or model of the SUT. Once the
partitions have been computed, constraint solving or model finding is used to
find concrete test data in each partition.

Verification-based test data generation (hereafter, VBT) is a recent develop-
ment, based on the idea of generating test cases from attempts to verify systems
with formal specifications [10]. VBT uses symbolic execution, with termination
being enforced by a bound on the number of times loops and recursions are
unwound; it differs from code-driven symbolic execution-based methods by gen-
erating test data from path condition formulae encountered at termination nodes
in the symbolic execution tree. The VBT approach works well for code with sim-
ple branching statements (if...then, switch/case, constant-bounded loops) but
not as well for code with generalized loops or recursion, because only a lim-
ited number of loop iterations and only a limited recursion depth can be dealt
with. VBT has been implemented in the KeY verification system [2] and in
Kiasan/KUnit [8]. A uniform framework for verification and testing has been
formalized in HOL/Isabelle for a small target language [5].

JMLUnitNG is complementary to, not competitive with, the test generation
methods and tools described above. While these methods and tools are relatively
heavyweight, using automated theorem provers, constraint solvers and symbolic

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 80

execution engines, JMLUnitNG is extremely lightweight, using only the TestNG
framework and Java’s reflection mechanism. It is an instant replacement (and
improvement) for developers who already use JMLUnit, and a one-step addi-
tion to the software build process for developers who use JML but have not yet
adopted JMLUnit. It is easy to use, and the principles underlying its operation
are easy for typical software developers and students to understand regardless of
their level of experience with JML specifications and tools. For more advanced
developers, it can also be used in conjunction with more heavyweight methods;
rather than manually creating context-dependent test data sets for the JML-
UnitNG test oracles, or relying solely on the default data sets and reflective
data generation, developers can create their data sets using one or more other
test data generation tools.

7 Conclusion

We have presented JMLUnitNG, a new unit test generation and execution frame-
work inspired by the original JMLUnit tool and based on a modified version of
the TestNG unit testing framework for Java. The current implementation has
some shortcomings; as a proof of concept, it was directly evolved from the origi-
nal JMLUnit and is based on the Common JML tool suite, so it cannot be used
on code that contains modern Java constructs such as generic types. It does not
contain solutions for two of the issues—cyclic dependencies and polymorphism—
discussed in Section 4.1. When generating test data, it cannot reflectively con-
struct instances of classes that have no public constructors, such as those that
rely on factory methods. We have already designed and partially implemented a
new version of the tool, independent of the Common JML tool suite, to address
all these issues.

Despite these shortcomings, we consider our initial experiments with JML-
UnitNG to be quite successful; the ability to generate and rapidly execute mil-
lions of tests and the automatic generation of test data of non-primitive types
are substantial improvements over the functionality provided by the original
JMLUnit, and the resulting benefits can be easily realized in any project that
currently uses JMLUnit for specification-based testing. Moreover, JMLUnitNG
provides significant new developer flexibility, including the ability to specify
context-dependent test data. As such, it is not only an improvement over the
original JMLUnit, but also a sound foundation for future test data generation
experiments.

Acknowledgements

A portion of this work was funded by a 2008–09 award from the University of
Washington Tacoma Chancellor’s Fund for Research & Scholarship. In addition,
the authors would like to thank Dr. Joseph R. Kiniry for his role in initial discus-
sions about JMLUnitNG and his useful comments during both its development
and the writing of this paper.

D. M. Zimmerman, R. Nagmoti

81 Technical Report, KIT, 2010-13

References

1. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Vacelet, N.: BZ-TT: A tool-set for test generation from Z and B using constraint
logic programming. In: Formal Approaches to Testing of Software (FATES) 2002,
Workshop of CONCUR’02. Brno, Czech Republic (Aug 2002)

2. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. No. 4334 in Lecture Notes in Computer Science, Springer-
Verlag (2007)

3. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-Testing-Tools: A symbolic
animator for JML specifications using CLP. In: 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Edinburgh, U.K. (Apr 2005)

4. Bourdonov, I.B., Kossatchev, A., Kuliamin, V.V., Petrenko, A.: UniTesK test suite
architecture. In: International Symposium of Formal Methods Europe (FME).
Copenhagen, Denmark (Jul 2002)

5. Brucker, A.D., Wolff, B.: Interactive testing with HOL-TestGen. In: Fifth Inter-
national Workshop on Formal Approaches to Testing of Software (FATES). Edin-
burgh, U.K. (Jul 2005)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K., Poll,
E.: An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (Feb 2005)

7. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP) 2002. Lecture Notes in Computer Science, vol.
2374, pp. 231–255. Springer-Verlag (2002)

8. Deng, X., Robby, Hatcliff, J.: Kiasan/KUnit: Automatic test case generation and
analysis feedback for open object-oriented systems. In: Testing: Academic and
Industrial Conference Practice and Research Techniques (TAICPART). pp. 3–12.
Windsor, UK (September 2007)

9. El-Far, I.K., Whittaker, J.A.: Model-based software testing. Encyclopedia on Soft-
ware Engineering (2001)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Tests and
Proofs, First International Conference (TAP). Zürich, Switzerland (Feb 2007)

11. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (July 1976)

12. Kiniry, J., Morkan, A., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk, M.,
Hubbers, E.: The KOA remote voting system: A summary of work to date. In: 2nd
International Symposium on Trustworthy Global Computing (TGC). Lucca, Italy
(2006)

13. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. In:
Proceedings of the International Symposium on Formal Methods for Components
and Objects (FMCO) 2002. Lecture Notes in Computer Science, vol. 2852, pp.
262–284. Springer-Verlag (2003)

14. Meyer, B.: Object-Oriented Software Construction, 2nd Edition. Prentice-Hall
(1988)

15. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Transactions on Software Engineering 24(3), 161–173 (March 1998)

16. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Computing Surveys 29(4), 366–427 (Dec 1997)

JMLUnit: The Next Generation

Technical Report, KIT, 2010-13 82

Verification Based Test Case Generation for
Scoped Memory in Safety-Critical Java

Gabriele Paganelli

Department of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden

gabriele.paganelli@chalmers.se

Abstract. Applications in Safety Critical Java can make use of scoped
memory areas. Objects residing in different scoped memory areas can-
not refer to each other arbitrarily. A unit’s specification has therefore an
added dimension, i.e. the description of the relation that holds among the
caller object and the reference type arguments via a set of constraints.
A method is proposed to extend verification-based test generation for
applications following certain programming guidelines. The information
resulting from running the procedure on the application can then be used
by a verification-based test generation tool to generate test cases for the
selected units. The analysis provides a criterion to select a subset of all
the possible configurations satisfying the precondition of the unit under
test that are likely to appear in the application it is used in.
Keywords: Safety-Critical Java, Verification-based testing, Unit test-
ing, Test case generation, Constraint solving on finite domains

1 Introduction

This paper proposes a method to help derive a reasonable set of initial states
for unit tests in a program that uses scoped memory areas, one of the features
of the Real-Time Specification for Java (RTSJ) [2]. The motivation for this is
essentially to filter out a potentially infinite set of test cases, by analyizing the
entire program via static analysis.

The main issue with memory management in RTSJ is the concept of scope.
Since garbage collection is a dangerous source of unpredictability (the garbage
collector can preempt a thread with hard real-time deadlines causing it to miss
them), in RTSJ a set of classes representing memory areas has been provided to
programmers in order to manage and allocate memory chunks (scopes, or scoped
memory areas) that then are reclaimed by the JVM, and threads executing in
these areas are never interrupted by garbage collection. Objects can be allocated
in different parts of memory. The relations that different objects can have accord-
ing to their position in memory affects the testing effort: in principle all possible
configurations of allocation should be taken into account. The memory model
from the thread’s point of view is a stack holding the scopes entered but not yet
left. Every thread maintains a stack that keeps track of its memory usage. The
model encodes the scoped behavior of the memory allocation: as a scope is en-
tered, it is stacked in the thread’s scope stack; in order to leave a certain scope

83 Technical Report, KIT, 2010-13

s, all the scopes above it (inner scopes) in the stack (that were entered after
entering s) must have been left by the thread (which does not necessarily mean
that the memory has been reclaimed, though). When a thread is executing in a
scoped memory area s, all object allocations happen in s; so the created objects
reside in s. A scoped area keeps track of how many threads are executing in it;
when the counter goes to zero, the area is deallocated by the compliant JVM.
The code to be executed in a scoped memory area s must be contained in the
run() method of an object implementing the Runnable interface, passed to the
object o s representing s and executed by invoking o s.enter(). The access to
the memory cannot happen in an arbitrary way to prevent dangling references,
e.g. an object in a scope out cannot reference an object in a scope inn that
is more inner than out, because its life span is shorter. This introduces a new
dimension in the specification of the behaviour of a unit which reflects itself on
the way a unit should be tested. The following snippet shows a typical usage of
scoped memory:

String outermost;

ScopedMemory outerScoped = new LTMemory(1000);

outerScoped.enter(new Runnable(){

public void run(){

String s = new String("String residing in outerScoped area.");

System.out.println(s);

}

});

An LTMemory object represents a scoped memory area with allocation time linear
in its size (that is 1000 bytes in this case). In the above code, the object s resides
in the memory area represented by outerScoped.

Let u be a method of class D along with its JML specification1 and signature
(Fig.1): The specification tells the client of u that if a resides in a more outer

Class D{

/*@

@ public normal_behavior

@ requires \inOuterScope(a,b);

@ ensures \result == 3;

@*/

public int u(A a,B b){...}

}

Fig. 1. Example specification and signature of method u.

scope than b when u is invoked, then the return value of u will be 3. If it is not
1 Note that the \inOuterScope construct is not standard JML. See later in the paper,

or [9].

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 84

the case, nothing can be said about the state after the unit returns. In the least
constrained situation, where one is using RTSJ without any restriction, there
are plenty of configurations that would be candidates for testing this unit. The
only constraint is that the object a must be in a more outer scope than the one
in which b is allocated. this is not constrained at all, or it can be assumed to
reside in an outer scope than the active one by default. If for instance the depth
of the scope stack is constrained to be 3, this allows at least 18 test cases as
shown in Fig.2. The following snippet is a possible corresponding test case for
the configuration shown in Fig.3.

b,ascoped2

scoped1

immortal r1,r2

scoped2

scoped1

immortal r1,r2

b

r1,r2

r1,r2,a

b

r1,r2,a

r1,r2,a,b

a,b

a

b

Fig. 2. Resulting test configurations for stacks of length 3. Note that here the
Runnable objects that run inside the two scoped memory areas are assumed to
be allocated in immortal memory, and it is assumed that the invocation happens
always in the topmost scope. this can be allocated in all three memory areas,
therefore giving 6× 3 = 18 test contexts.

thisscoped2

scoped1

immortal r1,r2,a,b

Fig. 3. Test case for the proposed configuration in JUnit format.

Runnable r1,r2;

LTMemory scoped1,scoped2;

A a;

B b;

@Begin

public void fixture(){

scoped1 = new LTMemory(1000);

scoped2 = new LTMemory(1000);

r1 = new Runner1();

r2 = new Runner2();

B b = new B(...);

A a = new A(...);

G. Paganelli

85 Technical Report, KIT, 2010-13

}

class Runner1 implements Runnable{

public void run(){

scoped2.enter(r2);

}

}

class Runner2 implements Runnable{

public void run(){

int ret = d.u(a,b);

Assert.assertEquals(ret,3);

}

}

@Test

public void test(){

scoped1.enter(r2);

}

This situation, besides being impractical, is also rather unrealistic. In the
case in which one would derive test cases picking some of the many possible, one
should come out with a set of criteria that would have little meaning if not related
with the context in which the unit is going to work. Very often in fact real-time
applications, and especially safety-critical applications, are strongly constrained
by coding guidelines [7,16]. On one side this can reduce the expressivity of the
language along with the portability and extendibility of the application. On the
other side it ensures that the program can be easily understood by developers.
This also frames the testing attempt, providing criteria to select the possible
test inputs.

The rest of the paper is organized as follows. Section 2 gives the needed
background to understand the rest of this work. Section 3 deals with the restric-
tions on coding that are assumed. Section 4 illustrates how the proposed method
works, providing an example to show how effective it can be for selecting test
cases. Conclusions are in Section 5.

2 Background

This section provides the needed background knowledge. It does not have any
ambition of completeness on the topics presented.

2.1 Real-Time Java Scoped Memory Model

The Real-Time Java specification (RTSJ) [2] (started with JSR-1) represents
the effort to bring Java in the real-time world. It does not extend the syntax
of the language, but provides a set of new classes. Safety-Critical Java (SCJ)
(JSR-302) is a profile for safety-critical applications that allows certification for

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 86

the DO-178B Level A standard [20]. The specification for the SCJ profile is still
under definition, but several proposals exist [6,21] and they all agree on the
fact that garbage collection should be avoided. For this paper’s sake, the only
important part is the way memory is managed. Normal heap memory, being
subject to garbage collection, is not used in a safety-critical environment. There
are two other kinds of memory areas: immortal and scoped. They all have a
corresponding class representing them in the specification. Both are not garbage
collected. Class ImmortalMemoryArea has a single object, representing immortal
memory. Immortal memory is never reclaimed, therefore introducing the risk of
memory leaks. Scoped memory areas are represented by ScopedMemory and its
subclasses. A scoped memory area can be allocated at runtime, and reclaimed
by a compliant JVM when the last thread executing in it leaves it, after running
any finalization code associated with the allocated objects within it. This new
feature allows the programmer to manage in a flexible way the used memory. A
thread maintains a cactus stack (i.e. a stack with branches, or a tree that grows
or shrink by adding or deleting leaves) of the memory areas it entered and not
left yet. There are two ways to enter a memory area; with the enter() method
or the executeInArea() method. The former stacks a new scope on the area in
which the invoking thread is executing making the new scope the active one; the
latter allows to move the active scope down the current scope stack.

As scoped memory areas can be reclaimed, there is the risk of dangling
references. This can happen if a reference to an object residing in an inner
scope in the memory stack is stored in a more outer scope, as for instance could
happen in the following example:

String outermost;

ScopedMemory outerScoped = new LTMemory(1000);

outerScoped.enter(new Runnable(){

public void run(){

String s = new String("String residing in outerScoped area.");

outermost = s; // throws IllegalScopeException

}

});

or if a memory area is entered twice from the same thread while it is still active
in its scope stack, which means that the single parent rule2 has been broken
[23]. A strict complying JVM should perform runtime checks each time an ob-
ject reference is stored. This introduces an overhead. Previous works presented
programming models and tools to process programs written according to such
models to ensure that no scoped memory related exception will be thrown, there-
fore allowing to turn off runtime checks [6,11,17,18,22,24].
2 The single parent rule states that any scoped memory area s must have a unique

parent, where the parent is either:

– if there are scoped memory areas below s in the stack, the closest below s,or
– if there are no scoped memory areas below s, the memory area termed primordial.

G. Paganelli

87 Technical Report, KIT, 2010-13

2.2 JML

JML is a behavioral interface specification language that can be used to specify
the behavior of Java modules [13]. It can be embedded in Java source files to
annotate Java code, or in separate .jml files in the form of formatted comments.
It allows to define the behavior in a precondition-postcondition fashion, also
with class invariants and other features like ghost and model fields to support
automated verification. The following snippet is a simple example of JML usage.

/*@

@ public normal_behavior

@ requires b>=0;

@ ensures \result == a+b;

@*/

public int sum(int a, int b){

while(b>0){

a++;

b--;

}

return a;

}

The implementor has to fulfill the property that if the precondition (requires)
is met by a client when it invokes the unit, then the postcondition (ensures)
must hold when the method returns. On the client’s side, the specification is
a guarantee that if the precondition holds when the method is invoked, then
when the method returns the postcondition will be true. Otherwise, nothing
can be said about the behavior of the unit. \result here is a JML built-in
expression referring to the return value of a method (if it is not void). For a
slightly deeper, but still very easy introduction to the topic, refer to [14,15]. For
a deeper understanding, refer to the language specification [13].

2.3 JML Extensions for Scoped Memory

In [9] a formalization of the stacking relation between scoped memory areas has
been proposed. In the same work, an extension to allow JML to predicate about
this relation is also developed. Two constructs of the latter are presented:

– \inOuterScope(i,j) indicates that the object i evaluates to is stored in the
same or in a more outer scope than the object j evaluates to in the memory
stack of the thread invoking the method.

– \inImmortalMemory(i) indicates that object i evaluates to is stored in im-
mortal memory.

In the proposed extension, there is also the pointer \currentMemoryArea. This
expression evaluates to the currently active memory area in which the state is
evaluated. It will not be used in the following, but some remarks are given in
Section 5.

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 88

2.4 Testing, Verification-Based Testing and KeYVBT

In this paper unit testing is taken into account, which is the test of single Java
methods. A popular tool to execute and develop unit tests is JUnit [3].

Verification-based testing has been described in [8,10]. It is a testing ap-
proach that joins white box testing (by means of symbolic execution) and black
box testing (because it uses the specification of a method). KeYVBT [5] is a
verification-based testing tool that allows to automatically generate test cases
for a subset of the Java language that includes the Java Card specification [1]. In
it, the JML-annotated code is symbolically executed within the KeY system [4]
in order to get the feasible execution paths and the associated path condition.
Every feasible path then corresponds to a test case, generated in JUnit format.

3 Structure of the Program Under Test

As development of hard real-time programs poses stringent requirements, guide-
lines were proposed [17] to make SCJ applications safer, more reliable and easier
to maintain. Program-wide analysis approaches to certify the properties of a
program exist [11,22]. The JamaicaVM [7] manual also suggests several coding
practices for hard real-time programming. In the following a series of assump-
tions are made. The application is a two-phase process: initialization and mission
phase, the latter having to respect hard real-time constraints. Mission phase runs
only in scoped memory areas of type LTMemory, whereas initialization runs in
ImmortalMemoryArea. The use of just immortal and scoped memory areas en-
sures that the computation will never be interrupted by the garbage collector’s
activity. All the LTMemory objects are created during initialization. Dynamic
loading of classes is not allowed in mission phase, so any application should load
all classes needed during initialization. This limitations are consistent with the
ones listed in [7,11,17], where the rationale behind them is discussed. Additional
simplifications are added. Only single threaded applications with no invocations
to executeInArea() are allowed, which means that the execution happens al-
ways in the memory scope at the top of the memory stack. Furthermore, the
number of LTMemory used is known at compile time, and there is a one-to-one
associations from LTMemory objects to Runnable classes (defined for simplicity
in separate files).

In the following, P = {ρ1, ..., ρn} and M = {µ1, ..., µn} will denote the set of
classes implementing Runnable and the instances of LTMemory in an application,
respectively. The instances of ρi will run in µi, for all i ∈ {1, ..., n}. Imm is the
immortal memory. Let also M∗ = M ∪ {Imm} be the set of all memory areas
used in the application.

Executions of such programs can therefore be represented, from the scoped
memory point of view, as a sequence over time of linear stacks growing and
shrinking continuously (in the sense that the previous stack is the next stack
with or without a memory area stacked on top) in which the topmost memory
is the active one (the one in which the thread is executing). Figure 4 shows a

G. Paganelli

89 Technical Report, KIT, 2010-13

possible stack development. Invoking enter() on a scoped memory area object
mem representing memory area µ stacks the memory area; returning from that
invocation unstacks it.

In the following, given a Java method u, the expression σub will indicate the
specification of such a method. Furthermore, the expression σ̃ub will indicate
the subset of the specification dealing with memory constraints. The index b
indicates multiple behavior specifications. Such a fragment of specification σ̃ub
shall contain only sequences of constraints

\inOuterScope(i,j)
\inImmortalMemory(i)

where i, j are reference type JML expressions, referring to formal parameters
in the argument list or this (if the unit is not a static Java method) or more
generally to any visible field mentioned in the specification (including class in-
variants).

The subset of the specification s that corresponds to the precondition (post-
condition) will be denoted Pre(σub) (Post(σub)). The structure of such a con-
strained program is therefore the following: the finite sets P,M∗ represent re-
spectively the Runnable implementations and the memory areas. A set of classes
Γ ⊇ P contains the classes used by the program. In the initialization phase, the
program runs in immortal memory and instantiates the static fields, executes
the static blocks, and performs other possible object creations: all the LTMemory
objects in set M are created, and at least the Runnable(s) that will be entered
to start mission phase. It also must force any dynamic loading of classes. Every
stack during mission phase is rooted in immortal memory.

Immortal Immortal Immortal Immortal

Scoped1 Scoped1 Scoped1

Scoped2

M
e

m
o

ry
 s

ta
ck

Time

...
Fig. 4. Evolution over time of the described restricted program. The time ticks
correspond to invoking (or returning from) the enter() method on the stacked
memory area.

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 90

4 The Method

In the following it is assumed that the program has been already proved to not
throw any runtime memory-related errors. Static analysis, and more precisely
data-flow analysis, has been already used [22] to investigate the properties of SCJ
programs, especially for verifying the absence of memory-related runtime errors.
The aim is to produce initial states for a set of test cases. What is proposed here
is a way to find mappings (“contexts”) from objects to memory areas in all the
memory stacks in which the method under test is invoked (the actual instantia-
tion of these objects is not addressed here). These mappings, for the restriction
imposed to the programs, can be found by static analysis. The problem is basi-
cally a constraint satisfaction problem: given certain constraints (Pre(σ̃ub)) the
goal is to find all satisfiable assignments (that correspond to valid initial states)
of the objects expressed in the specification and signature to memory areas in a
certain memory stack. However, the method generates contexts that might not
occur in the program, because of the coarse analysis; however, all contexts do
respect the precondition and therefore can be used to build valid test cases.

4.1 Static Analysis

Let U be the set of Java methods u to test. For simplicity, three data structures
are defined to name these three different views:

1. A tree T whose root is labeled with Imm and its subtrees have their roots
labeled with the memory scopes entered from the parent context3.

2. A table ΘA : Γ 7−→ ℘(M∗) that holds, for each class γ ∈ Γ , the set of
memory areas in which instances of γ are created.

3. A table ΘI : U 7−→ ℘(M∗) that holds, for each Java method u to test, the
set of memory areas in which it is invoked.

4.1.1 Example. A possible triple 〈T,ΘA, ΘI〉 obtained by static analysis,
when Γ = {R1, R2, R3, A, B, D}, P = {R1, R2, R3}, M = {M1, M2, M3}:

T = (Imm, {(M1, {(M2, { (M3, ∅)})})})
A = {

R1→ {Imm},
R2→ {Imm},
R3→ {Imm},
A→ {M1, M3},
B→ {M2, M3}
D→ {M2},
}

I = {u→ {M2, M3}}

3 This induces a partial order among the memory areas, if the program has been
already proved to not throw any runtime memory-related errors.

G. Paganelli

91 Technical Report, KIT, 2010-13

where Imm is the immortal memory, and a tree node is represented as the pair
(label , set of children).

4.2 Generation of the Contexts

Let u ∈ U a unit to test. The possible contexts in which the unit could be run
are then inferred from the triple 〈T,ΘA, ΘI〉 and Pre(σ̃ub). The memory areas in
which u is invoked are given by the set ΘI(u). The occurrences of these memory
areas are then searched in T . Note that this might happen in more than one place
in T . The occurrences are described as a set of paths ŝk = 〈Imm,µh, ..., µl〉 each
representing a memory stack. Let S = {ŝ1, ŝ2, ..., ŝj} denote this set. Let sk be
the (unordered) set containing all elements appearing in a sequence ŝk. Note
that for the finiteness of M∗, and the restrictions that prevent entering scopes
more than once (see Subsec. 2.1), all the above mentioned sets and sequences
are finite. Pre(σ̃ub) contains the constraints that the allocation of object must
fulfill.

4.2.1 Translation to Constraint Solving over Finite Domains. A con-
straint satisfaction problem (CSP) is defined as a triple P = 〈X,D, C〉 where X
is an n-tuple of variables X = 〈x1, x2, ..., xn〉 and their domains are described
by the tuple D = 〈D1, D2, ..., Dn〉 such that xi ∈ Di. The constraints are given
by C = 〈C1, C2, ..., Ct〉, where each Ci is a pair 〈RSi , Si〉. Si is a set containing
the variables constrained by Ci, and RSi

is a relation among these variables that
defines the valid combinations of values [19].

Given a method u, Pre(σ̃ub) and 〈T,ΘA, ΘI〉, one can see the problem of
satisfying Pre(σ̃ub) as a constraint solving over finite domains. Considering every
path ŝi in T that describe where u is invoked, define for every

– reference-type formal parameter in u’s signature
– reference-type visible field mentioned in the specification (including class

invariants)
– Runnable ρj associated with memory scope µj occurring on ŝi

a variable taking values over a domain Dr ⊆ M∗ in which the corresponding
object can be created. Note that this information is related with the information
held in table ΘA. Let Γ ′ ⊆ Γ be the subset containing the types of the first two
items described above, together with the the ρjs of the last one. The total order
induced by a path ŝi on si allows to identify each of the memory areas with the
position they have in ŝi

4. Let ιŝi
: M∗ 7−→ N be defined as follows:

ιŝi(k) =

{
n, if k is the nth element of ŝi
undefined , otherwise.

4 Only if the program has been already proved to not throw any runtime memory-
related errors.

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 92

ιŝi
(k) is a labeling function for memory areas accessed in ŝi that identifies every

memory area with the position it has in the sequence. Depending on the path ŝi
taken in consideration, the domains from which the variables draw their values
must be adjusted, to rule out values that do not appear in ŝi.

The constraints are given by Pre(σ̃ub) which are unary and binary relations.
Consider then the sets Jŝi

, where K ∈ ℘(M∗) and defined as

Jŝi(K) = {w ∈ N | ∃k ∈ K.ιŝi(k) is defined ∧ w = ιŝi(k)}

The above set is the extension of ιŝi
to subsets of M∗.

4.2.2 Example. Let 〈T,ΘA, ΘI〉 as defined in Example 4.1.1 above. There are
two possible paths from invocations to u. Consider the path ŝ = 〈Imm, M1, M2〉.
The vector of variables X = 〈this, a, b, r1, r2〉 is obtained from the specification
and the method signature of u (see Fig.1, the formal parameters A a and B b and
the instance on which the method is invoked) and the correspondence between
memory areas and Runnables (r1 and r2). The domains of such variables are
obtained from the ordering induced by ŝ:

Dr1 = Js(ΘA(R1)) = {0}
Dr2 = Js(ΘA(R2)) = {0}
Da = Js(ΘA(A)) = {1}
Db = Js(ΘA(B)) = {2}

Dthis = Js(ΘA(D)) = {2}

With the structure 〈T,ΘA, ΘI〉, a unit u to test and a path ŝi it is then possible
to translate the problem of finding possible test memory contexts in a CSP
problem P = 〈X,D, C〉 as follows:

– Define variables X = 〈x1@C1, x2@C2, ..., xn@Cn〉, each xj with j ∈ {1...n}
corresponding to:
• formal parameters in u’s signature
• visible reference types mentioned in Pre(σub)
• Runnables associated with all µh ∈ si

each of them of class Cj .
– Define domains D = 〈Jŝi

(ΘA(C1)), Jŝi
(ΘA(C2)), ..., Jŝi

(ΘA(Cn))〉
– Define constraints set C:
• for each expression in Pre(σ̃ub) of the form \inOuterScope(c,d) add

the constraint xc ≤ xd, where xc, xd appear in X and are the variables
associated with arguments or field c, d evaluate to;

• for each expression in Pre(σ̃ub) of the form \inImmortalMemory(c) add
the constraint xc = 0 (since immortal memory always has identifier 0,
as it labels the root of T).

G. Paganelli

93 Technical Report, KIT, 2010-13

4.2.3 Algorithm. The iterative process is as follows, given 〈T,ΘA, ΘI〉 and
a method u such that ΘI(u) = K, and one specification case Pre(σub).

– For all m in K:
• For each occurrence o of m in T

1. let ŝi the sequence describing the path from o to the root of T
2. Translate the problem from the triple 〈〈T,ΘA, ΘI〉, u, Pre(σub), ŝi〉as

in 4.2.2
3. Solve the problem and generate a context for all the possible solu-

tions.

4.3 Test Case Generation

The result of the analysis will yield the information on how to build the initial
state in which the tests have to be executed, thanks to the invertibility of ιŝi

(where it is defined). This can be factored away in the code since several test
cases will share the same code. A context given by a resulting tuple is part of
the test input of the unit under test u, but it is not local (in the sense that it
cannot be inferred by the specification and implementation of u) since it has been
obtained by a program-wise analysis. The generated context will then have to be
connected with the test cases produced by the automated test case generation
tool.

4.3.1 Example. Let u be a method of class D along with its JML specification
and signature:

Class D{

/*@

@ public normal_behavior

@ requires \inOuterScope(a,b);

@ ensures \result == 3;

@*/

public int u(A a,B b){...}

}

Continuing from Example 4.2.2, the CSP problem 〈X,D, C〉 is given by

X = 〈this, a, b, r1, r2〉
D = 〈Dthis, Da, Db, Dr1 , Dr2〉
C = {a ≤ b}

The corresponding resulting configuration obtained by the solution of the above
problem is X̃ = 〈0, 0, 1, 2, 2〉. A pictorial representation is given in Fig.5, along
with a snippet of a possible test implementation.

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 94

Fig. 5. Resulting test configuration for path s = 〈Imm, M1, M2〉 of length 3.

Runnable r1,r2;

LTMemory scoped1,scoped2;

@Begin

public void fixture(){

scoped1 = new LTMemory(1000);

scoped2 = new LTMemory(1000);

r1 = new Runner1();

r2 = new Runner2();

}

class Runner1 implements Runnable{

public void run(){

A a = new A(...);

scoped2.enter(r2);

}

}

class Runner2 implements Runnable{

public void run(){

B b = new B(...);

D d = new D(...);

int ret = d.u(a,b);

Assert.assertEquals(ret,3);

}

}

@Test

public void test(){

scoped1.enter(r2);

}

5 Conclusions, Remarks and Future Work

This paper presented a method to help generate assignments that augment the
test generation capabilities of a verification-based test case generator for a re-
stricted class of Safety-Critical applications. It uses a step of static analysis and
uses a translation to a CSP instance to generate all the memory stacks and al-
location scenarios possible in the program for each stack, knowing the mapping
from created objects to memory areas. In principle there can be programs in

G. Paganelli

95 Technical Report, KIT, 2010-13

which the generation would not result in a narrowing of all the possible sce-
narios. By the way, from the guidelines in [7,17] and the only (to the author’s
knowledge) RTSJ benchmarks [12], it seems hard to have a real-time Java ap-
plication with such a level of complexity. The presented work does not cover
what is not mentioned in the specification and in the signature of a method.
Namely, if object o has a field o.f of a certain reference type, and there is no
information of the position o.f should have in the scope stack, then nothing can
be said when creating the initial state besides just assuming by default that it
has to be in a more inner scope than o. One possible solution might be to add
as much variables as needed, or otherwise to signal this as a lack of detail in
the specification – with the risk of causing overspecification, or simply lots of
ignored warnings.

The major drawback of this approach is that modifications to the program
might lead to repeat the whole context generation process, as a test suite would
be at least partially invalidated if the underlying program changes (if for instance
the modifications will yield a new result for the static analysis phase).

An extension to the presented work might be to allow in Pre(σ̃ub) also con-
straints of the type \currentMemoryArea == memoryArea N , or (in the op-
posite direction, from code to specification) to derive, based on the the static
analysis performed, a refinement to the specification in a separate .jml file, to
reflect the information found. This would make the specification less modular
and dirty because of the ways the scoped memory area objects of interest might
be mentioned in the specification; but it would also be a clean way to communi-
cate the results of the proposed procedure to the KeYVBT tool. In the author’s
opinion it is advisable to present together with this extension a better defined
set of guidelines and patterns [18] or even a library to develop safety critical ap-
plications, in order to normalize such constraints among all possible applications
of the same family. Another issue that needs to be investigated is how to connect
the generated test cases with known testing criteria. An implementation of the
proposed method will come shortly.

References

1. Java card, http://java.sun.com/javacard
2. Real-Time Specification for Java, http://www.rtsj.org
3. The JUnit tool, http://www.junit.org
4. The KeY-Project, http://www.key-project.org
5. The KeYVBT tool, http://www.key-project.org/download/#key-test
6. HIJA Safety-Critical Java Proposal (2006),

Available at http://www.aicas.com/papers/scj.pdf.
7. aicas GmbH: JamaicaVM 3.4 User Documentation
8. Engel, C.: Verification Based Test Case Generation. Master’s thesis, Universität

Karlsruhe (aug 2006)
9. Engel, C.: Deductive Verification of Safety-Critical Java Programs . Ph.D. the-

sis, Fakultät für Informatik, Institut für Theoretische Informatik (ITI), Karlsruhe,
Germany (2009)

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

Technical Report, KIT, 2010-13 96

10. Engel, C., Hähnle, R.: Generating Unit Tests from Formal Proofs. In: Gurevich, Y.,
Meyer, B. (eds.) Proceedings, 1st International Conference on Tests And Proofs
(TAP), Zurich, Switzerland. LNCS, vol. 4454. Springer (2007)

11. Hu, E.Y.S., Jenn, E., Valot, N., Alonso, A.: Safety critical applications and hard
real-time profile for Java: a case study in avionics. In: JTRES ’06: Proceedings of
the 4th international workshop on Java technologies for real-time and embedded
systems. pp. 125–134. ACM, New York, NY, USA (2006)

12. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: Cdx: a family
of real-time java benchmarks. In: JTRES ’09: Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems. pp. 41–50.
ACM, New York, NY, USA (2009)

13. Leavens, G.T.: JML Reference Manual, available at http://www.eecs.ucf.edu/ leav-
ens/JML/jmlrefman/

14. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

15. Leavens, G.T., Cheon, Y.: Design by Contract with JML (2004)
16. Nilsen, K.: A Type System to Assure Scope Safety Within Safety-Critical Java

Modules. In: JTRES ’06: Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems. pp. 97–106. ACM, New York,
NY, USA (2006)

17. Nilsen, K.: Guidelines for Scalable Java Development of Real-Time Systems. Aonix
(2006), available at http://research.aonix.com/jsc

18. Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-Time Java Scoped Memory: De-
sign Patterns and Semantics. Object-Oriented Real-Time Distributed Computing,
IEEE International Symposium on 0, 101–110 (2004)

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

20. RTCA: Software Considerations in Airborne Systems and Equipment Certification
(1992)

21. Schoeberl, M., Sondergaard, H., Thomsen, B., Ravn, A.P.: A Profile for Safety Crit-
ical Java. Object-Oriented Real-Time Distributed Computing, IEEE International
Symposium on 0, 94–101 (2007)

22. Siebert, F.: Proving the Absence of RTSJ Related Runtime Errors through Data
Flow Analysis. In: JTRES ’06: Proceedings of the 4th international workshop on
Java technologies for real-time and embedded systems. pp. 152–161. ACM, New
York, NY, USA (2006)

23. Wellings, A.: Concurrent and Real-Time Programming in Java. John Wiley & Sons
(2004)

24. Zhao, T., Noble, J., Vitek, J.: Scoped Types for Real-Time Java. In: RTSS ’04:
Proceedings of the 25th IEEE International Real-Time Systems Symposium. pp.
241–251. IEEE Computer Society, Washington, DC, USA (2004)

G. Paganelli

97 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler?

Thorsten Bormer1 and Markus Wagner2

1 Institute for Theoretical Computer Science,
Karlsruhe Institute of Technology, Germany

bormer@kit.edu
2 Department 1: Algorithms and Complexity,
Max Planck Institute for Informatics, Germany

mwagner@mpi-inf.mpg.de

Abstract. In this paper, we present our approach on testing a particular veri-
fication system that is industrially used to generate mathematical proofs of the
correctness of C programs.
Normally, the tools used in such a verification process are seldomly verified nor
thoroughly tested, and their correctness is taken for granted. Our approach to
obtain assurance in such tools does not rely on the knowledge of their internal
details and enables regular users of these tools to write test cases for them. Those
tests are then assessed using our domain-specific axiomatization coverage that
measures the impact of the axiomatization, which is an integral component of the
verification process. Furthermore, we explore several sources of test cases, as the
risk of constructing buggy test cases is high due to the input domain’s complexity.

Keywords: Software validation, black-box testing, large software system

1 Introduction

Employing formal methods in the software development process is a viable, if some-
times deemed as costly, way to enhance the quality of the resulting product. One of the
possibilities to use formal methods is in the verification phase of software development,
supplementing the testing effort by formal software verification. Through formal verifi-
cation, one obtains a mathematical proof that the program is correct with respect to its
given specification.

The benefit of such a correctness proof is most apparent with safety-critical soft-
ware. Additionally, in a certification process with high requirements on software qual-
ity and associated evidence of former (for example, in CC EAL 7+ or the upcoming
DO178-C standard), these correctness proofs would be a valuable resource. To use the
correctness proof in some certification process, the tool that was employed to generate
the proof has itself to be validated in some cases.

Unfortunately, this is often not the case with existing software verification tools. As
a user of these tools, internal details or even the source code of the tools are often not
? Work partially funded by the German Federal Ministry of Education and Research (BMBF) in

the framework of the Verisoft XT project under grant 01 IS 07 008. The responsibility for this
article lies with the authors.

Technical Report, KIT, 2010-13 98

available to be able to verify that the tool is working correctly—even if access to the
source code is possible, lack of resources impede the application of formal methods to
the tools themselves, due to the complexity of the tools.

In this paper we propose a different approach to obtain assurance in the correctness
of the software verification tools, namely by testing. Our method does not rely on the
knowledge of internal details of the verification tool and enables regular users of these
tools to write test cases for them.

This paper is structured as follows. First, our subject under test, the verification
system VCC, is presented in Section 2 with details on the toolchain and verification
methodology. Then, in Section 3, the theoretical aspects of testing verifying compil-
ers are investigated. In the subsequent sections, the theoretical results are applied to
the subject under test. For this, a suitable technique for testing VCC is chosen in Sec-
tion 4, where we define the domain-specific axiomatization coverage as our test metric,
and explore several sources for test cases. Finally, the results of the testing process are
presented and assessed in Section 5.

2 A Typical Verifying Compiler

For the rest of this paper, we have chosen the VCC tool [9,10], developed by Microsoft
Research, as the verification system to be tested. This tool is developed in the context
of the Verisoft XT project where it is successfully used within two subprojects to verify
functional properties of system software.

VCC is chosen here as a particular instance of formal software verification tools that
follow the “verifying compiler” paradigm. While the tool description in the following
is concerned with the details of VCC, the design and architecture of VCC is similar to
other tools in this area, for example Caduceus or Krakatoa, so the testing methodology
of our paper is not restricted to this particular setup. VCC is being developed as an
industrial-oriented verification environment for low-level concurrent system code writ-
ten in C. It takes a program that is annotated with function contracts, state assertions,
and type invariants, and attempts to prove the correctness of these annotations.

In the following we will give a short overview on the verification workflow and
give a description of the internal architecture of the VCC tool. The particular elements
of the VCC specification language and methodology are not contained in this section,
but described together with the examples presented later on, as far as needed. For a
thorough introduction into the VCC methodology, see [9].

2.1 The VCC Workflow

To verify whether a program fulfills certain functional properties using VCC, the in-
tended properties are first formulated with the help of the VCC specification language,
such as method contracts or invariants on data types. This specification language is sim-
ilar to those found in ESC/Java2 [11], Spec#, and HAVOC [8]. As in all these systems,
the program’s specification is stored as inline source code annotations. These annota-
tions are invisible to a normal C compiler (making use of the C preprocessor features)
but are analyzed by VCC within the verification process.

M. Wagner, T. Bormer

99 Technical Report, KIT, 2010-13

Invoking VCC on an annotated C source file has one of the following outcomes: (a)
VCC reports that the program fulfills its specification as given by the annotations or (b)
VCC could not prove that the program meets the specification. The latter case may have
several reasons (for example, not enough system resources for the prover, a bug in the
software or specification)—for each of the error sources, there are appropriate tools in
the VCC package to inspect and debug these errors.

2.2 Architecture of the VCC-Toolchain

To prove that a program meets its specification, the VCC tool internally makes use of a
toolchain of three tools: from the annotated C code, with the help of VCC’s compiler,
a representation in an intermediate, imperative programming language with embedded
specification constructs (called BoogiePL [17]) is generated. This BoogiePL represen-
tation is then further processed by the Boogie tool into proof obligations. These are
then proven or refuted by the Z3 theorem prover—leading to either the statement that
the original program meets its specification, or, if the proof obligations are refuted, to a
counterexample.

In the following, we will give a short overview on each of these steps and compo-
nents in the toolchain.
VCC’s compiler The VCC compiler is build by using the Common Compiler Infras-
tructure (CCI)3. Annotated C programs are read and turned into CCI’s internal repre-
sentation to perform typical tasks of a regular C compiler, such as name resolution, and
type and error checks. Next, the fully resolved input program is subject to several trans-
formations: (1) simplifying the source, (2) adding proof obligations that result from the
methodology, and (3) finally generating Boogie code.
Boogie When a C program is analyzed and found to be valid, it is translated into a Boo-
gie program that encodes the input program according to the employed formalization
of C. Boogie is an intermediate verification language and a verification system that acts
as a layer on which program verifiers for other languages can be built upon. It is used
by a number of software verification tools including Spec# and Havoc.

Before the Boogie program is fed to the Boogie program verifier, which translates
it into a sequence of verification conditions, the prelude is added, which is an axiom-
atization of the C intrinsic memory model, object ownership, type state and arithmetic
operations. Then, the verification conditions are passed to an automated theorem prover
to be proven or refuted.
Z3 Z3 [12] is a first-order theorem prover that checks whether a set of formulae is satis-
fiable in the built-in theories. Those cover, for example, the equality over free function
and predicate symbols, real and integer arithmetic, and bit-vectors.

3 Validation of Verification Environments
3.1 Software Validation

To check whether a software system meets its specification and fulfills its intended
purpose, a plethora of techniques (for example, deductive verification, static analysis,

3 Microsoft Research: CCI. 3 May 2010 http://ccimetadata.codeplex.com/

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 100

and white-/black-box testing) can be applied. In this work, we have chosen to use black-
box testing as a cost-effective procedure to establish assurance that our target, VCC,
works correctly.

In general, functional conformance testing is classified as a black-box approach
when an external tester can only observe the outputs generated by the implementa-
tion upon the receipt of inputs, without any information about the internal design of an
implementation. Conformance is the relation between a specification and an implemen-
tation, and the relation is valid if the implementation does not present behaviors that
are not allowed by the specification. If the implementation is given as a black box, only
its observable behavior would be able to be tested against the required behaviors by the
specification.

Towards black-box testing of verification systems, we considered the following ap-
proaches to be applicable. Error guessing is an ad-hoc approach mostly based on experi-
ence. Equivalence Partitioning can be applied when the domain of each input parameter
of a function is structured into equivalence classes. Boundary Value Analysis assumes
that errors tend to occur near extreme values because typical programming errors—for
example, wrong termination conditions for loops—are often related to these boundaries.
Model-driven testing [2] was not considered applicable because of the very costly pro-
cess of constructing a model for large systems. This is the case for verification systems,
where the input and output data is tightly coupled to the behavior specifications of the
verification system.

3.2 Validation Techniques for Verification Systems

When it comes to identifying the components of the verification system that are to be
validated, we identified two major obstacles. The first one was the complexity of the
toolchain. Verification systems are usually large software systems: they are composed
of complex parsers for the input languages, mechanisms to rewrite the input into proof
obligations, and possibly problem solvers and other tools. The second obstacle was the
complexity of the supported languages. Automatic verification systems usually support
a programming language that is annotated with elements from a specification language.
This results in the complex interaction of elements from both languages.

The complexity of the toolchain can be countered by testing the components indi-
vidually, if possible. A structured divide-and-conquer approach towards the interaction
of language elements cannot be defined as straightforward. This is due to the rather un-
structured input domain of a verification system; each test is not simply a combination
of some values for a function to be tested, but an entire C program including annota-
tions. Some structures within the domain can be achieved by defining some orders over
the individual language elements, or by aggregating elements, such as “arithmetic op-
erators” and “memory model specific operators”, to domains. Based on these domains,
test cases can be created systematically by using the combinatorial testing approach.
Once a thorough test is performed, combinatorial testing offers an easy and intuitive
evaluation of the testing process itself: based on the structured approach, the coverage
on n-wise coverage combinations can be computed, and these numbers can help to build
trust in the tool.

M. Wagner, T. Bormer

101 Technical Report, KIT, 2010-13

Related Work In principle, instead of using our testing approach, parts of the verifi-
cation tools available could be formally verified by using either the verification tools
themselves or others. There have been several efforts to develop completely certified
program verifiers, e.g., in the Bali project [21], the LOOP project [15], and in the Mo-
bius project [4]. Several times, tricky verification examples were proposed to test verifi-
cation tools ([14]), and furthermore, components of Java verification tools were verified
([1]). One example of such a soundness proof conducted is the verification of the rewrite
rules of Caveat’s4 integrated theorem prover by using PVS5. In addition, though, also
all combinations of C’s syntactic constructs were tested. Due to our limited resources,
a comparable approach could not be realized in our scenario.

In their discussion on whether verification systems and calculi have to be verified
in general, Beckert and Klebanov [6] argued that in practice, a more powerful and suf-
ficiently correct system may be used in favor of a less powerful but correct system.
Although they considered the verification of the tools or its components as important,
they advised the developers of verification systems to test more frequently.

A less labor-intensive method than (cross-)verifying parts of the verification sys-
tems would be conducting (cross-)validation of the components by comparative testing.
However, the question is whether such a comparable (verification) system exists. For
the part of programming language, regular compilers may be used as sources for com-
parative statements on the parsability of source code, but finding several verification
systems with similar features that are able to produce comparable outputs from the
same source code is a problem.

Regarding the annotation languages that are commonly used, we observed the rela-
tive similarity between languages such as Java Modeling Language [7], the ANSI/ISO C
Specification language (ACSL)6, and Microsoft’s variants. With possible convergence
of specification languages in the future, we expect the number of comparable verifi-
cations systems to increase. Thus the creation of verification-specific test cases will
become more desirable because of their increased reusability.

Concentrating on the theorem provers that are used in the last stage of VCC to
discharge verification conditions, different approaches are capable of building trust in
them. For example, cross-validation can be used, based on established problem libraries
such as the well-known TPTP library7. Alternatively, the results can be validated by
using proof checkers. One example of such a system is the Formally Verified Proof
Checker that was implemented in ML and even formally verified by using HOL88 [22].

An interesting application of conformance testing is the official validation test suite
for FIPS C (a dialect of C).8 In order to determine the coverage on the language stan-
dard of a test suite, the language standard itself was implemented in a so-called model

4 CEA-LIST: The Caveat Tool. 3 May 2010 http://www-list.cea.fr/labos/gb/
LSL/caveat/index.html

5 SRI International: PVS. 3 May 2010 http://www.csl.sri.com/projects/pvs/
6 CEA-LIST/INRIA-Sacley: ACSL. 3 May 2010 http://frama-c.com/acsl.html
7 Geoff Sutcliffe, Christian Suttner: The TPTP Problem Library for Automated Theorem Prov-

ing. 3 May 2010 http://www.cs.miami.edu/˜tptp/
8 Derek Jones: Who Guards the Guardians? 3 May 2010 http://www.knosof.co.uk/
whoguard.html

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 102

implementation, i.e., an actual compiler based on the language description. Statements
of the model implementation were then mapped back to the standard, allowing the au-
thors to show that all of the requirements in the standard were implemented. With this
approach, statement coverage w.r.t. this model implementation thus relates to coverage
of the language standard elements. In the end, a statement coverage of 84% of the model
implementation was achieved by a comprehensive test suite, demonstrating that the test
suite checks a substantial portion of the C programming language.

4 Testing of VCC

To effectively apply software testing to VCC, we have to first identify the important
quality attributes of the subject under test. These attributes can then be used to derive or
select useful metrics in order to assess the quality of testing. Then, we discuss several
possible sources for test cases in order to apply the concept of cross-validation to verifi-
cation environment testing. It has to be noted that our approach is only weakly related to
“regular” compiler testing, as our focus is not on the parsing capabilities and automatic
error corrections, but on VCC’s design goal, i.e., the ability to fully automatically prove
a program’s correctness.

4.1 Test Objective

In the following we concentrate on the soundness of verification systems. The discus-
sion of Beckert et al. [5] on the completeness of verifying compilers is related to this
definition, in which they distinguished between different types of annotations. For ex-
ample, it can be the case that a program is correct with respect to its requirement spec-
ification, but the toolchain is unable to prove it. The reason for this is the missing aux-
iliary annotations that would have guided the theorem prover to the correctness proof.
In the following, the term annotations is used to cover all the requirement specification
annotations and the auxiliary annotations of a program.

From VCC’s point of view, there is no way of differentiating a test case that is sup-
posed to succeed from one that is supposed to fail. It is important to remember that we
are not in the situation of verifying annotated programs, but of observing VCC’s verifi-
cation attempts on annotated programs. This leaves us with the following classification
of test cases: (1) successful cases, where the outcome of a verification attempt equals
the expected outcome, and (2) failing cases, where the outcome of a verification attempt
does not equal the expected outcome. Hence, a test case for a verification system con-
sists of an annotated program and some expected output. The verification system itself
is not part of the test case; components such as the axiomatization remain unchanged
for the testing process.

4.2 Testing with Respect to the Axiomatization

As already mentioned in Section 2.2, VCC’s prelude contains an axiomatization of C
written in Boogie. And within the multi-stage verification process, it has a significant
impact on the outcome. Furthermore, the prelude is accessible to a human analyst, both
on the code level and on the level of understanding the effects of the prelude’s elements.

M. Wagner, T. Bormer

103 Technical Report, KIT, 2010-13

Based on the importance and its accessibility, we chose to test VCC with respect to
the prelude, that is, to observe the impact of the prelude on the verification process.
Alternatives will be discussed in Section 4.3.

The prelude itself is a Boogie program. In general, a Boogie program consists of a
theory that is used to encode the semantics of the source language, and an imperative
part [3]. A theory is composed of type declarations (keyword: type), symbol declara-
tions (const, function), and axioms (axiom). The imperative part of a Boogie program
consists of global variable declarations (var), procedure headers (procedures), and pro-
cedure implementations (implementations). The size of the prelude in our case is about
2900 lines of code—for easier maintenance and improved legibility the prelude is fur-
ther structured into sections concerning different language- and specification features.
Later on, we will modify the structure of the prelude.

4.3 Coverage Measurement

In the following, we describe our approach chosen to determine the impact of the ax-
iomatization used. The idea is to determine the subset of elements of the original prelude
that is used by the test case. It is checked whether or not an element of the prelude is
needed by comparing the original output of VCC with the result when the selected ele-
ment is left away. If the element can be left away, it is discarded for the given test case
and the process is iterated until no more elements can be left away. Note that, in gen-
eral, the minimal set of prelude elements for a given program is not uniquely defined.
Depending on the generated proof obligations, different sets of prelude elements may
be needed9 and thus the selection strategy when reducing the prelude matters.

Based on our approach, the straightforward definition of axiomatization coverage
follows:

Definition 1. Given a verification environment v, its specification s , the complete ax-
iomatization consisting of m elements, a test case t, and a corresponding minimized
axiomatization avst with nvst elements. Then the axiomatization coverage is defined as
Cov(v, s, t) = nvst/m. For a set of test cases T = t1, . . . , tn and corresponding min-
imized axiomatizations a1, . . . , an, the coverage is defined as Cov(v, s, T) = na/m
where

⋃
n ai has na distinct elements.

Tests that need rather many elements of the axiomatization can be regarded as strong
tests; on the other hand, tests that requires only a rather small number of elements can
also be regarded as strong because the verification task itself may be very complex.
However, the latter kind of test strength addresses the problem of “the difficulty of
verification”, rather than “the interaction of the prelude’s elements”, in which we are
actually interested.

Discussion and Alternatives In his work, Littlefair [19] examined the relation be-
tween the consideration of quality in software engineering and software metrics. Based

9 e.g., consider the proof obligation a ∨ b: either all elements needed to prove a are needed or
all relevant elements for b

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 104

on his observations and on Weyuker’s proposed conditions for useful measures of soft-
ware complexity [24], the usefulness of our own measurement can be evaluated—
exemplarily, we discuss two conditions.10 One of the conditions requires that “there
exist programs P and Q such that |P | 6= |Q|”. This requirement motivates that for
a measure to have any value at all, it has to enable some discrimination between dif-
ferent programs. Axiomatization coverage fulfills this requirement. Another condition
requires that “For all programs P and Q, and the program P ;Q, which is obtained
by combining P and Q, |P | + |Q| ≤ |P ;Q|”. The justification for this property is
the notion that the interaction between parts of a program may introduce complexity,
additional to that present in the components. Hence, the amount of added complex-
ity may only be non-negative. Axiomatization coverage does not fulfill this require-
ment: due to significant overlap in the minimized preludes needed by two programs,
|P | + |Q| ≤ |P ;Q| usually does not hold. Despite not fulfilling several of Weyuker’s
conditions11, our definition of axiomatization coverage has the advantage that test cases
can easily be compared because the result of the coverage computation is a single num-
ber. While allowing for a quick classification of test cases into comprehensive test cases
and test cases with limited scope, it does not take into consideration which elements of
the prelude are needed.

Alternative 1. As the first alternative, we suggest to count the number of the covered
equivalence classes of “language feature”, for example, (1) array indexed with negative
value vs. array indexed with the value 0, (2) unwrapping an object that is not wrapped
vs. unwrapping a wrapped object. In spite of its obvious benefits attributed to the strong
relationship to the boundary value analysis, we do not expect it to be measured easily if
automatically at all, as it is not clear what a language feature is.

Alternative 2. Going away from the axiomatization coverage and back to the idea of
covering language features, a metric can be used that counts the language features used
by a test case. In fact, this can be refined by counting the features of the programming
language and the features of the annotation language separately. Based on combinatorial
testing, an extension of this metric would be the use of the number of “t-wise language
feature element combinations” that are covered by a test case. After testing, a high value
of this extended metric would allow for a high trustworthiness in the subject under test,
as data reported in several studies ([23,20,16]) show that software failures in a variety
of domains were caused by the combinations of several conditions.

Alternative 3. Similarly to the last alternative, and by adapting the derived metric
LOC/COM (lines of code per line of comments, interpretable as maintainability), it is
possible to use LOA/LOC , where LOA is the number of lines of annotations needed.
Thus, it is possible to estimate how many annotations are needed to verify a given code
block. A high ratio may indicate code that is difficult to verify, while a low ratio may
indicate easily verifiable code.

Further alternatives are imaginable, but as the way of defining the metric gets more
complicated, it becomes less conclusive how to actually interpret the results. In general,

10 In Weyuker’s notation the letters P , Q, R represented distinct programs, and the result of the
adequacy measurement was signified by |P |, |Q|, |R|.

11 The discussion was omitted because these are all conditions based on the composition of pro-
grams, which cannot be fulfilled due to the overlap in necessary prelude elements.

M. Wagner, T. Bormer

105 Technical Report, KIT, 2010-13

it is very likely that a single metric is never able to be presentable as a single expression
for software quality because the objectives targeted by the models of software quality
tend to be multi-dimensional and hierarchical.

4.4 Sources of Test Cases

In the following, we address the issue of producing meaningful test cases, as the system-
atic creation of a large number of meaningful tests is not trivial. To reduce the impact
of erroneous test cases on the testing process, we obtain the test cases from three inde-
pendent sources, as a form of cross-validation.

At first, we explored the possibility of using the official C language standard. In the
next step, we analyzed existing C compiler test suites and investigated ways of adapting
those tests. Finally, tests from other verification systems were analyzed for their possible
adaption.

C Standard The C standard ISO/IEC 9899:201x, often called C1X, was selected to be
the first source of possible tests. Although it does not include tests, it specifies the form
and establishes the interpretation of C programs. The standard uses the Backus-Naur
form for the syntax and prose for the semantics and constraints.

Due to the implementation details of the VCC toolchain, two variations of the C
language had to be considered that deviate partially in language features supported
compared with C1X. For neither a comprehensive lists of the supported C language
features are available, leading to only partially usable C test cases.

In the following, we demonstrate how test cases can be constructed, based on the
sources of information on the supported C standards, based on the first paragraph of
C1X’s section 6.3.2.3 on pointers:

6.3.2.3 Pointers
A pointer to void may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to void
and back again; the result shall compare equal to the original pointer.[. . .]

Based on the information gathered from the standard we created a single test file
for this paragraph. Exemplarily, we annotated the test file with as much information as
possible; that is, we have listed the motivational source for the tests, the links to supple-
mentary information, and we have quoted the sentences from the standard’s paragraph.
Thus, we achieve a strong link between the standard and the derived tests. An excerpt
of the full version, which was successfully verified by VCC in accordance with the
standard, is presented below:

1 //Scope: C1X 6.3.2.3 Pointers, p. 61f
2 #include "vcc.h"
3

4 void function6323_1(void) {
5 //object types:
6 char* b; [...]
7

8 //paragraph 1: 1. A pointer to void may be converted to or from a pointer to
9 //any incomplete or object type.

10 b = (char*)v; v = (void*)b; [...]
11

12 //paragraph 1: 2. A pointer to any incomplete or object type may be converted

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 106

13 //to a pointer to void and back again; the result shall compare
14 //equal to the original pointer.
15 assert(b == (char*)(void*)b); [...] }

C Compiler Test Suites With VCC being a special kind of compiler, the construction
of test cases using compiler test suites is a straightforward approach. Test suites that
check conformance to standards are often called validation suites, and those validation
suites are very influential. Several commercial validation suites are available on the
market (for example the ACE SuperTest or the Perennial ANSI C Validation Suite),
although for licensing reasons we chose to use the test suite of the GNU Compiler
Collection (GCC) version 4.4.012. The C compiler of GCC supports C90, and parts of
C99. The C specific part (about 12,000 files) of the GCC test suite contains generic tests
that are supposed to run on any target, and platform specific tests. Information on the
purposes of the tests is limited, thus complicating the analysis of the test cases.

In addition to verifying developer-defined functional properties, VCC implicitly
checks for undefined behavior, such as, null pointer dereferences, division by zero, over-
and underflow. It does so by automatically inserting additional assertions into the ver-
ification conditions, which precede the translated operation. Because of these checks,
non-annotated source code normally cannot be verified, despite the lack of explicitly
stated functional properties. Therefore, minimal annotations have to be included, for
example, the definition of writes and reads clauses.

We used an iterative approach to adapt files from the GCC test suite. First, we
checked whether Microsoft’s own C compiler can compile the source code without
warnings or errors. Then, minimal annotations were added, so that VCC verifies the
source code without warnings or errors. Finally, additional specification was added
based on comments and a close inspection of the C code, defining pre- and postcon-
ditions, as well as invariants to capture the functional properties of the program. This
step-wise approach is demonstrated in Figure 1. There, we used the information given
in the main function to construct the postcondition. In this function, another function
f is called first, and subsequently, the result of f is checked against what seems to be
the expected result of f, that is if (b != 9). If the expected result is not met, the
program stops abnormally, otherwise it stops normally. Both situations return different
exit codes, which are then interpreted by the test framework.

Verification Environments The motivation behind this approach is that the time in-
tensive task of creating interesting test cases for verification environments can be saved
by adapting existing test cases.

VCC. VCC version 2.1.20731.0 is deployed with a set of 400 test cases, addressing
specific domains, such as arrays, claims, or ghost code. Again, information on the tests’
purposes is very limited; however, some information on the background can be obtained
by an experienced user of VCC by reviewing the source code in combination with the
expected result. Out of the 400 test cases, 202 can be regarded as true positives, and 198
as true negatives. This surprisingly balanced ratio indicates that the developers of VCC
use a systematic testing approach to test succeeding and failing verification.

12 GNU Compiler Collection: 4.4. 3 May 2010 http://gcc.gnu.org/gcc-4.4/

M. Wagner, T. Bormer

107 Technical Report, KIT, 2010-13

1 #include "vcc2.h"
2 int b;
3

4 void f ()
5 writes(&b) //A
6 ensures(old(b)==0 ==> b==9) //B
7 ensures(old(b)!=0 ==> b==old(b)) //B
8 {
9 int i = 0;

10 if (b == 0)
11 do
12 invariant(0<=i && i<10) { //B
13 b = i;
14 i++;
15 } while (i < 10) ;
16 }

17 int main ()
18 writes(&b) //A
19 ensures(old(b)==0 //B
20 ==> result == 0)
21 ensures(old(b)!=0 && old(b)!=9 //B
22 ==> result == 1)
23 { f ();
24 if (b != 9) return 1;
25 return 0;
26 }

Fig. 1. Demonstrating the iterative adaption of the GCC test case files. The test case file
990604-1.c without any annotations is amended with minimal annotations (lines marked with
A), and with functional specifications (lines marked with B).

Spec#. The collection of verified algorithms from Leino and Monahan [18] contains
38 relatively complex real-life algorithms,13 such as an insertion sorting algorithm and
a minimal distance algorithm. The algorithms are written in C# and verified by Spec#.
Furthermore, the algorithms are relatively well documented.

Frama-C/Jessie. The Framework for Modular Analysis of C programs (Frama-C)14

is a set of program analyzers with Jessie as the deductive verification plug-in. Using the
Why back-end [13], automatic theorem provers can be used to perform fully automatic
verification. The C files are annotated by using ACSL (see Page 3), which is comparable
to VCC’s annotation language. Similar techniques are used to express, for example,
method contracts, invariants of loops and data structures, and ghost code. As of the
Frama-C release Beryllium 20090601, the distribution comes a set of 236 test case files
for the Jessie plug-in. Compared to the Spec# tests, the translation is slightly more
complex because the annotation language shares less common concepts with VCC’s
than Spec#’s. Still, the annotations can be very helpful, especially when invariants are
provided.

Comparison of the Sources During the exploration of the different sources for test
cases, we have made several observations. Based on these, the above-mentioned ap-
proaches can be compared both qualitatively and quantitatively.

The highest assurance level is given when the programming language standard is
used to derive test cases. However, this is the most labor-intensive approach. Further-
more, it may be difficult to determine if a failed test is caused by a misinterpretation of
the standard, or by an incorrect implementation inside the verification tool. Neverthe-
less, this approach may be useful when corner cases are needed.

An almost arbitrary number of test cases can be created by adopting C compiler
test suites, which is less labor-intensive than the standard-based one. However, the task
13 Rosemary Monahan: Verified Textbook Examples. 3 May 2010 http://www.
rosemarymonahan.com/specsharp/

14 CEA-LIST/INRIA-Sacley: Frama-C. 3 May 2010 http://frama-c.cea.fr

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 108

remains very time consuming, and debugging may be difficult because the C compiler
and the verification tool may have different implementations of the C features.

The use of other verification tools as sources has the potential to offer substantial
support to find the annotations needed for full functional verification. But the number of
the transferable tests is relatively small, and it cannot be guaranteed that two different
verification tools are capable of verifying the same functional properties of a program.

4.5 Test Framework

We implemented a framework that allows for the automated execution and evaluation
of tests. This enables us to find errors in VCC, and to perform the regression testing
of VCC and of a code base. The framework has the benefit that it can be reused with-
out any changes at all if VCC supports further programming languages in the future.
Furthermore, it can be adapted with little effort to other fully automatic verification
environments, if the axiomatization used by these environments is externally modifi-
able. Support for interactive verification tools is not implemented, although it should be
possible to some extend using capture/replay tools.

5 Test Results

In the previous section, we have laid the basis for testing the Verifying C Compiler. The
theoretical background was investigated, a suitable test objective defined, and sources
for test cases were explored. In this section we present the results of the actual runs of
the test framework.

5.1 Prelude Coverage Results

Exemplarily, our test harness computed the axiomatization coverage that is achieved by
VCC’s own test suite. The used test suite contained 400 test cases, which were auto-
matically extracted from the test suite collection files of VCC 2.1.20731.0. The harness
determined the axiomatization coverage that is achieved on the axiomatization of VCC
version 2.1.20731.0, and for comparative reasons the coverage on the axiomatization
of VCC version 2.1.20908.0 (a version about 6 weeks further into development). The
earlier axiomatization contains a total of 858 elements, of which 575 where covered.
Out of these 858 elements, 186 of the 378 axioms were covered; the other elements are,
for example, type and constant definitions, and helper functions. To give the reader an
idea of how this axiomatization is organized: 1) the class of C language features con-
tains 432 elements, containing 212 axioms, of which 84 were covered, and 2) the class
of specification language features contains 426 elements, where 102 of the 166 axioms
were covered. Regarding the latter axiomatization, it contains 896 elements in total, of
which 509 were covered, and only 139 out of 384 axioms were covered.

Before the runs, we had expected that the number of covered elements would stay
roughly the same because features that were added to VCC (indicated by the 38 addi-
tional elements) could not be tested by the old test cases. However, the number declined
significantly from 575 to 509 elements. Investigations reveal that the reason for this is
that axioms and procedures were modified, for example, by removing requirements or

M. Wagner, T. Bormer

109 Technical Report, KIT, 2010-13

by adding predicates. These changes lead to the necessary inclusion of less elements,
which is observed in smaller minimized preludes. Based on the detailed information
from the test runs, it is possible to establish links between the different minimized pre-
ludes required by a test case and the changes made to VCC’s source code and prelude.
The old tests can still be regarded as relevant to testing VCC, however, they proved to
be less adequate to the newer version of VCC. This can be observed in the decline in
the overall coverage from 67.0% to 56.8%.

In subsequent tests, we were sometimes able to construct tests so that the use of
a specific axiom was triggered. When creating such tests, one has to deal with the
complex and not visible interaction between the elements and the dependencies among
themselves. Although, this approach could be used to systematically add tests to the test
suite, it becomes increasingly difficult to cover previously uncovered elements.

5.2 Issues Encountered

During our investigations, we encountered several issues. For example, we discovered
one bug in the axiomatization with regard to the ownership model. Furthermore, we
discovered one case of VCC being more lenient than Microsoft’s C compiler, as it did
not care about a missing semicolon after the declaration of a C structure. Among the
minor issues are the following: we discovered problems with the interaction of VCC’s
command-line parameters, and one problem with VCC’s model viewer showing out-
dated values. Regarding Boogie, we encountered an incompatibility with file names
starting with numbers, as they yielded Boogie identifiers with illegal characters, which
in return caused Boogie to report errors.

6 Conclusions

The way verification environments are currently tested is not very satisfying. Most of
the time, the tools are written by researchers, and as long as those environments are not
actually used for the verification of critical systems, there is no real demand for trust
in these systems. The Verifying C Compiler (VCC) is one of these tools that are being
used for the verification of industrial products. In this paper, we investigated systematic
approaches for the validation of verification systems. Once we had specified what it
means for a verification system to be correct, we were confronted with the generation
and assessment of test cases for VCC.

The input domain of such a system is the result of the manifold combination of ele-
ments from the C programming language and from the language of verification-specific
annotations. We reduced the risk of constructing incorrect test cases by choosing trust-
worthy sources, such as, the official C language standard ISO/IEC 9899:201x, the test
suite of the GNU Compiler Collection, and the test suites of the verification tools Spec#
and Frama-C/Jessie. While the standard offers the highest level of trust, the derivation
of test cases is the most labor-intensive one. Tests adapted from other verification tools
have the potential to offer substantial support to find the annotations needed for the
functional verification. But the number of those tests is relatively small, compared to
those available from the compiler test suite. The latter, however, does not contain any
annotations, which are not easy to come by.

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 110

When we investigated how the individual components of verification systems can
be tested and how the test cases can be assessed, we realized that the common approach
of measuring the percentage of the system’s executed code statements would not take
into account the special features of verification systems. Therefore, we defined axiom-
atization coverage as our domain-specific metric for VCC, in order to assess the test
cases and to observe the impact that the individual elements of the axiomatization have
on the verification process. Concerning the tests we performed, we noticed that VCC’s
own test suite requires only about 60% of the axiomatization. Based on this fact and
on further observations, we draw the following two conclusions: (1) The used part of
the axiomatization seems to correctly reflect the developers’ assumptions about how
the verification methodology is supposed to work, and (2) additional test cases should
be written to achieve a higher coverage. If it is not possible to trigger the use of the
prelude’s element, the importance of this element should be reconsidered.

In the future, we plan to investigate ways of automatically annotating original C
compiler test case files with as many annotations as possible. One way would be to stat-
ically analyze its abstract syntax tree (AST) and then modify it. An abstract syntax tree
is a tree representation of the syntactic structure of the source code, where each node of
the tree stands for a construct occurring in the source code. Once the AST is created, it
can be modified, and then the tree can be unparsed to obtain the refactored source of the
C program. Additionally, we plan to extend the experiments by determining the “regu-
lar code coverage” that is achieved by our set of tests. This will enable us to compare
our coverage approach with those established in the software testing community.

Acknowledgments We thank the anonymous reviewers for their comprehensive and
helpful comments.

References

1. W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation rules for Java
verification against a rewriting semantics. In 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), volume 3835, pages 412–426.
Springer, 2005.

2. P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker, Øystein Haugen, and C. Williams.
Model-Driven Testing: Using the UML Testing Profile. Springer, Secaucus, NJ, USA, 2007.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In 3rd International Symposia on Formal
Methods for Components and Objects (FMCO), volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2005.

4. G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll, G. Puebla,
I. Stark, and E. Vétillard. MOBIUS: Mobility, ubiquity, security. volume 4661 of Lecture
Notes in Computer Science, pages 10–29. Springer, 2006.

5. B. Beckert, T. Bormer, and V. Klebanov. On essential program annotations and completeness
of verifying compilers, 2009. unpublished.

6. B. Beckert and V. Klebanov. Must program verification systems and calculi be verified? In
3rd International Verification Workshop (VERIFY), Workshop at Federated Logic Confer-
ences (FLoC), pages 34–41, 2006.

M. Wagner, T. Bormer

111 Technical Report, KIT, 2010-13

7. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

8. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A reachability predicate for ana-
lyzing low-level software. In 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 4424 of Lecture Notes in Computer
Science, pages 19–33. Springer, 2007.

9. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for verifying concurrent C. In Theorem Proving in
Higher Order Logics (TPHOLs), volume 5674 of Lecture Notes in Computer Science, pages
23–42. Springer, 2009.

10. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global invariants in
concurrent programs. In Computer Aided Verification (CAV), Lecture Notes in Computer
Science. Springer, 2010. To appear.

11. D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. Lecture Notes in
Computer Science, 3362:108–128, 2005.

12. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis (TACAS), volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008.

13. J.-C. Filliâtre and C. Marché. The why/krakatoa/caduceus platform for deductive program
verification. In Computer Aided Verification, 19th International Conference (CAV), volume
4590 of Lecture Notes in Computer Science, pages 173–177. Springer, 2007.

14. B. Jacobs, J. Kiniry, and M. Warnier. Java program verification challenges. Lecture Notes in
Computer Science, 2852:202–219, 2003.

15. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective.
Lecture Notes in Computer Science, 3233:134–153, 2004.

16. D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and implications
for software testing. IEEE Transactions on Software Engineering, 30(6):418–421, 2004.

17. K. R. M. Leino. This is Boogie 2, 2008. Working draft 24 June 2008.
18. K. R. M. Leino and R. Monahan. Automatic verification of textbook programs that use

comprehensions. In Workshop on Formal Techniques for Java-like Programs (FTfJP), 2007.
19. T. Littlefair. An Investigation into the Use of Software Code Metrics in the Industrial Soft-

ware Development Environment. PhD thesis, Edith Cowan University Mount Lawley, 2001.
20. V. Nair, D. James, W. Ehrlich, and J. Zevallos. A statistical assessment of some software test-

ing strategies and application of experimental design techniques. Statistica Sinica, 8(1):165–
184, 1998.

21. D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computation
Practice and Experience, 13(13):1173–1214, 2001.

22. J. von Wright. The formal verification of a proof checker. SRI internal report, 1994.
23. D. R. Wallace and D. R. Kuhn. Failure modes in medical device software: An analysis of

15 years of recall data. International Journal of Reliability, Quality, and Safety Engineering,
8(4), 2001.

24. E. J. Weyuker. Evaluating software complexity measures. IEEE Transactions on Software
Engineering, 14(9):1357–1365, 1988.

Towards Testing a Verifying Compiler

Technical Report, KIT, 2010-13 112

Dynamic Frames in Java Dynamic Logic

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{pschmitt,mulbrich,bweiss}@ira.uka.de

Abstract. In this paper we present a realisation of the concept of dy-
namic frames in a dynamic logic for verifying Java programs. This is
achieved by treating sets of heap locations as first class citizens in the
logic. Syntax and formal semantics of the logic are presented, along with
sound proof rules for modularly reasoning about method calls and heap
dependent symbols using specification contracts.

1 Introduction

To successfully support modular verification of object-oriented software, it is
essential to be able to define relevant portions of memory and reason about
the effects of method execution on them. Portions of memory, i.e., sets of heap
locations, are called frames in this context or—since they themselves are subject
to change during program execution—dynamic frames. The theoretical concept
of dynamic frames was introduced in [7] and first implemented in [21] and later
in [10]. Specification with dynamic frames is related to the use of data groups
[11], separation logic [16, 20], and to approaches based on ownership types [1, 15].

In this paper we investigate the integration of the dynamic frames specifi-
cation style into the verification of sequential Java programs based on dynamic
logic [5]. In many verification methods, the task of verifying that a property ϕ
holds after execution of a program p is solved by successively computing weakest
preconditions [4] in first-order predicate logic of parts of the program starting
from its end. In dynamic logic, the weakest precondition can be directly written,
thanks to the modal operator [·], as the formula [p]ϕ. Dynamic logic can be aug-
mented with a symbolic representation of state changes called updates [18]. This
extension allows giving inference rules for dynamic logic that compute (first-
order) weakest preconditions by performing a forward symbolic execution of the
program p starting from the beginning. The proof tree that unfolds by successive
applications of these rules will eventually contain only first-order proof subgoals.
This form of verification is the foundation of the KeY system [2]. Dynamic logic
is also used for Java verification in the KIV system [22].

An issue in program verification to be addressed no matter how proof obli-
gations at the program level are transformed to first-order proof goals is the
representation of the heap. In a closed-world setting, where the entire program
is known at verification time, an explicit heap representation can be dispensed

113 Technical Report, KIT, 2010-13

with, saving some complexity. This was e.g. realised in the KeY system. In a
modular setting, where one strives for abstract specification of interfaces and
local reasoning, the situation is different: here, reasoning about which frame is
changed by a program, or about which frame the execution of a program de-
pends on, becomes crucial. In this setting, the flexibility provided by an explicit
representation of the heap seems to offer decisive advantages.

In Sect. 2 we motivate the use of dynamic frames with a simple example. The
dynamic logic to be presented will explicitly represent dynamic frames as sets of
locations. Syntax and semantics and some exemplary proof rules of this logic are
given in Sect. 3. Contract-based proof obligations and proof rules for verifying
dynamic frames specifications are defined in Sect. 4. Conclusions in Sect. 5 wrap
up the paper.

2 Motivating Example

As an example, we consider the Java program shown in Fig. 1. The intention
behind the List interface is that objects of this type represent lists of objects.
The interface provides methods for querying the size of the list, retrieving an
element out of the list at a given index, and appending an element to the end
of the list. Class ArrayList implements the interface with the help of an array,
and class Client is an artificial snippet of client code using the interface.

