
HAL Id: hal-03338493
https://hal.inria.fr/hal-03338493

Submitted on 8 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On continuation-passing transformations and expected
cost analysis

Martin Avanzini, Gilles Barthe, Ugo Dal Lago

To cite this version:
Martin Avanzini, Gilles Barthe, Ugo Dal Lago. On continuation-passing transformations and expected
cost analysis. Proceedings of the ACM on Programming Languages, 2021, 5 (ICFP), pp.1 - 30.
�10.1145/3473592�. �hal-03338493�

https://hal.inria.fr/hal-03338493
https://hal.archives-ouvertes.fr

87

On Continuation-Passing Transformations and Expected
Cost Analysis

MARTIN AVANZINI, Inria Sophia Antipolis – Méditerranée, France

GILLES BARTHE,Max Planck Institute for Security and Privacy, Germany

UGO DAL LAGO, University of Bologna, Italy and Inria Sophia Antipolis – Méditerranée, France

We define a continuation-passing style (CPS) translation for a typed _-calculus with probabilistic choice,

unbounded recursion, and a tick operator — for modeling cost. The target language is a (non-probabilistic)

_-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying

the CPS transform of an expression𝑀 to the continuation _𝑣 .0 yields the expected cost of𝑀 . We also introduce

a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds

on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate

our translation to Kaminski et al.’s ert-calculus, showing that the latter can be recovered by applying our CPS

translation to (a generalization of) the classic embedding of imperative programs into _-calculus. Finally, we

prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason

about almost sure termination.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →
Functional languages.

Additional Key Words and Phrases: cost analysis, probabilistic programming, CPS transformation

ACM Reference Format:
Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On Continuation-Passing Transformations and

Expected Cost Analysis. Proc. ACM Program. Lang. 5, ICFP, Article 87 (August 2021), 30 pages. https://doi.org/
10.1145/3473592

1 INTRODUCTION
Randomized computation has been one of the most fruitful extensions of the standard, deterministic,

computational model, since the birth of computer science [De Leeuw et al. 1956; III 1974; Rabin 1963;

Santos 1969]. While randomization has been pervasive, and sometimes essential, in the design of,

e.g., efficient algorithms [Motwani and Raghavan 1995] and cryptographic primitives [Goldwasser

and Micali 1984], the development of a proper theory of randomized programming languages has

been (starting from the pioneeringworks by Saheb-Jaromi [Saheb-Djahromi 1978] and Kozen [Kozen

1981]) much slower, and is still a very active research area (see, e.g., [Batz et al. 2021; Ehrhard et al.

2018]).

Among the program properties of interest, one certainly finds functional properties, like program

correctness, but also nonfunctional, more intentional ones. An example of non-functional properties

of particular interest are those related to the execution cost, a key property of programs and the

main focus of cost analysis. In general, the intended result of cost analysis are estimates about the

Authors’ addresses: Martin Avanzini, martin.avanzini@inria.fr, Inria Sophia Antipolis – Méditerranée, France; Gilles

Barthe, gjbarthe@gmail.com, Max Planck Institute for Security and Privacy, Germany; Ugo Dal Lago, ugo.dallago@unibo.it,

University of Bologna, Italy and Inria Sophia Antipolis – Méditerranée, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART87

https://doi.org/10.1145/3473592

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

https://doi.org/10.1145/3473592
https://doi.org/10.1145/3473592
https://doi.org/10.1145/3473592

87:2 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

execution cost, which can have various levels of accuracy. A wide range of approaches for cost

analyses exist, based on, e.g., abstract interpretation [Albert et al. 2012], type systems [Jost et al.

2010] and program logics [Atkey 2011; Danielsson 2008; Nielson 1987; Radicek et al. 2018]. The

latter are generally more expressive, and are well suited for examples that require either value

sensitivity or functional verification.

This paper is concerned about cost analysis of randomized higher-order programs, i.e. programs

which can sample values from chosen distributions during execution, and at the same time are

capable of treating functions as first-class citizens. The evaluation of such a program results in a

distribution of values, and has an expected cost, namely the average cost the program experiences

along its execution. In this setting, the intended result of cost analysis is an upper bound for the

expected cost. Some of the approaches used in the deterministic setting extend to the probabilistic

setting, namely type systems and program logics [Kaminski and Katoen 2017; Kaminski et al. 2016;

Olmedo et al. 2016]. In a higher-order setting, the only technique which has been studied is the

one based on types, which have indeed been proved to be applicable to higher-order randomized

languages [Avanzini et al. 2019a; Dal Lago and Grellois 2017; Wang et al. 2020]. The main advantage

of adopting type systems is the inherent compositionality of the obtained methodology. On the

other hand, type systems for randomized languages are generally designed around abstractions

which prevent them to prove arbitrary bounds.

A different approach to analyse a given program is driven by program transformations: the
program at hand is transformed into another one, possibly written in a simpler language for which

some analysis methodologies have already been provided. This, of course, requires a proof that the

result of the analysis of the transformed program can somehow be lifted back to the source program.

Examples of such an approach are found in the realm of deterministic programs (e.g., [Avanzini

et al. 2015; Cutler et al. 2020; Wegbreit 1975]). However, the design of program transformations for

(higher-order) randomized programs is a largely unexplored research area. In particular, reducing

expected cost analysis to another, better analysed, and conceptually simpler kind of analysis seems

natural, but to the best of the authors knowledge, has not been studied so far. This is precisely

what we do in this paper. Specifically, we make the following contributions:

• We provide a continuation-passing style (CPS) transformation for a probabilistic variation of

Plotkin’s PCF. The target of the transformation is given by the pure fragment of the source

language, extended with a type of extended positive reals. We define a denotational semantics

of the target language, by giving meaning to recursive definitions in terms of a non-standard

interpretation of positive real numbers. Under this interpretation, the expected cost of the source
program is the denotation of the target program applied to the continuation _𝑣 .0. This way, the

expected cost of the source program can be analysed, thanks to the program transformation,

by looking at the extensional behavior of the pure program, thus taking advantage of any

methodology for reasoning about the latter.

• As one example of such amethodology, we introduce a form of unary higher-order logic [Aguirre

et al. 2017] in which statements about terms of the target language can be proved to hold in a

sound way, even in the presence of recursive definitions. This crucially relies on a restriction on

the kind of predicates one employs when dealing with functions defined as fixed points. Despite

ruling out many logical formulas, this class includes the kind of predicates one is interested at

while proving upper bounds on the expected cost.

• We illustrate the overall methodology via the analysis of two classic examples, viz a random

walk example and an implementation of the coupon collectors problem.

• We show that the ert-calculus of Kaminski et al. [2018] — a weakest pre-expectation calculus

for reasoning about the expected runtime of randomized algorithms written in an imperative

probabilistic language — is recovered through an application of our CPS transformation on a

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:3

coupons : List(C) → List(C)
let coupons 𝑐𝑠 =

letrec collect 𝑜𝑠 =
if 𝑐𝑠 ⊆ 𝑜𝑠

then 𝑐𝑠

else collect (draw(𝑐𝑠)✓ :: 𝑜𝑠)
in collect []

(a) The coupons function.

couponsCPS : List(C) → (List(C) → Real+) → Real+

let couponsCPS 𝑐𝑠 𝑘 =

letrec collectCPS 𝑜𝑠 𝑘 =

if 𝑐𝑠 ⊆ 𝑜𝑠

then 𝑘 𝑜𝑠

else 1 + ∑
𝑐∈𝑐𝑠 1/|cs| ∗ collectCPS (𝑐 :: 𝑜𝑠) 𝑘

in collectCPS [] 𝑘

(b) The CPSed function.

Fig. 1. A functional implementation of the coupon-collector problem (a) and the result of the costed CPS
transformation (b).

standard embedding of (probabilistic) imperative programs within our source language. Our

methodology thus strictly extends upon the strength of the ert-calculus, a calculus that is not
only sound but also complete for imperative, probabilistic programs.

• We show that our methodology is not limited to expected cost analysis, but can also be used to

reason about pre-expectations and almost sure termination.

Outline. We start with an informal explanation in Section 2. The target language is defined in

Section 3, and the transformation — as well as the target language — is formalised and proved

correct in Section 4. In Section 5 we introduce the aforementioned higher-order logic. Section 6

shows the embedding of the ert-calculus in our setting. In Section 7 we briefly discuss some further

implication of our results. Finally, we draw pointers to related work in Section 8 and conclude in

Section 9.

2 RANDOMIZED PROGRAMS AND CPS: A BIRD’S EYE VIEW
In this section, we illustrate how our continuation-passing transformation works on some concrete

examples of randomized programs, and in particular on the so-called coupon-collector example.

Consider the piece of code in Fig. 1a, written in a functional language. The idea is that someone

wants to collect all the coupons in a list 𝑐𝑠 , and that she does so by keeping track of the coupons

she already has in another, initially empty, list 𝑜𝑠 . Coupons are collected by iteratively drawing
coupons from 𝑐𝑠 and adding them to 𝑜𝑠 , until all the desired coupons in 𝑐𝑠 are also part of 𝑜𝑠 .