Our goal is to specify this program following the design by contract paradigm
[14]. That is, we are interested in providing pre- and postconditions for the
methods of the program, where we refer to a pair of a pre- and a postcondition
as a method contract. Furthermore, the goal is to verify the correctness of these
contracts using dynamic logic, and to do so in a modular (or local) fashion: the
verification of a given method should not make use of implementational details
that are not visible in this method. For example, when verifying m in Client,

Java

interface List { class ArrayList implements List {

int size(); private int n = 0;

Object get(int i); private Object[] a = new Object[10];

void add(Object o); public int size() {

} return n;

class Client { }

public int x; public Object get(int i) {

Object m(List l) { if(0 <= i && i < n) return a[i];

x++; else return null;

return l.get(0); }

} //method "add" omitted

} }

Java

Fig. 1. Example program

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 114

we do not want to make use of the fact that there is only one implementation of
List, nor of the internals of this particular implementation. Instead, reasoning
about the dynamically bound call to get should be based only on the contract
for get in the interface. For subtypes of the interface, we only require that all
overriding method bodies satisfy the contracts given at the level of the interface;
this means that we enforce behavioural subtyping [12].

A main difficulty in specifying an interface such as List is that we do not have
access to any implementational data structures for writing our specifications.
The general solution is to use data abstraction [6]: we specify the interface in
a more abstract fashion, using either some form of abstract fields (sometimes
called model fields [3]), or side-effect free methods present in the program. Here,
we choose to specify get with the help of the size method, and with the help
of an abstract Boolean field inv :

pre: this.inv ∧ 0 ≤ i ∧ i < this.size() post : res 6 .= null

We use a dot to distinguish some syntactic operators of the logic (such as .=)
from meta-level operators (such as =). Java’s == operator translates to .= in the
logic. The identifier res refers to the method’s return value.

In class ArrayList, the meaning of the symbol size is defined by the method
body for size. Similarly, we need to give a definition for the abstract field inv ,
which we do with the following axiom:

exactInstanceArrayList(this)

→ (
this.inv ↔ this.a 6 .= null ∧ this.n < this.a.length (1)

∧ ∀Int i; (0 ≤ i ∧ i < this.n→ this.a[i] 6 .= null)
)

For a type A and an expression e, the formula exactInstanceA(e) evaluates to
true in a state if the dynamic type of e is A. Intuitively, inv represents an “object
invariant” for List, i.e., a consistency property on its objects, where the exact
nature of this property is defined privately in subclasses of the interface. With
the definition for ArrayList in (1), the implementation of get in ArrayList
satisfies the method contract for get.

For method m in Client, we give the following method contract:

pre: l 6 .= null ∧ l.inv ∧ 0 < l.size() post : res 6 .= null

Can we verify that m complies with this contract, provided that all implementa-
tions of get satisfy the contract for get? Unfortunately, the answer is no. The
problem is that even though the precondition guarantees properties about the
initial values of l.inv and l.size(), this does not imply that these properties
still hold when get is called at the end of m, because of the intervening change
to x. This is an instance of a general problem when using data abstraction in
specifications [8, Challenge 3]: without further measures, any change to the heap
can affect the value of an abstract field or of a method in an unknown way.

As a solution, we introduce dependency contracts (also known as depends
clauses [9]) into our specifications. A dependency contract restricts the set of

P. H. Schmitt, M. Ulbrich, B. Weiss

115 Technical Report, KIT, 2010-13

memory locations that are allowed to influence the value of an abstract field or
of a method, provided that some precondition holds. An example for a correct
dependency contract for method size in ArrayList is one which states that the
method result is allowed to depend only on {(this, n)}, where the expression
{(this, n)} refers to the set consisting of the single memory location given by
the field n for the object represented by the expression this.

How can we express a useful dependency contract for inv or size in List,
even though here we do not have access to the locations implementing the list?
We see that the need for data abstraction also extends to location sets. Our
solution is to use dynamic frames [7], i.e., abstract fields that evaluate to sets
of memory locations. For the specification of List, we declare a dynamic frame
locs. In ArrayList, we define locs via the following axiom:

exactInstanceArrayList(this) → this.locs .= (this.* ∪̇ this.a.*) (2)

The expression o.* refers to the set of all fields of the object represented by the
expression o. If o has an array type, then o.* denotes all components of the array.

We use the dynamic frame locs to give dependency contracts for both inv
and size: both are supposed to depend at most on the locations in locs. These
dependency contracts are satisfied in ArrayList, because both this.inv (as
defined by (1)) and this.size() (as defined by the method body in Fig. 1)
read only locations that are members of this.locs as defined by (2).

Finally, we modify the precondition of m in Client to be as follows:

pre: l 6 .= null ∧ l.inv ∧ 0 < l.size() ∧ (this, x) /̇∈ l.locs

Now, when reasoning about the correctness of m, we know that the location
(this, x) is not a member of the (unknown) set of locations l.locs on which l.inv
and l.size() may depend. Thus, changing the value of this location cannot have
an effect on the values of l.inv and l.size(), and so l.inv ∧ 0 < l.size()
must still be true when method get is called at the end of m. Together with the
method contract for get, this guarantees that the return value of get is different
from null, and thus that the postcondition of m is satisfied.

In general, we also need modifies clauses in method contracts, which fix a
set of locations that may at most be modified by a method, provided that the
precondition of the contract holds upon method entry. In the example, get and
size are supposed to not have side effects, so we can use modifies clauses of ∅̇
(an empty set of locations). For add, this.locs can serve as a modifies clause.

Also, as the value of the dynamic frame this.locs is itself state-dependent,
specifications of the behaviour of locs itself are needed in order to make the
specification fully useful for modular verification. We can give a dependency
contract for this.locs stating that its value depends at most on the locations in
this.locs itself; this is satisfied by the definition (2), because the only location it
reads is (this, a), which itself is defined to be a member of this.locs. We may
also want to specify (via method contracts) that after the construction of an
ArrayList object, the set this.locs contains only freshly allocated locations,
and that method add can add to the set only freshly allocated locations (the
latter is sometimes called the “swinging pivots property” [11, 7]).

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 116

3 Java Dynamic Logic With an Explicit Heap Model

In this section, we present a dynamic logic and a sequent calculus for the modular
verification of Java source code wrt. dynamic frames style specifications. It is
a variation of the dynamic logic underlying the KeY verification tool [2]. The
main difference is in the logical modelling of heap memory. For complete formal
definitions please see the technical report [19], which accompanies this paper.

3.1 Syntax and Semantics

The syntax of the logic is based on a signature Σ, which comprises a set T of
types, a partial order v called the subtype relation, and disjoint sets of (logical)
variables V, program variables PV, function symbols F , and predicate symbols P.
All variables and symbols are typed. We use the notation x :A to indicate that
the type of x is A, the notation f :A1, . . . , An → B to indicate that the func-
tion symbol f maps arguments of types A1, . . . , An to type B, and the notation
p :A1, . . . , An to indicate that the predicate symbol p represents a relation on the
types A1, . . . , An. The signature Σ is specific to a Java program to be verified.
All types of this program also appear as types in T , and all local variables appear
as program variables in PV. In contrast to program variables, logical variables
may not appear in programs, but may be quantified. The type Any ∈ T is a
supertype of all types of the program.

The set FmaΣ of formulas and the set TrmΣ of terms are defined mostly as
in classical typed first-order logic. For any type A ∈ T , we have the set TrmA

Σ ⊆
TrmΣ of terms of type A. In addition to the operators of first-order logic, Java
dynamic logic includes modal operators [p] and 〈p〉 for every executable Java
program fragment p. If ϕ ∈ FmaΣ is a formula, then both [p]ϕ and 〈p〉ϕ are
also formulas. Our version of dynamic logic also includes another kind of modal
operator, called updates [18]. An update is denoted as a1 := t1 ‖ . . . ‖ an := tn,
where a1, . . . , an ∈ PV, and where t1, . . . , tn are terms such that the type of ti is
a subtype of the type of ai. The set of updates is called UpdΣ . If u is an update
and t is a term or formula, then {u}t is also a term or formula, respectively.

The semantics of a term or formula is given by an interpretation which maps
all function symbols to functions and all predicate symbols to relations, and by a
state which maps all program variables to values. First-order terms and formulas
are evaluated as usual. The formula [p]ϕ holds in a state s if the execution of
p started in s either does not terminate, or terminates in a state s′ such that
ϕ holds in s′ (partial correctness). The formula 〈p〉ϕ holds if [p]ϕ holds, and
if additionally p does indeed terminate (total correctness). Like a program p,
an update u changes the state: executing the update a1 := t1 ‖ . . . ‖ an := tn
in a state s leads to an updated state s′ which is identical to s, except that
the program variables ai have been assigned the values of the terms ti in paral-
lel. Evaluating {u}t in s is the same as evaluating t in the updated state s′. A
formula is called logically valid if it holds for all interpretations and all states.

P. H. Schmitt, M. Ulbrich, B. Weiss

117 Technical Report, KIT, 2010-13

3.2 Sequent Calculus

The calculus we use to reason about logical validity of formulas is a sequent
calculus. A proof in the sequent calculus is a tree of so-called sequents Γ ⇒ ∆, in
which Γ (called the antecedent) and ∆ (the succedent) are finite sets of formulas.
A sequent Γ ⇒ ∆ has the same semantic truth value as the formula

∧
Γ → ∨

∆.
An inference rule of the sequent calculus has a number of sequents as its

premisses and a single sequent as its conclusion; it is sound if logical validity of
all premisses implies logical validity of the conclusion. In addition to inference
rules, our calculus contains rewrite rules, which allow rewriting a term or formula
at an arbitrary position in a sequent. A rewrite rule is sound if the original and
the rewritten term or formula are equal resp. logically equivalent. We formulate
both sequent and rewrite rules schematically to achieve a finite representation
of the calculus. For example, in the following two (sound) rule schemata, the
schema formulas ϕ and ψ can be instantiated with arbitrary formulas, and Γ
and ∆ with arbitrary sets of formulas:

(andRight)
Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆ (andIdem) ψ ∧ ψ ψ

Starting with the sequent to prove as root, a proof tree is constructed by
applying sequent and rewrite rules. For the application of a sequent rule to a
leaf in the proof tree, this sequent must be identical to the conclusion of the
rule. The rule’s premisses are then added as new children to the former leaf. A
rewrite rule t1 t2 can be applied to a leaf by replacing one occurrence of t1
in its sequent by t2. Provided that all applied rules are sound, it is guaranteed
that at any time during this process, validity of all the leaves implies validity of
the root sequent. If one arrives at a tree whose leaves are all obviously valid, one
has proven the validity of the original proof obligation.

3.3 Heap Model

In contrast to [2, 18], where the Java heap is modelled via a non-rigid function
symbol f :A → B for every Java field f of type B declared in class A, here we
follow [17, 22, 1, 21] in modelling the heap using the theory of arrays [13]. The
fields of our Java program are represented as constant symbols of a type Field ∈
T , which are axiomatised to have distinct values. Heaps now occur “explicitly” in
formulas, as terms of a type Heap ∈ T . The values of this type are arrays indexed
by locations, i.e., by pairs of (Object , Field) values. Reading from and writing to a
heap is done with the help of the function symbols selectA : Heap,Object ,Field →
A and store : Heap,Object ,Field ,Any → Heap. These are standard, except that
for convenience we use a separate symbol selectA for every type A ∈ T , which
implicitly casts the retrieved value to a desired type A. A global program variable
heap : Heap ∈ PV holds the current heap of the program. We will in the following
often use the more concise notation o.f instead of selectA(heap, o, f).

The axiom of the theory of arrays manifests itself in the rewrite rule selectOf-
Store depicted in Fig. 2: The value selectA(store(h, o, f, t), o′, f ′) of a location

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 118

selectA(store(h, o, f, t), o′, f ′) (selectOfStore)

if (o
.
= o′ ∧ f

.
= f ′)then(castA(t))else(selectA(h, o′, f ′))

selectA(anon(h, s, h′), o, f) (selectOfAnon)

if
(
((o, f) ∈̇ s ∧ f 6 .= created) ∨ (o, f) ∈̇ freshLocs(h)

)
then(selectA(h′, o, f))
else(selectA(h, o, f))

castA(t) t for t ∈ TrmA′
Σ and A′ v A (cast)

(o, f) ∈̇ freshLocs(h) (inFreshLocs)

o 6 .= null ∧ selectBoolean(h, o, created)
.
= FALSE

[a = t; . . .]ϕ {a := t}[. . .]ϕ (assignLocal)

[o.f = t; . . .]ϕ {heap := store(heap, o, f, t)}[. . .]ϕ (assignField)

Fig. 2. A selection of rewrite rules for heap modifications and location sets

(o, f) retrieved from a modified heap store(h, o, f, t) depends on whether the
retrieved location is the previously modified one, i.e., whether (o′, f ′) .= (o, f)
holds. If so, the assigned value t is read, otherwise the retrieval is delegated to
the embedded heap h as selectA(h, o′, f ′). The type coercion operation castA(t)
can later be removed using the rule cast if the heap has been used consistently.

In our logic, all states share a common semantic domain (this is known as the
constant domain assumption). Therefore, we need a means to explicitly distin-
guish between already-created and not-yet-created objects in the sense of Java.
We use an implicit (“ghost”) field created : Field for this purpose: we consider
an object o to be created in a state if and only if o.created evaluates to true in
this state. Allocating an object via Java’s new operator implicitly sets its created
field to true.

Dynamic frames are supported via a type LocSet ∈ T . Terms of type LocSet
evaluate to sets of memory locations. Our signatures contain the symbols ∅̇, ∪̇,
∩̇, \̇, ∈̇, ⊆̇, disjoint and allLocs, which are pre-defined to have their expected
set-theoretical semantics. The function symbol freshLocs : Heap → LocSet yields
for every heap the set of locations (o, f) for which the object o is not yet created
in this heap. The corresponding rule inFreshLocs is shown in Fig. 2.

When dispatching a method call in a proof with the help of a contract
for the called method (Sect. 4), we use a special heap modification function
anon : Heap,LocSet ,Heap → Heap. Roughly, the heap anon(h, s, h′) is identical
to h′ in the locations of s, and it is identical to the “original” heap h in all
other locations. The exact semantics of anon is described by the rewrite rule
selectOfAnon in Fig. 2: independently of the set s, going from h to anon(h, s, h′)
for some unknown h′ (a process which we call an “anonymisation” of the heap h
wrt. the set s) never leads to deallocating existing objects, but always implicitly
allows for the allocation of new objects. This resembles the behaviour of method
calls in Java.

P. H. Schmitt, M. Ulbrich, B. Weiss

119 Technical Report, KIT, 2010-13

We also introduce a unary predicate symbol wellFormed : Heap, which can
be axiomatised as

∀Heap h;
(
wellFormed(h) ↔ ∀Object o, p;∀Field f ;

(selectAny(h, o, f) .= p→ (p .= null ∨ selectBoolean(h, p, created) .= TRUE))
)
,

i.e., a heap h is considered well-formed if any object p which is referenced by
some location (o, f) is either the null object or an object which has already
been created. The semantics of Java guarantees that wellFormed(heap) holds
for all states occurring during the execution of a Java program.

3.4 Symbolic Execution

A central component of our calculus is a set of rule schemata that allow us to
transform formulas with program modalities and updates into formulas without.
This process is called symbolic execution. Programs are systematically processed
in a forward manner: whenever we encounter a formula [p;q]ϕ, we handle the
statement p first, and leave the formula [q]ϕ to be treated later. This forward
treatment of programs is based on the concept of updates. There is also a set
of rules which handle the simplification and application of updates to terms and
formulas. The theory of rule-based update treatment has been elaborated in [18].

Two rules for symbolic execution, namely assignLocal and assignField, are
shown in Fig. 2. The corresponding rules for the modality 〈·〉 read accordingly.
Both rules are used to execute assignment statements, either for a local variable
a or for a field reference o.f . Let t be a side-effect free Java expression which
(after some syntactic adaptions like == to .=, && to ∧, etc.) can be read as a term
in our logic. An assignment statement a = t; which assigns to a the value of the
expression t, describes then the same state modification as the update a := t.
This is captured in the symbolic execution rule assignLocal. An assignment to a
location o.f is treated differently: it corresponds to a modification of the global
program variable heap. We do not show the rules for other language features here,
as they are numerous and largely orthogonal to the focus of this paper. We also
ignore Java exceptions throughout the paper, which allows for a more readable
presentation of rules and proof obligations. For a more complete treatment of
Java language features, please refer to [2].

Fig. 3 depicts a small example proof. Therein, o ∈ PV is a local variable of a
reference type, f : Field ∈ F is a constant symbol, and a : Int ∈ PV is a local vari-
able. Symbolic execution first converts the two Java assignments into correspond-
ing updates. The updates are then simplified into a single update that performs
both state changes in parallel. The left sub-update heap := store(heap, o, f) can
be simplified away, because the variable heap does not occur in the scope of
the update any more, and thus its value is irrelevant. The rule selectOfStore is
applied inside the remaining update, followed by an obvious simplification of the
resulting if-then-else-term. The type cast operator can be removed with the cast
rule, because 0 is of type Int . Finally, the update is applied to the sub-formula
a
.= 0 as a substitution, resulting in an obviously valid formula. Hence, we have

proven that the original formula is valid as well.

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 120

[o.f = 0; a = o.f;](a
.
= 0)

assignField {heap := store(heap, o, f, 0)}[a = o.f;](a
.
= 0)

assignLocal {heap := store(heap, o, f, 0)}{a := select Int(heap, o, f)}(a .
= 0)

upd. simpl. {heap := store(heap, o, f, 0) ‖ a := select Int(store(heap, o, f, 0), o, f)}(a .
= 0)

upd. simpl. {a := select Int(store(heap, o, f, 0), o, f)}(a .
= 0)

selectOfStore {a := if (o
.
= o ∧ f

.
= f)then(cast Int(0))else(select Int(heap, o, f))}(a .

= 0)
simpl. {a := cast Int(0)}(a .

= 0)
cast {a := 0}(a .

= 0)
upd. appl. 0

.
= 0

Fig. 3. Example proof

4 Contracts and Proof Obligations

Both abstract fields, such as inv and locs in Sect. 2, and side-effect free methods
such as size are represented in the logic as so-called observer symbols.

Definition 1 (Observer symbols). An observer symbol for type A with ar-
gument types B1, . . . , Bn is either a function symbol obs : Heap, A,B1, . . . , Bn →
B ∈ F or a predicate symbol obs : Heap, A,B1, . . . , Bn ∈ P, where A v Object.

As syntactic sugar, we sometimes write o.obs(p1, . . . , pn) to denote the term or
formula obs(heap, o, p1, . . . , pn). This (deliberately) resembles the notation o.f
for field access terms selectA(heap, o, f). Nevertheless, an observer symbol does
not give rise to a memory location; instead, it “observes” (i.e., it depends on) the
values of memory locations. For an observer symbol m representing a side-effect
free method without parameters, we sometimes write o.m() instead of o.m.

We have seen in Sect. 2 that the value of abstract fields is defined via axioms
such as (1) and (2). Similarly, observer symbols representing methods are defined
via axioms such as the following (where this and r are fresh program variables):

exactInstanceArrayList(this) (3)

→ ∀Int i;
(
this.size()

.= i ↔ 〈r = this.size();〉r .= i
)

The axiom uses the modal operator 〈·〉 to connect the observer symbol size
with a call to method size in class ArrayList.

Axioms (1), (2), (3) are supposed to hold for all values of the program vari-
ables this and heap. The corresponding universally quantified versions of the
axioms can be used as assumptions in proofs for the correctness of ArrayList.
We could also allow using them in other proofs, but this is undesirable for rea-
sons of modularity: the axioms are implementational secrets of ArrayList, and
should not be exposed to other classes.

Besides observer symbols and axioms, a specification in our setting consists
of a set of method contracts constraining the behaviour of methods, and of a

P. H. Schmitt, M. Ulbrich, B. Weiss

121 Technical Report, KIT, 2010-13

set of dependency contracts constraining the dependencies of observer symbols.
Both kinds of contract give rise to proof obligations, i.e., formulas whose validity
must be proven in order for the program to be considered correct. On the other
hand, both kinds of contract can also be used as assumptions in the proofs
of other contracts, via special rules. Subsect. 4.1 defines method contracts, the
corresponding proof obligation, and the corresponding rule; Subsect. 4.2 does the
same for dependency contracts. Note that for simplicity of presentation, we omit
the treatment of void methods, static methods, static fields, and constructors.

4.1 Method Contracts

Definition 2 (Method contracts). A method contract mct is a tuple

mct =
(
m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ

)
where m is a Java method; where this :A ∈ PV such that m is defined for receiver
objects of type A; where p1, . . . , pn, res ∈ PV such that their types correspond
to the declared signature of m; where hPre : Heap ∈ PV; and where pre, post ∈
FmaΣ, mod ∈ TrmLocSet

Σ , and τ ∈ {partial , total}.
The program variables this and p1, . . . , pn may be used in the precondition pre,
in the postcondition post and in the modifies clause mod to represent the receiver
object of m and the arguments to m, respectively. The variables res and hPre can
be used in post to refer to the method’s return value and to the value of heap
in the pre-state. The “termination marker” τ indicates whether the contract
demands partial or total correctness.

Definition 3 (Proof obligation for method contracts). Given a method
contract mct =

(
m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ

)
with this :A,

and given a type B v A, the proof obligation CorrectMethodContract(mct , B) ∈
FmaΣ is defined as

pre ∧ reachableState ∧ exactInstanceB(this)
→ {hPre := heap}Jres = this.m(p1, . . . , pn);K(post ∧ frame),

where J·K stands for [·] if τ = partial and for 〈·〉 if τ = total , and where

– reachableState is the formula

wellFormed(heap) ∧ this 6 .= null ∧ this.created .= TRUE

∧
∧

i∈{1,...,n}, pi:A for some AvObject

(pi
.= null ∨ pi.created .= TRUE)

– frame is the formula

∀Object o;∀Field f ;
(
(o, f) ∈̇ {heap := hPre}(mod ∪̇ freshLocs(heap)

)
∨ o.f .= {heap := hPre}o.f)

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 122

The reachableState property is guaranteed by Java itself: the heap is well-formed,
the receiver object is created, and all objects passed as arguments are either
null or created. The formula frame is the frame condition generated from the
modifies clause mod : after executing m, only locations in mod (interpreted in the
pre-state) and “fresh” locations may have changed compared to the pre-state.

For method get with pre and post from Sect. 2, τ = total , and B =
ArrayList, we get the following instance of CorrectMethodContract :

this.inv ∧ 0 ≤ i ∧ i < this.size() ∧ wellFormed(heap)
∧ this 6 .= null ∧ this.created .= TRUE ∧ exactInstanceArrayList(this)
→ {hPre := heap}〈res = this.get(i);〉(res 6 .= null ∧ frame)

where frame with a modifies clause mod = ∅̇ states that only fresh locations
may have been changed by m. The formula is valid under the assumption of (the
universally quantified versions of) axioms (1) and (3). When proving this, one
of the first steps is to inline the body of method get, which is possible because
we know the exact type of this and, hence, do not have to consider dynamic
dispatch.

The following rule allows using a method contract as an assumption:

Definition 4 (Rule useMethodContract).

Γ ⇒ {u}{w}(pre ∧ reachableState), ∆
Γ ⇒ {u}{w}{hPre := heap}{v}(post ∧ reachableState ′ → J. . .Kϕ), ∆

Γ ⇒ {u}Jr = o.m(p′1, . . . , p
′
n); . . .Kϕ, ∆

where:

– o ∈ TrmA
Σ for some A ∈ T such that there is a method contract

mct = (m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ)

where this :A; where τ = total if the modality J·K is 〈·〉, and where τ does
not matter otherwise; and where this, p1, . . . , pn, res and hPre do not occur
in the formula Jr = o.m(p′1, . . . , p

′
n); . . .Kϕ

– p′1, . . . , p
′
n are terms

– reachableState ∈ FmaΣ is as in Def. 3, and reachableState ′ is the formula

wellFormed(heap) ∧ (res .= null ∨ res.created .= TRUE)

if res :B for some B v Object, and the formula wellFormed(heap) otherwise
– v =

(
heap := anon(heap,mod , h) ‖ r := r′ ‖ res := r′

)
– w =

(
this := o ‖ p1 := p′1 ‖ . . . ‖ pn := p′n

)
– h : Heap ∈ F and r′ ∈ F are fresh symbols, i.e., they do not yet occur

anywhere in the proof when applying the rule

Like reachableState, reachableState ′ is a property guaranteed by Java. The up-
date v “anonymises” the locations that may be changed by the call to m, namely

P. H. Schmitt, M. Ulbrich, B. Weiss

123 Technical Report, KIT, 2010-13

the members of the modifies clause mod , by setting them to unknown values with
the help of the new symbol h. It also sets the result variable r, and its counter-
part res, to an unknown value r′. The update w instantiates the variables used
in the contract with the corresponding terms in the method call.

Instead of using anon, we could also anonymise (or “havoc” [10]) the entire
heap, and use a framing formula like frame in Def. 3 to express that some
locations do not change. The advantage of our approach is that it avoids the
universal quantifiers of frame in applications of useMethodContract.

The useMethodContract rule is sound, provided that for all subtypes B v A of
the static receiver type A, the proof obligation CorrectMethodContract(mct , B)
is logically valid. A proof of this theorem is contained in [19]. We forbid “circular”
applications of the rule, such as applying the rule on a call to the method which
is itself being verified in the current proof. An extension to support recursion is
possible, but beyond the scope of this paper.

4.2 Dependency Contracts

Definition 5 (Dependency contracts). A dependency contract is a tuple

depct = (obs, this, (p1, . . . , pn), pre, dep)

where obs is an observer symbol for type A′ with argument sorts B1, . . . , Bn;
where this :A ∈ PV such that A v A′; where p1 :B1, . . . , pn :Bn ∈ PV; and
where pre ∈ FmaΣ, dep ∈ TrmLocSet

Σ .

The program variables this and p1, . . . , pn can be used in the precondition pre
and the depends clause dep to stand for the receiver object and the parameters
of obs, respectively. An example for a dependency contract in the context of the
program of Sect. 2 is (inv , this, (), this.inv , this.locs), which demands that
the value of this.inv should depend only on locations in this.locs, provided
that this.inv is true at the time.

Definition 6 (Proof obligation for dependency contracts). For a depen-
dency contract depct = (obs, this, (p1, . . . , pn), pre, dep) with this : A, and for a
type B v A, the proof obligation CorrectDependencyContract(depct , B) ∈ FmaΣ
is defined as follows:

pre ∧ reachableState ∧ exactInstanceB(this)
→ this.obs(p1, . . . , pn)

≡ {heap := anon(heap, allLocs \̇ dep, h)}(this.obs(p1, . . . , pn)
)

where reachableState ∈ FmaΣ is as in Def. 3, where h : Heap ∈ F is fresh, and
where ≡ stands for .= if obs ∈ F and for ↔ if obs ∈ P.

The proof obligation formalises the notion of obs “depending” only on the loca-
tions in dep: if we change all locations except for dep in an unknown way, then

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 124

this must not affect obs. For the dependency contract for inv above, and for
B = ArrayList, we get the following instance of CorrectDependencyContract :

this.inv ∧ wellFormed(heap) ∧ this 6 .= null ∧ this.created .= TRUE
∧ exactInstanceArrayList(this)

→ (
this.inv ↔ {heap := anon(heap, allLocs \̇ this.locs, h)}(this.inv)

)
The formula is valid under the assumption of axioms (1) and (2), because all
locations read by (1) are defined to be a part of this.locs by (2). Analogously, (3)
defines this.size() such that it also depends only on the locations in this.locs
as defined by (2).

Definition 7 (Rule useDependencyContract).

Γ, guard → equal ⇒ ∆
Γ ⇒ ∆

where:

– the term or formula obs(hnew , o, p′1, . . . , p
′
n) occurs in Γ or ∆, where hnew =

f1(f2(. . . (fm(hbase , . . .)))) with f1, . . . , fm ∈ {store, anon}, hbase ∈ TrmHeap
Σ

– o ∈ TrmA
Σ for some A ∈ T such that there is a dependency contract depct =

(obs, this, (p1, . . . , pn), pre, dep), where this :A, and where both this and
p1, . . . , pn do not occur in Γ or ∆

– hPre : Heap ∈ PV is fresh, mod = allLocs \̇dep
– reachableState, frame ∈ FmaΣ are as in Def. 3, w ∈ UpdΣ is as in Def. 4
– noDeallocs ∈ FmaΣ is the formula

freshLocs(heap) ⊆̇ freshLocs(hPre)
∧ null.created .= {heap := hPre}null.created

– guard is the formula

{w}({heap := hbase}(pre ∧ reachableState)

∧ {hPre := hbase ‖ heap := hnew}(frame ∧ noDeallocs)
)

– equal is the formula obs(hnew , o, p′1, . . . , p
′
n) ≡ obs(hbase , o, p′1, . . . , p

′
n),

where ≡ stands for .= if obs ∈ F and for ↔ if obs ∈ P
The useDependencyContract rule adds an assumption guard → equal to the se-
quent, which relates the value of obs in the heaps hbase and hnew . Property
noDeallocs holds for all heap changes occurring in Java programs, where ob-
jects can be created but this process cannot be undone (we do not consider
garbage collection). Property frame expresses that the locations in dep have not
changed when going from hbase to hnew . If guard holds, then the dependency
contract guarantees that obs has the same value for both heaps. The rule is
sound if for all subtypes B v A of the static receiver type A the proof obligation

P. H. Schmitt, M. Ulbrich, B. Weiss

125 Technical Report, KIT, 2010-13

CorrectDependencyContract(depct , B) is logically valid; this is proven in [19].
Like for method contracts, we do not allow “circular” applications of the rule.

Automatic application of this rule is not as straightforward as for useMethod-
Contract, because the rule is nondeterministic in the choice of hbase , and because
it can be applied repeatedly, which could lead to non-termination of automatic
proof search. However, we can avoid non-termination by avoiding duplicate ap-
plications of the rule for the same pair of heap terms. To avoid a finite, but large
number of “unsuccessful” applications where guard cannot be proven, a strategy
that seems to work well in practice is to apply the rule only for choices of hbase

for which obs(hbase , o, p′1, . . . , p
′
n) already occurs somewhere in the sequent.

We conclude our treatment of dependency contracts by returning to the ex-
ample of verifying method m from Sect. 2. The precondition of m guarantees that
the invariant of l holds initially, i.e., that inv(heap, l) is true. To establish the
precondition of the method call l.get(0) in the body of m, we need to establish
that inv(store(heap, this, x, t), l) also holds (for some term t). Modularity de-
ters us from using (1) to deduce this. Instead, we apply useDependencyContract,
with obs = inv and hbase = heap. We get the following instantiation for guard
(already slightly simplified):

inv(heap, l) ∧ wellFormed(heap) ∧ l 6 .= null ∧ l.created .= TRUE

∧ ∀Object o;∀Field f ;
(
(o, f) ∈̇ ((allLocs \̇ locs(heap, l)) ∪̇ freshLocs(heap)

)
∨ selectAny(store(heap, this, x, t), o, f)
.= selectAny(heap, o, f)

) ∧ noDeallocs

As the only location changed between the two heaps is (this, x), and as the
precondition of m guarantees that (this, x) /̇∈ locs(heap, l) holds, we can prove
that the instantiation of guard is satisfied. This allows us to use the instantia-
tion of equal , namely inv(store(heap, this, x, t), l)↔ inv(heap, l), to prove that
inv(store(heap, this, x, t), l) holds. After an analogous derivation about the de-
pendencies of size, we can establish that the precondition of get holds, and then
conclude with the help of useMethodContract that the postcondition of m holds.

5 Conclusions

We have presented an extension of Harel’s dynamic logic from [5] that includes
explicit representations of sets of heap locations and we have demonstrated how
this logic can be used to support reasoning about dynamic frames style specifica-
tions. We have focused on the details of the logic and completely ignored issues
of the specification interface and the implementation of the generation of proof
obligations. Suffice it to say here that the whole approach has been implemented
in a variant of the KeY system1 and successfully tested on some simple examples.
The implemented system in particular comprises an extension and modification
of the Java Modeling Language, JML, for dynamic frames style specifications
using model fields.
1 available at http://i12www.ira.uka.de/~bweiss/keyheap/

Dynamic Frames in Java Dynamic Logic

Technical Report, KIT, 2010-13 126

References

1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology (JOT),
3(6):27–56, 2004.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

3. Y. Cheon, G. T. Leavens, M. Sitaraman, and S. H. Edwards. Model variables:
cleanly supporting abstraction in design by contract. Software—Practice and Ex-
perience, 35(6):583–599, 2005.

4. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, 1975.

5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
6. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,

1:271–281, 1972.
7. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing

without restrictions. In FM 2006, LNCS 4085, pages 268–283. Springer, 2006.
8. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification

challenges for sequential object-oriented programs. Formal Aspects of Computing,
19(2):159–189, 2007.

9. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Insti-
tute of Technology, 1995.

10. K. R. M. Leino. Specification and verification of object-oriented software. Lecture
Notes, Marktoberdorf International Summer School, 2008.

11. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In PLDI 2002, pages 246–257. ACM Press, 2002.

12. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, 1994.

13. J. McCarthy. Towards a mathematical science of computation. In Information
Processing 1962, pages 21–28, 1963.

14. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, 1992.
15. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered

object structures. Science of Computer Programming, 62(3):253–286, 2006.
16. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL

2005, pages 247–258. ACM Press, 2005.
17. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.

Habilitationsschrift, Technische Universität München, 1997.
18. P. Rümmer. Sequential, parallel, and quantified updates of first-order structures.

In LPAR 2006, LNCS 4246, pages 422–436. Springer, 2006.
19. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic:

Formalisation and proofs. Technical Report 2010-11, Department of Computer
Science, Karlsruhe Institute of Technology, 2010.

20. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP 2009, LNCS 5653, pages 148–172. Springer,
2009.

21. J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for Java-
like programs based on dynamic frames. In FASE 2008, LNCS 4961, pages 261–275.
Springer, 2008.

22. K. Stenzel. A formally verified calculus for full Java Card. In AMAST 2004,
volume 3116 of LNCS, pages 491–505. Springer, 2004.

P. H. Schmitt, M. Ulbrich, B. Weiss

127 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs
with Embedded Assertions

Mattias Ulbrich

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
ulbrich@kit.edu

Abstract. We present a program logic for an intermediate verification
programming language and provide formal definitions of its syntax and
semantics. The language is unstructured, indeterministic, and has em-
bedded assertions. A set of sound rewrite rules which allow symbolic
execution of programs is given. We prove the soundness of three infer-
ence rules which can be used to resolve loops using invariants.

1 Introduction

The purpose of deductive software verification is to formally prove that a piece
of code in a particular programming language behaves as specified. This can
be done on the level of the programming language or after a translation to an
intermediate verification language. In this paper, we will consider a minimalistic,
general verification language that covers the essential features of established
intermediate languages and is close to Boogie [9]. We present a program logic in
the style of first-order dynamic logic (DL) for it.

DL is a program logic which embeds pieces of code within formulas. In its
original presentation [8] by Harel et al., a code fragment π in a structural lan-
guage gives rise to a modality [π] which can be used as prefix to a formula φ.
The result is the formula [π]φ which is true if and only if φ holds in every state
in which the execution of π terminates. The Hoare triple {ψ}π{φ} can hence
be written as ψ → [π]φ in DL. Since every intermediate step of a symbolic ex-
ecution in DL is a formula itself, this type of verification allows the alternation
of symbolic execution and application of deductive inference rules. Therefore,
symbolically stepping through a program provides further insight into a process
which usually happens hidden in the verification condition generator. This is not
only helpful to find mismatches between specification and implementation, but
also particularily valuable when experimenting with new modelling or translation
techniques. Other approaches use wp-calculi to automatically compute weakest
preconditions. In the end, automatic generation and proving of first-order ver-
ification conditions as done by these approaches is certainly preferable, but we
believe that, in the present state of research, the possibility of interaction is a
valuable factor.

Technical Report, KIT, 2010-13 128

The design of the intermediate language requires considerable adaptations
of the original DL. Moreover, we give a set of sound rewrite rules which allow
symbolic execution of programs, and prove the soundness of three inference rules
which can be used to deal with loops using invariants.

The remainder of this section provides an overview of related work. We
present the dynamic logic in Sect. 2. The rewrite rules used to symbolically
execute programs in formulas are given in Sect. 3. Gentzen-style inference rules
for the treatment of loops are presented and proved correct in Sect. 4. Conclu-
sions in Sect. 5 wrap up the paper.

1.1 Related Work

While some verification tools (e.g., [1], [12]) take advantage of the greater trans-
parency of source code verification, most employ a special-purpose intermediate
language. The Why language [7] and the Forge Intermediate Representation
(FIR) [6], for instance, are used as target languages by various tools. Also, veri-
fication using the low level virtual machine (LLVM) format is a topic of ongoing
research. Boogie [5, 9] is the most popular intermediate language and is used as
back-end for many research approaches in formal verification. The Boogie verifi-
cation condition generator breaks up loops using invariants in a fashion similar to
this work. In [11], a Hoare-style calculus for Java Bytecode is defined. It includes
a loop rule which is similar to the inference rules of Sect. 4, but is more evolved
due to the higher complexity of the Java bytecode. [4] describes a wp-calculus
for Java bytecode. Therein, loops are resolved by a code modification rendering
the control flow acyclic prior to the wp-calculation.

HOL/Boogie [3], like this work, aims for a combination of intermediate lan-
guage and interactive verification. There, the generated verification conditions
can be interactively proved; their generation, however, (i.e., the symbolic execu-
tion) remains inaccessible.

2 Syntax and Semantics

In this section, we present the syntax and semantics of unstructured dynamic
logic (USDL). It is built around a minimalistic intermediate verification language
which is unstructured, indeterministic and contains embedded assertions. The
logic extends untyped first-order predicate logic, but the approach can easily
be transferred to sorted logics, the issue of types is orthogonal to the novelties
presented here. For instance, the polymorphic type system presented in [10] could
be used.

Unlike in DL where a program π can be used as a prefix [π] to a formula, in
USDL π and a natural number n induce an atomic program formula [n;π] which
is not prefix to another formula but a formula on its own. The number n is an
explicitly denoted program pointer referring to the currently active statement
in π. The conditions that we want to check are embedded within π. This is
done because it is not always the case that we only need to examine whether

M. Ulbrich

129 Technical Report, KIT, 2010-13

properties hold after the execution, but often want to ensure that properties hold
at certain points during the execution of a program. For a program containing
a division expression 1/x embedded in some statement, for instance, we need
to verify that upon reaching this statement, x is different from 0 to ensure this
program’s correctness and cannot simply postpone this check to the after state
of the entire code.

2.1 Syntax

USDL is an extension of first order logic with two modal additional operators.
Besides the atomic program formulas, we introduce the concept of updates which
are explicitly denoted value assignments to record the effect of assignment state-
ments.

Definition 1 (Signature). A USDL-signature Σ for is a 5-tuple

Σ = (Var,Fct,PVar,Prd, α)

with

– Var: the set of logical variable symbols
– Fct: the non-empty set of function symbols
– PVar ⊆ Fct: the set of program variables
– Prd: the set of predicate symbols
– α : Fct∪Prd→ N: the arity mapping
– α(pv) = 0 for any program variable pv ∈ PVar

The syntax of terms, formulas and programs is given by the grammar in
Fig. 1. For predicate and function application expressions, we additionally insist
on a correct number of argument terms. If a predicate or function symbol s has
no arguments, we write s instead of s(). Terminal symbols are set in italics and
terminal literals in bold.

Definition 2 (Terms and Formulas). The set TermΣ of all terms in the
signature Σ is the set of expressions which can be produced from the non-terminal
“Term” in Fig. 1.

The set FormΣ of all formulas in the signature Σ is the set of expressions
which can be produced from the non-terminal “Formula” in Fig. 1.

Let us for an example consider a USDL-signatureΣ which contains a program
variable x ∈ PVar, a unary predicate symbol positive ∈ Prd and a unary function
symbol succ ∈ Fct. The expression

[0; goto 1 4, assume ¬positive(x), x := succ(x), goto 0,
assume positive(x), assert positive(x)] (1)

is then a valid atomic program formula in FormΣ .

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 130

Formula ::= Formula
` ∧ ˛̨ ∨ ˛̨→ ´

Formula
| ¬ Formula
| (∀ | ∃)Var . Formula
| Prd | Prd (TermList) (*)
| { Update } Formula
| [NaturalNumber ; Program]
| [[NaturalNumber ; Program]]
| true | false

Term ::= Var
| Fct | Fct (TermList) (*)
| { Update } Term

TermList ::= Term | TermList , TermList

Update ::= PVar := Term
| Update ‖ Update

Program ::= Statement | Program , Program

Statement ::= PVar := Term
| assert Formula
| assume Formula
| goto NaturalNumber
| goto NaturalNumber NaturalNumber
| havoc PVar

(*) if the length of the term list coincides with the arity of the symbol

Fig. 1. Formulas, Terms and Programs

Definition 3 (Unstructured programs). The set of all unstructured pro-
grams ΠΣ is the set of expressions that can be produced from the non-terminal
“Program” in Fig. 1. Terms and formulas that are embedded in unstructured
programs must not have free variables.

For a given program π ∈ ΠΣ, len(π) ∈ N denotes the length (i.e., the number
of statements) of π. For a natural number i ∈ N, the selection π[i] refers to the
i-th statement in π if i < len(π) and refers to the statement “assume false” if
i ≥ len(π).

Unlike in dynamic logic for structured programs, we need to list the entire
code, also after the current statement since goto statements may refer to any
statement in the program, before or after the current one. Therefore, we need
an explicit program counter which indicates which is the current statement.

2.2 Semantics

We start the definition of our model-theoretic semantics by repeating the defi-
nition of first order structures.

Definition 4 (Domain, Interpretation, Variable assignment). A domain
D is a non-empty set. For a given domain D and a signature Σ an interpretation

M. Ulbrich

131 Technical Report, KIT, 2010-13

I is a mapping assigning a meaning to every predicate and function symbol in
Σ, such that

– I(f) : Dα(f) → D for any f ∈ Fct
– I(p) ⊆ Dα(p) for any f ∈ Prd

A variable assignment β : V ar → D is a mapping from the logical variables
to elements in the domain.

The set of all interpretation functions for a given D and Σ is denoted by
IΣ,D.

For the notion of the state of an execution of an unstructured program, we
need a way to refer to the current position within the sequence of statements,
i.e. a program counter pointing to the active statement.

Definition 5 (State). For a signature Σ and a domain D, the set of of states
SΣ,D := IΣ,D × N is the Cartesian product of interpretations (current variable
state) and natural numbers (current position in the program).

We explicitly encode the current statement number within the execution state
as it simplifies the definition of state transitions considerably if the execution
environment includes a reference to the statement to be executed next.

Definition 6 (Function overriding). Given a function f : A→ B and values
a ∈ A and b ∈ B the function overriding f ba : A→ B is the function with

f ba(x) =

{
b if x = a

f(x) otherwise
.

An update c1 := t1‖ . . . ‖cn := tn can be applied to an interpretation I
resulting in the multiply overridden interpretation

Ic1:=t1‖...‖cn:=tn := ((IvalI,β(t1)
c1) . . .)valI,β(tn)

cn

in which the program variables c1, . . . , cn have their values updated.

Definition 7 (Term evaluation). For a given signature Σ, a domain D, an
interpretation I and a variable assigment β, the term valuation valI,β : TermΣ →
D is defined by:

– valI,β(x) = β(x) if x ∈ Var,
– valI,β(f(t1, . . . , tk)) = I(f)(valI,β(t1), . . . , valI,β(tk))

if f ∈ Fct with α(f) = k and t1, . . . , tk ∈ TermΣ,
– valI,β({U}t) = valIU ,β(t)

For the definition of the semantics of atomic program formulas, the seman-
tics of programs has to be defined. The next two definitions for programs and
formulas (Def. 8 and 9) depend on each other and have to be read as one.

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 132

Definition 8 (Program execution, Traces). The program execution func-
tion Rπ : SΣ,D → P(SΣ,D) is a mapping that for a program π ∈ ΠΣ assigns to
every state a set of successor states. Its result depends on the currently active
statement.

Let s = (I, n) ∈ SΣ,D be a state and β a variable assignment. Then the value
of Rπ(s) is according to the following table:

If π[n] matches and then Rπ(s) =
skip {(I, n+ 1)}
c := t {(IvalI,β(t)

c , n+ 1)}
assert φ I, β |= φ {(I, n+ 1)}
assert φ I, β 6|= φ ∅
assume φ I, β |= φ {(I, n+ 1)}
assume φ I, β 6|= φ ∅
goto m {(I,m)}
goto m k {(I,m), (I, k)}
havoc c {d ∈ D • (Idc , n+ 1)}

– We call a sequence (s0, s1, . . . , sr) (or (s0, s1, . . .) resp.) with si ∈ S and
si+1 ∈ Rπ(si) for i ∈ {0, ..., r− 1} (resp. i ∈ N) a finite (infinite) trace of π
starting in s0.

– We call a finite trace maximal if Rπ(sr) = ∅.
– A maximal finite trace (s0, s1, . . . , sr) with sr = (Ir, nr) is called successful

if π[nr] is not an “assert ...” statement.

Unstructured programs are indeterministic, hence, there may be no, one or
many successor states in Rπ(s) to a state s. Two types of indeterminism can
be distinguished: control indeterminism (induced by goto statements with two
targets) and data indeterminism (induced by havoc statements which take many
possible assignments into account). It seems counter-intuitive that the successor
states of assert and assume statements are identical. The difference is that a trace
is considered successful if it fails at an assumption but unsuccessful for a failed
assertion.

Definition 9 (Formula evaluation). For given Σ, I, β, π and D, the validity
of a formula φ ∈ FormΣ under the given parameters is defined as:

– I, β |= true and I, β 6|= false
– I, β |= φ (∧| ∨ |→)ψ iff I, β |= φ and/or/implies I, β |= ψ.
– I, β |= (∀|∃)x.φ iff I, βdx |= φ for every/some d ∈ D.
– I, β |= p(t1, . . . , tk) iff (valI,β(t1), . . . , valI,β(tk)) ∈ I(p) for a predicate sym-

bol p ∈ Prd with α(p) = k and t1, . . . , tk ∈ TermΣ.
– I, β |= {U}φ iff IU , β |= φ
– I, β |= [n;π] iff every maximal finite trace (I, n), . . . , (Ik, nk) is successful.
– I, β |= [[n;π]] iff I, β |= [n;π] and there is no infinite trace of π starting in

(I, n).

M. Ulbrich

133 Technical Report, KIT, 2010-13

Let us revisit example (1) considering an interpretation with the domain
D = Z, I(succ)(n) = n + 1 and I(positive) = N. If I(x) = −1, we have the
maximal trace (I, 0), (I, 4) which is successful since the last considered statement
π[4] was not an assertion but an assumption. We are not interested in a further
execution of this trace and regard it as “not relevant” since an assumption has
proved to be false.

USDL possesses expressive means to model both partial and total correctness
of code pieces using the operators [·] and [[·]]. Please note that they are not dual
to another like � and ♦ in modal logics or [·] and 〈·〉 in classical dynamic logic
are.

The programming language of USDL has a number of points in common
with regular programs upon which the while-language in dynamic logic has been
defined in [8]. The program operators ∪ (nondeterministic choice) and ∗ (nonde-
terministic repetition) are closely related to the indeterministic goto statement.
The statement assume φ has the same semantics as the regular program φ?. Harel
et al. also propose an extension with wildcard assignments like x :=? which is
the same as the statement havoc x.

We can, hence, use the kinds of statement defined in this document to define
compound structures as macros like Harel did using regular programs. Formula
(1) could then be reformulated as

[0; while ¬positive(x) do x := succ(x) end; assert positive(x)] (2)

using such a macro for the while-do-end loop.
It is obvious that any formula in dynamic logic without embedded assertions

can canonically be translated into a formula with embedded conditions. We
formulate a typical proof as P → [π]Q for a precondition P , and a postcondition
Q. We would formulate the same problem in USDL as

P → [0; (π, assert Q)]

which checks property Q after the execution of π. We can also prepend the
program with the statement assume P embedding also the precondition into the
program and obtain the equivalent formula

[0; (assume P, π, assert Q)] .

Note that now the entire verification obligation is encoded within the program
to be verified.

3 Symbolic Execution

We now present a set of rewriting rules which allow us to symbolically execute
an unstructured program step by step, either interactively or in an automatic
proof process. Unlike wp-calculi which traverse programs from back to front, we
process programs in the order of an execution, beginning at the first statement.

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 134

The update mechanism allows us to record the state changes we collect during
the execution. This forward treatment is particularly helpful if the execution is
part of an interactive verification process since the verifier can then track more
conveniently what has happened.

A rewrite rule l r allows the calculus to replace any occurrence of l within
a formula with r to obtain an equivalent formula. Such a rule is sound if the
formula l↔ r is valid. A rule schema of the form C(X) =⇒ l(X) r(X) with
a set of schematic variables X is an abbreviation for the set {l(x) r(x) | C(x)}
of all instances for which the (meta) condition C holds.

Theorem 10 (Symbolic execution). The following rules are sound rewrite
rules for the symbolic execution of unstructured programs.

π[n] = skip =⇒ [n;π] [n+ 1;π] (3)
π[n] = c := v =⇒ [n;π] {c := v}[n+ 1;π] (4)

π[n] = havoc c =⇒ [n;π] ∀x.{c := x}[n+ 1;π] (5)
π[n] = goto m =⇒ [n;π] [m;π] (6)

π[n] = goto m k =⇒ [n;π] [m,π] ∧ [k;π] (7)
π[n] = assume φ =⇒ [n;π] φ→ [n+ 1;π] (8)
π[n] = assert φ =⇒ [n;π] φ ∧ [n+ 1;π] (9)

Proof. The soundness proofs for these rules are straightforward. We exemplarily
provide them for (8) and (9). The basic argument is the same for all cases: We
reduce the case that all finite traces starting in (I, n) must be successful to the
case that all finite traces from (I ′, n′) ∈ Rπ(I, n) are successful and encode the
knowledge on I ′ either into an update, an implication or conjunction. The state
successor relation Rπ of assert and assume are identical, but their semantics differ
due to the definition of successful traces.

assume: Assume I, β 6|= φ, then Rπ(I, n) = ∅ and the only trace beginning in
(I, n) ends there in an assume statement and, hence, is successful. If, on the
other hand, I, β |= φ, the truth value depends entirely on the traces starting
in (I, n+ 1), therefore, on [n+ 1;π].

I, β |= [n;π]
⇐⇒ every finite trace beginning in (I, n) is successful
⇐⇒ I, β 6|= φ or

I, β |= φ and every finite trace beginning in (I, n+ 1) is successful
⇐⇒ I, β 6|= φ or every finite trace beginning in (I, n+ 1) is successful
⇐⇒ I, β |= φ→ [n+ 1;π]

assert: If I, β 6|= φ, the only trace beginning in (I, n) ends there in an assert
statement and, hence, is not successful. The other case depends again on the

M. Ulbrich

135 Technical Report, KIT, 2010-13

runs from (I, n+ 1):

I, β |= [n;π]
⇐⇒ every finite trace beginning in (I, n) is successful
⇐⇒ I, β |= φ and every finite trace beginning in (I, n+ 1) is successful
⇐⇒ I, β |= φ ∧ [n+ 1;π]

ut
The presented rules execute one single step and reduce a formula to a formula

encoding all possible follow-up traces. This implies that the traces of the atomic
program formulas on the left-hand-side are finite if and only if all traces of all
modalities on the right-hand-side are finite. This observation leads to

Corollary 11. We obtain sound rewrite rules if we replace every occurrence of
a modality [n;π] by the corresponding terminating counterpart [[n;π]] in (3)–(9).

4 Invariant Rules

The rewrite rules in Thm. 10 and Cor. 11 allow us to symbolically execute an
unstructured program in a stepwise manner. If a program contains no loops, sym-
bolic execution eventually results in a formula free of atomic program formulas.
However, as soon as the program flow allows a statement to be executed more
than once during the run of a program, these rules can no longer remove atomic
program formulas entirely. A calculus for symbolic execution requires rules using
loop invariants to resolve programs with loops. Such rules will, naturally, closely
resemble invariant rules which are used to resolve loops in structured programs.

First, we give the simple version of an invariant rule. Then, a rule involving
termination is defined and, finally, a rule which preserves more context informa-
tion. The latter two could canonically be combined to a rule with termination
and context preservation.

4.1 Program Modifications

In classic dynamic logic, the invariant rule introduces new proof goals on the
loop body, i.e. on a program which is a strict subprogram of the original code.
We are not able to reduce the code to a subset of statements in USDL since no
restriction is imposed on the targets of goto statements and any statement, also
outside the loop body, may be addressed.

We need, however, a means to reduce the number of runs of a loop body
to one. This is achieved by inserting new statements into the program under
inspection. The insertion is problematic, however, since index changes may make
goto statements point to wrong targets afterwards. To compensate for this effect,
we introduce an offset correction function off k

m which increments the target
indices by k if they lie above the insertion point m.

off k
m(a) =

{
a if a ≤ m
a+ k otherwise

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 136

0: goto 2
1: skip
2: goto 1

π

0: assert φ
1: assume φ

τ
=⇒

0: goto 4
1: assert φ
2: assume φ
3: skip
4: goto 1
π 2 (τ, 1)

Fig. 2. Example of a program insertion

We apply off k
m also to statements where it operates only on the target indices of

goto statements and behaves like the identity function on all other statements.

Definition 12 (Statement insertion). For programs π, τ ∈ Π and an arbi-
trary index m ∈ N, the insertion π 2 (τ,m) ∈ Π of τ into π at position m is
defined as

(
π 2 (τ,m)

)
[i] =

off len(τ)

m (π[i]) for i < m

τ [i−m] for m ≤ i < m+ len(τ)
off len(τ)

m (π[i− len(τ)]) for m+ len(τ) ≤ i
.

τ is not subject to an offset correction since the programs we use for insertion
in this section will not contain goto statements.

Fig. 2 shows a sample program insertion. The program τ = (assert φ; assume φ)
is inserted into the program π = (goto 2; skip; goto 1) at position 1. Please note
that in statement 4 : goto 1 of the resulting program, the target has not been
incremented and still refers to the insertion point even though the statement to
which it points has been changed.

Due to the index adaption off k
m, a trace for π which does not pass through

the insertion point m induces a trace for the program after insertion also (of
course with possibly adapted statement indices). The only way to enter the
inserted statement sequence is to reach statement m, either as a goto target or
by “walking” into it. Hence, if m is not part of the trace, we can observe:

Property 13. For any trace (I0, k0), . . . , (Ir, kr) with ki 6= n for 0 < i ≤ r, the
sequence (I0, k′0), . . . , (Ir, k′r) with k′i = off len(τ)

n is a trace for π 2 (τ, n).

The rules we develop in this section will be inference rules for a sequent
calculus. A sequent is of the form Γ ` ∆ in which the antecedent Γ and the
succedent ∆ are finite sets of formulas. It has the same truth value as the formula
(
∧
Γ)→ (

∨
∆).

One problem that is not present in structured dynamic logic but with which
we have to cope here is the detection of loops. In classic dynamic logic, a loop
can be identified syntactically as a statement initiated with the “while” keyword.
We do not have such landmarks in an unstructured program. A loop becomes a
loop because of a goto statement targeting backward. Not every such statement,
however, is necessarily an indicator for a loop. Therefore, we formulate our in-
variant rules in such a manner that they can be applied to every statement. Of

M. Ulbrich

137 Technical Report, KIT, 2010-13

course, the application is not equally expedient for all execution states, and it is
the task of either a static analysis or the translation mechanism to identify (and
to mark) the spots at which an invariant rule should be applied.

4.2 Simple Invariant Rule

The general idea in the upcoming invariant rules is it to change the code of the
program in such a way that if the starting statement n is reached again during
symbolic execution, the invariant is asserted and the execution then terminated.
For that purpose we insert the program (assert φ; assume false) into the program
under inspection at the current position.

Theorem 14. The rule

Γ ` {U}ψ,∆ ψ ` [n+ 2; ρ1]

Γ ` {U}[n;π], ∆

with ρ1 = π 2 ((assert ψ; assume false), n) is a sound rule for any formula ψ.

This rule has two premisses: The first provides evidence that the invariant ψ
holds initially when arriving in the current state. The second premiss requires
that in a state in which the invariant holds, the execution of the changed program
is successful. Please note that the antecedent and succedent contexts Γ and ∆
are not present in the second premiss. We will address this issue in Thm. 17.

This rule is similar to the invariant rule for a dynamic logic for a simple
while language. One difference is that, here, we do not have three but only
two premisses to establish. This is due to the fact that multiple assertions are
embedded into the program ρ1 and the second premiss [n+2; ρ1] plays two roles:
Firstly, it proves the absence of assertion violations after the loop (the ’use case’
of ψ) and, secondly, it ensures that the loop body preserves ψ establishing it as
an invariant.

Proof. We can without loss of generality1 assume that ∆ = ∅. Moreover, we
may assume that (A)

∧
Γ → {U}ψ and (B) ψ → [n + 2; ρ1] are valid formulas.

For an arbitrary interpretation2 I, we need to show that I |= ∧
Γ → {U}[n;π].

If I 6|= ∧
Γ , we are done. Thus, let I |= ∧

Γ . It remains to be shown that
I |= {U}[n;π]. Setting Ik0 := IU yields, equivalently, Ik0 |= [n;π].

Let us look at an arbitrary maximal finite trace now. We can divide this
trace in “loops to n”, i.e., we split the trace into r subsequences such that every
occurrence of n starts a new subtrace. For any 0 ≤ i < r, the state (Iki , n)
initiates a subtrace. The last trace ends in state (Ikr , skr). See Fig. 3 for an
illustration.

We now claim that for every first state (Iki , n) of a subtrace, Iki |= ψ holds
and show this by induction on 0 ≤ i < r. For Ik0(= IU), this is a simple
1 There are first order inference rules that allow us to move the negation of all formulas

in ∆ to the antecedent Γ .
2 For the sake of better readability, we leave variable assignments aside in this section.

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 138

Ik0
n

· · · Ik1−1
sk1−1

Ik1
n

· · · Ikr−1−1
skr−1−1

Ikr−1
n

· · · Ikr
skr

Fig. 3. Chopping a trace into subtraces

consequence of the validity of (A). Now, we assume that Iki |= ψ for some
0 ≤ i < r − 1.

For the trace (Iki , n), . . . , (Iki+1−1, ski+1−1), apart from the first state, no
state is in statement n: it matches the requirements of Prop. 13, and, thus, we
know that (I0, n+2), . . . , (Iki+1−1, off 2

n(ski+1−1)) is a trace for program ρ1. From
the original trace we know that (Iki+1 , n) is a successor state to the last state of
this trace. Furthermore, ρ1[n] = assert ψ and every maximal finite trace for ρ1

is successful by assumption (B). This implies directly that the assert-condition
must be true, i.e. that Iki+1 |= ψ.

We have seen now that every subtrace begins in an interpretation in which ψ
holds. In particular, we have Ikr−1 |= ψ. The last subtrace (Ikr−1 , n), . . . , (Ikr , skr)
is maximal (since the entire trace was chosen maximal). Statement n does not
appear after the first state of this trace. We can therefore apply Prop. 13 again
and obtain a trace (Ikr−1 , n + 2), . . . , (Ikr , off 2

n(skr)) which is maximal again.
Due to assumption (B), this trace must be successful, implying that the entire
trace is successful. ut

4.3 Invariant Rule with Termination

Thm. 14 is not sufficient if we want to incorporate the question of termination
into the verification process. The rule for the terminating modality [[·]] introduces
a variant term whose value strictly decreases from iteration to iteration. We
assume there is a binary predicate symbol ≺∈ Prd whose interpretation is a
well-founded relation. With the aid of this predicate symbol, we can formulate
an invariant rule which includes termination.

Theorem 15. The rule

Γ ` {U}ψ,∆ ψ ` {nc := var}[[n+ 2; ρ2]]

Γ ` {U}[[n;π]], ∆

with ρ2 = π 2 ((assert ψ ∧ var ≺ nc; assume false), n) is a sound rule for any
formula ψ, any term var, and a program variable nc which does not yet appear
elsewhere on the sequent.

Proof. Partial correctness [n;π] is a direct consequence of Thm. 14 since we
made the program modification stronger requiring ψ ∧ var ≺ nc to hold instead
of only ψ.

M. Ulbrich

139 Technical Report, KIT, 2010-13

Like in the proof above, we fix an interpretation I with I |= ∧
Γ and set

Ik0 := IU . It remains to be shown that there is no infinite trace for π starting
in (Ik0 , n). Assuming there is such an infinite trace, we could subdivide it into
subtraces such that every occurrence of the statement n initiates a new subtrace
like in the previous proof. We can use the induction from the proof of Thm. 14
to establish that for every first state (Iki , n) of a subtrace we have Iki |= ψ.

In case there are finitely many subtraces, the last subtrace
(
(Ikr−1 , n), . . .

)
must be infinitely long and does not pass through n. We have Ikr−1 |= ψ which
already contradicts the second premiss which forbids an infinite trace for π start-
ing in (Ikr−1 , n) (because it uses the operator for total modality).

In case of infinitely many subtraces, every subtrace is finite. For the first
states of the subtraces, we define vi := valIki (var). If we take one beginning
state (Iki , n) with i > 0, we know that (*) Iki |= var ≺ nc since this formula
is part of the asserted loop invariant. As nc does not occur elsewhere on the
sequents and because of the semantics of the update nc := var, we get that nc
holds the value of var of the previous iteration, i.e. Iki(nc) = vi−1. This and
(*) imply that (vi−1, vi) ∈ I(≺). The sequence (v1, v2, . . .) would therefore be
an infinitely descending chain for I(≺) which cannot be since ≺ was chosen as
a well-founded relation. ut

4.4 Improved Invariant Rule

The major disadvantage of the rules in Thms. 14 and 15 is that the information
contained in Γ and ∆ of the conclusion is not available in the second premiss.
There invariant ψ is the only formula in the antecedent of the sequent. If any of
the information encoded in Γ ∪∆ was needed to close the proof, it would have
to be implied by ψ and one would need to proof its validity.

We will provide an invariant rule which keeps the context Γ and ∆ but
subjects those program variables which are touched during a loop iteration to a
generalisation. We can use the havoc statement to do this generalisation because
of (5).

The rule follows the ideas of [2] were a context preserving invariant rule is de-
fined for a structured dynamic logic. The advantage is that more information on
the sequent remains available and does not need to be encoded in the invariant.

Definition 16 (loop-reachable). A statement m is called loop-reachable from
n within a program π if there is a trace (Io, k0), (I1, k1), . . . such that

1. ko = n,
2. there is an index r ≥ 1 with kr = m, and
3. there is an index s > r with ks = n.

We denote this as reach(n,m, π).

We use the notion of reachability to define the set of possibly modified program
variables as

mod(n, π) :=
{
c

∣∣∣∣ there are m, c and t s.t. reach(n,m, π) and
(π[m] = havoc c or π[m] = c := t)

}
⊆ PVar .

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 140

Loop reachability can, in general, not be computed. The reachability of a state-
ment may depend on the satisfiability of an assumption statement earlier in the
execution path and this is undecidable. However, a static analysis can be used
to over-approximate mod(n, π).

The modified program ρ3 is now more complex. The first two statements have
the same intention as in Thm. 14 and the concluding assumption corresponds
to the formula ψ in the antecedent of the second premiss in rule Thm. 14. The
remaining statements need to be added to anonymise the values of those program
variables that are possibly changed by the execution of the loop body.

Theorem 17. The rule

Γ ` {U}ψ,∆ Γ ` [n+ 2; ρ3], ∆

Γ ` {U}[n;π], ∆

with

ρ3 = π 2 ((assert ψ; assume false; havoc r1; . . . ; havoc rb; assume ψ), n)

is a sound rule for any formula ψ and any finite set {r1, . . . , rb} with mod(n;π) ⊆
{r1, . . . , rb} ⊆ PVar.

Proof. Again, let ∆ = ∅. We observe that the second premiss is (after a number
of steps of symbolic execution and simplification) equivalent to

Γ ` ∀x1. . . .∀xb.{r1 := x1‖ . . . ‖rb := xb}(ψ → [n+ 2 + b+ 1; ρ3])

which by construction (the inserted havoc and following assume statements can-
not be executed again) is equivalent to

Γ ` ∀x1. . . .∀xb.{r1 := x1‖ . . . ‖rb := xb}(ψ → [n+ 2; ρ1])

For an interpretation I with I |= ∧
Γ , we know, because of the validity of the

premiss, that

I |= ∀x1. . . .∀xb.{r1 := x1‖ . . . ‖rb := xb}(ψ → [n+ 2; ρ1]) .

If an interpretation I ′ differs from I at most on the values of the program
variables r1, . . . , rb, then we have due to the semantics of the quantifier and
the updates that also

I ′ |= (ψ → [n+ 2; ρ1]) .

For a trace for [n;π] (cf. Fig. 3) we observe that every statement before
(Ikr−1 , n) is loop-reachable from n. The program variables which are changed
over this trace are, hence, inmod(n, π) and, therefore, also among the {r1, . . . , rb}.
This implies that for all 0 ≤ i < r, the interpretation Iki coincides with I on the
required program variables and we obtain Iki |= (ψ → [n + 2; ρ1]) and, hence,
Iki |= [n+ 2; ρ1] by induction from the proof of Thm. 14.

In particular we have Ikr−1 |= [n + 2; ρ1] for which we saw in the proof of
Thm. 14 that it implies that the entire trace is successful. ut

M. Ulbrich

141 Technical Report, KIT, 2010-13

5 Conclusion

In this paper, we have presented a dynamic logic USDL for an unstructured
verification language. The logic differs from Harel’s logic as presented in [8]
as it contains the formulas to be verified embedded in the program code. We
have provided a model-theoretic semantics for USDL and calculus rules for the
symbolic execution of programs within USDL formulas. For the treatment of
loops, we have proved the soundness of three invariant rules.

Future work on this topic includes the examination of the relationship be-
tween a propositional variant of the logic and propositional dynamic logic (PDL).

The presented calculus has been implemented in an interactive, rule-based
proof-of-concept tool which has been used to successfully conduct first experi-
ments on the benefits of interaction in verification with intermediate languages.

Acknowledgements The author would like to thank Peter H. Schmitt for his
constructive comments which helped improve this paper.

References

1. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

2. B. Beckert, S. Schlager, and P. H. Schmitt. An improved rule for while loops
in deductive program verification. In Seventh Intl. Conf. on Formal Engineering
Methods (ICFEM), pages 315–329. Springer-Verlag, 2005.

3. S. Böhme, K. R. M. Leino, and B. Wolff. HOL-Boogie—An interactive prover for
the Boogie program-verifier.

4. L. Burdy and M. Pavlova. Java bytecode specification and verification. Manuscript,
2005.

5. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Technical Report MSR-TR-2005-70., Microsoft Re-
search, 2005.

6. G. Dennis, F. S.-H. Chang, and D. Jackson. Modular verification of code with
SAT. In ISSTA ’06: Proceedings of the 2006 international symposium on Software
testing and analysis, pages 109–120, New York, NY, USA, 2006. ACM.

7. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In In CAV ’07, pages 173–177, 2007.

8. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
9. K. R. M. Leino. This is Boogie 2, 2008.

10. K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In TACAS, pages 312–327, 2010.

11. C. L. Quigley. A programming logic for java bytecode programs. In TPHOLs,
pages 41–54, 2003.

12. K. Stenzel. Verification of Java Card Programs. PhD thesis, University of Augs-
burg, 2005.

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Technical Report, KIT, 2010-13 142

A Refinement Methodology for
Object-Oriented Programs ?

Asma Tafat1, Sylvain Boulmé2, and Claude Marché3,1

1 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405
2 Institut Polytechnique de Grenoble, VERIMAG, Gières, F-38610

3 INRIA Saclay - Île-de-France, F-91893

Abstract. Refinement is a well-known approach for developing correct-
by-construction software. It has been very successful for producing high
quality code e.g., as implemented in the B tool. Yet, such refinement
techniques are restricted in the sense that they forbid aliasing (and more
generally sharing of data-structures), which often happens in usual pro-
gramming languages.
We propose a sound approach for refinement in presence of aliases. Suit-
able abstractions of programs are defined by algebraic data types and the
so-called model fields. These are related to concrete program data using
coupling invariants. The soundness of the approach relies on method-
ologies for (1) controlling aliases and (2) checking side-effects, both in a
modular way.

1 Introduction

Design-by-contract is a methodology for specifying programs (in particular
object-oriented ones) by attaching pre- and post-conditions to functions, meth-
ods and such. In recent years, significant progress has been made in the field of
deductive verification of programs, which aims at building mathematical proofs
that such a program satisfies its contracts. Some widely used programming lan-
guages, like Java, C# or C have been equipped with formal specification lan-
guages and tools for deductive verification, e.g., JML [11] for Java, Spec# [6]
for C#, ACSL [7] for C. The assertions written in the contracts are close to the
syntax of the underlying programming language, and directly express properties
of the variables of the program. However, for codes of large size the need for
data abstractions arises, both for writing advanced specifications and for hiding
implementation details.

Leavens et al. [18] have listed some specification and verification challenges
for sequential object-oriented programs that still have to be addressed. One of
these issues deals with data abstraction in specification, and more specifically
the specification of modeling types. The task to be done is summed up as follows:
Develop a technique for formally specifying modeling types in a way that is useful
for verification.
? This work is partly supported by INRIA Collaborative Research Action (ARC) “Ce-
ProMi”, http://www.lri.fr/cepromi/

143 Technical Report, KIT, 2010-13

This paper proposes to solve this problem using a refinement approach. Our
proposal has strong connections with the notion of program refinement of the
B method [1] for developing correct-by-construction programs. In a first step,
abstract views of objects are specified with so-called model fields as an abstract
representation of their state. Unlike the standard model fields of JML, our model
fields are described as algebraic data types instead of immutable objects. The
refinement of such an abstract view is a concrete object together with a coupling
invariant that connects its concrete fields with model fields of the abstract view.
Like all refinement approaches, we want to ensure that reasoning on the abstract
view in a client code does not allow establishing properties that are falsified at
runtime. Hence, in the presence of arbitrary pointers or references (and thus data
sharing), the verification of these coupling invariants requires a strict policy on
assignment, for controlling where a given invariant is potentially broken.

This paper is based on the ownership policy of Boogie methodology [4]. In
Section 3 we propose a variant of ownership to support model fields. The main
result (Theorem 1) states that class invariants, including coupling invariants,
are preserved during execution. Section 4 then proposes a refinement approach
for object-oriented programs, where subclasses are refined programs for abstract
classes. An additional ingredient needed is a technique for controlling side effects
in subclasses: in this paper we use datagroups [22]. We illustrate the methodology
on two examples: first, the calculator example of Morgan [23], and second, an
instance of the observer pattern.

2 Preliminaries

2.1 Deductive verification of contracts

We consider object-oriented programs equipped with a Behavioral Interface
Specification Language (BISL) such as JML [11] for Java, Spec# [6] for C#, etc.
Methods are equipped with contracts: pre- and postconditions, frame clauses to
specify write effects, etc; and objects are equipped with class invariants.

Our goal is to verify that a program satisfies its specification using proof
methods. A general approach for that purpose is the generation of verification
conditions (VCs), which are logical formulas whose validity implies the cor-
rectness of the program with respect to the specification. To automatize this
process, a popular method is the calculus of weakest preconditions, as available
in ESC/Java [14], Spec# [6], and the Why platform [17]. In a slightly differ-
ent context but for similar purposes, weakest preconditions are used in the B
method [1] for developing correct-by-construction programs.

The primary application of BISL is runtime assertion checking. For this rea-
son, assertions used in annotations are boolean expressions. However, it has
been noted by several authors [12, 16] that for deductive verification purposes,
the language of assertions should be instead based on classical first-order logic.
In particular, it allows calling SMT provers to discharge VCs. This is the set-
ting we assume in this paper. More generally, we assume that the specification

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 144

language allows user-defined algebraic datatypes, such as in B [1], ACSL [7] or
Why [17].

Example 1. Multisets, or bags, are typically a useful algebraic datatype for spec-
ifying programs, that we need later. Here is a (partial) user-defined axiomatiza-
tion of bags (See [26] for a full one)

type bag<X>;
constant emptybag: bag<X>;
function singleton: X −> bag<X>;
function union: bag<X>, bag<X> −> bag<X>;
function card: bag<X> −> integer;
function sumbag: bag<real> −> real;
axiom union_empty: \forall b:bag<X>, union(b,emptybag) = b;
axiom union_assoc: \forall b1,b2,b3:bag<X>,

union(b1,union(b2,b3)) = union(union(b1,b2),b3);
...

2.2 Refinement

Refinement calculus [23, 2] is a program logic which promotes an incremental ap-
proach to the formal development of programs: from very abstract specifications
down to implementations. The B method [1] has successfully mechanized this
logic in some industrial developments [8]. In the B method, an abstract com-
ponent introduces abstract variables and defines each procedure by an abstract
behavior on these variables. A refined component is then given using other vari-
ables, a coupling invariant which relates them to abstract variables, and refined
definitions of procedures. A component may be refined several times in this way,
until all behaviors of procedures are given as programs.

Example 2. Morgan’s calculator [23] is a typical and simple example of refine-
ment. Such a calculator is aimed at recording a sequence of real numbers, and
providing their arithmetic mean on demand. Below, on the left, is an abstract
view of a calculator, whereas the right part presents a refinement expressing that
two numbers are sufficient to encode the required informations on the whole se-
quence:

var values : bag(R)
init values← ∅;
op add(x : R):void =
values← values ∪ {x};

op mean():R =
pre values 6= ∅;
result ← sumbag(values)

card(values)
;

var count : N
var sum : R
invariant sum = sumbag(values)∧

count = card(values);
init sum← 0; count← 0;
op add(x : R):void =

sum← sum+ x;
count← count+ 1 ;

op mean():R =
result← sum/count;

A. Tafat, S. Boulmé, C. Marché

145 Technical Report, KIT, 2010-13

This paper investigates how to adapt this approach to reasoning on object-
oriented programs. However, we consider the simpler case with only one ab-
stract level, where behaviors are given as pre/post-conditions together with
frame clauses, and one concrete level, the implementations in the underlying
programming language.

Technically, refinement corresponds to the condition below, verified for each
operator, where x are the input parameters, a the abstract variables, c the con-
crete ones, P the abstract precondition, I the coupling invariant, Q the ab-
stract postcondition, S the body of the concrete operation: ∀c, x, a; (P ∧ I) ⇒
∃a′;wp(S, (Q ∧ I)[a 7→ a′]). Let us explain this VC from client’s point of view.
For any reachable state c, a satisfying I in the execution of a given client code,
there exists abstract values a′ such that I is still satisfied. For instance, in a
client code, we can safely replace an execution of the concrete sequence S, by a
non-deterministic update of variable a that chooses an arbitrary value a′ satis-
fying both Q and I. The VC on any operation call ensures that the remaining of
the client code is correct for all possible choices of this non-deterministic update.

Example 3 (Calculator continued). The VC for the add operation is

∀count, sum, values, x; (sum = sumbag(values) ∧ count = card(values))⇒
∃values′; values′ = values ∪ {x}∧

(sum+ x = sumbag(values′) ∧ count+ 1 = card(values′))

which is a logical consequence of the axiomatization of bags (Example 1).

2.3 Model fields

Model fields have been introduced by Leino [19] as abstract representations of ob-
ject states. Syntactically, a model field is used only for specification purpose and
remains invisible from the actual code. Clients can refer to its successive values
in their assertions, without knowing how this abstract state is implemented.