The program at hand can be seen as a randomized program, due to the presence of the primitive

draw : List(C) → C, which samples an element uniformly at random from the argument list. The

program also produces another kind of effect, namely the one raised by the (·)✓ primitive. This is

meant to be a way of modeling cost from within the program: whenever a draw is made, the cost of

the underlying computation is increased by 1. As an example, calling coupons with the argument

list [1, 2] gives rise to the recursion tree in Figure 2a. Note that, as indicated on the arrows, each

recursive call happens with probability
1/2 — the probability of drawing a coupon uniformly from

the supplied list of coupons [1, 2].
The main question now is: what is the expected cost of this program? What is the average

amount of times the (·)✓ primitive is executed? We could be very lucky, and incur a cost equal

to the cardinality of 𝑐𝑠 , but oftentimes we get the same coupon more than once, so the number of

draws required to get the whole collection 𝑐𝑠 would be larger. We could even be very unlucky and

indefinitely continue to get the same coupon, that is, the program diverges.

One way to tackle cost analysis, going back to the seminal work of Rosendahl [1989], lies in

turning the program at hand into a second one, which is structurally quite similar but computes

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:4 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

coupons [1, 2]

collect []

collect [1]

collect [1, 1]

· · · · · ·

collect [2, 1]

[2, 1]

collect [2]

collect [1, 2]

[1, 2]

· · ·

1/2

1
/2

1
/2

1/
2

1/
2

1/2

1
/2 1/

2

(a) The probabilistic recursion tree of coupons [1, 2].

couponsCost [1, 2]

1 +

1 +

1 +

· · · · · ·

1 +

0

1 +

1 +

0

· · ·

=

1
/2

1
/2

1
/2

1/
2

1/
2

1/
2

1
/2

1/
2

(b) The result of couponsCost [1, 2].
Fig. 2. The probabilistic recursion tree of coupons when supplied the initial list of coupons 1, 2 and the
expected cost computed via the function couponsCost.

the cost of execution in addition. Such a program transformation thus turns an intensional property,
namely the cost of execution, into an extensional one. Standard methods, such as recurrence relations
employed by Rosendahl or abstract interpretations [Cousot and Cousot 1977] can establish now

a cost analysis of the original, source program. While Rosendahl studied only a pure, first-order

fragment of Lisp, more recently conceptually similar ideas have been successfully applied to the

cost-analysis of higher-order, functional programs [Cutler et al. 2020; Danner et al. 2015]. None of

these works, though, deal with randomized programs and expected cost analysis.

Coming back to the coupon collector example, translating this idea directly suggests that we are

searching for a function of type List(C) → List(C) × Nat, which, given an initial list of coupons

returns besides the list of collected coupons also the overall cost, as a natural number. Surely, such

a term can be found, by simply threading through the computation a counter that is incremented

whenever the (·)✓ primitive is encountered. However, this is only of little help to our concerns: the

resulting program would still be probabilistic. How would we arrive at an expected cost analysis,

where the randomized behavior has been resolved? One way to overcome this problem — in the

context of expected runtime analysis of imperative programs — has been given by Kaminski et al.

[2018] in the form of a pre-expectation calculus. The expected cost of a continuation is gradually

turned into that of an overall computation. In our setting, this would imply that the expected cost

of a term 𝑃 : 𝜎 is indeed given in terms of a functional term 𝑀 : (𝜎 → Real+) → Real+. When

supplied with an argument ^: 𝜎 → Real+ expressing the (non-negative) cost of the underlying

continuation, this term is supposed to return the overall expected cost of evaluating 𝑃 followed by

the continuation supplied with the result of 𝑃 .

Concerning the term 𝑃 = draw(𝑐𝑠), for instance, such a cost transformer𝑀 is given _𝑘.
∑

𝑐∈𝑐𝑠 1/|𝑐𝑠 |∗
𝑘 𝑐 for |𝑐𝑠 | the cardinality of 𝑐𝑠 .1 Notice how this term simply gives the expected value of 𝑘 on the

uniform distribution on coupons 𝑐𝑠 . How do we lift this idea to arbitrary programs? As it turns

out, on the non-probabilistic fragment of the language a standard continuation-passing style (CPS)
transformation is sufficient. In the case of (·)✓ , we simply add one to the output, and in the case of

sampling primitives we proceed as above. Thereby, we have turned a CPS transformation into an

expected cost transformer, much in the spirit of the expected runtime transformer of Kaminski et al.

[2018]. Indeed, the overall approach is quite reminiscent of the way Ramsey and Pfeffer [2002]

1
Avoiding syntactic sugar, in a standard functional language this term could be defined as _𝑘.sum (map ((∗ 1/|𝑐𝑠 |) ◦ 𝑘) 𝑐𝑠) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:5

give semantics to a stochastic lambda calculus within Haskell, with the main difference that we’re

focusing on costs and directly compute expectations.

When applied to the function coupons, the so suited CPS transformation results in the program

given in Fig. 1b. In effect, couponsCPS computes the expected cost of coupons together with the

one of the argument continuation when applied to the result of coupons. The sum of the two is

what couponsCPS finally produces in output. Please note how the continuation 𝑘 is passed around

from the current call to collectCPS to the next one.

But what if we are interested in the cost of coupons alone? Well, it suffices to apply couponsCPS
to the continuation _𝑣 .0, obtaining something like the following program:

couponsCost : List(C) → Real+

let couponsCost 𝑐𝑠 =
letrec collectCost 𝑜𝑠 =
if 𝑐𝑠 ⊆ 𝑜𝑠 then 0 else 1 + ∑

𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗ collectCost (𝑐 :: 𝑜𝑠)
in collectCost []

At least, now, we have obtained a program which looks like it can then be used to analyse the

expected cost of coupons, e.g. via standard type-theoretical tools. A careful look at couponsCost
reveals that this is not really the case, at least if couponsCost is interpreted as a deterministic

functional program. Indeed, if 𝑐𝑠 is not the empty list, then executing couponsCost 𝑐𝑠 produces
nothing less than an infinite tree of recursive calls to collectCost. For example, the recursive

calls induced by couponsCost [1, 2] forms a tree isomorphic to the one in Figure 2a. In which

sense, then, does couponsCost 𝑐𝑠 compute the expected cost of coupons 𝑐𝑠? The answer is that it
does so only up to approximations. As an example, couponsCost [1, 2] can be seen as computing a

numerical expression, namely that in Figure 2b which, being infinitary, only denotes a real number

(or infinity) when the type of extended positive real numbers Real+ (and related operators) is

interpreted in a slightly non-standard way. In other words, the fact the tree is infinite does not
result in undefinedness, but rather in an approximation process.

Some questions, then, remain unanswered. In which sense is the transformation from coupons
to couponsCPS correct? How could we analyse the behavior of any program in the target language

of our CPS transformation? Clearly, these questions cannot be answered by the same kinds of

techniques employed classically, and this is precisely the bulk of our technical contribution. To prove

correctness of our CPS transformation, with the operational semantics of randomized programming

languages being inherently infinitary, one has to reason up to approximations. As the source

language of randomized programs is infinitary, so is the target language. To reason about programs

in the target language, we introduce a higher-order logic, dubbed EHOL. Very briefly, in this logic

judgments have the form

Γ | Φ ⊢ 𝑀 : 𝜎 | 𝜙 ,

that can be seen as an extension of the usual typing-judgment Γ ⊢ 𝑀 : 𝜎 with assertions Φ acting

as assumptions and 𝜙 an assertion talking about the term𝑀 through a distinguished variable r.
The novel aspect of EHOL lies in the fact that it can be used to reason about infinitary compu-

tations such as the one underlying couponsCost. This is achieved, not through constraining the

logical system and therefore inherently limiting its power, but rather by considering well-behaved

assertions 𝜙 whenever dealing with recursive definitions. In short, such predicates have to be

continuous in r, thereby enabling reasoning on infinite computations, such as the one illustrated in

Figure 2b, via their finite approximations. Such continuous assertions are syntactically captured in

our notion of ≤-positive assertions (see Section 5). Crucially, these encompass assertions such as

r ≤ 𝑁 that represent upper-bounds.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:6 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Typing rules, pure fragment
Γ(𝑥) = 𝜎

Γ ⊢ 𝑥 : 𝜎

Γ;𝑥 : 𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ _𝑥.𝑃 : 𝜎 → 𝜏

Γ ⊢ 𝑃 : 𝜎 → 𝜏 Γ ⊢ 𝑄 : 𝜎

Γ ⊢ 𝑃 ·𝑄 : 𝜏

Γ; 𝑓 : 𝜏 → 𝜎 ;𝑥 : 𝜏 ⊢ 𝑃 : 𝜎

Γ ⊢ letrec 𝑓 𝑥 = 𝑃 : 𝜏 → 𝜎

s ∈ C ∪ F s : B1 × · · · × B𝑛 → B Γ ⊢ 𝑃1 : B1 · · · Γ ⊢ 𝑃𝑛 : B𝑛
Γ ⊢ s(𝑃1, . . . , 𝑃𝑛) : B

Γ ⊢ 𝑃 : B c : B1 × · · · × B𝑘 → B Γ;𝑥1 : B1; · · · 𝑥𝑘 : B𝑘 ⊢ 𝑄 : 𝜎 Γ;𝑦 : B ⊢ 𝑅 : 𝜎

Γ ⊢ case 𝑃 of {c(®𝑥) ↦→ 𝑄 | 𝑦 ↦→ 𝑅} : 𝜎
Typing rules, non-pure fragment

Γ ⊢ 𝑃 : 𝜎

Γ ⊢ 𝑃✓ : 𝜎

p : B1 × · · · × B𝑛 → B Γ ⊢ 𝑃1 : B1 · · · Γ ⊢ 𝑃𝑛 : B𝑛
Γ ⊢ p(𝑃1, . . . , 𝑃𝑛) : B

Fig. 3. Simple Typing Rules.

Reduction rules, pure fragment

(_𝑥.𝑃) ·𝑉 ↦→
𝛽
𝑃 [𝑉 /𝑥]

(letrec 𝑓 𝑥 = 𝑃) ·𝑉 ↦→` 𝑃 [letrec 𝑓 𝑥 = 𝑃/𝑓] [𝑉 /𝑥]

case c(®𝑉) of {c(®𝑥) ↦→ 𝑃 | 𝑦 ↦→ 𝑄} ↦→] 𝑃 [®𝑉 /®𝑥]

case d(®𝑉) of {c(®𝑥) ↦→ 𝑃 | 𝑦 ↦→ 𝑄} ↦→] 𝑄 [d(®𝑉)/𝑦] (c ≠ d)
f(𝑉1, . . . ,𝑉𝑛) ↦→𝛿 fI (𝑉1, . . . ,𝑉𝑛)

Reduction rules, non-pure fragment

𝑃✓
1↦→𝜖 𝑃 p(𝑉1, . . . ,𝑉𝑛) ↦→𝜎 pI (𝑉1, . . . ,𝑉𝑛)

Fig. 4. Single Step Reduction Relations of the Pure and non-Pure Fragments.

Returning to our example, within EHOL we can derive validity of the judgment

· | · ⊢ couponsCost : List(C) → Real+ | ∀𝑐𝑠 : List(C). r ≤ |𝑐𝑠 | ·∑ |𝑐𝑠 |
𝑛=1

1/𝑛 ,

yielding the optimal bound for couponsCost in terms of the provided list of coupons 𝑐𝑠 , which

then translates to a bound on the cost of coupons.
Summing up, what we then have obtained is a novel methodology for reasoning about the

expected cost of probabilistic programs. Our approach distinguishes itself through its expressiveness

and — as we demonstrate on a non-trivial example — allows a form of compositional reasoning

that scales well also to the presence of higher-order combinators.

3 A PROBABILISTIC HIGHER-ORDER LANGUAGE
In this section we define our vehicle calculus. Its pure fragment, defined first, is a mild extension of

Plotkin’s PCF with built-in operations and algebraic data types such as lists or trees. The impure

fragment then extends upon this language with primitives for sampling and cost.

3.1 The Pure Fragment
We consider a simply-typed language, with base types drawn from a setB, such as Bool for Booleans,
Int for integer numbers or List(𝜎) for lists over elements of type 𝜎 ∈ B. Simple types are given

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:7

by the following grammar:

𝜎, 𝜏 ::= B | 𝜎 → 𝜏 (Simple Types)

As usual, → binds to the right.

To define terms, we consider three disjoint setsX, C and F , of variables, constructor (symbols) and
function (symbols), respectively. All three sets may be infinite but, if not mentioned otherwise, are

countable. Each symbol s ∈ C∪F is associated with a type schema, in notation s : B1×· · ·×B𝑛 → B
or simply s : B when 𝑛 = 0. While constructors serve to form ground values, any function symbol

computes a function on ground values. For instance, we may use constructors i : Int ∈ C
to embed integer numbers 𝑖 ∈ Z within the language, and introduce function symbols such

as (+) : Int × Int → Int that implement arithmetic operations on such values. Without loss of

generality, we also impose that primitive operations are fully applied, so for instance + 𝑥 is not a

valid term. Values and terms with free variables X are formed from the following grammars, where

c ∈ C, s ∈ C ∪ F and 𝑓 , 𝑥, ®𝑥 and 𝑦 range over variables in X.

𝑉 ,𝑊 ::= 𝑥 | _𝑥 .𝑃 | letrec 𝑓 𝑥 = 𝑃 | c(𝑉1, . . . ,𝑉𝑛) (values)

𝑃,𝑄, 𝑅 ::= 𝑉 | s(𝑃1, . . . , 𝑃𝑛) | 𝑃 ·𝑄 | case 𝑃 of {c(®𝑥) ↦→ 𝑄 | 𝑦 ↦→ 𝑅} (terms).

Application, which we indicate as (·), binds to the left.

In examples, and as we have already done before, we may use several standard shortcuts, such as

if 𝐺 then 𝑃 else 𝑄 as an abbreviation for case 𝐺 of {true ↦→ 𝑃 | _ ↦→ 𝑄} and let 𝑥 = 𝑃 in 𝑄
for (_𝑥.𝑄) · 𝑃 . Throughout the following, we consider only well-typed terms, that is we tacitly

assume that any term 𝑃 is such that Γ ⊢ 𝑃 : 𝜎 holds according to the rules from Figure 3 for some

typing context Γ (a mapping from variables to simple types) and type 𝜎 . We denote by Λ𝜎 (Γ) the
set of all such terms, we use Λ𝜎 ≜ Λ𝜎 (∅) to denote the set of ground terms of type 𝜎 , and we let

Λ ≜
⋃

𝜎 Λ
𝜎
denote the set of all well-typed terms. In correspondence, the sets V𝜎 (Γ), V𝜎

and V
denote the well-typed (ground) values (of type 𝜎).

We now turn to the semantics of expressions. To each function symbol f : B1 × · · · × B𝑛 → B we

associate a primitive fI : VB1 × · · · ×VB𝑛 → VB
which is meant to capture the intended semantics

of f. Evaluation contexts are formed from the following grammar, where s ∈ C ∪ F .

C,D ::= □ | 𝑃 · C | C ·𝑉 | s(®𝑃,C, ®𝑉) | case C of {c(®𝑥) ↦→ 𝑃 | 𝑥 ↦→ 𝑄} (evaluation contexts).

WithC[𝑃] we denote the term obtained by replacing the hole□ inC by 𝑃 . We denote by−−→𝑙 ⊆ Λ×Λ
(𝑙 ∈ {𝛽, `,], 𝛿}) the contextual closure of the reduction rules ↦→𝑙 depicted in Figure 4; with −−→ we

denote the union of these three relations. Notice that evaluation is right-to-left.

Up to now, the introduced language can be seen as nothing more than a standard extension of

(call-by-value) PCF to a given set of base types which includes, but which is not necessarily limited

to, the natural numbers. The next step consists of rendering our vehicle calculus effectful.

3.2 The Non-pure Fragment
The randomized higher-order language Λ𝑝 that we are considering is an extension of the pure

language Λ with primitives for sampling and cost. For the sake of simplicity, we stick to a language

in which sampling can be done from discrete distributions. However, we believe all our results could
be lifted to a setting in which measure theory plays a key role, see e.g. [Ramsey and Pfeffer 2002].

Preliminaries and Syntax. Let D(𝐴) denote the set of discrete (sub)distributions over 𝐴, namely

the set of total functions 𝑑 from 𝐴 to R[0,1] whose sum is itself in R[0,1] and whose support

supp(𝑑) = {𝑎 ∈ 𝐴 | 𝑑 (𝑎) ≠ 0} is countable. Moreover, let R+ denote the non-negative reals, and
R+∞ its extension by ∞. We denote by {𝑎𝑝𝑖

𝑖
}𝑖∈𝐼 the distribution in D(𝐴) assigning probability 𝑝𝑖

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:8 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

to 𝑎𝑖 ∈ 𝐴 for every 𝑖 ∈ 𝐼 , or simply by {𝑎𝑝1
1
, . . . , 𝑎

𝑝𝑛
𝑛 } when the support {𝑎1, . . . , 𝑎𝑛} is finite. The

expected value of a function 𝑓 : 𝐴 → R+ on 𝑑 ∈ D(𝐴) is denoted by E𝑑 (𝑓). Since we restrict
ourselves to discrete distributions, this is given by

∑
𝑎∈supp(𝑑) 𝑑 (𝑎) · 𝑓 (𝑎). Finally, we denote by∑

𝑖∈𝐼 𝑝𝑖 · 𝑑𝑖 the convex combination of distributions 𝑑𝑖 . Note that probabilities 𝑝𝑖 are expected to sum

up to ≤ 1, thereby the convex combination always results in a distribution. For instance, we have

1/2 · {𝑎1} + 1/2 · {𝑏1/3, 𝑐
2/3} = {𝑎1/2, 𝑏

1/6, 𝑐
1/3}.