We adopt the JML syntax for model fields [13], but the JML represents
clauses are replaced by coupling invariants, which are more general since they
do not enforce a model field to be deterministically determined from concrete
fields. Notice that model fields differ from ghost fields: the latter can be directly
assigned in implementations.

Example 4. In the following, we declare a public view of class Euros to compute
addition and subtraction on euros. In this public view, the model field value
represents the state of the object as a real number.

class Euros {
//@ model real value=0.0;
//@ invariant this.value>=0.0;

/*@ assigns this.value;
@ ensures this.value==\old(this.value+a.value); */

void add(Euros a);
}

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 146

In the corresponding implementation below, the real number is coded as two
integers: in particular, the fractional part of the real is coded as a byte less than
100.

class Euros {
private int euros=0;
private byte cents=0;
//@ invariant 0 <= euros && 0 <= cents < 100;
//@ invariant coupling: value == euros + cents / 100.0;

void add(Euros a) {
euros += a.euros; cents += a.cents;
if (cents >= 100) { euros++; cents −= 100; }

}
}

Giving a semantics to model fields leads to several issues [10, 13, 20] that we
will discuss further in Section 5: as model fields are not directly assigned in the
code, at which program points the values of model fields are changed? At which
program points the coupling invariant, relating the concrete fields (like euros
and cents above) to the model field (value above), is ensured? Also, the public
view above says that only model field value is modified, is it sound to ignore
the change on private fields (like euros and cents) in clients?

2.4 Ownership

Checking preservation of class invariants is known to be a difficult problem be-
cause of aliasing and thus sharing of references [18]. The ownernhip approach
proposed by Barnett et. al in 2004 [4] is suitable for deductive verification, and
implemented in the Boogie VC generator [5]. Informally, ownership views ob-
jects as boxes which can be opened or closed. A closed object ensures that its
invariant is satisfied. Conversely, the contents of an object can be updated only
when this object is open. The status, open or closed, of an object is represented
by some specific boolean field inv similar to a model field (that is only accessi-
ble in specifications). Concretely, opening and closing an object is performed by
using special statements unpack and pack. Hence, closing an object generates a
VC that the invariant of this object holds.

Updating an object’s field must not break the invariant of an other closed
object. This crucial property is ensured by a strict discipline. First, the invariant
of an object o can constrain only objects accessible via dedicated fields called
“rep fields”. More precisely, the invariant of o may refer to o.f1 . . . fn.g only if
f1, . . . , fn are declared as rep. Hence, a rep field f declares that whenever o
is closed, then o.f must also be closed: in this case, we say that o owns o.f .
Moreover, a given closed object can only have at most one owner. Technically,
another model boolean field committed represents whether an object has a owner
or not. This field acts as a lock that is only modified by applying unpack and
pack statements to its owner. This ensures that an object can not be modified
without opening its owner first.

A. Tafat, S. Boulmé, C. Marché

147 Technical Report, KIT, 2010-13

With inheritance, this approach is generalized by transforming inv field into
a class name: “o.inv = C” means that object o satisfies invariant of all su-
perclasses of C (C included). Packing and unpack are made relative to a class
name: “pack o as C” means “close the box o with respect to class C”; whereas
“unpack o from C” means “open the box o out of C”, i.e set its inv to the
superclass of C.

This informal description is formalized in next section (see also [26]), together
with our proposed extension adding a specific support of model fields.

3 Ownership and Model Fields

3.1 Language setting

We consider a core object-oriented language [4] extended with model fields. A
hierarchy of classes is defined together with specifications. First there is a base
class Object which contains only the two special model fields: inv denoting a
class name and committed denoting a boolean. Each class is given by:

– its (unique) name
– the name of its superclass, Object by default
– a set of model fields, whose types are logic datatypes
– a set of concrete fields, some of them might be marked as rep
– an invariant, that is a logical assertion syntactically limited to mention well-

typed locations (according to Java static typing) of the form “this.f1 . . . fn.g”
where fi are rep concrete fields and g is either a model or a concrete field.

– a set of method definitions that consists of a profile “τ m(x1 : τ1, . . . , xn :
τn)”, a body, and a contract defined as:
• a pre-condition Prem(this, x1, . . . , xn)
• a post-condition, Postm(this, x1, . . . , xn, result) which might refer to the

pre-state using old and to the return value using result
• a frame clause Assigns(locs) specifying the side-effects: it states that

any memory locations, allocated in the pre-state, that do not belongs to
locs, is unchanged in the post-state.

– a set of constructors with a profile C(x1 : τ1, . . . , xn : τn), a body, and a
contract similar to those of methods, except that precondition cannot refer
to this and postcondition cannot not refer to result, but can refer to this to
denote the constructed object.

Pre- and postconditions must be purely logic expressions, in particular we forbid
constructor or method calls in them. A class inherits fields of its superclass,
in particular it has an inv and a committed field. We denote by <: reflexive-
transitive closure of subclass relation. We denote by CompT the set of rep fields
declared in class T. More precisely, CompT contains only rep fields declared
in T but not the rep fields declared in a strict superclass of T . A field update
o.f := E where f is a concrete field declared in superclass T of o static type, has
the precondition ¬(o.inv <: T), meaning that o.inv must be a strict superclass

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 148

of T . Field update o.f := E where f is a model field is syntactically forbidden.
Using pack (see below) is the only way to update model fields. Bodies of methods
are verified in a context where type(this) is the current class: inherited methods
are rechecked according to the context of the subclass.

3.2 pack/unpack for model fields

We define two statements for opening and closing object. Opening an object o
is done via the following statement, whose semantics is given by the contract:

unpack o from T :
pre: o 6= null ∧ o.inv = T ∧ ¬o.committed
assigns: o.inv, o.f.committed | f ∈ CompT
post: o.inv = S ∧∧

f∈CompT
o.f.committed = false

where T is a class identifier (using type(o) instead of T is forbidden, hence
CompT is statically known by VC generator), and S is the direct superclass of
T .

The pack statement is significantly more complex than the original in Boo-
gie’s ownership, because it performs a non-deterministic update of model fields.
We adopt here a syntax inspired by unbound choice operator of B:

pack o as T with M0 := v0, . . . ,Mn := vn such that P

where o is the object to close,Mi is a model field to update, vi is a fresh variable
denoting the desired new value for o.Mi, and P is a proposition which can
mention both vi and the current values of the model fields or the concrete fields.
Syntactically, T is a class identifier and Mi must belong to model fields declared
in T (updating model fields of a superclass is forbidden). The semantics is given
by the contract:

pack o as T with M0 := v0, . . .Mn := vn such that P :
pre: o 6= null ∧ o.inv = S ∧

∃v0, . . . , vn, InvT [this.Mi 7→ vi][this 7→ o] ∧ P ∧∧
f∈CompT

o.f = null ∨ (o.f.inv = type(o.f) ∧ ¬o.f.committed)
assigns: o.M0, . . . , o.Mn, o.inv, o.f.committed | f ∈ CompT
post: o.inv = T ∧ InvT [this 7→ o] ∧ (old(P))[vi 7→ o.Mi] ∧∧

f∈CompT
o.f 6= null⇒ o.f.committed

where S is the superclass of T , type(e) denotes the dynamic type of expression
e and InvT [this.Mi 7→ vi][this 7→ o] is the coupling invariant in which model
fields Mi mentioned in the clause with are substituted by vi.

Example 5. Figure 1 is a variant of Morgan’s calculator equipped with
pack/unpack statements and pre- and postconditions to state the values of inv
and committed fields. The VC generated from the precondition of pack state-
ment in method add is:

this 6= null ∧ this.inv = Object ∧
∃v, this.sum = sumbag(v) ∧ this.count = card(v)∧

v = union(this.values, singleton(x))

A. Tafat, S. Boulmé, C. Marché

149 Technical Report, KIT, 2010-13

class SimpleCalc {
//@ model bag<real> values;
private int count;
private double sum;
//@ invariant sum==sumbag(values) && count==card(values);

/*@ assigns \nothing;
@ ensures inv==\type(this) && !committed
@ && values == empty_bag; */

SimpleCalc() {
sum = 0.0; count = 0;
/*@ pack this \as SimpleCalc \with values:=v

@ \such_that v==empty_bag; */
}

/*@ requires inv==\type(this) && !committed;
@ assigns values, count, sum;
@ ensures values==union(\old(values),singleton(x)); */

void add(double x) {
//@ unpack this \from SimpleCalc;
sum += x; count++;
/*@ pack this \as SimpleCalc \with values := v

@ \such_that v == union(values,singleton(x)); */
}

/*@ requires inv==\type(this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result==sum_bag(values)/card(values); */

double mean() { return sum/count; }
}

Fig. 1. Morgan’s calculator with pack/unpack

Hence, notice that the weakest precondition of add is thus very similar formula
to the VC of the refinement given in Example 3.

3.3 Invariant preservation

We state below our main result. The first proposition means that committed
objects must be fully packed. The second states the most important property:
invariants are valid for packed objects. The third states that components of a
closed object are committed. The fourth expresses that a committed component
can have only one owner.

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 150

abstract class Calc {
//@ datagroup Gvalues;
//@ model bag<real> values \in Gvalues;

/*@ requires this.inv == \type(this) && !this.committed;
@ assigns Gvalues;
@ ensures values == union(\old(this.values),singleton(x));
@*/

abstract void add(double x);

/*@ requires inv == \type(this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result == sum_bag(values)/card(values); */

abstract double mean();
}

Fig. 2. Morgan’s Calculator, abstract class

Theorem 1 (invariant preservation). The following properties hold during
any program execution.

∀o; o.committed⇒ o.inv = type(o) (1)
∀o, T ; o.inv <: T ⇒ InvT (o) (2)
∀o, T ; o.inv <: T ⇒ ∧

f∈CompT
o.f = null ∨ o.f.committed (3)

∀o, T, o′, T ′; ∧f∈CompT ,f ′∈CompT ′
(o.inv <: T ∧ o′.inv <: T ′ ∧ o.f 6= null ∧ o.f = o′.f ′)⇒ (o = o′ ∧ T = T ′) (4)

where quantifications over references range over allocated objects.

See [26] for the proof. It is similar to the one of [4]. Differences come from the
presence of model fields, coupling invariants and our extended pack statement.

4 A refinement methodology

We have a notion of model fields with a proper nondeterministic semantics, sim-
ilar to abstract variables as they are used in the B method. To go further, we
now describe a methodology for the development of OO programs which mimics
the refinement approach. This methodology is simply a combination of our no-
tion of model fields with datagroups as proposed by [19, 22]. We introduce this
methodology below on Morgan’s Calculator before considering a more complex
example.

4.1 Hiding effects using datagroups in assigns clauses

Let us consider Morgan’s Calculator of Example 2. We would like to mimic this
example in Java by splitting class SimpleCalc of Fig. 1 into two classes: first,

A. Tafat, S. Boulmé, C. Marché

151 Technical Report, KIT, 2010-13

class SmartCalc extends Calc {
private int count; //@ \in Gvalues;
private double sum; //@ \in Gvalues;
/*@ invariant this.sum == sumbag(this.values)

@ && this.count == card(this.values); */

/*@ assigns \nothing;
@ ensures this.values == empty_bag;
@ ensures this.inv == \type(this) && !this.committed; */

SmartCalc() {
sum = 0.0; count = 0;
/*@ pack this \as Calc \with values:=c

@ \such_that c == empty_bag;
@ pack this \as SmartCalc; */

}

void add(double x) {
//@ unpack this \from SmartCalc;
//@ unpack this \from Calc;
sum += x; count++;
/*@ pack this \as Calc \with values:=c

@ \such_that c == union(values,singleton(x));
@ pack this \as SmartCalc; */

}

double mean() { return sum/count; }
}

Fig. 3. Morgan’s Calculator, implementation class

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 152

an abstract class Calc (Fig. 2) mentioning only the model field and contracts
for methods; second, an implementation SmartCalc (Fig. 3) using concrete fields
count and sum. Two successive unpack or pack statements are needed to open or
close an object from class SmartCalc to Calc then to Object. A key issue arises
here, about the specification of side effects: the abstract class is not supposed
to mention count and sum in assigns clauses, since those fields are not even
known.

In the B method [1], a simple encapsulation mechanism of private fields
ensures that their modifications can not be observed from clients. Hence, in B,
it is safe to simply ignore modifications on private fields in clients, since clients
cannot access them. Unfortunately, such a simple approach is not sound for
OO programs. Indeed, a given object can be indirectly a client of itself via a
reentrant call, and observes modifications made by this reentrant call on its own
private fields. Actually such a problem would also occur in B, if mutual recursion
between components was allowed.

In presence of reentrancy, we can not ignore modifications on private fields.
Alternatively, [19, 22] proposes to abstract such modifications using datagroups.
We use this approach in this paper since it smoothly integrates into any VC
generator using classical logic (see Section 5 for further discussion). Roughly, a
datagroup is a name for a set of memory locations and used in assigns clauses
to express that all its memory locations may have been modified. The main
feature of datagroups is that they can be extended in subclasses with new fields
(public or private). The inclusion of a field to a datagroups must appear in the
declaration of that field and is defined all over its scope. Datagroups may also
include other datagroups (hence, we may have nested datagroups) and a field
may belong to several datagroups.

Hence, coming back to Morgan’s calculator, we introduce a datagroup called
Gvalues that consists of model field values in abstract class Calc of Fig. 2,
and which is extended with concrete fields count and sum in its implementation
SmartCalc of Fig. 3. Of course, on this example, it would be more user-friendly
to identify syntactically the datagroup Gvalues and the model field values.
However, in this paper, we prefer to keep a clear distinction between the two
notions, since in other examples, a datagroup may contain several model fields.

4.2 Modular Reasoning on Shared State: the Observer Pattern
Example

In the literature (see for instance [24]), ownership discipline is often considered as
incompatible with modular reasoning on a shared state between objects. Indeed,
at first sight, ownership discipline forbids objects constraining simultaneously a
given substate through an invariant. A contribution of our work is to show that
this common belief is wrong. Ownership extended with nondeterministic refine-
ment of model fields allows some modular reasoning on a shared state between
objects.

We illustrate this claim on observer pattern, a generic implementation of
event programming in OO languages. In this pattern, an object, called Subject,

A. Tafat, S. Boulmé, C. Marché

153 Technical Report, KIT, 2010-13

maintains a list of its dependents, called observers, and notifies them automat-
ically of any state changes, by calling their notify methods. When notified,
observers updates their own state according to the new state of Subject, usually
by calling back some accessor of Subject. Hence, Subject is shared between ob-
servers. Moreover, observers are themselves shared between Subject and some
clients of the whole pattern.

Here, we instantiate this pattern to define observers of a Morgan’s calculator
(example fully detailed in [26]). The key idea, that makes this example work with
ownership discipline, is the following: in observers, we clone an abstraction of
their shared state using model fields (below size and mean). Thus, these clones
exist only in assertions, not at runtime:

abstract class CalcObs {
SubjectCalc sub;

//@ datagroup Gsubject;
//@ model int size \in Gsubject;
//@ model real mean \in Gsubject;

/*@ requires this.inv == \type(this) && !this.committed;
@ requires sub != null && sub.mc != null
@ && sub.mc.inv==\type(sub.mc);
@ assigns this.Gsubject;
@ ensures size == card(sub.mc.values)
@ && size*mean == sumbag(sub.mc.values);
@*/

abstract void notify();
}

A given object (here Subject) glues the actual shared state with its clones
through an invariant. Here is an excerpt of its specification, where the important
part is the observers_notified invariant:

class SubjectCalc {
int obs_nb;
rep CalcObs[] obs;
//@ invariant obs_size: obs != null && 0<=obs_nb<obs.length;

rep Calc mc;
/*@ invariant observers_notified: mc != null &&

@ \forall integer i; 0 <= i < obs_nb ==>
@ obs[i] != null && obs[i].sub == this
@ && obs[i].size == card(mc.values)
@ && obs[i].size*obs[i].mean == sumbag(mc.values); */

/*@ requires inv == \type(this) && !committed;
@ assigns obs[0..obs_nb−1].Gsubject, mc.Gvalues ;
@ ensures mc.values==union(\old(mc.values),singleton(x)); */

void update(double x){
//@ unpack this \from SubjectCalc;

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 154

mc.add(x) ;
for (int i = 0; i < obs_nb; i++) obs[i].notify();
//@ pack this \as SubjectCalc ;

}

/*@ requires inv==\type(this) && !committed ;
@ requires o!=null && o.inv==\type(o) && !o.committed;
@ requires o.sub==this && obs_nb < obs.length ;
@ assigns o.committed, o.Gsubject;
@ assigns obs_nb, this.obs[\old(this.obs_nb)];
@ ensures o.committed;
@ ensures this.obs_nb==\old(this.obs_nb)+1
@ && this.obs[\old(this.obs_nb)]==o; */

void register(CalcObs o){
//@ unpack this \from \type(this);
this.obs[obs_nb++]=o;
o.notify();
//@ pack this \as \type(this) ;

}
}

The observers can then be implemented independently by refining their own
clone of the shared state: they can introduce a coupling invariant relating their
own actual state to the clone. For observers, the possibility to update their model
fields non-deterministically is crucial here. Indeed, observers update their clone
when notified by Subject which has been modified in a undetermined way from
their point of view. Here is an example of such an observer:

class Success extends CalcObs {
boolean passed;
//@ invariant coupling: passed==(size>=4 && mean>=10.0) ;

void notify(){
//@ unpack this \from Success ;
//@ unpack this \from CalcObs ;
/*@ pack this \as CalcObs \with size:=s, mean:=m

@ \such_that s==card(sub.mc.values) &&
@ s*m==sumbag(sub.mc.values); */

passed = (sub.size() >= 4 && sub.mean() >= 10.0);
/*@ pack this \as Success; */

}
}

In conclusion, this cloning technique through model fields offers some freedom
in the design of an architecture that is both compatible with ownership discipline
and that fits the particular needs of the application. However, this example
reveals the need of several improvements in our approach:

– We would like a more abstract interface for Subject. First, a more abstract
representation of the set of observers is desirable. Second, it would be more
convenient to include all internal state of observers in one datagroup of

A. Tafat, S. Boulmé, C. Marché

155 Technical Report, KIT, 2010-13

Subject. However, the datagroups discipline (with the use of pivot fields [22,
26]) would then prevent access to observers from outside of Subject, which
not desirable.

– This architecture would be more elegant if Subject was allowed to unpack ob-
servers: notify method of observers could hence be used to (re)pack them.4
However, if we want to allow a given object o to be an unknown instance of
a given class, we can not unpack o, because this would produce an uncon-
trolled side-effect on the committed field of o rep fields (which are not fully
known).

5 Conclusions, Related Works and Perspectives

In 2003, Cheon et al. [13] propose foundations for the model fields in JML, which
are presented as a way to achieve abstraction. Their main concern is the runtime
assertion checker of JML, hence they naturally propose that model fields are Java
objects as any other field (although immutable objects for obvious reasons), and
not logical datatypes. Moreover, a model field is related to concrete fields by
a represents clause which amounts to giving a function from concrete fields to
the associated model field. Consequently, they cannot support non-deterministic
updates of model fields as in Morgan’s calculator: there is more than one bag
having a given cardinal and a given sum of its elements.

In 2003, Breunesse and Poll [10] explore the possible use of model fields in
the context of deductive verification instead. They also analyse the potential use
of non-deterministic coupling relations via \such_that clauses. They propose
four possible approaches. The first one, which indeed originates from Leino and
Nelson [21], amounts to assume that the coupling invariant holds at any program
point. This is impracticable and indeed unsound since it does not check for ex-
istence of a model. Two other approaches amount to systematically replace each
predicate refering to a model field by a complex formula with proper quantifiers,
these are impracticable too. The last approach replaces the model fields by an
underspecified function which returns any possible value for it. In some sense it
is similar to our pack with but clearly less flexible.

In 2006, Leino and Müller [20] proposed a technique to deal with model
fields via ownership. This work was the main inspiration of ours: we wanted to
remove a limitation of their approach which prevent them from dealing with
Morgan’s calculator. Precisely, the post-condition of their pack statement for
the add method is just the coupling invariant

this.sum = sumbag(this.values) ∧ this.count = card(this.values)

from which it is not possible to prove the postcondition

this.values = union(old(this.values), singleton(x))
4 Indeed, method register of Subject, that registers a new observer, could be called
on a open observer before to pack it via notify. Thus, inside their constructor,
observers would not be obliged to be pack in a dummy state before the call to
register.

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 156

because the latter is not the only bag b which have the given sum and cardinal.
In other words, Leino-Müller approach [20] can only deal with deterministic
coupling invariants, which impose only one possible value for model field from
the values of the concrete fields.

Our methodology for refinement has a few originalities: unlike previous ap-
proaches, it allows non-deterministic refinement, as it exists classically in refine-
ment paradigm; it permits to safely hide the side-effects on private data from the
public specification of classes, which is a very important property for modularity
of reasoning on programs.

More recently, the Jahob verification system [29] also uses algebraic data
types to model programs. However, again the relation from concrete data to
abstract is done by logic functions, hence as previous approaches they are deter-
ministic and not amenable to refinement in general.

On the other way around, there have been attempts to apply ownership
systems to refinement-based techniques as in B. Boulmé and Potet [9] have shown
that the ownership policy of Boogie is a strict generalization of the verification
of invariants in B. More precisely, they have encoded the component language of
B (without refinement) in a pseudo-Boogie language, and have shown that the
VCs induced by this encoding imply those of B. Moreover, syntactic restrictions
of B that limit data-sharing between components can be safely relaxed using a
Boogie approach. However they have only considered B without refinement. By
extending their encoding using a pack with statement, we can also derive the
VCs of B for a subset of B limited at one level of refinement. However, extending
this to several levels of refinements is not obvious.

Our refinement methodology combines modular techniques for (1) ensuring
invariant preservation (ownership) and (2) checking side effects. Although such
a combination was already said possible in the past [20], it seems strange that
to the best of our knowledge, no tool currently propose both, e.g., Spec# has
ownership but no datagroups, whereas ESC/Java2 has datagroups but no own-
ership.

Datagroups provide quite a simple technique to check side-effects, in particu-
lar because it naturally fits in a standard weakest precondition calculus in classi-
cal first-order logic. It is clearly interesting to investigate more recent approaches
like separation logic [25], dynamic frames, or region-based access control [27, 28,
3].

In this paper we choose that model fields are algebraic data types because it
is handy for deductive verification. However our refinement technique is certainly
usable with immutable objets as models, more suitable for runtime verification;
such as by approaches of Darvas [15] which map model classes to algebraic
theories.

Acknowledgments We thank Marie-Laure Potet, Wendi Urribarri, Christine
Paulin and others CeProMi members for their fruitful discussions on this work.

A. Tafat, S. Boulmé, C. Marché

157 Technical Report, KIT, 2010-13

References

1. J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University
Press, 1996.

2. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

3. A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In European Conference on Object-Oriented Programming
(ECOOP’08), Paphos, Cyprus, July 2008.

4. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, June 2004.

5. M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In FMCO’05, volume
4111 of LNCS, pages 364–387, 2005.

6. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS’04), volume 3362 of LNCS, pages 49–69. Springer, 2004.

7. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI/ISO C Specification Language, 2008. http://frama-c.cea.fr/acsl.html.

8. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A successful appli-
cation of B in a large project. In Formal Methods’99, volume 1708 of LNCS, pages
348–387. Springer, Sept. 1999.

9. S. Boulmé and M.-L. Potet. Interpreting invariant composition in the B method
using the Spec# ownership relation: a way to explain and relax B restrictions. In
J. Julliand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS. Springer,
2007.

10. C.-B. Breunesse and E. Poll. Verifying JML specifications with model fields. In
FTfJP’03, 2003.

11. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 2004.

12. J. Charles. Adding native specifications to JML. In FTfJP’06, 2006.
13. Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model variables: cleanly

supporting abstraction in design by contract. Softw. Pract. Exper., 35(6):583–599,
2005.

14. D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume
3362 of LNCS, pages 108–128. Springer, 2004.

15. A. P. Darvas. Reasoning About Data Abstraction in Contract Languages. PhD
thesis, ETH Zurich, 2009.

16. J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In
ICFEM’04, volume 3308 of LNCS, pages 15–29. Springer, 2004.

17. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV’07, volume 4590 of LNCS, pages 173–177, Berlin,
Germany, July 2007. Springer.

18. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
2007.

A Refinement Methodology for Object-Oriented Programs

Technical Report, KIT, 2010-13 158

19. K. R. M. Leino. Data groups: Specifying the modification of extended state. In
OOPSLA’98, pages 144–153, 1998.

20. K. R. M. Leino and P. Müller. A verification methodology for model fields. In
ESOP’06, volume 3924 of LNCS, pages 115–130. Springer, 2006.

21. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Trans. Prog. Lang. Syst., 24(5):491–553, 2002.

22. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In PLDI’02. ACM, 2002.

23. C. Morgan. Programming from specifications (2nd ed.). Prentice Hall International
(UK) Ltd., 1994.

24. M. Parkinson. Class invariants: The end of the road? In IWACO’07, 2007. http:
//www.cs.purdue.edu/homes/wrigstad/iwaco/.

25. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In
17h Annual IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc.
Press, 2002.

26. A. Tafat, S. Boulmé, and C. Marché. A refinement approach for correct-by-
construction object-oriented programs. Technical Report RR-7310, INRIA, 2010.

27. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal
of Functional Programming, 2(3):245–271, 1992.

28. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997. Academic Press.

29. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In PLDI’08, pages 349–361. ACM Press, 2008.

A. Tafat, S. Boulmé, C. Marché

159 Technical Report, KIT, 2010-13

Data refinement based testing

David Faitelson1 and Shmuel Tyszberowicz2

1 ProActive Modeling,
david@proactivemodeling.com

2 The Academic College, Tel Aviv Yaffo, Israel
tyshbe@tau.ac.il

Abstract. FineFit is a model-driven framework for testing object-
oriented systems. A FineFit specification is a collection of HTML ta-
bles representing the structure and the operations of the system under
test. FineFit translates the specification into a relational model that
serves both as a test oracle and as a source of test cases. FineFit uses
the retrieve relation — the data refinement definition of the relation-
ship between the abstract and the concrete system states — to check
if the actual behavior of a Java program matches its abstract specifica-
tion. The emphasis on representing and comparing system states makes
this approach particularly attractive to object-oriented systems, which
often consist of a complex graph of objects that represent the entities
of a problem domain and the relationships between them. Thus, FineFit
demonstrates the advantages of a data refinement approach to testing.

1 Introduction

Many object-oriented programs consist of a complex graph of objects that rep-
resent the entities of the problem domain and the relationships between them.
We may say that these systems have a rich data model. To verify the correctness
of such systems we must explicitly map the concrete representation of the data
model to its abstract specification. Data refinement [3] is a theory that formally
captures the relationship between an abstract specification and its concrete rep-
resentation. In particular the notion of a retrieve relation formally captures the
relationship between abstract and concrete representations of states. Data re-
finement is the underlying theory behind proof-oriented techniques [11, 14] that
are used to develop safety critical systems [15, 7]. Unfortunately, proving data
refinement is not practical for most commercial systems because they are built
from existing off-the-shelf components for which no proofs of correctness exist.
Additionally, the common languages in which we develop these systems have
complicated semantics that make it very difficult to reason about formally.

However, we can use data refinement as an effective theory for testing. Instead
of trying to prove that an implementation is a data refinement of its specifica-
tion, we can use the specification as a test oracle (and, as we shall see, as a source
of test cases) to automatically check if the behavior of the program satisfies the
laws of data refinement. Yet, deducing the retrieve relation automatically from

Technical Report, KIT, 2010-13 160

the program is very difficult (indeed it brings back all the problems that are
related with formal proofs in today’s popular programming languages). Fortu-
nately, we can delegate this task to the programmer — after all she must know
how her data structures implement the system’s specification. By delegating the
implementation of the retrieve relation to the programmer we make the test-
ing framework flexible and scalable because she can control which parts of the
system to expose for the purpose of testing, even if the system is too large and
complicated for automatic analysis.

To demonstrate the feasibility of this approach we have developed FineFit.
FineFit is a proof of concept prototype that automatically tests Java programs
for data refinement. FineFit was inspired by the following tools and ideas:

1. Data refinement [3] provides the correctness criteria and the theoretical foun-
dation behind the testing algorithm.

2. Parnas tables [10] inspired us to use a tabular specification notation.
3. The Fit framework for integrated testing [9] gave us two important ideas:

(a) Representing tables in HTML.
(b) code fixtures that act as device drivers connecting the system under test

(SUT) to the testing framework.
4. The Alloy analyzer [5] from which we have taken:

(a) The relational semantics and the concrete syntax of the expressions that
we write inside the tables.

(b) The Kodkod relational constraint solver [12] to check for consistency,
generate test cases, and check for data refinement compliance.

To test a system using FineFit we first write the system’s specification as a
collection of HTML tables (which may be generated from any tool that supports
the HTML format, including Microsoft Word, Excel, Open-Office and Google
docs) that define the structure and the operations of the SUT.

FineFit translates the system’s specification into an Alloy relational model
and ensures that it is internally consistent. Next, FineFit finds an operation that
is available from the current system state, applies it to the SUT and checks if
the new state corresponds to the operation’s specification. This process continues
until either FineFit finds a discrepancy or until we decide to stop the process.
Figure 1 in Section 3.4 illustrates the testing process.

During testing, FineFit prints a trace that consists of the abstract snapshots
(states) and the operation calls of the SUT. Thus, when FineFit detects a dis-
crepancy we can review the entire history that led to the problem. This can
greatly help us to investigate the reason for the problem.

The rest of the paper is organized as follows. In Section 2 we demonstrate
FineFit using a concrete example. Then, in Section 3 we present FineFit in a
general context and explain the essential ideas of its implementation. Following
that, in Section 4 we describe the theory on which FineFit is based. In the last
section we discuss FineFit’s limitations, compare it to other related work and
describe ideas for future work.

D. Faitelson, S. Tyszberowicz

161 Technical Report, KIT, 2010-13

2 The case study

We illustrate FineFit with a case study taken from a commercial system that the
first author is currently developing. We wish to test a simple photo album that
consists of a sequence of photos which a user, Alice, can manipulate. Alice may
append a photo at the end of the sequence, remove photos (from any place in the
sequence) or replace photos by other photos. However, only the identifiers are
stored in the album; the actual photos are stored in a remote server. When Alice
is happy with her new album she presses ‘save’, at which point the difference
between the old and the new state of the album is sent to the server. The
difference consists of any new photos that were added to the album and the
unique identifiers of existing photos that were deleted from the album. The
server then stores the new photos and removes the deleted photos. For example,
assume that we have the following photos with their identifiers:

PID1 PID2 PID3 PID4

The scenario below demonstrates what happens when Alice interacts with the
photo album and how the variables that define the album’s state are affected
by the interaction. Each step in the scenario describes an action and shows the
state of the system immediately after Alice performed that action:

Action taken Album sequence toAdd existing toDelete

1 2 3

1
Alice already has two photos
in her album. These photos
are stored in the server.

{} {PID3, PID1} {}

2

Now Alice decides to add
a new photo. The photo is
placed into the first available
position (3).

{PID2} {PID3, PID1} {}

3
Next Alice remove the first
photo. This causes the other
photos to shift to the left.

{PID2} {PID3, PID1} {PID3}

4
Then Alice replaces the last
photo with a new photo
(PID4).

{PID4} {PID3, PID1} {PID3}

5

Finally Alice presses save.
As a result the server re-
ceives one new photo (PID4)
to add and one existing
photo id (PID3) to delete.

{} {PID1, PID4} {}

Data refinement based testing

Technical Report, KIT, 2010-13 162

2.1 Modeling the photo album

To model the photo album using FineFit we must define four things:

1. the basic entities (atoms) that appear in the album,
2. the state of the album,
3. the album’s invariant,
4. the operations of the album.

Atoms We use three basic entities to describe the album: photos, photo
identifiers and integers (which index the photos in the album). To simplify the
model we may assume that there is an injective mapping between photos and
photo identifiers, and use only photo identifiers in the model. We therefore define
two kinds of atoms:

Atom Scope
PID 3
Int 3

Because FineFit uses a finite constraint solver the size of our model must be
small. This is achieved by associating a scope with each atom that determines
its maximal number of instances. In this example we have decided to test systems
with at most three photo identifiers and three integers.

The album’s state We can describe the state of the photo album by capturing
the sequence of photo identifiers in the album and the content of the toAdd ,
existing and toDelete sets:

State
album seq PID
toAdd set PID
existing set PID
toDelete set PID

The album’s invariant Of course, not every combination of values for the
state’s components represents a valid album. For example, a photo cannot be
both new (i.e. it was not previously saved) and existing (i.e. it was previously
saved). In addition, the sequence of photos must be injective because the album’s
business logic forbids the same photo from appearing more than once in the
album. We use FineFit’s invariant table to define the album’s valid states:

Invariant
album in Int lone -> lone PID the album is an injective sequence
no toAdd & existing we cannot add an existing photo
toDelete in existing we can only delete existing photos
no toAdd & toDelete cannot add and delete the same photo
#album <= 3 no more than 3 photos

The invariant is the conjunction of the rows in the table. We use Alloy’s
notation to write the constraints and the expressions. Briefly, every expression

D. Faitelson, S. Tyszberowicz

163 Technical Report, KIT, 2010-13

is a relation (sets are relations of arity-1), the formula x in y stands for either
membership or inclusion, depending on whether x is a single atom or a relation,
the expression X lone -> lone Y represents the set of all injective functions
from X to Y, the formula no x means that the relation x has no tuples.

The album’s operations We define operations using operation tables. An
operation table consists of three major parts: a precondition header, a frame
column and a sequence of postcondition columns. The precondition is a predicate
that captures the states and inputs from which we may apply the operation. The
frame describes which parts of the state the operation may modify. Finally, the
postcondition consists of a set of equations that define the new value of each
component of the state as a function of the current state:

S' F1(S) F3(S)F2(S)

P1 P2 P3
P Q

co
nj
un
ct
io
ndisjunction

precondition

postcondition

fr
am
e

Meaning:

(P ∧ P1 ∧ (S ′ = F1(S))) ∨
(P ∧ P2 ∧ (S ′ = F2(S))) ∨
(Q ∧ P3 ∧ (S ′ = F3(S)))

To understand the meaning of the precondition header it is best to read it from
the bottom row towards the top row. The bottom row contains a separate leaf
predicate for each case of the operation’s behavior. Predicates that are common
to a group of cases are factored into the row above. In the example we have
three different cases P1, P2, and P3. The predicate P , which is located above
P1 and P2, represents a constraint that is common to both P1 and P2. There
is a postcondition column for each leaf predicate. Each postcondition column
contains an expression for each variable in the frame.

The following table is the complete specification of the addPhoto operation3:

#album < 3 #album = 3

OK PHOTO_EXISTSreport! OK ALBUM_FULL

toAdd

toDelete

album

toDelete - pid? toDeletetoDelete toDelete

toAddtoAddtoAdd + pid? toAdd

albumalbum.add[pid?] albumalbum.add[pid?]

truepid? in
album.elemspid? in toDeletepid? !in toAdd

+ existing

3 The operators +,-,& stand for union, set-difference, and intersection respectively;
the expression xs.add[y] appends y at the end of the xs sequence; the expression
xs.elems denotes the set of elements held in xs; the suffixes ? and ! denote respec-
tively input and output variables.

Data refinement based testing

Technical Report, KIT, 2010-13 164

The leftmost column contains the operation’s frame — the parts of the state
that the operation may change. The top two rows contain the operation’s pre-
condition. The precondition is divided into two major cases: the album is not
full or the album is full. The first major case is further divided into three sub
cases: the input photo is not already in the album, the input photo was previ-
ously deleted or the input photo already exists in the album. The column below
each case represents the operation’s postcondition in this case. Each row in the
postcondition column corresponds to the same row in the frame. For example,
the first column has the following meaning: if the album is not yet full and the
input photo is not already in the album then add the new photo to album and
to toAdd and set report ! to OK . The content of toDelete is not changed. The
existing set does not appear in the frame because it is not changed.

2.2 Implementing the photo album

The implementation of the photo album consists of two Java classes. The Photo
class consists of a status that says if the photo is new or existing (stored in the
server), and a string4 that holds the content of the image. The PhotoAlbum class
consists of a list of photos that defines the order of the photos in the album, and
a set that contains the photo identifiers of the photos that we should delete:

public class Photo {

public enum

Status {Exists, New};

Status status;

String image;

// operations ...

}

public class PhotoAlbum {

List<Photo> album;

Set<String> toDelete;

// operations ...

}

Unfortunately we cannot list the entire implementation, but the program’s classes
demonstrate that in practice there is no simple correspondence between the data
structures of the specification and the SUT.

2.3 Testing the photo album

In order to test the album we must perform the following steps:

1. Connect the album’s code to FineFit by writing a method (named retrieve)
that translates the concrete state into an instance of the abstract state.

2. Run the tests by creating and running a program that consists of the FineFit
library and the album’s code (see also Section 3.3).

4 To simplify the prototype we represent the image and the photo’s identifier using
the same string. In the actual system the photo’s identifier is calculated as a hash
of the bitmap image.

D. Faitelson, S. Tyszberowicz

165 Technical Report, KIT, 2010-13

We will describe the first step in Section 3.2 because it requires more background
on the structure of FineFit.

Testing FineFit first ensures that the specification is consistent. It then be-
gins testing the SUT by finding which operations and inputs may be called from
the current state, calling them and comparing their effect against the specifi-
cation. As the test runs, FineFit prints a trace that consists of the operation’s
name and inputs and the abstraction of the SUT’s state.

The trace represents the behavior of the SUT as seen through the retrieve
function. Thus, when we detect an error we have at our disposal the entire
sequence of operations and states that led to that error. This history is an
invaluable tool for understanding and correcting errors. Here is a trace that
ends with a state discrepancy — a difference between the behavior of the SUT
and the specification:

1 $ java PhotoAlbumModel

2 System is consistent.

3 init ->

4 album = []

5 toAdd = []

6 existing = []

7 toDelete = []

8 ...

9 removePhoto.SeqIdx0 ->

10 album = [[SeqIdx0, PID1]]

11 toAdd = []

12 existing = [[PID0], [PID1], [PID2]]

13 toDelete = [[PID0], [PID2]]

14 addPhoto.PID2 ->

15 album = [[SeqIdx0,PID1],[SeqIdx1,PID2]]

16 toAdd = [[PID2]]

17 existing = [[PID0], [PID1]]

18 toDelete = [[PID0]]

19 STATE DISCREPANCY

20 $

After declaring that the model is consistent (line 2) FineFit initializes the SUT
(line 3) and displays the resulting initial state (lines 4-7). The trace then proceeds
in the same fashion. After 30 calls, FineFit stops with a state discrepancy error
(line 19). The error is that after PID2 was deleted and then added back again
(line 14), it disappeared from existing (compare lines 12 and 17). In this case
the culprit is a bug in the implementation. When we add a previously deleted
photo, we mark it (mistakenly) as new.

3 FineFit

The FineFit testing framework consists of the following parts:

– A tabular modeling notation in which we specify the SUT.
– A relational constraint solver that we use for four purposes:

1. to check the consistency of the specification,
2. to calculate which operations are available from a given state,
3. to generate inputs for an operation we would like to apply,
4. to check for violations of data refinement.

In addition, the SUT must implement the following Java interface which
FineFit calls during the testing process:

public kodkod.Instance retrieve(kodkod.Universe universe);

Data refinement based testing

Technical Report, KIT, 2010-13 166

This method takes the universe of atoms of the abstract model and returns the
abstraction of the current SUT’s state constructed as a set of tuples from the
atoms in the universe. We show an example in Section 3.2.

3.1 The Kodkod relational constraint solver

Kodkod [12] is a Java library that implements a bounded relational constraint
solver. It is the engine on which the Alloy analyzer [5] is currently implemented.
Kodkod translates first order constraints over bounded relational terms into a
SAT problem, applies a SAT solver to the problem and translates the solutions
(if any) back into relational models. The Kodkod class library consists of the
following major classes:

Atom an uninterpreted object (often just strings) that represents the basic
entities of a specification.

Universe a set of atoms.
Tuple a sequence of atoms taken from a particular universe.
Expression either a relation or a relational expression such as union, intersec-

tion, join and so on.
Formula a first order logic constraint over expressions. For example, that one

relation is a subset of another relation.
Bounds an association of relations to the power set of all the tuples they can

take in a particular universe.
Instance an association of relations to particular sets of tuples.

In order to use Kodkod we follow these steps:

1. Create a universe and populate it with atoms. In our case study we create
two kinds of atoms, one for photo identifiers and one for integers.

2. Create the specification:
(a) Create the relations that describe the system. For example, a unary

relation PID that represents the set of all possible photo identifiers and
a binary relation toAdd that associates every state with the set of new
photos in this state.

(b) Create a formula that defines relationships between the relations. For
example, a formula that insists that in every state the intersection of
toAdd and existing is empty.

3. Create bounds for the relations by associating them with power sets of tuples.
For example, the PID relation is associated with the power set of the atoms
PID1,PID2,PID3.

4. Create a Kodkod solver, giving it the formula and the bounds object.
5. Ask the solver to find a solution, that is, to find from the set of all possible

bindings a particular subset that satisfies the formula.

If the solver finds a solution it returns an instance that contains the satisfying
bindings, otherwise it returns an error code indicating that no solution exists.

D. Faitelson, S. Tyszberowicz

167 Technical Report, KIT, 2010-13

3.2 Connecting the SUT to FineFit

Before FineFit can test the program we must implement the retrieve method that
translates the concrete program state into an instance of the abstract state5. In
our example this means that we have to translate the objects in the album and
toDelete containers into the equivalent set of tuples for each of the relations
album, toAdd , existing and toDelete:

1 public Instance retrieve(Universe universe) {

2 TupleFactory factory = universe.factory();

3 Instance instance = new Instance(universe);

4

5 List<Tuple> albumTuples = new ArrayList();

6 List<Tuple> toAddTuples = new ArrayList();

7 List<Tuple> existingTuples = new ArrayList();

8 int i = 0;

9 for (Photo p : album) {

10 albumTuples.add(factory.tuple(i, p.getImage()));

11 if (p.getStatus() == Photo.Status.New)

12 toAddTuples.add(factory.tuple(p.getImage()));

13 else if (p.getStatus() == Photo.Status.Exists)

14 existingTuples.add(factory.tuple(p.getImage()));

15 ++i;

16 }

17 List<Tuple> toDeleteTuples = new ArrayList();

18 for (String key : toDelete) {

19 toDeleteTuples.add(factory.tuple(key));

20 }

21 instance.add(Relation.binary("album"), factory.setOf(albumTuples));

22 // ... similarly for the other relations

23

24 return instance;

25 }

In lines 5-7 we create temporary lists to hold the tuples of each relation and then
(lines 9-21) traverse, first the album (lines 9-16), then the toDelete set (lines
18-21) and collect the appropriate tuples into the temporary lists. Finally (lines
21-22) we associate each relation with its list of tuples and return the result as
a Kodkod Instance object (line 24).

3.3 Detecting model inconsistencies

There is no more reason to believe that we can write error-free specifications
than there is to believe that we can write error-free programs. Therefore it is
important that we ensure that our specification is consistent before we start
testing. With the help of Kodkod we check two things:
5 As we have mentioned in Section 1, we delegate the responsibility of implementing

the retrieve relation to the programmer.

Data refinement based testing

Technical Report, KIT, 2010-13 168

1. That there exists at least one state that satisfies the system’s invariant.
Formally, we ask Kodkod to find a solution to the following constraint:

some s : State | inv [s]

If no model can satisfy this constraint then either the scope is too small or
we have a contradiction in the invariant. In both cases this means that the
specification has errors and cannot be used for testing.

2. That (at least within the given scope) every operation that starts from a
valid state (one that satisfies the invariant) ends in a valid state. Formally,
we ask Kodkod to find a solution to the negation of this requirement:

some s, s ′ : State | inv [s] and op[s, s ′] and ! inv [s ′]

If Kodkod can find a solution then there is a valid state from which the operation
op takes the system to an invalid state. This means that the specification has
errors and must be fixed before it can be used for testing. Once we have ensured
that the specification is consistent we can begin to test the SUT.

3.4 The testing procedure

Finefit

SUT

Spec

select applicable
operation based
on current state

find new abstract
state using the
retrieve function

1

2-4

5

6-7

Fig. 1. A schematic view of the testing procedure. The numbers refer to the steps of the
testing procedure. Steps 2 to 7 repeat in a loop until either FineFit finds a discrepancy
or the user decides to stop.

The testing procedure (illustrated in Figure 1) uses two variables, currentState
and nextState, to keep track of the SUT’s state before and after each operation.
The procedure consists of the following steps:

1. Initialize the SUT and set currentState to its initial state.

D. Faitelson, S. Tyszberowicz

169 Technical Report, KIT, 2010-13

2. Use Kodkod to find all the operations that may be applied from currentState.
3. If no operation can be applied then stop and report a deadlock error.
4. Otherwise, select at random6 one of the available operations, ask the SUT

to apply this operation and set nextState to the new SUT’s state.
5. Use Kodkod to check that the pair (currentState,nextState) satisfies the

operation’s specification.
6. If the pair does not satisfy the specification then stop and report a data

refinement error.
7. Otherwise, set currentState to nextState and go to step 2.

4 Data refinement

4.1 Systems as state based ADTs

Following [3] we represent a software system as a single abstract data type (ADT)
that consists of a set of states S and a collection of operations OP indexed over
the finite set I :

ADT = (S , (OPi)i∈I)

Each state consists of named components (the state variables) that are mapped
to some arbitrary values. Let V be a set of possible values and N be a finite set
of names. The state space of the system, Σ, is the set of all total functions from
N to V , that is Σ = N → V . The set of system states, S , is a subset of Σ, that
is S ⊆ Σ. Each operation is a relation between system states:

∀ i : I • OPi ∈ S ↔ S

We say that the ADT (S , (OPi)i∈I) is consistent if two conditions hold:

1. The set of system states is not empty:

S 6= ∅
2. For every operation OPi , if the operation moves the system from state s to

state s ′ and s is a valid system state, then s ′ must also be a valid system
state:

∀ s : S ; s ′ : Σ • (s, s ′) ∈ OPi ⇒ s ′ ∈ S

We can use different ADTs to describe the same system, depending on their
abstraction level. The difference in the abstraction level is both in the states and
in the operations of the ADT: a more abstract ADT will have states with less
details (each state will have fewer components) than a more concrete ADT. In
addition, a more abstract ADT will have operations that are less deterministic
than a more concrete ADT.

Data refinement formally captures what it means for a concrete ADT to
implement a more abstract ADT. The general idea is that for a concrete ADT
C to behave according to an abstract ADT A, each operation of C must simulate
its corresponding abstract operation. In the rest of this section we will explain
precisely what this means.
6 See also Section 5.4.

Data refinement based testing

Technical Report, KIT, 2010-13 170

4.2 Forward simulation

To say that a concrete operation COPi behaves according to an abstract oper-
ation AOPi , we first have to explain what is the relationship between concrete
and abstract states. Because a concrete state contains more details then an ab-
stract state, it is natural to think of the abstract state as being encoded in the
concrete state, and that therefore we should have a way of retrieving the abstract
state from the concrete state. A retrieve relation is a relation between concrete
and abstract states that defines how abstract states are retrieved from concrete
states. Given two ADTs A and C that represent the same system, and a retrieve
relation R that associates concrete states in C to their corresponding abstract
states in A, we say that COPi is a forward simulation of AOPi if the following
two conditions hold:

1. Every abstract state in AOPi ’s domain has a corresponding concrete state:

∀ a : dom AOPi • ∃ c : dom COPi • (c, a) ∈ R

2. For every concrete transition (c, c′), if the initial concrete state c corresponds
to an initial abstract state a, then there exists an abstract transition (a, a ′)
where the final abstract state a ′ corresponds to the final concrete state c′:

∀ a : dom AOPi ; c, c′ : SC • (c, c′) ∈ COPi ∧ (c, a) ∈ R ⇒
∃ a ′ : SA • (a, a ′) ∈ AOPi ∧ (c′, a ′) ∈ R

We can simplify this condition under two useful assumptions:

1. the concrete ADT is deterministic (i.e., its operations are functions),
2. the retrieve relation is a function.

In such a case the second condition of forward simulation simplifies to:

∀ a : dom AOPi ; c, c′ : SC • c ∈ dom COPi ∧ c ∈ dom R ⇒
COPi(c) ∈ dom R ∧ (R(c),R(COPi(c)) ∈ AOPi

In practice the first assumption applies to virtually all the cases where the
concrete ADT is a program, and in such cases the second assumption is good
software engineering. It would be very confusing if a single concrete state can be
interpreted as different abstract states.

4.3 Testing for data refinement

Assume now that we have a concrete program C that is currently in a particular
valid state c. Assume also that c can be mapped to a valid abstract state a
of an abstract operation OPA. We can check that the concrete operation OPC

behaves as specified by OPA by using the following procedure:

1. Apply OPC to the concrete system.

D. Faitelson, S. Tyszberowicz

171 Technical Report, KIT, 2010-13

2. If the operation results in a crash we have found a problem. Either the
precondition of OPA is too weak (a bug in the specification) or there is a
problem in the implementation OPC .

3. Otherwise, the operation terminates successfully in the state c′ = OPC (c).
4. If c′ is not in the domain of R then we have found a problem. Either there’s

a mistake in OPC or there’s a mistake in R.
5. Otherwise, we can check if (R(c),R(c′)) is a valid transition of OPA. If the

check fails, then we have found a problem. Either the abstract operation or
the concrete operation are wrong.

6. Otherwise, we can continue the test by taking c′ to be the new current
concrete state. Note that we already know that this state is in R’s domain.

5 Discussion

5.1 Limitations

Currently, we provide only a limited way to specify non deterministic operations
by defining overlapping cases in the operation’s precondition. However this is
only a problem of the current notation which we plan to address in the future.

Two more fundamental limitations are due to FineFit’s underlying constraint
solver: it cannot generate test cases for large data structures and it is not suitable
for numerical specifications. The reason is that the more atoms we have in the
model, the more time (and memory) it takes for Kodkod to find solutions.

Note however that the fact that FineFit cannot generate large test cases
(that is, data structures that contain many objects) does not mean that it is
not suitable for testing large systems (that is, systems that consist of many
complicated components). On the contrary, as others have already noted [5],
many kinds of errors can be illustrated on a small example and therefore will be
detected by FineFit’s testing strategy.

5.2 Performance

Even though it is possible to create models on which Kodkod performs badly
(SAT is NP-complete after all), in our experience Kodkod is quite fast as long
as the scope is small. For scopes of between 3 and 7 instances, the speed of
analyzing the consistency of the model and of finding solutions using the sat4j
SAT solver is on the order of a few tens of milliseconds on a 2.16 GHz Intel Core
2 Duo iMac.

As the size of the scope grows, the performance of course degrades expo-
nentially. However, there are several arguments why we should prefer a small
scope. First, even a small scope often generates a huge number of combinations
which means that we will be exploring a very large state space (certainly much
larger than anything we can hope to achieve by hand). Second, as a good testing
practice we should use the smallest possible scope that can exhibit the SUT’s
behavior, because this makes it much easier to understand the problems that the

Data refinement based testing

Technical Report, KIT, 2010-13 172

tests reveal. Finally, there is empirical evidence [1] to support Daniel Jackson’s
Small Scope Hypothesis: “Most bugs have small counterexamples” [5]. Thus, if
we focus on the small test cases we are likely to find most of the bugs quickly
and we will have a better chance at understanding them.

5.3 Related work

The idea of generating tests and a test oracle from a specification is not new. In
this section we compare FineFit to related works.

Fit [9] is an open source tool for enhancing collaboration in software devel-
opment. Fit automatically compares customers’ expectations to actual results.
It allows customers and testers to give examples of how a program should be-
have by writing these examples in HTML tables. Fit automatically checks those
examples against the actual program. Each Fit table is interpreted by a fixture
— a piece of code that is responsible for executing the SUT against the examples
in the tables. Fit provides a very simple (and therefore effective) platform inde-
pendent testing framework. However, the test cases must be derived manually
from the specification. This is a laborious and error prone process that must be
repeated every time the specification changes.

Parnas Tables [10] are tabular constructs that organize mathematical ex-
pressions, where rows and columns separate an expression into cases and each
table entry specifies either the result value for some case or a condition that
partially identifies some case. The tabular notation of FineFit is based on a
combination of ideas taken from Fit and from Parnas tables. However, the spe-
cific details of FineFit’s tabular notation are different from both tools. To the
best of our knowledge the structure and semantics of FineFit’s operation table
is original and does not appear in previous works.

TestEra [6] is a framework for automated testing of Java programs that
generates all non-isomorphic test cases within a given input size, and evaluates
them against a correctness criteria. As an enabling technology, TestEra uses
Alloy, and the Alloy Analyzer. Korat [8] has a similar purpose but it does not use
Alloy and instead uses its own unique solver for expressing structural invariants.
Both tools assume that the SUT can change its state to any arbitrary state
that they choose. Unfortunately for many commercial systems this approach is
not practical because the state of the component is often related to the state of
other components forcing us to change the state of the entire system just to test a
particular unit. In contrast, FineFit requires only that the component can report
its current state, which is much easier for the concrete system to support. This
makes FineFit more suitable than TestEra or Korat for testing large systems.

Spec Explorer [13] is a platform for writing model programs and using them
to verify and test reactive object-oriented systems. Spec explorer provides tools
for generating and visualizing test scenarios and for executing them against
the SUT. The main difference between FineFit and Spec Explorer is that in
Spec Explorer the state is an opaque object (often identified with a simple label
whereas in FineFit a state has an internal structure and is more similar to an
actual program state. Thus, Spec Explorer is better suited for testing reactive

D. Faitelson, S. Tyszberowicz

173 Technical Report, KIT, 2010-13

systems while FineFit is better suited for testing data processing system where
as the system moves from state to state we are more interested in the evolution
and integrity of the data structures in each state.

Verification based testing (VBT) is a technique for generating test cases from
correctness proofs. In [4] this idea is implemented using the KeY verification sys-
tem [2]. KeY is intended for verifying the correctness of security-critical Java and
Java Card programs. The idea is that the structure of a proof tree corresponds
to the possible execution paths of the program. It is then possible, by using a
constraint solver, to calculate the test data that will force the program to follow a
particular execution. The benefit of a VBT approach is that it can guarantee the
coverage of the code (given suitable coverage criteria). However, the drawbacks
of VBT are that it requires a formal semantics of the programming language and
that the test oracle is platform specific. Unfortunately, many popular languages
have a complicated semantics that changes as they evolve. As a result we must
constantly update the VBT framework to support the changes in the language.
We must also implement a VBT framework for each new language. Finally, when
we change the language (perhaps because we have to port the program to a dif-
ferent platform) we must rewrite its specification. In contrast, a FineFit model
remains the same regardless of the SUT’s platform.

5.4 Future work

The FineFit framework is currently under development. We have implemented its
essential core and demonstrated that the approach works in practice. However,
we have not yet completed its user interface. Once completed, we plan to release
FineFit as an open source project. In the rest of this section we discuss the
research ideas that we would like to explore in future versions.

User defined exploration heuristics Currently FineFit decides which opera-
tion to apply by picking at random one that is applicable in the current state.
However, in many cases it can be more effective to guide this process. For ex-
ample, we may use a Markov chain to define the probabilities of operations
according to the system’s state. This way we can create behavioral profiles that
match the behavior of actual users or focus the exploration to particular areas of
the application. We would like to implement a user defined Markov chain model
in a future version of FineFit.

Testing reactive systems Reactive systems respond to events that arrive from
its environment. That is, the tester is no longer the only entity that can change
the system’s state. We would like to extend FineFit to support testing of reactive
systems.

Black boxes Often when a system crashes the reason is buried somewhere in
its past. If we record the trace of the last N states and operations in a black box
(either a log file or an area of the memory that we can retrieve from a core file
when the program crashes), we can later replay the trace on the specification to
find the first point at which the system misbehaved. We plan to add a replay
feature to FineFit in a future version.

Data refinement based testing

Technical Report, KIT, 2010-13 174

Supporting different languages Currently FineFit supports the testing of Java
programs. However, by implementing the framework as a client/server system
and defining a platform independent notation (for example XML or JSON) to
represent atoms and tuples we can support languages other than Java.

References

1. A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the “small scope
hypothesis”. Technical report, In POPL’02, 2002.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

3. W. de Roever and K. Engelhardt. Data Refinement: model-oriented proof meth-
ods and their comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

4. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In Tests and
Proofs (TAP), pages 169–188, 2007.

5. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

6. S. Khurshid and D. Marinov. TestEra: specification-based testing of Java programs
using SAT. Automated Software Engineering, 11(4):403–434, 2004.

7. T. Lecomte, T. Servat, and G. Pouzancre. Formal methods in safety-critical railway
systems. In Brazilian Symposium on Formal Methods, 2007.

8. A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A tool for generat-
ing structurally complex test inputs. In the International Conference on Software
Engineering, pages 771–774. IEEE, 2007.

9. R. Mugridge and W. Cunningham. Fit for Developing Software: framework for
integrated tests. Prentice Hall, 2005.

10. D. L. Parnas. Tabular representation of relations. CRL Report 260, Research
Institute of Ontario (TRIO), McMaster University, 1992.

11. K. Robinson. The B method and the B toolkit. In Algebraic Methodology and
Software Technology, pages 576–580. Springer, 1997.

12. E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4424 of LNCS,
chapter 49, pages 632–647. Springer, 2007.

13. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-
manson. Model-based testing of object-oriented reactive systems with Spec Ex-
plorer. In Formal Methods and Testing, volume 4949 of LNCS, pages 39–76.
Springer, 2008.

14. J Woodcock and J Davies. Using Z: Specification, Refinement, and Proof. Prentice
Hall, 1996.

15. J. Woodcock, S. Stepney, D. Cooper, J. Clark, and J. Jacob. The certification of
the Mondex electronic purse to ITSEC level E6. Formal Aspects of Computing,
2007.

D. Faitelson, S. Tyszberowicz

175 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for
Quantified First-order Logic Formulas

Christoph D. Gladisch?

University of Koblenz-Landau
Department of Computer Science

Germany

Abstract. The generation of models, i.e. interpretations, that satisfy
first-order logic (FOL) formulas is an important problem in different ap-
plication domains, such as, e.g., formal software verification, testing, and
artificial intelligence. Satisfiability modulo theory (SMT) solvers are the
state-of-the-art techniques for handling this problem. A major bottleneck
is, however, the handling of quantified formulas.
Our contribution is a model generation technique for quantified formu-
las that is powered by a verification technique. The model generation
technique can be used either stand-alone for model generation, or as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier
elimination in this sense is sound for showing satisfiability but not for
refutational or validity proofs. A prototype of this technique is imple-
mented.

1 Introduction

Showing the satisfiability of a first-order logic (FOL) formula means to show
the existence of an interpretation in which the formula evaluates to true. This
is an important and long studied problem in different application domains such
as formal software verification, software testing, and artificial intelligence. In
software verification and testing the models, i.e. interpretations, are used as
counter examples to debug programs and specifications and to generate test
data respectively.

Satisfiability modulo theory (SMT) solvers are the state-of-the-art techniques
for showing satisfiability of FOL formulas and to generate models for FOL for-
mulas. A major bottleneck is, however, the handling of quantifiers (see, e.g., [7,
19, 11, 20]). Quantifiers often lead to problems that are not in the decidable frag-
ments of SMT solvers. In such cases an SMT solver returns the result unknown,
which means that the solver cannot determine if the formula is satisfiable or not.

We propose a model generation technique that is not explicitly restricted to
a specific class of formulas and which can therefore solve more general formulas
than SMT solvers can solve. As a motivating example, assume we want to show
the satisfiability of the formula

∀x.(x > 0→ prev(next(x)) = x) (1)
? gladisch@uni-koblenz.de

Technical Report, KIT, 2010-13 176

where prev and next are uninterpreted function symbols. Some state-of-the-art
SMT solvers — concretely we have tested Z3 [6], CVC3 [1], Yices [10, 9] — are in
contrast to the proposed technique not capable to solve this formula. The reason
is that this formula is not in the decidable fragment of the solvers because it
combines arithmetics, uninterpreted functions, and quantification.

The proposed technique is also capable of generating only partial interpreta-
tions that satisfy only the quantified formulas, and return a residue of ground
formulas that is to be shown satisfiable. In this mode the technique acts as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier elimi-
nation in this sense is sound for showing satisfiability but not for refutational or
validity proofs. However, for handling of quantifiers in refutational and validity
proofs powerful instantiation based techniques already exist. These can be com-
bined with the proposed technique in order to create semi-decision procedures.

While model generation is not a new idea, the novelty of our approach are (1)
the choice of language to represent (partial) interpretations, (2) the technique
for construction of models, and (3) the means to evaluate (quantified) formulas
under these interpretations. Since satisfiability solving and model generation
for ground formulas is already well studied, we concentrate on the handling of
quantified formulas.

Furthermore we would like to motivate the importance of satisfiability solving
for software verification and testing. Software verification is a costly task mainly
because programs and specifications have bugs and also because annotations
such as invariants are often too weak to show desired program properties. We
experience that during software verification most time is spend with fixing and
adjusting the programs, specifications, and annotations. It is therefore invaluable
to detect if verification conditions have counter examples. This requires, however,
the ability to show the satisfiability of formulas that often contain quantifiers.
The generation of counter examples is further important in counter example
guided abstraction refinement (CEGAR) [4] and for checking the consistency, i.e.
contradiction-freeness, of axiomatizations and of preconditions in specifications.
Once a program is correct and annotations are strong enough a state-of-the-art
verification tool can afterwards prove the correctness of the program usually
automatically.

1.1 Background and Related Work

One has to distinguish between different quantifiers in different contexts, namely
between those that can be skolemized and those that cannot be skolemized. For
instance, in an attempt to show the validity of the formula ∀x.ϕ(x), the variable
x can be skolemized, i.e. replaced by a fresh constant, because all symbols of the
signature are implicitly universally quantified in this context. When showing the
validity of ∃x.ϕ(x), then skolemization is not possible. In contrast, when show-
ing satisfiability, then skolemization is allowed for ∃x.ϕ(x) but not for ∀x.ϕ(x).
Thus, assuming the formulas being in prenex form, the tricky cases are the han-
dling of (a) existential quantification when showing validity and (b) universal

C. Gladisch

177 Technical Report, KIT, 2010-13

quantification when showing satisfiability. In order to handle case (a) some in-
stantiation(s) of the quantified formulas can be created hoping to complete the
proof. Soundness is preserved by any instantiation. The situation in case (b) is,
however, worse when using instantiation-based methods, because these methods
are sound only if a complete instantiation of the quantified formula is guaranteed.

A popular instantiation heuristic is E-matching [19] which was first used in
the theorem prover Simplify [8]. E-matching is, however, not complete in general.
In general a quantified formula ∀x.ϕ(x) cannot be substituted by a satisfiability
preserving conjunction ϕ(t0)∧ . . .∧ϕ(tn) where t0 . . . tn are terms computed via
E-matching. For this reason Simplify may produce unsound answers (see also
[17]) as shown in the following example.

∀h.∀i.∀v.rd(wr(h, i, v), i) = v (2)

∀h.∀j.0 6 rd(h, j) ∧ rd(h, j) 6 232 − 1 (3)

Formula (2) is an axiom of the theory of arrays and (3) specifies that all array
elements of all arrays have values between 0 and 232− 1. The first axiom is used
to specify heap memory in [18]. Formula (3) seems like a useful axiom to specify
that all values in the heap memory have lower and upper bounds, as it is the
case in computer systems. However, the conjunction (2)∧ (3) is inconsistent, i.e.
it is false, which can be easily seen when considering the following instantiation
[h := wr(h0, k, 232), j := k], (see [18]). Simplify, however, produces a counter
example for ¬((2) ∧ (3)), which means that it satisfies the false formula (2) ∧
(3). E-matching may be used for sound satisfiability solving when a complete
instantiation of quantifiers is ensured. For instance, completeness of instantiation
via E-matching has been shown for the Bernays-Schönfinkel class in [12]. An
important fragment of FOL for program specification which allows a complete
instantiation is the Array Property Fragment [3]. E-matching is used in state-
of-the-art SMT solvers such as Z3 [6], CVC3 [1], Yices [10, 9], and others (see
[5]). Formula (1) which is solvable with our technique is, however, neither in the
Bernays-Schönfinkel class nor in the Array Property Fragment.

Another set of approaches for finding instantiations of quantified formulas
is based on free-variables (see e.g. [14]). These approaches focus, however, on
validity or respectively unsatisfiability proofs and not on satisfiability solving.
More precisely, they don’t guarantee a complete instantiation of quantifiers.

Satisfiability of a formula can be shown by weakening the formula with ex-
istential quantifiers and then showing its validity, instead of satisfiability. This
idea is followed in [22] for proving the existence of a state that reveals a software
bug. The approach uses free variables in order to compute instantiations of the
existentially quantified variables.

Quantifier elimination techniques, in the traditional sense, replace quantified
formulas by equivalent ground formulas, i.e. without quantifiers. Popular meth-
ods are, e.g., the Fourier-Motzkin quantifier elimination procedure for linear ra-
tional arithmetic and Cooper’s quantifier elimination procedure for Presburger
arithmetic (see, e.g., [13] for more examples). These techniques are, in contrast
to the proposed technique, not capable of eliminating the quantifier in, e.g., (1).

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 178

Since first-order logic is only semi-decidable, equivalence preserving quantifier
elimination is possible only in special cases. The transformation of formulas by
our technique is not equivalence preserving. The advantage of our technique is,
however, that it is not restricted to a certain class of formulas.

Finally, Finite Model Finding methods regard the finite domain version of
the satisfiability problem in first-order logic. These methods were developed
primarily in the ’90ies and in some later work such as [23]. Our approach handles,
however, also infinite domains.

Structure of the paper. In Section 2 the basic idea of our approach is ex-
plained. In Section 3 the underlying formalism of our approach is introduced.
The main sections are Section 4 and 5 where the approach is described in more
detail and where we identify the crucial problems that have to be solved. The
solution to the problems described in Section 4 is given in form of a theorem
and the soundness of the theorem is proved. In Section 6 we report on our pre-
liminary experiments with our approach and provide conclusions and further
research plans.

2 The Basic Idea of our Approach

The basic idea of our approach is to generate a partial FOL model in which a
quantified formula that we want to eliminate evaluates to true. A set of quantified
formulas can be eliminated, i.e. evaluated to true, by successive extensions of
the partial model. This approach can be continued also on ground formulas
to generate complete models. While this basic idea is simple, the interesting
questions are: how to represent the interpretations, how to generate (partial)
models, and what calculus is suitable in order to evaluate formulas under those
(partial) interpretations.

The approach that we suggest is to use programs to represent partial models
and to use weakest precondition computation in order to evaluate the quanti-
fied formulas to true. Weakest precondition is a well-known concept in formal
software verification and symbolic execution based test generation. A weakest
precondition wp(p, ϕ), where p is a program and ϕ is a formula, expresses all
states such that execution of p in any of these states results in states in which ϕ
evaluates to true. Here, program states and FOL interpretations are understood
as the same concepts. Our approach is to generate for a given quantified formula
ϕ a program p such that the final states of p satisfy ϕ. Thus a technique for
program generation is one of our contributions.

For example, in order to solve (1), we could generate the following program
(assuming, e.g., JAVA-like syntax and semantics):

for(i=0;true;i++){ next[i]=new T(); next[i].prev=i; } (4)

and compute the weakest precondition of (1) with respect to this program, i.e.
wp((4), (1)). Using a verification calculus the weakest precondition of the quanti-
fied subformula can be evaluated to true. Thus, effectively the quantified formula

C. Gladisch

179 Technical Report, KIT, 2010-13

is eliminated and a partial interpretation represented in form of a program is
obtained.

A typical programming language such as JAVA is, however, not directly suit-
able for this task because function and predicate symbols are usually not repre-
sentable in such languages. A verification calculus may also require extensions
because loops are usually handled by the loop invariant rule and the loop invari-
ant may introduce new quantified formulas.

A language and a calculus that are suitable for our purpose exist, however, in
the verification system KeY. The language consists of so-called updates. In the
following sections we introduce this language and describe our technique for con-
struction of updates that evaluate quantified formulas to true while minimizing
the chance of introducing new quantified formulas.

3 KeY’s Dynamic Logic with Updates

The KeY system [2, 16] is a verification and test generation system for a subset
of JAVA. The system is based on the logic JAVA CARD DL, which is an instance
of Dynamic Logic (DL) [15]. Dynamic Logic is an extension of first-order logic
with modal operators. The ingredients of the KeY system that are needed in this
paper are first-order logic (FOL) extended by the modal operators updates [21].

Notation. We use the following abbreviations for syntactic entities: V is the
set of (logic) variables; Σf is the set of function symbols; Σf

r ⊂ Σf is the
set of rigid function symbols, i.e. functions with a fixed interpretation such as,
e.g., ’0’, ’succ’, ’+’; Σf

nr ⊂ Σf is the set of non-rigid function symbols, i.e.
uninterpreted functions; Σp is the set of predicate symbols; Σ is the signature
consisting of Σf ∪Σp; TrmF OL is the set of FOL terms; Trm is the set of DL
terms; FmlF OL is the set of FOL formulas; Fml is the set of DL formulas; U is
the set of updates; .= is the equality predicate; and = is syntactic equivalence.
The following abbreviations describe semantic sets: D is the FOL domain or
universe; S is the set of states or equivalently the set of FOL interpretations. To
describe semantic properties we use the following abbreviations: vals(t) ∈ D is
the valuation of t ∈ Trm and vals(u) ∈ S is the valuation of u ∈ U in s ∈ S;
s � ϕ means that ϕ is true in state s ∈ S; � ϕ means that ϕ is valid, i.e. for all
s ∈ S, s � ϕ; and ≡ is semantic equivalence.

Updates capture the essence of programs, namely the state change computed
by a program execution. States and FOL interpretations are the same concept.
An update changes the interpretation of symbols Σf

nr such as uninterpreted
functions. Hence, updates represent partial states and can be used to repre-
sent (partial) models of formulas. The set Σf

r represents rigid functions whose
interpretation is fixed and cannot be changed by an update.

For instance, the formula ({a := b}a = c) ∈ Fml , where a ∈ Σf
nr and

b, c ∈ Σf consists of the (function) update a := b and the application of the
update modal operator {a := b} on the formula a = c. The meaning of this update
application is the same as that of the weakest precondition wp(a := b, a = c), i.e.

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 180

it represents all states such that after the assignment a := b the formula a = c
is true — which is equivalent to b = c.

Definition 1. Syntax. The sets U, Trm and Fml are inductively defined as the
smallest sets satisfying the following conditions. Let x ∈ V ; u, u1, u2 ∈ U ; f ∈
Σf
nr; t, t1, t2 ∈ Trm; ϕ ∈ Fml.

• Updates. The set U of updates consists of: neutral update ε; function updates
(f(t1, . . . , tn) := t), where f(t1, . . . , tn) is called the location term and t is
the value term ; parallel updates (u1 ||u2); conditional updates (if ϕ; u);and
quantified updates (for x; ϕ; u).
• Terms. The set of Dynamic Logic terms includes all FOL terms, i.e. Trm ⊃
TrmFOL; and {u}t ∈ Trm for all u ∈ U and t ∈ Trm.
• Formulas. The set of Dynamic Logic formulas includes all FOL formulas,

i.e. Fml ⊃ FmlFOL; {u}ϕ ∈ Fml for all u ∈ U and ϕ ∈ Fml; sequents Γ =⇒
∆ ∈ Fml, where Γ,∆ ⊂ Fml; and all ϕ ∈ Fml are closed by quantifiers, i.e.
ϕ has no free variables.

A sequent Γ =⇒ ∆ is equivalent to the formula (γ1∧. . .∧γn)→ (δ1∨. . .∨δm),
where γ1, . . . , γn ∈ Γ and δ1, . . . , δm ∈ ∆. Sequents are normally, e.g. in [2] , not
included in the set of formulas. However, in this work it is convenient to include
them to the set of formulas as syntactic sugar .

Definition 2. Semantics. We use the notation from Def. 1, further let s, s′ ∈ S;
v, v1, v2 ∈ D; x, xi, xj ∈ V ; and ϕ(x) and u(x) denote a formula resp. an update
with an occurrence of x.

Terms and Formulas

• vals({u}t) = vals′(t), where s′ = vals(u)
• vals({u}ϕ) = vals′(ϕ), where s′ = vals(u)

Updates

• s = vals(ε)
• s′ = vals(f(t1, . . . , tn) := t), where s′ = s except the interpretation of fs

′
is

changed such that vals′(f(t1, . . . , tn)) = vals(t)
• s′ = vals(u1;u2), there is s′′ with s′′ = vals(u1) and s′ = vals′′(u2)
• s′ = vals(u1 ||u2). We define s′ by the interpretation of terms t.

Let v0 = vals(t), v1 = vals({u1}t), and v2 = vals({u2}t).
If v0 6= v2 then vals′(t) = v2 else vals′(t) = v1.

• s′ = vals(if ϕ; u), if vals(ϕ) = true then s′ = vals(u), otherwise s′ = s.
• Intuitively, a quantified update (for x; ϕ(x); u(x)) is equivalent to the infi-

nite composition of parallel updates (parallel updates are associative):

. . . || (if ϕ(xi); u(xi)) || (if ϕ(xj); u(xj)) || . . .
satisfying some global order � such that β(xi) � β(xj), where β : V → D.

C. Gladisch

181 Technical Report, KIT, 2010-13

A complete and formal definition of quantified updates cannot be given in
the scope of this paper; we refer the reader to [21, 2] for a complete definition
of the language and the simplification calculus. In the following some examples
are shown of how updates, terms, and formulas are evaluated in KeY respecting
the given semantics in Def 2.

• {f(1) := a}f(2) = f(1) simplifies to f(2) = a.
• {f(b) := a}P (f(c)) simplifies to (b .= c→ P (a)) ∧ (¬b .= c→ P (f(c))).
• {f(a) := a}f(f(f(a))) simplifies to a.
• {u1; f(t1, . . . , tn) := t} is equivalent to {u1 || f({u}t1, . . . , {u}tn) := {u}t}.
• {f(1) := a || f(2) := b}f(2) = f(1) simplifies to b = a.
• {f(1) := a || f(1) := b}f(2) = f(1) simplifies to f(2) = b, i.e. the last update

wins in case of a conflict.
• {if ϕ; f(b) := a}P (f(c)) simplifies to ϕ→ {f(b) := a}P (f(c)).
• {for x; 0 6 x ∧ x 6 1; f(x) := x} is equivalent to {f(1) := 1 || f(0) := 0}.

4 Model Generation by Iterative Update Construction

In order to show the satisfiability of a formula φin, our approach is to generate
an update u, such that � {u}φin. If such an update exists, then φin is satisfiable
and the update represents a model of φin.

Our main contribution is a technique for generating (partial) models for
quantified formulas. As this work was developed in the context of KeY which
is based on a sequent calculus, we regard the model generation problem of a
quantified formula ∀x.φ(x) in a sequent ϕ = (Γ,∀x.φ(x) =⇒ ∆). Such sequents
occur frequently as open branches of failed proof attempts. The reason for proof
failure is often unclear and it is desired to determine if ϕ has a counter example,
i.e. if a model exists for ¬ϕ. The goal is therefore given by the following problem
description.