To incorporate probabilistic sampling, we assume a designated set of distribution symbols D. As

for constructors and functions, each symbol p ∈ D is given a type schema p : B1 × · · · × B𝑛 → B.
As expected, each such p is associated with a primitive pI : VB1 × · · · × VB𝑛 → D(VB). For
instance, we may consider ber : Ratio → Bool ∈ D with berI (q) ≜ {true𝑞, false1−𝑞} for any
rational 0 ≤ 𝑞 ≤ 1. Note that pI (𝑉1, . . . ,𝑉𝑛) can be a proper sub-distribution, in which case the

missing probability signals abnormal termination. Semantically, this will be interpreted identical to

non-termination. For instance, we may set berI (q) ≜ ∅ when 𝑞 is not in the interval [0, 1].
To endow programs with a cost model, as mentioned before, we make use of an operator (·)✓

that incurs a cost of one to the cost of evaluating its arguments. In summary, impure terms are

obtained by extending the pure terms as follows:

𝑃,𝑄, 𝑅 ::= . . . | p(𝑃1 . . . , 𝑃𝑛) | 𝑃✓ (impure terms).

With Λ𝜎
𝑝 (Γ) we denote the set of impure terms typeable under typing context Γ as 𝜎 (see Fig. 3)

and, identical to before, Λ𝑝 (Λ𝜎
𝑝) denotes the set of well-typed terms (of type 𝜎).

Example 3.1 (RandomWalks). For illustration, consider the following recursively defined function:

walk : (Int → Bool) → (Int → Int) → Int → Int

walk ≜ (letrec𝑤 𝑝 𝑓 𝑛 = if 𝑝 · 𝑛 then 𝑛 else (𝑤 · 𝑝 · 𝑓 · (𝑓 · 𝑛))✓)

This function iterates as long as the provided predicate 𝑝 : Int → Bool holds, with the next

recursion parameter 𝑛 : Int computed by a stepping function 𝑓 : Int → Int. The tick in the else-

branch signifies that we are interested in a cost corresponding to the number of recursive calls.

While walk is itself non-probabilistic, we can apply it to several interesting probabilistic argument

functions. As an example, consider

geo ≜ walk · (__.ber(1/2)) · (_𝑛.𝑛 + 1) .

Then, for instance, the output of geo · 0 follows the geometric distribution {01/2, 1
1/4, 2

1/8, . . . }. As we
will see, the expected number of iterations, i.e., the expected cost of geo 0 is constant. As another

example, consider the term

randomWalkp ≜ walk · (_𝑛.𝑛 ≤ 0) · (_𝑛.if ber(p) then 𝑛 − 1 else 𝑛 + 1) ,

parameterised by a rational constant p, which performs a biased random walk over positive integers.

It is folklore that such a random walk over non-negative integers is bounded only when p > 1/2, i.e.,
when the walk is more likely to go down than up.

Operational Semantics. In order to capture the two effects, probabilistic sampling and cost, we

express the operational semantics of the language Λ𝑝 by a (probabilistic) reduction relation −−→ ⊆
D(Λ𝑝)×R+∞×D(Λ𝑝), defined through a (weighted) probabilistic abstract reduction system [Avanzini

et al. 2020; Bournez and Garnier 2005] over terms Λ𝑝 . Triples (𝑑, 𝑟, 𝑒) ∈ −−→, written as 𝑑
𝑟−−→ 𝑒 ,

signify that the term distribution 𝑑 evolves in one-step to a reduct-distribution 𝑒 , producing an

expected cost equal to 𝑟 .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:9

{𝑉 1} 0−−→ {𝑉 1}
[Val]

𝑃
𝑟↦→𝑙 {𝑄𝑝𝑖

𝑖
}𝑖∈𝐼 𝑙 ∈ {𝛽, `,], 𝛿, 𝜖, 𝜎}

{C[𝑃]1} 𝑟−−→ {C[𝑄𝑖]𝑝𝑖 }𝑖∈𝐼
[Step]

∀𝑖 ∈ 𝐼 .𝑑𝑖
𝑟𝑖−−→ 𝑒𝑖

∑
𝑖∈𝐼 𝑝𝑖 ≤ 1 𝑟 =

∑
𝑖∈𝐼 𝑝𝑖 · 𝑟𝑖∑

𝑖∈𝐼 𝑝𝑖 · 𝑑𝑖
𝑟−−→ ∑

𝑖∈𝐼 𝑝𝑖 · 𝑒𝑖
[Conv]

Fig. 5. Probabilistic Reduction Relation on Term-Distributions.

To define this relation formally, let us first extend evaluation contexts to the impure fragment by

setting

C,D ::= · · · | p(®𝑃,C, ®𝑉) (impure evaluation contexts) .

The reduction rules for the two non-pure constructs are given in the second part of Figure 4. The

operator (·)✓ produces a cost of one without evaluating its argument, thereby attributing functions

such as the ticked Ω-term letrec 𝑓 𝑥 = (𝑓 · 𝑥)✓ an infinite cost, rather than a cost of zero. Saying

it another way, we are call-by-value, but cost-by-name.
To avoid notational overhead, we may drop 𝑟 in 𝑑

𝑟−−→ 𝑒 if 𝑟 = 0 and identify Dirac distributions

{𝑃1} with terms 𝑃 . Thereby, all reduction rules ↦→𝑙 from Figure 4, even the pure ones, can be seen

as ternary relations ↦→𝑙 ⊆ Λ𝑝 ×R+∞×D(Λ𝑝). Based on these, in Figure 5 we define the probabilistic

reduction relation on distributions. Informally, 𝑑
𝑟−−→ 𝑒 if 𝑒 is obtained by replacing in 𝑑 all reducible

terms by corresponding reduct-distributions, preserving values. The cost 𝑟 is given by the average

cost of all involved reduction steps. Formally, it is most convenient to define this relation through

the three inference rules from Figure 5. Let us look at probabilistic rewriting defined this way on

an example.

Example 3.2 (Example 3.1 continued). Reconsider the term geo and let us abbreviate (__.ber(1/2))
and (_𝑛.𝑛 + 1) by p and f, respectively. Thus geo = walk p f which, when supplied the integer

n ∈ C, gives rise to the probabilistic reduction sequence

{walk · p · f · n1} 0−−→ {if p · n then n else (walk · p · f · (f · n))✓1}
0−−→ {if ber(1/2) then n else (walk · p · f · (f · n))✓1}
0−−→ {if true then n else (walk · p · f · (f · n))✓

1/2
,

if false then n else (walk · p · f · (f · n))✓
1/2}

0−−→ {n1/2
; (walk · p · f · (f · n))✓

1/2}
1/2
−−→ {n1/2

; walk · p · f · (f · n)1/2} 0−−→ · · · ,
where redexes are underlined. Reducing the redex ber(1/2) in the third step effectively forks the

reduction into two probabilistic branches, each weighted with probability
1/2. Continuing the

reduction on the branch where ber(1/2) reduces to true yields the constant n. This constant now
persists throughout the overall reduction. On the other branch, we eventually reach the recursive

call to walk · p · f · (f · n). Here, the cost incurred by the tick, weighted with the corresponding

probability
1/2, is reflected in the reduction step. This process now repeats, ad libitum, halving

however the probability of performing a recursive call at each iteration, and thereby also the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:10 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

imposed costs. Writing 𝑑
𝑟−→∗ 𝑒 for a finite sequence 𝑑 = 𝑑0

𝑟1−−→ . . .
𝑟𝑛−−→ 𝑑𝑒𝑛 = 𝑒 with 𝑟 =

∑𝑛
𝑖=1 𝑟𝑖 , a

reduction of geo · 0 has overall the shape

{(walk · p · f · 0)1}
1/2
−→∗ {01/2, (walk · p · f · 1)1/2}

1/4
−→∗ {01/2, 1

1/4, (walk · p · f · 2)1/4}
1/8
−→∗ · · · .

This infinite sequence gradually approaches the geometric distribution {01/2, 1
1/4, 2

1/8, . . . }, with an

overall cost of
1/2 + 1/4 + 1/8 + · · · = 1.

As hinted by this example, the reduction relation −−→ is deterministic, i.e., for any term 𝑃 , there

is precisely one maximal (and infinite) reduction sequence

{𝑃1} = 𝑑0
𝑟0−−→ 𝑑1

𝑟1−−→ 𝑑2
𝑟2−−→ · · · .

As we just saw, such a reduction sequence can be seen as gradually approaching a normal-form
distribution nf (𝑃) ∈ D(V) over values, giving the distribution of values to which 𝑃 evaluates

to. From such a sequence we can also compute an element ecost (𝑃) ∈ R+∞ which stands for the

cost of the whole computation starting from 𝑃 . Formally, the expected cost ecost (𝑃) ∈ R+∞ of this

evaluation is given by the sum of all the 𝑟𝑖 . Equivalently, ecost : Λ𝑝 → R+∞ can be defined as the

least function, ordered point-wise, satisfying the following equations:

ecost (𝑉) = 0 and ecost (𝑃) = 𝑟 +
∑︁
𝑖∈𝐼

𝑝𝑖 · ecost (𝑄𝑖) if 𝑃
𝑟−−→ {𝑄𝑝𝑖

𝑖
}𝑖∈𝐼 .