Definition 3. Problem Description. Given a sequent (Γ,∀x.φ(x) =⇒ ∆) the goal
is to generate an update u such that:

({u}(Γ,∀x.φ(x) =⇒ ∆)) ≡ (Γ ′, true =⇒ ∆′) (5)

If this problem is solved by a technique, then this technique can be applied
iteratively to all quantified formulas occuring in Γ and ∆ resulting in a sequent
Γ ′′ =⇒ ∆′′ that consists only of ground formulas. Note that non-skolemizable
quantified formulas occuring in ∆ are those with existential quantifiers and
they can be moved to Γ using the following equivalence: (Γ =⇒ ∃x.φ(x), ∆) ≡
(Γ,∀x.¬φ(x) =⇒ ∆).

We have implemented different algorithms that follow this approach. Unfor-
tunately, only in rare cases the problem formulated in Def. 3 was solved by early
algorithms. Based on experiments with early algorithms we have identified two
important problems that we state in form of the following informal proposition.

Proposition 1. The following description follows the notation of Def. 3.

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 182

a) In general cases of ∀x.φ(x), it is not feasible to construct an update u such
that � {u}∀x.φ(x), without analysing the semantic properties of the matrix
φ(x).

b) The theorem prover defined in [2] is not sufficiently powerful to simplify
(Γ ′, {u}∀x.φ(x) =⇒ ∆′) to (Γ ′, true =⇒ ∆′) if � {u}∀x.φ(x) and u is a
quantified update.

Some possitilities to analyse the semantic properties of φ(x) are to test in-
stances of φ(x) or to use free variables (see, e.g., [14]). We have experimented
with the latter approach and could solve problem (a) in several cases. The reason
for problem (b) is that in order to simplify the matrix φ(x) the sequent calculus
requires semantic information about φ(x) to be available on the sequent level,
i.e. in the formulas Γ ∪∆.

We have implemented an algorithm that solves both problems of Proposi-
tion 1. The algorithm itself is not provided in this paper; instead we provide
a theorem that formalizes only the crucial problem simplification technique of
the algorithm. The simplification technique is the core of the algorithm and we
therefore prove the soundness of this simplification.

For the construction of the updates it is sometimes necessary to introduce and
axiomatize fresh function symbols. For instance, it may be desired to introduce
a fresh function notZero ∈ Σf with the axiom ¬(notZero .= 0). With this axiom
it is, e.g., possible to write an update a := b + notZero, with a, b ∈ TrmFOL,
expressing a general assignment to a with a value different from b. Each update
ui is therefore associated with an axiom αi.

Definition 4. Given a sequent ϕ = (Γ,∀x.φ(x) =⇒ ∆), where Γ,∆ ⊂ Fml and
φ(x) is an arbitrary formula with an occurrence of x ∈ V , i.e. φ is not restricted
to φ ∈ Σp. The formulas ψm, ϕ′m, ϕm ∈ Fml, for m ∈ N, are defined recursively
as:
• ϕ0 = (Γ,∀x.φ(x) =⇒ ∆) ϕm+1 = {um}(αm → ϕm)
• ϕ′0 = (Γ, true =⇒ ∆) ϕ′m+1 = {um}(αm → ϕ′m)
• ψ0 = (Γ =⇒ ∀x.φ(x), ∆) ψm+1 = {um}(αm → ψm)

Definition 4 describes an abstract search technique for a sequence of updates
um ; . . . ;u0, m ∈ N, for solving the problem of Def. 3. The updates um ; . . . ;u0

constitute the update u in Def. 3 and ϕ0 ≡ ϕ is the original sequent that is to
be shown falsifiable. In the following theorem we assume γ = ∀x.φ(x).

Theorem 1. Let m ∈ N, u0, . . . , um ∈ U ; α0, . . . , αm ∈ Fml; let ϕ = (Γ, γ =⇒ ∆)
and ψm, ϕ′m, ϕm ∈ Fml be defined according to Def. 4, then

i. � ψm ↔ (ϕ′m ↔ ϕm)
ii. If there is sm ∈ S such that sm � ¬ϕm, then there exists s ∈ S with

s = valsm
(um; . . . ;u1; ε) and s � ¬ϕ.

The theorem describes under what condition a sequence (not sequent) of
update and axiom pairs (u0, α0), . . . , (um, αm) evaluates a quantified formula to
true; and the theorem describes how this sequence represents a partial model.

C. Gladisch

183 Technical Report, KIT, 2010-13

Formula ¬ϕ is the formula for which a model shall be generated. Statement
(ii) of Theorem 1 states that if there is a model sm ∈ S for a formula ¬ϕm,
according to Def. 4, then from sm a model for ¬ϕ can be derived by evaluation
of the updates u0, . . . , um. Hence, ¬ϕm can be used to show the satisfiability of
¬ϕ.

For instance, let ϕ ≡ (¬a = b), then a suitable pair (u0, α0) to construct ϕ1 is,
e.g. (a := b, true). In this case ϕ1 has the form {a := b}(true→ (¬a = b)) which
can be simplified to false. Hence, any state s1 ∈ S satisfies s1 � ¬ϕ1 which
implies that ¬ϕ is satisfiable and a model s ∈ S for ¬ϕ is s = vals1(a := b).
Note, that chosing an update is a heuristic, e.g. the pair (b := a, true) or the
pair (a := 1 || b := 1, true) are also suitable candidates.

An important property of the statement for the construction of an update
search procedure is that soundness of the statement is preserved by any pair
(u, α). For instance, consider the pair (a := 1 || b := 2, true) or the pair (a :=
b, false). In both cases ϕ1 evaluates to true. Hence, there is no s1 ∈ S such that
s1 � ¬ϕ1 and therefore no implication is made regarding the satisfiability of ϕ.

Based on statement (i) an algorithm can be constructed for the generation
of models for ground formulas. The challenge is, however, to generate a model
that satisfies a quantified formula that cannot be skolemized. If ψm is valid then
the model generation problem for ¬ϕm can be replaced by the model generation
problem for ¬ϕ′m because ϕm and ϕ′m are equivalent. Considering Def. 4, the
statement is interesting because in ϕ′m the quantified formula is eliminated, i.e. it
is replaced by true. Together with Statement (ii), ¬ϕ′m can be used to generate
a model for ¬ϕ.

The problem is to check if ϕm ≡ ϕ′m, which is a generalization of the problem
in Def. 3. Theorem 1 states that the problem ϕm ≡ ϕ′m can be solved by a
validity proof of ψm. This allows solving the problems described in Proposition
1 because the quantified formula in ψm occurs negated wrt. ϕm and can therefore
be skolemized — note that (Γ,∀x.φ(x) =⇒ ∆) ≡ (Γ =⇒ ¬∀x.φ(x), ∆). When
ψm is skolemized, then it is (a) easy to analyse the semantics of φ(sk), where
sk ∈ Σf is the skolem function, and (b) the propositional structure of φ(sk)
can be flattened to the sequent level which is necessary to simplify quantified
updates. In this way both problems described in Proposition 1 are solved.

The approach can be generalized for the generation models for ground for-
mulas by using the more general Def. 5 instead of Def. 4 in Theorem 1.

Definition 5. Given a sequent ϕ = (Γ, γ =⇒ ∆), where Γ,∆ ⊂ Fml and γ ∈
Fml, let the formulas ψm, ϕ′m, ϕm ∈ Fml, for m ∈ N, be defined recursively as
follows:
• ψ0 = (Γ =⇒ γ,∆) ψm+1 = {um}(αm → ψm)
• ϕ′0 = (Γ, true =⇒ ∆) ϕ′m+1 = {um}(αm → ϕ′m)
• ϕ0 = (Γ, γ =⇒ ∆) ϕm+1 = {um}(αm → ϕm)

In the proof of Theorem 1 we use the following lemma.

Lemma 1. Weakening Update. Let u ∈ U and ϕ ∈ Fml. If � ϕ, then � {u}ϕ.

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 184

Proof of Lemma 1. Since for any s ∈ S, holds s � ϕ, it is also the case for
s′ = vals(u) that s′ � ϕ because s′ ∈ S. �
Proof of Theorem 1. The proof of Theorem 1 is based on induction on m.
Induction Base (m = 0). (i) Validity of

(Γ =⇒ ∀x.φ(x), ∆︸ ︷︷ ︸
ψ0

)↔ ((Γ, true =⇒ ∆︸ ︷︷ ︸
ϕ′

0

)↔ (Γ,∀x.φ(x) =⇒ ∆︸ ︷︷ ︸
ϕ0

))

can be shown by using propositional transformation rules. In the following we
simplify ϕ′0 ↔ ϕ0 and derive by equivalence transformations ψ0.

((Γ ∧ true)→ ∆)↔ ((Γ ∧ ∀x.φ(x))→ ∆)
(Γ → ∆)↔ ((Γ ∧ ∀x.φ(x))→ ∆)

(Γ → ∆)→ ((Γ ∧ ∀x.φ(x))→ ∆) ((Γ ∧ ∀x.φ(x))→ ∆)→ (Γ → ∆)
((Γ → ∆) ∧ Γ ∧ ∀x.φ(x))→ ∆ (((Γ ∧ ∀x.φ(x))→ ∆) ∧ Γ)→ ∆

(∆ ∧ Γ ∧ ∀x.φ(x))→ ∆ ((∀x.φ(x)→ ∆) ∧ Γ)→ ∆
(∆ ∧ Γ)→ ∆ ((∀x.φ(x)→ ∆) ∧ Γ)→ ∆

∆→ ∆ ((¬∀x.φ(x) ∧ Γ)→ ∆) ∧ ((∆ ∧ Γ)→ ∆)
true (¬∀x.φ(x) ∧ Γ)→ ∆

Γ → (∀x.φ(x) ∨∆)

Since ϕ0 = ϕ and s = vals0(ε) = s0 statement (ii) is trivially true.
Induction Step (m > 0). (i) Assuming � ψm ↔ (ϕ′m ↔ ϕm), we want to show
� ψm+1 ↔ (ϕ′m+1 ↔ ϕm+1). If � ψm ↔ (ϕ′m ↔ ϕm), then

� αm → (ψm ↔ (ϕ′m ↔ ϕm)) (6)

for any αm ∈ Fml . We use the equivalence

(A→ (B ↔ C))↔ ((A→ B)↔ (A→ C))

to derive the following statement that is equivalent to (6)

� ((αm → ψm)↔ ((αm → ϕ′m)↔ (αm → ϕm))) (7)

Due to Lemma 1 (ii), (7) implies

� {um}((αm → ψm)↔ ((αm → ϕ′m)↔ (αm → ϕm))) (8)

that can be simplified by update propagation to

� ({um}(αm → ψm)↔ ({um}(αm → ϕ′m)↔ {um}(αm → ϕm))) (9)

Statement 9 is equivalent to � ψm+1 ↔ (ϕ′m+1 ↔ ϕm+1).
(ii) Assume there is sm+1 ∈ S such that sm+1 � ¬ϕm+1. By propagating the

negation of ¬ϕm+1 to the inside of the formula, loosely speaking, we obtain the
equivalent formula ϕ¬m ∈ Fml that can be recursively defined as

ϕ¬0 = ¬(Γ, true =⇒ ∆) ϕ¬m+1 = {um}(αm ∧ ϕ¬m)

C. Gladisch

185 Technical Report, KIT, 2010-13

Hence, sm+1 � ¬ϕm+1 is equivalent to sm+1 � ϕ¬m+1 which is equivalent to
sm+1 � {um}(αm ∧ ϕ¬m). There is sm ∈ S with sm = valsm+1(um) such that
sm � αm ∧ ϕ¬m and therefore sm � ϕ¬m. Since ϕ¬m is equivalent to ¬ϕm we have
sm � ¬ϕm. According to the induction hypothesis there exists s ∈ S with s =
valsm

(um; . . . ;u1; ε) such that s � ¬ϕ. Because of sm = valsm+1(um), we con-
clude that if sm+1 � ¬ϕm+1, then there exists s ∈ S with s = valsm+1(um+1;um;
. . . ;u1; ε) such that s � ¬ϕ. �

5 Heuristics for Update Construction from Formulas

While Section 4 describes a general sound framework for model generation, in
this Section we shortly describe some heuristics that we have implemented to
construct concrete updates. In particular we give an intuition of how quantified
updates can be constructed in order to satisfy quantified formulas. Important to
note is that soundness of Theorem 1 is preserved by any sequence of update and
axiom pairs. Hence, unsoundness cannot be introduced by any of the heuristics.

Definition 6. Update Construction. Let γ ∈ FmlFOL be the currently selected
formula for which a partial model is to be created and which is a subformula in
a sequent ϕ = (Γ, γ =⇒ ∆). Let ψ = (Γ =⇒ γ,∆) and ϕ′ = (Γ =⇒ ∆).

The goal of update construction from the formula γ is to create a pair (u, α),
with u ∈ U and α ∈ Fml, such that

• � {u}(α→ ψ), and
• there is some s ∈ S with s � ¬{u}(α→ ϕ′)

The sequent ψ is equivalent to ψ0 and ϕ′ is equivalent to ϕ′0, according to
Def. 5. In a model search algorithm each time a pair (um, αm) is constructed,
new formulas ϕ′m+1, ϕ

′
m+1, and ψm+1 are generated according to Def. 5. These

formulas must be simplified to ϕ, ψ and, ϕ′, respectively, such that a new formula
γ ∈ FmlFOL can be selected for update construction according to Def. 6. In the
following subsections, case distinctions are made on the structure of γ.

5.1 Update Construction from Ground Formulas

Handling of Equalities. Assume t1, t2 ∈ TrmFOL are location terms (see Def. 1).
If γ is of the form t1 = l or l = t1, where l is a literal, then the pair (t1 := l, true)
should be created because � {t1 := l}(true → (t1

.= l ∧ l .= t1). If γ is of the
form t1 = t2, a choice has to be made between the pairs (t1 := t2, true) and
(t2 := t1, true). Equality between terms can in some cases also be established,
if the terms share the same top-level function symbol and have location terms
as arguments. For instance, let f(t1), f(t2) ∈ TrmFOL and f ∈ Σf , then �
{u}(α → f(t1) = f(t2)) can be satisfied by the pair (t1 := t2, true) or by
(t2 := t1, true).

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 186

Handling of Arithmetic Expressions. Let t1, t2 ∈ TrmFOL be arithmetic expres-
sions composed of rigid and non-rigid function symbols. Several solutions exist
to satisfy � {u}(α→ t1

.= t2). Consider for instance the polynomial equation

2 ∗ a+ b ∗ c = d− e
where a, b, c, d, e ∈ Σf

nr are location terms. There are five most general updates
evaluating this equation to true. These can be obtained by solving the polynomial
equation for one of the location terms at a time. Our implementation enumerates
those solutions during update search. An example for one of the solutions is
((a := (d− e− b ∗ c)/2, true).
Handling of Inequalities. Let t1, t2 ∈ TrmFOL where t1 is a location term. An
inequation t1 6= t2 can be satisfied, e.g., by the pair (t1 := t2 + 1, true). A
more general update is, however, t1 := t2 + notZero, where notZero ∈ Σf is
a fresh-symbol representing a value different from 0. This is where the axiom
part of a pair comes into play. A general solution for the formula t1 6= t2 is
the pair (t1 := t2 + notZero,¬(notZero = 0)). Inequations of the form t1 < t2
can be handled by introducing a fresh symbol gtZero ∈ Σf

nr with the axiom
gtZero > 0.

5.2 Update Construction from Quantified Formulas

Our approach to create models for quantified formulas is to generate quantified
updates. For example, the quantified formula

∀x.x > a→ f(x) = g(x) + x (10)

is satisfiable in any state after execution of the quantified update

for x; x > a; f(x) := g(x) + x (11)

i.e. � {(11)}(10). Notice the similar syntactical structure between (10) and (11).
Another solution is

for x; x > a; g(x) := f(x)− x (12)

for which holds � {(12)}(10). It is easy to see that a translation can be general-
ized for other simple quantified formulas. Furthermore, the heuristics and case
distinctions described in Section 5.1 can be reused to handle different arithmetic
expressions and relations. For instance the formula

∀x.f(x) > x→ (g(x) < f(x))

evaluates to true after execution of any of the following updates (with axioms)

(for x; f(x) > x; g(x) := f(x) + gtZero , gtZero > 0)
(for x; ¬(g(x) < f(x)); f(x) := x− gtZero , gtZero > 0)

C. Gladisch

187 Technical Report, KIT, 2010-13

JAVA + JML

1 /*@ public normal_behavior

2 @ requires next!=null && prev!=null && next!=prev

3 @ && (\forall int k; true ; 0<=next[k] && next[k] < prev.length)

4 @ && (\forall int l; 0<=l && l<next.length; next[l]==l);

5 @ ensures (\forall int j; 0<=j && j<next.length; prev[next[j]]==j);

6 @ assignable prev[*]; */

7 public void link(){

8 /*@ loop_invariant (\forall int x; 0<=x && x <= i; prev[next[x]]==x)

9 && (0<=i && i<=next.length) ; modifies prev[*],i; @*/

10 for(int i=0;i<next.length;i++){ prev[next[i]]=i; }

11 }

JAVA + JML

Fig. 1. An example of a JAVA method (of class MyCls) with a Jml specification that is
not verifiable because the underlined formula should be x < i instead of x 6 i

The KeY tool implements a powerful update simplification calculus for quan-
tified updates. The calculus may in some cases introduce new quantified formu-
las. In such cases our approach has to be applied either recursively on the new
quantified formulas or the heuristic has to choose different updates in a search
procedure to prevent the introduction of new quantified formulas.

Finally, the initial example of the paper, i.e. Formula (1), can be solved by
the following quantified update application which the KeY system simplifies to
true.

{(for x1; x1 > 0; next(x1) := x1); (for x2; x2 > 0; prev(next(x2)) := x2)}(1)

6 Experiments, Conclusions, and Future Work

We have proposed a model generation approach for quantified first-order logic
(FOL) formulas that is based on weakest-precondition computation. The lan-
guage we propose for representing models is KeY’s update language. The advan-
tage of using updates is the possibility to express models for quantified formulas
via quantified updates, and the availability of a powerful calculus for simplifying
formulas with updates to FOL formulas. In particular, no loop invariants have
to be generated in order to simplify quantified updates.

We have identified problems (Proposition 1) that occur, when the approach is
implemented according to the basic description. Theorem 1 provides a solution to
these problems. The theorem allows us to reformulate the basic model generation
approach for quantified formulas into a semantically equivalent approach without
the problems described in Proposition 1.

Based on Theorem 1 and Definitions 4 and 5 an algorithm for model gen-
eration can be derived. The technique can be used in two ways. On the one
hand, it can be used as a precomputation step to SMT solvers by restricting the

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 188

∀x : int.(x 6 −1 ∨ x > 1 + i0 ∨ get0(prev(self), acc[](next(self), x)
.
= x),

∀x : MyCls.(prevAtPre(x)
.
= prev(x)),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬a(x)

.
= null),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬next(x)

.
= null),

∀x : MyCls.(x
.
= null ∨ ¬created(x) ∨ ¬prev(x)

.
= null),

∀x : int.acc[](next(self), x) > 0),
∀x : int.acc[](next(self), x) 6 −1 + length(prev(self))),
∀x : int.(l 6 −1 ∨ l > length(next(self)) ∨ acc[](next(self), x)

.
= x),

. . . =⇒ . . .

Fig. 2. Quantified formulas in a sequent resulting from a failed verification attempt of
the code in Figure 1; 21 additional ground formulas are abbreviated by ’. . .’

. . .
{for x : MyCls; (next(x)

.
= null ∧ ¬a(x)

.
= null ∧ . . .); created(x) := false}

{for x : MyCls; (a(x)
.
= 0 ∧ ¬x

.
= null); created(x) := false}

{for x : int; (b > 1 + x ∧ x 6 −1); acc[](next(self)) := −1 + c2}
{for x : int; x 6 −1; i := acc[](next(self))− c0 ∗ −1 + c1}
{for x : int; (x > 0 ∧ x > 1 + i0); acc[](next(self)) := length(prev(self)) + c0}
{for x : int; (acc[](next(self), x) = x ∧ x 6 i0 ∧ . . .); get0(prev(self), x) := x}

Fig. 3. A subset of generated updates satisfying the quantified formulas in Figure 2

computation of the formulas ψm, ϕ′m, and ϕm to Def 4. In this case the tech-
nique eliminates quantified formulas and leaves a residue of ground formulas or
alternative quantified formulas to be solved by a different method, e.g. an SMT
solver. On the other hand, the technique can be used stand-alone for model
generation by using the general Def. 5.

The approach was developed in the context of formal software verification
and test generation project. Verification attempts often fail, i.e., they are inter-
rupted by a timeout. Figure 1 shows a JAVA method with a Jml specification.
A verification attempt of the method results in a set of open proof obligations.
One of them is shown in Figure 2 that we abbreviate as ϕ. For a verification
engineer it is important to know if the open proof obligation has a counter ex-
ample or not. State-of-the-art approaches use SMT solvers to try answering such
questions. These are, however, not powerful enough to solve formulas such as ϕ.
Preliminary experiments show that our method can generate counter examples
for formulas such as ϕ that SMT solvers cannot solve. For instance, Figure 3
shows a part of an iterative update application that describes a model for ¬ϕ
and was generated by an implementation of our approach.

What formulas can be solved by our general approach depends on the chosen
language for model representation, the theorem prover in use, and the heuristics
for model construction. Quantified formulas are suitable to represent models
for certain kinds of quantified formulas. They are, however, not sufficient to
represent models of inductively defined functions. We are currently working on
an extension of the update language for this purpose.

C. Gladisch

189 Technical Report, KIT, 2010-13

References

1. Clark Barrett and Cesare Tinelli. Cvc3. In CAV, pages 298–302, 2007.
2. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of

Object-Oriented Software: The KeY Approach. LNCS 4334. Springer, 2007.
3. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about

arrays? In VMCAI, pages 427–442, 2006.
4. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In CAV, pages 154–169, 2000.
5. Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-matching for smt

solvers. In CADE, pages 183–198, 2007.
6. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.

In TACAS, pages 337–340, 2008.
7. David Déharbe and Silvio Ranise. Satisfiability solving for software verification.

STTT, 11(3):255–260, 2009.
8. David Detlefs, David Detlefs, Greg Nelson, Greg Nelson, James B. Saxe, and

James B. Saxe. Simplify: A theorem prover for program checking. Technical
report, J. ACM, 2003.

9. Bruno Dutertre and Leonardo de Moura. The YICES SMT solver. Technical
report, Computer Science Laboratory, SRI International, 2006. http://yices.

csl.sri.com/tool-paper.pdf.
10. Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver

for dpll(t). In CAV, pages 81–94, 2006.
11. Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified verification

conditions using satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-
2):101–122, 2009.

12. Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quanti-
fied formulas in satisfiabiliby modulo theories. In CAV, pages 306–320, 2009.

13. Silvio Ghilardi. Quantifier elimination and provers integration. Electr. Notes
Theor. Comput. Sci., 86(1), 2003.

14. Martin Giese. Incremental closure of free variable tableaux. In IJCAR, pages
545–560, 2001.

15. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
London, England, 2000.

16. KeY project homepage. At http://www.key-project.org/.
17. Joseph R. Kiniry, Alan E. Morkan, and Barry Denby. Soundness and completeness

warnings in esc/java2. In Proc. Fifth Int. Workshop Specification and Verification
of Component-Based Systems, pages pp. 19–24, 2006.

18. Micha l Moskal. Satisfiability Modulo Software. PhD thesis, University of Wroc law,
2009.

19. Micha l Moskal, Jakub Lopuszanski, and Joseph R. Kiniry. E-matching for fun and
profit. Electr. Notes Theor. Comput. Sci., 198(2):19–35, 2008.

20. Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Ru-
bio. Challenges in satisfiability modulo theories. In RTA, pages 2–18, 2007.

21. Philipp Rümmer. Sequential, parallel, and quantified updates of first-order struc-
tures. In LPAR, pages 422–436, 2006.

22. Philipp Rümmer and Muhammad Ali Shah. Proving programs incorrect using a
sequent calculus for java dynamic logic. In TAP, pages 41–60, 2007.

23. Jian Zhang and Hantao Zhang. Extending finite model searching with congruence
closure computation. In AISC, pages 94–102, 2004.

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Technical Report, KIT, 2010-13 190

An Experience Report on the Verification of
Algorithms in the C++ Standard Library using

Frama-C

Jochen Burghardt, Jens Gerlach, Hans Pohl, and Juan Soto

Fraunhofer FIRST, Kekuléstraße 7, 12489 Berlin, Germany,
FIRSTNAME.LASTNAME@first.fraunhofer.de,

URL: http://www.first.fraunhofer.de/device soft en

Abstract. Over the past few years, we have been conducting assessment
studies to determine the utility of the Frama-C/Jessie platform of soft-
ware analyzers (in conjunction with automatic theorem provers) for the
formal verification of software. In this experience report, we discuss ex-
periments in the verification of algorithms in the C++ Standard Library
based on tool-supported Hoare-style weakest precondition computations
to formally prove ACSL (ANSI/ISO C Specification Language) proper-
ties. Often automated provers are unable to perform inductive proofs.
Hence, we introduce an approach to guide automated provers to find an
inductive proof using auxiliary C-code corresponding to the proof struc-
ture. We also present a method to verify that a function only permutes
the contents of an array, and obtain the relation between the pre- and
post-index for each array element for use in later specification properties.
Furthermore, we describe an approach to prove the essential properties
of a function independent of each other, supplying for each task only
the assumptions actually needed, i.e., related to the current goal. This
approach reduces the proof search space and leads to higher verifica-
tion rates for automatic provers. However, additional methods and tool
support are desired to overcome drawbacks from a software engineering
point of view. Finally, we sketch some ideas for an extension of ACSL
for C++.

1 Introduction

As a step towards the goal of enabling verification of industrial software products,
Fraunhofer FIRST is evaluating the Frama-C tool set within the Inter-Carnot-
Fraunhofer project, DEVICE-SOFT1. Frama-C [1] is a suite of software tools
dedicated to the analysis of C source code, developed at CEA LIST. Within
Frama-C, the Jessie plug-in [2] enables deductive verification of C programs2

that have been annotated with the ANSI-C Specification Language (ACSL) [9].
1 Supported under grant 01SF0804 by BMBF (Germany) and ANR (France)
2 Full ANSI-C is supported, including arbitrary aliases of type-compatible objects,

but except for some current implementation restrictions concerning “dirty” type
conversions, like int <--> char*, by casts or union types.

191 Technical Report, KIT, 2010-13

The paramount notion in ACSL is the function contract. While many soft-
ware engineering experts advocate the “function contract mindset” when design-
ing complex software, they generally leave the actual expression of the contract
to run-time assertions, or to comments in the source code. ACSL is expressly
designed for writing the kind of properties that make up a function contract.

The Jessie plug-in of Frama-C uses Hoare-style weakest precondition com-
putations to formally prove ACSL properties of a program fragment. Internally,
Jessie relies on the languages and tools contained in the Why platform [4]. Ver-
ification conditions are generated and submitted to external automatic theo-
rem provers or interactive proof assistants. We employed the automatic theorem
provers Alt-Ergo [13], CVC3 [8], Simplify [5], Yices [18], and Z3 [17] collectively.

We have chosen examples from the C++ Standard Library whose initial
version was known as the Standard Template Library (STL). The STL contains a
broad collection of generic algorithms that work not only on C-arrays but also on
more elaborate containers, i.e., data structures. For this report, we will reference
preselected algorithms, that were converted from C++ function templates to
ISO-C functions that work on arrays of type int. Our experience report was
inspired by our prior publishing, viz. the ACSL tutorial [12].

The structure of the remainder of this report are as follows. After a brief
introduction to ACSL in Sect. 2, we demonstrate in Sect. 3 how to guide au-
tomatic provers to find difficult, in particular, inductive proofs. In Sect. 4, we
report our experiences in proving permutations of array contents. Section 5 dis-
cusses our approach to prove certain properties of a function individually. In
Sect. 6, we sketch some requirements for an object-oriented extension to ACSL,
based on our experiences with downcasting C++ Standard-Library code to strict
C. Finally, we draw some conclusions in Sect. 7.

2 An Introduction to ACSL

ACSL annotations are expressed in special C-comments /*@...*/ as a multi-
line comment or //@... as a single-line comment. A function contract declares
a set of requires clauses, stating the properties the function may expect on
entry, and a set of ensures clauses, stating the properties the function must
satisfy upon exit (cf. Sect. 4 for examples).

Properties are formulas denoted in a language close to C itself. For exam-
ple, equality, negation, and conjunction are denoted by ==, !, and &&, respec-
tively; binding-priorities are as in C. In addition, the weaker-binding junctors
==> and <==> denote implication and equivalence; quantifiers over C- or logical
types are denoted by \forall TYPENAME VARNAME; FORMULA, and similar for
\exists. Moreover, relation chains familiar from mathematical notation, such
as, 0 <= i < n, may be used.

Function parameters and visible variables may appear in formulas, they refer,
by default, to their values on entry and exit in a requires and ensures clause,
respectively. The notation \at(v,L) refers to the value of v at the program
point corresponding to the C-label L:. A predefined label Old allows one to refer

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 192

to on-entry values in ensures clauses too, \old(EXPR) being an abbreviation
for \at(EXPR,Old). The label Here refers to the on-exit value in an ensures
clause.

In the function body, an assert clause may be placed at any program point,
causing a corresponding additional proof obligation to be generated. Each loop
may have a set of loop invariant clauses and a loop variant expression
needed to prove its termination. The former property is expected to hold before
loop entry and after the incrementation statement (usually “i++”) of each loop
iteration, while the latter expression must decrease at each iteration, but remain
positive.

Using the default setting, C-types like int and double denote the finite
ranges of values implemented on the target machine; absence of overflows is
verified. In contrast, logical types like integer and real denote infinite sets
like Z and R familiar from mathematics.

Programs may be enhanced with interspersed ghost declarations and state-
ments that may compute auxiliary values used only for verification purposes.
Since such ghost code is enclosed in the special comments, it is ignored by an
ordinary compiler, like all ACSL constructs. Syntactical restrictions ensure that
ghost code cannot influence non-ghost program components.

Auxiliary properties may be formulated as lemmas; their validity is checked
by the provers. A macro-like mechanism, the predicate definition allows users
to abbreviate arbitrary formulas by a parametrized name (Fig. 2). Parameters
may be of C types or logical types enclosed in parentheses (). They may also
denote memory states at certain labels enclosed in curly braces { }. If a definition
or a lemma is declared to have just one such memory-state parameter, it may
be omitted in the body; e.g. bi[i] in line 2 of Fig. 2 defaults to \at(bi[i],L).
The predefined predicate \valid_range(a,l,u) expresses the property that
the addresses &a[l], . . . , &a[u] may be safely dereferenced at run-time.

3 Proof Assistance for Inductive Proofs by Automatic
Provers

While Frama-C/Why supports interactive theorem provers like Coq, PVS, Is-
abelle/HOL, and Mizar, as well, we consider the additional necessity of learning
their respective proving methodology and interactive command language a se-
rious obstacle preventing an application-domain engineer from using such an
approach. For this reason, we are exploring how far we can go using solely fully
automatic provers, thus restricting the learning necessities to Hoare’s verification
method and the ACSL specification language.

We use an example from the heap operations in the C++ Standard Library
to illustrate our discussion. Heap operations will also provide other examples in
later sections.

The Apache C++ Standard Library User’s Guide provides the following def-
inition for heaps:

J. Gerlach, J. Burghardt

193 Technical Report, KIT, 2010-13

A heap is a binary tree in which every node is larger than the values
associated with either child. A heap and a binary tree, for that matter,
can be very efficiently stored in a vector c, by placing the children of
node i at positions 2i + 1 and 2i + 2. Using this encoding, the largest
value in the heap is always located in the initial position, . . .

The main operations include:

– push_heap, which inserts a new element into a heap;
– pop_heap, which removes the largest element from a heap;
– make_heap, which re-arranges an arbitrary array into a heap;
– sort_heap, which rearranges the elements in a heap so that they are in

ascending order; and
– heap_sort, which uses make_heap and sort_heap to sort an arbitrary array

in ascending order in time O(n · log(n)). Note that this algorithm does not
directly belong to the C++ Standard Library.

For detailed informal specifications of the aforementioned functions, cf. [6].
We explain our method along the example of the pop_heap function, which

removes the root element c[0] of a heap, and reorders the remaining elements
into a heap again. An essential property of pop_heap is that the popped value
c[0] is in fact the largest one in the given heap.

Translating the informal specification of pop_heap to ACSL, we get

\forall integer i; 0 <= i < n ==>
c[i] >= c[2*i+1] && c[i] >= c[2*i+2]

as a heap data-type invariant that will be abbreviated by a user-defined predicate
IsHeap(c,n) in the following, and

\forall integer i; 0 <= i < n ==> c[0] >= c[i]

as “largest-value-in-initial-position” property.
A closer look reveals that an induction on i is necessary to prove the latter

property from the former invariant. While that property is necessary to verify
heap_sort in Sect. 4, none of the automatic provers employed by Frama-C is
prepared to do induction proofs. Luckily, we found a way to trick them into it,
utilizing Hoare’s loop rule for that purpose. We also employed auxiliary (ghost)
code and data. This situation is similar to many mathematical proofs, where
auxiliary definitions are common.

We define a C-function pop_heap_induction that does not contribute to the
functionality of pop_heap, but rather encapsulates the induction proof needed
for the verification of that property. The pop_heap_induction function contract
essentially requires our type invariant, viz. IsHeap(c,n) and ensures our proof
goal, viz. the above “largest-value-in-initial-position” property:

/*@ ...
requires IsHeap(c, n);
ensures \forall integer i; 0 <= i < n ==> c[0] >= c[i];

*/

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 194

void pop_heap_induction(const int* c, int n) {
/*@ loop variant n - i;

loop invariant 0 <= i <= n;
loop invariant \forall integer j;

0 <= j < i <= n ==> c[0] >= c[j];

*/
for (int i = 1; i < n; i++) {

//@ assert 0 < i ==> ParentChild((i-1)/2, i);
}

}

In order to cause the prover to do an induction on n, we use a for-loop with
a corresponding range and the induction hypothesis as loop invariant. The loop
body is empty, except for an additional hint to the prover (viz. that (i-1)/2 is
the parent node of node i, employing another user-defined predicate).

In the function body of pop_heap, we call pop_heap_induction using a
ghost statement, thereby establishing its inductive conclusion just at the place
where it is needed for proof reasoning; cf. Fig. 1.

/*@
requires 0 < n < (MAX_INT-2)/2;
requires \valid_range(c, 0, n-1);
requires IsHeap(c, n);
ensures IsHeap(c, n-1);
ensures c[n-1] == \old(c[0]);
ensures \forall integer i; 0 <= i < n ==> c[n-1] >= c[i];

*/
void pop_heap(int* c, int n) {

//@ ghost pop_heap_induction(c, n);
//@ assert \forall integer i; 0 < i < n ==> c[0] >= c[i];
int max = c[0];
// ... (reordering loop omitted) ...
c[n-1] = max;

}

Fig. 1. C-function call to establish inductive consequence

Some care is necessary with the method described above. The set of provable
consequences is not closed with respect to the deduction theorem, “Whenever
P ` Q, then ` P → Q”, as long as there is not a Hoare rule like:

{P} S {Q}
{true} ; {P → Q} if S doesn’t change visible memory state.

Note that pop_heap_induction changes the value of its local variable i. There-
fore, a useful version of such a new rule needs to address the matter of visibility.

J. Gerlach, J. Burghardt

195 Technical Report, KIT, 2010-13

Due to the absence of such a rule, the relativized property

(\forall integer i; 0 <= i < n ==> c[(i-1)/2] >= c[i]) ==>

(\forall integer i; 0 < i < n ==> c[0] >= c[i]);

cannot be obtained by calling pop_heap_induction. However, we can establish
it, if needed for further reasoning, by a modified version of pop_heap_induction,
using this property as a post-condition and a similarly relativized loop invariant.
In general, however, an additional assumption P may well lead some provers into
an endless loop that were previously able to prove Q without it.

Our method is in principle not limited to the use of simple for-loops. For
example, the following verification needs two nested loops:

/*@ ...
requires \forall integer i; 0 <= i < n-1 ==> c[i] <= c[i+1]
ensures \forall integer i,j; 0 <= i <= j < n ==> c[i] <= c[j]

*/
void induction_example_2(const int* c, int n);

4 Permutations of Array Contents

This section is concerned with a method for proving that some procedure changes
only the ordering of an array under consideration. For example, the function
pop_heap should not just re-establish the heap property, but also ensure that
all elements (except the one that was popped) remain in the heap, although
possibly rearranged.

Our method relies on bijections (represented as index arrays) operating on
the index set {0, . . . , n − 1} for some n. Basically, we use a swap operation
swap(a, i, j), which simply exchanges elements a[i] and a[j] in an array,
a. The corresponding predicate definition is as follows:

/*@ predicate Swap{L1,L2}(int* a, integer i, integer j) =
0 <= i && 0 <= j
&& (\forall integer k; 0 <= k && k != i && k != j ==>

\at(a[k],L1) == \at(a[k],L2))
&& \at(a[i],L1) == \at(a[j],L2)
&& \at(a[j],L1) == \at(a[i],L2);

*/

We now introduce some basic predicates and a lemma needed for our method
as shown in Fig. 2. The predicate Bijection defines in the mathematical sense a
bijection or one-to-one mapping from the set of natural numbers {0, 1, 2, . . . , n−
1} to itself. In its current form it is suitable for the finite case only, therefore an
upper bound n is needed. Lemma B1 states that a bijection concatenated with a
swap-mapping is still a bijection. The predicate SameElements is of the utmost

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 196

/*@ predicate Bijection{L}(int* bi, integer n) =
(\forall integer i; 0 <= i < n ==> 0 <= bi[i] < n)
&& (\forall integer i, j;

0 <= i < n && 0 <= j < n && i != j ==> bi[i] != bi[j]);

lemma B1{L1,L2}: \forall int* bi,integer i, j, n;
0 <= i < n && 0 <= j < n &&
Bijection{L1}(bi, n) && Swap{L1,L2}(bi, i, j) ==>
Bijection{L2}(bi, n);

predicate SameElements{L}(int* a,int* o,int* bi,integer n)=
Bijection{L}(bi, n) &&
\forall integer k; 0 <= k < n ==> a[k] == o[bi[k]];

*/

Fig. 2. The bijection predicates and lemmata

importance, stating that the bijection bi shows how to reorder the indices to
get the same values.

As examples, we use the functions push_heap, make_heap, and heap_sort,
each showing different techniques. This approach works similar for pop_heap

and sort_heap. We introduce four ghost declarations (see below).

//@ ghost int N;
//@ ghost int* biject;
//@ ghost int* twin;
//@ ghost const int* orig;

The global variable N plays a role later in make_heap (and sort_heap as well).
For the moment, let us assume that N equals the actual size of the heap, n.
The array twin behaves like a duplicate of the array c under consideration, see
Fig. 3. Prior to the procedure, c and twin must have the same values at the same
positions. The same must be true after the procedure. The elements in array orig

can be thought of as being the elements of the original heap-contents c; they
are retained and unaffected by any function verified here. The array biject will
hold the bijection we seek. It is used to show that the SameElements-predicate
with respect to twin and orig is preserved.

Figure 3 illustrates the principal operating scheme of the bijection method. It
is based on an invariant property in the pre- and post-condition of all algorithms.
The verification of this commonly occurring invariant is treated here.

Figure 4 shows our “universal function contract”, in which is just a formal-
ization of the relations shown3 in Fig. 3. It is used literally in the same form
for all functions involving heap-modifying operations. The symmetry between

3 We omitted additional requirements that serve only to avoid numeric overflow.

J. Gerlach, J. Burghardt

197 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 198

requires and ensures reflects the vertical symmetry in Fig. 3. We distinguish
the actual heap size, n, and an arbitrarily larger one, N. Since we require all
operations to affect the area up to N this more relaxed requirement is easier to
handle.

We start with the verification of push_heap whose implementation is shown
below. This algorithm inserts the value found immediately beyond the old heap,
viz. at c[n-1] into it.

void push_heap(int* c, int n) {
const int tmp = c[n-1];
int hole = n-1;
/*@ loop invariant 0 <= hole < n;

loop invariant tmp == twin[hole];
loop invariant \forall integer i;

0 <= i < N && i != hole ==> c[i] == twin[i];
loop invariant SameElements(twin, orig, biject, N);
loop variant hole;

*/
while (hole > 0) {
const int parent = (hole-1)/2;
if (c[parent] < tmp) {
c[hole] = c[parent];
//@ ghost swap(twin, hole, parent);
//@ ghost swap(biject, hole, parent);

} else
break;

hole = parent;
}
c[hole] = tmp;

}

The main part of its loop invariant corresponds to the ensures clauses of
the universal contract, except for i == hole. We wish to be certain that twin
is a duplicate of c. While c is manipulated with particular emphasis on run-time
efficiency, we duplicate these manipulations in twin, however, using less efficient
ghost calls to swap only. As we build-up biject, we apply swap-operators for
both biject and twin. These two ghost assignments are the heart of the method.

Our implementation of make_heap is depicted below.

void make_heap(int* c, int n) {
/*@ loop invariant 2 <= i <= n+1;

loop invariant SameElements(twin, orig, biject, N);
loop invariant \forall integer j; 0 <= j < N ==>

c[j] == twin[j];
loop variant n - i;

*/
for (int i = 2; i <= n; i++)
push_heap(c, i);

}

J. Gerlach, J. Burghardt

199 Technical Report, KIT, 2010-13

With successive calls to push_heap, elements are inserted into a heap c

one by one. The essential requires and ensures clauses of the universal con-
tract are just passed-on to its loop invariant. At this point we need to dis-
tinguish between n and N. Without the unique N, we would have predicates
SameElements(twin, orig, biject, i) for different values of i which would
not fit together.

The universal contract can also be used for heap_sort. This contract is
most useful as a unique interface description in general, since it allows us to
compose different algorithms easily. Since heap_sort is the outermost function
in our example, we prefer, however, another version that is closer to the intended
meaning of its informal description, as shown below.

/*@ requires 0 < n == N;
// \valid_range requirements ...
ensures Bijection(biject, n);
ensures \forall integer i; 0 <= i < n ==>

\at(c[i], Here) == \at(c[\at(biject[i], Here)], Old);

*/
void heap_sort(int* c, int n);

This alternative contract of heap_sort no longer requires c to equal twin
initially nor twin to be a permutation of orig. Rather, we include ghost code in
the implementation (below) to establish the following properties. First, we make
both twin and orig a copy of c, and then we initialize biject to the identity
mapping, viz. [0,...,n-1]. For the latter purpose, we call the C++ Standard
Library function iota(a,n,v) that assigns v+i to a[i] for i = 0, . . . , n − 1.
Here, we require n == N, because the called functions deal with arrays of the
same size.

void heap_sort(int* c, int n) {
//@ ghost copy(c, n, twin);
//@ ghost copy(c, n, orig);
//@ ghost iota(biject, n, 0);
make_heap(c, n);
sort_heap(c, n);

}

As early as 1971, Hoare [16] was concerned about proving a rearrangement-
only property of an algorithm. He suggested to introduce a concept of permu-
tation, and to prove essential properties that might be re-expressed in ACSL as
follows4:
4 If they were used as a definition of Permutation, due to its recursivity its appro-

priateness relied on the implicit assumption that its intended semantics is the least
fixpoint. Note that e.g. the greatest fixpoint was a predicate that is true for all a
and n, which was certainly inappropriate.

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 200

\forall int* a, int n; Permutation{L1,L1}(a, n);
\forall int* a, int n, i, j; 0 <= i < n && 0 <= j < n &&

Permutation{L1,L2}(a, n) && Swap{L2,L3}(a, i, j) ==>
Permutation{L1,L3}(a, n);

If Permutation{Old,Here}(a, n) has been verified, the prover has just
confirmed what could be seen also by code inspection, viz. that only Swaps were
applied to a. Based on this property only, it seems to be impossible to prove
properties of the rearranged array needed in a calling function. Let us assume
that in our example an additional data-type invariant has to be proved, e.g., that
every heap element has a value less than 10. This is straight-forward as soon as
we are ensured that some additional array biject holds the source position each
heap element came from5:

/*@ ...
requires \forall integer i; 0 <= i < n ==> c[i] < 10;

*/
void foo(int* c, int n) {

heap_sort(c, n);
//@ assert \forall integer i; 0 <= i < n ==> c[i] < 10;
// ...

}

Bubel et. al. [10] uses a different approach to characterize permutations for
verifying selection-sort. They specify that the number of occurrences of each
value remains unchanged in the rearranged array. This way, is it also possible
to prove properties of the rearranged array needed in a calling function. In our
example, no values larger than 9 may occur in the sorted array, if none occurred
in the unsorted one.

5 Proving Properties Separately

As mentioned in Sect. 3, our experience corroborated again the well-known phe-
nomenon that additional assumptions may lead a prover into an endless loop,
even if they are not necessary for a proof. This is the first reason for separating
function properties and their verification. The second reason follows a rationale
of “separation of concerns” adapted from classical software engineering.

As an example, the function contract, pop_heap, essentially states that

1. the heap-property (each node entry is less or equal than its parent’s entry)
is re-established, and

2. all elements, except the one that was popped, remain in the heap.
5 If the inverse bijection is needed in the verification of a calling function, it can also

be constructed and validated, too.

J. Gerlach, J. Burghardt

201 Technical Report, KIT, 2010-13

We built two separate files, each containing a partial contract based on 1. and 2.,
and that share the same implementation code each, however with different loop
invariants and other ACSL assertions, and varying auxiliary ghost code. While
we were able to verify each of them successfully, an attempt to verify the whole
contract (based on 1. and 2.) failed. We suppose that the reason was infinite
applicability of some assumption from 1. to a proof goal from 2., or vice versa;
however, certainty about that could only be gained by a detailed inspection of
a prover trace, which is not available to us.

We consider our two partial contract proofs sufficient to convince a human
user that the code has both properties 1. and 2. Moreover, each part is easier to
understand on its own.

However, if pop_heap is to be used by another function f that needs pop_

heap’s complete contract for its own verification proof, there is currently no
sound way to verify f’s correctness. We can only declare (rather than define)
pop_heap and claim (rather than prove) its entire contract in a preamble of
the file containing f’s contract and code. This approach is unsatisfactory as
soon as large software is to be verified or when a certifying authority is to be
convinced of the correctness. Moreover, the need to maintain several copies of
the implementation code is a serious drawback.

In order to exploit the advantages of separation and avoid its disadvantages,
we suggest to supply explicit methodical support for users. Moreover, a tool
should be provided that validates or establishes the syntactical restrictions and
provides the entire contract for further use by the provers.

We thought of the following as a typical scenario: The tool maintains a
“repository file” containing the whole contract and implementation, e.g. of pop_
heap. In this file, ACSL clauses and ghost code lines may be annotated to in-
dicate which of the partial contracts 1. and 2. they belong to. On user-demand,
the tool extracts a particular “version”, containing only the parts belonging to
the selected partial contract, the proper source code, and the corresponding an-
notations. This version can then be updated stand-alone and finally be “checked
in” using the tool, which tests consistency and reports any conflicts. Calling
functions may rely on the complete specification.

6 Towards a Specification Language for C++

The C algorithms we have considered in our research have their origin in the C++
standard library. It would be very desirable to have a specification language for
C++ with support for templates such that the generic algorithms and containers
of the C++ standard library could deductively verified.

Based on our experience with ACSL we mention a few points that should be
taken into account when defining a behavioral specification language for C++.

– Even if we stay within the realm of C programming it would make sense to
extend ACSL to allow for generic predicates. Note that the built-in predicate
is valid range is already generic with respect to the type of the values
of an array.

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 202

– Initially, a specification language for C++ should use special comments to
annotate source code. If later the specification language and the supporting
tools are sufficiently mature, efforts could be undertaken to fully integrate
formal specification and deductive verification into the language. This work
could built on previous attempts to add “contract programming to C++”
[14] as well as on the experiences with Spec# [3].

– An interesting aspect of the C++ standard library is that the informal spec-
ification includes requirements for the (amortised) complexity of algorithms.
A specification language for C++ should include provisions to formally ex-
press the complexity of operations.

– The idea of using concepts to specify requirements for types had been intro-
duced to C++ with the original STL. Despite strong efforts, concepts were
excluded from the forthcoming C++ standard. A specification language for
C++ should investigate whether concepts can contribute to concise and more
general specifications.

Last but not least, we suggest that a specification language for C++ treats
ranges in a way that fits more natural to the C/C++ language family. By this we
mean the problem that in ACSL the set of valid indices of an array on length n,
for example, must be specified as 0 ≤ i ≤ n− 1 whereas the established C-idiom
describes this set as 0 ≤ i < n.

7 Conclusions

The deductive verification of the heap algorithms of the C++ standard library
poses several challenges for automatic theorem provers. On the one hand, there
is a need to perform inductive proofs. On the other hand, it must be shown that
the heap operations only permute the elements in a range. For both problems we
have found viable solutions that work well with the ACSL specification language
and the Frama-C/Jessie tools.

Based on our experience with the deductive verification of C++ standard
library algorithms we have also suggested tool-support for tackling larger ver-
ification tasks. The key idea here is the separate verification of independent
properties.

It would be interesting to try to reproduce our methods in JML [7, 15, 11] and
Spec# [3]. This can be expected both to yield an estimation of the generalizibility
of our ideas and to compare the strengths and weaknesses of these different
verification systems.

It may be a problem that the methods presented here are still too complex
to be taught to application-domain engineers. However, in our opinion, they are
still easier to learn than a language of proof tactics requiring much theoretical
knowledge about an underlying logical calculus.

The idea of separation of concerns is widely accepted in software-engineering,
and its extension to proof goals (Sect. 5) is expected to get so, too. The con-
nection in Sect. 4 between manipulating the ghost array twin and its non-ghost

J. Gerlach, J. Burghardt

203 Technical Report, KIT, 2010-13

correlate c in an easy-to-verify and an equivalent fast-to-execute way, respec-
tively, is familiar to programmers under the notion of “tweaking code for optimal
performance”. Obviously, the feature of ghost code is needed to implement the
less efficient code variant.

References

[1] Frama-C Software Analyzers. http://frama-c.com
[2] Jessie Plug-in. http://frama-c.com/jessie.html
[3] Spec#. http://research.microsoft.com/en-us/projects/specsharp
[4] Why – Software Verification Platform. http://why.lri.fr
[5] Homepage of the Simplify Theorem Prover.

http://freshmeat.net/projects/simplifyprover/ (2007)
[6] Standard Template Library Programmer’s Guide. http://www.sgi.com/tech/stl

(2010)
[7] Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. The Java

Series, Addison-Wesley, Reading/MA (2000)
[8] Barrett, C., Tinelli, C.: Homepage of CVC3. http://www.cs.nyu.edu/acsys/cvc3/

(2010)
[9] Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: AN-

SI/ISO C Specification Language, Version 1.4 Frama-C Beryllium implementa-
tion. http://frama-c.com/download/acsl-implementation-Beryllium-20090902.pdf
(Sep 2009)

[10] Bubel, R., Hähnle, R., Schmitt, P.H.: Specification predicates with explicit de-
pendency information. In: Beckert, B. (ed.) Proc. 5th Int. Verification Workshop
(VERIFY’08). CEUR Workshop Proceedings, vol. 372, pp. 28–43. CEUR-WS.org
(2008)

[11] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,
Leino, M., Poll, E.: An overview of JML tools and applications. Technical Report
TR NIII-R0309, Dept. of Computer Science, University of Nijmegen (2003)

[12] Burghardt, J., Gerlach, J., Hartig, K., Pohl, H., Soto, J.: ACSL by
example. Tech. Rep. Version 4.2.1, Fraunhofer FIRST (Apr 2010),
http://www.first.fraunhofer.de/owx download/acsl-by-example-4 2 1.pdf

[13] Conchon, S., Contejean, E., Kanig, J.: Homepage of the Alt-Ergo Theorem Prover.
http://alt-ergo.lri.fr/

[14] Crowl, L., Ottosen, T.: Proposal to add Contract Programming to C++.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1866.html (2005)

[15] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. The
Java Series, Addison-Wesley, Reading/MA (2000)

[16] Hoare, C.: Proof of a program: FIND. CACM 14(1), 39–45 (Jan 1971)
[17] Research, M.: Homepage of the Z3 SMT Solver. http://research.microsoft.com/en-

us/um/redmond/projects/z3/
[18] SRI International: Homepage of the Yices SMT Solver. http://yices.csl.sri.com/

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

Technical Report, KIT, 2010-13 204

Formal Verification of Industrial C Code
using Frama-C: a Case Study

1

D. Pariente, E. Ledinot

Dassault Aviation - 78, quai Marcel Dassault - F-92552 Saint-Cloud Cedex 300, France
{Dillon.Pariente ; Emmanuel.Ledinot}@Dassault-Aviation.com

Abstract. This paper gives some results and lessons learnt with Frama-C, a
static analysis toolbox, used to prove behavioral and safety properties on an
industrial code. After a short presentation of the methods and tools background,
the related industrial use case is briefly exposed, with an overview of the
process that was followed. Then the positive results obtained so far are
presented, with a few practices and additional tools developed in-house. To
conclude, this paper presents some needs and future work directions that should
be addressed, to ensure a technology readiness level compliant with operational
use of formal verification into an industrial development environment.

Keywords: Software verification, Formal Methods, Hoare Logic, Abstract
Interpretation, Theorem Proving.

1 Introduction

Since 1990, Dassault Aviation has carried out numerous formal methods studies and
assessments. The first ones were focused on synchronous languages (first Esterel [1],
then Lustre), for control and data flow formal specification, coding and model-
checking, through collaborations with research teams. Over the last few years, much
effort was devoted to the integration of UML modeling and signal flow programming
(Matlab, Scade, Esterel), in order to introduce these new methods and tools into the
Flight Control System (FCS) software development process. By the end of 2003, the
first control module formally specified in a graphical way, automatically generated
(~15 Kloc), and proven was embedded into a military aircraft operational software.
More recently, in 2007, the FCS of the first Dassault's Fly-By-Wire business jet was
developed and certified, using a similar development process.

In the meantime, some experiments on formal verification of hand-written code
were initiated, because in numerous situations pieces of critical software cannot be
generated from formal specification models (drivers, schedulers, encoding of data
formats, ...). Indeed, even formally specified and automatically generated codes may
take advantage of formal methods in many cases. For instance, as floating-point
variables in data-flow models strongly compromise model-checking computability,

1 This work was partly supported by the French national Research project ANR/U3CAT 2008-

SEGI-021-06, and the project DGAC/ANASTASY 2009-93-0816.

205 Technical Report, KIT, 2010-13

these generated codes are good candidates for static analyses. This is the basis of our
motivation to assess formal approaches, and to verify annotated hand-coded or
automatically generated C programs (a first attempt is detailed in [2]).

The tools involved into the experimentation presented here are essentially
developed through research projects RNTL/CAT and ANR/U3CAT, namely Frama-C
toolbox [3], a recent but efficient collaborating static analysis platform. These tools
are mainly developed by academics involved into these research projects (CEA LIST
and INRIA ProVal).

In this case study, Frama-C has been used to prove the correctness of some
properties annotated into a critical C code embedded into aircraft. This use case is
representative of a certain class of programs and properties. Code contains both
generated and hand-coded functions. Most of the sought properties are locally
annotated to any function of the callgraph, but need a whole application analysis (i.e.,
they are context-sensitive to the main entry point), which is of course a challenging
issue compared to unit proof (which generally only needs local function behavior to
be discharged).

In the following, we will briefly introduce the underlying technical background and
tools we have experienced for the last three years: Value Analysis, Jessie and Slicing
Frama-C's plug-ins [3] using a common specification language named ACSL [23]
inspired by JML, Why platform [7] (a verification condition generator developed at
INRIA ProVal), and several automatic theorem provers like INRIA's Alt-ergo [8].
Then we will present our industrial use case that was successfully verified, and some
techniques and "tricks" that permitted to overcome a few classical difficulties faced
with formal methods implementations. To conclude, this paper will focus on lessons
learnt and future work directions aiming Frama-C's usage into an industrial
development context.

Of course, due to code development legacy and current industrial practices, the use
case presented here is based on a C program. However, this experimentation is
expected to be profitable in the context of other programming languages and
verification tools, as theoretical issues, technical limitations, but also successful
results obtained with C code, share large common features with other specification
and coding languages (e.g., Spec# [4] for C#, JML [6] for ESC/Java2 [5], etc.),
coming for sure with a bulk of new research challenges.

2 Background and Tools

This paragraph aims at giving some major references to theoretical background and
tools used in our case study:
− the Frama-C platform [3] is an open source collaborative and extendable static

analysis toolbox, coming with several plug-ins exploiting the same annotation
language ACSL (ANSI-C Specification Language [23], inspired by JML), and
implementing abstract interpretation method [9] (Value Analysis plug-in),
deductive verification [10] [11] (Jessie plug-in), slicing [12], among other
cooperating plug-ins,

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 206

− the Why [7] toolchain, a verification condition generator, interfaced with several
automatic theorem provers like Alt-ergo [8], Z3 [13], Simplify [14], CVC3 [15],
proof assistants like Coq [21], and some others.
Contrarily to many other analysis tools, Frama-C gives powerful means to achieve

proof of properties using different cooperating methods. Hence, users are less
potentially facing implementation limitations of classical mono-paradigm-based static
analysis tools, as they may switch to another method and plug-in when the currently
used one is not conclusive w.r.t. the sought properties.

Frama-C also offers ways to develop user-specific plug-ins, to get around some
costly hand-made operations by automating them, or to palliate a few sources of non-
conclusive results, from the code annotation phase, to some customized static
analyses themselves (these aspects will be discussed later).

2.1 Preamble on Static Analysis Methods

Static analysis [16] is the analysis of computer software, performed without actually
executing programs, and generally by an automated tool. Uses of the information
obtained from the analysis vary from highlighting possible coding errors, to formal
methods that mathematically prove properties about a given program (e.g., code
behavior matching its specification). A growing commercial use of static analysis is
the verification of properties on software used in safety-critical computer systems,
and locating potential vulnerability in code.

It has been proven that, except for some hypothesis that the state space of programs
is finite and small, finding possible run-time errors or more generally any kind of
violation of a specification on the final result of a program is undecidable: there is no
mechanical method that can always answer whether a given program may or may not
exhibit runtime errors (works of Church, Gödel and Turing in the 1930s). As with
most undecidable questions, one can still attempt to give useful approximate
solutions. These solutions can be achieved using different formal techniques like:
− Model-checking [17], usually devoted to finite or reduced state space,
− Abstract interpretation [9], generally based on a preliminary data-flow analysis,

providing an over-approximation of program behaviors, simpler to analyze, sound
(every property true of the abstract program can be mapped to a true property of
the original program), but incomplete (not every property true of the original
program is true in the abstract program),

− Deductive verification (by means of assertions in source code as first suggested by
Floyd-Hoare logic), verification condition generation, and theorem proving,

− Slicing, consisting in keeping all the statements that affect a variable v at a given
statement (v is a variable of the program).

2.2 Overview of implementations in Frama-C platform

Frama-C gathers several static analysis techniques (abstract interpretation, deductive
verification, slicing, …) in a single collaborative framework. Namely, the cooperating

D. Pariente, E. Ledinot

207 Technical Report, KIT, 2010-13

plug-ins approach of Frama-C allows static analyzers to make use of the results
already computed by other analyzers in the same framework.

Abstract Interpretation.
The Value Analysis plug-in [3] computes for each variable, a set of values which
necessarily contains the values obtained on any concrete execution. It is quite
automatic, although the user may guide the analysis in places. It handles a wide
spectrum of C constructs. This plug-in uses abstract interpretation techniques.

The results of the value analysis are accessible to the other plug-ins (including
those developed by final users). Furthermore, in order to propagate its computations
as far as possible, Value Analysis plug-in may generate its own annotations. These
annotations deals with some potential runtime errors that must be refuted by means of
any other plug-in (as deductive verification plug-in Jessie, for instance).

Deductive verification - Hoare logic.
Hoare logic [10] (a.k.a. Floyd–Hoare logic) is a formal system whose purpose is to
provide a set of logical rules in order to reason about the correctness of computer
programs with the rigor of mathematical logic. The central feature of Hoare logic is
the well known Hoare triple {P} C {Q} where P and Q are assertions and C is a
command. P is called the pre-condition and Q the post-condition: the triple is valid if
in any state where the pre-condition holds, executing the command establishes the
post-condition. Assertions are formulas expressed in predicate logic.

Weakest-Precondition (WP) [11] calculi allow to automate reasoning in Hoare

logic: WP(C,Q) is a formula such that it suffices to prove P=>WP(C,Q) to guarantee
validity of {P} C {Q}. P=>WP(C,Q) is a verification condition. Verification
conditions (VCs) or proof obligations (POs) can be validated by theorem provers
(automatic ones based on decision procedures, SMT, or proof assistants, like Coq).
Jessie is a deductive verification plug-in developed in Frama-C, which supports a
fairly large subset of C, including function calls, and arbitrary pointer aliasing thanks
to a Burstall-Bornat [18] memory model and a separation analysis [19].

For instance, the rule for Weakest-Precondition (WP) computation in case of
function call is defined as follows, with the - simplified - notations below (these
notations will be re-used later on this paper):
− let Rf, Af, and Ef be respectively the Requires (pre-condition), Assigns (effects) and

Ensures (post-condition) clauses of a function f,
− let MLi be a (simplified) memory state at control point Li,
− let Assigns(MLx, MLy, Af) be a predicate meaning: Af is an over-approximation of

modified memory locations, from MLx state to MLy state,
− X{@MLi}: any predicate X whose parameters are evaluated at memory state MLi.

With these notations, the WP at memory state MLi for a property P upwarded

through a call to a function f(...) is:

WP{@MLi}(f(...) , P) =
 Rf{@MLi} /\ (Assigns(MLi, MLi+1, Af) /\ Ef{@MLi+1} => P)

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 208

Once again, this is a simplified expression to ease the reading, as we got rid of
some important memory modeling features, and especially related to separation logic
(see [25] for more details).

Slicing.
As presented earlier, slicing is the computation of parts of a program that may affect
the values computed at some point of interest, referred as a slicing criterion. In
Frama-C, these criteria can be either a statement, or annotations, or a particular
read/written variable at the return point of a given function, and so on. The Slicing
plug-in produces an output program made of a subset of the statements of the
analyzed program, in the same order. The output program is guaranteed to be
compilable C code, and to have the same behavior as the analyzed program from the
point of view of the provided slicing criterion.

3. Brief presentation of the use case and results obtained

In this paragraph, we will not focus on the industrial context of the case study, nor on
a detailed description of the application that was analyzed, as it comprises
confidential aspects that could not be outlined in this paper. Let us simply say that this
use case is based on:

- a real critical embedded "control program" application, in the class of nx10 Kloc
in C language, less than 200 C functions, mainly generated by Scade/KCG [20], with
some low-level hand-coded functions,

- several hundreds of properties contributing to software robustness verification
(for instance, ensuring that some input value domains fit function requirements, like
verifying that SQRT function parameter is always positive whatever the calling
context).

The main goals of this study are to assess (feasibility and) productivity gain due to

automation of code analysis and property verification. The challenges are related to
the size of the code under formal analysis, the number of properties to prove, the
methodology to define w.r.t. the different Frama-C plug-ins to exploit (even though
the soundness of plug-ins' cooperation is an academic task still in progress at this
time). Furthermore, cutting in costs resulting from program changes, and helping
users during code review, also appear as important features. As well, exhaustive value
domain coverage performed by static analysis (intrinsic property of formal methods)
is found to be an important advantage in comparison to classical program testing
which is selective, non exhaustive, by definition.

Process and results.
The methodology applied to the aforementioned use case is quite straightforward,
from a high level point of view. It consists in the following general steps:
− step A: Annotating the code with functional properties as assertions on calling

contexts, or as pre-conditions of called functions,

D. Pariente, E. Ledinot

209 Technical Report, KIT, 2010-13

− step B: Adding some "auxiliary" annotations (to improve the next "step C"
accuracy defined below), if needed,

− step C: Processing the annotated code by abstract interpretation, using Frama-C's
Value Analysis plug-in,

− step D: Discharging annotations generated by Value Analysis, and auxiliary ones,
by means of Frama-C's Jessie plug-in, Why toolchain, and finally some automatic
theorem provers.

Of course, in practice, these steps are not realized so simply. Typically, steps A and

B need more experience when expressing properties to facilitate Value Analysis
process, to improve result accuracy, to ease VC generation and to make decision
procedures conclusive (sometimes by adding ad hoc lemmas). It generally requires
several iterations before getting the expected results. Nevertheless, 100% of
properties defined in this case study were formally proved valid, all the auxiliary
annotations also discharged (using several automatic theorem provers to cover all the
different VCs), and so, feasibility acquired. Note that some lemmas, especially
dealing with non-linear arithmetic over reals and necessary to help automatic provers,
were manually discharged or proved by means of Coq proof-assistant.

Several additional techniques and tools (some developed "in-house" at Dassault

Aviation, as specific Frama-C's plug-ins) were necessary to achieve this result for our
real-sized case study. These last are discussed in the following paragraph.

4. Some common difficulties and solutions to get around

We present below some of the techniques and tricks, developed and applied to
overcome some limitations and usual difficulties faced when formally proving large
source codes or more sophisticated properties.

4.1 Annotating automatically source codes

At first, we developed a plug-in which generates and inserts automatically some
ACSL annotations into the C code. These annotations are somehow tied to our inner
coding rules. This plug-in alleviates user's burdening annotation activity, but
mandatory for deductive verification. GENA-annot (the name of this plug-in), for all
C functions of the program, gives some:
− pre-conditions (requires clauses) related to pointer and array validities,
− function effects (assigns clauses),
− simple loop invariants and variants related to loop iterators.

So far, the amount of these needed annotations for our industrial code seems to

correspond more or less to 1/3 of the program size. This should make obvious the
interest of this automatic generation, as it avoids a fastidious and costly annotating
task. This plug-in uses some of the results of Value Analysis plug-in in order to

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 210

propose more accurate clauses (in particular for loop invariants, by estimating iterator
bounds). Its execution time is negligible as most of CPU time is indeed due to Value
Analysis process.

For instance, the example code below presents a function copy(), with no
annotation:

void copy(int *o,int *d)
{ int i, n=g(o,d);
 for(i=0; i<n; i++) { d[i] = o[i]; }
}

Let us assume that n=g(o,d) statement is interpreted by Value Analysis and
yields n in {5}. This information, which determines loop bound as i<n in the
loop condition, is directly exploited by GENA-annot. Thus, the same function, but
now automatically annotated by GENA-annot (note that specifications in ACSL are
special C comments starting with "/*@" or "//@") is as follows:

/*@ requires \valid_range(o,0,4)&&\valid_range(d,0,4);
 assigns d[0 .. 4]; */
void copy(int *o,int *d);

void copy(int *o,int *d)
{ int i, n=g(o,d); // Value Analysis returns n in {5}

/*@ loop invariant 0<=i<=5; loop assigns d[0 .. 4];
 loop variant 5-i; */
 for(i=0; i<n; i++) { d[i] = o[i]; }
}

The declaration of function copy() is put into a separated header file, to be
accessible to other files needing copy()'s contract. As it can be easily seen in this
example, not all of the annotations necessary to prove copy() correctness are of
course generated. But the main simple ones are provided. It is up to the user to fill and
complete the specification of this function. Other promising approaches for automatic
annotation generation tied to Frama-C and ACSL language can be found in [25][31].

4.2 Validating lemmas in ACSL, by means of symbolic computation tool

It is a common practice to add some lemmas, written in ACSL and inserted into
source code, to ease the task of ATPs when discharging proof obligations. These
lemmas are often related to arithmetic properties, and will be exploited by SMT
provers. The problem is to justify or even prove these lemmas to ensure their
correctness. Such lemmas are not accessible to SMT solvers. Jessie plug-in then
allows to call interactive provers such as Coq [21] to prove these lemmas. But this can
be difficult and costly to do, as final users are not always familiar with proof assistant
usage. To get around this point, we developed a plug-in, named GENA-lemmas,
which translates ACSL lemmas (e.g., Fig. 1) into Maxima [22] hypotheses and goals,
and automatically launches this symbolic computing tool on them (see Fig. 2). Note
that for the moment, correctness of the translation from ACSL to Maxima is not
guaranteed (and of course, it is not complete and fails if the lemma is too complicated

D. Pariente, E. Ledinot

211 Technical Report, KIT, 2010-13

or does not fit with a subset of ACSL syntax): its purpose is only to give a first
friendly indication on soundness.

/*@ lemma qr7_7a :
 \forall real u,yi,ys,xi,xs; (xi<=u<xs) && (yi<ys)
 ==> yi<=(((u-xs)*(yi-ys))/(xi-xs))+ys; */

Fig. 1. A lemma in ACSL.

assume(xi <= u);assume(u < xs);assume(yi < ys);
(yi <= ((u-xs)*(yi-ys))/(xi-xs)+ys), pred;
maybe(%);

/* Maxima answers:
(%i2,%i3,%i4) assume(xi<=u)&&(u<xs)&&(yi<ys)
 (u - xs) (yi - ys)
(%i5) ev(yi <= ys + ------------------,pred)
 xi - xs
(%o5) true */

Fig. 2. ACSL and Maxima lemmas (after translation). In comments, Maxima results.

4.3 Subdividing input interval for more precise output results

When dealing with non-linear arithmetic or in presence of multiple variable instances
into the same arithmetic expression, Abstract Interpretation is often non-conclusive as
it over-approximates too largely output intervals. To illustrate that point, interpreting
a simple example like: y = x-x; with x in [-1;1], a non-relational and/or
not "customized" abstract interpreter will give: y in [-2;2]. There are several
means to palliate this over-approximation. Either it is possible to add some ad hoc
heuristics into the abstract interpreter, or one can add an assertion (simply "//@
assert y == 0;") to reduce the state of values (this is possible with Value
Analysis plug-in) and then discharge this "auxiliary" assertion by other means. Or one
can also subdivide the input interval and require Value Analysis to propagate states
separately (w.r.t. control flow or any logic disjunction in an assertion).

This subdivision approach can, in certain cases, be done by hand. For instance,
with the following code, and variable x in [-10.0;10.0]:

//@ assert -10.0<=x<=10.0;
y = x * x;
//@ assert y>=0.0;

the second assert is not proved valid with Value Analysis plug-in (y's possible
values are over-approximated in [-100.0 ; 100.0]). One has to modify the first
annotation by introducing a disjunction of input intervals:

//@ assert -10.0<=x<=0.0 || 0.0<=x<=10.0;
y = x * x;
//@ assert y>=0.0;

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 212

Now, the second assertion (y>=0.0) is valid, because Value Analysis is able to
propagate each term of the disjunction in the first assertion separately when
evaluating the second assertion (i.e., before computing "union" of domains): y's
possible values are now in the interval [0.0 ; 100.0].

With more arithmetically sophisticated expressions, these manual subdivisions can

not be written by hand because these may be too numerous or complex to compute.
To address this point, we developed in-house a plug-in named GENA-subdiv which
automatically generates sub-intervals when the sought property is violated.

Let us take for instance a Taylor's series cosine implementation with self-
explanatory ACSL annotations:

//@ requires -pi<=x<=pi;
float my_cosine(float x)
{ float y, x2 = x*x;
 float x4 = x2*x2;
 y = 1 - x2/2 + x4/24 - x4*x2/720;
 //@ assert -1.0<=y<=1.0;
 return y;
}

For this annotated code, GENA-subdiv generated 1600 intervals, necessary to
prove the assertion with Value Analysis, in about 30 seconds (with a CPU at 2 GHz).

Indeed, the subdivision process is "lazy": the input interval for x is subdivided if
and only if it invalidates the sought property. This means that if x is in [a;b] U
[b;c], and only [a;b] invalidates the assertion, then only [a;b] will be
subdivided into several sub-intervals at the next subdivision iteration. This entails an
important saving of CPU time and memory resources. Furthermore, GENA-subdiv
contains heuristics and options that permit to specify symmetry or periodicity
properties for the given C function, which also reduces drastically subdivision
computation time (e.g., cosine being symmetrical w.r.t. y-axis, then only subdivisions
of [0;pi] must be considered). Of course, GENA-subdiv also comes with stop
conditions (maximum number of subdivision iterations, CPU time limit, ...) to
guarantee termination of the process.

4.4 Introducing cut strategies in Jessie usage

In previous experiences [2] with CEA's CAVEAT tool [24], we experimented cut
strategies whose goal is to alleviate WP computations, especially in case of large code
analysis. In some cases, it is difficult to prove a sought property because of WP clause
size growing rapidly when propagated upward in the source code. This is sometimes
the case with functions generated from Scade models, in which a lot of connections
between several nodes (i.e., functions) are naturally implemented by numerous
assignment statements. This is also the case when using the Leino's quadratic WP
computation algorithm [26] (usefully implemented into Why compiler to deal with
source codes containing lots of if/else statements): the WP computation can provide
provers with a smaller number of proof obligations (POs), but these POs are bigger in

D. Pariente, E. Ledinot

213 Technical Report, KIT, 2010-13

size, even more with a lot of assignments (due to the need of numerous memory state
variables).

Indeed, in our case study, many properties need not the entire code of the function
to be discharged, but just some function calls or block contracts. To illustrate the
purpose, in what follows, we assume that an assertion P, to be proved, just needs
some of the statements of a function f(), let us say, only the contract related to the
call to f5():

 void f(...)
 {
 L1: f1(...);
 L2: f2(...);
 L3: f3(...);
 L4: f4(...);
 L5: f5(...);
 L6: //@ assert P;
 }

A first attempt should be to slice the source code of f according to assertion P, in
order to get rid of calls to f1(), f2(), f3() and f4(). Frama-C's slicer generally
gives very efficient results. But this does not always generate the expected "tiniest"
code that would allow quick proof by provers: some statements are still present in the
sliced code and may be responsible of huge WP computations. Another try is to use
Why's hypothesis pruning algorithm [32]: it permits to reduce size and complexity of
POs through context pruning w.r.t. variables and predicates involved into the goal of
the sought POs. Certain classes of POs are good candidates for this kind of
simplification. Unfortunately, some are still difficult to compute in a reasonable
amount of time and memory resources.

With the same notations as in §2.3, to prove assertion P, we have to discharge the
following WPs (formulas below are intentionally simplified regarding memory model
and separation, see [25] for more details):

WP at control point L5:

 WP{@ML5}(f5(...) , P) =
 Rf5{@ML5} /\ (Assigns(ML5, ML6, Af5) /\ Ef5{@ML6} => P)

WP at control point L4:

 WP{@ML4}(f4(...) , WP{@ML5}(f5(...) , P)) =
 Rf4{@ML4} /\ (Assigns(ML4, ML5, Af4) /\ Ef4{@ML5}
 => WP{@ML5}(f5(...) , P))

 ... and so on, until the entry point of function f().

One could easily guess that these computations might become difficult to manage
in size and complexity (by either VC generators or provers), and sometimes useless
since Ef5{@ML6} => P could be indeed trivially discharged.

There is an obvious way to prove this kind of property, alleviating computing
resources, which consists in adding some ACSL statement contracts [23] on function
calls (or blocks of function calls) thus hiding the complexity of the annotated code.