Note that the equations are exhaustive, since every typeable term is either a value or reducible.
2
Via

a telescoping-sum argument, it can be shown that ecost (𝑃) coincides with the mean cost emitted

along all probabilistic reduction paths, compare e.g. [Avanzini et al. 2020], thereby matching its

intended meaning. In a similar spirit, nf : Λ𝑝 → D(V) can be defined as the least function such

that:

nf (𝑉) = {𝑉 1} and nf (𝑃) =
∑︁
𝑖∈𝐼

𝑝𝑖 · nf (𝑄𝑖) if 𝑃
𝑟−−→ {𝑄𝑝𝑖

𝑖
}𝑖∈𝐼 .

Here, distributions are ordered point-wise. The fact that nf (𝑃) is well-defined for every 𝑃 ∈ Λ𝑝

comes from the fact that distributions form an cpo with respect to the point-wise ordering.

3.3 A Semantic Expected Cost Transformer
The expected cost transformer outlined in Section 2 lifts the expected cost 𝑓 : V → R+∞ of a

continuation to that of evaluating a term 𝑃 followed by the continuation. This was done syntactically

in the form of a program transformation. As we will see in the next sections, this will enable us to

reason compositionally. Here, we give an alternative definition of the same function based on the

operational semantics, against which we will then show correctness of the proper transformer, to

be defined formally in the next section.

Definition 3.3 (Semantic Expected Cost Transformer). The function

Ect[·]{·} : Λ𝑝 → (V → R+∞) → R+∞ ,

is defined as the least function satisfying

Ect[𝑉]{𝑓 } ≜ 𝑓 (𝑉) and Ect[𝑃]{𝑓 } = 𝑟 +
∑︁
𝑖∈𝐼

𝑝𝑖 · Ect[𝑄𝑖]{𝑓 } if 𝑃
𝑟−−→ {𝑄𝑝𝑖

𝑖
}𝑖∈𝐼 .

2
To be precise, ecost is defined as the least-fixed point of the functional b : (Λ𝑝 → R+∞) → (Λ𝑝 → R+∞) defined by

b (𝐺) ≜ 𝑃 ↦→ if 𝑃 ∈ V then 0 else 𝑟 +∑
𝑖∈𝐼 𝑝𝑖 ·𝐺 (𝑄𝑖) where 𝑃

𝑟−−→ {𝑄𝑝𝑖
𝑖

}𝑖∈𝐼 in the else-branch. This fixed-point always

exists (see [Winskel 1993]), and assigns a cost 𝑐 ∈ R+∞ even to non-terminating programs.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:11

It can be shown that this cost-transformer is continuous and monotone, hence well-defined, see

also [Avanzini et al. 2020] where this operator is defined in a more general setting.

Example 3.4 (Example 3.2 continued). Reconsider the reduction drawn in Example 3.2. Applying

Definition 3.3 for an arbitrary 𝑓 : V → R+∞ we have

Ect[walk · p · f · n]{𝑓 } = · · · = Ect
[
if ber(1/2) then n else (walk · p · f · (f · n))✓

]
{𝑓 }

= · · · = 1/2 · Ect[n]{𝑓 } + 1/2 · Ect
[
(walk · p · f · (f · n))✓

]
{𝑓 }

= · · · = 1/2 · 𝑓 (n) + 1/2 · (1 + Ect[walk · p · f · (n + 1)]{𝑓 }) ,

thus particularly,

Ect[walk · p · f · 0]{𝑓 } = 1/2 · 𝑓 (0) + 1/2 · (1 + 1/2 · 𝑓 (1) + 1/2 · (1 + 1/2 · 𝑓 (2) + 1/2 · (. . .))) .
Notice how, by letting 𝑓 be the constant zero function, this term converges to the expected cost of

walk · p · f · 0. Dual, by unticking the recursive calls, thereby eliminating all subexpression 1+, we
obtain the expected value of 𝑓 on the distribution of its normal forms.

The last statement can be generalized, which is almost immediate to see by contrasting Def-

inition 3.3 with the definition of ecost and nf . To this end, let us call 𝑃 ∈ Λ𝑝 cost-free when

ecost (𝑃) = 0, e.g., when 𝑃 does not contain any occurrence of (·)✓ . Then Ect[𝑃]{·} can be brought

in correspondence to the expected cost and value on normal form distributions in the following

way.

Lemma 3.5. Let 𝑃 ∈ Λ𝑝 . The following equalities hold:
(1) ecost (𝑃) = Ect[𝑃]{𝑉 ↦→ 0}; and
(2) Enf (𝑃) (𝑓) = Ect[𝑃]{𝑓 } when 𝑃 is cost-free.

Finally, the following structural properties will be exploited in the inductively defined cost

transformer which will be introduced in the next section. Notable, these properties tell us how

the expected cost of a term relate to that of its subterms, guiding the inductive definition of the

transformer given in the next section.

Lemma 3.6 (Structural Properties).

(1) Ect
[
s(®𝑃,𝑄, ®𝑊)

]
{𝑓 } = Ect[𝑄]

{
𝑉 ↦→ Ect

[
s(®𝑃,𝑉 , ®𝑊)

]
{𝑓 }

}
, for every s ∈ C ∪ F ∪ D;

(2) Ect[𝑃 ·𝑄]{𝑓 } = Ect[𝑄]{𝑊 ↦→ Ect[𝑃]{𝑉 ↦→ Ect[𝑉 ·𝑊]{𝑓 }}}; and

(3) Ect[case 𝑃 of {c(®𝑥) ↦→ 𝑄 | 𝑦 ↦→ 𝑅}]{𝑓 } = Ect[𝑃]
{
𝑉 ↦→

{
Ect

[
𝑄 [®𝑊 /®𝑥]

]
{𝑓 } if 𝑉 = c(®𝑊),

Ect[𝑅 [𝑉 /𝑦]]{𝑓 } if 𝑉 ≠ c(®𝑊).

}
.

4 COMPUTING EXPECTED COSTS
This section is devoted to defining a syntactic variant of the expected cost transformer, which

differs from the semantic version from Definition 3.3 in two ways. First, it is defined by induction on

the structure of terms, thereby enabling compositional reasoning. Second, it is indeed an (efficiently

computable) program transformation, resulting in a (pure) PCF-term rather than a cost function,

thereby enabling classical program analysis.

The first step we need to make consists in extending the pure fragment of our language, so as

to encompass (real-valued) cost functions. This is necessary because costs are measured by real

numbers, and the latter have to be treated differently from ordinary data, as will be apparent from

the underlying denotational semantics.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:12 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

4.1 The Target Language and Its Semantics
The target language ΛR is given by a fragment of the pure language introduced before, endowed

with a dedicated base type Real+ to express real numbers 𝑟 ∈ R+∞. We allow constants r ∈ C
for all 𝑟 ∈ R+∞ as well as continuous (particularly, non-decreasing) functions on R+∞ — such as

multiplication or addition — as primitive functions inD. Terms in the target language, as the image

of a CPS translation, will have the restricted form

𝐸, 𝐹 ::= 𝑥 | _𝑥 .𝑀 | letrec 𝑓 𝑥 = 𝑀 | s(𝐸1, . . . , 𝐸𝑛)
𝑀, 𝑁,𝑂 ::= 𝐸 | 𝑀 · 𝐸 | case 𝐸 of {c(®𝑥) ↦→ 𝑁 | 𝑦 ↦→ 𝑂} ,

where s ∈ C ∪ F . The most notable changes, in comparison to the full probabilistic language,

lies in the exclusion of effectful operations — (·)✓ and sampling primitives p ∈ D — and that

𝛽-redexes are confined to head position. We furthermore restrict recursion to computations on

R+∞, particularly, all recursive definitions are constrained to letrec 𝑓 𝑥 = _®𝑦.𝑀 where 𝑀 is an

expression of type Real+. In other words, we subject terms to the typing rules of Figure 3, where

the rule governing letrec is replaced by the typing rule

Γ; 𝑓 : 𝜎1 → · · · → 𝜎𝑘 → Real+;𝑥1 : 𝜎1, . . . ;𝑥𝑘 : 𝜎𝑘 ⊢ 𝑀 : Real+

Γ ⊢ letrec 𝑓 𝑥1 · · · 𝑥𝑘 = 𝑀 : Real+ .

Here, we use the notation letrec 𝑓 𝑥1 · · · 𝑥𝑘 = 𝑀 for letrec 𝑓 𝑥1 = _𝑥2 · · · 𝑥𝑘 .𝑀 . Below, we use

Λ𝜎
R (Γ) to denote the terms within this target language, typeable under context Γ with type 𝜎 .

Denotational Semantics. The target language, being pure, would allow for a standard domain-

theoretic denotational semantics. The non-standard behavior of the real-number type, however,

makes it necessary to slightly diverge from the usual path. More specifically, the type Real+ is

interpreted as R+∞ endowed with the vertical ordering, and not by way of the discrete order, as

one would possibly expect. An immediate implication is that recursive functions such as 𝑓 above,

converge to rather than compute their result. Well-definedness is in essence given in by theMonotone

Convergence Theorem. For instance, the operator

∑∞
(·) : Nat → (Nat → Real+) → Real+ defined

as letrec
∑∞

𝑛 𝑓 = 𝑓 · 𝑛 + ∑∞
s(𝑛) 𝑓 , will have the usual convergence properties of infinite sums

(over monotone 𝑓), and would not return ⊥ as in the usual domain theoretic model of PCF.