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 214

Let us take again the example above, but now with new statement contracts on
function calls which are not useful when discharging the POs related to assertion P:

 void f(...)
 {
 L1: /*@ ensures \true;*/ f1(...);
 L2: /*@ ensures \true;*/ f2(...);
 L3: /*@ ensures \true;*/ f3(...);
 L4: /*@ ensures \true;*/ f4(...);
 L5: f5(...);
 L6: //@ assert P;
 }

These annotations do not modify the behavior of function f() as they are only
comments. Whatever the effects of the functions f1() to f4(), they are now
considered as ensuring "true" and assigning any location (this is the default when
mentioning no assigns clause in ACSL), and most of all they hide the corresponding
function contracts (i.e., during WP computations for assert P, only the ensures clauses
are taken into account: they permit to consider function calls at this step as black-
boxes). This allows to simplify drastically the proof of assertion P as:

WP at control point L1:

 WP{@ML1}({all f's statements} , P) =
 Rf /\ (Assigns(ML1, ML6, Af5) /\ Ef5{@ML6} => P)

The POs generated by the "ensures \true;" are obviously trivially discharged.
In our use case, we faced a function generated from a Scade model, with some

assertions (that could be simply "locally" discharged as P in f()), with 20 calls to
other functions, and lots of assignments before and after each function call. This
function with its assertions, once analyzed by Jessie and Why, gave a huge number of
POs (precisely: 19 456 obtained after automatic splitting of conjunctions in goal
conclusions), from which an important part could not be discharged in a "acceptable"
amount of time (and even made Simplify prover crashing with an unusual "subscript
out of range" error message). Once the same original function code is annotated with
ACSL statement contracts, we only obtain two POs discharged in less than 10
seconds by most provers.

In the same way, we developed another Frama-C plug-in which generates ACSL
contracts for if/else statements in source code. This plug-in aims at reducing the
complexity of WP computations, even in case of quadratic WP mentioned before. The
short example below presents some assigns and ensures clauses generated (using
Value Analysis results) automatically for any if/else statement:

D. Pariente, E. Ledinot

215 Technical Report, KIT, 2010-13

// ...
 //@ assigns V10; ensures 0<=V10<=1; // generated by GENA
 if (f28->M375) { if (! f28->M282) { if (f28->M388) { V10 = 1;
} else V10 = 0; } else { V10 = 0; } }
 else { V10 = 0; }
// ...

Fig. 3. Effects and post-condition generated automatically for an if/else statement.

Readers used to WP computations across conditionals will certainly grasp the
interest in replacing some relevant if/else statements by contracts, and so black-
boxing once again the C constructs known to introduce more complexity in WP.

4.5 Mixing Value Analysis, Jessie and ad hoc C functions devoted to proof

In our case study, some properties deal with large size arrays. The related verification
conditions (VCs) generated are difficult and in some cases impossible to discharge by
automatic provers (facing difficulties when handling inductive lemmas, etc.). For
instance, proving that a big array given in extension is sorted may require huge
computational resources, sometimes unaffordable! According to tools' developers,
this is a specific issue that might be solved by improving the automatic provers.

Frama-C offers the ability to combine abstract interpretation with deductive
verification to get around many issues revealed when attempting to prove VCs: one
can interleave assertions that will be proved correct by either Value Analysis or Jessie
plug-ins, alternatively. In other words, some assertions validated by Value Analysis
will alleviate Jessie and automatic provers workload, and vice-versa. But in some
cases, automatic provers are still unable to discharge the VCs.

Therefore, our approach consisted in defining additional C functions:
− they are interpreted by Value Analysis and referenced in program as ACSL ghost

code (statements that are understood by analyzers but do not change original code
behavior), in order to compute, say, some logic variable V domain,

− they have a specification S validated by Jessie, useful to ensure some auxiliary
assertion A(V) (i.e., A makes reference to V), such as A(V)==>P (P being the
sought property).

In our case study, we successfully applied this mechanism to prove some

properties involving big-sized arrays. The principles can be illustrated in the
following generic example:

// implementation of a C function devoted to proof
//@ ensures S;
float ghost_function(...) { ... }

// main function
void main()
{
...
//@ ghost float V = ghost_function(...);

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 216

 // ghost_function and V are interpreted
 // by Value Analysis

//@ assert A(V); // validated by Jessie, as "S==>A(V)"

//@ assert P; // validated by Value Analysis
 // with the help of A(V)
}

All the lemmas, logic functions and predicates needed to prove this kind of
annotated code, of course, had to be defined, and will not be presented here for
convenience. This approach is expected to solve many common difficulties faced, not
only by automatic provers, but also by final users when attempting to express
complex properties only with logic. By using additional C functions, given the fact
that abstract interpretation is able to analyze accurately their related code, it is the
whole C language expressiveness that can be exploited to write and validate formally
properties (in a sense, a similar approach is model-checking for which it is possible to
define observers with the same syntax and semantics as the ones used for the model).

5. Conclusion

This paper has presented the process and results of a use case involving formal
methods and Frama-C toolbox applied to a real critical code verification. This case
study is representative of a class of programs and properties commonly developed and
embedded into aircraft. To succeed in verifying the sought properties, some additional
developments and methodologies were required, to address several issues often met in
formal method implementations. It is worth mentioning that some hypotheses needed
to be expressed, for instance on plug-ins' memory model compliancy, or on numerical
accuracy aspects, which are indeed on-going works, and so, out of the scope of this
paper for the time being.

Of course, for any other class of code or annotation, other tricks will have to be
found, and surely new plug-ins will give a hand to users by simplifying preliminary or
even intermediary static analysis workload. This is one of the strong benefits from
Frama-C toolbox, as it allows users to develop their own plug-ins, in a multi-
paradigm and collaborative context, based on ACSL, a common annotation language.

At this time, the whole tools are not yet fully industrialized, even if very well

documented and supported by a researcher community, at least through discussion
mailing-list of high reactivity. Indeed, these very recent tools still lack of integration
w.r.t. results obtained by the different plug-ins. This is palliated for the moment by
more methodological effort and sometimes a fastidious manual management of the
results obtained. Hopefully, this will be made easier through a future Integrated Proof
Environment development planed for the next months in the context of project
ANR/U3CAT. From an industrial point of view, this work was done in a Research &
Technology environment, with less critical resource constraints than in operations
(like for instance no concrete integration into the development process). This issue is

D. Pariente, E. Ledinot

217 Technical Report, KIT, 2010-13

addressed as well in on-going projects involving development teams at Dassault
Aviation.

To improve software quality and safety, intensive testing had been unavoidable for
years, even for unit function validation. Recent works, in particular done by Airbus
with CEA's CAVEAT tool [29], opened some ways for formal and automatic
verification usage. With new generation tools like Frama-C, formal method
implementations can be even more firmly considered to replace testing activities in
some identified cases. This is enforced by latest breakthroughs of static analysis in
airworthiness certification of critical embedded software norm on-going specification
(DO-178C norm project [27], to be released before the end of 2010): it is expected to
benefit from certification credits, that is, replacing function testing by formal
verification, conditioned of course by the qualification of related formal tools.

Acknowledgements
The authors are grateful to Benjamin Monate (CEA LIST) and Claude Marché
(INRIA ProVal), and their groups, for their involvement in adapting research results
to industrial needs, and their efficient technical support on Frama-C platform.

References

1. G. Berry, E. Ledinot & al., “Esterel: a formal method applied to avionic software
development”, Sc. of Computer Progr., v.36 n.1, p.5-25, Jan.1.2000

2. E. Ledinot, D. Pariente, Formal verification of manual code: some industrial needs and
recommendations, Embedded Real Time Software, SIA ed., 2006
(http://www.sia.fr/dyn/publications_detail.asp?codepublication=R-2006-01-3A3)

3. http://frama-c.com/index.html
4. http://research.microsoft.com/en-us/projects/specsharp/
5. http://kind.ucd.ie/products/opensource/ESCJava2/
6. http://www.eecs.ucf.edu/~leavens/JML/
7. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive

program verification. In W. Damm and H. Hermanns ed., 19th Int. Conf. on Computer
Aided Verification, LNCS, Berlin, Germany, July 2007. Springer-Verlag.

8. S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer, {CC(X)}: Semantical
Combination of Congruence Closure with Solvable Theories, Proceedings of the 5th
International Workshop on Satisfiability Modulo Theories, SMT 2007, Electronic
Notes in Computer Science, Elsevier Science Publishers, vol. 198-2, pp 51-69, 2008.
(http://alt-ergo.lri.fr)

9. P. Cousot, R. Cousot, “Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints”, 4th ACM SIGACT-
SIGPLAN POPL, p.238-252, January 17-19, 1977, Los Angeles, California.

10. C. A. R. Hoare, “An axiomatic basis for computer programming”, Volume 12 , Issue
10, p576 - 580, ACM Press New York, NY, USA October 1969.

11. Edsger W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of
program. Communications of the ACM, 18(8):453–457, August 1975.

12. Mark Harman and Robert Hierons. "An overview of program slicing", Software Focus,
Volume 2, Issue 3, pages 85–92, January 2001.

13. L. de Moura and N. Bjørner. Z3, An Efficient SMT Solver.
http://research.microsoft.com/ projects/z3

Formal Verification of Industrial C Code using Frama-C: a Case Study

Technical Report, KIT, 2010-13 218

14. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover.
http:// research.compaq.com/src/esc/simplify.html

15. Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided
Verification (CAV '07), volume 4590 of Lecture Notes in Computer Science, pages
298-302. Springer, July 2007. Berlin, Germany.

16. Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, William
Pugh, “Using Static Analysis to Find Bugs,” IEEE Software, vol. 25, no. 5, pp. 22-29,
Sep./Oct. 2008, doi:10.1109/MS.2008.130.

17. Symbolic Model Checking, Kenneth L. McMillan, Kluwer, ISBN 0-7923-9380-5.
18. R. Bornat. Proving pointer programs in Hoare logic. In Mathematics of Program

Construction, pages 102–126, 2000.
19. Thierry Hubert and Claude Marché. Separation analysis for deductive verification. In

Heap Analysis and Verification (HAV'07), Braga, Portugal, March 2007.
(http://www.lri.fr/~marche/hubert07hav.pdf)

20. http://www.esterel-technologies.com
21. Coq'Art: The Calculus of Inductive Constructions. Series: Texts in Theoretical

Computer Science. An EATCS Series. Y. Bertot, P. Castéran. Springer, 2004. ISBN:
978-3-540-20854-9

22. http://maxima.sourceforge.net/documentation.html
23. P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and V. Prevosto.

ACSL : ANSI ISO/C Specification Language v1.4, 2010 (http://frama-c.com/acsl.html)
24. CAVEAT project. http://www-drt.cea.fr/Pages/List/lse/LSL/Caveat/index.html.
25. Y. Moy. PhD thesis. Automatic Modular Static Safety Checking for C Programs.

Université Paris-Sud, 2009. (http://www.lri.fr/~marche/moy09phd.pdf)
26. K. Rustan M. Leino. Efficient weakest preconditions. Inf. Processing Letter, 93(6):281–

288, 2005.
27. http://en.wikipedia.org/wiki/DO-178
28. Edmund Clarke & al., Predicate Abstraction of ANSI-C Programs Using SAT, Formal

Methods in System Design, v.25 n.2-3, p.105-127, September-November 2004.
29. Applying Formal Proof Techniques to Avionics Software: A Pragmatic Approach, F.

Randimbivololona & al., FM'99, Toulouse, September 1999.
30. C. Marché, The Krakatoa tool for Deductive Verification of Java Programs, Winter

School on Object-Oriented Verification, Viinistu, Estonia, Jan. 2009.
(http://krakatoa.lri.fr/ws)

31. Y. Moy and C. Marché, Modular Inference of Subprogram Contracts for Safety
Checking, Journal of Symbolic Computation, 2010, to appear.

32. J.-F. Couchot and T. Hubert, A Graph-based Strategy for the Selection of Hypotheses,
FTP 2007, International Workshop on First-Order Theorem Proving, Liverpool UK,
Sep. 2007.

D. Pariente, E. Ledinot

219 Technical Report, KIT, 2010-13

Verification of Variable Software:
An Experience Report ?

Richard Bubel, Crystal Din and Reiner Hähnle

Department of Computer Science and Engineering
Chalmers University of Technology

bubel@chalmers.se, crystal@student.chalmers.se, reiner@chalmers.se

Abstract. We report on our experiences with formal specification and
verification of variable and customizable software realized in a software
product family architecture using the Java Modeling Language (JML)
and the KeY verification system. Software product families can be adapted
to different deployment scenarios and provide instantiable feature sets
as requested by the customer. Along a small case study we explore how
to generate JML specifications for/from a given feature configuration
and report on verification attempts of selected methods of the derived
product. We identify challenges that need to be solved to allow scalable
specification and verification of variable software.

1 Introduction

One of the biggest saving potentials for increasing the efficiency of software de-
velopment lies in the reusability of software artefacts. In order to make software
artefacts reusable, two essential qualities must be achieved: flexibility and ab-
straction. The first is needed, because reusable software is supposed to work
in a variety of different contexts and requirements. The second is important to
achieve a separation between the level of design and that of executable products.
There is a large number of suggestions on how to achieve reusability. Among the
most systematic approaches are model-driven engineering (MDE) and software
product families (SWPF).1 Of these, software product families are arguably the
more successful method in practice and are very widely used in industry.2

The core idea of software product families is to split software development
into two separate streams called Family Engineering and Application Engineer-
ing, see Fig 1. In the former, the commonalities of all anticipated products are
specified in a structured manner centered around the notion of a feature. The
resulting interfaces, libraries, and partial implementations are collected in an
Artifact Base. Concrete products are obtained by feature selection and feature
instantiation.
? This work has been supported by the EU project FP7-ICT-2007-3 HATS Highly

Adaptable and Trustworthy Software using Formal Methods.
1 Both terms “Software Product Families” and “Software Product Lines” are in use

and can be considered to be equivalent within the scope of the present paper.
2 See the Software Product Line Hall of Fame at http://www.splc.net/fame.html.

Technical Report, KIT, 2010-13 220

Fig. 1. Sketch of life cycle in Software Product Family development

Software product family-based development is increasingly used in safety-
critical applications, for example, in health care products or in automotive soft-
ware. In addition, the designs of product families reach complexity limitations,
because different features may interact in unanticipated ways. It is fairly stan-
dard to automatically check the compatibility of features [1], but this is done
with structural descriptions, not based on a precise behavioral model of feature
functionality. For these reasons it is highly interesting to investigate formal ver-
ification of functional properties in software product families. To the best of our
knowledge this has not been attempted before. The present paper is a first case
study where we seek to verify certain functional properties of a small product
family. We report on our experiences, discuss different design choices, and list a
number of encountered problems. We also state a number of requirements for the
design of verification methods and tools to scale up to industrial-size software
with high variability.

It is clear start that—unless verification and specification is compositional
and incremental—full functional verification at the family engineering level is
doomed to fail, because of the targeted variability. Already small product families
give rise to an infeasibly large number of products with different properties.
Suitably compositional and incremental verification methods are the subject of
future research, therefore, in our case study we aimed at verification at the
level of a single derived product in the implementation language Java. At first
sight this seems to be merely a standard verification problem. Depending on the
implementation of feature selection, however, it becomes much harder: the reason
for this is that we chose an implementation that resolves variability points only
at run-time, not statically at compile-time. The reason for this choice is that it
allows for a more flexible architecture and is, therefore, favored in practice.

The case study in our paper has been done with the verification system KeY
[2]. The software product family was implemented in Java and we used the Java
Modeling Language (JML) to specify properties.

C. Din, R. Bubel, R. Hähnle

221 Technical Report, KIT, 2010-13

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 222

The CoCoMe challenge comprises not only to model a cash desk system that
is able to handle the above scenario, but the modeled trade system should also
be adaptable to different environments. For instance, shops may have barcodes
encoding the product id and want to be able to read them automatically using a
scanner rather than having to enter them manually. Businesses may accept only
cash or card or both payment kinds. In case of card payments the supported
type of cards (prepaid card or credit card) should also be customizable.

2.2 Feature Modeling

In this section we present the specific feature model used for the case study and
explain the necessary elements of the feature modeling language. As a basis for
our case study we used the feature model in [4] which we also took as a starting
point for our implementation.

Different modeling formalisms have been developed to capture the require-
ments as sketched in Sect. 2.1 in a structured manner. Best known are perhaps
decision diagrams [5] and feature-based models [6, 7]. For our case study we
use the feature modeling approach first introduced in Feature Oriented Domain
Analysis (FODA) [6] and extended in subsequent work.

A software family can be seen as a set of features, while a concrete software
product is then derived by selecting a subset of the features; such a feature selec-
tion is called a feature configuration. Not each combination of features represents
a valid feature configuration, as for example, certain features may require the
presence or absence of others. Feature diagrams and a feature description lan-
guage (FDL) provide structured means to describe valid feature configurations.
We restrict ourselves to tree like structures for representing valid feature config-
urations. The feature diagram representing all valid configurations of the feature
CashDesk is shown in Fig. 3.

Fig. 3. Feature diagram of the CoCoME cash desk feature

C. Din, R. Bubel, R. Hähnle

223 Technical Report, KIT, 2010-13

The root of a feature diagram represents the top-level feature whose valid
configurations are modeled (here, the cash desk component). A feature can then
be composed of subfeatures represented as children of the root node (e.g., the
Cash Desk has two subfeatures, namely Payment Method and Product Input De-
vices). There are different types of edges (see Fig. 4) that can be used to connect
the children to its parent. Depending on the type of edge certain restrictions
apply. An edge with a filled circle at the end represents a mandatory feature,
i.e., the feature must be selected when its parent is selected, while an empty
circle represents an optional feature. To express that at least one of a group of
sibling features has to be selected, the edges to these siblings are connected by a
filled triangle. An empty triangle means that exactly one of the grouped siblings
has to be selected, but not more.

Fig. 4. Feature Diagram Notations: All: all subfeatures must be selected; Alternative:
exactly one subfeature must be selected; Or: at least one subfeature must be selected;
Mandatory: required feature; Optional: optional feature

In our case a valid configuration of a CashDesk must include the direct subfea-
tures Payment Methods and Product Input Devices. The feature Payment Methods
requires at least one of the features Cash or Noncash to be present.

The most basic product that can be derived from a feature configuration that
is valid under the model given in Fig. 3 is the one that allows only keyboards as
product input devices and accepts only cash payment.

Alternative to the graphical notation, equivalent textual notations can be
used to encode valid feature configurations. We presented only those notions
required for the understanding of the paper: there exist several others that allow
to express further dependencies and restrictions of features.

3 Implementation

In this section we describe the Java implementation of the cash desk component.
We explain how the variability of the cash desk component is achieved so that
for all feature configurations described in Fig. 3 a corresponding product can be
derived.

The implementation follows closely the feature diagram shown in Fig. 3.
For each node there is a similarly named interface or class that represents or
implements the feature. The class CashDesk shown in Fig. 5 implements the

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 224

behavior common to all possible cash desk configurations. A cash desk can be
equipped with an arbitrary number of input devices and payment processes. It
provides, therefore, methods to add input devices addInputDevice(IDevices)
and payment methods addPaymentMethod(IPayments).

CashDesk

devices : IDevices[]
payments : IPayments[]
...

CashDesk()
addInputDevice(dev:IDevices)
addPaymentMethod(pm:IPaymentMethods)
...

Configurator

realFeatures : boolean[]
...

Configurator()
plugin(cashDesk : CashDesk)
setFeatureVector(f:boolean[])
start()
...

FeatureSelection

Fig. 5. Class diagram of CashDesk controller

Each input device has to implement the interface IDevices. The interface
IDevices defines the protocol for entering product identification numbers by
declaring a common set of methods initiating and finalising the product in-
put process. In our scenario, the supported input devices are keyboards (class
KeyboardProductInput) and barcode scanners (class ScannerDevice) as shown
in Fig. 6. Supported payment methods need to implement the IPayments inter-
face which defines the common protocol for financial transactions. It provides
the CashDesk class to implement billing of the customer in a transparent way
with respect to the underlying low-level payment protocol.

Our implementation of variability points is substantially different to the Co-
CoMe implementation in [4] and is an almost complete rewrite of it except for
the graphical user interface. In principle, our implementation admits to change
the feature configuration of an already deployed system at run-time. This means
that resolution of variability points happens dynamically rather than statically.
In our case study, however, dynamic variability point resolution is not exploited,
but restricted to simulate static resolution. Thus, once the system has been
setup, its configuration is considered to be fixed. The dynamic evolution of fea-
tures after system initialisation are beyond the scope of this paper and subject
of future work.

We explain now how feature selection and the initialisation of the cash desk
system are implemented. At start of the configuration phase the user is asked to

C. Din, R. Bubel, R. Hähnle

225 Technical Report, KIT, 2010-13

<<interface>>
IDevices

startProductInputProcess()

ScannerDevice
. . .

KeyboardProductInput
. . .

<<interface>>
IPayments

getPaymentID()
resetPaymentSelection()
...

CashPayment
. . .

CreditcardPayment
. . .

PrepaidPayment
. . .

Fig. 6. The feature hierarchy as implemented in Java

customize the system by selecting a feature combination with help of a graphical
user interface (see Fig. 7). When the user finished feature selection the chosen

Fig. 7. Feature Selection Interface

configuration is passed to an instance of the Configurator class which is re-
sponsible for the cash desk system deployment phase (see Fig. 5).

The feature configuration is passed as a bitvector (represented as boolean ar-
ray) to the method setFeatureVector(boolean[] f). The encoding of feature
configurations as bitvectors is canonical: the length of the vector is the same as
the number of available features and each bitvector element represents exactly
one feature (feature fi is selected iff f[i]==true). If the selected feature con-
figuration is invalid, then the configuration phase is aborted and an exception
of type FeatureException thrown. Otherwise the feature array is assigned to
the field realFeatures. Subsequent invocation of the start() method triggers
creation and initialisation of the cash desk system.

First an instance of the class CashDesk is created. Then the plugIn() method
of the Configurator is called which equips the created CashDesk instance with

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 226

the chosen features and accessories like keyboards or scanners by creating the
respective instances and registering them at the CashDesk instance. The presence
of this plug-in mechanism makes dynamic feature selection principally possible.

4 Specification

Feature model diagrams provide a high-level, structural specification of valid
feature configurations, but do not relate to a concrete implementation, that is,
the actual behavior of a software product family. As we want to verify that the
Java implementation described in Sect. 3 permits only valid configurations to
be deployed, we need to connect the feature model specification and the actual
Java implementation.

4.1 The Java Modeling Language

For Java programs the Java Modeling Language (JML) [8] is widely used as
specification language. JML follows the design-by-contract paradigm and is sup-
ported by numerous tools like the Java verification system KeY [2] used here.

JML specifications are added as comments to Java source code. They start
either with //@ or are enclosed in /*@ ... @*/. Among other things, JML
allows to specify invariants

//@ public invariant bExp;

method contracts for the normal behavior case

/*@ public normal_behavior

@ requires 〈bExpreq〉;
@ ensures 〈bExpens〉;
@ assignable 〈store ref list〉;
@*/

and for the exceptional behavior case

/*@ public exceptional_behavior

@ requires 〈bExpreq〉;
@ signals (Exception e) 〈bExpens(e)〉;
@ assignable 〈store ref list〉;
@*/

where

– the requires/ensures keywords followed by a boolean JML expression
〈bExpreq|ens〉 represent the method’s pre-/postconditions

– the assignable keyword followed by a list of store references (fields, array
components) specifies the locations that might be at most changed by the
method

– the signals keyword specifying the postcondition in case that an exception
of the indicated type has been thrown.

C. Din, R. Bubel, R. Hähnle

227 Technical Report, KIT, 2010-13

JML expressions are a superset of Java expressions with a number of addi-
tional operators including

– the boolean operator ==> denoting logical implication
– universal and existential quantifiers

(\forall T i; 〈bExp(i)guard〉; 〈bExp(i)〉);
(\exists T i; 〈bExp(i)guard〉; 〈bExp(i)〉);
where the second semicolon means implication in the universal case and
conjunction in the existential case.

Finally, we mention ghost and model fields, declared similar to standard Java
fields. A ghost field declaration such as //@ public ghost int i = 5; declares
an integer typed field named i and initialises it with the value 5. Ghost fields have
nearly the same meaning as standard fields and can be assigned values within
method body statements using the JML set-primitive //@ set i = 10;.

Model fields can be referred to like standard fields in JML specifications, but
it is not possible to assign them a value directly as is the case for ghost fields.
Typically, they are used in interfaces where they are related to an (abstract)
datatype and used to specify interface methods in terms of model fields and the
operations its type provides. Implementing classes of the interface express then
how their implementation relates to the model field by providing a represents

clause mapping their internals to the model field. For more details see [8].

4.2 JML Representation of the Feature Model

We describe how a feature model is translated into an equivalent JML specifica-
tion. The obtained JML specification will be self-contained and independent of
a concrete implementation. Our translation of feature models into JML follows
the approach presented in [9] for propositional logic.

Let FM denote the feature model to be translated and F = {f0, . . . , fn} the
set of all its features. The translation tr(FM) of the feature model consists of:

– A model field declaration

//@ model public nullable boolean[] feature;

including an invariant stating that the length of the feature array is equal
to the number of features declared in FM.

– A sequence of ghost field declarations

//@ ghost public final static int f_0 = 0;
...

//@ ghost public final static int f_n = n;

Each ghost field declaration f i defines a compile-time constant associat-
ing the corresponding feature fi uniquely with an array component of the
previously declared model field feature such that feature fi is selected iff
feature[f_i]==true.

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 228

– A set of conjunctively connected boolean JML expressions Inv = {e0, . . . , en}
such that each expression encodes the relationship between a feature and its
immediate subfeatures.

The conjunction of the JML expressions in Inv encodes the FM diagram
(recall that we only consider FM models being trees). Wlog. we describe now the
construction of the JML expression e0 ∈ Inv encoding the relationship between
the parent feature f0 and its children f1, . . . , fm: e0 is the conjunction of

1. feature[f_i]==>feature[f_0] (for all 0 ≤ i ≤ m) encoding the ancestor
link

2. feature[f_0]==>feature[f_i] for each mandatory feature fi

3. feature[f_0] ==>
(feature[f_l] &&!feature[f_2] && ... && !feature[f_k])
|| ... ||
(!feature[f_l] && ... && !feature[f_(k-1)] && feature[f_k])

for each alternative relationship between parent and a subgroup of its chil-
dren fl, . . . , fk where 1 ≤ l < k ≤ n)

4. Analogous expressions for the remaining parent-child relationships.

Based on this definition, we implemented an automatic translation from fea-
ture models to a JML specification fragment to be used as part of JML invariants
and method specifications.

4.3 Connecting Specification and Implementation

While the specification generated in Sect. 4.2 describes all valid feature config-
urations, it is not yet connected to the actual implementation of the cash desk
system. In this section we explain how to relate the feature vector used in the
specification to the implementation. The generated feature specification is used
to ensure that

1. the Configurator accepts only valid feature configurations;
2. the CashDesk system built by the Configurator has all components required

by the selected feature configuration.

We start with item 1. In a first step the model and ghost field declarations from
above are inserted into the Configurator class. In addition, we need to add the
invariant Inv, however, since the invariant can only be expected to hold after
the feature vector is determined and initialized we add a guard that ensures it:

//@ public invariant !feature == null ==> Inv

Next, the model field feature is related to the actual implementation by
adding a JML represents clause defining how the model field can be mapped to
concrete Java constructs. This mapping is trivial and simply states that feature
is represented by the field realFeatures of class Configurator.

C. Din, R. Bubel, R. Hähnle

229 Technical Report, KIT, 2010-13

The JML semantics says that each non-helper method preserves all invari-
ants, so our specification expresses already that setFeatureVector(boolean[])
may only accept valid feature configurations. It is straightforward to construct
a normal behavior method specification for setFeatureVector(boolean[] f):
simply rename feature in e with the method parameter f and use feature == f
as postcondition, the only a valid configuration is actually accepted.

Moving to item 2. above, the feature array needs to be more closely related
to the underlying Java implementation. This can be done in a systematic man-
ner by annotating the Java feature model FM with a mapping that maps each
feature fi to a JML expression φ(fi) to be used as an additional invariant to
be established after deployment of the product and preserved thereafter. For ex-
ample, an annotation ensuring that the created cash desk cashDesk is equipped
with a properly registered keyboard is:

feature != null && feature[_keyboard] ==>
(\exists KeyboardProductInput kpi;

(\exists int i; 0<=i && i < cashDesk.stateChangeListenerSize;
cashDesk.stateChangeListener[i]==kpi) &&

(\exists int j; 0 <= j && j < cashDesk.devicesSize;
cashDesk.devices[j] == kpi))

5 Verification

We used the KeY verification system [2] to prove that the feature configura-
tion validity check and the cash desk system setup procedure are implemented
faithfully with respect to the specification given in Sect. 4.

We were in particular interested how well a current state-of-the-art verifi-
cation tool scales when verifying highly adaptable software as developed in the
context of software product families.

public void plugIn(CashDesk cashDesk) {

if (realFeatures[SCANNER]) {

final ScannerDevice scanner = new ScannerDevice(cashDesk);

cashDesk.addInputDevice(scanner);

cashDesk.addStateChangeListener(scanner);

}

if (realFeatures[NONCASH] && realFeatures[CREDITCARDREADER]) {

...

}

...

}

Fig. 8. If-cascade implementing the cash desk initialisation logic

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 230

Before we could start the verification of our CoCoMe subsystem, we had
to adapt the derived JML specification slightly. The reason is that KeY’s sup-
port for model fields is somewhat rudimentary. Thus we decided to replace the
feature model field by a ghost field of the same name. As the semantics of
model fields is much more complex than that of ghost fields, we had also to
change and extend JML specifications referring to the model field to achieve an
equivalent and correct specification. Such a replacement is not possible in general
but worked here well in our context due to the simple represents clause and by
assuming a closed system, i.e., that all classes implementing input devices and
payment methods are known in advance.

We were able to verify the correctness of the validity check and most parts
of the actual cash desk creation and initialisation. In its original version the lat-
ter had been a monolithic method (plugIn() of class Configurator) consisting
of if-cascades as shown in Fig. 8. Verification of this method was infeasible as
the proof size exploded. We modularised the monolithic method and separated
each if-cascade representing the creation and registration of a device or pay-
ment method into different methods. The specification of one of these methods
checkScanner(CashDesk) is given in Fig. 9.

/*@

@ public normal_behavior

@ requires feature!=null;

@ requires feature[_scanner];

@ ensures

@ (\exists ScannerDevice sd; \fresh(sd);

@ (\exists int i; 0<=i && i< cashDesk.stateChangeListenerSize;

@ cashDesk.stateChangeListener[i]==sd) &&

@ (\exists int j; 0<=j && j< cashDesk.devicesSize;

@ cashDesk.devices[j]==sd));

@ assignable

@ \object_creation(ScannerDevice),\object_creation(Scanner),

@ cashDesk.stateChangeListenerSize, cashDesk.stateChangeListener,

@ cashDesk.stateChangeListener[cashDesk.stateChangeListenerSize],

@ cashDesk.devicesSize, cashDesk.devices,

@ cashDesk.devices[cashDesk.devicesSize];

@*/

Fig. 9. Specification of the checkScanner method

Afterwards we were able to verify most of the individual methods in isolation.
Fig. 10 shows statistics about the performed proofs (all fully automatic) and their
size. For two methods, checkCreditCard and checkPrepaidCard we could not
yet obtain proofs. We are currently analyzing the problems and we are confident
that we can present proofs in the final version of this paper.

C. Din, R. Bubel, R. Hähnle

231 Technical Report, KIT, 2010-13

Method Nodes Branches

checkScanner 22032 107
checkCash 14150 77
checkKeyboard 15755 64

(a) Ensure Postcondition

Method Nodes Branches

checkScanners 40439 429
checkCash 20265 161
checkKeyboard 46392 664

(b) Correct Assignable Clause

Method Nodes Branches

checkScanners 89492 703
checkCash 49421 327
checkKeyboard 70962 485

(c) Preserve Invariant

Fig. 10. Proof Statistics

6 Related & Future Work

Related Work. In [10] the authors describe an approach to open system verifica-
tion of software product lines by parametrised interfaces. The verification tech-
nology is (3-valued) model checking. Features and the core product are equipped
with interfaces externalising certain states as input and output states. Features
can be composed to complex features or to whole products by connecting to the
core product using these interfaces.

The authors aim to allow compositional (contract-based) reasoning using
model checking by computing subcontracts for the interfaces. When composing
the features to a complete product only the subcontracts have to be discharged.
Specifically, for a given global property of a product, constraints to be posed onto
the exposed input and output states are computed independently for each fea-
ture. At composition time one has then only to ensure that these constraints are
satisfied by the preceding/succeeding features. The constraints for the preced-
ing features are propositional formulas restricting the values of the input values,
while those of the succeeding features are temporal logic formulas ensuring that
certain properties are adhered to in the future. The presented approach allows to
compose products arbitrarily and eases verification by having only to discharge
the computed constraints for the derived product, but is limited to incremental
features.

The authors of [11] describe an approach to verification of a software product
lines based on ASMs and the AHEAD methodology. Their case study is built
upon the Jbook [12], where a complete virtual machine for Java 1.0 has been
modelled including an interpreter and compiler. The compiler was proven correct
wrt. the interpreter.

The authors restructured the Jbook case study to fit into the feature mod-
elling approach as enforced by the feature-oriented programming (FOP) design

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 232

methodology which provides a technology for compositional program assembly.
The so obtained structure has a base layer or core representing only a subset
of Java expressions (imperative expressions). This core is stepwise extended by
adding new features (layers) such as imperative statements, class and object
features until complete coverage of the Java 1.0 language is reached.

In this framework a strong structural connection exists between model exten-
sion and the correctness proof of the compiler. This allows to alter the existing
correctness proof by adding new independent cases (e.g., for new supported
language constructs) or to refine existing cases by an additional invariant to be
proven. Features having a non-compositional or destructive influence for existing
cases occurred either rarely or not at all. Correctness has been proven (mostly)
by hand without any automation or even machine-checked proof support.

Future Work. We differ substantially in our objectives and the underlying tech-
nology from the work discussed above: we aim at a highly automatised com-
positional design and verification system that is applicable to adaptive systems
in general and specifically to software product line engineering. In basing our
work on an expressive program logic and specification framework realized in a
verification system with a high degree of automation we overcome some princi-
pal limitations, however, we are fully aware that there are considerable research
challenges ahead:

– We believe that it is not sufficient to achieve compositionality by manually
adding case distinctions or refining existing ones. The verification system
and methodology must inherently construct proofs that are accessible to
compositional reasoning and—where this is not possible—apply proof reuse
techniques.

– Support for destructive features is essential: the restriction to mostly incre-
mental features and consequently conservative extensions is not sufficient
for our purposes. Adding new features may easily render existing proof cases
invalid and require a completely new proof. Again, proof reuse is of essence.

– Independence of new features and existing proofs: even if a new feature has
no influence on, say, a certain class invariant, this needs to be proven (or
enforced) explicitly. In case of real-world languages like Java with aliasing
this is still an area of active research [13, 14].

Our case study showed that formal specification and verification of software
product families is, in principle, possible with current technology and can actu-
ally be achieved for small examples. Nevertheless, the results of our case study
are not satisfactory from our point of view. Specific problems, such as missing
support for model fields which are crucial for verification of open systems, are
specific shortcomings of the used verification tool KeY and will be resolved in
the near future. Others issues, however, such as proof-size explosion due to the
resolution of variability points needs to be solved on a methodological level. Re-
search regarding this issue is under way. It would also be interesting to explore

C. Din, R. Bubel, R. Hähnle

233 Technical Report, KIT, 2010-13

how separation-logic based approaches perform in the context of software fami-
lies and if they can overcome some of the problems we faced because of framing
issues.

References

1. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems (2010)

2. Beckert, B., Hähnle, R., Schmitt, P., eds.: Verification of Object-Oriented Software:
The KeY Approach. Volume 4334 of LNCS. Springer-Verlag (2007)

3. Rausch, A., Reussner, R., Mirandola, R., Plasil, F., eds.: The Common
Component Modeling Example: Comparing Software Component Models [re-
sult from the Dagstuhl research seminar for CoCoME, August 1-3, 2007].
In Rausch, A., Reussner, R., Mirandola, R., Plasil, F., eds.: CoCoME. Vol-
ume 5153 of LNCS., Springer (2008) Preliminary version of the chapter de-
scribing the Trading System is available at: http://agrausch.informatik.uni-
kl.de/CoCoME/downloads/documentation/cocome.pdf.

4. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A Model-Based Framework for Au-
tomated Product Derivation. In: Proc. of Workshop in Model-based Approaches
for Product Line Engineering (MAPLE 2009). (2009)

5. Bayer, J., Gacek, C., Muthig, D., Widen, T.: Pulse-i: Deriving instances from
a product line infrastructure. Engineering of Computer-Based Systems, IEEE
International Conference on the 0 (2000) 237

6. Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented do-
main analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021,
Carnegie Mellon University Software Engineering Institute (1990)

7. Batory, D.: Feature models, grammars, and propositional formulas. In: Software
Product Lines. Springer-Verlag (2005) 7–20

8. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual. (September
2009) Draft revision 1.235.

9. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: Software Product Line Conference, 2007. SPLC 2007. 11th International. (2007)
23–34

10. Blundell, C., Fisler, K., Krishnamurthi, S., Hentenryck, P.V.: Parameterized in-
terfaces for open system verification of product lines. In: ASE ’04: Proceedings of
the 19th IEEE international conference on Automated software engineering, IEEE
Computer Society (2004) 258–267

11. Batory, D.S., Börger, E.: Modularizing theorems for software product lines: The
jbook case study. J. UCS 14(12) (2008) 2059–2082

12. Stark, R.F., Börger, E., Schmid, J.: Java and the Java Virtual Machine: Definition,
Verification, Validation with Cdrom. Springer (2001)

13. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
Volume 2262 of Lecture Notes in Computer Science. Springer (2002)

14. Schäfer, J., Reitz, M., Gaillourdet, J.M., Poetzsch-Heffter, A.: Linking programs
to architectures: An object-oriented hierarchical software model based on boxes.
In: CoCoME. (2007) 238–266

Verification of Variable Software: An Experience Report

Technical Report, KIT, 2010-13 234

Vótáil: PR-STV Ballot Counting Software for
Irish Elections

Dermot Cochran and Joseph R. Kiniry

IT University of Copenhagen, Denmark
(dero,kiniry)@itu.dk

Abstract. Vótáil is an open source Java implementation of Irish Pro-
portional Representation by Single Transferable Vote (PR-STV). Its
functional requirements, derived from Irish electoral law, are formally
specified using the Business Object Notation (BON) and refined to a
Java Modeling Language (JML) specification. Formal methods are used
to verify and validate the correctness of the software. This is the first
public release of a formally verified PR-STV open source system for bal-
lot counting and the most recent of only about half a dozen releases of
formally verified e-voting software.

1 Introduction

Vótáil is the Irish Gaelic word for Vote. Many aspects of the election process are
apparently suitable for automation. For example, voter registration records are
stored in computer databases, postal voting has sometimes been replaced with
internet voting, paper ballots with voting kiosks, and ballot counting is some-
times done by machine. However, many attempts to introduce electronic voting
have failed, or at least received much criticism, due to a litany of software and
hardware errors, many of which are avoided through the use of formal methods.

To give evidence to this claim, as well as to continue to play a scientist-activist
role in the public eye, we present the Vótáil system: a verified implementation
of Irish PR-STV. This work in novel on several fronts. First, Vótáil represents
one of the largest and most complex case studies in the verification of an object-
oriented system. As such, it helps validate our verification-centric approach to
software design and implementation [15,16]. Second, as the case study is di-
rectly relevant to one of society’s critical systems, it represents an opportunity
to influence the mindset of not just the software developer interested in quality,
but in the worldview of the politician interested in trusted elections and the
voter passionate about their government. Finally, this work also pushes some
of the object-oriented software verification’s community’s tools to their limits,
thus shows us where we have succeeded, and where we have failed, in our focus
on usable, usable, and powerful verification tools. Consequently, we expect that
this system, like others of a similar ilk (e.g., the KOA tally system [11,14]) will
be used to benchmark new verification tools for object-oriented software.

235 Technical Report, KIT, 2010-13

Before discussing the process, tools, and techniques used in this case study,
some context in election system and voting in Ireland is necessary to appreciate
its size and complexity.

1.1 Electronic Voting in Ireland

In 2009, the Irish government decided to save costs by disposing of its current
generation of direct recording electronic (DRE) voting machines. The decision to
stop using electronic voting was due to technical problems and to more general
concerns about the security of electronic voting. The current political consensus
is that electronic voting (in its current form, e.g., DRE machines) will not be
used in the Republic of Ireland.

In the authors’ personal experience, Irish citizens are happy with the paper-
based voting process and the hand-counting of votes that takes several days
with gradual reporting of results through the media. There are usually one or
two closely contested seats that require a full manual recount with additional
observers.

After opposition parties voiced concerns about electronic voting, the Irish
Government established an independent ad-hoc Commission on Electronic Vot-
ing (CEV). One of the recommendations of the CEV was the use of a Voter
Verified Paper Audit Trail (VV-PAT) [10]. A VV-PAT is a printed copy of the
electronic ballot which is used for manual recounts and audits of the result. How-
ever, the cost of adding a VV-PAT as well as other improvements to the software
of the voting machines was seen as prohibitive, making it more economical for
Ireland to abandon the use of electronic voting.

1.2 Voting Scheme

The Republic of Ireland uses Proportional Representation by Single Transferable
Vote (PR-STV) for its national, local and European elections. PR-STV is a
ranked choice voting system, in which each voter ranks the candidates from
first to lowest preference. A quota is the minimum number of seats needed to
win one seat. If a candidate has more than the quota, the surplus votes are
transferred pro-rota to the next highest preference on the ballot. If not enough
candidates have a quota, then the lowest candidate is excluded and his or her
ballots transfered to the next highest preference.

Oireachtas Éireann, the National Parliament of the Republic of Ireland, has
two chambers. The people directly elect Dáil Éireann, the lower chamber of the
Oireachtas, for a term of up to five years by a quota-based single transferable
vote system in multi-seat constituencies. The upper house, called the Seanad,
also uses PR-STV, but uses postal ballots and is indirectly elected, except for
the six seats elected by university graduates. The Seanad has an advisory role
and a smaller electorate. It is therefore a lesser target for electoral fraud, and a
low risk election, so it is more interesting and important to look at verification
of Dáil elections.

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 236

Note that Irish legislation uses the term ‘vote’ as a noun to mean the contents
of a ballot paper rather than as a verb for the action of casting a ballot [9]. For
the purpose of clarity, vote means the full set of candidate preferences recorded
by a voter at an election.

The political significance of lost, corrupted or altered votes depends on the
type of voting system (e.g., STV) and the closeness of the election race. In
PR-STV, it is not unusual to see the final seat in a multi-winner constituency
determined in the last round of counting by a small number of votes.

Manual recounts are often called for closely contested seats, as the results
often vary slightly, indicating small errors in the manual process of counting
votes. Paper-based voting with counting by hand is popular in Ireland, and
recent attempts at automation were frustrated by subtle logic errors in the ballot
counting software [6]. The logic errors exist, in part, due to the complexities and
idiosyncrasies with regard to tie breaking, especially involving the rounding of
vote transfers. Other errors relate to the rounding up or down of ballot transfers
and to the randomisation effect of ballot shuffling, which does not have have
a precise legal definition. As every ballot and every preference on a ballot can
make a difference when the last seat of a multi-seat constituency is being decided,
these subtle errors can have an enormous effect on the outcome of an election.

There has been some desire in Ireland to simplify matters. Referenda to
introduce plurality (first past the post) voting were rejected twice by the Irish
electorate, in 1959 and again in 1968 [19]. Since then, there have been no further
legislative proposals to change the voting scheme used in Ireland.

The following are selected quotes from the CEV report on the previous elec-
tronic voting system used in Ireland [10]:

– Design weaknesses, including an error in the implementation of the
count rules that could compromise the accuracy of an election, have
been identified and these have reduced the Commission’s confidence
in this software.

– The achievement of the full potential of the chosen system in terms of
secrecy and accuracy depends upon a number of software and hard-
ware modifications, both major and minor, and more significantly, is
dependent on the reliability of its software being adequately proven.

– Taking account of the ease and relative cost of making some of these
modifications, the potential advantages of the chosen system, once
modified in accordance with the Commission’s recommendations, can
make it a viable alternative to the existing paper system in terms of
secrecy and accuracy.

Thus, Ireland wishes to keep its current complicated voting scheme, is critical
of the existing attempts to implement that scheme in e-voting, but keeps the
door slightly ajar for the introduction of e-voting in the future. Consequently,
we believe that this combination of factors makes our work timely, relevant,
and, potentially, high-impact. In the end, our meta-goal is to show that, if a
handful of researchers working in their spare time can design and implement a

D. Cochran, J. Kiniry

237 Technical Report, KIT, 2010-13

verified voting system for one of the most complex voting schemes in the world,
citizens and governments must demand that their e-voting systems are of at least
this level of quality. Verified elections effected, in part, through formally verified
voting software are mandatory for future e-democracies.

1.3 Related Work

The authors are unaware of any peer-reviewed published related work on the
formal specification and implementation of PR-STV. We are aware of some un-
published or unfinished work relating to previous attempts at formalization of
PR-STV, including some Prolog work by Naish and an implementation of the
Scottish STV system in CLEAN by researchers at the Radboud University Ni-
jmegen. The only peer-reviewed published related work of interest is a protocol
for the tallying of encrypted STV ballots [20] and verifying properties of voting
protocols, not software (e.g., several papers by Ryan [7]).

There have been numerous pieces of work on contract-guided or refinement-
centric software verification, particularly from the correctness-by-construction
community. Only a few focus on the particular challenges inherent in modern
object-oriented systems (e.g., the work of Nunes and colleagues [18]), and none
that we are aware of include support for traceable refinement from requirements
and features to verified software.

Finally, some work on the use of logics to understand and reason about law
is relevant, e.g., the work of van der Meyden has influenced us [21]. We do not
attempt to use such (deontic) logics in our refinement from law to formal models,
though doing such may improve the quality and correctness of our specification
and its refinement.

1.4 Outline of Paper

The rest of the paper is organized as follows. Section 2 describes our methodology
for refinement of requirements from electoral law to Java software. Section 3
contains a summary of the requirements and features demanded for PR-STV
ballot counting. Section 4 reviews the formal specification of PR-STV. Next,
in section 5, the verification and validation of the software system are detailed.
Finally, section 6 concludes the paper with some reflections.

2 Methodology

To appreciate the rigor involved in formally specifying and verifying a ballot
counting system for a non-trivial electoral system like PR-STV, discussing details
about our methodology is warranted.

2.1 Business Object Notation

Business Object Notation (BON) provides a high-level object orientated de-
scription of a system [22]. BON can be thought of as a rigorous subset of UML.

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 238

BON has two flavors: informal BON and formal BON. Informal BON looks like
a structured natural language, but is checked for well-formedness in a variety
of ways. Formal BON looks like a strongly typed object-oriented, parametric
class-based programming language with contracts and behavioral specifications.
Specifications written in formal BON are essentially semantic dependent types.
Refinement from informal to formal BON is described in the aforementioned
text and supported by our BONc tool suite1.

2.2 Java Modeling Language

The Java Modeling Language (JML) is a formal behavioral interface specification
language used to specify the behavior of Java software [17]. It extends Java
with annotations for specifying simple formal statements in a design-by-contract
(DBC) style [2] and model-based specifications a la Larch [1]. Informal BON is
either refined to a formal specification in formal BON or directly to a formal
object-oriented specification language such as JML. Support for performing and
checking such refinements is provided by our Beetlz tool2.

2.3 A Verification-centric Development Process

A set of functional requirements and features, derived from electoral law, is a
semi-formal specification, although written in a structured way. To translate the
ballot counting process, as defined by law, into an executable software system
we define an abstract state machine (ASM). This ASM and a set of functional
requirements (described later) are refined into an object-oriented system design
using BON, which is in turn refined into a JML contract-based specification.
The JML specification and ASM are then implemented in Java. Thus, we follow
a strict design-by-contract based approach to software engineering.

Validation is accomplished via testing. Automated tests are generated from
the JML specification, and scenario tests are derived from the ASM. Finally,
the entire system is verified using extended static checking, a kind of automated
functional verification.

Figure 1 provides an overview of these artifacts and their interrelationships.
Details of this process and how these refinements are represented and reasoned
about is not the focus on this paper. The interested reader is encouraged to
examine our other published work on this front [15,16].

3 Requirements for PR-STV Ballot Counting

In addition to the general requirements for e-voting, like ensuring privacy of the
voter and accuracy of the count, electoral-specific requirements are also derived
from electoral law and government regulations about the counting of votes. In

1 http://www.kindsoftware.com/products/opensource/BONc/
2 http://www.kindsoftware.com/products/opensource/Beetlz/

D. Cochran, J. Kiniry

239 Technical Report, KIT, 2010-13

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 240

Table 1. Cross-referencing functional requirements and the law.

ID Functional Requirement Section Item Page

8 If the number of continuing candidates is equal to the num-
ber of seats remaining unfilled, or the number of continuing
candidates exceeds by one the number of unfilled seats or
there is one unfilled seat, then do not distribute any surplus
unless it could allow one or more candidates with at least
one vote to save their deposits.

4 2 15

9 Not more than one surplus is distributed in any one count. 4 3 16

10 Where there are seats remaining to be filled, but no surpluses
available for distribution, the lowest continuing candidate or
candidates must be excluded.

4 4 16

11 There must be at least one continuing candidate for each
remaining seat.

4 4 16

...

4 Formal Specification

The formal specification has several aspects. First, we must formalize the ballot
counting process — the steps through which one must pass to convert a pile of
legal ballots into a tally. Secondly, we must capture the various stages through
which each key element of the counting process (e.g., a candidate, a ballot, a bal-
lot box, etc.) can pass. The formalization of these two different, but interrelated,
facets of the specification of are done via the use of ASMs.

4.1 Abstract State Machine

A two tier Abstract State Machine (ASM) is used to represent the 39 functional
requirements. The upper tier of the ASM describes the state of the election
(EMPTY, SETTING UP, PRELOAD, LOADING, PRECOUNT, COUNTING, FINISHED, AUDIT,
REPORT) in a linear way, in which there is only one possible transition into and
out of each state, whereas the lower tier of the ASM (shown in Figure 2) is
more complex and describes more detailed sub-states and transitions within the
COUNTING state.

4.2 Invariants

An invariant is a predicate about a set of objects in the system that must always
hold during stable/quiescent states during system execution. In essence, the
invariants of an object and its class hierarchy explain what constitutes a valid
instance of the object in question. Likewise, invariants about the states of an
ASM explain what must be true of the process and the objects on which it
operates for the process itself to be valid.

Each election state has a number of invariants that must hold. For example,
in the fragment of JML seen in Figure 3, the Finished state has as an invariant

D. Cochran, J. Kiniry

241 Technical Report, KIT, 2010-13

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 242

/** Number of candidates elected so far */

//@ public model int numberElected;

//@ public invariant 0 <= numberElected;

//@ public invariant numberElected <= seats;

/*@ public invariant (state <= PRECOUNT) ==>

@ numberElected == 0;

@ protected invariant (COUNTING <= state) ==>

@ numberElected == (\ num_of int i;

@ 0 <= i && i < totalCandidates;

@ isElected(candidateList[i]));

@ public invariant (state == FINISHED) ==>

@ numberElected == seats;

@*/

Fig. 3. A JML specification describing the number of candidates elected.

must be in the End-of-Count sub-state and S = E, therefore R = 0. The inner
state machine can only reach the End-of-Count sub-state when R = 0. Therefore
E = S and the invariant for the Finished state holds.

Similar reasoning is used to analyze the correctness of each invariant on each
state of the ASM, invariants that span ASM states, as well as the legitimacy of
transitions between states.

4.4 Other Examples of Invariants

All invariants must hold in every state, not just those state pairs at the end of
transitions in the top-level ASM. These legal invariants are expressed by class
and object invariants in the JML specification. Consequently, when a transition
between states occurs, the invariants of both the old and new state must hold
during the transition (i.e., during any helper methods that are called while the
software is moving between states).

4.5 Refinement to BON

To formally capture legal requirements, as expressed through invariants, and
to rigorously refine our ASMs into a software system, the architecture of our
ballot counting system (i.e., its classifiers and their relations) and its correct-
ness properties (i.e., its invariants) are formally specified in the Business Object
Notation.

Each state transition in the Abstract State Model is represented either by a
command or a query in BON. In BON, a command is an action that changes the
state of an object, for example, moving a ballot from one pile to another, whereas
a query returns some information about the system. A query is implemented in
JML either as a field with invariants or as a pure method.

The example in figure 4 shows an informal BON description of the Ballot
Counting process.

D. Cochran, J. Kiniry

243 Technical Report, KIT, 2010-13

Transitions into Invariant for new state

End of Count The number of candidates elected equals the number of open
seats.

No Surplus Available All continuing candidates have less than a quota of votes.

No Seats Filled Yet The number of elected candidates is zero.

Candidates Have Quota There exists a continuing candidate with at least one quota
of votes.

Candidate Elected The number of elected candidates is less than the number of
open seats.

This Candidate Status is
Elected

This candidate had at least one quota of votes.

Candidate Excluded This candidate had fewer votes than any other continuing
candidate.

Last Seat Being Filled The number of elected candidates is one fewer than the num-
ber of open seats.

More Continuing Can-
didates than Remaining
Seats

The number of open seats is less than the sum of the number
of elected candidates and the number of continuing candi-
dates.

Seats Remaining The number of elected candidates is less than the number of
open seats.

One Continuing Candidate
per each Remaining Seat

The sum of the number of elected candidates and the number
of continuing candidates is equal to the number of open seats.

Table 2. Examples of invariants for each sub-state, translated from JML to
English for the reader.

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 244

class_chart BALLOT_COUNTING

explanation

"Count algorithm for tallying of the votes in Dail elections"

query

"How many continuing candidates?",

"How many remaining seats?",

"What is the quota?",

"Who is/are highest continuing candidate(s) with a surplus?",

"What is the surplus?",

"What is the transfer factor?"

command

"Distribute the surplus ballots",

"Select lowest continuing candidates for exclusion",

"Declare remaining candidates elected",

"Close the count"

end

Fig. 4. An Informal BON description of the Ballot Counting class.

4.6 Refinement to JML Specification

The BON design contains 1 cluster3 with 5 classifiers, 20 queries, 5 command
and 6 constraints. These are refined to 1 package with 10 classes, 104 methods,
70 invariants, 192 preconditions and 117 postconditions in JML.

We used a version of JML that extends Java 1.4, because of existing mature
tool support. We also minimize our use of the JDK and use simple data structures
such as arrays. When using arrays in JML we make assumptions about the
maximum number of candidates and the maximum number of ballots, based on
past elections and the theoretical maximum population of a constituency.

/** Number of votes needed to win a seat */

//@ requires 0 <= seats;

//@ ensures \result == 1 + (totalVotes / (seats + 1));

public /*@ pure @*/ int getQuota ();

Fig. 5. An example of a JML specification for a BON query.

Two examples of JML are shown in figures 5 and 6, one for a query and one
for a command, and are examples of the initial JML specification written during
refinement. Such a specification contains only the signature of each method with-
out implementation code (the implementation is “bottom,” aka “assert false.”).

3 A BON cluster is a collection of related concepts, roughly similar to a Java package.

D. Cochran, J. Kiniry

245 Technical Report, KIT, 2010-13

/**

* Transfer votes from one candidate to another.

* @param fromCandidate Elected or excluded candidate

* @param toCandidate Continuing candidate

* @param numberOfVotes Number of votes to be transferred

*/

/*@ requires fromCandidate.getStatus () != CandidateStatus.CONTINUING;

@ requires toCandidate.getStatus () == CandidateStatus.CONTINUING;

@ ensures countBallotsFor(fromCandidate.getCandidateID ()) ==

@ \old (countBallotsFor(fromCandidate.getCandidateID ()))

@ - numberOfVotes;

@ ensures countBallotsFor(toCandidate.getCandidateID ()) ==

@ \old (countBallotsFor(toCandidate.getCandidateID ()))

@ + numberOfVotes;

@*/

public abstract void transferVotes(

final /*@ non_null @*/ Candidate fromCandidate ,

final /*@ non_null @*/ Candidate toCandidate ,

final int numberOfVotes);

Fig. 6. An example of a JML specification for a BON command.

Note also that the method signature specification in this example states in a
precondition that none of the parameters can have null values.

4.7 Architecture

There are 10 Java classes in the implementation, representing the actors in the
system, for example Ballots, Ballot Boxes and Candidates. Figure 7 shows the
relationship between the Java classes, the BallotCounting class contains the
specifics of PR-STV, whereas the AbstractBallotCounting class contains the
more general properties of ballot counting algorithms. Class names shown in
italics are supporting classes that were added in the Java implementation but
were not refined from BON.

4.8 The Vótáil Theorem

Due to the manner in which the formal specification of the ballot counting algo-
rithms is accomplished (section 3), and the aforementioned argument about the
correctness of state transitions (section 4), we summarize via informal refine-
ment the overall theorem expressed by this ballot counting system as the Vótáil
theorem.

Vótáil Theorem: Given a valid set of candidates up for election for a
set of seats, and a ballot box containing a valid set of ballots, after the
ballot counting algorithm executes, we guarantee that the candidates
deemed elected by Vótáil are exactly those elected by Irish law.

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 246

D. Cochran, J. Kiniry

247 Technical Report, KIT, 2010-13

5.2 Scenario Tests

Ten hand-written scenario tests are derived from the ASM and provide 97 percent
code coverage. To measure coverage we use the EclEmma7 code coverage plug-in
for the Eclipse Integrated Development Environment8 and run tests using JUnit.

The remaining 3 percent of code is accounted for by non-executable state-
ments, such as declarations of constants that were either not exercised directly
by the unit tests, or not measured by the coverage tool. We also run all scenario
tests with JML runtime assertion checking (RAC) enabled to double-check their
consistency and correctness.

5.3 Automatic Generation of Unit Tests

Just over 7,000 unit tests were generated from the JML specifications. The JM-
LUnit tool allows the automatic generation of unit tests [3]. JMLUnit requires
guidance on which data types and values are interesting for testing and will
then generate tests for each precondition, postcondition and invariant for all
permutations of the test data. The interesting values of this case study were
derived manually via a careful examination of the Vótáil architecture and its
legal requirements.

5.4 Extended Static Analysis

The Extended Static Checker for Java version 2 (ESC/Java2) is a programming
tool that attempts to find common run-time errors in JML-annotated Java pro-
grams by static analysis of the program code and its formal annotations [5].
Users control the amount and kinds of checking that ESC/Java2 performs by
annotating their programs with specially formatted comments called pragmas.
ESC/Java2 is used to type check the JML specifications and to check that the
Java implementation fulfills these specifications.

ESC/Java2 is used to both type check the JML specifications and to check
that the Java implementation fulfills these specifications. When used carefully,
ESC/Java2 performs full function verification, as we have done here. This means
that, once ESC/Java2 says that a method in Vótáil is correct, then the imple-
mentation of that method fulfills its specification for all possible input values
on all possible execution paths. This is an extremely strong guarantee, much
stronger than even the comprehensive testing that we have done.

This verification is complemented by the aforementioned testing because ES-
C/Java2 is neither sound nor complete. While we have used its functionality to
check that specifications are sound [12] and that we have not ventured into any
territory that touches on the soundness and completeness issues inherent in the
tool’s design and implementation [13], only via rigorous, well-designed testing
are we assured that the system is functioning correctly in an actual execution
environment.
7 www.eclemma.org
8 www.eclipse.org

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 248

5.5 Continuous Testing

Every change to the source code committed to the version control repository
causes the 7,000+ tests to be run automatically. The test results can be seen at
the project website. We are using the open source Hudson Extensible Continuous
Integration Server9 to checkout the latest source code from subversion, run the
tests, and summarize the results.

5.6 Beta Release

Vótáil is open source and its test results are public. The beta release is available
from the project website10.

6 Results and Conclusions

We have shown how to specify, implement, validate, and verify, in a traceable
fashion, a complex voting scheme such as PR-STV using formal methods. To
accomplish such requires a combination of rigorous process, delicate specification
techniques, and a novel combination of quality tools. Still, there are a number of
problems with our approach and some next steps are critical in realizing trusted
elections.

6.1 Near Future Work

Firstly, we seek to identify the optimal minimal number of test cases involving
different combinations of ballots to fully test any voting scheme. If there are S
seats and C candidates, then how many equivalent election results are possible,
where equivalent means either reordering of candidates or magnifying the num-
bers of ballots in each permutation. This challenge is discussed in a technical
report available on the project website.

Secondly, we would like to compare our work with other rigorous implementa-
tions of tallying software. Unfortunately, there are no publicly available verified
implementations of PR-STV for comparison with Vótáil. The authors have at-
tempted to collaborate with other groups that claim to have work related to us.
In all cases to date, it seems that test data and specifications have neither been
published nor archived, so we claim that ours is the first publicly available release
of formally specified and verified PR-STV software, developed independently of
any previous attempt.

9 http://hudson-ci.org/
10 http://www.kindsoftware.com/products/opensource/Votail

D. Cochran, J. Kiniry

249 Technical Report, KIT, 2010-13

6.2 Reflections

Voting is but one component of the election process. One of the benefits of
electronic voting it it becomes feasible to use more advanced voting schemes
that might otherwise take weeks to count by hand.

We claim the first complete formal specification of the Irish PR-STV ballot
counting procedure. The requirements are traceable from the legislation, through
BON and JML to the Java code. The specifications and source code are publicly
available for comment and criticism. There are no other publicly available works
of this kind.

PR-STV is one of the most complex voting systems in use today, particularly
with regards to formal specification and verification. It is also one of the most
complex which can be implemented and understood using paper ballots. This
suggests that using a combination of cryptographic schemes with PR-STV for
electronic voting will make for an even more difficult verification challenge.

Ireland’s Commission on Electronic Voting laid down several recommenda-
tions for future use of electronic voting, including the following, some of which
were mentioned in section 3:

– clear definition of requirements and specifications,
– robust and formal approach to design and development,
– separation of critical concerns (election management, count rules, vote file,

etc.),
– the appropriate use of open source methods,
– publication or public inspection of the source code,
– open public testing of the vote recording software and the vote counting

software via an on-line web interface designed to simulate the hardware in-
terfaces of the system, and

– full and formal process of requirements capture and functional specifications
for any proposed new system.

This leads us to conclude that the next generation of electronic voting systems
in Ireland (if any), will be developed in open source using formal methods,
and that each functional module (e.g., ballot counting) will be developed and
tested independently. At this time Vótáil is intended to be only a reference
implementation that is formally guaranteed to give the correct results for any
valid set of ballots. Its use in actual elections is not suggested without further
work on verifying inputs and outputs of the system.

Existing verification tools do not yet provide full verification for systems
written in Java. Furthermore, as of yet there is no full functional verification
tool which has been fully verified in itself. Since we cannot yet achieve full
assurance of verification, then we are not yet ready for electronic voting, except
for very low-risk elections for example, labor unions or youth/student elections.

Verifiable Elections Verifiable Elections are important. Counting of ballots is
only one facet of the entire process, but is a critical component. In small elec-
tions, it is feasible to count and recount votes by hand, but the cost of manual

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 250

counting and of managing paper ballots in a central facility does not scale for
larger populations. Secure storage of ballot boxes in a central facility is often
expensive, but PR-STV requires central tallying of ballots in each constituency.
Some people might believe that it is less expensive to count votes by hand than
to use electronic voting machines. However, if Ireland or other countries like it
decide to reduce the size of its parliament, and therefore increase the size of its
constituencies, then manual counting starts to become more expensive.

The process of specifying and formalizing the Irish PR-STV count process
took almost two man-years of work to complete. As it is the focus of a critical so-
cietal system and represents a one-off cost that can be extended and customized
to work with other variants of PR-STV, we believe that this is a very reasonable
amount of labor.

Critical systems must be designed and constructed with care and consider-
ation. Dependable software engineering techniques are mandatory. If electronic
voting is to be used at all, then the software design must be flawless. A typical
argument against the use of formal methods is cost and time. This case study
shows that the resources necessary are not large and we must balance the cost
of formal methods against the cost of rectifying design flaws in electronic voting
machines as well as the cost of having to re-run an election. In the end, formal
methods look to be faster, cheaper, and better in this particular domain.

7 Acknowledgments

This work is being supported by IT University of Copenhagen, the European
project Mobius within the IST 6th Framework and national grants from Science
Foundation Ireland including LERO CSET and LERO Graduate School of Soft-
ware Engineering. This paper reflects only the authors’ views and the EU is not
liable for any use that may be made of the information contained therein.

References

1. Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond as-
sertions: Advanced specification and verification with JML and ESC/Java2. In
Proceedings of the International Symposium on Formal Methods for Components
and Objects (FMCO), volume 4111 of Lecture Notes in Computer Science, pages
342–363. Springer–Verlag, 2006.

2. Y. Cheon and G. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 1789–1901, 2002.

3. Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit test-
ing: The jml and junit way. In Proceedings of the European Conference on Object-
oriented Programming ECOOP 2002, volume 2374 of Lecture Notes in Computer
Science. Springer–Verlag, 2006.

4. D. Cochran. Secure internet voting in Ireland using the Open Source Kiezen op
Afstand (KOA) remote voting system. Master’s thesis, University College Dublin,
March 2006.

D. Cochran, J. Kiniry

251 Technical Report, KIT, 2010-13

5. D.R. Cok and J.R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,
volume 3362, pages 108–128. Springer, 2004.

6. L. Coyle, P. Cunnigham, and D. Doyle. Secrecy, accuracy and testing of the chosen
electronic voting system: Reliability and accuracy of data inputs and outputs,
December 2004.

7. Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying properties of elec-
tronic voting protocols. In Proceedings of IAVoSS Workshop On Trustworthy Elec-
tions (WOTE), 2006.

8. Department of Environment and Local Government, Commission on Electronic
Voting. Count requirements and commentary on count rules, 23 June 2000.

9. Department of Environment and Local Government, Commission on Electronic
Voting. Count requirements and commentary on count rules, section 16, 23 June
2000.

10. Department of Environment and Local Government, Commission on Electronic
Voting. Final Report of Commission on Electronic Voting, July 2006.

11. Fintan Fairmichael. Full verification of the KOA tally system, May 2005.
12. Mikoláš Janota, Radu Grigore, and Micha l Moskal. Reachability analysis for an-

notated code. In 6th International Workshop on the Specification and Verification
of Component-Based Systems (SAVCBS), Dubrovnik, Croatia, 2007. Workshop at
ESEC/FSE 2007.

13. Joseph Kiniry and Alan Morkan. Soundness and completeness warnings in ES-
C/Java2. In 5th International Workshop on the Specification and Verification of
Component-Based Systems (SAVCBS), Portland, Oregon, 2006.

14. Joseph Kiniry, Alan Morkan, Dermot Cochran, Fintan Fairmichael, Patrice Chalin,
Martijn Oostdijk, and Engelbert Hubbers. The KOA remote voting system: A
summary of work to date. In Proceedings of Trustworthy Global Computing, 2006.

15. Joseph Kiniry and Daniel Zimmerman. A verification-centric software development
process for java. In Proceedings of the 9th International Conference on Software
Quality (QSIC 2009), Jeju, Korea, August 2009.

16. Joseph R. Kiniry and Daniel M. Zimmerman. Secret ninja formal methods. In
Proceedings of the Fifteenth International Symposium on Formal Methods (FM),
volume 5014 of Lecture Notes in Computer Science, 2008.

17. G. Leavens, A. Baker, and C. Ruby. JML: A notation for detailed design. Kluwer
International Series in Engineering and Computer Science, pages 175–188, 1999.

18. Isabel Nunes, Antónia Lopes, and Vasco T. Vasconcelos. Bridging the gap between
algebraic specification and object-oriented generic programming. In Selected Papers
from the 9th International Workshop on Runtime Verification (RV), volume 5779
of Lecture Notes in Computer Science. Springer–Verlag, 2009.

19. R. Sinnott. Irish voters decide: Voting behaviour in elections and referendums since
1918. Manchester Univ Press, 1995.

20. V. Teague, K. Ramchen, and L. Naish. Coercion-resistant tallying for STV voting.
In Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop.
USENIX Association Berkeley, CA, USA, 2008.

21. R. van der Meyden. A clausal logic for deontic action specification. In V. Saraswat
and K. Ueda, editors, Proceedings of the International Symposium on Logic Pro-
gramming. MIT Press, 1991.

22. Kim Waldén and Jean-Marc Nerson. Seamless Object-Oriented Software Archi-
tecture - Analysis and Design of Reliable Systems. The Object-Oriented Series.
Prentice–Hall, Inc., 1995.

Vótáil: PR-STV Ballot Counting Software for Irish Elections

Technical Report, KIT, 2010-13 252

Sawja: Static Analysis Workshop for Java

Laurent Hubert1, Nicolas Barré2, Frédéric Besson2, Delphine Demange3,
Thomas Jensen2, Vincent Monfort2, David Pichardie2, and Tiphaine Turpin2

1 CNRS/IRISA, France
2 INRIA Rennes - Bretagne Atlantique, France

3 ENS Cachan - Antenne de Bretagne/IRISA, France

Abstract. Static analysis is a powerful technique for automatic verifica-
tion of programs but raises major engineering challenges when developing
a full-fledged analyzer for a realistic language such as Java. Efficiency
and precision of such a tool rely partly on low level components which
only depend on the syntactic structure of the language and therefore
should not be redesigned for each implementation of a new static anal-
ysis. This paper describes the Sawja library: a static analysis frame-
work fully compliant with Java 6 which provides OCaml modules for
efficiently manipulating Java bytecode programs. We present the main
features of the library, including i) efficient functional data-structures
for representing program with implicit sharing and lazy parsing, ii) an
intermediate stack-less representation, and iii) fast computation and ma-
nipulation of complete programs. We provide experimental evaluations
of the different features with respect to time, memory and precision.

Introduction

Static analysis is a powerful technique that enables automatic verification of
programs with respect to various properties such as type safety or resource con-
sumption. One particular well-known example of static analysis is given by the
Java Bytecode Verifier (BCV), which verifies at loading time that a given Java
class (in bytecode form) is type safe. Developing an analysis for a realistic lan-
guage such as Java is a major engineering task, challenging both the companies
that want to build robust commercial tools and the research scientists who want
to quickly develop prototypes for demonstrating new ideas. The efficiency and
the precision of any static analysis depend on the low-level components which
manipulates the class hierarchy, the call graph, the intermediate representation
(IR), etc. These components are not specific to one particular analysis, but they
are far too often re-implemented in an ad hoc fashion, resulting in analyzers
whose overall behaviour is sub-optimal (in terms of efficiency or precision). We
argue that it is an integral part of automated software verification to address the
issue of how to program a static analysis platform that is at the same time effi-
cient, precise and generic, and that can facilitate the subsequent implementation
of specific analyzers.

253 Technical Report, KIT, 2010-13

This paper describes the Sawja library — and its sub-component Javalib —
which provides OCaml modules for efficiently manipulating Java bytecode pro-
grams. The library is developed under the GNU Lesser General Public License
and is freely available at http://sawja.inria.fr/.

Sawja is implemented in OCaml [17], a strongly typed functional language
whose automatic memory management (garbage collector), strong typing and
pattern-matching facilities make particularly well suited for implementing pro-
gram processing tools. In particular, it has been successfully used for program-
ming compilers (e.g., Esterel [24]) and static analyzers (e.g., Astrée [3]).

The main contribution of the Sawja library is to provide, in a unified frame-
work, several features that allow rapid prototyping of efficient static analyses
while handling all the subtleties of the Java Virtual Machine (JVM) specifica-
tion [20]. The main features of Sawja are:

– parsing of .class files into OCaml structures and unparsing of those struc-
tures back into .class files;

– decompilation of the bytecode into a high-level stack-less IR;
– sharing of complex objects both for memory saving and efficiency purpose

(structural equality becomes equivalent to pointer equality and indexation
allows fast access to tables indexed by class, field or method signatures, etc.);

– the determination of the set of classes constituting a complete program (using
several algorithms, including Rapid Type Analysis (RTA) [1]);

– a careful translation of many common definitions of the JVM specification,
e.g., about the class hierarchy, field and method resolution and look-up, and
intra- and inter-procedural control flow graphs.

This paper describes the main features of Sawja and their experimental
evaluation. Sect. 1 gives an overview of existing libraries for manipulating Java
bytecode. Sect. 2 describes the representation of classes, Sect. 3 presents the in-
termediate representation of Sawja and Sect. 4 presents the parsing of complete
programs.

1 Existing Libraries for Manipulating Java Bytecode

Several similar libraries have already been developed so far and some of them
provide features similar to some of Sawja’s. All of them, except Barista, are
written in Java.

The Byte Code Engineering Library4(BCEL) and ASM5 are open source
Java libraries for generating, transforming and analysing Java bytecode classes.
These libraries can be used to manipulate classes at compile-time but also at run-
time, e.g., for dynamic class generation and transformation. ASM is particularly
optimised for this latter case: it provides a visitor pattern which makes possible
local class transformations without even building an intermediate parse-tree.

4 http://jakarta.apache.org/bcel/
5 http://asm.ow2.org/

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 254

Those libraries are well adapted to instrument Java classes but lack important
features essential for the design of static analyses. For instance, unlike Sawja,
neither BCEL nor ASM propose a high-level intermediate representation (IR)
of bytecode instructions. Moreover, there is no support for building the class
hierarchy and analysing complete programs. The data structures of Javalib
and Sawja are also optimized to manipulate large programs.

The Jalapeño Optimizing Compiler [6] which is now part of the Jikes RVM
relies on two IR (low and high-level IR) in order to optimize bytecode. The high-
level IR is a 3-address code. It is generated using a symbolic evaluation technique
described in [30]. The algorithm we use to generate our IR is similar. Our algo-
rithm works on a fixed number of passes on the bytecode while their algorithm
is iterative. The Jalapeño high-level IR language provides explicit check in-
structions for common run-time exceptions (e.g., null_check, bound_check),
so that they can be easily moved or eliminated by optimizations. We use similar
explicit checks but to another end: static analyses definitely benefit from them
as they ensure expressions are error-free.

Soot [29] is a Java bytecode optimization framework providing three IR:
Baf, Jimple and Grimp. Optimizing Java bytecode consists in successively trans-
lating bytecode into Baf, Jimple, and Grimp, and then back to bytecode, while
performing diverse optimizations on each IR. Baf is a fully typed, stack-based
language. Jimple is a typed stack-less 3-address code and Grimp is a stack-
less representation with tree expressions, obtained by collapsing Jimple instruc-
tions. The IR in Sawja and Soot are very similar but are obtained by different
transformation techniques. They are experimentally compared in Sect. 3. Several
state-of-the-art control-flow analyses, based on points-to analyses, are available
in Soot through Spark [18] and Paddle [19]. Such libraries represent a coding
effort of several man-years. To this respect, Sawja is less mature and only pro-
poses simple (but efficient) control-flow analyses.

Wala [15] is a Java library dedicated to static analysis of Java bytecode.
The framework is very complete and provides several modules like control flow
analyses, slicing analyses, an inter-procedural dataflow solver and a IR in SSA
form. Wala also includes a front-end for other languages like Java source and
JavaScript. Wala and its IBM predecessor DOMO have been widely used in
research prototypes. It is the product of the long experience of IBM in the area.
Compared to it, Sawja is a more recent library with less components, especially
in terms of static analyses examples. Nevertheless, the results presented in Sect. 4
show that Sawja loads programs faster and uses less memory than Wala. For
the moment, no SSA IR is available in Sawja but this could easily be added.

Julia [26] is a generic static analysis tool for Java bytecode based on the
theory of abstract interpretation. It favors a particular style of static analysis
specified with respect to a denotational fixpoint semantics of Java bytecode.
Initially free software, Julia is not available anymore.