Before delving into the details of the model, let us recall some basic notions and results on domain

theory, using terminology fromWinskel [1993, Section 8]. A partial order (𝐷, ⊑) is called a complete
partial order (cpo) (sometimes referred to as predomain) if any 𝜔-chain 𝑑0 ⊑ 𝑑1 ⊑ · · · has a least
upper bound

⊔
𝑛∈N 𝑑𝑛 in 𝐷 . We do not require in general that 𝐷 is equipped with a least element,

but if so, the least element is denoted by ⊥𝐷 or ⊥ when 𝐷 is clear from context. Relevant examples

of cpo’s are discrete cpos where 𝐷 is equipped with the identity relation, R+∞ ordered vertically (i.e.,

𝑟1 ⊑ 𝑟2 iff 𝑟1 ≤R 𝑟2 or 𝑟2 = ∞), and the function space [𝐷 −→ 𝐸] of continuous functions between
cpos𝐷 and 𝐸, ordered point-wise, i.e. 𝑓 ⊑ 𝑔 iff for all𝑑 ∈ 𝐷 , 𝑓 (𝑑) ⊑ 𝑔(𝑑). Here a function 𝑓 : 𝐷 → 𝐸

is continuous if it is monotone (𝑑 ⊑ 𝑒 implies 𝑓 (𝑑) ⊑ 𝑓 (𝑒)) and ⊔
𝑛∈N 𝑓 (𝑑𝑛) = 𝑓 (⊔𝑛∈N 𝑑𝑛) for all

𝜔-chains𝑑0 ⊑ 𝑑1 ⊑ · · · . All functions 𝑓 : 𝐷 → 𝐸 on discrete domains 𝐸 are continuous, composition

(◦) : [𝐸 −→ 𝐹] → [𝐷 −→ 𝐸] → [𝐷 −→ 𝐹] and application apply : [𝐷 −→ 𝐸] × 𝐷 → 𝐸 are

continuous, and so is lfp : [𝐷 −→ 𝐷] → 𝐷 defined by lfp(𝑓) ≜ ⊔
𝑛∈N 𝑓

𝑛 (⊥𝐷) when 𝐷 has bottom

element ⊥𝐷 . Here, 𝑓
𝑛
denotes the 𝑛-fold composition of 𝑓 . All this is nothing more than the basic

machinery one needs to give a domain-theoretic denotational semantics to languages like PCF.

Finally, we can give the actual interpretation of the target language’s types, each of them being

put in correspondence with a cpo. More precisely, Real+ is interpreted as R+∞ ordered vertically,

while B ∈ B where B ≠ Real+ will be put in correspondence with the discrete cpo on terms values

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:13

J𝑥K𝜌 ≜ 𝜌 (𝑥)
J_𝑥 .𝑀K𝜌 ≜ 𝑣 ↦→ J𝑀K𝜌 ;𝑥 ↦→𝑣

Jletrec 𝑓 ®𝑥 = 𝑀K𝜌 ≜ lfp(𝐹 ↦→ (®𝑣 ↦→ J𝑀K𝜌 ;𝑓 ↦→𝐹 ;®𝑥 ↦→®𝑣))
Js(𝐸1, . . . , 𝐸𝑛)K𝜌 ≜ apply(JsK , (J𝐸1K𝜌 , . . . , J𝐸𝑛K𝜌))

J𝑀 · 𝐸K𝜌 ≜ apply(J𝑀K𝜌 , J𝐸K𝜌)
Jcase 𝐸 of {c(®𝑥) ↦→ 𝑀 | 𝑦 ↦→ 𝑁 }K𝜌 ≜ matchc (J𝐸K𝜌 , ®𝑣 ↦→ J𝑀K𝜌 ;®𝑥 ↦→®𝑣 , 𝑣 ↦→ J𝑁 K𝜌 ;𝑦 ↦→𝑣)

Fig. 6. Denotational Semantics of the Target Language.

VB
. Functional types are interpreted by continuous functions ordered point-wise. In other words:

JReal+K ≜ R+∞ JBK ≜ VB J𝜎 → 𝜏K ≜ [J𝜎K −→ J𝜏K] .
Notice that J𝜎K is always a cpo, but is not guaranteed to be endowed with a least element. In

particular, any base type other than Real+ and any function returning one of such type is interpreted
as a cpo which is not, however, pointed. In other words, since we just confined recursion to functions
producing a Real+ in the target language, we are permitted to interpret the remaining functions as

total ones. This has significant practical implications. Later on, when we study the target language,

we will not have to reason about non-termination of such functions.

Attributing a meaning to terms requires first giving a semantics JsK : JB1K × · · · × JB𝑛K → JBK
to any symbols s : B1 × · · · × B𝑛 → B ∈ C ∪ F . For constructor c : B1 × · · · × B𝑛 → B ∈ C, JcK is
simply the constructor itself, i.e. JcK (𝑉1, . . . ,𝑉𝑛) ≜ c(𝑉1, . . . ,𝑉𝑛). To each such constructor c, we
furthermore associate the continuous operator

matchc : VB × [VB1 × · · · × VB𝑛 −→ 𝐷] × [VB𝑛 −→ 𝐷] → 𝐷

matchc (𝑡, 𝑓 , 𝑔) =
{
apply(𝑓 , (𝑉1, . . . ,𝑉𝑛)) if 𝑡 = c(𝑉1, . . . ,𝑉𝑛),
apply(𝑓 , 𝑡) otherwise.

Matching the operational semantics of the source language, primitives f : B1 × · · · × B𝑛 → B ∈ F
are interpreted by JfK (𝑉1, . . . ,𝑉𝑛) ≜ fI (𝑉1, . . . ,𝑉𝑛). We require all such functions to be continuous

in all argument coordinates. Thereby, in particular, all primitives have to be non-decreasing in

their real-valued argument positions. Note that this requirement is vacuously satisfied by the (non-

real-valued) primitives of the source language. For instance, addition and multiplication (+), (∗) :
Real+ × Real+ → Real+ as well as, e.g., Integer fractions (/) : Int × Int → Real+ are continuous,
whereas subtraction (−) : Real+×Real+ → Real+ and real fractions (/) : Real+×Real+ → Real+

are not.

A term Γ ⊢ 𝑀 : 𝜎 can now be interpreted as a function [JΓK −→ J𝜎K], with J·K naturally extended
to any typing context Γ. Semantics is formalised in Figure 6, where we write J𝑀K𝜌 for J𝑀K (𝜌).

Remark. Well-definedness of J𝑀K𝜌 follows by construction, as all operators are continuous. By the
typing restrictions on letrec 𝑓 ®𝑥 = 𝑀 , the functional 𝐹 ®𝑣 ↦→ J𝑀K𝜌 ;𝑓 ↦→𝐹 ;®𝑥 ↦→®𝑣 underlying its semantics
lives in the space [𝐷 −→ 𝐷] where 𝐷 = J𝜎1K → · · · → J𝜎𝑛K → R+∞, whose bottom element is the
constant zero function and top element the constant∞ function. Fixed-points of a functional, while
always well-defined, are in general not reached within a finite number of unfoldings, as exemplified
by the operator

∑∞
(·) : Nat → (Nat → Real+) → Real+ above.

For 𝑃 and 𝑄 of type 𝜎 , we write 𝑃 ≡ 𝑄 when 𝑃 and 𝑄 are semantically equal, that is, when

J𝑃K = J𝑄K. By slight abuse of notation, let us also write 𝑃 ≡ 𝑑 or 𝑑 ≡ 𝑃 if J𝑃K = 𝑑 . Similar, we write

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:14 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Mapping of Types

B† ≜ B (𝜎 → 𝜏)† ≜ 𝜎† → (𝜏† → Real+) → Real+

Mapping of Values

𝑥† ≜ 𝑥 (_𝑥 .𝑃)† ≜ _𝑥𝑘.ect[𝑃] {𝑘}
c(𝑉1, . . . ,𝑉𝑘)† ≜ c(𝑉 †

1
, . . . ,𝑉

†
𝑘
) (letrec 𝑓 𝑥 = 𝑃)† ≜ letrec 𝑓 𝑥 𝑘 = ect[𝑃] {𝑘}

Expected Cost Transformer

ect[𝑉] {^} ≜ ^ ·𝑉 †

ect[𝑃 ·𝑄] {^} ≜ ect[𝑄] {_𝑧.ect[𝑃] {_𝑦.𝑦 · 𝑧 · ^}}

ect

case 𝑃 of {

c(®𝑥) ↦→ 𝑄

| 𝑦 ↦→ 𝑅 }

 {^} ≜ ect[𝑃]

_𝑣 .case 𝑣 of {

c(®𝑥) ↦→ ect[𝑄] {^}
| 𝑦 ↦→ ect[𝑅] {^} }

ect

[
𝑃✓

]
{^} ≜ 1 + ect[𝑃] {^}

ect[s(𝑃1, . . . , 𝑃𝑘)] {^} ≜
{
ect[𝑃𝑘 , . . . , 𝑃1] {_𝑧𝑘 . . . 𝑧1.^ · s(𝑧1, . . . , 𝑧𝑘)} if s ∈ C ∪ F ,

ect[𝑃𝑘 , . . . , 𝑃1]
{
_𝑧𝑘 . . . 𝑧1 .Es(𝑧1,...,𝑧𝑘) (^)

}
if s ∈ D.

ect[] {^} ≜ ^

ect[𝑃1, 𝑃2, . . . , 𝑃𝑘] {_𝑧1𝑧2 . . . 𝑧𝑘 .^} ≜ ect[𝑃1]
{
_𝑧1 .ect[𝑃2, . . . , 𝑃𝑘] {_𝑧2 . . . 𝑧𝑘 .^}

}
Fig. 7. Expected Cost Transformer.

𝑃 ≦ 𝑄 if J𝑃K ≤ J𝑄K, and extend this notation to 𝑑 ∈ J𝜎K as with equality. It can be shown that the

denotational agree with the operational semantics in the following way.

Lemma 4.1. 𝑃 −−→ 𝑄 =⇒ 𝑃 ≡ 𝑄 .

Despite the language being pure, the operational semantics does not precisely match the denota-

tional one, even at base types.

Example 4.2. Consider the term f = (letrec 𝑓 𝑥 = 1/2 ∗ 𝑥 + 1/2 ∗ (𝑓 · 𝑥)). As it can be easily

verified, Jf · rK = 𝑟 for every real number 𝑟 . On the other hand, reducing the term f · r through
−−→ never reaches a normal form, but only approximates it:

f r −→∗ r/2 + 1/2 ∗ (f r) −→∗ r/2 + 1/2 ∗ (r/2 + 1/2 ∗ (f r)) −→∗ · · · .

4.2 The Cost Transformer
Our expected cost transformers, defined next, can be seen as an adaptation of the first-order, one-pass

CPS transformation by Danvy and Nielsen [2003], with answer type restricted to Real+. As such,
the transformer makes the evaluation order explicit. However, in the translation of a term 𝑃 : 𝜎 ,

rather than receiving a continuation as argument, the cost transformer receives the expected cost of

the continuation, as a term ^ : 𝜎 → Real+. This approach requires that for any primitive sampling

operation, the expectation wrt. ^ : B → Real+ is expressible in the target language. To this end, we

assume for every p : B1 × · · · × B𝑘 → B ∈ D that a term

⊢ Ep(·,..., ·) (·) : B1 → · · · → B𝑘 → (B → Real+) → Real+ ,

exists, satisfying

q
Ep(𝑉1,...,𝑉𝑚) (^)

y
= EpI (𝑉1,...,𝑉𝑚)

(
J^K

)
for all 𝑉𝑖 ∈ VB𝑖

(1 ≤ 𝑖 ≤ 𝑚).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:15

Definition 4.3 (Expected Cost Transformer). The expected cost transformer

ect[·] {·} : ∀𝜎 Γ.Λ𝜎
𝑝 (Γ) → Λ𝜎†→Real+

R (Γ†) → ΛReal+

R (Γ†)

is given in Figure 7. As usual for CPS transformations, the transformer is defined bymutual recursion

with a function (·)† : ∀𝜎 Γ.V𝜎 (Γ) → V𝜎†

R (Γ) on values. The corresponding translation on types,

in notation (·)†, is also given in Figure 7. It is extended component-wise to typing contexts.

The following auxiliary lemma confirms well-definedness of the transformer.

Lemma 4.4. If Γ ⊢ 𝑃 : 𝜎 and Γ† ⊢ ^ : 𝜎† → Real+ then Γ† ⊢ ect[𝑃] {^} : Real+.

As usual for CPS transformations, the expected cost transformer may introduce administrative
redexes, which do not find counterparts in the source program. For instance, ect[𝑉 ·𝑊] {^} =

(_𝑧.((_𝑦.𝑦 · 𝑧 · ^) ·𝑉 †) ·𝑊 †
introduces two such redexes, unlike the specialized and semantically

equivalent translation 𝑉 † ·𝑊 † · ^. Administrative redexes can often be optimized away thanks to

Lemma 4.1. Similar, but maybe less obvious, 𝑛-ary functions such as _𝑥 𝑦.𝑃 : 𝜎1 → 𝜎2 → 𝜏 can be

translated to _𝑥 𝑦 𝑘.ect[𝑃] {𝑘} : 𝜎†
1
→ 𝜎

†
2
→ (𝜏† → Real+) → Real+ without changing semantics,

provided that they are not partially applied. Note that partial applications can always be resolved

by [-expansion. For the sake of brevity, we will apply such simplifications frequently in examples.

Before we continue with a proof of correctness for this program transformation, let us illustrate

it on the running examples. To this end, let us first look on how expectations on some sampling

primitives can be computed within the target language.

Example 4.5 (Computing Expectations in the Target Language).

• Bernoulli Distributions: For Bernoulli distributions ber(p) that we have already used before,

we define Eber(p) (^) as the term p ∗ (^ · true) + (1 − p) · (^ · false), assuming 0 ≤ 𝑝 ≤ 1.

For the cases when ber is supplied with an unexpected argument value, i.e., 𝑝 < 0 or 1 < 𝑝 ,

we set Eber(p) (^) ≜ 0, in agreement with the operational semantics where a term ber(p)
abnormally terminates whenever 𝑝 is not in the interval [0, 1].

• Uniform Distributions: For distributions unif(n, m), sampling an integer in the interval [n, m],
we can define Eunif(n,m) (^) as E · n · m · ^ where

E = (letrec 𝑒 𝑙 𝑢 𝑘 = if 𝑙 > 𝑢 then 0 else (1/𝑢 − 𝑙 + 1) ∗ ^ · 𝑙 + 𝑒 · (𝑙 + 1) · 𝑢 · 𝑘) ,

assuming unifI (n, m) = ∅ for 𝑛 > 𝑚.

• Enumerable Distributions: Generalizing the previous example, consider a sampling primi-

tive p : B1 → · · · → B𝑘 → B, with pI (𝑉1, . . . ,𝑉𝑘) = {𝑊 𝑝𝑛
𝑛 }𝑛∈N, such that we can define an

enumerator enump : B1 → · · · → B𝑘 → Nat → Real+ × B (e.g., as a primitive function) with

enump (𝑉1, . . . ,𝑉𝑘 , 𝑛) returning (pn,𝑊𝑛) for every𝑛 ∈ N.We can then define Ep(®𝑥) (^) = E· ®𝑥 ·0·^
where

E = (letrec 𝑒 ®𝑥 𝑛 𝑘 = let (𝑝𝑛,𝑤𝑛) = enump (®𝑥, 𝑛) in 𝑝𝑛 ∗ (𝑘 ·𝑤𝑛) + 𝑒 · ®𝑥 · (𝑛 + 1) · 𝑘) .

Example 4.6 (Coupon Collector Problem, formally). Let us define expectations of a continuation ^
for sampling from draw(𝑐𝑠) in correspondence to that for uniform distributions given in Example 4.5.

Applying the value transformation on the coupon collector function from Fig. 1a and removing

administrative redexes results in the function depicted in Fig. 1b, i.e., coupons† ≡ couponsCPS.
Consequently, for any list cs of coupons, we have

ect[coupons · cs] {^} = ect[cs] {_𝑧.ect[coupons] {_𝑦.𝑦 · 𝑧 · ^}} ≡ couponsCPS · cs · ^ .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:16 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Example 4.7 (Example 3.1 continued). Slightly simplifying, the three functions from Example 3.1

get translated into:

walkCPS : (Int → (Bool → Real+) → Real+)
→ (Int → (Int → Real+) → Real+)
→ Int

→ (Int → Real+) → Real+

walkCPS = (letrec𝑤 𝑝 𝑓 𝑛 𝑘 = 𝑝 · 𝑛 · (_𝑏.if 𝑏 then 𝑘 · 𝑛 else 1 + 𝑓 · 𝑛 · (_𝑚.𝑤 · 𝑝 · 𝑓 ·𝑚 · 𝑘)))

geoCPS : Int → (Int → Real+) → Real+

geoCPS = walkCPS · (__𝑘.1/2 ∗ (𝑘 · true) + 1/2 ∗ (𝑘 · false)) · (_𝑛𝑘.𝑘 · (𝑛 + 1))

randomWalkCPSp : Int → (Int → Real+) → Real+

randomWalkCPSp = walkCPS · (_𝑘.𝑘 · (𝑛 ≤ 0)) · (_𝑛𝑘.p ∗ (𝑘 · (𝑛 − 1)) + (1 − p) ∗ (𝑘 · (𝑛 + 1))) .

In the remainder of this section, we prove correctness of the expected cost transformer. This

amounts to proving that the semantic transformer introduced here matches the semantic one

introduced in Section 3.3. Specifically, on terms ⊢ 𝑃 : B of base types, this correspondence amounts

to the equality:

ect[𝑃] {^} ≡ Ect[𝑃]
{
J^K

}
, (1)

for every ⊢ ^ : B → Real+. By Lemma 3.5, this correctness result allows us to instantiate the

transformer to one for reasoning about expected costs and values. To prove the equation, we show

that ect[𝑃] {^} is bounded by Ect[𝑃]
{
J^K

}
from above and below. This is the subject of the next

two sections.