Barista [7] is an OCaml library used in the OCaml-Java project. It is
designed to load, construct, manipulate and save Java class files. Barista also
features a Java API to access the library directly from Java. There are two

L. Hubert et al.

255 Technical Report, KIT, 2010-13

representations: a low-level representation, structurally equivalent to the class
file format as defined by Sun, and a higher level representation in which the
constant pool indices are replaced by the actual data and the flags are replaced
by enumerated types. Both representations are less factorized than in Javalib
and, unlike Javalib, Barista does not encode the structural constraints into the
OCaml structures. Moreover, it is mainly designed to manipulate single classes
and does not offer the optimizations required to manipulate sets of classes (lazy
parsing, hash-consing, etc).

2 High-level Representation of Classes

Sawja is built on top of Javalib, a Java bytecode parser providing basic ser-
vices for manipulating class files, i.e., an optimised high-level representation
of class files, pretty printing and unparsing of class files.6 Javalib handles all
aspects of class files, including stackmaps (J2ME and Java 6) and Java 5 anno-
tation attributes. It is made of three modules: Javalib , JBasics , and JCode 7.

Representing class files constitutes the low-level part of a bytecode manip-
ulation library. Our design choices are driven by a set of principles which are
explained below.

Strong typing We use the OCaml type system to explicit as much as possible the
structural constraints of the class file format. For example, interfaces are only
signaled by a flag in the Java class file format and this requires to check several
consistency constraints between this flag and the content of the class (interface
methods must be abstract, the super-class must be java.lang.Object, etc.).
Our representation distinguishes classes and interfaces and these constraints are
therefore expressed and enforced at the type level. This has two advantages.
First, this lets the user concentrate on admissible class files, by reducing the
burden of handling illegal cases. Second, for the generation (or transformation)
of class files, this provides good support for creating correct class files.

Factorization Strong typing sometimes lacks flexibility and can lead to unwanted
code duplication. An example is the use of several, distinct notions of types in
class files at different places (JVM types, Java types, and JVM array types). We
factorize common elements as much as possible, sometimes by a compromise on
strong typing, and by relying on specific language features such as polymorphic
variants8. Fig. 1 describes the hierarchy formed by these types. This factor-
ization principle applies in particular to the representation of op-codes: many
6 Javalib is a sub-component of Sawja, which, despite being tightly integrated in

Sawja, can also be used as an independent library. It was initiated by Nicolas
Cannasse before 2004 but, since 2007, we have largely extended the library. We are
the current maintainers of the library.

7 In the following, we use boxes around Javalib and Sawja module names to make
clickable links to the on-line API documentation

8 Polymorphic variants are a particular notion of enumeration which allows the sharing
of constructors between types.

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 256

`Long|`Float|`Double
other_num

`Int2Bool|other_num

jvm_basic_type

`Object|jvm_basic_type
jvm_type

`Int|`Short|`Char|
`ByteBool|`Object|

other_num

jvm_array_type

`Void|jvm_type

jvm_return_type

`Int|`Short|`Char|
`Byte|`Bool|`Object|

other_num

java_basic_type

Fig. 1. Hierarchy of Java bytecode types. Links represent the subtyping relation
enforced by polymorphic variants (for example, the type jvm_type is defined by
type jvm_type = [|‘Object |jvm_basic_type]).

instructions exist whose name only differ in the JVM type of their operand, and
variants exist for particular immediate values (e.g., iload, aload, aload_n,
etc.). In our representation they are grouped into families with the type given
as a parameter (OpLoad of jvm_type * int).

Lazy Parsing To minimise the memory footprint, method bodies are parsed on
demand when their code is first accessed. This is almost transparent to the user
thanks to the Lazy OCaml library but is important when dealing with very
large programs. It follows that dead code (or method bodies not needed for a
particular analysis) does not cause any time or space penalty.

Hash-consing of the Constant Pool For a Java class file, the constant pool is
a table which gathers all sorts of data elements appearing in the class, such as
Unicode strings, field and method signatures, and primitive values. Using the
constant pool indices instead of actual data reduces the class files size. This
low-level aspect is abstracted away by the Javalib library, but the sharing is
retained and actually strengthened by the use of hash-consing. Hash-consing [11]
is a general technique for ensuring maximal sharing of data-structures by storing
all data in a hash table. It ensures unicity in memory of each piece of data and
allows to replace structural equality tests by tests on pointers. In Javalib, it is
used for constant pool items that are likely to occur in several class files, i.e.,
class names, and field and method signatures. Hash-consing is global: a class
name like java.lang.Object is therefore shared across all the parsed class
files. For Javalib, our experience shows that hash-consing is always a winning
strategy; it reduces the memory footprint and is almost unnoticeable in terms
of running time9. We implement a variant which assigns hash-consed values a
unique (integer) identifier. It enables optimised algorithms and data-structures.
In particular, the Javalib API features sets and maps of hash-consed values
based on Patricia trees [23], which are a type of prefix tree. Patricia trees are
an efficient purely functional data-structure for representing sets and maps of
integers, i.e., identifiers of hash-consed values. They exhibit good sharing prop-
erties that make them very space efficient. Patricia trees have been proved very
9 The indexing time is compensated by a reduced stress on the garbage collector.

L. Hubert et al.

257 Technical Report, KIT, 2010-13

efficient for implementing flow-sensitive static analyses where sharing between
different maps at different program points is crucial. On a very small benchmark
computing the transitive closure of a call graph, the indexing makes the com-
putation time four times smaller. Similar data-structures have been used with
success in the Astrée analyzer [3].

Visualization Sawja includes functions to print the content of a class into dif-
ferent formats. A first one is simply raw text, very close to the bytecode format
as output by the javap command (provided with Sun’s JDK).

A second format is compatible with Jasmin [22], a Java bytecode assembler.
This format can be used to generate incorrect class files (e.g., during a Java
virtual machine testing), which are difficult to generate with our framework.
The idea is then, using a simple text editor, to manually modify the Jasmin files
output by Sawja and then to assemble them with Jasmin, which does not check
classes for structural constraints.

Finally, Sawja provides an HTML output. It allows displaying class files
where the method code can be folded and unfolded simply by clicking next to
the method name. It also makes it possible to open the declaration of a method
by clicking on its signature in a method call, and to know which method a method
overrides, or by which methods a method is overridden, etc. User information
can also be displayed along with the code, such as the result of a static analysis.
From our experience, it allows a faster debugging of static analyses.

3 Intermediate Representation

The JVM is a stack-based virtual machine and the intensive use of the operand
stack makes it difficult to adapt standard static analysis techniques that have
been first designed for more classic variable-based codes. Hence, several bytecode
optimization and analysis tools work on a bytecode intermediate representation
(IR) that makes analyses simpler [6,29]. Surprisingly, the semantic foundations
of these transformations have received little attention. The transformation that
is informally presented here has been formally studied and proved semantics-
preserving in [10].

3.1 Overview of the IR Language

Fig. 2 gives the bytecode and IR versions of the simple method

B f(int x, int y) { return (x==0)?(new B(x/y, new A())):null;}

The bytecode version reads as follows : the value of the first argument x is
pushed on the stack at program point 0. At point 1, depending on whether x is
zero or not, the control flow jumps to point 4 or 24 (in which case the value null
is returned). At point 4, a new object of class B is allocated in the heap and its
reference is pushed on top of the operand stack. Its address is then duplicated on
the stack at point 7. Note the object is not initialized yet. Before the constructor

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 258

 0: if (x:I != 0) goto 8

 1: mayinit B

 2: notzero y:I

 3: mayinit A

 4: $irvar0 := new A()

 5: $irvar1 := new B(x:I/y:I,$irvar0:O)

 6: $T0_25 := $irvar1:O

 7: goto 9

 8: $T0_25 := null

 9: return $T0_25:O

 0: iload_1

 1: ifne! 24

 4: new!#2;//class B

 7: dup

 8: iload_1

 9: iload_2

 10: idiv

 11: new!#3;//class A

 14: dup

 15: invokespecial #4;//Method A."<init>":()V

 18: invokespecial #5;//Method B."<init>":(ILA;)V

 21: goto! 25

 24: aconst_null

 25: areturn

Fig. 2. Example of bytecode (left) (obtained with javap -c) and its corresponding
IR (right). Colors make explicit the boundaries of related code fragments.

of class B is called (at point 18), its arguments must be computed: lines 8 to 10
compute the division of x by y, lines 11 to 15 construct an object of class A. At
point 18, the non-virtual method B is called, consuming the three top elements
of the stack. The remaining reference of the B object is left on the top of the
stack and represents from now on an initialized object.

The right side of Fig. 2 illustrates the main features of the IR language. 10

First, it is stack-less and manipulates structured expressions, where variables are
annotated with types. For instance, at point 0, the branching instruction contains
the expression x:I, where I denotes the type of Java integers. Another example
of recovered structured expression is x:I/y:I (at point 5). Second, expressions
are error-free thanks to explicit checks: the instruction notzero y:I at point 2
ensures that evaluating x:I/y:I will not raise any error. Explicit checks addi-
tionally guarantee that the order in which exceptions are raised in the bytecode
is preserved in the IR. Next, the object creation process is syntactically simpler
in the IR because the two distinct phases of (i) allocation and (ii) constructor
call are merged by folding them into a single IR instruction (see point 4). In
order to simplify the design of static analyses on the IR, we forbid side-effects in
expressions. Hence, the nested object creation at source level is decomposed into
two assignments ($irvar0 and $irvar1 are temporary variables introduced by
the transformation). Notice that because of side-effect free expressions, the order
in which the A and B objects are allocated must be reversed. Still, the IR code
is able to preserve the class initialization order using the dedicated instruction
mayinit that calls the static class initializer whenever it is required.

10 For a complete description of the IR language syntax, please refer to the API doc-

umentation of the JBir module. A 3-address representation called A3Bir is also
available where each expression is of height at most 1.

L. Hubert et al.

259 Technical Report, KIT, 2010-13

3.2 IR Generation

The purpose of the Sawja library is not only static analysis but also lightweight
verification [25], i.e., the verification of the result of a static analysis in a single
pass over the method code. To this end, our transforming algorithm operates
in a fixed number of passes on the bytecode, i.e., without performing fixpoint
iteration.

Java subroutines (bytecodes jsr/ret) are inlined. Subroutines have been
pointed out by the research community as raising major static analysis difficul-
ties [27]. Our restricted inlining algorithm cannot handle nested subroutines but
is sufficient to inline all subroutines from Sun’s Java 7 JRE.

The IR generation is based on a symbolic execution of the bytecode: each
bytecode modifies a stack of symbolic expressions, and potentially gives rise
to the generation of IR instructions. For instance, bytecodes at lines 8 and 9
(left part of Fig. 2) respectively push the expressions x and y on the symbolic
stack (and do not generate IR instructions). At point 10, both expressions are
consumed to build both the IR explicit check instruction and the expression
x/y which is then pushed, as a result, on the symbolic stack. The non-iterative
nature of our algorithm makes the transformation of jumping instructions non-
trivial. Indeed, during the transformation, the output symbolic stack of a given
bytecode is used as the entry symbolic stack of all its successors. At a join point,
we thus must ensure that the entry symbolic stack is the same regardless of
its predecessors. The idea is here to empty the stack at branching points and
restore it at join points. More details can be found in [10]. IR expression types
are computed using a standard type inference algorithm similar to what is done
by the BCV. It only differs in the type domain we used, which is less precise,
but does not require iterating. This additionally allows us interleaving expression
typing with the IR generation, thus resulting in a gain in efficiency. This lack of
precision could be easily filled in using the stackmaps proposed in the Java 6
specification.

3.3 Experiments

We validate the Sawja IR with respect to two criteria. We first evaluate the
time efficiency of the IR generation from Java bytecode. Then, we show that
the generated code contains a reasonable number of local variables. We addi-
tionally compare our tool with the Soot framework. Our benchmark libraries
are real-size Java code available in .jar format. This includes Javacc 4.0 (Java
Compiler Compiler), JScience 4.3 (a comprehensive Java library for the scientific
community), the Java runtime library 1.5.0 12 and Soot 2.2.3.

IR Generation Time In order to be usable for lightweight verification, the
bytecode transformation must be efficient. This is mainly why we avoid itera-
tive techniques in our algorithm. We compare the transformation time of our
tool with the one of Soot. The results are given in Fig. 3. For each benchmark

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 260

L. Hubert et al.

261 Technical Report, KIT, 2010-13

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

N
S
aw

ja

NSootNSoot

N
S
aw

ja
Fig. 5. Local variable increase ratio between Sawja and Soot.

NSoot of local variables in the code generated by Soot. A direct comparison of
our IR against Grimp code is difficult because it allows expressions with side-
effects, thus reducing the amount of required variables. Hence, in this experiment,
the comparison is made between Soot’s 3-address IR (Jimple) and our 3-address
IR. For each method we draw a point of coordinate (NSoot , NSawja) and see how
the points are spread out around the first bisector. For the left diagram, Soot
has been launched with default options. For the right diagram, we added to the
Soot transformation the local packer (-p jb.lp enabled:true Soot option)
that reallocates local variables using use/def information. Our transformation
competes well, even when Soot uses this last optimization. We could probably
improve this ratio using a similar packing.

4 Complete Programs

Whole program analyses require a model of the global control-flow graph of
an entire Java program. For those, Sawja proposes the notion of complete pro-
grams. Complete programs are equipped with a high-level API for navigating the
control-flow graph and are constructed by a preliminary control-flow analysis.

4.1 API of Complete Programs

Sawja represents a complete program by a record. The field classes maps a
class name to a class node in the class hierarchy. The class hierarchy is such that
any class referenced in the program is present. The field parsed_methods maps
a fully qualified method name to the class node declaring the method and the
implementation of the method. The field static_lookup_method returns the
set of target methods of a given field. As it is computed statically, the target
methods are an over-approximation.

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 262

The API allows navigating the intra-procedural graph of a method taking
into account jumps, conditionals and exceptions. Although conceptually simple,
field and method resolution and the different method look-up algorithms (corre-
sponding to the instructions invokespecial, invokestatic, invokevirtual,
invokeinterface) are critical for the soundness of inter-procedural static anal-
yses. In Sawja, great care has been taken to ensure an implementation fully
compliant with the JVM specification.

4.2 Construction of Complete Programs

Computing the exact control-flow graph of a Java application is undecidable and
computing a precise (over-)approximation of it is still computationally challeng-
ing. It is a field of active research (see for instance [19,4]). A complete program
is computed by: (1) initializing the set of reachable code to the entry points of
the program, (2) computing the new call graph, and (3) if a (new) edge of the
call graph points to a new node, adding the node to the set of reachable code
and repeating from step (2). The set of code obtained when this iteration stops
is an over-approximation of the complete program.

Computing the call graph is done by resolving all reachable method calls.
Here, we use the functions provided in the Sawja API presented in Sect. 4.1.
While invokespecial and invokestatic instructions do not depend on the
data of the program, the function used to compute the result of invokevirtual
and invokeinterface need to be given the set of object types on which the
virtual method may be called. The analysis needs to have an over-approximation
of the types (classes) of the objects that may be referenced by the variable on
which the method is invoked.

There exists a rich hierarchy of control-flow analyses trading time for preci-
sion [28,12]. Sawja implements the fastest and most cost-effective control-flow
analyses, namely Rapid Type Analysis (RTA) [1], XTA [28] and Class Reacha-
bility Analysis (CRA), a variant of Class Hierarchy Analysis [9].

Soundness Our implementation is subject to the usual caveats with respect
to reflection and native methods. As these methods are not written in Java,
their code is not available for analysis and their control-flow graph cannot be
safely abstracted. Note that our analyses are always correct for programs that
use neither native methods nor reflection. Moreover, to alleviate the problem,
our RTA implementation can be parametrised by a user-provided abstraction
of native methods specifying the classes it may instantiate and the methods it
may call. A better account of reflection would require an inter-procedural string
analysis [21] that is currently not implemented.

Implemented Class Analyses

RTA An object is abstracted by its class and all program variables by the single
set of the classes that may have been instantiated, i.e., this set abstracts all the

L. Hubert et al.

263 Technical Report, KIT, 2010-13

objects accessible in the program. When a virtual call needs to be resolved, this
set is taken as an approximation of the set of objects that may be referenced by
the variable on which the method is called. This set grows as the set of reachable
methods grows.

Sawja’s implementation of RTA is highly optimized. While static analyses
are often implemented in two steps (a first step in which constraints are built,
and a second step for computing a fixpoint), here, the program is unknown at
the beginning and constraints are added on-the-fly. For a faster resolution, we
cache all reachable virtual method calls, the result of their resolution and inter-
mediate results. When needed, these caches are updated at every computation
step. The cached results of method resolutions can then be reused afterwards,
when analyzing the program.

XTA As in RTA, an object is abstracted by its class and to every method
and field is attached a set of classes representing the set of object that may be
accessible from the method or field. An object is accessible from a method if:
(i) it is accessible from its caller and it is of a sub-type of a parameter, or (ii) it
is accessible from a static field which is read by the method, (iii) it is accessible
from an instance field which is read by the method and there an object of a sub-
type of the class in which the instance fields is declared is already accessible, or
(iv) it is returned by a method which may be called from the current method.

To facilitate the implementation, we built this analysis on top of another
analysis to refine a previously computed complete program. This allows us using
the aforementioned standard technique (build then solve constraints). For the
implementation, we need to represent many class sets. As classes are indexed,
these sets can be implemented as sets of integers. We need to compute fast union
and intersection of sets and we rarely look for a class in a set. For those reasons,
the implementation of sets available in the standard library in OCaml, based
on balanced trees, was not well adapted. Instead we used a purely functional set
representation based on Patricia trees [23], and another based on BDDs [5] (using
the external library BuDDy available at http://buddy.sourceforge.net).

CRA This algorithm computes the complete program without actually comput-
ing the call graph or resolving methods: it considers a class as accessible if it is
referenced in another class of the program, and considers all methods in reach-
able classes as also reachable. When a class references another class, the first
one contains in its constant pool the name of the later one. Combining the lazy
parsing of our library with the use of the constant pool allows quickly returning
a complete program without even parsing the content of the methods. When
an actual resolution of method, or a call graph is needed, the Class Hierarchy
Analysis (CHA) [9] is used. Although parts of the program returned by CRA
will be parsed during the overlying analysis, dead code will never by parsed.

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 264

Soot Jess Jml VNC ESC/Java JDTCore Javacc JLex

C
CRA 5,198 5,576 2,943 5,192 2,656 2,455 2,172 2,131
RTA 4,116 2,222 1,641 1,736 1,388 1,163 792 752

M

CRA 49,810 47,122 26,906 44,678 23,229 23,579 19,389 18,485
W-RTA 32,652 4,303 17,740 ? 9,560 7,378 3,247 1,419
RTA 32,800 12,561 11,697 9,218 8,305 9,137 4,029 3,157
XTA 14,251 10,043 9,408 6,534 7,039 8,186 3,250 2,392
W-0CFA 37,768 9,927 15,414 ? 9,088 6,830 3,009 1,186

E

CRA 2,159,590 799,081 418,951 694,451 354,234 347,388 258,674 244,071
W-RTA 2,788,533 78,444 614,216 ? 279,232 146,119 34,192 13,256
RTA 1,400,958 141,910 149,209 79,029 101,257 114,454 35,727 23,209
XTA 297,754 94,189 103,126 48,817 74,007 86,794 26,844 15,456
W-0CFA 856,180 183,191 187,177 ? 87,163 77,875 21,475 4,360

T

CRA 8 8 4 7 4 5 4 4
W-RTA 74 7 23 ? 12 12 7 5
RTA 13 4 4 3 3 4 2 2
XTA 187 18 16 11 10 14 5 4
W-0CFA 2,303 209 40 ? 27 26 16 7

S

CRA 87 83 51 80 45 47 36 35
W-RTA 248 44 128 ? 84 101 42 8
RTA 132 60 54 51 43 52 26 20
XTA 810 198 184 153 147 157 112 107
W-0CFA 708 238 215 ? 132 134 125 26

Table 1. Comparison of algorithms generating a program call graph (with Sawja
and Wala): the different algorithms of Sawja (CRA,RTA and XTA) are compared
to Wala (W-RTA and W-0CFA) with respect to the number of loaded classes (C),
reachable methods (M) and number of edges (E) in the call graph, their execution
time (T) in seconds and memory used (S) in megabytes. Question marks (?) indicate
clearly invalid results.

Experimental Evaluation We evaluate the precision and performances of the
class analyses implemented in Sawja on several pieces of Java software13 and
present our results in Table 1. We compared the precision of the 3 algorithms
used to compute complete programs (CRA, RTA and XTA) with respect to the
number of reachable methods in the call graph and its number of edges. We also
give the number of classes loaded by CRA and RTA. We provide some results
obtained with Wala (version r3767 from the repository). Although precision is
hard to compare14, it indicates that, on average, Sawja uses half the memory
and time used by Wala per reachable method with RTA.

Conclusion

We have presented the Sawja library, the first OCaml library providing state-
of-the-art components for writing Java static analyzers in OCaml.
13 Soot (2.3.0), Jess (7.1p1), JML (5.5), TightVNC Java Viewer (1.3.9), ESC/Java

(2.0b0), Eclipse JDT Core (3.3.0), Javacc (4.0) and JLex (1.2.6).
14 Because both tools are unsound, a greater number of method in the call graph either

mean there is a precision loss or that native methods are better handled.

L. Hubert et al.

265 Technical Report, KIT, 2010-13

The library represents an effort of 1.5 man-year and approximately 22000
lines of OCaml (including comments) of which 4500 are for the interfaces. Many
design choices are based on our earlier work with the NIT analyzer [13], a quite
efficient tool, able to analyze a complete program of more than 30000 methods to
infer nullness annotations for fields, method signatures and local variables in less
than 2 minutes, while proving the safety of 80% of dereferences. Using our expe-
rience from the NIT development, we designed Sawja as a generic framework to
allow every new static analysis prototype to share the same efficient components
as NIT. Indeed, Sawja has already been used in two implementations for the
ANSSI (The French Network and Information Security Agency) [16,14], Nit is
being ported to the current version of Sawja, and other small analyses (liveness,
interval analyses, etc.) are available on Sawja’s web site.

Several extensions are planned for the library. Displaying static analysis re-
sults is a first challenge that we would like to tackle. We would like to facilitate
the transfer of annotations from Java source to Java bytecode and then to IR,
and the transfer of analysis results in the opposite direction. We already provide
HTML outputs but ideally the result at source level would be integrated in an
IDE such as Eclipse. This manipulation has been already experimented in one of
our earlier work for the NIT static analyzer and we plan to integrate it as a new
generic Sawja component. To ensure correctness, we would like to replace some
components of Sawja by certified extracted code from Coq [8] formalizations.
A challenging candidate would be the IR generation that relies on optimized al-
gorithms to transform in at most three passes each bytecode method. We would
build such a work on top of the Bicolano [2] JVM formalization that has been
developed by some of the authors during the European Mobius project.

References

1. D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls.
In Proc. of OOPSLA’96, pages 324–341, 1996.

2. Bicolano - web home. http://mobius.inria.fr/bicolano.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. of
PLDI’03, pages 196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

4. M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisti-
cated points-to analyses. SIGPLAN Not., 44(10):243–262, 2009.

5. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Survey, 24(3):293–318, 1992.

6. M G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M J. Serrano, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño dynamic optimizing com-
piler for java. In Proc. of JAVA’99, pages 129–141. ACM, 1999.

7. Xavier Clerc. Barista. http://barista.x9c.fr/.

8. The Coq Proof Assistant. http://coq.inria.fr/.

9. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proc. of ECOOP’95, volume 952 of LNCS,
pages 77–101. Springer, August 1995.

SAWJA: Static Analysis Workshop for Java

Technical Report, KIT, 2010-13 266

10. D. Demange, T. Jensen, and D. Pichardie. A provably correct stackless inter-
mediate representation for Java bytecode. Research Report 7021, INRIA, 2009.
http://www.irisa.fr/celtique/ext/bir/rr7021.pdf.

11. A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1(8):3–6,
1958.

12. D. Grove and C. Chambers. A framework for call graph construction algorithms.
Toplas, 23(6):685–746, 2001.

13. L. Hubert. A Non-Null annotation inferencer for Java bytecode. In Proc. of
PASTE’08, pages 36–42. ACM, November 2008.

14. Laurent Hubert, Thomas Jensen, and Vincent. Enforcing secure object initializa-
tion in java. Technical report, CNRS, INRIA, April 2010. Submitted to ESORICS
2010.

15. IBM. The T.J. Watson Libraries for Analysis (Wala). http://wala.
sourceforge.net.

16. T. Jensen and D. Pichardie. Secure the clones: Static enforcement of policies for
secure object copying. Technical report, INRIA, June 2010. Presented at OWASP
2010.

17. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system. Inria, May 2007. caml.inria.fr/ocaml/.

18. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Proc.
of CC, volume 2622 of LNCS, pages 153–169. Springer, 2003.

19. O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Trans. Softw. Eng. Methodol.,
18(1), 2008.

20. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification, Second
Edition. Prentice Hall PTR, 1999.

21. V. Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for
java. In Proc. of APLAS, pages 139–160. Springer, 2005.

22. J. Meyer and T. Downing. Java Virtual Machine. O’Reilly Associates, 1997.
http://jasmin.sourceforge.net.

23. D. R. Morrison. PATRICIA — Practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4), 1968.

24. B. Pagano, O. Andrieu, T. Moniot, B. Canou, E. Chailloux, P. Wang, P. Manoury,
and J.L. Colaço. Experience report: using Objective Caml to develop safety-critical
embedded tools in a certification framework. In Proc. of ICFP, pages 215–220.
ACM, 2009.

25. E. Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334,
2003.

26. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc. of the
Workshop FTfJP, 2005.

27. R. Stata and M. Abadi. A type system for java bytecode subroutines. In Proc of
POPL,98, pages 149–160. ACM Press, 1998.

28. F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Proc. of OOPSLA’00, pages 281–293. ACM Press, October 2000.

29. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot -
A Java bytecode optimization framework. In Proc. of CASCON, 1999.

30. J. Whaley. Dynamic optimization through the use of automatic runtime special-
ization. Master’s thesis, Massachusetts Institute of Technology, May 1999.

L. Hubert et al.

267 Technical Report, KIT, 2010-13

State-based Object Models Are More Abstract
Than Trace-based Models

Towards a Unified Specification Framework

Ilham W. Kurnia, Arnd Poetzsch-Heffter, Yannick Welsch?

University of Kaiserslautern, Germany
ilham,poetzsch,welsch@cs.uni-kl.de

Abstract. The literature distinguishes between trace-based and state-
based specification techniques for object-oriented components. Trace-
based specifications describe behavior in terms of the message histories
of components, while state-based techniques explain component behav-
ior in terms of states. The latter define how the state is changed by
method calls and what is returned as a result. The state space is either
abstract or concrete. Abstract states are used to model the behavior
without referring to the implementation. Concrete states are expressed
by the underlying implementation. State-based specifications are usually
described in terms of pre- and postconditions of methods.

In this paper, we investigate the relationship between trace-based specifi-
cations and specifications based on abstract states for sequential, object-
based components. We first generalize state-based techniques so that
they can handle callbacks. Then, we develop formal models for trace-
based and state-based specifications and show that every trace-based
model can be canonically represented as a state-based model. Adapting
notions from process simulation, we define an abstraction relation be-
tween two state-based models allowing their comparison. In particular,
state-based models are more abstract than trace-based models. We also
show that there exist most abstract models. The developed framework
is illustrated by a subject component of the Subject-Observer Pattern.

1 Introduction

Objects or, more generally, object-based components communicate with their
environment via messages. Usually, the reaction to an incoming message depends
on the state of the object or component. To avoid uncontrolled access and to
achieve implementation-independency, it is an accepted principle to encapsulate
the concrete state of the implementation. In particular, the concrete state should
not be exposed in specifications of classes and components (see, e.g., [1, §1.3]).
Two different kinds of implementation-independent specification techniques have
been investigated in the literature. In so-called model- or abstract state-based
specifications, behavior is explained based on a model or space of abstract states

? This work is partly funded by the EU project FP7-231620 HATS: Highly Adaptable
and Trustworthy Software using Formal Methods

Technical Report, KIT, 2010-13 268

(see, e.g., [2]). The specification expresses the result values and changes of the
abstract state in reaction to an incoming message. In the following, we will
simply call these specifications state-based. In trace-based specifications, behavior
is explained with respect to the history of messages an object or component has
seen. In both cases, we say that a specification describes a model of the specified
component. Models can be considered as the semantics of specifications. They
will be formalized as transitions systems.

State-based specifications are closer to the implementation, can directly be
complemented with invariants – which is important for verifying implementa-
tions –, and are supported by a set of well-developed specification constructs
going far beyond the basic pre- and postconditions (see, e.g., [3,4]). On the
other hand, trace-based specifications have a natural link to semantics (see [5]),
avoid the design of an abstract state space, and can more easily deal with call-
backs and concurrency (see, e.g., [6, §5]). Furthermore, invariants may also be
specified to restrict, e.g., the structure of the allowed traces.

The long-term goal of our research is to work out the relationship between
state- and trace-based specifications to combine the best of the two techniques.
In this paper we investigate, as an initial step, specifications of sequential compo-
nents with possible callback behavior. We consider specifications of object-based
components where a component description consists of one or more classes. A
(runtime) component is created by instantiating a class. Internally, the compo-
nent can create further objects and expose these objects to the environment. To
keep the presentation focused, we do not discuss concurrency and inheritance.
However, we believe that our results can be generalized to such settings.

Contributions. To handle callback scenarios, we first generalize state-based spec-
ifications. In addition to JML-like pre- and postconditions of methods calls [4],
we also allow to express what a component ensures when a call leaves the com-
ponent and what it requires when the call is completed (returns). In this paper,
this generalization is only to ease comparison between the different models. We
illustrate the approach for a simple version of a Subject component following
the Subject-Observer Pattern (SOP) [7].

The central contribution of the paper is to relate trace-based and state-based
models in a formal way. In particular, we show that every trace-based model
has an equivalent state-based model. We define an abstraction relation between
two models which allows to compare two models. As results from the process
simulation theory, we derive that there exist most abstract models. Knowing
that a model is most abstract guarantees that it does not contain redundant
states. Thus, the knowledge can be used as a guidance to remove redundancy
from specifications. As an example, we show that the state-based model of the
presented subject component example is most abstract.

Paper structure. Section 2 presents the specifications of the Subject compo-
nent of the SOP in trace- and state-based manners. Sections 3 and 4 formally
define our trace- and state-based models, respectively, and show how a trace-
based model can be represented as a state-based model. Section 5 defines the

I. W. Kurnia et al.

269 Technical Report, KIT, 2010-13

interface Observer {
void notify(State s);

}

class Subject {
Observer o1, o2;

Subject(Observer o1, Observer o2) {
this.o1 = o1; this.o2 = o2;

}

void update(State s) {
o1.notify(s);
o2.notify(s);

}
}

Fig. 1. A Subject implementation

abstraction and states that state-based models are abstractions of trace-based
models. We then relate this work to others and give some directions regarding
future work. Proofs of the lemmas are available in the full version of this paper1.

2 Motivating Example

In Fig. 1, we give an implementation of the SOP. For simplicity, the Subject
class stores exactly two observers. Each time the subject is updated with a new
state, this state is propagated to the observers in a fixed order (i.e., o1 then o2).
In the presence of callbacks, there can be a sequence of notifications to o1 before
o2 is notified. For example, the observer o1, upon being notified, may trigger
a new update of the subject. The implementation does not guarantee that the
second observer receives the states in the same order as the first observer.

The behavior of the SOP can be described using state- or trace-based speci-
fications. For both kind of specification techniques, we need to address what the
input and output of an object-oriented component are.

Input/Output. In general, input/output occurs at the places where the control
flow enters or leaves the component. In our example, control flow can enter the
component when the constructor or the update method is called by an object
(outside of the component/from the environment). Control flow may leave the
component when the constructor or the update method returns. One must
also note that control flow leaves the component when the notify method is

1
http://softech.informatik.uni-kl.de/Homepage/PublikationsDetail?id=150

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 270

called. We thus characterize the input/output of our Subject component by
the following set of messages Msg .

Msg = {→ sbj .Subject(o1, o2),← sbj .Subject()}
∪ {→ sbj .update(s),← sbj .update()}
∪ {→ o.notify(s),← o.notify()}

The first subset represents the messages dealing with the construction of
the Subject instance sbj . Invocation of the constructor is represented by the
message → sbj .Subject(o1, o2) where o1 and o2 are the parameters passed to
the invocation. Returning from the constructor is represented by the message
← sbj .Subject(). Note that each invocation message has a matching com-
pletion message in Msg . We assume that the instance variables of the Subject
class cannot be accessed directly by other objects, i.e., that there is no interaction
with a Subject object other than through its methods. We can thus solely rely
on the previously defined messages to describe the input/output behavior of our
component. Using these messages, we give both a state-based and a trace-based
specification of the SOP. We assume our specifications to be deterministic in
the following way. For each input to the component, there is exactly one output
which is specified.

State-based specification. A state-based specification is realized using some
abstract states by describing how a state changes when an event occurs. Our
specification of the Subject component (Fig. 2) provides an example of a
state-based specification in a pre-/postcondition style. In our example, the state
consists of a subject, its observers and a stack which stores, in last-in-first-out
manner, the states that are available during an update process. The stack is
necessary to manage multiple states in the presence of callbacks. We then define
the state transitions. A state-based specification consists of a set of specification
cases of the following form

in MsgPattern out MsgPattern requires pre; ensures post ;

A transition is specified by a quadruple where the first entry describes the (in-
coming) message pattern upon which the transition might be triggered. The
second entry then describes the outgoing message (i.e., the response) from the
component. The third entry forms a precondition over the values of the incoming
message pattern and the state upon which the transition might be selected. The
fourth entry represents the postcondition and ranges over the values in the pre-
state (denoted by old(...)), the post-state and the values of the in- and outgoing
message. In short, if an incoming message which enters the component fits the
incoming message pattern and the precondition pre holds, then the component
responds by producing an outgoing message and changing its state such that
the postcondition post holds. To make our specifications short and concise, we
assume the part of the state which is not mentioned in the postcondition to
retain the same value it had prior to receiving the incoming message.

I. W. Kurnia et al.

271 Technical Report, KIT, 2010-13

state spec Subject {
Subject sbj;
Observer o1, o2;
Stack<State> st;

in → sbj .Subject(o′
1, o

′
2) out ← sbj .Subject()

requires o′
1 6= o′

2 ∧ o′
1 6= null ∧ o′

2 6= null;
ensures o1 = o′

1 ∧ o2 = o′
2 ∧ st = Stack.Empty();

in → sbj .update(s) out → o1.notify(s)
ensures st = old(st).push(s);

in ← o.notify() out → o2.notify(s)
requires o = o1;
ensures s = old(st).top();

in ← o.notify() out ← sbj .update()
requires o = o2;
ensures st = old(st).pop();

}

Fig. 2. A state-based specification of the Subject class

For the concrete example given above, there are four cases which need spec-
ifications. Given an instance creation request → sbj .Subject(o1, o2) with the
precondition of two distinct and non-null observer parameters, the Subject re-
turns the constructor completion message ← sbj .Subject() and the new state
refers to the two given observers and an empty stack. If the component receives
an update message, then o1 is notified while the state s is pushed onto the stack.
As the control flow leaves the component when the notify method is called and
control flow enters the component again when the notify method returns, we
also have to take returning notify messages into account. These might happen
at two different places; after the first or the second observer has been notified.
In our specification, when a notification has finished, we check which observer
has been involved in this notification. If it is o1, then the Subject proceeds to
notify o2 using the state which is on top of the stack st. Otherwise, we conclude
that the update invocation finishes and pop the stack.

A contract-based specification like JML [4] also employs a pre-/postcondition
(state-based) specification style. However, as this is based on methods and not
message pattern, we can only consider transition descriptions where the incom-
ing message pattern is an invocation and the outgoing message is the corre-
sponding return. We see our specification style as a generalization of the JML
pre-/postcondition style as we can additionally handle callbacks.

Trace-based specification. Another way to describe the SOP behavior is by
using a trace-based specification. Here, the only information used by the spec-

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 272

trace spec Subject {
in → sbj .Subject(o′

1, o
′
2) out ← sbj .Subject()

requires o′
1 6= o′

2 ∧ o′
1 6= null ∧ o′

2 6= null;

in → sbj .update(s) out → o1.notify(s)
requires sbj = sbj(h);
ensures o1 = obs1(h);

in ← o1.notify() out → o2.notify(s)
requires o1 = obs1(h);
ensures o2 = obs2(h) ∧ s = getS(h);

in ← o2.notify() out ← sbj .update()
requires o2 = obs2(h);
ensures sbj = sbj(h);

}

Fig. 3. A trace-based specification of the Subject class

ification is the history of messages that have crossed the boundary of the com-
ponent. This notion of communication history [8] is modeled in our specification
as a list of incoming and outgoing messages. Similar to before, the specification
is described using a pre- and postcondition style, with the difference that we do
not use an auxiliary abstract state space but only relate message values to the
trace history.2 Specification cases are of the following form

in MsgPattern out MsgPattern requires pre; ensures post ; ,

where both pre- and postcondition can refer to the history h (also called history
variable in [9]). The history h contains all messages seen so far, except the ones
which were currently matched against the in and out message pattern.

The specification for the constructor as seen in Fig. 3 is similar to that from
the state-based specification. In contrast to the state-based model, upon receiv-
ing an update, we must go back in the history h to the constructor message to
obtain the subject and the first observer that needs to be notified (represented
by the extractor functions sbj and obs1 which are not formally stated here).

The trickiest part to specify is when a notification has happened. In the case
where the incoming return message comes from o1, we need to notify o2 using
the proper state. The problem is that since a callback is allowed and we do not
store the states in a stack, we need to obtain this information by emulating the
stack effect of each update, which is done by the getS function. It searches for
the update message containing the state which is relevant to the “stack frame”
of the current notification. If the incoming return message comes from o2, the
component returns with an update completion message.

2 Note that this is only one possible way to describe the set of admissible traces.

I. W. Kurnia et al.

273 Technical Report, KIT, 2010-13

Comparison. Both state- and trace-based specification techniques have advan-
tages and disadvantages. On one hand, it is sometimes very difficult in the trace-
based approach to extract the necessary information from the trace history (e.g.,
defining getS). The state-based approach allows one to define an abstract state
which contains all the relevant information one needs to specify the behavior. On
the other hand, state changes must then be described. Some protocol properties
are easier to specify in a trace-based way, e.g., using regular expressions.

3 Trace-based Model

A trace of a component is a sequence of events which consist of incoming and
outgoing messages. It describes how the component responds given a specific
instance of an environment which uses the component. A trace-based model
can be seen as a collection of such traces which restricts the behavior of the
component. We adopt the formalization of messages and traces from [9,10] to
define a trace-based model of a sequential deterministic object-based component.

Let Obj be a set of objects, Mtd a set of methods with unique names, and Dir
a two-element set {→,←} representing method invocation (call) and completion
(return), respectively. Furthermore, let Value be a set of values which encom-
passes all possible parameter values in actual method calls and return values.
Then, with v being a shorthand for a possibly empty list of values v1, v2, . . ., the
set of messages can be defined as follows.

Definition 1 (Message). The set of messages Msg (whose instances are de-
noted by µ) is a subset of Obj ×Mtd×List〈Value〉×Dir. A tuple µ = 〈o,m, v, d〉
is a message if the callee o supports the method m.

Instead of representing messages µ in the tuple format, we depict them graph-
ically: → o.m(v) or ← o.m(v). Invocation messages → o.m(v) are grouped into
Msg→ and completion messages into Msg←, forming a partitioning of Msg . We
also define extra functions callee, method , value, and dir to extract the callee
object, method, value and direction elements from a message, respectively. The
function header extracts the callee and method of a message.

We define a component as a collection of objects O ⊆ Obj (called component
objects). All other objects (called environment objects) are considered as part of
the environment Oenv = Obj\O.

Based on this partitioning, we can categorize the messages into incoming
and outgoing messages from the perspective of the component. An incoming
message is either an invocation message whose callee is a component object,
or a completion message whose callee is an environment object. An outgoing
message is either an invocation message whose callee is an environment object,
or a completion message whose callee is a component object. As we are interested
in modeling the observable behavior of the component, we only deal with traces
composed of alternating incoming and outgoing messages.

Definition 2 (Component Trace). Given a set of messages Msg and a com-
ponent O, a component trace t is a (possibly empty or infinite) sequence of pairs

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 274

of incoming and outgoing messages (µ1, µ2), (µ3, µ4), . . ., where odd-indexed mes-
sages are incoming and even-indexed messages outgoing.3

Note that in the definition above, we assume that the component may not
diverge. To include divergence, we could extend Msg to include a special message
symbol (e.g., ⊥) to indicate this situation.

In the sequential setting, a component trace must follow the call stack prop-
erty, where method completions must appear in reverse order of the correspond-
ing method invocations. This is captured by the following definition of well-
formed component traces.

Definition 3 (Well-formed Component Trace). A non-empty component
trace t = µ1, µ2, . . . is well-formed with respect to a component O and the en-
vironment Oenv = Obj\O, iff for each completion message there exists a prior
invocation message such that the call stack property (predicate match) holds:
∀µj ∈ Msg← • ∃k < j • match(k, j), where

match(a, b) def= µa ∈ Msg→ ∧ µb ∈ Msg← ∧
header(µa) = header(µb) ∧ split(a+ 1, b− 1), and

split(a, b) def= a > b ∨match(a, b) ∨
∃ a < c < b− 1 • split(a, c) ∧ split(c+ 1, b)

An empty trace is well-formed.

The well-formedness condition above states that every completion message
needs to have a matching invocation message. The proper matching has to be
selected such that no two completion messages are matched to a single invoca-
tion message, which is captured by the match predicate. The match and split
predicates are mutually recursive, where match matches the invocation and com-
pletion messages at the two ends of the subtrace (i.e., µa and µb), and split
partitions the rest of the subtrace such that for each partition, we can form the
matching. Other sequential properties4 are not described as they complicate the
definitions and proofs without adding substantial insight.

We define Traces(O) as the set of well-formed traces of the component O. As
we do not specify the behavior of the environment, it may decide to terminate
at any moment. Therefore, we require the set Traces(O) to be prefix-closed,
i.e., for each trace t ∈ Traces(O), all its prefixes must also be in Traces(O). A
trace-based model is then simply defined using the set of traces.

Definition 4 (Trace-based Model). Given a set of messages Msg and a com-
ponent O, a trace-based model is the set of well-formed traces:
T (Msg , O) = Traces(O).

3 We drop the brackets surrounding the pairs whenever it is clear from the context.
4 Examples of other sequential properties: all traces begin with the construction of a

component; a component cannot send a message to an object from the environment
before that object has been introduced to the component, etc.

I. W. Kurnia et al.

275 Technical Report, KIT, 2010-13

Because in this paper the set of messages Msg and objects of the component
O is clear from the context, we simply write T and Traces for the trace-based
model and its set of well-formed traces, respectively.

Since we want a model for a deterministic component, we also require that
the component acts as a function given some trace prefix and incoming message
to produce exactly one outgoing message. Stated formally,

∀t, t′, t′′ ∈ Traces • t′ = t, µ2n−1, µ2n ∧ t′′ = t, µ′2n−1, µ
′
2n ∧ µ2n−1 = µ′2n−1

=⇒ µ2n = µ′2n .

Example (Trace-based model for the Subject component). The trace-based
model Tsubj can be defined using the set of well-formed traces Tracessubj gen-
erated by the specification in Fig. 3. The set of traces Tracessubj is inductively
constructed. The empty trace is element of the set. Then, for any element t of
the set, the trace t′ = t, µ1, µ2 is also element of the set, if it satisfies the fol-
lowing conditions. There must be a specification case with in and out message
pattern that are matched by µ1 and µ2 and where both pre- and postconditions
are satisfied. Furthermore, the trace t′ must be well-formed (see Def. 3).

4 State-based Model

Another way to specify the behavior of a component is to determine how the
component would act given a request from the environment by looking at the
state of the component, updating the state, and forming a response based on it.
This is captured by the well-known notion of transition system. In this section,
we describe state-based models, defined as transition systems, and how we can
represent the trace-based models as state-based models.

Definition 5 (State-based Model). Given a set of messages Msg and a com-
ponent O, a state-based model M(Msg , O) is a triple 〈S,Θ, s0〉 where S is a set
of states, s0 ∈ S is the initial state and Θ ⊆ S×Msg×Msg×S is the transition
relation, where the first message represents an incoming message and the second
one an outgoing message.

As with trace-based models, we drop the set of messages Msg and objects
of the component O from the argument of M. We also represent a transition
between two states s, s′ graphically as s

µa,µb−−−→ s′. A (finite) component trace
t = (µ1, µ2), . . . is induced by M if there exists a sequence of states s0, s1, . . .
such that ∀i > 0 • si−1

µ2i−1,µ2i−−−−−−→ si. We require our state-based models to
be concise. A model is concise if each state is reachable by some sequence of
transitions from the initial state.

Example (State-based model of the Subject component). The state-based model
Msubj = 〈S,Θ, s0〉 is a state-based model of the Subject component specified
in Fig. 2. It has S ⊆ Subject × Observer × Observer × Stack<State> as
set of states and s0 = (null,null,null,null) as initial state. The transition

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 276

relation Θ can be derived from the state-based specification in a similar way as
how the trace-based model was derived from the trace-based specification. Note
however that no well-formedness property must yet hold.

The lemma below formulates trace-based models in terms of state-based models.

Lemma 1. Every trace-based model T can be canonically represented as a state-
based model M = 〈S,Θ, s0〉.

Proof (sketch). By construction. Let S be a set of finite traces from Traces and
s0 be the empty trace ε. The transition relation Θ can be built in the following
way. We start from an empty relation. Now take any two elements t, t′ of Traces
such that t′ = t, µa, µb. Then, t

µa,µb−−−→ t′ is added to Θ. This construction is
similar to how one would build a trie (retrieval tree [11]) from a set of strings.

The usual notion of determinism for transition systems is that for any given
state s and a transition label (µa, µb) there is at most one state s′ such that
s
µa,µb−−−→ s′. To include the desired notion of determinism stated in the previous

section, we need to strengthen this notion by also requiring that for any state s
and an incoming message µa, there is at most one outgoing message µb and one
next state s′ such that s

µa,µb−−−→ s′. It is not enough to use the determinism of the
trace-based view, since the resulting state-based model may be non-deterministic
in traditional sense while inducing the same set of traces.

Definition 5 alone is not strong enough to ensure that the resulting component
traces are well-formed. There are, for example, state-based models which may
induce a trace which breaks the call stack requirement. To enforce the well-
formedness requirement, one can build a specific model for each requirement
(called restrictor models), and then take the synchronous product between the
restrictor models and the original state-based model.

Definition 6 (Synchronous Product). Given two state-based models Mi =
〈Si, Θi, s0,i〉, i = 1, 2, their synchronous product M′ =M1 ⊗M2 is 〈S′, Θ′, s′0〉
where S′ ⊆ S1 × S2, s′0 = (s0,1, s0,2), and Θ′ ⊆ S′ ×Msg ×Msg × S′ is the least

relation such that (s1, s2)
µa,µb−−−→′ (s′1, s

′
2) if s1

µa,µb−−−→1 s
′
1 and s2

µa,µb−−−→2 s
′
2.

As the only requirement to have a well-formed state-based model is the call
stack property, it is enough to build a restrictor model which induces traces
following the call stack property.

Definition 7 (Call Stack Restrictor Model). Let Header ⊆ Obj ×Mtd be
the set of all message headers. The call stack restrictor model C = 〈Sc, Θc, s0,c〉
is a state-based model whose state is a stack of elements of Header, with the
initial state being the empty stack5. The transition s1

µa,µb−−−→c s2 exists if one of
the following conditions hold.

5 We denote the empty stack as ε and a non-empty stack as h′ = h : hs, where h is
the top element and hs denotes the rest of the stack.

I. W. Kurnia et al.

277 Technical Report, KIT, 2010-13

1. dir(µa) =→ ∧ dir(µb) =→ ∧ s1 = hs ∧ s2 = header(µb) : header(µa) : hs
2. dir(µa) =← ∧ dir(µb) =← ∧ s1 = header(µa) : header(µb) : hs ∧ s2 = hs
3. dir(µa) =→ ∧ dir(µb) =← ∧ header(µa) = header(µb) ∧ s1 = s2
4. dir(µa) =← ∧ dir(µb) =→ ∧ s1 = header(µa) : hs ∧ s2 = header(µb) : hs

Note that our restrictor model is non-deterministic. However, since our state-
based model is deterministic, the product will remain deterministic.

Definition 8 (Well-formed State-based Model). Given a state-based model
M, the well-formed state-based model for M is Mwf =M⊗ C.

Example (Well-formed state-based model of the Subject component). The well-
formed state-based model of the example is Mwfsubj = Mwfsubj ⊗ Csubj . In
order to ensure the call stack property, the states ofMwfsubj are thus a subset of
Subject × Observer × Observer × Stack<State> × Stack<Header>.

5 Model Abstraction

We are interested in reducing the size of our models without altering the com-
ponent trace sets represented by the models. To do this, the models need to be
related with each other. One such relation is the state abstraction relation (cf.
§7.4 of [12]), which is an instance of the simulation relation [13]. We extend this
relation to our setting and reuse known results to build a most abstract model.

Definition 9 (State Abstraction). Given two state-based component models
Mi = 〈Si, Θi, s0,i〉, i = 1, 2, we say that M2 is more abstract than M1 iff there
is a total abstraction function α : S1 → S2 such that

s0,2 = α(s0,1); and if s1
µa,µb−−−→1 s

′
1, then α(s1)

µa,µb−−−→2 α(s′1).

Example (Abstraction of the trace-based model of the Subject component). Us-
ing Lemma 1, we build Mtsubj as the state-based model from the trace-based
model Tsubj . We compareMtsubj andMwfsubj by providing an abstraction func-
tion α : Stsubj → Swfsubj as follows.

α(ε)= (null,null,null,null,ε)
α((→ sbj.Subject(o1,o2),← sbj.Subject()):ε)=

(sbj,o1,o2,ε,ε)
α((→ sbj.update(s),→ o.notify(s)):l)=

(sbj,o1,o2,s:sl,o.notify:sbj.update:hl)
where (sbj,o1,o2,sl,hl)= α(l), o = o1

α((← o.notify(),→ p.notify(st)):l)= (sbj,o1,o2,s:sl,p.notify:hl)
where (sbj,o1,o2,s:sl,o.notify:hl)= α(l), o = o1, p = o2, st = s

α((←o.notify(),← sbj.update()):l)= (sbj,o1,o2,sl,hl)
where (sbj,o1,o2,s:sl,o.notify:sbj.update:hl)= α(l), o = o2

For the initial state, we map the empty history to nulls and the empty
header stack. Each of the remaining cases shows a one-to-one correspondence
between the postconditions defined in the trace-based specification (Fig. 3) and
the postconditions defined in the state-based specification (Fig. 2).

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 278

Because such an abstraction function α exists, we can conclude that the trace-
based model of the Subject component is more abstract than the state-based
model of the Subject component derived from the state-based specification.
The following main theorem states this result in a more general way.

Theorem 1. For any trace-based model T , there is a well-formed state-based
model Mwf which is more abstract than T . The converse does not hold.

Proof (sketch). The first part of this lemma follows directly from Lemma 1
and taking the identity function as α. For the converse, consider a specification
which concentrates only on the well-formedness property of the traces. Any well-
formed trace in the trace-based model of the specfication which has completed
all updates can be abstracted to the state with empty stacks in the state-based
model. As the abstraction must be a function, the converse does not hold.

We can go further than the main theorem by adapting well-known results
about state transition systems. We first define the standard notion of simulation.

Definition 10 (Simulation [13]). Let Mi = 〈Si, Θi, s0,i〉, i = 1, 2 be state-
based models over Msg. A simulation for (M1,M2) is a binary relation R ⊆
S1 × S2 such that (s0,1, s0,2) ∈ R; and if (s1, s2) ∈ R and s1

µa,µb−−−→1 s
′
1, then

there is s′2 ∈ S2 such that s2
µa,µb−−−→2 s

′
2 and (s′1, s

′
2) ∈ R.

If there exists an simulation relation R for (M1,M2), we say that M1 is
simulated by M2, denoted M1 � M2. Furthermore, if the simulation relation
occurs in both directions (i.e., M1 � M2 and M2 � M1), we say that M1

is simulation equivalent to M2, denoted by M1 ' M2. We are only interested
in the (unique [14]) maximal simulation relation, which is a simulation relation
that contains all other simulation relations between the two models.

The following lemma shows that the abstraction is a simulation.

Lemma 2. If M2 is more abstract than M1, then M1 �M2.

Proof. Consider Mi = 〈Si, Θi, s0,i〉, i = 1, 2 and α : S1 → S2 to be the abstrac-
tion function. We simply take R = {(s, α(s)) | s ∈ S1}.

A most abstract model is a model which up to renaming has no more ab-
straction. To construct it, we need the notion of equivalence classes.

Definition 11 (Equivalence Classes). Let S be a set and R an equivalence
on S. For s ∈ S, [s]R = {s′ | (s, s′) ∈ R}. The quotient space of S under R is
defined as S/R = {[s]R | s ∈ S}.

By building the equivalence classes of the states based on the simulation
relation, we end up with the simulation quotient model.

Definition 12 (Simulation Quotient Model). Given a state-based model
M = 〈S,Θ, s0〉, the simulation quotient state-based model M/' is a triple
〈S/', Θ', [s]'〉, where [s]

µa,µb−−−→' [s′] if s
µa,µb−−−→ s′.

I. W. Kurnia et al.

279 Technical Report, KIT, 2010-13

Grumberg and Bustan [15] show that the simulation quotient model M/'
is the unique smallest (in terms of number of states) state-based model up to
renaming which is simulation equivalent to M. Since the quotient space is a
partitioning of the original state set S, we can also see it as an abstraction.

Theorem 2 (Most Abstract Model [15]). The simulation quotient model
M/' is the most abstract model of the state-based model M up to renaming.

Example (Simulation quotient model of the Subject component). The following
lemma states that the well-formed state-based model of the Subject component
specification is a simulation quotient model for the specification.

Lemma 3. Mwfsubj is the simulation quotient model for Mtsubj .

Proof (sketch). By contradiction. AssumeMwfsubj is not the simulation quotient
model. Then there exist two states ofMwfsubj that are equivalent, which is false.

By Theorem 2,Mwfsubj is the unique smallest state-based model for the Subject
component specifications and, hence, its most abstract model.

In the deterministic setting, the notions of simulation equivalence and trace
equivalence collapse [16]. As a result, the quotient model is a most abstract
model, i.e., a model such that there is no other smaller state-based model that
is more abstract and still retains exactly the same behavior.

In a non-deterministic setting, the abstraction function defined in Def. 9 only
guarantees finite trace inclusion, while the simulation equivalence guarantees fi-
nite trace equivalence [17]. In general if we want a more abstract model to remain
behaviorally equivalent to the abstracted model, then we need to use bisimula-
tion equivalence [18] as the reduction. This requires a more general definition of
abstraction, where, in addition to the definition of abstraction given here, the
abstract states need to be related back to the abstracted states.

6 Related Work

State-based models are usually, in the object-oriented setting, specified using
contracts as introduced in Eiffel [3]. JML [4] and Spec# [19] adopt this approach
to allow modular specifications in Java and C#, respectively. Contracts mainly
consist of method pre-/postconditions and class invariants, making it non-trivial
to deal directly with callbacks as in the subject/observer example (Sect. 2).

A generalized state-based model similar to the one given here is present in
the Z++ methodology [20], where object-oriented real-time systems are specified
using real-time logic. While similar notions of message predicates are used within
the state-based specifications, their purpose is for timing measurement.

Trace-based specifications are well-known in the literature of processes and
modules [21,22]. This trace idea has also appeared in the object-oriented setting
as early as [8] in terms of communication histories, further developed in [23] and
later on in [24,25], especially for facilitating the modeling of open asynchronous
distributed systems.

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 280

In connection to proof systems, trace-based specifications have been used
most recently in [9,26] in the Creol [27] setting. The trace of a component is
seen as a projection from the global trace and checked against invariants which
capture communication patterns in form of regular expressions of messages.

At the program level, the idea to characterize the behavior of object-oriented
components by admissible traces is also used in the context of observational
equivalence to give a fully abstract semantics for object-oriented languages [5,28].

Jass [29] gives specifications in the form of trace assertions, whose semantics
is based on CSP. This technique allows to specify our subject example in a
similar fashion. However, a clear component model is missing. Similarly, Cheon
and Perumandla [30] extend JML to introduce assertions based on call sequences
in form of regular expressions, by abstracting from argument values and callee.

7 Conclusion and Future Work

In this paper we have shown for a sequential object-based setting that state-based
models are abstractions of trace-based models. We have also given an example
of a subject component illustrating the relation between state- and trace-based
specification approaches by describing them in a common framework.

As the subtitle of this paper suggests, our long-term goal is to formalize this
generalization to describe precisely the behavior of a component in an object-
oriented setting. We are especially interested in defining the connection between
such mixed trace- and state-based specifications and programming languages.
An ideal connection would allow specification composition which in turn allows
modular verification.

Another natural extension to this work is to consider a more general setting
such as full object-orientation (i.e., allowing subtyping and inheritance) and
concurrency. In addition, sometimes we would like to specify how the component
should be used. For example, we want to guarantee that the observer, upon being
notified, actually responds to the subject component (i.e., does not diverge). By
specifying such restrictions about the environment, the set of traces is no longer
prefix-closed, and thus the semantics of our state-based model has to be altered.

Acknowledgements. The authors would like to thank the anonymous referees
for their constructive comments and suggestions.

References

1. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
PhD thesis, FernUniversität Hagen (2001)

2. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: Cleanly
supporting abstraction in design by contract. Softw. Pract. Exper. 35(6) (2005)
583–599

3. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall (1988)
4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3) (2006) 1–38

I. W. Kurnia et al.

281 Technical Report, KIT, 2010-13

5. Jeffrey, A., Rathke, J.: Java Jr: Fully abstract trace semantics for a core Java
languages. In: ESOP. Volume 3444 of LNCS., Springer (2005) 423–438

6. Kyas, M.: Verifying OCL Specifications of UML Models: Tool Support and Com-
positionality. PhD thesis, Leiden University (2006)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston, MA (January 1995)

8. Dahl, O.J.: Can program proving be made practical? In: Les Fondements de la
Programmation. (1977) 57–114

9. Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of dynamic systems:
Component reasoning for concurrent objects. ENTCS 203(3) (2008) 19–34

10. Kyas, M., de Boer, F.S., de Roever, W.P.: A compositional trace logic for be-
havioural interface specifications. NJC 12(2) (2005) 116–132

11. Fredkin, E.: Trie memory. CACM 3(9) (1960) 490–499
12. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind

Series). The MIT Press (2008)
13. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI.

(1971) 481–489
14. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM

TOPLAS 16(3) (1994) 843–871
15. Bustan, D., Grumberg, O.: Simulation-based minimazation. ACM TOCL 4(2)

(2003) 181–206
16. Kucera, A., Mayr, R.: Simulation preorder over simple process algebras. Informa-

tion and Computation 173(2) (2002) 184–198
17. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).

In: CONCUR. Volume 458 of LNCS., Springer (1990) 278–297
18. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of the

5th GI-Conference on TCS, London, UK, Springer-Verlag (1981) 167–183
19. Barnett, M., Leino, K.R.M., Rustan, K., Leino, M., Schulte, W.: The Spec#

programming system: An overview. In: CASSIS, Springer (2004) 49–69
20. Lano, K.: Formal Object-Oriented Development. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA (1995)
21. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
22. Bartussek, W., Parnas, D.L.: Using assertions about traces to write abstract spec-

ifications for software modules. In: ECI. Volume 65 of LNCS., Springer (1978)
211–236

23. Nierstrasz, O.: Regular types for active objects. In: OOPSLA. (1993) 1–15
24. Johnsen, E.B., Owe, O.: A compositional formalism for object viewpoints. In:

FMOODS. Volume 209 of IFIP Conference Proceedings., Kluwer (2002) 45–60
25. Kyas, M., de Boer, F.S.: On message specification in OCL. In: Compositional

Verification in UML. Volume 101 of ENTCS., Elsevier (2004) 73–93
26. Ahrendt, W., Dylla, M.: A verification system for distributed objects with asyn-

chronous method calls. In: ICFEM. Volume 5885 of LNCS., Springer (2009) 387–
406

27. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and System Modeling 6(1) (2007) 39–58

28. Steffen, M.: Object-connectivity and observability for class-based, object-oriented
languages. (2006) Habilitation Thesis, University of Kiel.

29. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass - Java with assertions.
ENTCS 55(2) (2001) 1–15

30. Cheon, Y., Perumandla, A.: Specifying and checking method call sequences of Java
programs. Software Quality Journal 15(1) (2007) 7–25

State-based Object Models Are More Abstract Than Trace-based Models

Technical Report, KIT, 2010-13 282

Controlling the Unknown

Casandra Holotescu

Politehnica University of Timişoara
Dept. of Computer and Software Engineering

casandra@cs.upt.ro

Abstract. A lot of work has been done in the area of building component-
based systems with correct-by-construction adaptors. This is accom-
plished by using preexisting specifications of the component behaviour.
But what happens when known components get to interact with incom-
pletely specified, black-box components? How can we avoid errors in
this kind of system, without modifying existing/legacy components? We
present a method to explore and control such systems. Our approach ex-
ploits information in both correct and erroneous runs to build a controller
that ensures our system will avoid observed errors when interacting with
the unspecified component. We consider the behavioural specifications
for our known, legacy component to be previously documented and we
infer partial behaviour information of the unknown component by study-
ing its reactions to various interaction scenarios.

Keywords: component-based systems, model refinement, adaptation,
maintenance

1 Introduction

Component-based software engineering aims to improve software productivity by
assembling large systems out of reusable components. However, as these com-
ponents are often developed separately, the risk of mismatching appears at dif-
ferent levels: signature, behaviour, quality of services, etc. This inconvenience is
addressed by design-time adaptation.

In the area of behavioural component adaptation, an adaptor is considered
to be a specific component-in-the-middle that would properly coordinate the
interactions between components towards the desired functionality. Several ap-
proaches for automatically generating correct by construction adaptors for sys-
tem composition have been proposed, e.g. by Schmidt and Reussner [20], Autili et
al. [3] or Canal et al. [7]. While earlier pioneering approaches, such as [21] or [20]
though already semiautomatic, have only focused on ensuring a non-deadlocking
interaction among components, later research such as [3], [7] has resulted in tools
able to automatically synthesize adaptors that mediate the interactions in the
component based system, so that its resulting behaviour satisfies a temporal
logic property (described as a Büchi automaton, vector transition system, finite
state machine, etc.). If both the system behaviour and the goal property are

283 Technical Report, KIT, 2010-13

regarded as automata, the resulting system automaton must be a simulation of
the goal.

There is a close relation between component adaptation and control the-
ory [19]. Considering the desired functionality and absence of deadlock as part
of the system specification, we may view an adaptor as a controller over the
system plant, using message forwarding or consumption as a means to enable
and disable behaviour in the plant.

The above approaches assume all component behaviours are known, either
prespecified as finite state machines, labeled transition systems or Petri nets, or
derived in this form from more intuitive, visual formalisms such as message se-
quence charts. However, this is not always the case in the real component-based
software development environment, and it is not uncommon for a system archi-
tect to have to integrate a black-box component. Integrating a component with
insufficient behavioural specification is difficult, as none of the existing automatic
solutions for adaptor synthesis can be applied, and the resulting system can be
quite vulnerable to errors. Resolving an observed error in this kind of system,
by automatically generating a correctness-enforcing adaptor, is the main aim of
our method.

For simplification, consider a component with available behavioural speci-
fication, which interacts with another, black-box component, whose behaviour
is partially unspecified. The interaction takes place by asynchronous message
exchange. The resulting system must satisfy a certain property and also avoid
deadlock. At runtime, a certain set of interactions results in an error, i.e., prop-
erty violation, deadlock or system crash. As the latter two can be subsumed by
the former one, we’ll only consider temporal property violations from now on.
Let us also assume we have a failing run trace.

Our method consists of the following steps (fig.1):

– Behaviour exploration and refinement: the next steps are repeated until a
satisfying refinement is found or a cost limit is reached.
• Exploration: We introduce a ”fake” adaptor among the two components

with the purpose of conducting experiments with different execution sce-
narios. Its actions are directed towards exploring the system state space
instead of performing a real, correctness-ensuring adaptation.
• Refinement: A tentative model of the unspecified component is con-

structed and incrementally refined, using the information obtained dur-
ing the previous exploration phase. The component is assumed to have
a deterministic behaviour.

– Synthesis: using the refined approximation of the unknown component, we
synthesize an adaptor that will forbid the erroneous interaction sequences.

The exploration process takes repeatedly the following steps, as long as there
are unexplored controllable choices:

– We launch again the system execution and follow the error trace up to its
last controllable and incompletely explored decision point.

– We repeat following actions until execution completes:

Controlling the Unknown

Technical Report, KIT, 2010-13 284

• The fake adaptor initiates a bounded model-checking phase over the
system model, that will search for the best next steps towards property
satisfaction.

• The best choice yet unexplored is enabled by the fake adaptor in the
concrete system execution.

• Unknown component reaction is observed.
– Execution ends by success/failure and its trace is stored.

Fig. 1: Main method steps: verification-driven execution, model refinement and con-
troller synthesis

The verification driven execution follows each time the initial error trace,
exploring different options on the path by enabling and disabling controllable
events. This means that also the model refinement, as it employs the use of infor-
mation obtained during the runtime exploration, is directed towards clarifying
the behavioural vicinity of the error trace.

Once the approximated model is refined enough so that all control points
on the error trace have been completely explored through verification driven
execution, the refinement process ends. We have now experimented with all
potential controllable events on the path to error, and we can decide on the
correctness ensuring controller synthesis.

2 Method

2.1 Assumptions

We have a real component-based system SR, composed from CK , the known
component, and CU , the unknown one.

Let us assume component CK has a previously specified behaviour, described
by a finite state machine: a tuple K = 〈QK , QKf , qK0 , ΣK , δK〉, where QK is the
set of states, QKf ⊆ QK the set of final states, qK0 is the initial state, ΣK a set of
events of the message send/receive type: msg! and msg? and δK : QK ×ΣK →
QK the partial transition function.

C. Holotescu

285 Technical Report, KIT, 2010-13

We also associate the unknown component CU with a tentative finite state
machine U = 〈QU , QUf , qU0 , ΣU , δU 〉. Its event set ΣU is assumed to be the mir-
roring of ΣK , thus ΣU = {msg!|msg? ∈ ΣK}∪{msg?|msg! ∈ ΣK}. As we have
no information on this finite state machine, we start by considering it as most
general and its transition function becomes δU : QU ×ΣU → P(QU), thus allow-
ing for nondeterminism. We will assume, for now, that QU = QUf = {qU0 } and
δU

(
qU0 , σ

)
= {qU0 } is defined for all σ ∈ ΣU . It is important to remember that U

is not modelling the real behaviour of component CU , but an overapproximation
of it - although CU is deterministic, by allowing U to be nondeterministic we can
make sure that during the refinement process U will always overapproximate the
behaviour of CU .

We consider the interactions between components as asynchronous, by means
of bounded buffers. Let K×U be their asynchronous composition. Each compo-
nent has an output and an input buffer, both of length l. The input buffer of one
component is directly connected to the output buffer of the other, as no adaptor
exists between the two components - the behaviour of the second component is
unknown, so we cannot synthesize an adaptor by any of the classic methods.
When external control is performed on the system, this actually happens by
controlling the message transfer between the input and output buffers.

All events in the event sets ΣK and ΣU , i.e., reading and writing to/from
buffers, are assumed observable. Thus, if component CU receives a message msg,
the receive event σ = msg? can be externally observed.

The ideal system S to be obtained from the composition of K and U complies
with the property ϕ. The desired property ϕ is also expressed by means of a finite
state machine 〈Qϕ, Qϕf , qϕ0 , Σϕ, δϕ〉, where Σϕ ⊆ ΣK ∪ ΣU . For simplification,
the property ϕ also includes the non-deadlocking requirement, thus ϕ = φ × ρ,
where φ is the functional specification of the system and ρ the specification of
deadlock avoidance. We consider compliance as simulation: S � ϕ.

The real system SR is found to violate property ϕ at runtime. We assume
we have one recorded trace of an erroneous execution, as a sequence of events
t = σ1σ2...σn, with σi ∈ ΣK ∪ΣU .

We aim to build a controller that restricts the behaviour of system SR such
that the error observed in t no longer occurs. In a component-based system,
such a controller is an adaptor that enables events by message forwarding, and
disables them by message consumption, thus controlling the message transfer
between component buffers. Therefore, while the receive events σ ∈ Σ? are
controllable by the adaptor, send events σ ∈ Σ! are uncontrollable.

2.2 Discovering behaviour

We start by assuming the behaviour of the unknown component as most general.
We cannot build a controller for system SR starting from this overapproximated
model of CU , since it would imply using a large number of virtual, possibly
spurious, control sequences. How can we refine this abstraction in order to make
it more precise and thus more useful? This subsection will deal with the issue of

Controlling the Unknown

Technical Report, KIT, 2010-13 286

discovering new behaviour of component CU , by exploring its real behaviour at
runtime and correspondingly refining the tentative finite state machine U (fig.2).

We use verification-driven execution: we verify the desired property ϕ on the
modelled system K×U by means of bounded model-checking [5], while directing
the execution of the real system SR based on the information provided by model
checking. This enables us to verify the model U of component CU through actual
trace execution and, when inconsistencies appear, to appropriately refine it. To
perform these operations a ”fake” adaptor - an interactive mediating component,
will be inserted between the two components.

As our approach aims to find a controller that enables the system to avoid
the observed error, the refinement process is oriented on obtaining a reapprox-
imation of U useful in the controller synthesis. Thus, the exploration is also
centered on the error trace t: verification driven execution exploits t, and tries
to find successful controllable executions in SR, from various prefixes of t. The
exploration and refinement process stops when all controllable decision points of
t have been completely explored by verification driven execution.

(a) VDEX (b) MREF

Fig. 2: Behaviour exploration and refinement (a) Verification driven execution (b)
Model refinement

Verification-driven execution Let L(S) be the prefix-closed language of the
ideal system S = (K×U) ‖ ϕ that complies to the property ϕ. Let pre(t) be the
longest prefix of t that complies to ϕ, pre(t) = tk such that tk = σ1σ2 . . . σk ∈
L(S), but tk+1 6∈ L(S). In order to disable t, we have to prevent the event σ from
occurring by disabling it, if controllable, or by disabling its previous controllable
event in the error trace.

We define a control point in K × U as a state q for which at least one of
the outgoing controllable event sets ΣK

? (q) and ΣU
? (q) contains more than one

C. Holotescu

287 Technical Report, KIT, 2010-13

controllable event: |ΣK
? (q)| ≥ 2 ∨ |ΣU

? (q)| ≥ 2. For a controllable event to be
disabled, an alternative controllable, receive event msg? has to be enabled in
the control point. This can only happen if the expected message msg is already
available.

Let now qcp be the last control point inK×U that precedes the error-inducing
event σ in the error trace t.

We want to discover possible new behaviours of the real system SR starting
from the control point qcp. We will explore the hypothetical alternative choices
from qcp in the system model K×U by means of bounded model checking, with
b the maximum depth bound. The finite state machine describing the property
ϕ will be executed synchronously with the system model K × U .

We launch the run, and force the system to perform the same sequence of
interactions executed in the original error trace, until the execution reaches state
qcp. Due to the uncontrollability of send events, this might not always be possible.
If this happens and the new trace t′ is no longer a prefix of t, t′ 6∈ Pre(t), then
the next control point on t′ becomes the new qcp for that execution. From the
control point qcp of the system K × U and the corresponding state qϕcp of the
system specification, we start a depth-first exploration of the alternative choices
offered by qcp.

Let us now focus on the possible traces of maximum length b, generated by en-
abling an alternative choice σ at the control point qcp. Let |pre(ti)| be the length
of a possible trace ti, which is enabled from qcp through the controllable event
σi, such that pre(ti) satisfies ϕ. The trace ti so that |pre(ti)| ≥ |pre(tj)|, ∀j 6= i
is considered the best unexplored trace from qcp, thus its corresponding choice
σi is the best next step from qcp. Therefore, the fake adaptor enables σi for the
on-going execution.

In this way, a decision based on a ϕ verification lookahead step is to be taken
at each control point met on its way by the execution, thus a controllable event
σ being enabled. The mediated execution of the system continues until either the
violation of the desired property ϕ cannot be avoided, or the execution blocks,
or it successfully completes.

After one control point qcp has been completely explored, its previous control
point on t will follow. The verification-driven execution phase ends when the U
model cannot be further refined, since all control points on t in the system model
have been explored. The performed system executions are partitioned into two
sets: Tc, the set of correct execution traces, and Te, the set of erroneous traces.

Approximation refinement As the finite state machine U describing the be-
haviour of CU is overapproximated, the following situation will appear, especially
in the first runs: the fake adaptor sends message msg to CU , but CU doesn’t ac-
cept it. Thus, we have discovered a difference between U and the real behaviour
of CU , therefore we need to refine U .

One individual refinement step takes place as follows. The set ΣU (q) of events
is enabled for the current state q.

Controlling the Unknown

Technical Report, KIT, 2010-13 288

Case 1. Let us suppose that after an event σi in state q1 of U , the following
controllable event σi+1, assumed by the fake adaptor to happen, fails to do so.
That means the component CU has got into a state in which σi+1 is not enabled
anymore. This state, previously thought to be q, must now be replaced with
a new copy q′. The transition function becomes: δU (q1, σi) = {q′}, δU (q′, σ) =
δU (q, σ), ∀σ ∈ ΣU \ {σi+1}. A self-loop on σ from q will lead in q′ to the
transitions δU (q′, σ) = {q, q′}.

Case 2. If from a state q we have nondeterminism in the model U : |δU (q, σi)| ≥
2 and we observe an execution sequence σi.σi+1 from q, we can use this execu-
tion to resolve the nondeterminism, as component CU is assumed deterministic.
Thus, all transitions δU (q, σi) to a state q′ for which δU (q′, σi+1) = ∅ are removed
from U .

Thus, by always splitting the current state and/or reducing the number of
outgoing transitions from a state, the CU component model U is incrementally
refined during the exploratory training phase. The refinement stops either when
state number limit λ has been reached, or all the control points on t have been
explored. We obtain a model U ′ that is a more precise approximation of the real
component CU .

The model U ′ might still contain, however, nondeterministic transitions trig-
gered by uncontrollable events σ, from states q where σ was neither observed
at execution, nor eliminated from ΣU (q). We propose three ways to resolve this
situation, depending on the system security requirements.

– Optimistic approach: For all states q, all transitions triggered by uncon-
trollable events σ ∈ ΣU ′

! (q) not observed at execution are removed from
U . Thus, the transition function becomes δU

′′
(q, σ) = ∅ iff σ ∈ ΣU ′

! (q) and
observed(q, σ) = false. We obtain a deterministic refined model U ′′, that
leads to a small controller, but further runtime risks may appear if σ can
actually manifest from q.

– Pessimistic approach: The final refined model U ′′ := U ′, and the non-
determinism due to uncontrollable events unobserved at execution remains.
This leads to a larger, more difficult to synthesize controller, but the resulting
system will be safe.

– Semi-optimistic approach: For any state q, all uncontrollable events σ ∈
ΣU ′

! (q) not observed during the verification-driven execution phase, are as-
sumed unobservable. The transition function becomes δU

′′
(q, σ) = {q} iff

σ ∈ ΣU ′
! (q) and observed(q, σ) = false. We obtain a deterministic refined

model U ′′, that still accepts all σ ∈ ΣU ′
! (q). The resulting controller, while

significantly smaller than the pessimistic one, is still much larger than the
optimistic controller. Further risks may still appear if for some such σ the
actual transition from q is not a self loop, however the system is safer than
in the optimistic case.

Our model refinement phase is related to the counterexample guided ab-
straction refinement (CEGAR) developed by Clarke et al. [8], since the blocking
execution can be regarded as a spurious counterexample. The difference is that

C. Holotescu

289 Technical Report, KIT, 2010-13

we do not have an accessible concrete model for the refinement of the overap-
proximated model, but a black-box component, which we explore at runtime.

2.3 Controller Synthesis

An adaptor, as earlier stated, acts as a controller in a component-based system:
it can enable receive events by forwarding the corresponding messages, or disable
them by consuming these messages. Considering the set of send events Σ! in a
component finite state machine as uncontrollable, and the set of receive events
Σ? as controllable, we can solve the control problem in our system by building an
adaptor A. The plant to be controlled will be the asynchronous product K×U ′′
and the specification will be property ϕ.

In order to ensure that the real system composed from the components CK
and CU will satisfy ϕ, as the model U ′′ still represents an approximation of CU ,
two possible variants of controller synthesis can be employed. The first, classical
one, allows the construction of a most permissive controller, while the second
one, more restrictive, limits the system to the observed correct and controllable
behaviour.

Permissive control Let us note by Ctrl the system controller. For the compu-
tation of Ctrl as the controller of the plant K×U ′′, for the specification ϕ we will
use the classical result of Ramadge and Wonham: Ctrl = supcon(K × U ′′, ϕ),
where supcon, described in [19], is a fixpoint procedure.

This leads us to a most permissive controller Ctrl, where all behaviours of the
plant K × U ′′ that does not end up in a violation of property ϕ is allowed. The
same result, as shown in [4, 2] can be obtained if the control problem is modelled
as an acceptance game, as the most permissive winning strategy by an alternating
reachability algorithm. If the specification ϕ is translated to an ATL formula
ψ, within a system with two agents, one determined by the set of controllable
transitions, and the other one by the set of uncontrollable ones, the desired
controller is obtained through model checking of the formula � Ctrl� Gψ. [1]

The adaptor A is then obtained directly from the controller Ctrl by mirroring
in the set ΣA all events from ΣCtrl.

Restrictive control If, out of cost reasons, the behaviour exploration process
has been stopped early, the resulting model U ′′ might still exhibit some false
controllability, i.e., transitions δU

′′
(q, σ), where σ ∈ ΣU ′′

? , that do not manifest
at runtime. This may lead to execution errors in the controlled system. For many
systems, this can be accepted: the run is stopped, the model U ′′ re-refined to
a new model U ′′′, and another adaptor A′ is synthesized. However, for systems
with strong security constraints, a more restrictive solution is needed, with the
price of sacrificing part of the allowed behaviour.

During the exploration of system SR behaviour, two sets of execution traces
have been obtained: the set Tc containing all correct traces, and Te containing
all erroneous execution traces. Let Tcctrl ⊆ Tc be the set of all correct and

Controlling the Unknown

Technical Report, KIT, 2010-13 290

C. Holotescu

291 Technical Report, KIT, 2010-13

Controlling the Unknown

Technical Report, KIT, 2010-13 292

C. Holotescu

293 Technical Report, KIT, 2010-13

Controlling the Unknown

Technical Report, KIT, 2010-13 294

4 Related work

Part of our approach is related to the explaining of counterexamples in [15], as
we also explore the vicinity of an observed error trace. However, as it uses model
checking for exploration, their work applies only to fully specified programs,
while we cannot anticipate the behaviour of the unspecified component and we
need to actually run the system.

Another related method is the one by Giannakopoulou et al., which relies
on environmental assumption generation when verifying a software component
against a certain desired property [14]. Their approach is based on the work
of de Alfaro and Henzinger [12] stating that two components are compatible if
there exists an environment that enables them to correctly work together. The
technique determines if a component satisfies a property for all, some or none
possible environments, and it obtains a formal characterisation of the weakest
environment needed for the property to hold. By building a correctness-enforcing
controller, our approach actually creates an environment in which a desired prop-
erty would hold. However, while in [14] the analyzed component is well specified,
our approach addresses systems that also contain black-box components, whose
behaviour and controllability must be understood before building an adaptor.

The use of verification-driven execution also relates our method to the work
of Harel et al. in the domain of smart play-out [11, 10]. Smart play-out is a
lookahead technique that employs model-checking to execute and analyze Live
Sequence Charts. The play-out technique is mainly used to actually execute
specifications from a GUI, during the software design process, in order to better
understand the application requirements. Both smart play-out and our approach
make use of verification-driven execution to improve knowledge, but while we
automatically infer the behaviour of an existing, unknown component with the
purpose of controlling it, smart play-out experiments with execution scenarios
to find the best design options.

Peled et al. have developed a model checking technique for systems in the
absence of a given model, or when the model is inaccurate [16, 13]. This approach
is closely related to ours, since an approximation for the system model is pro-
posed, verified, and compared to the system behaviour using black-box testing.
Found differences are used to generate a new model. When a counterexample
is found, it is validated by testing. However, in contrast to our approach, their
employed model has only input events, which highly simplifies the learning pro-
cess, and, also, since the aim is to find feasible counterexamples, their model
rather underapproximates the system behaviour. When refining the model, an
intermediary learning phase is performed to ensure its consistency, a problem
which our algorithm avoids by overapproximating the system behaviour and
by allowing for temporary nondeterminism in the tentative model. Also, in our
case, the verification, testing and model refinement phases are strongly inter-
leaved, which allows us to obtain a good model earlier, while their approach
has distinct phases, since an early confirmed counterexample would save further
learning effort. More that just verifying the black-box, our approach explores

C. Holotescu

295 Technical Report, KIT, 2010-13

correct controllable behaviour in the vicinity of an error trace with the purpose
of generating a correctness-enforcing controller.

By starting its analysis from an observed error trace, our approach is also
related to Zeller’s delta debugging technique [9], which has been applied to the
component-based area to isolate sets of interactions relevant to the fault. In this
case, the delta debugging algorithm works by recording all the interactions in one
erroneous and one correct system execution, and then systematically reproducing
parts of the failing and successful scenarios using a specialised tool, JINSI [6].
An important difference with respect to our approach is that delta debugging
has a diagnosis-oriented nature, and it doesn’t focus on providing a fix for the
system. Also, while our solution generates new execution traces, thus inferring
new knowledge about the system, JINSI works on minimizing the information
in two preexisting logs - thus the two techniques are complementary.

ClearView, developed by Perkins et al. [18], is a tool for automatically patch-
ing errors in application software. ClearView learns invariants from observed
correct executions, detects failing executions and monitors them to find viola-
tions of the former invariants. A set of candidate repair patches are generated,
then several instances of the patched applications are observed to select the
best patch. Both ClearView and our approach work towards ensuring software
robustness: while ClearView only extracts its information out of observing cor-
rect executions, our method performs an experimental, directed search of the
possible system behaviour space, thus being able to reach corner cases that are
usually ignored in normal executions. Also, the ClearView technique is prone
to bad invariant-error correlations: only some patches are efficient. By contrast,
though not complete, our approach is sound: found error traces, if controllable,
are always disabled from further occurrence by the generated controller.

5 Conclusions and future work

We have presented an approach that enables the control of a system containing
an unknown component, towards the satisfaction of a desired global property.
Starting from a most general model of the unspecified component, our technique
explores its runtime behaviour and uses the information acquired to refine the
model. The aim is to ensure the avoidance of erroneous executions by building
a permissive controller. However, if the system safety requirements demand it,
a more restrictive controller can be computed.

Our approach is non-intrusive, thus being well-adapted for legacy software. It
addresses the rather frequent problem of integrating insufficiently known compo-
nents in a system, and resolves observed errors, while improving the component
knowledge. Also, the obtained sets of erroneous and correct traces can become
maintenance documentation.

We currently work to implement our method and develop a specialised frame-
work for it. For initial experiments, we have used Supremica tool [17] for con-
troller synthesis, while the bounded model-checking and model refinement mod-
ules will be locally implemented. We will validate our prototype on a set of

Controlling the Unknown

Technical Report, KIT, 2010-13 296

Enterprise JavaBeans component systems using Java Message Service for asyn-
chronous messaging. Future extensions of this work include generating regression
tests for the corrected system and synthesizing distributed error-avoiding con-
trollers for remote components.

Acknowledgments We are grateful to Marius Minea and Mihai Balint for
consistent and useful feedback. This work was partially supported by the Euro-
pean FP7-ICT-2007-1 project 216471, AVANTSSAR and by the strategic grant
POSDRU 6/1.5/S/13, (2008) of the Ministry of Labour, Family and Social Pro-
tection, Romania, co-financed by the European Social Fund: Investing in People.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 2002.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theor. Comput. Sci., 2003.

3. M. Autili, P. Inverardi, A. Navarra, M. Tivoli. Synthesis: A tool for automatically
assembling correct and distributed component-based systems. In ICSE, 2007.

4. J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games
to safety games. In ITA, 2002.

5. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 2003.

6. M. Burger and A. Zeller. Replaying and isolating failing multi-object interactions.
In WODA, 2008. ACM.

7. C. Canal, P. Poizat, and G. Salaün. Model-based adaptation of behavioral mis-
matching components. IEEE Trans. Softw. Eng., 2008.

8. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM, 2003.

9. H. Cleve and A. Zeller. Locating causes of program failures. In ICSE ’05,ACM.
10. David Harel, S. Maoz. Concurrency, Compositionality, and Correctness, chapter

On the Power of Play-Out for Scenario-Based Programs, LNCS. Springer, 2010.
11. David Harel, Hillel Kugler, A. Pnueli. Smart play-out. OOPSLA ’03, demo paper.
12. L. de Alfaro, T. A. Henzinger. Interface automata. In ESEC/FSE-9, 2001. ACM.
13. D. Peled, Moshe Y. Vardi. Black box checking. In FORTE/PSTV, Kluwer, 1999.
14. D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Component verification

with automatically generated assumptions. Automated Software Engg., 2005.
15. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN

Workshop on Model Checking of Software, 2003.
16. D. Peled. Model checking and testing combined. In ICALP, Springer, 2003.
17. Knut Åkesson, Martin Fabian. Supremica an integrated environment for verifica-

tion, synthesis and simulation of discrete event systems. In WODES, 2006.
18. J. H. Perkins et al. Automatically patching errors in deployed software. In Proc.

of the 21st ACM Symp. on Operat. Syst. Princ., 2009.
19. P. Ramadge and W. Wonham. The control of discrete event systems. Proc. of the

IEEE, 77(1), January 1989.
20. H. W. Schmidt and R. H. Reussner. Generating adapters for concurrent component

protocol synchronisation. In FMOODS, 2002.
21. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.

ACM Transactions on Programming Languages and Syst., 1997.

C. Holotescu

297 Technical Report, KIT, 2010-13

A Formalization of the RTSJ Scoped Memory
Model in Dynamic Logic?

Christian Engel and Peter H. Schmitt

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{engelc,pschmitt}@ira.uka.de

Abstract. The Real-Time Specification for Java (RTSJ) features a re-
gion-based memory model with the capability to explicitly free memory
regions (so called scoped memory areas). For preventing dangling refer-
ences it introduces runtime checks, raising errors in the case of a failure,
to restrict the creation of references between objects residing in differ-
ent regions. This work presents an operational semantics for the RTSJ
memory model formulated in a sequent calculus for dynamic logic. The
calculus employs symbolic execution and can be used for proving the ab-
sence of failed runtime checks. This is crucial for giving safety guarantees
for RTSJ applications or could allow an RTSJ compliant Java Virtual
Machine (JVM) to skip this kind of runtime checks resulting in improved
performance. The presented approach has been implemented in the KeY
system and evaluated for its practical feasibility.

Keywords: real-time, formal verification, formal methods, symbolic execution,
dynamic logic, scoped memory.

1 Introduction

In recent years a trend to make Java suitable for safety critical applications
could be observed. One of the main deficiencies concerning the suitability of
Java for real-time programming is its memory management featuring a garbage
collector. For real-time applications it is not acceptable to be interrupted by
garbage collection arbitrarily often and for unbounded periods of time since this
would lead to indeterministic performance of the application.

The Real-Time Specification for Java (RTSJ) [4] addresses this issue by pro-
viding memory areas which can explicitly be freed and which are thus not subject
to garbage collection. This introduces of course the danger of dangling references.
RTSJ uses runtime checks to prevent the creation of references that can turn
into dangling references when a memory area is freed. A failed check raises a

? This research was funded by the EU project DIANA (Distributed equipment Inde-
pendent environment for Advanced avioNic Applications).

Technical Report, KIT, 2010-13 298

runtime error. This work presents an approach for statically verifying the ab-
sence of this kind of runtime errors which is especially relevant when employing
RTSJ programs in safety critical systems.

A broader view on the verification of RTSJ programs is given in the disser-
tation [8] where also examples are provided from which we abstain in this paper
due to space restrictions and the paper’s focus on the modeling of the RTSJ
memory model. Preliminary results on the topics discussed in this paper have
been published in the work-in-progress paper [7].

Instead of providing solutions on an abstract level we formulate our approach
in a concrete formalism, namely dynamic logic [9], with existing tool support, in
this case the KeY system [1] which is a theorem prover featuring a dynamic logic
for a sequential subset (excluding for instance reflection) of Java. The operational
semantics of RTSJ’s scoped memory model formulated as dynamic logic rules in
Section 3 could, however, easily be “translated” to other formalisms, e.g. [16].
All presented results were implemented in the KeY system and evaluated for
their feasibility. For readers not familiar with dynamic logic a brief introduction
is given in Section 2.

The remainder of the paper is organized as follows: Section 2 briefly summa-
rizes the necessary background. For the sake of brevity and comprehensibility
we try to keep this part as informal as possible. For a comprehensive account of
the theoretical foundations of Java DL and the KeY system refer to [3]. Sec-
tion 3 describes the main contribution of this work, namely the extension of the
Java DL calculus for treating RTSJ’s scoped memory model. Section 4 reviews
related work and Section 5 contains a wrap-up of the presented approach and
an outlook on future work.

2 Foundations

In the following, the basics of dynamic logic and RTSJ needed to understand
this work are briefly summarized.

2.1 Dynamic Logic

First-order dynamic logic (DL) [9] extends first-order predicate logic by a modal-
ity [p] for every program p of some imperative programming language. For two
first order formulas φ and ψ and a legal program p, the formula φ → [p]ψ, for
instance, is valid iff for every program state s satisfying φ the execution of p

when started in s either (i) terminates in a state satisfying ψ or (ii) does not
terminate. This matches the semantics of the Hoare Triple [11] {φ}p{ψ}. Beside
this example for a partial correctness specification, total correctness is express-
ible by the diamond modality (〈〉). Accordingly, the semantics of φ → 〈p〉ψ is
that p terminates when started in an arbitrary state satisfying φ and ψ holds in
the corresponding post state.

Dynamic logic formulas are interpreted in Kripke structures. A Kripke struc-
ture is defined by a tuple (S, ρ), where S is the set of first order structures

C. Engel, P. H. Schmitt

299 Technical Report, KIT, 2010-13

representing program states and ρ is a function mapping each program p to a
transition relation ρ(p) ⊆ S2 such that (s1, s2) ∈ ρ(p) iff executing p in s1 leads
to s2. All states s ∈ S share the same universe U. Given a state s and a vari-
able assignment β, the evaluation of terms to values (i.e., elements of U) by a
function vals,β and the validity of first-order formulas s, β |= ϕ are defined in
the standard way. Symbols that can be interpreted differently in different states
(such as program variables) are called flexible, those whose interpretation re-
mains the same in all states (such as predefined arithmetic operators) are called
rigid.

The semantics of the underlying programming language, which is needed for
performing symbolic execution, is encoded in the calculus rules of a sequent
calculus. This calculus operates on proof trees whose nodes are sequents. A
sequent Γ ⇒ ∆, where Γ (the antecedent) and ∆ (the succedent) are sets of DL
formulas, is valid iff the formula ∧

γ∈Γ
γ →

∨
δ∈∆

δ (1)

is valid. Thus the formulas in the antecedent can also be thought of as assump-
tions we can use to prove the succedent to be true.

A sequent calculus rule

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
(2)

is correct if the validity of the premises (the sequents Γi ⇒ ∆i with 1 ≤ i ≤ n)
implies the validity of the conclusion (Γ ⇒ ∆). This means that a rule is basically
applied bottom up: The conclusion is the sequent the rule is applied to and the
premises are the result of the application. For proving the validity of a formula
Φ we start with a sequent ⇒ Φ.

Since the verification of Java programs has to deal with side effects of program
execution resulting in changes of the program state, the dynamic logic for Java
utilized in the KeY system, called Java DL, provides a means, called updates, to
describe those state transitions. An update is basically a lazy substitution which
is not evaluated as long as it is applied to a modality. We distinguish elementary,
parallel and quantified updates. An elementary update has the form {loc := val},
where loc and val are terms. The semantics of the update {loc := val}ϕ where
ϕ is an arbitrary Java DL formula matches the semantics of 〈loc=val;〉ϕ iff
loc and val are side effect free. Symbolic execution, as we consider it here, com-
putes the effect of a program by compiling it stepwise (operating always on the
first statement of the executed program) to an update. For each statement this
process is two-phased: First the statement is flattened which means a statement
containing complex (i.e. potentially having side-effects) sub-expressions is trans-
formed to an semantically equivalent sequent of simpler statements. Then if no
further simplification can be achieved on the first statement it is compiled to an
update. A rule for executing an assignment x=y; where x and y are variables is

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 300

given by
Γ ⇒ {U}{x := y}〈π ω〉ϕ, ∆
Γ ⇒ {U}〈π x=y;ω〉ϕ, ∆

where {U} is an update, ω represents the remainder of the program following the
first executable statement x=y; and π a non-executable prefix such as opening
braces or method frames (introduced in Sect. 3.1).

Besides elementary updates of the form {loc := val} we use in the remainder
of this work parallel updates of the form U1||U2 (where U1, U2 are updates) and
quantified updates for x; φ; U (where x is a logic variable bound in φ and U , φ
is a formula and U is an update). Parallel updates are executed simultaneously
(collisions are resolved by a last win semantics), the update {x := y||y := x} for
instance swaps the values of x and y. The quantified update {for x; 0 ≤ x∧x <
a.length; a[x] := null} assigns null to all slots of the array a.

KeY possesses a frontend for the Java Modeling Language (JML) [14] which
was used to read JML specifications of the RTSJ API (see Sect. 3). JML speci-
fications are compiled to dynamic logic when imported in KeY.

2.2 Real-Time Specification for Java

The RTSJ [4] takes up the idea of a region-based memory model see e.g., [18].
Two novel kinds of memory regions are added to the classical Java heap mem-
ory: immortal memory and scoped memory. An immortal memory area is never
garbage collected and never released during the lifetime of an application. In con-
trast, a scoped memory area is reclaimed as soon as no thread is active inside it
any more. RTSJ does not introduce new syntax. Immortal and scoped memory
are represented by ordinary Java classes. Thus, objects representing memory
areas can be generated as usual by the new operator, with the restriction that
immortal memory be a singleton class. Associated with every thread is a cur-
rent memory area. A program executing in memory area s1 may call the enter

method with an object logic of type runnable as a parameter and the scoped
memory area, or scope for short, s2 as receiver. In this case s1 is called a parent of
s2, or an outer scope of s2. The code associated with the object logic will be exe-
cuted with current scope s2. After termination s1 will again be the current scope.
An outer scope can be reentered using the outer scope’s executeInArea method
which resets the current scope but leaves the nesting structure unchanged. This
structure may thus be – even for single-threaded programs – a tree, or in the
vernacular of RTSJ, a cactus stack. Because of this nesting structure it is also
necessary to keep count for every scope of the number of methods active in it.
Only if this reference count drops to 0 will the scope be reclaimed.

RTSJ imposes an additional constraint on the scope stack, called the single
parent rule: each occurrence of a scope s1 on the cactus stack has the same
parent s2. As a consequence for each occurrence of s1 the entire branch below
s1 is the same.

An object that is created while the current memory area is s is said to reside
in s. When assigning an object y to a reference-type location x.r or x[i] it is

C. Engel, P. H. Schmitt

301 Technical Report, KIT, 2010-13

checked at runtime that (i) y resides in immortal memory or (ii) y resides in a
scope s1 and x resides in the same or an inner scope s2 of s1. This avoids the
situation that y may have been deleted while x is still there. A failed check raises
an IllegalAssignmentError. If all checks succeed we are sure that no dangling
reference occurs.

The following example illustrates how scoped memory can be used:

1 public void doWorkInScopedMemory(){
2 ScopedMemory m = new LTMemory(100000);
3 Runnable worker = new Runnable(){ public void run(){
4 ... /*the work to be done in ScopedMemory*/ }};
5 m.enter(worker); }

The method doWorkInScopedMemory is supposed to perform certain computations
in scoped memory: In line 2 a new scope is created, in line 3 and 4 the code
(encapsulated in an object of type Runnable) to be executed in scoped memory
is defined and in line 5 this code is executed in the newly created scope. The
objects temporarily allocated in scope m are deleted after the invocation of enter
(line 5) has terminated.

Restrictions We will only be concerned with single threaded programs. Heap
memory can also be used by RTSJ applications. In this work we concentrate on
the new features and consider only programs running exclusively in immortal
and scoped memory.

Furthermore we forbid the reentering of immortal memory using its enter

method; accessing it via executeInArea is permitted however. This ensures that
the only place a non-scope memory area can occur on the scope stack is its
root. Even though this rules out legal RTSJ programs it is much less restric-
tive than safety critical Java profiles imposing similar restrictions [17, 12, 10]. In
addition we forbid usage of Java threads and only allow threads implementing
javax.realtime.Schedulable.

3 Operational Semantics

In this section we present an operational semantics of the RTSJ scoped memory
model in the form of dynamic logic rules as introduced in Section 2.1. We will
focus on the rules required to handle the novel features of RTSJ’s semantics on
top of the dynamic logic for “standard” Java (Java DL) described in [3]. The
following extensions will be necessary:

1. Means for keeping track of the current scope and the set of objects allocated
in specific scopes (Sections 3.1-3.3).

2. The scope stack is modeled by an abstract Java class whose semantics is
described by invariants and calculus rules. The nesting relation of scopes is
represented by the partial order � (Sections 3.4 and 3.6).

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 302

if(self instanceof T1){ v=self.m(v1,...,vn)@(T1);

}else if(self instanceof T2) { v=self.m(v1,...,vn)@(T2);

}else if(...){...

}else{ v=self.m(v1,...,vn)@(Tm);

}

Fig. 1. Case distinction on the dynamic type of self

3. The semantics of the relevant parts of the RTSJ API is described by a refer-
ence implementation augmented with a formal specification mainly consist-
ing of JML invariants (Section 3.5) and

4. Rules for symbolic execution of illegal assignment checks (Section 3.7).

3.1 Inlining of Method Bodies and the <cma> Pointer

We augment the Java syntax with a pointer <cma> (in shorthand for current

memory area) of type MemoryArea which points to the currently active memory
area. It is not only similar to a this pointer in this respect, it is also technically
handled in a comparable way: Execution context information as, for instance,
needed for resolving the this or <cma> pointer is stored in a so-called method-
frame statement. Method-frame statements are created when inlining method
bodies. To elaborate on this a bit further we now exemplarily consider the sym-
bolic execution of a non-void instance method invocation.

As described in Section 2.1 statements containing complex subexpressions
are first flattened. For a method invocation this results in a statement of the
form (we ignore additional statements introduced by the process of flattening
here):

T v = self.m(v1,...,vn);

where v, self, v1 . . . vn are program variables.
The next step is performing a case distinction (encoded as an if-cascade) on

the dynamic type (only those subtypes of the static type of self implementing m

have to be considered here) of the receiver object self. The if-cascade is shown
in Figure 1. The statements v=self.m(v1,...,vn)@(Ti) are so-called method-body
statements which serve as placeholders for a concrete method body (in this case
for the method body implemented in class Ti).

A method-body statement is symbolically executed by replacing it with the
method body it stands for and enclosing it in a method frame (a statement
keeping track of the current execution context).

Definition 1 (Method Frame Statement). Let r, self and mem be program
variables, T a class type and p a sequence of statements then

mf(result->r, source=T, this=self, <cma>=mem) : { p }

is a method frame statement.

C. Engel, P. H. Schmitt

303 Technical Report, KIT, 2010-13

The rule methodBodyExpand replaces a method-body statement with the actual
method body it stands for:

methodBodyExpand

Γ ⇒ {U}〈π mf(result->res,

source=T,

this=self,

<cma>=mem) : {body} ω〉φ, ∆
Γ ⇒ {U}〈π res=self.m(args)@(T);ω〉φ, ∆

where body is a sequence of assignments assigning the arguments args to the
formal parameters used in the corresponding implementation of m followed by
the method body itself. The <cma> pointer is set to the value the <cma> pointer
of the enclosing method frame evaluates to at the point the method call occurs
which is from a technical point of view just the object mem stored in the enclosing
method frame. Thus the value of <cma> is not changed by methodBodyExpand.

As however, on some occasions, such as during the execution of the enter

or executeInArea method, the current scope needs to change we introduce an
implicit1 method <runRunnable> to model this circumstance. This method is in-
voked by the reference implementation of enter (see Figure 3) and executeInArea

when a changeover of the current scope needs to be performed. This behavior of
<runRunnable> is not encoded in Java code2 as part of the reference implemen-
tation described in Section 3.5 but specified by the following rule instead:

expandRR

Γ ⇒ {U}〈π mf(result->lhs,

source=MemoryArea,

this=se,

<cma>=se) : {logic.run();} ω〉φ, ∆
Γ ⇒ {U}〈π lhs=rr;ω〉φ, ∆

where rr stands for se.<runRunnable>(logic)@(MemoryArea). Consequently rule
methodBodyExpand must not be applicable to statements of this form.

3.2 The Implicit Field <ma>

We declare an implicit field <ma> in class object for storing the memory scope
the object is allocated in. In our model, every created object is allocated in some
memory area. This leads to the rule maNonNull:

maNonNull
Γ, o.<c>

.= TRUE, o.<ma> 6 .= null, RS⇒ ∆

Γ, o.<c>
.= TRUE, RS⇒ ∆

1 In Java DL the terms implicit field and implicit method refers to fields and methods
which do not exist in the original code and are added for providing additional state
information or describing certain operations during object creation.

2 This special handling of the <runRunnable> method is mirrored by the fact that the
switching of scopes performed by RTSJ-compliant VMs has to be performed by a
native implementation of the enter (resp. executeInArea) method since it is not
expressible in Java code.

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 304

3.3 Object Creation

Having Java as the target language we need to model object creation and ini-
tialisation. As many other dynamic logics, and modal logics in general, Java
DL operates under the technically advantageous constant-domain assumption.
This means that all states of a Kripke structure share the same universe which
seems contradictory to modeling dynamic object creation since it is not possible
to add new elements to the universe.

The implications this carries for the modeling of object creation are that all
objects that can ever be created by a program have to exist in every program
state. Whether an object is created is determined by the values of certain implicit
fields, when a new object is created these fields have to be changed appropriately.
To formalize this approach we introduce the notion of object repositories and
repository access functions.

Definition 2 (Object Repository). Let C be a non-abstract class type. The
object repository RepC denotes the set of all elements of U of dynamic type C
with RepC being enumerable.

Since we defined object repositories to be enumerable sets (which is actually
a restriction we imposed on the set of admissible states in Java DL Kripke
structures) it is possible to index them and provide by this a means to access
every repository object including the not yet created ones. This indexing is done
by a rigid repository access function symbol getC which evaluates to a surjective
mapping Z→ RepC with I(getC)|N0 being bijective.

Now as we have a means to talk about all (created and non-created) objects
we need to be able to distinguish which objects are already created and which
are still “available” when a new instance is to be created. For this we introduce
the static field <nextToCreate> (which we abbreviate <ntc> in the following)
for each non-abstract class type C denoting the smallest non-negative index such
that the object getC(C.<ntc>) is not created. In addition we require that all
objects of dynamic type C having an index greater C.<ntc> are not created
either. Thus in each state s the set of created objects is

{s(getC)(i)| i ∈ Z ∧ 0 ≤ i < vals(C.<ntc>)}

For convenience reasons, we also define a boolean instance field <created>
(which we abbreviate <c> in the following) in java.lang.Object which evaluates
to TRUE if (and only if) the corresponding object is created (We denote the
boolean constants with TRUE and FALSE here to distinguish them from the
formulas true and false).

An instance creation expression is symbolically executed by replacing it by a
sequence of calls to implicit methods modeling object creation and initialisation
which we do not consider in-depth here. The object allocation itself is represented
by the invocation of the implicit method C.<allocate> which returns the object
getC(C.<ntc>) increases the C.<ntc> pointer and sets the <c> attribute of the
returned object to TRUE. This behavior is encoded in the rule allocate which

C. Engel, P. H. Schmitt

305 Technical Report, KIT, 2010-13

Fig. 2. S2.stack represents the substack consisting of Immortal, S1 and S2

also initializes the implicit field <ma> introduced in the previous paragraph with
the scope <cma> refers to at the point <allocate> is called:

allocate

Γ ⇒ {U}{v := getT (T.<ntc>) ||
T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE ||
getT (T.<ntc>). <ma> := scope}〈π ω〉φ, ∆

Γ ⇒ {U}〈π v=T.<allocate>();ω〉φ, ∆
Where scope is the object <cma> resolves to which is determined by the innermost
method frame occurring in π.

Tightly coupled with our modeling of object creation is the issue of states
reachable by a Java program. Not every state contained in a Kripke structure is
also reachable by a Java program. It is however necessary to distinguish reach-
able from non-reachable states for determining whether axioms known to hold
in reachable states can be assumed. Therefore we introduce a flexible predicate
RS that holds in exactly those states reachable by a Java program. Properties
holding in all reachable states are axiomatised by calculus rules which are ap-
plicable only if RS is known to be true (i.e. if it is one of the assumptions given
by the antecedent).

3.4 The Scope Stack

We model the scope stack by immutable instances of the Java class MemoryStack.
Each of these instances only represents a (local) sub branch of the entire (global)
cactus stack and is as such just a “normal” stack. Each scope is augmented with
an attribute stack representing the subbranch of the cactus stack ending with
the considered memory scope and starting with the immortal memory at the
root of the stack. This is possible, as for every scope s the branch below each
occurrence of s on the cactus stack is identical. If stack is null the scope is not
located on the cactus stack.

Whenever a new scope that is not yet located on the cactus stack is added
to it (by execution of the scope’s enter method) its stack is initialised with the
stack created by pushing the newly entered scope on the stack of the currently
active memory area (the memory area from which it was entered). By doing
this the local stack of the currently active memory area (as well as the stacks
of all other scopes on the global stack) is not changed since the instances of
MemoryStack are immutable.

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 306

The Substack Relation � We now need a specification for class MemoryStack

that is sufficiently expressive but also simple enough to be efficiently used in a
verification system. Simplicity of our formalization of MemoryStack is crucial since
we do not only need to reason over the structure of the scope stack when we call
methods on an instance of MemoryArea but each time we perform an assignment to
an instance attribute or an array slot. A lightweight formalization of the behavior
of the scope stack achieving the required simplicity is to define a substack relation
�, where a � b is true for two local stacks a and b if a is a prefix of b. An
alternative formalization of the scope stack and its drawbacks compared to the
one proposed here are discussed in [8]. For creating new instances of MemoryStack
we define an instance method (of class MemoryStack) push which returns a newly
created instance of type MemoryStack such that s � s.push(a) holds for every
stack s and every scope a. Due to the immutability of MemoryStack, � is rigid
(its arguments, however, can be flexible) which makes it less involved to handle
in dynamic logic than it would be the case for a flexible symbol. However, the
stack attribute of a scope can be set to a different value during the program
run. This means that each instance of MemoryStack is only a snapshot of a part
of the scope stack taken at a certain time. Given a state s, a variable assignment
β and two terms a and b with of type MemoryArea, a represents an outer scope of
b in state s if and only if s, β |= a.stack � b.stack.

As described in Sect. 3.3, Java DL operates under the constant domain
semantics which means all instances that can ever be created by the program
have to exist from the beginning. Since � is rigid the createdness of objects does
not influence its evaluation and it thus has also to be defined on not yet created
objects. To make sure that we can always create a stack of which the current
stack is a substack we have to require that for every integer i there are infinitely
many j with j > i and getMemoryStack(i) � getMemoryStack(j). We encode this
behavior of the scope stack in the rule push:

push

Γ, {U} (b � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>)⇒
{U}{ a := getMemoryStack(j) ||

MemoryStack.<ntc> := j + 1 ||
for i; MemoryStack.<ntc> ≤ i ∧ i ≤ j;

getMemoryStack(i).<c> := TRUE ||
getMemoryStack(j). <ma> := b.<ma>}〈π ω〉φ,∆

Γ ⇒ {U}〈π a=b.push(s);ω〉φ, ∆
where j is a fresh (i. e. not yet occurring in the regarded sequent) integer con-
stant. By adding the assumption that j ≥ MemoryStack.<ntc> and setting
a to getMemoryStack(j), we can express that the result of push is some newly
created MemoryStack. Note, that we cannot just simply set b to

getMemoryStack(MemoryStack.<ntc>)

since then we could deduce from this rule by induction that

∀ int x, y; (x ≥MemoryStack.<ntc> ∧ y ≥ x)→
getMemoryStack(x) � getMemoryStack(y)

C. Engel, P. H. Schmitt

307 Technical Report, KIT, 2010-13

which is obviously false. Also note, that a local stack does not have a reference to
the scope it is associated with, only the corresponding scope possesses a reference
to its local stack which is established by the code shown in Figure 3. This is also
the reason why the scope s which represents the argument of the push method
in the conclusion of rule push does not occur in the rule’s premise.

The Predicate im For distinguishing the scope stack of the immortal memory
area from other scope stacks we introduce the predicate im with im(s) evaluating
to true if and only if s is the scope stack of the immortal memory area.

3.5 Specification of MemoryArea and its Sub-Types

The behaviour of memory areas is described by a reference implementation of
class MemoryArea and its subtypes augmented with class invariants expressed in
JML. This implementation can be symbolically executed by the Java DL calcu-
lus during proof search. An alternative way of formalizing the RTSJ API would
be via calculus rules which would, however, result in a formalization that is
(i) less (human-) readable and (ii) less suitable for cross-verification of the for-
malization’s correctness which could, for instance, be performed against a JML
formalization of the (natural language) specification provided by RTSJ. Due to
the restrictions (see Sect. 2.2) imposed on the memory model all memory areas
we permitted (immortal and scoped memory) behave basically like scoped mem-
ory areas: since calling the enter method on the immortal memory area is no
longer allowed its behavior is basically identical to that of a scoped memory area.
The mere difference of the immortal memory compared to “normal” scopes is its
distinct position at the bottom of the scope stack. Due to this uniformity it is suf-
ficient to provide a reference implementation for javax.realtime.MemoryArea: the
classes ScopedMemory, LTMemory and VTMemory do not need to override any of the
enter and executeInArea methods since their behaviour is sufficiently described
by the implementation and specification of MemoryArea. Only for ImmortalMemory

we have to strengthen (compared to MemoryArea) its class invariants for the
afore mentioned reasons. Figure 3 shows the implementation of method enter in
javax.realtime.MemoryArea.

3.6 Axiomatization of � and im

By what has been described so far � is merely an uninterpreted predicate, so
we have to axiomatize what it should semantically stand for. This is done via
calculus rules as exemplarily (due to space constraints it is not possible to show
all rules here) demonstrated in the following. The relation � is a partial or-
der and thus reflexive, transitive and antisymmetric. Reflexivity for instance, is
axiomatized by rule outerScopeReflexive

outerScopeReflexive
Γ, o 6 .= null⇒ true, ∆

Γ, o 6 .= null⇒ o � o, ∆

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 308

public abstract class MemoryArea{

...

public void enter(java.lang.Runnable logic){

if(logic==null) throw new IllegalArgumentException();

if(parent!=null && parent!=<cma>) throw new ScopedCycleException();

parent = <cma>;

referenceCount++;

if(stack==null) stack = <cma>.stack.push(this);

try{

<runRunnable>(logic);

}catch(Exception e){

if(this==getMemoryArea(e)) throw RealtimeSystem.tbe();

}finally{

referenceCount--;

if(referenceCount==0){

consumed=0; parent=null; stack=null;

}

}

}

Fig. 3. The enter method implemented in class MemoryArea

The rule outerRefAttr1 states that in every reachable program state all non-
static attributes which are (i) different from Object.<ma>, MemoryArea.parent

and MemoryArea.logic and (ii) not null point to the same or an outer scope:

outerRefAttr1

Γ, o.<c> = TRUE, o.a 6 .= null,
o.a.<ma> .stack � o.<ma> .stack, RS ⇒ ∆

Γ, o.<c> = TRUE, o.a 6 .= null, RS⇒ ∆

A corresponding rule for arrays expresses that objects referenced by array slots
are allocated in the scope containing the array itself or an outer scope of it.

Immortal memory always occurs as a singleton. Since the stack associated
with this immortal scope does not change either during the program run we can
assume that there can be only one stack for which im holds:

imUnique
Γ, im(o1), im(o2), o1

.= o2 ⇒ ∆

Γ, im(o1), im(o2)⇒ ∆

The immortal scope is the outermost scope on the scope stack. Thus the only
stack that is a sub stack of the stack belonging to the immortal scope is the
stack of the immortal scope itself:

imSub1
Γ, o1 � o2, im(o2), o1

.= o2 ⇒ ∆

Γ, o1 � o2, im(o2)⇒ ∆

C. Engel, P. H. Schmitt

309 Technical Report, KIT, 2010-13

3.7 Rules for Symbolic Execution

For the evaluation of RTSJ programs by symbolic execution we have to take into
account the runtime checks an RTSJ compliant JVM performs and the excep-
tions originating from this. Luckily, this applies only to IllegalAssignmentErrors

since all other RTSJ typical exceptions we deal with are handled by the refer-
ence implementation of the RTSJ memory management API. In the following
the symbolic execution rules for assignment operations necessitating such illegal-
assignment runtime checks are described. These assignments can be subdivided
in two classes: (i) assignments to static references and (ii) assignments to non-
static references (instance attributes, array slots). In the former case the assigned
object has to reside in immortal memory, in the latter case it is sufficient that
it resides in the same or in a more outer scope than the object (array) whose
attribute (array slot) constitutes the left-hand side of the assignment.

Assignments to Static References Static reference type attributes can only
reference null or objects allocated in immortal memory. This has to be checked
when assigning an object to a static attribute (sa denotes a reference type static
attribute and v a program variable of compatible type):

sRAttrWrite

Γ, {U}(im(v.<ma> .stack) ∨ v .= null)⇒ {U}{sa := v}〈π ω〉ϕ, ∆
Γ, {U}(¬ im(v.<ma> .stack) ∧ v 6 .= null)⇒ {U}〈π IAE;ω〉ϕ, ∆

Γ ⇒ {U}〈π sa=v;ω〉ϕ, ∆
In the above rule we distinguish two cases (indicated by the two premises): Either
the assignment is legal since v is null or allocated in immortal memory. In this
case the assignment is executed an the resulting state change is expressed by
the update {sa := v}. Or the assignment is illegal since v is not null and not
allocated in immortal memory. This leads to an IllegalAssignmentError to be
raised. The statement throw new IllegalAssignmentError(); was abbreviated
with IAE; in the above rule.

Assignments to Non-Static References For write accesses to instance at-
tributes we have to distinguish two cases: Either the attribute assigned to is
parent@(MemoryArea) or it is not. In the former case no check for an illegal as-
signment is performed since the attribute parent may actually refer to objects in
inner scopes. As parent is only used for modeling purposes and does not corre-
spond to a real attribute in MemoryArea this treatment cannot lead to undetected
IllegalAssignementErrors. In the latter case we have to take into account the
possibility that the assignment raises an IllegalAssignementError which is mod-
eled by the following rule (where o and v are reference type program variables
and a is a reference type attribute different from parent@MemoryArea):

rAttrWrite

Γ, {U}(o 6 .= null ∧ ψ)⇒ {U}{o.a := v}〈π ω〉ϕ, ∆
Γ, {U}o .= null⇒ {U}〈π NPE;ω〉ϕ, ∆
Γ, {U}(o 6 .= null ∧ ¬ψ)⇒ {U}〈π IAE;ω〉ϕ, ∆

Γ ⇒ {U}〈π o.a=v;ω〉ϕ, ∆

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 310

C. Engel, P. H. Schmitt

311 Technical Report, KIT, 2010-13

4 Related Work

The presented work focuses on verifying real-time Java programs complying
(with only minor restrictions; see Sect. 2.2) with the existing RTSJ. Most related
approaches try to improve analyzability of real-time Java applications by further
restricting or changing the RTSJ memory model losing, in turn, some of the
flexibility it provides.

Kwon and Wellings [13] describe a memory management model making use
of implicitly created memory scopes associated with each method leading to
something comparable to stack allocation of objects only locally used by a
method. The absence of explicit scope identities, for instance, eliminates the
need for enforcing the single parent rule since it is impossible to reenter a scope.
IllegalAssignemntErrors still remain an issue to consider, but checking their
absence statically is eased by the simpler memory model and can for instance
be done by escape analysis [6].

The application of the software model checker Java PathFinder to RTSJ pro-
grams is described in [15]. The approach is based on a reference implementation
of the RTSJ API but as PathFinder’s JVM was not adapted, scoped memory as
well as runtime checks for illegal assignments could not be modeled.

To reduce the error-proneness of RTSJ programs several profiles for safety
critical Java (SCJ) applications have been proposed [12, 17, 10] building upon
RTSJ and imposing restrictions, for instance, on the nesting hierarchy of scopes.

Several works [2, 5, 19] have proposed an encoding of the nesting relation of
scopes in the type system. The outlives relation between memory regions defined
in [5] bears similarities to the relation � used in Sect. 3. One major difference is
however that, unlike in [5], � represents only a snapshot of the nesting relation
between scopes, thus allowing it to change during the program run.

5 Conclusion and Future Work

This paper presented a formalization of RTSJ’s memory model facilitating formal
verification of real-time Java programs. This does, however, not eliminate the
need for SCJ profiles or programming guidelines constraining the use of scoped
memory, since every sensible restriction imposed on it might ease its verifiability.

As usual, the correctness of the employed formalization is an important issue
to consider here. Most of the defined calculus rules as well as the reference
implementation are a rather canonical representation of the semantics provided
by the natural language specification RTSJ. However, as part of future work
one could think of a cross-verification of the presented formalization against
other formal specifications of RTSJ. This could, for instance, incorporate the
formal verification of the used reference implementation against a formal JML
specification (which would need to be derived from the existing natural language
specification) of the corresponding parts of the RTSJ API.

The approach presented in this paper was implemented in the KeY system
and successfully tested on several non-trivial examples, some of which are pro-
vided in [8].

A Formalization of the RTSJ Scoped Memory Model in Dynamic Logic

Technical Report, KIT, 2010-13 312

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4(1):32–54, 2005.

2. C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao. Scoped types
and aspects for rt Java memory management. Real-Time Syst., 37(1):1–44, 2007.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

4. G. Bollella and J. Gosling. The RT spec for Java. Computer, 33(6):47–54, 2000.
5. C. Boyapati, A. Salcianu, W. Beebee, and J. Rinard. Ownership types for safe

region-based memory management in real-time Java. ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), 2003.

6. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for Java. SIGPLAN Not., 34(10):1–19, 1999.

7. C. Engel. Deductive Verification of RTSJ Programs. In Proceedings of the 2nd
Junior Researcher Workshop on Real-Time Computing (JRWRTC 2008), 2008.

8. C. Engel. Deductive Verification of Safety-Critical Java Programs. PhD thesis,
Karlsruhe Institute of Technology, 2009.

9. D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of
Philosophical Logic, volume 2 of Extensions of Classical Logic, pages 497–604. D.
Reidel Publishing Company, 1984.

10. HIJA. High Integrity Java Applications. Website: http://www.hija.info, 2006.
11. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 1969.
12. J. Kwon, A. Wellings, and S. King. Ravenscar-Java: a high-integrity profile for

real-time Java. Concurr. Comput. : Pract. Exper., 17(5-6):681–713, 2005.
13. J. Kwon and A. J. Wellings. Memory management based on method invocation in

RTSJ. In OTM Workshops, pages 333–345, 2004.
14. G. T. Leavens, A. L. Baker, and C. Ruby. Prelim. design of JML: a behavioral in-

terface specification language for Java. SIGSOFT Softw.Eng.Notes, 31:1–38, 2006.
15. G. Lindstrom, P. C. Mehlitz, and W. Visser. Model checking real time java using

java pathfinder. In D. Peled and Y.-K. Tsay, editors, ATVA, volume 3707 of Lecture
Notes in Computer Science, pages 444–456. Springer, 2005.

16. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

17. M. Schoeberl, H. Sondergaard, B. Thomsen, and A. P. Ravn. A profile for safety
critical Java. In ISORC ’07: Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, pages 94–
101, Washington, DC, USA, 2007. IEEE Computer Society.

18. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 1997.

19. T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time Java. In RTSS ’04:
Proceedings of the 25th IEEE International Real-Time Systems Symposium, pages
241–251, Washington, DC, USA, 2004. IEEE Computer Society.

C. Engel, P. H. Schmitt

313 Technical Report, KIT, 2010-13

Specifying Imperative ML-like Programs
Using Dynamic Logic ?

Séverine Maingaud1, Vincent Balat1, Richard Bubel2,
Reiner Hähnle2, and Alexandre Miquel3

1 Laboratoire Preuves, Programmes et Systèmes
CNRS and Université Paris Diderot – Paris 7

2 Department of Computer Science and Engineering
Chalmers University, Gothenburg
3 ENS Lyon, Université de Lyon,

LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

Abstract. We present a logical system suited for specification and veri-
fication of imperative ML programs. The specification language combines
dynamic logic (DL), explicit state updates and second-order functional
arithmetic. Its proof system is based on a Gentzen-style sequent calcu-
lus (adapted to modal logic) with facilities for symbolic evaluation. We
illustrate the system with some example, and give a full Kripke-style
semantics in order to prove its correctness.

Key words: ML, dynamic logic, program specification, program verifi-
cation, KeY, AF2

1 Introduction

We present a logical system suited for specification and verification of imperative
ML programs. Verification systems for functional programming languages have
been traditionally investigated in the context of higher-order logical frameworks
(e.g., Coq, Isabelle, HOL, ACL2, VeriFun, Elf), where structural induction is the
central proof paradigm. To employ dynamic logic and symbolic execution con-
stitutes a new departure which is motivated by the presence of reference types
whose treatment is well understood in Hoare-style program logics. In our paper
we show that dynamic logic is a suitable framework also for ML with references.
Our specification language combines a generalisation of Hoare logics called dy-
namic logic (DL), explicit state updates, and second-order functional arithmetic
(AF2) [9]. Its proof system is based on a Gentzen-style sequent calculus (adapted
to modal logic) with facilities for symbolic evaluation.

ML with references is a higher-order imperative programming language that
can be seen as an object-oriented language. Functions and references can be

? This work has partially been supported by the EU COST Action IC0701: Formal
Verification of Object-Oriented Software.

Technical Report, KIT, 2010-13 314

translated by objects4. For this reason, the work presented in this paper could
be adapted to a real object-oriented programming language.

Related Work. State-of-the-art verification systems based on dynamic logic are
KIV [1] and KeY [3]. The idea of using updates to represent state changes in a
dynamic logic setting originated also from KeY. We depart from KeY’s program
logic, however, in two main aspects: (i) we use second-order dynamic logic to be
able to deal with a functional language, thus bridging the gap between DL and
AF2; (ii) memory allocation extends the domain of the store in contrast to the
constant-domain assumption employed by KeY.

The proof assistant PAF! [2] is also a verification system for ML programs
based on AF2 with symbolic evaluation, but it does not support verification of
imperative ML. The verification tool WHY [5] for first-order imperative pro-
grams is a verification condition generator based on Dijkstra’s weakest precon-
dition calculus. WHY is being adapted to higher-order programs [8] through
the integration of effect polymorphism to previous work [10] on Hoare logics for
call-by-value functional programs without states. In this setting the generated
verification conditions are passed on to automatic theorem provers such as SMT
solvers or to interactive proof systems like Coq or PVS. The Ynot system [4]
uses Coq both as a theorem prover and as an imperative functional language
thanks to a monadic formulation of separation logic.

2 Dynamic Logic

Dynamic logic [6] can be seen as a class of modal logics suited for reasoning about
imperative programs. Like Hoare logic it uses a specification language where the
current program state is implicit. States are explicit only in the semantics, where
they play the role of worlds of a Kripke frame, in the sense of modal logic.

The central idea is to introduce for each program p a separate modality (read
‘box p’) [p] whose accessibility relation in a Kripke frame corresponds exactly
to the operational semantics of p: the formula [p]B holds in a state s if the
formula B holds in all states reachable by any execution of the program p. If p
is deterministic (which we assume from now on) then there is at most one final
state. Under this semantics the formula

A→ [p]B (1)
expresses partial correctness of program p with respect to precondition A and
postcondition B. Whenever A and B are first-order formulas (1) corresponds to
the Hoare triple {A} p {B} [7]. In contrast to Hoare logic, however, in dynamic
logic modal operators with programs inside and propositional connectives can be
arbitrarily nested which makes dynamic logic more expressive than Hoare logic.
In addition to the partial correctness modality there is a dual operator (read
“diamond p”) 〈 p 〉 defined as 〈 p 〉B ↔ ¬[p]¬B. Using the diamond operator
we can express total correctness of program p in dynamic logic: A→ 〈 p 〉B.
4 with a field for any argument and a unique method of application in the first case ;

one field representing to the content and two methods get and set in the second case.

S. Maingaud et al.

315 Technical Report, KIT, 2010-13

In contrast to higher-order logics, imperative programs are first-class citizens
in dynamic logic and not modelled by (inductively defined) formulas. In conse-
quence, the syntax and semantics of the underlying programs is fixed and one
must define a specific dynamic logic for a given programming language. One ad-
vantage is that the programming language semantics is defined at the meta-level
(as a property of Kripke frames) and needs not to be defined on the formula
level. Likewise, programs can have any concrete syntax and need not follow a
formula structure. This leads to a low formalization overhead and good readabil-
ity when constructing proof obligations for program correctness which in turn is
important for (i) handling complex target languages, (ii) achieving a high degree
of automation, (iii) usability in interactive proofs.

Proof systems for dynamic logic do not proceed mainly via induction over the
syntactic structure of programs, but by decomposition of programs and record-
ing of intermediate (symbolic) states. If the application of decomposition rules
follows the evaluation strategy of an interpreter of the underlying programming
language, then this amounts to symbolic execution. The program-free part of
dynamic logic is usually a standard first-order logic with sorts and interpreted
symbols for arithmetic, arrays, etc. There is relatively strong automated rea-
soning support available for such logics. Two state-of-art software verification
systems (KeY [3] and KIV [1]) with a very high degree of automation are based
on dynamic logic and symbolic execution.

Functional Programs with References. Our programming language is an untyped
version of imperative ML (IML). Imperative ML adds references (locations) with
mutable content to the functional world. References are pointers to a fixed mem-
ory location. The value stored at that particular location can be accessed and
changed by programs. Let r denote a reference: The IML fragment

r := 3; !r
consists of two (sequentially connected) expressions: the first expression r := 3
changes the content stored at the memory location referred to by r to 3; the
second expression !r looks up and evaluates to the value stored in r. Expressions
composed by the semicolon operator are evaluated from left-to-right. The result-
ing value is the one of the last expression; the above IML fragment evaluates
always to 3. More details are in Sect. 3.

When extending a functional language with references (and thus with a no-
tion of state) one has to deal with phenomena such as side-effects, aliasing, or
sensitivity to evaluation order for functional correctness. For instance, the IML
λ-expression

f := λx, y. ((x := !x+ 2; !x) + (y := !y ∗ 5; !y))
(applied to arguments) has not only global visible side-effects (contents of refer-
ences passed to x, y changed), but is also affected by aliasing and the evaluation
order: let r, s denote distinct references with equal content (say 3), then (!f) r s
evaluates to 20 and (!f) r r evaluates to 30 (under left-to-right evaluation).

The specification language (logic) for IML programs needs not only to model
the additional concepts faithfully, but must also ensure that the properties to be
specified are actually expressible. For example, in a pure functional setting the

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 316

formula ∀x.(f x ≤ g x) specifies that function g is an upper approximation of
the program (function) f , but more thought is required in presence of side-effects
where executing f might influence the evaluation of g.

Dynamic Logic. We sketch the basic concepts and ideas behind dynamic logic.
A rigorous introduction of second-order dynamic logic for IML program is given
in Sect. 4. Signature and syntax of dynamic logic are defined on top of an ex-
isting non-modal base logic (e.g., first-order or second-order logic). An impor-
tant feature of first-order modal logics is the distinction between rigid and non-
rigid function/predicate symbols. Rigid symbols are interpreted independent of
a state, while the interpretation of non-rigid symbols is state-dependent. For
instance, the interpretation of the IML dereferencing operator ! must obviously
be state-dependent.

The inductive definition of DL syntax is fairly standard. Any formula of the
underlying non-modal base logic is also a formula of its dynamic logic variant.
Modalities are added to the syntax as follows: let p be an IML program, φ denote
a DL formula then [p]φ and 〈 p 〉φ are DL formulas. An important restriction is
that ML programs occuring as logical terms (i.e., outside a modality) must be
state-independent and pure (side-effect free).

States in dynamic logic are not represented by an explicit datastructure
passed as an extra argument to functions (predicates), but live solely on the
semantical level. Formulas and terms are evaluated relative to a Kripke structure
K. Besides the elementary data domain and an interpretation for the rigid sym-
bols the Kripke structure fixes also a set of states St, giving meaning to non-rigid
symbols such as !, and a state transition relation τ : ΠIML×St×St that defines
the semantics of IML programs. The cardinality of τ(π, s) = {s′ | τ(π, s, s′)} is
at most 1, because IML is deterministic.

Example 1. The DL formula
[if a > b then max := a else max := b] ([!max as x]x ≥ a)

specifies that if the program inside the first box modality terminates then in the
final state the value stored at max is at least as large as the value of a. The
construct “as x”, introduced in Sect. 4, is a binder to recover the returned value.

Proof systems for DL typically use a sequent style calculus and follow the sym-
bolic evaluation paradigma by realising a symbolic interpreter. The rule that
handles assignment is often one of the most tricky ones and crucial for the effi-
ciency of the verification process. Even for simple imperative languages the stan-
dard assignment rule requires renaming of locations and, in presence of aliasing,
the introduction of several case distinctions. The update mechanism sketched in
the following provides an elegant way to deal with this.

Update Mechanism. Influenced by abstract state machines and generalized sub-
stitutions (B method), the KeY verification system [3] introduced updates as a
syntactical notion to represent symbolic state changes in dynamic logic.

An (elementary) update is an expression of the form location := value. By
sequential composition of updates u1;u2 new (sequential) updates can be built.

S. Maingaud et al.

317 Technical Report, KIT, 2010-13

More complex update combinators are described in [11], but for our purposes
elementary updates plus sequential composition is sufficient.

Let ξ denote a formula or term and u an update: then {u}ξ is again a for-
mula/term. The semantics of an elementary update is that of an assignment.
In this paper we restrict the kind of term that may occur as location or as an
assigned value to so-called symbolic values. Simply expressed, a symbolic value
is a logical term or a program that has no side-effects and that is not state-
dependent.

Example 2. 1. In the formula {l := v}φ, the subformula φ is evaluated in a
state where !l has the value v.

2. The formula {l := v1; l := v2}φ is equivalent to {l := v2}φ, because the
second update overwrites the effect of the first one.

3. The update in {l1 := 3; l2 :=!l1}φ is syntactically incorrect as the right side
of the second update is state dependent and not a symbolic value according
to the definition above.

During a sequent proof the updates accumulate in front of a symbolically
executed program until execution terminates. Upon termination, the updates
are applied to terms and formulas much like substitutions. This lazy application
of updates helps efficiency, because automatic first-order simplification steps are
applied eagerly before updates are substituted into formulas. This is particularly
important in presence of aliasing, see Sect. 4.

3 Programming Language

We present the syntax and evaluation rules of a small untyped functional lan-
guage with references. In this framework, we consider static typing as an at-
tribute of the logic, and we ignore it when defining the operational semantics.
Typing can be introduced in the logic as predicates using the power of second
order. This allows to reason on programs independently from any typing account.

3.1 Syntax

Constants The language provides two kinds of constants: integer constants
n ∈ Z and location constants ` ∈ L, where L is an infinite set of symbols
disjoint from Z. Boolean values ‘true’ and ‘false’ are represented by the integer
constants 1 and 0. In conditionals, we shall more generally consider that any
value different from 0 represents the Boolean value ‘true’.

Primitive functions We assume a finite set of function symbols (notation: f,
f ′, f1, etc.) representing elementary operations on data. Every function symbol f
comes with an arity k ≥ 1 and a total function f̃ : Zk → Z defining the corre-
sponding operation. We assume that these primitives contain at least the usual
arithmetic operations (+, −, ∗, /, etc).

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 318

Programs and values The syntactic category of programs (notation: p, p′, p1,
etc.) is defined by

p ::= x | n | ` | f(p1, . . . , pn) | p = p′

| λx. p | p p′ | (p1, p2) | fst(p) | snd(p)
| if p then p1 else p2 | ref p | p := p′ | !p

The set of free variables of a program p is written FV (p), and the set of
locations occurring in p is written loc(p). We also use the shorthand let x = p in p′

(local definition) for (λx. p′) p, the same program being more simply written p; p′

(sequence) in the case where x /∈ FV (p′). The fixpoint combinator for call-by-
value strategy can also be encoded as fix ≡λf. (λx. f (λy. xxy)) λx. f (λy. xxy).

We call a value (notation: v, v′, v1, etc.) any closed program that is generated
from the following grammar:

v ::= n | ` | (v1, v2) | λx. p (FV (p) ⊆ {x})
The set of all values is written V. This set is equipped with an equivalence

relation, written v ∼ v′, that is used to implement the structural equality test.
The definition of this relation will be given in Section 5.

3.2 Operational Semantics

Stores We call a store any partial function s : L ⇀ V whose domain, writ-
ten dom(s), is finite. A store may either represent the contents of the memory,
or simply a set of local modifications (a ‘patch’). In this spirit, we define an
operation of asymmetric merge between stores, written s1 4 s2 and defined by

dom(s1 4 s2) = dom(s1) ∪ dom(s2)
(s1 4 s2)(`) = s2(`) if ` ∈ dom(s2)
(s1 4 s2)(`) = s1(`) otherwise

Intuitively, s1 4s2 is the store obtained by applying the ‘patch’ s2 to s1. This
operation will be used in the semantics of the update mechanism in Sect. 5.

In what follows, we assume given an allocation function alloc that associates
to every store s a new location alloc(s) ∈ L such that alloc(s) /∈ dom(s).

Evaluation contexts Evaluation contexts specify the strategy of evaluation.
They are defined from the BNF:

C ::= () | f(v1, . . . , vn,C, p1, . . . , pm) | C = p | v = C
| (C, p) | (v, C) | fst(C) | snd(C) | C p | v C
| if C then p1 else p2 | ref C | !C | C := p | v := C

We assume programs p, p1, p2 occurring in the above definition are closed,
so evaluation contexts are closed objects. Similarly, we assume that the function
symbols f are totally applied.5 We write C(p) for the (closed) program obtained
by substituting the (closed) program p to the hole () in the evaluation context C.

5 According to this definition, arguments of functions are thus evaluated from the left
to the right, as well as members of equalities, components of pairs, etc.

S. Maingaud et al.

319 Technical Report, KIT, 2010-13

Evaluation An evaluation state is a pair p ? s formed by a closed program p
and a store s. The relation of one-step evaluation, written p ? s � p′ ? s′, is the
binary relation over evaluation states that is defined from the axioms of Figure 1,
plus the ‘context’ rule p ? s � p′ ? s′

C(p) ? s � C(p′) ? s′

We denote with �∗ the reflexive-transitive closure of the relation �.

(λx. p) v ? s � [v/x] p ? s
fst(v1, v2) ? s � v1 ? s

snd(v1, v2) ? s � v2 ? s

f(n1, . . . , nk) ? s � f̃(n1, . . . , nk) ? s
if n then p1 else p2 ? s � p1 ? s (if n 6= 0)
if 0 then p1 else p2 ? s � p2 ? s

v = v′ ? s �
(

1 ? s if v ∼ v′
0 ? s if v 6∼ v′

ref v ? s � ` ? (s 4 `← v) (if ` = alloc(s))
` := v ? s � 0 ? s 4 `← v (if ` ∈ dom(s))

!` ? s � s(`) ? s (if ` ∈ dom(s))

v1 v2 ? s � 0 ? s (if v1 is not an abstration)
f(v1, . . . , vk) ? s � 0 ? s (if vi /∈ Z for some i ∈ [1..k])

if v then p1 else p2 ? s � 0 ? s (if v /∈ Z)

fst(v) ? s � 0 ? s (if v is not a pair)
snd(v) ? s � 0 ? s (if v is not a pair)

v := v′ ? s � 0 ? s (if v /∈ dom(s))
!v ? s � 0 ? s (if v /∈ dom(s))

Fig. 1. One step evaluation rules

Note that the evaluation rules given above (that are clearly deterministic) ex-
plicitly deal with ‘runtime errors’ (such as applying a value that is not a function,
etc.) and return the arbitrary value 0 in this case. This leads to the following
lemma which guarantees correctness of logical rules (in particular box-ncs rule
of section 4.5).

Lemma 1 (Determinism and progression). For all evaluation states p ? s,
there is at most one evaluation state p′ ? s′ such that p ? s � p′ ? s′. Moreover,
this evaluation state p′ ? s′ exists if and only if p is a not a value.

3.3 Well-formedness of stores

Let s be a store. A program (or a value) p is well-formed in the store s when
loc(p) ⊆ dom(s). The set of well-formed values in s is written Vs. A well-formed
store is a store s such that s(`) ∈ Vs for all ` ∈ dom(s). The set of well-formed
stores is written S. Finally, an evaluation state p?s is said to be well-formed when
s is a well-formed store and p is well-formed in s. Well-formedness of evaluation
states is preserved by evaluation:

Lemma 2. If p ? s is a well-formed evaluation state and p ? s � p′ ? s′, then
p′ ? s′ is a well-formed evaluation state too.

4 Logical System

We present the syntax and the rules of a proof language designed to specify
programs such as defined in Sect. 3. This proof language is based on an extension

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 320

of Dynamic Logic (DL) with second-order quantifications, so that the language
includes second-order functional arithmetic (AF2) [9] as well as the modalities
of DL. The individuals manipulated by this logic are symbolic values that are
formally defined below. Programs (actually: symbolic programs) may also appear
inside formulas but restricted to specific positions as we shall see.

4.1 Symbolic Expressions

Location Names To reason efficiently about locations without mentioning
them explicitly in the specification language, we introduce a new category of
names, called location names and written α, β, γ, etc. Semantically, location
names are characterized by three invariants:

1. A location name always refers to a concrete location.
2. The location referred to by a name is always allocated in the current store.
3. Two distinct location names refer to two distinct locations.

These invariants are essential to deal with problems of freshness and aliasing,
and to ensure the absence of memory faults during evaluation (see Sect. 5).

Symbolic Programs Symbolic programs are defined in the same way as the
programs introduced in Sect. 3. The only difference is that concrete locations
are replaced by location names in the BNF. In this section p, q, p′, etc., denote
symbolic programs instead of concrete programs.

The (capture-preserving) implicit substitution operation is defined as in the
λ-calculus, and its result is written [p

′
/x]p. Note that in presence of side effects,

this operation is not semantically sound, since the programs [p
′
/x]p and let x =

p′ in p do not generally have the same operational semantics. A counter-example
is given by the program [!r/y](λx. y) ≡ λx. !r, that does not behave the same
way as the program let y = !r in λx. y. For this reason, we shall put severe
restrictions on the use of this form of substitution in the logic.

Symbolic Values Symbolic values form a sub-class of the syntactic category
of symbolic programs, that is defined from the following BNF:

v ::= x | α | n | f(v1, . . . , vn) | v1 = v2 | λx. p
| (v1, v2) | fst(v) | snd(v) | if v then v1 else v2

(Unlike concrete ML-values, symbolic values may be open as well as closed.)
Intuitively, symbolic values correspond to the programs that do not access

the store, and whose form is simple enough to ensure termination. For this
reason, every symbolic value unambiguously refers to a concrete value (provided
we assign a value to every variable and a location to every location name).

Substitution of symbolic values v is thus a safe operation, since the program
[v/x] p has the same semantics as let x = v in p.

S. Maingaud et al.

321 Technical Report, KIT, 2010-13

f(n1, . . . , nk) ∼= f̃(n1, . . . , nk)

(λx. p) v ∼= [v/x] p

fst((v1, v2)) ∼= v1
snd((v1, v2)) ∼= v2

if n then p else p′ ∼= p (n 6= 0)
if 0 then p else p′ ∼= p′

v = v ∼= 1
n = m ∼= 0 (n 6= m)
α = β ∼= 0 (α 6= β)

Fig. 2. Congruence on symbolic programs

Symbolic Evaluation of Symbolic Programs The class of symbolic pro-
grams comes with a congruence written p ∼= p′ that expresses that the two
programs p and p′ are equivalent modulo zero, one or several steps of symbolic
evaluation. This congruence is defined from rules of Fig 2:

Note that these rules can be applied in any context, even under λ-abstractions.
In particular, we have λx. 1 + 1 ∼= λx. 2 even though both members are val-
ues that are not further evaluated.6 The main reason for this design choice is
that it makes the definition of the logical system conceptually and technically
much more simple. (However, we shall see in Sect. 5.1 that this choice has subtle
consequences on the semantics.)

4.2 Updates

We employ a simplified form of update as compared to the general definition
in [11]. Formally, updates (notation: u, u′, u1, etc.) are defined as finite lists of
pairs of symbolic values of the form v := v′:

u ::= ∅ | u ; v := v′

(Note that ∅ acts a neutral element, hence ∅ ; u ≡ u.) The application of an
update u to a symbolic program of the form !v (where v is a symbolic value) is
written {u}!v and defined by

{∅}!v = !v
{u ; v1 := v2}!v = if v = v1 then v2 else {u}!v

Note that the result of this operation is a symbolic program that can be simplified
using the congruence rules of symbolic evaluation.

4.3 Formulas

Formulas (notation: A, B, C, etc.) are built from second-order variables (no-
tation: X, Y , Z, etc.) that represent k-ary relations. We assume that every
second-order variable comes with an arity which we indicate as a superscript
when we introduce the variable. The syntax of formulas is the following:

A ::= X(v1, . . . , vk) | A→ B | ∀x. A | ∀Xk. A
| I(v) | να. A | [p as x]A | {u}A

6 The integer addition is included in the set of primitive functions as well as all stan-
dard arithmetic operations (see section 3.1).

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 322

(For simplicity, we consider a language based on implication and first- and
second-order universal quantification, from which we easily recover other con-
nectives and quantifiers.) We also provide the following constructs:

– A predicate constant I that transforms any symbolic value v into a formula
I(v) that is true if the concrete value denoted by v is a value different from 0.

– A construct [p as x]A that means: ‘if p evaluates to a value x, then A holds
in the store affected by all the side effects performed by p’. This construction
is nothing but the box modality of DL that we transformed into a binder to
recover the value computed by the program p. In particular, when A does
not depend on x, we simply write [p]A.

– A construct {u}A that means: ‘after updating the current store with the
assignments in u, A holds’.

– A construct να.A (ν-binder) that means: ‘after the allocation of a fresh
address named α, A holds’.

The set of free variables (free names) of a formula A is written FV (A) (FN (A)).

4.4 Symbolic Evaluation

The congruence defined in Sect. 4.1 over symbolic programs is extended to for-
mulas which, together with a contextual closure, occur within formulas and with
specific rules for decomposing boxes as well as for propagating updates and νs
throughout the structure of formulas (Fig. 3).

I(0) ∼= ⊥ (≡ ∀X.X)
I(n) ∼= > (≡ ∀X.X → X) n 6= 0

Decomposition of boxes

[Cse(p) as x]A ∼= [p as y] [Cse(y) as x]A y /∈ FV (Cse(p), A, x)
[ref v as x]A ∼= να.{α := v}[α/x] A α /∈ FN (A, v)

[v1 := v2]A ∼= {v1 := v2}A
[v as x]A ∼= [v/x] A

Propagation of updates

{u}I(v) ∼= I(v)
{u}(A→ B) ∼= {u}A→ {u}B
{u}∀x.A ∼= ∀x.{u}A x /∈ FV (u)
{u}∀X.A ∼= ∀X.{u}A
{u}να.A ∼= να.{u}A α /∈ FN (u)
{u}{u′}A ∼= {u ; u′}A

{u}[!v as x]A ∼= [{u}!v as x] {u}A x /∈ FV (u)

Propagation of νs

∀Xn. να.A ∼= να.∀Xn. A
[p as x] να.A ∼= να.[p as x]A α /∈ FN (p)

να.νβ.A ∼= νβ.να.A

Fig. 3. Symbolic evaluation of formulas

S. Maingaud et al.

323 Technical Report, KIT, 2010-13

Decomposition of boxes The decomposition of boxes has to take care of the
evaluation order. The first rule splits a program inside a box in two pieces ac-
cording to a given symbolic evaluation context Cse. (Symbolic evaluation contexts
are defined as for evaluation contexts, replacing explicit locations with location
names and explicit values with symbolic values.) Note that the enclosing sym-
bolic evaluation context is not uniquely determined by the program within the
box, and this rule can be used to decompose the very same box in many different
ways. The next two rules deal with the creation of a reference (that introduces
a ν-binder and an update) and with an assignment (that introduces an update).
The last rule simply removes a box when the inner program is a symbolic value.

Propagation of updates Updates go down through the structure of formulas
until they reach a box. An update can go through a box only when the inner
program is of the form !v (access to the contents of a reference), in which case the
program is updated using the construction {u}!v defined in Section 4.2. In all the
other cases, the update is stuck in front of the box until this box is decomposed
into smaller boxes using symbolic evaluation.

Propagation of νs The ν-binder comes with quite standard propagation rules
(we do not give them all). Note that there is a rule for commuting a ν-binder with
second-order quantification, but no analogous rule for first-order quantification.
The reason is that semantically, the domain of first-order quantification depends
on the set of currently allocated locations, so that we have

∀x.να.A 6→ να.∀x.A
in general. We shall come back to this point in Sect. 5. Note also that in general
a ν-binder cannot be dropped even when the name it binds does not occur in its
scope, so we have να.A 6→ A even if α /∈ FN (A).

4.5 Deduction Rules

The language is equipped with a Gentzen-style sequent calculus. This system in-
cludes the standard rules for second-order logic: structural rules (weakening and
contraction), axiom, cut, plus the standard left and right rules for implication,
first- and second-order universal quantification.

Γ,A
′ ` ∆ A ∼= A

′

Γ,A ` ∆
rwG

Γ ` A
′
, ∆ A ∼= A

′

Γ ` A,∆
rwD

Γ ` ∆

να. Γ ` να. ∆
νncs

Γ ` ∆

{u}Γ ` {u}∆ upd-ncs

∆6=∅
Γ ` ∆

[p as x]Γ ` [p as x]∆
box-ncs

Fig. 4. Specific deduction rules

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 324

The specific rules of our system (see Fig. 4) include:
– Left and right rules for symbolic evaluation, expressing that computation-

ally equivalent formulas (via symbolic evaluation) are logically equivalent.
(Because of looping programs, the verification of an instance of these rules
is not decidable.7)

– Necessitation rules for all modalities (ν-binder, updates, and boxes).
Note that the generalized forms of the standard necessitation rules are allowed in
our case because the programing language is deterministic and because values are
normal forms (Lemma 1), so that the frame relation underlying each modality
(including updates) is functional. The side condition of box-ncs is necessary
because the evaluation of the inner program might not terminate. In this case,
the hypothesis [p as x]Γ becomes vacuously valid (as we shall see in Sect. 5)
while the empty conclusion is obviously not.

5 Semantics

We now build a Kripke model of the language where worlds are well-formed
stores (simply called stores from now on). In this setting, each symbolic value
is interpreted as a concrete value whereas each formula is interpreted as the set
of stores in which the formula is true. The construction is standard, with some
subtleties that will be explained in Sect. 5.1. The main feature of the model is
that the domain of interpretation of the individuals (i.e. symbolic values) has to
depend on the current store, because the values which make sense in a store s
are those which are well-formed in s. (In particular, this property explains why
we cannot commute first-order quantification with ν-binders.)

5.1 Invariance properties

Equivalence of values Both in IML and in the logical framework, two func-
tional values λx. p and λx. p′ are observationally equivalent when p ∼= p′. To
identify such values in the model, we introduce the relation of equivalence of
values, written v ∼ v′, as the least equivalence relation such that:
– If p ∼= p′, then λx. p ∼ λx. p′.
– If v1 ∼ v′1 and v2 ∼ v′2, then (v1, v2) ∼ (v′1, v

′
2).

Invariance under automorphisms Similarly, the allocation order of locations
is indistinguishable both for IML programs and for the logical framework. In
order to ensure that the model is not sensitive to the allocation order either, we
need to introduce the notion of invariance under all automorphisms.

Formally, an automorphism (of locations) is any bijection σ over the set L
of locations. An automorphism σ can be applied to a location, but also to a
value (by applying σ to all the locations inside the value) as well as to a store.

Formally, the store σ(s) is defined by dom(σ(s)) = σ(dom(s)) and

σ(s)(`) = σ(s(σ−1(`))) (` ∈ dom(σ(s)))

7 In an implementation, it will be possible to force arbitrarily the decision, for example
by limiting the number of evaluation steps.

S. Maingaud et al.

325 Technical Report, KIT, 2010-13

Propositional functions Let f : Vk → P(S) be a function from k-tuples of
values to sets of (well-formed) stores. We say that f is:
– compatible with the equivalence of values when for all v1, . . . , vk, v

′
1, . . . , v

′
k

such that v1 ∼ v′1, · · · , vk ∼ v′k: f(v1, . . . , vk) = f(v′1, . . . , v
′
k).

– invariant under all automorphisms when for all v1, . . . vk ∈ V, s ∈ S and for
all automorphisms σ: s ∈ f(v1, . . . , vk) iff σ(s) ∈ f(σ(v1), . . . , σ(vk)).

The set of all functions f : Vk → P(S) that are both compatible with the
equivalence of values and invariant under all automorphisms is written FkP . In
what follows, we shall interpret predicates variables of arity k (and formulas
depending on k first-order variables) as elements of FkP .

5.2 Interpreting symbolic values and updates

Valuations A valuation is a function ρ that maps each
– first-order variable x to a value ρ(x) ∈ V;
– k-ary second-order variable X to a propositional function ρ(x) ∈ FkP ;
– location name α to a location ρ(α) ∈ L.

Moreover, we require that ρ is injective on location names: distinct location
names are mapped to distinct locations. A valuation ρ is well-formed in a store s
when ρ(x) ∈ Vs for all x ∈ dom(ρ) and ρ(α) ∈ dom(s) for all α ∈ dom(ρ). This
notion is clearly preserved by store extension.

Interpreting symbolic values Given a symbolic value v and a valuation ρ,
we denote by JvKρ the unique value v such that v[ρ] ? s �∗ v ? s, where s is
an arbitrary store. Note that such a value always exists—due to the restricted
form of symbolic values—and that it is unique since evaluation is deterministic.
Moreover, the value v does not depend on s, and the evaluation of the program
v[ρ] that computes the value v does not modify the store.

Interpreting updates Updates are interpreted as stores (intuitively: as ‘patches’
to the global memory). Given an update u and a valuation ρ, we define JuKρ by:J∅Kρ = ∅ and Ju ; v1 := v2Kρ = JuKρ 4 Jv1Kρ ← Jv2Kρ
5.3 Interpreting formulas and sequents

The relation of satisfiability of formulas (where s is a well-formed store and ρ a
valuation that is well-formed in s) is defined in Fig. 5:

The interpretation immediately extends to sequents (notation s |= (Γ `∆)[ρ])
reading left hand-side commas as conjunctions, right hand-side commas as dis-
junctions and the symbol ‘`’ as implication. Note that the formula [p as x]A is
always valid when p does not terminate.

Theorem 1 (Correctness of the system) If the sequent Γ ` ∆ is derivable
in the system, then for all well-formed stores s ∈ S and for all valuations ρ that
are well-formed in s, we have s |= (Γ ` ∆)[ρ].

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 326

s |= X(v1, . . . , vk)[ρ] iff s ∈ ρ(X)(Jv1Kρ, . . . , JvkKρ)

s |= I(v)[ρ] iff JvKρ 6= 0

s |= (A→ B)[ρ] iff s |= A[ρ] implies s |= B[ρ]

s |= (∀x.A)[ρ] iff for all v ∈ Vs, s |= A[ρ ; x 7→ v]

s |= (∀Xk. A)[ρ] iff for all f ∈ FkP , s |= A[ρ ; X 7→ f]

s |= (να.A)[ρ] iff (s 4 alloc(s)← 0) |= A[ρ ; α 7→ alloc(s)]

s |= ({u}A)[ρ] iff s4 JuKρ |= A[ρ]

s |= ([p as x]A)[ρ] iff for all s′ ∈ S and v ∈ Vs′ ,
p[ρ] ? s �∗ v ? s′ implies s′ |= A[ρ ; x 7→ v]

Fig. 5. Satisfiability of formulas

Theorem 1 relies on many intermediate lemmas that are not given here.
Basically, these lemmas express that all the constructions of the programming
language and of the logical framework are compatible with the equivalence of
values and preserve the property of invariance under all automorphisms.

It is easy to check that s 6|= ⊥. Hence, the formula ⊥ cannot be proved within
our system, which is thus consistent.

6 Specification and Verification of a Recursive Function

We illustrate how to specify and verify a recursive function along a small exam-
ple. Let us now consider the program cc defined by

cc ≡ λn. let c = (let r = ref 0 in λx. r :=!r + 1 ; !r) in
let aux = fix (λfn. if n = 0 then c 0 else (c 0 ; f (n− 1))) in
aux n

This program takes a natural number n as an argument and calls n+1 times
the sub-program c that contains a local reference, before returning the result of
the last call of c. (Here the argument 0 in c 0 plays the role of () in ML.)

We intend to prove that for all natural numbers n, the result of cc n is n+ 1.
Therefore, we need first to characterise natural numbers among all the possible
values. For the characterisation we use their well-known second-order definition
as given in [9]: Nat(x) ≡ ∀X. (∀y.(X(y)→ X(y + 1))→ X(0)→ X(x))

For readability, we introduce the notation ∀x : Nat. A (relativized quantifi-
cation) for ∀x.(Nat(x)→ A). The property of interest can be expressed by:

∀n : Nat. [cc n = n+ 1 as b] I(b) .
A derivation (Π1) is shown in Fig. 7. We use the obvious rules that can be

derived from the definition of Nat(x) as well as the (derived) induction rule:
` A(0) Nat(n), A(n) ` A(n+ 1)

Ind` ∀n : Nat. A(n)

To simplify Π1, we denote by aux and aux′ (of Fig. 6) the functional values
these programs reduce to. The specification is proved using an auxiliary lemma
(L) stating that the property holds for any content of the reference: this lemma
is proved (left premise of the Cut rule in Π1) by induction. Note that this lemma
can be used only in a context in which the inner reference is visible. The bottom

S. Maingaud et al.

327 Technical Report, KIT, 2010-13

c ≡ let r = ref 0 in λx. r :=!r + 1 ; !r

aux ≡ fix (λfn. if n = 0 then c 0 else (c 0 ; f (n− 1)))

cc ≡ λn. let c = c in let aux = aux in aux n

aux′ ≡ fix (λfn. if n = 0 then (λx. α :=!α+ 1 ; !α) 0
else (λx. α :=!α+ 1 ; !α) 0 ; f (n− 1))

Fig. 6. Shortcuts

Ax` I(1) ∼=` {α := k + 1}I(1) ∼= ×2` {α := k + 1}[k + 1 = k + 1 as b] I(b) ∼=` {α := k + 1}[!α = k + 1 as b] I(b) ∼=` {α := k}[(α := k + 1; !α) = k + 1 as b] I(b) ∼=` {α := k}[(α :=!α+ 1; !α) = k + 1 as b] I(b) ∼=` {α := k}[aux′ 0 = k + 1 as b] I(b)
∀R` ∀k. {α := k}[aux′ 0 = k + 1 as b] I(b)

[Π3]

.

.

.

RH ` RS
Ind` ∀n : Nat. ∀k. {α := k}[aux′ n = n+ k + 1 as b] I(b)

[Π2]

.

.

.

L, Nat(n) ` C
Cut

Nat(n) ` {α := 0}[aux′ n = n+ 1 as b] I(b)
νR

Nat(n) ` να.{α := 0}[aux′ n = n+ 1 as b] I(b) ∼=
Nat(n) ` να.{α := 0}[λx. α :=!α+ 1; !α as c] [aux n = n+ 1 as b] I(b) ∼=

Nat(n) ` [ref 0 as r] [λx. r :=!r + 1; !r as c] [aux n = n+ 1 as b] I(b)
Let + ∼=

Nat(n) ` [c as c] [aux as aux] [aux n = n+ 1 as b] I(b)
Let × 2 + ∼=

Nat(n) ` [let c = c in let aux = aux in aux n = n+ 1 as b] I(b) ∼=
Nat(n) ` [cc n = n+ 1 as b] I(b)

∀R` ∀n : Nat. [cc n = n+ 1 as b] I(b)

where RS ≡ ∀k.{α := k}[aux′(n+ 1) = n+ k + 2 as b] I(b)
RH ≡ Nat(n), ∀k.{α := k}[aux′ n = n+ k + 1 as b] I(b)
L ≡ ∀n : Nat. ∀k. {α := k}[aux′ n = n+ k + 1 as b] I(b)
C ≡ {α := 0}[aux′ n = n+ 1 as b] I(b)

Fig. 7. Π1: Derivation of the specification

part of the proof partially evaluates the program cc n to make the inner reference
visible at the top level.

The proof of the recursive step (Π3) is done using only∼=,∀R,∀L. The sequent
L, Nat(n) ` C is trivially proved (Π2) with instances of the ∀L rule.

7 Conclusion

We have presented a system for specifying and verifying imperative ML pro-
grams, whose specification language combines dynamic logic with second-order
logic à la AF2. This combination illustrates the flexibility of DL, that can be
adapted to many programming languages (here: imperative ML) and to many
logical frameworks (here: second-order logic), thus making them benefit of the
strength of symbolic evaluation and of its deep impact in proof automation.

Specifying Imperative ML-like programs Using Dynamic Logic

Technical Report, KIT, 2010-13 328

The next step is to test our system by implementing it, for instance as a com-
ponent of KeY or within another logical framework. Another natural research
direction would be the integration of a static type system at the level of the
logic, following the spirit of the system of strong typing in PAF!

Acknowledgements Many thanks are due to Yann Régis-Gianas for stimulat-
ing discussions and valuable advices.

References

1. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In Tom Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of LNCS. Springer-Verlag, 2000.

2. S. Baro. Introduction to PAF!, a proof assistant for ml programs verification. In
TYPES, pages 51–65, 2003.

3. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2006.

4. A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective
interactive proofs for higher-order imperative programs. In ICFP ’09: Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming,
September 2009.

5. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.

6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, October 2000.

7. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 583, October 1969.

8. J. Kanig and J.-C. Filliâtre. Who: A Verifier for Effectful Higher-order Programs.
In ACM SIGPLAN Workshop on ML, Edinburgh, Scotland, UK, August 2009.

9. J. L. Krivine. Lambda-calculus, types and models. Masson, 1993.
10. Y. Régis-Gianas and F. Pottier. A Hoare logic for call-by-value functional pro-

grams. In Philippe Audebaud and Christine Paulin-Mohring, editors, Mathematics
of Program Construction, 9th Intl. Conf., MPC 2008, Marseille, France, volume
5133 of LNCS, pages 305–335. Springer, 2008.

11. P. Rümmer. Sequential, parallel, and quantified updates of first-order structures.
In Logic for Programming, Artificial Intelligence and Reasoning, volume 4246 of
LNCS, pages 422–436. Springer, 2006.

S. Maingaud et al.

329 Technical Report, KIT, 2010-13

Abstract compilation of object-oriented
languages into coinductive CLP(X): when type

inference meets verification?

Davide Ancona1, Andrea Corradi1, Giovanni Lagorio1, and Ferruccio Damiani2

1 DISI, University of Genova, Italy
{davide,lagorio}@disi.unige.it,andreac@unstable.it
2 Dipartimento di Informatica, University of Torino, Italy

damiani@di.unito.it

Abstract. We propose a novel general approach for defining expressive
type systems for object-oriented languages, based on abstract compila-
tion of programs into coinductive constraint logic programs defined on
a specific constraint domain X called type domain. In this way, type
checking and type inference amount to resolving a certain goal w.r.t. the
coinductive (that is, the greatest) Herbrand model of a logic program
(that is, a Horn formula) with constraints over a fixed type domain X.
In particular, we show an interesting instantiation where the constraint
predicates of X are syntactic equality and subtyping over coinductive
object and union types. The corresponding type system is so expressive
to allow verification of simple properties like data structure invariants.
Finally, we show a prototype implementation, written in Prolog, of the in-
ference engine for coinductive CLP(X), which is parametric in the solver
for the type domain X.

1 Introduction

Mapping type checking and type inference algorithms to logic programming is
not a novel idea; however, less known are the advantages that such an approach
can bring to the research areas of type systems and software verification.

Sulzmann and Stuckey [18] have shown that the generalized Hindley/Milner
type inference problem HM(X) [14] can be mapped to inductive CLP(X): type
inference of a program can be obtained by first translating it in a set of CLP(X)
clauses, and then by resolving a certain goal w.r.t. such clauses. This result is
not purely theoretical, indeed it has also some important practical advantages:
maintaining a strict distinction between the translation phase and the logical
inference one, when the goal and the constraints are solved, allows a much clearer
specification of type inference and a more modular approach, since different type
inference algorithms can be obtained by just modifying the translation phase,
while reusing the same engine defined in the logical inference phase.
? This work has been partially supported by MIUR DISCO - Distribution, Interaction,

Specification, Composition for Object Systems.

Technical Report, KIT, 2010-13 330

Abstract compilation [5, 1, 2] is a novel approach for specifying coinductive
type systems by abstractly compiling the program to be analyzed into a Horn
formula. Then, type checking and type inference amount to resolving a certain
goal w.r.t. the coinductive Herbrand model of the formula generated by the
abstract compilation.

In contrast to the approaches based on inductive LP and CLP, the coinduc-
tive approach allows the specification of much more expressive type systems and,
therefore, seems more appropriate for defining type inference useful for proving
simple properties like data structure invariants. The potential offered by coin-
ductive CLP for software verification has been investigated very recently also by
Saeedloei and Gupta [12], even though in the different context of verification of
complex continuous real-time systems.

Abstract compilation is particularly interesting for type inference of object-
oriented languages [1, 2] when union and object types are combined together.
However, for implementing the logical inference phase, one has necessarily to
restrict the type system to regular types and derivations (corresponding to infi-
nite trees having a finite set of subtrees) and to explicitly introduce a subtyping
relation [2, 3] capturing the notion of approximation.

In previous work [1, 4] we have formally defined and studied three different
translations from core Java-like languages, similar to Featherweight Java (FJ)
[10], to Horn formulas:

1. from a purely functional object-oriented language L,3 to show that the ap-
proach can be used for defining standard typechecking of Java-like languages
([1], Figures 3 and 4);

2. from a version of L where nominal type annotations can be optionally omit-
ted, to show how precise type inference can be obtained from abstract com-
pilation, and how coinductive union and object types can be smoothly in-
tegrated with nominal types, by considering nominal type annotations as
additional constraints imposed by the user ([1], Figures 5 and 6);

3. from an SSA [8] intermediate form of an imperative version of FJ, to show
how abstract compilation can be deal with imperative features like variable
and field assignment and iterative constructs, and how SSA ϕ functions can
be naturally encoded with union types ([4], Figures 3, 4 and 5).

In this paper we propose a novel general approach for expressing type in-
ference as abstract compilation of programs into coinductive CLP(X), where X
is a specific constraint domain, called type domain, containing two constraint
predicates: strong equivalence between types (coinciding to syntactic equality in
most cases) and subtyping.

This paper has two main contributions. First, it presents a general schema
for abstract compilation based on coinductive CLP(X), where X corresponds to
a specific type domain (see Figure 1). The input is represented by the source pro-
gram to be analyzed and by a query defined by the user in a high level language.
3 A variant of FJ that has generalized explicit constructor declarations and primitive

types, but no type casts.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

331 Technical Report, KIT, 2010-13

Abstract
Compiler

Goal
generator

Horn
formula

Goal

User-defined
formula

+ Answer/
solution

Source
program

High-level
query

Inference
Engine for
coCLP(X)

X solver
Inference
Engine for
coCLP(X)

X solver

Fig. 1. General schema for abstract compilation based on coinductive CLP(X)

Then the abstract compiler and the goal generator, which is a subcomponent of
the abstract compiler, generate a Horn formula (a conjunction of CLP clauses)
and a goal. The generated clauses can be optionally augmented by user-defined
clauses defining auxiliary predicates. Finally, type inference is performed by the
coinductive CLP engine. The red (or dark) components are those depending on
the type system under consideration: the abstract compiler4 and the solver for
the specific type domain X.

The second contribution is the definition of the operational semantics of
coinductive CLP and of a corresponding implementation based on a Prolog pro-
totype meta-interpreter, parametric in the solver for the type domain X. The
implementation exploits variance annotations of user-defined predicate to use
subsumption instead of simple term unification when the coinductive hypothesis
rule is applied.

The paper is organized as follows. Section 2 provides some minimal back-
ground on coinductive LP and on inductive CLP. Section 3 explains abstract
compilation, defines a type domain based on union and object types, and shows
the expressive power of the system with some examples. Section 4 is devoted to
the semantics and implementation of coinductive CLP, whereas Section 5 draws
some conclusions and outlines some directions for further investigation.

2 Background

Coinductive LP and SLD Simon et al [17] have introduced coinductive-LP,
or simply co-LP. Its declarative semantics is given in terms of co-Herbrand uni-
verse, infinitary Herbrand base and maximal models, computed using greatest
fixed-points. While in traditional LP this semantics corresponds to build finite
proof trees, co-LP allows infinite terms and proofs as well, which in general are
not finitely representable and, for this reason, are called idealized. The opera-
tional semantics, defined in a manner similar to SLD, is called co-SLD. For an

4 If the source language is unchanged only the back-end will be modified.

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 332

obvious reason, co-SLD is restricted to regular terms and proofs, that is, to trees
which may be infinite, but can only contain a finite number of different subtrees
(and, hence, can be finitely represented). To correctly deal with infinite regular
derivations an implicit coinductive hypothesis rule is introduced. This rule allows
a predicate call to succeed if it unifies with one of its ancestor calls.

CLP(X) CLP introduces constraints in the body of the clauses of a logic
program, specifying conditions under which the clauses hold, and let external
constraint solvers interpret/simplify these constraints. For instance, the clause
p(X) ← {X > 3}, q(X) expresses that p(X) holds when q(X) holds and the
value of X is greater than three. Furthermore, constraints serve also as an-
swers returned by derivations. For instance, if we add q(X) ← {X > 5} to the
clause above, then the goal p(X) succeeds with answer {X > 5}. Of course, the
standard resolution has to be extended in order to embed calls to the external
solvers. At each resolution step new constraints are generated and collected, and
the solver checks that the whole set of collected constraints is still satisfiable
before execution can proceed further.

3 Expressive type inference with coinductive CLP(X)

In this section we define a constraint domain where constraint predicates are
syntactic equality and subtyping over coinductive object and union types; we
provide some simple examples of abstract compilation and of type inference
obtained as resolution of specific goals.

An example of type domain The terms of our type domain are class, method
and field names (represented by constants), and types coinductively defined over
integer, boolean, object and union types.

bt ::= int | bool
t ::= bt | obj (c, [f1:t1, . . . , fn:tn]) | t1 ∨ t2

An object type obj (c, [f1:t1, . . . , fn:tn]) specifies the class c to which the object
belongs, together with the set of available fields with their corresponding types.
The class name is needed for typing method invocations. We assume that fields
in an object type are finite, distinct and that their order is immaterial. Union
types t1 ∨ t2 have the standard meaning [6, 9].

As pointed out in Section 2, in coinductive logic programming terms and
derivations can correspond to infinite trees [7], hence not all the terms and
derivations can be represented in a finite way, therefore the corresponding type
systems defined in are called idealized. However, to be able to implement a
sound approximation of an idealized type system one can restrict terms and
derivations to regular ones. A regular tree can be infinite, but can only contain
a finite number of subtrees or, equivalently, can be represented as the solution
of a unification problem, that is, a finite set of syntactic equations of the form

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

333 Technical Report, KIT, 2010-13

(bool)
b ∈ bool

(int)
i ∈ int

(∨L)
v ∈ t1

v ∈ t1 ∨ t2
(∨R)

v ∈ t2
v ∈ t1 ∨ t2

(obj)
v1 ∈ t1, . . . , vn ∈ tn

obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:t1, . . . , fn:tn])

Fig. 2. Rules defining membership

Xi = ei, where all variables Xi are distinct and expressions ei may only contain
variables Xi [7, 17, 16].

A type domain is a constraint domain which defines two predicates: strong
equivalence and subtyping. In this example strong equivalence corresponds to
syntactic equality and is interpreted in the coinductive Herbrand universe, whereas
subtyping is interpreted as set inclusion in a fixed type domain where types are
interpreted as sets of values: t1 ≤ t2 iff Jt1K ⊆ Jt2K, where JtK depends on the
considered type language. In this section we consider the interpretation of union
and object types as given by Ancona and Lagorio [2].

Values are coinductively defined by the following syntactic rules.

v ::= b | i | obj (c, [f1 7→ v1, . . . , fn 7→ vn]) (b ∈ {fv , tv}, i ∈ Z)

Fields in object values are finite and distinct, and their order is immaterial.
Regular values correspond to finite, but cyclic, objects.

Interpretation is defined in terms of the judgment v ∈ t coinductively defined
by the rules of Figure 2.

All rules are intuitive. Note that an object value is allowed to belong to an
object type having fewer fields; this is expressed by the ellipsis at the end of the
value in the membership rule (obj). Not all infinite derivations can be considered
valid, but only those that are contractive (see the definition below). In particular
rules (∨L) and (∨R) are not contractive, hence cannot be consecutively applied
an infinite number of times otherwise one could easily derive undesired judgments
such as fv ∈ t where t = t ∨ int .

Definition 1. A derivation for v ∈ t is contractive iff it contains no sub-
derivations built only with membership rules (∨R), and (∨L). The judgment
v ∈ t is derivable iff there is a contractive derivation for it.

The interpretation JtK of type t is defined by {v | v ∈ t derivable}.
An example of abstract compilation We present now a simple example
of abstract compilation of a program into a Horn formula. Then, we give an
example of infinite but not regular derivation in co-LP, and then show that such
a derivation can be made regular when the subtyping constraint is considered,
that is, when we shift from co-LP to co-CLP(X).

Consider the following class declarations written in Java-like syntax5. For
making the example simpler we have omitted all type annotations and the dec-
laration of a common implemented interface, since in this case type inference
5 For simplicity, we restrict ourselves to a purely functional language.

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 334

works equally well without type annotations. However, we have already shown
[1] how abstract compilation integrates pretty well nominal type annotations
with inferred structural types.

c lass Zero { }

c lass Succ {

pred;

Succ(pred){ super(); this .pred=pred; }

}

c lass NatFact{

create(i,n) { i f (i<1) return n;

else return create(i-1,new Succ(n)); }

}

Classes Zero and Succ encode the natural numbers with objects, while NatFact
is a factory6 class for objects encoding natural numbers.

To compile the program into a Horn formula, we introduce a predicate for
each language construct; for instance, invoke for method invocation, new for
constructor invocation, field acc for field access, and cond for conditional ex-
pressions. Furthermore, auxiliary predicates are introduced for expressing the se-
mantics of the language; for instance, predicate has meth corresponds to method
look-up. Each method declaration is abstractly compiled into a Horn clause: the
compilation of method create generates the following clause.

has_meth(natFact ,create ,[This ,I,N],R) ←
rel_op(I,int ,B),arth_op(I,int ,I2),new(succ ,[N],SN),

invoke(This ,create ,[I2,SN],N2),cond(B,N,N2,R).

Method has meth has four arguments: the class where the method should be
found, the name of the method, the types of the arguments, including the type
of the target object this which is always the first argument, and the type of the
returned value. Each atom in the body of the clause corresponds to the abstract
compilation of a sub-expression of the body of the method:

– rel_op(I,int,B) corresponds to i<1 and asserts that I op k evaluates to
B when op is a relational operator on integers, and k is any integer. Clearly,
this means that B will be instantiated with type bool , and that I is required
to be int , hence the clause above can be optimized as shown below.

– arth_op(I,int,I2) corresponds to i-1 and asserts that I op k evaluates
to I2 when op is an arithmetic operator on integers, and k is any integer.
Again, this atom can be easily optimized away as shown below.

– new(succ,[N],SN) corresponds to new Succ(n) and asserts that such an
expression evaluates to SN.

– invoke(This,create,[I2,SN],N2) corresponds to this.create(i-1,new
Succ(n)) and asserts that such an expression evaluates to N2.

6 The purpose of this simple example is just showing how abstract compilation to
coinductive CLP(X) works.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

335 Technical Report, KIT, 2010-13

– cond(B,N,N2,R) corresponds to the top expression which is the body of the
method and asserts that it evaluates to R.

Additionally, one could add to the body of the clause the atom inst_of(This,
natFact) (omitted here for simplicity) corresponding to the extra information
that this instanceof natFact is necessarily true [1]. In the following, for sim-
plicity we consider the optimized but equivalent clause:

has_meth(natFact ,create ,[This ,int ,N],R) ←
new(succ ,[N],SN),invoke(This ,create ,[int ,SN],N2),

cond(bool ,N,N2,R).

Each method declaration is compiled into a clause defining predicate has meth,
and, analogously, each constructor declaration is compiled into a clause defining
predicate new . Furthermore, other program independent clauses are generated
to specify the behavior of the various constructs w.r.t. the available types. For
instance, predicates invoke and cond are defined as follows:

invoke(obj(C,R),M,A,RT) ← has_meth(C,M,[obj(C,R)|A],RT).

invoke(T1∨T2,M,A,RT1∨RT2) ← invoke(T1,M,A,RT1),

invoke(T2,M,A,RT2).

cond(bool ,T1,T2,T1∨T2).

Derivations and subtyping Let us consider an example of coinductive deriva-
tion for the following goal:

invoke(obj (natFact , []), create, [int , obj (zero, [])], T0).

We first observe that new(succ, [N], obj (succ, [pred :N])) is derivable (for space
reasons we have omitted the clauses for new); if we use the syntactic abbrevia-
tions z = obj (zero, []), s(z) = obj (succ, [pred :z]), sn(z) = obj (succ, [pred :sn−1(z)]),
nf = obj (natFact , []) then invoke(nf , create, [int , s(z)], T1), cond(bool , z, T1, T0)
is obtained after some steps. With a resolution step, such a resolvent yields
invoke(nf , create, [int , s(z)], T1) with T0 = z ∨ T1. Therefore we obtain the fol-
lowing infinite non regular derivation (where the conclusion is at the bottom):

...
...

invoke(nf , create, [int , sn(z)], Tn) Tn−1 = sn−1(z) ∨ Tn
...

...
invoke(nf , create, [int , s(z)], T1) T0 = z ∨ T1

...
...

invoke(nf , create, [int , z], T0)

A possible solution is T0 = tN, where tN is the infinite non regular term z∨s(z)∨
. . . ∨ sn(z) ∨ . . . which corresponds to the set of all objects encoding natural
numbers. Clearly this result is purely theoretical, since neither the inferred type
nor the derivation can be finitely represented. However, if we exploit the sub-
typing constraint ≤, then we can find a regular solution for the goal above with

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 336

a regular derivation. The key point is that each predicate is expected to behave
in a specific way w.r.t. subtyping. If p is a predicate with only one7 argument,
we have the following four possibilities:

– p is covariant in its argument: if p(t1) and t1 ≤ t2 hold, then p(t2) holds has
well (we say that p(t1) subsumes p(t2)).

– p is contravariant in its argument: if t1 ≥ t2 (or, equivalently, t2 ≤ t1) holds,
then p(t1) subsumes p(t2).

– p is weakly invariant in its argument: if t1 ≤ t2, t1 ≥ t2 holds, then p(t1)
subsumes p(t2). In this case we abbreviate t1 ≤ t2, t1 ≥ t2 with t1 ∼= t2, and
we call ∼= weak equivalence.

– p is strongly invariant in its argument: if t1 ≡ t2 holds, then p(t1) subsumes
p(t2). We call ≡ strong equivalence since it is expected to be stronger than
∼=, that is t1 ≡ t2 ⇒ t1 ∼= t2, but not conversely. In most cases ≡ coincides
with syntactic equality.

For instance, invoke is strongly invariant w.r.t. its first8 and second argu-
ments, contravariant in its third argument, and covariant in its fourth argument.

Coming back to our example, if tω is the regular term defined by tω = z∨s(tω),
then we can build a regular derivation for the goal invoke(nf , create, [int , z], tω),
since invoke(nf , create, [int , t], u) subsumes invoke(nf , create, [int , t ′], u ′) if {t ′ ≤
t , u ≤ u ′} is satisfiable.

In the derivation we can apply two subsumption steps, since both constraints
z ≤ tω and s(tω) ≤ tω are satisfiable. The arrow indicates that the derivation
is regular, since the atom invoke(nf , create, [int , s(tω)], tω) is already present in
the lower part of the derivation (that is, a coinductive hypothesis step can be
applied).

7 The definition can be easily generalized for an arbitrary number of arguments.
8 In contrast with what intuition may suggest, weak invariance in the first argument

of invoke is unsound since it allows non contractive derivations.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

337 Technical Report, KIT, 2010-13

If we start with a non ground atom invoke(nf , create, [int , z], T0) we obtain
the following incomplete derivation

invoke(nf , create, [int , s(X2)], T2) s(X1) ≤ X2, s(X1) ∨ T2 ≤ T1

...
...

invoke(nf , create, [int , s(X1)], T1) z ≤ X1, z ∨ T1 ≤ T0

...
...

invoke(nf , create, [int , z], T0)

that can be transformed into a regular one, since invoke(nf , create, [int , s(X2)], T2)
can be derived from the coinductive hypothesis invoke(nf , create, [int , s(X1)], T1);
indeed, if we add the constraints {s(X2) ≤ s(X1), T1 ≤ T2} to the current set of
constraints, we get the set

{z ≤ X1, z ∨ T1 ≤ T0, s(X1) ≤ X2, s(X1) ∨ T2 ≤ T1, s(X2) ≤ s(X1), T1 ≤ T2}
which has solution X1 = X2 = tω, T1 = T2 = s(tω), T0 ≥ tω; hence, providing
that we have an appropriate constraint solver, we can build a regular derivation
returning a final set of constraints which is satisfied by a substitution mapping
variables to regular terms. Note that another solution is given by X1 = X2 = tN,
T1 = T2 = s(tN), T0 ≥ tN, and that tω is weakly equivalent to tN ∨ ω, where
ω = s(ω) (that is, the infinite ordinal ω), hence tN ≤ tω.

When type inference meets verification We have shown that the combina-
tion of regular, union and object types in conjunction with the subtyping relation
used as a constraint allows inference of quite precise types; for instance, in the
previous example we have shown that it is possible to infer that method create
returns all objects implementing natural numbers.

However, it is possible to introduce more expressive types describing simple
properties in form of data structure invariants of the program. Let us consider,
for instance, a simple implementation of linked lists with two classes EList and
NEList containing fields e for the first element, and n for the next list. Then,
one might want to introduce the dependent type [19, 13] list(a) (where a is
an arithmetic expression) describing all lists having length n, if a evaluates to
n. In doing so, the subtyping relation has to be extended (and, consequently,
the constraint solver) to take into account the new type. The interpretation
of the type is defined by the following three new rules (where (lst-ev) is not
contractive).

(lst-0)
v ∈ obj (eList , [])

v ∈ list(0)
(lst-i)

v ∈ obj (neList , [e:>, n:list(i− 1)])

v ∈ list(i)
i > 0

(lst-ev)
v ∈ list(i)

v ∈ list(a)
a = i

We use the top type > since we are interested in the length of the list, rather
than in the type of its elements. Therefore, {list(0) ∼= obj (eList , []), list(i) ∼=
obj (neList , [e : >, n : list(i− 1)]), i > 0} is satisfiable.

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 338

Let us consider the following more involved example, by introducing the type
avl(n) of the AVL trees of height n, implemented by the two classes ETree and
NETree containing fields e (element at the root), l (left subtree), and r (right
subtree). We recall that in AVL trees the heights of the two child subtrees of
any node differ by at most one [15]. The interpretation of the type is defined by
the following rules (where (avl-ev) is not contractive):

(avl-0)
v ∈ obj (eTree, [])

v ∈ avl(0)
(avl-1)

v ∈ obj (neTree, [e:>, l:obj (eTree, []), r:obj (eTree, [])])

v ∈ avl(1)

(avl-i)

v ∈ obj (neList , [e : >, l : avl(i− 1), r : avl(i− 1) ∨ avl(i− 2)])∨
obj (neList , [e : >, l : avl(i− 1) ∨ avl(i− 2), r : avl(i− 1)])

v ∈ avl(i)
i > 1

(avl-ev)
v ∈ avl(i)

v ∈ avl(a)
a = i

4 A prototype implementation of coinductive CLP(X)

In this section we show a prototype implementation of coinductive CLP(X),
where the parameter X must be instantiated with a type domain D. A type
domain D defines two constraint predicates corresponding to strong equivalence
≡ and subtyping ≤, as well as variance annotations for all the user-defined pred-
icates. As we will see, variance annotations are more than a convenient syntactic
notation for avoiding explicit insertion of constraints in the body of clauses; in-
deed, they allow definition of constraints which are associated with predicates,
rather than clauses. To our knowledge, this is a novel feature not previously
considered in CLP. In this way, we gain in expressive power, since instead of
unification, subsumption can be exploited when the coinductive hypothesis rule
is applied.

We first provide the fixed-point and operational semantics of coinductive
CLP(X) programs defined over a type domain X.

Fixed-point semantics For simplicity, all following definitions use a fixed
coinductive Herbrand universe and base. The notation M

n
is a shortcut for

M1, . . . ,Mn, for any kind of meta-variables Mi.
We write pαn to mean that predicate symbol p has arity n and variance

annotation αn, where each αi may be one of the following constraint predicates
{≤,≥,∼=,≡}, corresponding to covariance, contravariance, and weak and strong
equivalence, respectively. As already explained in Section 3, ≥ and ∼= are derived
constraints: t1 ≥ t2 iff t2 ≤ t1, and t1 ∼= t2 iff t1 ≤ t2, t2 ≤ t1.

Definition 2. If pαn is a predicate symbol, then the ground atom pαn(t1, . . . , tn)
subsumes the ground atom pαn(t ′1, . . . , t ′n) iff {t1α1t ′1, . . . , tnαnt ′n} is satisfiable,
that is D |= {t1α1t ′1, . . . , tnαnt ′n}.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

339 Technical Report, KIT, 2010-13

(empty) Hf | H ` true ∅

(co-hyp)
Hf | H1, pαn(t

n
),H2 ` G1,G2 C1 ` C1 ∪ C2 → C ′

Hf | H1, pαn(t
n
),H2 ` G1, pαn(un),G2 C ′ C2 = gen(t

n
, αn, un)

(cls)
Hf | H , pαn(t

n
) ` G1,G,G2 C1 ` C1 ∪ C2 → C ′

Hf | H ` G1, pαn(un),G2 C ′

pαn (t
n
)← G fresh instance of

a clause of Hf
C2 = gen(t

n
, αn, un)

Fig. 3. Operational semantics

The one-step consequence function THf ,D, induced by a Horn formula Hf
where all predicates are associated with a variance annotation, is the function
over sets of ground atoms contained in the coinductive Herbrand base, defined
as follows:

THf ,D(S) = {A′ | A← A1 , . . . ,An ground instance of a clause in Hf ,
Ai ∈ S for all i = 1, . . . , n, A subsumes A′}

The coinductive Herbrand model of Hf w.r.t. the type domain D is the greatest
fixed-point of THf ,D. Equivalently, the semantics of Hf can be expressed by
translating Hf into a formula Hf ′ where constraints are explicitly introduced
in the clauses of Hf , and then by considering the greatest fixed-point of TCLP

Hf ′,D,
where TCLP

Hf ′,D is the standard one-step consequence function defined for CLP [11]:

TCLP
Hf ,D(S) = {A | A← C ,A1 , . . . ,An ground instance of a clause in Hf ,

Ai ∈ S for all i = 1, . . . , n, D |= C}

A clause having general shape pαn (tn)← A
k

is translated in the CLP clause
pαn (X

n
)← gen(tn , αn ,X

n
),A

k
, where X

n
are distinct and fresh variables and

constraints are generated by the function gen defined as follows:

gen(ε, ε, ε) = ∅
gen((t , tn−1), (α, αn−1), (u, un−1)) = {t α u} ∪ gen(tn−1

, αn−1, un−1)

The function gen simply takes three tuples of the same length n, t1, . . . , tn,
α1, . . . , αn, and u1, . . . , un, and generates the set of constraints {t1α1u1, . . . ,
tnαnun}. This function is used in the next section for expressing the operational
semantics of a Horn formula, where the meta-variables ui may be instantiated
with general terms and not only with variables.

Operational semantics The operational semantics of a Horn formula Hf w.r.t.
a constraint domain D is inductively defined in Figure 3. The rules have been
obtained as a synthesis of SLD resolution for coinductive LP and inductive CLP.
When restricting to regular terms and proofs, results on the equivalence between
the fixed-point and the operational semantics, which holds for both coinductive

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 340

LP [17] and inductive CLP [11], can be adapted also to the case of coinductive
CLP.

The judgment Hf | H ` G C has the following meaning: the goal G
succeeds w.r.t. the Horn formula Hf and the coinductive hypotheses H , and
returns as solution the satisfiable set of constraints C . That is, as it happens
for CLP, the solutions are all assignments of the variables in C to values that
satisfy C . Clearly Hf , H , and G represent the input of the judgment, whereas
the only output is C . The coinductive hypotheses H are needed for dealing with
coinduction and hence for building regular derivations; for doing that, we have
to keep track of all atoms that have been already resolved with a standard SLD
step (see rule (cls) below); therefore, in practice, H is a stack of atoms.

The rules are parametric in the judgment ` C → C ′, which corresponds to
the abstract specification of the constraint solver for the specific type domain
under consideration, hence if the judgment is derivable then D |= C holds (hence,
C represents the input of the solver) and returns an equivalent but simplified
version C ′ (which, therefore, represents the output of the solver).

Rule (empty) deals with the empty goal (represented by true) which always
succeeds; in this case the returned solution is the empty set of constraints.

Coinduction is managed by rule (co-hyp), where the atom pαn(un) (non de-
terministically selected from the goal) is resolved by using a coinductive hypoth-
esis (non deterministically selected from H). This happens when H contains an
atom pαn(tn) (that is, with the same predicate symbol p and arity n of the atom
selected form the goal) subsuming the atom pαn(un) of the goal for a certain
assignment of values to variables. Such an assignment is determined by the set
of constraints C2 generated by gen(tn, αn, un) and the set of constraints C1 cor-
responding to the solution of the remaining atoms G1,G2 of the goal. Hence, if
C1∪C2 is satisfiable for the solver, then the selected coinductive hypothesis sub-
sumes the atom selected from the goal, and the rule is applicable. The returned
solution is the simplification C ′ of C1 ∪ C2 computed by the solver. Note that
the rule uses subsumption instead of simple term unification, thanks to variance
annotations. This would not be possible in standard CLP where constraints are
associated with clauses and not with predicates.

Rule (cls) non deterministically selects an atom pαn(un) from the goal, and
a clause from Hf s.t. its head has the same predicate symbol p and arity n of the
atom selected from the goal. Then, an instance pαn (tn)← G of the clause where
all variables are bijectively renamed with fresh variables is considered, and the
new goal G1,G ,G2, obtained by replacing the atom pαn(un) with the body G
of the clause, is resolved w.r.t. the coinductive hypotheses augmented with the
head pαn(tn) of the clause. If resolution of G1,G ,G2 succeeds with constraints
C1, and C2 is the set of constraints generated from the head of the clause and the
atom selected from the goal, then the solver checks whether C1∪C2 is satisfiable.
If it so, then the clause is applicable, and resolution of the initial goal succeeds
with the constraint set C ′ obtained by simplifying C1 ∪ C2.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

341 Technical Report, KIT, 2010-13

Prototype implementation We have implemented the operational semantics
defined in Figure 3 with a meta-interpreter9 written in SWI Prolog.

As it happens for Prolog interpreters, the implementation performs a depth
first search of the tree containing all possible derivations, by selecting the atoms
of the goal and the applicable clauses in the usual order (left to right and top to
bottom, respectively). Furthermore, the interpreter first tries to apply coinduc-
tive hypotheses, hence rule (co-hyp) is tried prior than (cls); finally, coinductive
hypotheses are selected starting from the top of the stack (that is, the most
recent coinductive hypothesis is selected first). The basic structure of the meta-
interpreter can be specified by the following pseudo-code.

coCLP(Goal , Solver , Solution) ←
coCLP(Goal , Solver , [], [], Solution).

% (empty)

coCLP(true , _Solver , _CoHyp , Solution , Solution).

% (co-hyp)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)),member(pαn(X

n
), CoHyp),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

coCLP(Goal , Solver , CoHyp , C4 , Solution).

% (cls)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)), clause(pαn(X

n
), Body),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

append_goal(Body , Goal , NewGoal),

coCLP(NewGoal , Solver , [pαn(X
n
)|CoHyp], C4 , Solution).

The main predicate is coCLP/3 (not specified in Figure 3), which is defined in
terms of the auxiliary predicate coCLP/5 which corresponds to the implemen-
tation of the judgment Hf | H ` G C specified in Figure 3. The definition
is parametric in the predicate corresponding to the constraint solver, which is
represented by the variable Solver. The two additional arguments of coCLP/5
(when compared with coCLP/3) are the coinductive hypotheses and the accu-
mulated constraints, which are both initially empty. The use of an accumulator
for the generated constraints allows a more efficient implementation: coCLP/5 is
defined in terms of tail recursion, hence its execution can be optimized; further-
more, the constraints generated from the application of a coinductive hypothesis
or of a clause are checked before proceeding with the resolution of the remaining
atoms of the goal.

The search of an applicable coinductive hypothesis is performed by first creat-
ing an atom with the same predicate symbol and arity of the atom selected from
the goal, where all arguments are fresh distinct variables (predicate fresh_atom,
directly implementable with the standard meta-predicate functor), then such
atom is searched in the list of coinductive hypotheses with the standard member
predicate. Predicate gen corresponds to the function gen defined at the begin-
ning of this section, whereas union performs union of sets of constraints.
9 Available at ftp://ftp.disi.unige.it/person/AnconaD/coCLP.zip.

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 342

The implementation of rule (cls) (last clause) is analogous except for two
details: the standard meta-predicate clause is used to find applicable clauses in
the program, and the auxiliary predicate append_goal is used for appending the
body of the selected clause to the remaining part of the initial goal.

Finally, we outline some of the details of our implementation not shown in
the pseudo-code defined above.

To associate the variance annotation αn with the predicate p/n, one has to
call the goal register_coind_atom(p(αn)). As a side effect of this call, every
clause of p/n is associated with the set of constraints gen(tn, αn, X

n
), where

p(tn) is the head of the clause, and X
n

are distinct and fresh variables. Hence,
the meta-interpreter initially performs the same translation to an equivalent CLP
program as defined at the beginning of this section. The set of pre-generated
constraints is associated with the clause by means of a dynamically asserted fact
containing the reference indexing the clause; such a reference can be retrieved
with the library predicate clause/3.

Pre-generated constraints of clauses are exploited in two different ways: they
are used for dynamically generating the set of constraints which must verified
for allowing application of a clause, and for dynamically pre-generating the con-
straints corresponding to the variance annotation of the predicate of the coin-
ductive hypothesis, which is pushed onto the stack when the clause turns out to
be applicable. Such pre-generated constraints are used for dynamically generat-
ing the set of constraints which must verified for allowing the application of a
coinductive hypothesis.

Finally, the answer returned by the interpreter is the set of computed con-
straints restricted to the variables contained in the initial goal; this final step
has been not included in the pseudo-code described above.

5 Conclusion

We have proposed a novel general approach for expressing type inference as
abstract compilation of programs into coinductive CLP(X), where X is a con-
straint domain defining strong type equivalence and subtyping. Furthermore, to
the best of our knowledge, this is the first paper which formally defines the op-
erational semantics of coinductive CLP and a presents an implementation based
on a Prolog prototype.

Our approach seems particularly promising in the context of object-oriented
programming, when the type domain contains union and object types. There
are at least two interesting directions for investigating on the practicality of our
approach. Devising a constraint solver for subtyping on regular union and object
types is of paramount importance. We have already investigated its axiomati-
zation [2, 3], and, based on this, we are devising an algorithm for implementing
subtyping; however, we are not sure whether it is possible to implement a com-
plete solver, since we still do not know whether subtyping on regular union and
object types is decidable.

D. Ancona, A. Corradi, G. Lagorio, F. Damiani

343 Technical Report, KIT, 2010-13

The other interesting direction of investigation concerns the ability of the
approach to deal with imperative features; promising results have been already
obtained in a recent work [4].

References

1. D. Ancona and G. Lagorio. Coinductive type systems for object-oriented lan-
guages. In S. Drossopoulou, editor, ECOOP 2009, volume 5653 of Lecture Notes
in Computer Science, pages 2–26. Springer, 2009. Best paper prize.

2. D. Ancona and G. Lagorio. Coinductive subtyping for abstract compilation of
object-oriented languages into Horn formulas. In GandALF 2010, Electronic Pro-
ceedings in Theoretical Computer Science, 2010. To appear.

3. D. Ancona and G. Lagorio. Complete coinductive subtyping for abstract compila-
tion of object-oriented languages. In FTfJP 2010, ACM DL, 2010. To appear.

4. D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. Technical report, DISI, January 2010. Submitted for
journal publication.

5. D. Ancona, G. Lagorio, and E. Zucca. Type inference by coinductive logic pro-
gramming. In Post-Proceedings of TYPES’08, number 5497 in Lecture Notes in
Computer Science. Springer, 2009.

6. F. Barbanera, M. Dezani-Cincaglini, and U. de’Liguoro. Intersection and union
types: Syntax and semantics. Information and Computation, 119(2):202–230, 1995.

7. B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25:95–169, 1983.

8. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13:451–490, 1991.

9. A. Igarashi and H. Nagira. Union types for object-oriented programming. Journ.
of Object Technology, 6(2):47–68, 2007.

10. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

11. J. Jaffar and M.J. Maher. Constraint logic programming: A survey. J. Log. Pro-
gram., 19/20:503–581, 1994.

12. N.Saeedloei and G. Gupta. Verifying complex continuous real-time systems with
coinductive CLP(R). In Proc. of LATA 2010, Lecture Notes in Computer Science.
Springer, 2010. To appear.

13. N. Nystrom, V. A. Saraswat, J. Palsberg, and C. Grothoff. Constrained types for
object-oriented languages. In OOPSLA 2008, pages 457–474, 2008.

14. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–55, 1999.

15. Robert Sedgewick. Algorithms. Addison-Wesley, 1983.
16. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending

logic programming with coinduction. In ICALP 2007, pages 472–483, 2007.
17. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming.

In ICLP 2006, pages 330–345, 2006.
18. M. Sulzmann and P. J. Stuckey. HM(X) type inference is CLP(X) solving. Journ.

of Functional Programming, 18(2):251–283, 2008.
19. Hongwei Xi. Dependent ML: an approach to practical programming with depen-

dent types. Journal of Functional Programming, 17(2):215–286, 2007.

Abstract compilation of object-oriented languages into coinductive CLP(X)

Technical Report, KIT, 2010-13 344

Verification of Software Product Lines:
Reducing the Effort with Delta-oriented Slicing

and Proof Reuse
— Position paper —

Daniel Bruns1, Vladimir Klebanov1, and Ina Schaefer2?

1 Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{bruns, klebanov}@kit.edu

2 Chalmers University of Technology, 421 96 Gothenburg, Sweden
schaefer@chalmers.se

Abstract. Software product lines (SPL) are a well-known approach to
develop industry-size adaptable software systems. SPL are often used
in domains where high-quality software is desirable; the overwhelming
product diversity, however, remains a challenge for assuring correctness.
We present our work in progress on reducing the deductive verification
effort across different products of an SPL. On the specification side, our
approach enriches the delta language for describing relations between
products of an SPL with formal specifications. On the verification side,
we combine program slicing and similarity-guided proof reuse to ease the
verification process.

1 Introduction

In this paper, we present our work in progress on deductive verification of soft-
ware product lines. A software product line (SPL) [21] is a set of software sys-
tems (called products) with well-defined commonalities and variabilities. SPL
are often used in domains (e.g., communications, medical, transportation) where
high-quality software is desirable; the overwhelming product diversity, however,
remains a challenge for assuring correctness by any method.

Even without formal verification, the dimensions and complexity of prod-
uct lines make it essential to model the relationships between products explic-
itly. One of the authors has been working on the software engineering aspects
of modeling SPL [23, 24, 22]. This has resulted in a modeling approach called
delta-oriented programming (Section 2). Our current effort aims to exploit the
information available in an SPL model to reuse verification results obtained from
verifying one product when considering another product. Where necessary, we
enrich the model with semantical information (such as formal specifications, Sec-
tion 3). Considering other possibilities to verify SPL that are more meta-level

? This author has been supported by Deutsche Forschungsgemeinschaft (DFG) and
by the EU project FP7-ICT-2007-3 HATS.

345 Technical Report, KIT, 2010-13

(like generic or partial proofs), we decided to go on with a more light-weight
approach first.

The technology that we are using to exemplify our proposal is Java for pro-
gramming, JML [16] for formal specifications and the KeY system [6] for de-
ductive verification. Our ideas should also be applicable to related technologies
though. In particular, we try to make no assumptions about the verification
system:

– We support both ways that verification systems can treat method calls: using
the method contract or inlining the implementation. Using the contract is
inherently modular while inlining is not, but it still has its advantages. It is
simple, does not force the developer to write “trivial” contracts for helper
methods, and reduces the number of commitments that need to be updated
as the code evolves.

– Our method is also completely parametric on how a verification system treats
invariants. In the worst case, all methods in the program need to be verified
to preserve every invariant, as the invariant vocabulary is (in general) unre-
stricted. In practice verification systems use criteria such as visibility, syntax
and typing, assignable clauses or ownership to reduce the workload. We sim-
ply limit ourselves to saying that all relevant methods must be checked.

Our approach consists of two parts. First, we analyze the SPL model to
determine which parts of the original product are unchanged in the new product
and do not have to be verified again but fulfill the specifications by product
construction. This analysis uses static slicing techniques (Section 4). It is a new
development and not yet implemented.

Second, for the modified parts, we apply a previously-developed (and imple-
mented) proof reuse technique based on the assumption of similarity between
the two implementation variants. It uses a similarity measure that determines
which proof steps from proofs for the original product can be used to establish
the proof obligations for the new product. This is a light-weight technique based
on proof replay rather than on proof generation by construction (Section 5).

We present related work in Section 6 and draw conclusions in Section 7.

2 Delta-oriented Programming of Software Product Lines

Delta-oriented programming [23, 24, 22] is a novel approach to implementing soft-
ware product lines. Delta-oriented programming offers an expressive and flexible
programming “meta-language”. Its aim is to relax the restrictions of currently es-
tablished SPL description formalisms such as feature-oriented programming [5],
which originated from the concept of stepwise development [4]. For a more de-
tailed comparison between delta-oriented and feature-oriented programming, the
reader is referred to [23].

In delta-oriented programming, an SPL is implemented as a core module
together with a set of delta modules. The core module contains a complete prod-
uct for some valid feature configuration, which can be developed by conventional

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 346

single-application engineering techniques. Delta modules specify changes to be
applied in order to implement other products.

The notation we use for Java programs constituting individual products is
the following:

Definition 1. A program is a set of class declarations (further called simply
classes) and a binary inheritance relation on this set. We are primarily interested
in the transitive closure of this relation @ and the transitive reflexive closure v.
A @ B means that the class A is below class B in the inheritance hierarchy.
Abstract classes and interfaces are omitted in this paper for brevity.

A class is a set of field and method declarations (which are built up of names,
types, parameters, bodies, etc., as appropriate in Java). If C is a class declaring
a method with signature m, then we will refer to this particular implementation
as C::m. Vice versa, we identify the method signature m with a set of classes in
a product that declare a method with that signature: C ∈ m iff C::m ∈ C.

Modification operations used in delta modules so far are the following:

– adding/removing a class declaration C: adds(C), removes(C)
– modifying class C by
• adding/removing a field f : adds(C::f), removes(C::f)
• adding/removing a method declaration m: adds(C::m), removes(C::m)
• changing the direct superclass of C to C ′: reparents(C,C ′)

The variability of an SPL is defined by the feature set F . Valid member prod-
ucts of an SPL are given by the feature model F ⊆ 2F . Each product uniquely
corresponds to a combination of features, also called feature configuration. In
the following, we identify products and feature configurations in F . Each delta
module d contains an application condition ϕd (the when clause in concrete syn-
tax), which is a propositional formula over the feature set F . The application
conditions specify which delta modules are necessary for which features. For ev-
ery pair of valid products P1, P2 ∈ F , ∆(P1, P2) is the set of delta modules that
have to be applied to the product P1 in order to obtain a product P2 with a
different feature configuration.3

The original delta language proposal [23] demands a partial order on deltas to
guarantee that the result of applying ∆(P1, P2) is unique, as well as certain other
syntactical well-formedness conditions, which we are not concerned with here.
We just briefly mention a type system [7] ensuring that all products derivable
in a delta-oriented product line are type-safe. The advantage of the type system
is that it allows typechecking the core and delta modules in isolation, such that
a change in one delta module only requires rechecking this delta module.

Example 1. Our running example will be a delta-oriented product line of bank
accounts inspired by [10]. Figure 1a shows the core module of this SPL with
the basic Account class. Figure 1b shows the delta module DInvestment for

3 This is a slight generalization of the original delta approach, where deltas could only
be applied to the core product.

D. Bruns, V. Klebanov, I. Schaefer

347 Technical Report, KIT, 2010-13

core Base {

class Account extends Object {

int balance;

int bonus;

void addBonus(int x){}

void update(int x) {

balance += x;

}

}

}

(a) Core module with basic Account class

de l t a DInvestment when Investment {

mod i f i e s class Account {

removes void addBonus(int x);

adds void addBonus(int x) {

bonus += x;

}

removes void update(int x);

adds void update(int x){

balance += x;

if (x > 0) addBonus(x/2);

}

}

}

(b) Delta module for feature Investment

class Account extends Object {

int balance;

int bonus;

void addBonus(int x){

bonus += x;

}

void update(int x) {

balance += x;

if (x > 0) addBonus(x/2);

}

}

(c) The result of delta module application medskip

Fig. 1. Example of a delta-oriented SPL.

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 348

activating the Investment feature, which accumulates a bonus for each deposit
made. Figure 1c contains the result of applying the delta module to the core,
which is, again, a conventional Java class.

Later on, we will also see the Paycheck feature adding the class Employer as
a client of Account. ♦

3 Delta-oriented Formal Specification of Software
Product Lines

We use the Java Modeling Language (JML) [16] for the formal specification of
product properties. In this work, we concentrate on class invariants and method
contracts with pre- and post-conditions. As JML specifications are written di-
rectly into Java source files as comments, it is possible to include them in the
delta language introduced in Section 2. Core modules are specified just as con-
ventional programs. An example of a core module with JML specifications can
be seen in the first listing of Example 3 (missing preconditions default to true).

For delta modules, we extend the delta language with the following operations
to manipulate specifications:

– adding an invariant to a class: adds(C, I)
– removing an invariant from a class: removes(C, I)
– adding a contract (pre-/post-condition pair) to a method: adds(C::m, ct)
– removing a contract from a method: removes(C::m, ct)

Note that we only consider pairs of exactly one pre- and post-condition to be
added or removed together. In case one of them is trivial (i.e., true), it is omitted.

Example 2. Figure 2 shows the delta module DInvestmentSpec changing the
specifications in class Account. It is applied for the same configurations as the
code delta DInvestment, since it has the same application condition.4 ♦

It should be noted that in general there is no concordance between code deltas
and specification deltas for one product. It is perfectly conceivable to change
the code without changing the specification or the other way round. However,
there are (at least) the following exceptions where code changes influence the
specification:

– Removing a class or a method induces the removal of attached specifications.
– JML enforces behavioral subtyping, i.e., subclasses inherit the specifications

of the superclass. Changing the inheritance hierarchy, thus, also changes the
specification.

– JML by default enforces non-nullness of fields, variables, etc. Adding a field
of reference type to a class automatically creates an implicit invariant about
this field.

– Changing a (pure) method changes the semantics of specifications using this
method.

4 In principle, it is possible to specify code and specification changes in the same delta
module. The separation in this work is for presentation reasons.

D. Bruns, V. Klebanov, I. Schaefer

349 Technical Report, KIT, 2010-13

de l t a DInvestmentSpec when Investment {

mod i f i e s class Account {

removes //@ ensures bonus == \old(bonus);

from void addBonus(int x);

adds //@ requires x >= 0;

//@ ensures bonus == \old(bonus) + x;

to void addBonus(int x);

}

Fig. 2. A specification delta adds and removes pre- and post-conditions from methods.

4 Delta-oriented Slicing

If a product P2 is derived from the product P1 by delta application, in general,
both the implementation as well as the specification change. However, from the
information available in the used delta modules, we can infer conservatively to
a large extent which specification parts of the new product P2 may still be
considered valid (due to proofs done for P1) and which parts have to be (re-
)proven in order to establish the specified properties.

The latter parts we call a delta-oriented slice, and in this section we present
a procedure we have developed for computing it. Slicing originated in program
analysis [28, 26] as a technique answering the question which program statements
influence the value of a given variable at a given point. Our algorithm answers
the question which proofs are influenced by a delta module. The basis of the
algorithm are the definitions of the Java language [11] and JML.

Figure 3 shows the main slicing algorithm. As the first step of the algorithm,
we copy all (valid) proofs from product P1 into product P2 regardless of their
validity for P2. In this process we already weed out all the proofs where the
vocabulary involved (be it code or specifications) is no longer present in the new
product. In the resulting over-approximated set of proofs for the new product,
our algorithm identifies the proofs that do not hold in the new context and marks
them as invalid. These proofs have to be redone. The algorithm also identifies
new proof obligations that have to be discharged in order to obtain a full set of
proofs for the specifications of P2.

This goal is achieved by carrying out steps 2–12, each corresponding to a kind
of change operator that can occur in ∆(P1, P2). For the sake of the algorithm, we
assume that this set contains just one delta module (i.e., we assume delta mod-
ule composition). The algorithm currently considers only the structural change
information available in the delta and does not take the content of the modified
methods or specifications into account. For some of the algorithm steps, we need
to determine when the implementation C::m is potentially referenced by the
method invocation expression e.m(). This subroutine is shown in Figure 4.

Example 3. (i) We return to the bank account example introduced in Section 2.
The core product with the basic Account class now contains specifications (see

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 350

Input: A product P1, a set of proofs for the product P1, and the delta ∆(P1, P2).
Output: A set of valid proofs for the product P2 = P1 +∆(P1, P2).

1. Copy all proofs from P1 to P2 (regardless of validity). Weed out all proofs where
the vocabulary involved (code or specification) is no longer present.

The following steps refer to the content of the delta module ∆(P1, P2):

2. For each adds(C):
(a) do adds(C::f) for each f ∈ C
(b) do adds(C::m) for each m ∈ C

3. For each removes(C): do removes(C::f) and removes(C::m) for each f,m ∈ C
4. For each adds(C::m):

(a) invalidate all pre-existing proofs where m was inlined and C::m would have
been among potentially referenced implementations (see Figure 4)

(b) proofs using the contracts for m remain valid
(c) prove that C::m satisfies all specifications of C (either stated directly or

inherited), as well as all other invariants
5. For each removes(C::m):

(a) invalidate all pre-existing proofs where m was inlined and C::m would have
been among potentially referenced implementations (Figure 4)

(b) proofs using the contracts for m remain valid
6. For each adds(C::f):

(a) find the set of method implementations M referring to C::f in P2

(b) invalidate all pre-existing proofs about any C′::m ∈M
(c) invalidate all pre-existing proofs inlining any C′::m ∈M
(d) invalidate all pre-existing proofs of specifications referring to C::f in P2

7. For each removes(C::f): same as step 6, but look for C::f in P1

8. For each reparents(C,C′):
(a) invalidate all pre-existing proofs inlining any C′′::m with C′′ v C
(b) contracts for methods in reparented classes remain valid unless the contract

no longer exists (inherited contract)

(c) invalidate proofs for specifications inherited from any class K with eC v K @bC where bC is the least common supertype of C′ and the old direct supertypeeC of C (see Figure 5 for an illustration)
(d) prove that all classes C′′ v C satisfy the specifications inherited from new

superclasses K with C′ v K @ bC
9. For each adds(C::m, ct)

(a) prove that the contract ct is fulfilled by all C′::m with C′ v C
10. For each removes(C::m, ct)

(a) invalidate all pre-existing proofs that use the contract ct
11. For each adds(C, I)

(a) prove that the invariant I is fulfilled by all relevant implementations
12. For each removes(C, I)

(a) invalidate all pre-existing proofs that assume the invariant I

Fig. 3. The delta-oriented slicing algorithm

D. Bruns, V. Klebanov, I. Schaefer

351 Technical Report, KIT, 2010-13

When is the implementation C::m potentially referenced by the method invocation
expression e.m()? We discern three different method invocation modes, defining for
each a starting point class S of method lookup. The relation of S and C determines
the answer:

Instance or “virtual” mode. This is the most common mode. The target ex-
pression (of type S) references an object (it may be an implicit this reference),
and the method is not declared static or private. This invocation mode requires
dynamic binding.
– If C v S, then “yes”
– If S v C and exists S′ v S such that for all K with S′ v K @ C holds
K 6∈ m, then “yes” (cf. Figure 6).

– Otherwise, “no”.
Static mode (m is declared static or private). In this case, no dynamic bind-

ing is performed. The implementation to invoke is determined in accordance with
the declared static type S of e. If C = S then “yes”, otherwise “no”.

Super mode (e is the keyword super). This mode is used to access the meth-
ods of the immediate superclass S (of the class containing the invocation expres-
sion e.m()).
– If S v C and for all K with S v K @ C holds K 6∈ m, then “yes”.
– Otherwise, “no”.

Fig. 4. Subroutine: When is a method implementation potentially referenced?

bC

eC C′

C

C′′

C

C′′

reparents

Fig. 5. Illustration of reparents(C,C′).
Solid lines represent the direct subtyp-
ing relation, dotted lines its transitive
closure, and dashed lines show relations
of the previous product.

C C::m()

S inherits C::m()

S′ inherits C::m()

S′′ S′′::m()

Fig. 6. Virtual method invocation
mode and method overriding.

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 352

below). It can easily be proven that both methods satisfy their contracts and
the class invariant.

core Base {

class Account extends Object {

//@ invariant bonus >= 0;

int balance;

int bonus;

//@ ensures bonus == \old(bonus);

void addBonus(int x){}

/*@ ensures balance == \old(balance) + x;

@ && bonus >= \old(bonus); @*/

void update(int x) {

balance += x;

}

}

}

(ii) Next, we apply the delta module shown below in order to generate a new
product with the additional feature Paycheck. This module adds an Employer
class with a reference to the account and a payday() method with a correspond-
ing specification. In order to determine which proofs for the basic bank account
are still valid, we use the delta-oriented slicing algorithm. We perform step 2 for
the added class, leading to the steps 4 for the added method, 6 for the added
field and 9 for the added contract. Only step 4c is non-trivial, since the method
payday() did not exist before. The method can be verified easily – either by
inlining the implementation of addBonus() and update() or by applying their
contracts. There is no existing proof to reuse. Step 6 is trivial (the set M is
empty) as the field a did not exist previously at all. Step 9 is subsumed by
step 4 as Employer has no subclasses. No proofs are invalidated.

de l t a DPaycheck when Paycheck {

adds class Employer extends Object {

Account a;

/*@ requires x >= 0 && bonus >= 0;

@ ensures a.balance == \old(a.balance) + x

@ && a.bonus >= \old(a.bonus);

@*/

void payday(int x, int bonus) {

a.addBonus(bonus);

a.update(x);

}

}

}

D. Bruns, V. Klebanov, I. Schaefer

353 Technical Report, KIT, 2010-13

(iii) If we now want to incorporate the Investment feature as well, we apply
the deltas DInvestment (Figure 1b) and DInvestmentSpec (Figure 2) to the
latest product. These two deltas modify the implementation and specification
of the method addBonus() and the implementation of the method update() in
the class Account. The slicing steps to take to determine which proofs from the
previous product are still valid are: 4 for the added methods, 5 for the removed
methods, 9 for the added contract and 10 for the removed contract.

Steps 4c and 9 dictate that both update() and addBonus() have to be
reproven for conformance with the class invariant and their respective (modi-
fied) contracts. Proof reuse is possible here (see Example 4 later). In contrast,
payday() has not changed (neither code nor specification), but the proof that
it satisfies its contract is now invalid. The proof has been invalidated by step 4a
or 10, since it (the proof) depends on either the implementation or the contract
of addBonus(). The proof reuse mechanism may be applied here to find a new
proof efficiently. The contract of update() has not changed, and all proofs using
it remain valid (step 4b). ♦

5 Proof Reuse for Modified Methods

In the delta-oriented slicing step, we have identified which specification parts
in the newly generated product have to be rechecked. However, some method
bodies that are modified may still have considerable similarities to the ones in
the verified product. The correctness proofs of such modified methods are likely
to resemble the old proofs. Here, we propose to employ proof reuse.

The reuse mechanism has been originally developed to save verification effort
during incremental development (i.e., after fixing a bug). Since then the method
has been applied to a number of different change management scenarios. The
best account of proof reuse in KeY can be found in [14]. This part of our proposal
is tailored to interactive verification systems like KeY, where the user provides
hints to the prover by manipulating the proof object.

Of course, the proofs in our illustrating example are trivial and do not require
proof reuse. In practice however, proofs do contain proof steps that cannot be
(efficiently) found automatically. Users have to instantiate quantifiers, provide
lemmas, loop invariants, and guide proof search in other ways. These efforts can
be recycled by proof reuse. The main features of our reuse method are:

– The units of reuse are single rule applications. That is, proofs are reused
incrementally, one proof step at a time. This allows us to keep our method
flexible, avoiding the need to build knowledge about the target programming
language or the particular calculus rules into the reuse mechanism. Further-
more, the soundness of proofs is guaranteed, since the usual rule application
mechanism of the prover is used for proof construction.

– Proof steps can be adapted and reused even if the situation in the new proof
is merely similar but not identical to the template.

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 354

– In case reuse has to stop because a part in the changed program is reached
that requires genuinely new proof steps, reuse can be resumed later on when
an unaffected part is reached. The system detects when this is the case.

The mechanism consists of two largely independent phases. Phase 1 ana-
lyzes the differences in the programs, identifies common code parts, and thus
reusable subproofs (or rather beginnings of these subproofs). Phase 2 performs a
similarity-guided replay of individual proof steps supported by the information
gathered during phase 1.

For phase 1, we use the GNU diff utility, which is well-known to produce
meaningful change sets for modifications to source files. We run diff on the
source of the old and the new product (it is sufficient to limit the input to the
changed method implementations in the delta scenario). Heuristics then help
identify common code parts in both products based on diff output. The proof
fragments dealing with these common parts are good candidates for reuse.

Example 4. This is diff output for the update() method between a product
implementation not including the Investment feature and one including it:

void update(int x) {
balance += x;

+ if (x > 0) addBonus(x/2);
}

The plus sign on the left in the output of the diff shows that the last line of
the method was inserted in the new product, while everything else remained
unchanged. We, thus, identify two reusable subproofs in the template proof for
the old version of the update() method: one that starts with the beginning of
the update() method and the other containing the proof steps after the method
has ended. These are the points where reuse will restart after the inserted code
calling the addBonus() method has been treated. ♦

During phase 2, the reuse mechanism performs proof replay. In contrast to
other approaches, this form of proof replay is based not just on the structure
of the proof, but also on a similarity measure between sequents involved in
proof steps. The similarity measure indicates whether it is appropriate to reuse
a particular proof step from the template proof in a given situation in the new
proof.

The presented proof reuse technique works well for changed implementa-
tions; it can also be used for changed specifications but much less effectively.
Specifications are less structured than programs, and proof shapes adhere to im-
plementations rather than specifications, which makes finding reusable subproofs
much harder.

6 Related Work

Formal methods are used in the context of software product lines for a variety
of applications. A large body of work is concerned with the formal analysis of

D. Bruns, V. Klebanov, I. Schaefer

355 Technical Report, KIT, 2010-13

feature models [2] or product models [17]. Further approaches (e.g., [9]) verify
that the variability specified by a feature model is correctly implemented in code.
There are several approaches to guarantee type-safety of feature-oriented product
line implementations [1, 10, 25] by means of external analyses or type systems.
Efficient verification of product behavior, however, is not well established. In
testing [18, 20] or model checking [15, 8] there is work to make validation of
product lines more efficient, though.

In [3], a case study for the product line development of a compiler is con-
sidered. The compiler is developed by stepwise refinement or extension of the
compiler functionality. The correctness proof of the compiler is extended and
refined inline with the functional extensions by introduction or adaptation of
invariants and the addition of case distinctions. This approach relies on a fixed
structure of the induction proof for compiler correctness that allows determining
in advance which modifications of the proof are required by functional changes.
In our work, we do not have a predetermined proof structure since we consider
arbitrary behavioral properties formulated by JML specifications.

Reuse of verification artifacts can profit from the plethora of available insight
in related fields, such as slicing for debugging [28, 26] or model checking [12], reuse
of refined specifications [27], change management in theory development [19, 13],
incremental compilation, refactoring, and software change impact analysis.

Of course, deriving a new product in a product line is also closely related
to evolving a single product. Most verification systems implement some kind
of proof management for this case. Alas, system developers apparently – and
unjustifiedly, we think – tend to consider this important component an imple-
mentation detail, as published accounts on this subject are rare.

7 Conclusions

Working on verification of SPL we have come to a number of conclusions. Most
of them regard transition from a syntactic to a more semantic-based modeling
of SPL.

– In order to define delta operations on specifications in a meaningful way, it
is necessary to uniquely identify class invariants and method contracts (e.g.,
for removal or modification). This could be handled by introducing labels
(as most tools probably already do internally).

– So far the operations we have defined for specification deltas are rather ba-
sic. One reason for this is simplicity. The other one is that at least with the
current calculi, the shape of a proof follows rather closely the shape of the
program, but it is much less related to the shape of a specification. It re-
mains to be seen whether adding more fine-grained change information in the
specification deltas helps obtaining new proofs more efficiently. Additional
operators that appear promising to us are case distinctions and redundant
specifications (lemmas).

– Until now, the delta module operations (for code) and their applicability con-
ditions are mostly syntactical. Greater power and precision can be achieved

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 356

by adding more semantical information. For instance, such a description
might dictate that a certain feature is only compatible with another one if
the base product preserves certain data invariants. New tools could be de-
vised to assist in deriving consistent products with desired behavior based
on semantical information.

– Getting the formal specification of a product right is difficult. Deriving a
correct product from another is even more difficult. Even if two products P1

and P2 fulfill the specification I (as ensured by our approach), it is still only
syntactically the same specification I. With current state of specification
languages, it is hard to infer to which degree changes in implementation or
other specifications between P1 and P2 may cause the semantics of I to
change in subtle and unintended ways. Such a change constitutes a com-
plex retrenchment that involves the complete semantics of the specification
language. This issue needs further investigation.

References

1. Sven Apel, Christian Kästner, Armin Grösslinger, and Christian Lengauer. Type
safety for feature-oriented product lines. Automated Software Engineering An
International Journal, 2010.

2. Don S. Batory, David Benavides, and Antonio Ruiz-Cortes. Automated analysis
of feature models: Challenges ahead. Communications of the ACM, 49(12), 2006.

3. Don S. Batory and Egon Börger. Modularizing theorems for software product lines:
The Jbook case study. Journal of Universal Computer Science, 14(12), 2008.

4. Don S. Batory and Sean W. O’Malley. The design and implementation of hier-
archical software systems with reusable components. ACM Trans. Softw. Eng.
Methodol., 1(4):355–398, 1992.

5. Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004.

6. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

7. Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. F∆J: A core calculus for
delta-oriented programming, 2010. http://www.di.unito.it/~damiani/papers/

fdj.pdf.
8. Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-

Franois Raskin. Model checking lots of systems: Efficient verification of temporal
properties in software product lines (to appear). In 32nd International Conference
on Software Engineering, ICSE 2010, May 2-8, 2010, Cape Town, South Africa,
Proceedings. IEEE, 2010.

9. Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Conf. on Generative Program-
ming and Component Engineering (GPCE), 2006.

10. Benjamin Delaware, William Cook, and Don Batory. A Machine-Checked Model
of Safe Composition. In Foundations of Aspect-Oriented Languages (FOAL), pages
31–35. ACM, 2009.

11. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Addison-Wesley Longman, Amsterdam, 3rd edition, 2005.

D. Bruns, V. Klebanov, I. Schaefer

357 Technical Report, KIT, 2010-13

12. John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for model
construction. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

13. Dieter Hutter. Management of change in structured verification. In Automated
Software Engineering (ASE), page 23, 2000.

14. Vladimir Klebanov. Proof reuse. In Beckert et al. [6].
15. Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking of domain

artifacts in product line engineering. In Automated Software Engineering (ASE),
pages 269–280. IEEE Computer Society, 2009.

16. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a
behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

17. Mike Mannion. Using first-order logic for product line model validation. In Garry
Chastek, editor, Software Product Lines: Proceedings of the Second Software Prod-
uct Line Conference (SPLC2), LNCS 2379, pages 176–187, San Diego, CA, August
2002. Springer.

18. John D. McGregor. Testing a software product line. Technical Report CMU/SEI-
2001-TR-022, Software Engineering Institute, Carnegie Mellon University, Decem-
ber 2001.

19. Till Mossakowski. Heterogeneous theories and the heterogeneous tool set. In
Yannis Kalfoglou, W. Marco Schorlemmer, Amit P. Sheth, Steffen Staab, and
Michael Uschold, editors, Semantic Interoperability and Integration, volume 04391
of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005.

20. Henry Muccini and André van der Hoek. Towards testing product line architec-
tures. Electr. Notes Theor. Comput. Sci, 82(6), 2003.

21. Klaus Pohl, Günther Böckle, and Frank van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, Heidelberg, 2005.

22. Ina Schaefer. Variability modelling for model-driven development of software prod-
uct lines. In 4th Int. Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), Linz, Austria, January 2010.

23. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. Delta-oriented programming of software product lines. In Proceedings,
14th International Software Product Line Conference, Lecture Notes in Computer
Science, Jeju, South Korea, 2010. Springer. To appear.

24. Ina Schaefer, Alexander Worret, and Arndt Poetzsch-Heffter. A model-based
framework for automated product derivation. In Model-driven Approaches in Soft-
ware Product Line Engineering (MAPLE 2009), 2009.

25. Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition of
product lines. In GPCE, pages 95–104. ACM, 2007.

26. Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3), 1995.

27. Heike Wehrheim. Slicing techniques for verification re-use. Theor. Comput. Sci,
343(3):509–528, 2005.

28. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, August 1984.

Verification of Software Product Lines: Reducing the Effort with Delta-oriented Slicing and Proof Reuse

Technical Report, KIT, 2010-13 358

Author Index

Ancona, Davide, 330
Andronick, June, 2

Balat, Vincent, 314
Barré, Nicolas, 253
Besson, Frédéric, 253
Bonsangue, Marcello, 38
Bormer, Thorsten, 98
Boulmé, Sylvain, 143
Broch Johnsen, Einar, 53
Bruns, Daniel, 345
Bubel, Richard, 220, 314
Burghardt, Jochen, 191

Chouali, Samir, 7
Cochran, Dermot, 235
Corradi, Andrea, 330

Damiani, Ferruccio, 330
de Boer, Frank, 38
Demange, Delphine, 253
Din, Crystal, 220

Engel, Christian, 298

Faitelson, David, 160

Gerlach, Jens, 191
Gladisch, Christoph, 176
Gurov, Dilian, 22

Hähnle, Reiner, 220, 314
Holotescu, Casandra, 283
Hubert, Laurent, 253
Huisman, Marieke, 22

Jensen, Thomas, 253

Kiniry, Joe, 235
Klebanov, Vladimir, 345
Kurnia, Ilham W., 268

Lagorio, Giovanni, 330
Larsen, Kim G. , 1
Ledinot, Emmanuel, 205
Logozzo, Francesco , 5

Maingaud, Séverine, 314
Marché, Claude, 143
Miquel, Alexandre, 314
Monfort, Vincent, 253
Mouelhi, Sebti, 7
Mountassir, Hassan, 7

Nagmoti, Rinkesh, 68

Owe, Olaf, 53

Paganelli, Gabriele, 83
Pariente, Dillon, 205
Pichardie, David, 253
Poetzsch-Heffter, Arnd, 268

Rot, Jurriaan, 38

Schaefer, Ina, 345
Schlatte, Rudolf, 53
Schmitt, Peter H., 113, 298

Tafat, Asma, 143
Tapia Tarifa, Silvia Lizeth, 53
Turpin, Tiphaine, 253
Tyszberowicz, Shmuel, 160

Ulbrich, Mattias, 113, 128

Wagner, Markus, 98
Weiß, Benjamin, 113
Welsch, Yannick, 268

Zimmerman, Daniel M., 68

359 Technical Report, KIT, 2010-13

	2010,13_Titelbl.pdf
	2010-13_FoVeOOS2010_pdfa-2.pdf