4.2.1 Upper Bound. Proving that the syntactic CPS transform is an upper bound to the semantic

one cannot be proved directly, unless the same statement is extended to terms 𝑃 of arbitrary type.

While the left-hand-side of Equation (1) stays in the form ect[𝑃] {^}, the right-hand-side becomes

Ect[𝑃]
{
𝑉 ↦→

q
^ ·𝑉 †y}

. This is because ^ expect a result in continuation passing form𝑉 †
, whereas

in Equation (1) we implicitly employed 𝑉 † = 𝑉 for any value 𝑉 of base-type. The proof essentially

relies on the following auxiliary lemma, which basically states that the syntactic CPS transformation

is consistent with the denotational semantics, taking costs into account.

Lemma 4.8.

𝑃
𝑘−−→𝑙 {𝑄𝑝𝑖

𝑖
}𝑖∈𝐼 =⇒ ect[𝑃] {^} ≡ 𝑘 +

∑︁
𝑖∈𝐼

𝑝𝑖 · ect[𝑄𝑖] {^} .

With this lemma in mind, it is then not difficult to see that ect[·] {^} defines a fixed-point of the
equation underlying Ect[𝑃]

{
𝑉 ↦→

q
^ ·𝑉 †y}

. Until now, however, we have not shown that it is the

least such fixed-point. Conclusively, we only get the following upper bound result.

Lemma 4.9.

Ect[𝑃]
{
𝑉 ↦→

q
^ ·𝑉 †y} ≦ ect[𝑃] {^} .

Specializing ^ to the constant zero function, we thus get ecost (𝑃) ≦ ect[𝑃] {__.0} via Lemma 3.5.

4.2.2 Lower Bound. To prove the lower-bound result, we introduce finite approximations of the
expected cost transformer. The construction is similar, but carries an additional counter of type

Nat, with elements of this type built from constructors 0 : Nat and s : Nat → Nat. The counter
is decremented at each function application, once it reaches zero the computation is aborted.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:17

Mapping of Types

B‡ ≜ B

(𝜎 → 𝜏)‡ ≜ Nat → 𝜎‡ → (Nat → 𝜏‡ → Real+) → Real+

Mapping of Values

𝑥‡ ≜ 𝑥

c(𝑉1, . . . ,𝑉𝑘)‡ ≜ c(𝑉 ‡
1
, . . . ,𝑉

‡
𝑘
)

(_𝑥.𝑃)‡ ≜ _𝑛𝑥𝑘.[𝑛 > 0]
(
ect[𝑃]𝑛−1{𝑘}

)
(letrec 𝑓 𝑥 = 𝑃)‡ ≜ _𝑛.[𝑛 > 0]

(
letrec 𝑓 𝑥 𝑘 = ect[𝑃]𝑛−1{𝑘}

)
Step-Indexed Expected Cost Transformer

ect[𝑉]𝑛{^} ≜ ^ · 𝑛 ·𝑉 ‡

ect[𝑃 ·𝑄]𝑛{^} ≜ ect[𝑄]𝑛{_𝑚𝑧.ect[𝑃]𝑚{_𝑜𝑦.𝑦 · 𝑜 · 𝑧 · ^}}

ect

case 𝑃 of {

c(®𝑥) ↦→ 𝑄

| 𝑦 ↦→ 𝑅 }

𝑛

{^} ≜ ect[𝑃]𝑛
_𝑚𝑧.[𝑚 > 0]©«

case 𝑧 of {
c(®𝑥) ↦→ ect[𝑄]𝑚−1{^}
| 𝑦 ↦→ ect[𝑅]𝑚−1{^} }

ª®¬

ect
[
𝑃✓

]𝑛
{^} ≜ 1 + ect[𝑃]𝑛{^}

ect[s(𝑃1, . . . , 𝑃𝑘)]𝑛{^} ≜

ect[𝑃𝑘 , . . . , 𝑃1]𝑛{_𝑚𝑧𝑘 . . . 𝑧1 .^ ·𝑚 · s(𝑧1, . . . , 𝑧𝑘)}

if s ∈ C ∪ F ,

ect[𝑃𝑘 , . . . , 𝑃1]𝑛
{
_𝑚𝑧𝑘 . . . 𝑧1.Es(𝑧1,...,𝑧𝑘) (^ ·𝑚)

}
if s ∈ D.

ect[]𝑛{_𝑚.^} ≜ (_𝑚.^) · 𝑛

ect[𝑃1, 𝑃2, . . . , 𝑃𝑘]𝑛{_𝑚𝑧1𝑧2 . . . 𝑧𝑘 .^} ≜ ect[𝑃1]𝑛
{
_𝑚𝑧1.ect[𝑃2, . . . , 𝑃𝑘]𝑚{_𝑚𝑧2 . . . 𝑧𝑘 .^}

}
Fig. 8. Finitely Approximated Expected Cost Transformer.

Otherwise, the transformation behaves similar to the expected cost transformer. To this end, let us

use [𝑉 > 0] (𝑀) as an abbreviation for the term case 𝑉 of {s(_) ↦→ 𝑀 | _ ↦→ 0}.

Definition 4.10 (Step-Indexed Expected Cost Transformer). The step-indexed expected cost trans-
former

ect[·] (·) {·} : ∀𝜎 Γ.Λ𝜎
𝑝 (Γ) → ΛR (Nat) → ΛNat→𝜎‡→Real+

R (Γ‡) → ΛReal+

R (Γ‡)
is given in Figure 8. As before, it is defined mutual recursively with a one place function (·)‡ :

∀𝜎 Γ.V𝜎 (Γ) → V𝜎‡

R (Γ‡) on values, and (·)‡ is also used to transform types.

In what follows we prove two properties. First, we show that the step indexed version indeed

approximates the expected cost transformer, in the sense that by increasing the step-counter the

result of the transformer can be brought arbitrary close to the original definition. In the limit, the

two transformers thus coincide. The correspondence is made precise in the following simulation

relation.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:18 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Definition 4.11 (Simulation Relation). We mutually define two type-indexed, binary relations

�𝜎 ⊆ Λ𝜎†

R × Λ𝜎‡

R and ≃𝜎 ⊆ Λ𝜎†→Real+

R × ΛNat→𝜎‡→Real+

R

as follows:

• 𝑀 �B �̂� if there exists, s : B1 × · · · × B𝑘 → B ∈ C ∪ F , such that (i) 𝑀 ≡ s(𝑀1, . . . , 𝑀𝑘),
(ii) �̂� ≡ s(�̂�1, . . . , �̂�𝑘), and (iii)𝑀𝑖 �B𝑖 �̂�𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 .

• 𝑀 �𝜎→𝜏 �̂� if𝑀 ·𝑉 · ^ ≡ sup𝑛∈N (�̂� · n ·𝑉 · ˆ̂) for all 𝑉 �𝜎 𝑉 and ^ ≃𝜏 ˆ̂ .

• ^ ≃𝜎 ˆ̂ if ^ ·𝑉 ≡ sup𝑛∈N (ˆ̂ · n ·𝑉) for all 𝑉 �𝜎 𝑉 .

In turn, this relation allows us to prove the following approximation lemma by structural

induction, much in the style of logical relations.

Lemma 4.12. For all 𝑃 ∈ Λ𝜎
𝑝 :

(1) if 𝑃 ∈ V𝜎 , then 𝑃† �𝜎 𝑃‡; and
(2) ect[𝑃] {^} ≡ sup𝑛 ect[𝑃]n{ ˆ̂} for all ^ ≃𝜎 ˆ̂ .

Second, with the following lemma we prove that independently of the stepping counter, the

approximated cost transformer is bounded by the semantic counterpart:

Lemma 4.13. For all ˆ̂ such that J ˆ̂K is non-decreasing in its first argument:

ect[𝑃]n{ ˆ̂} ≦ Ect[𝑃]
{
𝑉 ↦→

q
ˆ̂ · n ·𝑉 ‡y} .

The lower bound result is now almost an immediate consequence of Lemma 4.12(2) and Lemma 4.13.

In the two considered cases, it is not difficult to construct ˆ̂ from ^ with ^ ≃𝜎 ˆ̂ .

Lemma 4.14. If 𝑃 ∈ Λ𝜎
𝑝 and let ^ : 𝜎 → Real+ where either 𝜎 = B or ^ is constant. Then

ect[𝑃] {^} ≦ Ect[𝑃]
{
J^K

}
.

Combining this lower-bound result with the upper-bound proven in Lemma 4.9 yields now the

final result of this section.

Theorem 4.15. For any 𝑃 ∈ Λ𝜎
𝑝 , ecost (𝑃) ≡ ect[𝑃] {_𝑣.0}.

5 ON HIGHER-ORDER LOGIC AND EXPECTATIONS
Higher-Order Logic can be seen as a program logic for higher-order programs [Aguirre et al. 2017].

In this section, we will show that our target language can be reasoned about by way of tools of

the same kind, namely by the expectation higher-order logic (EHOL), a unary higher-order logic

specifically tailored for our target language. In particular, statements deriving upper bounds on the

expected cost of the program at hand can be derived in EHOL and, thanks to Theorem 4.15, can be

lifted back to the operational semantics. Any upper bound on ect[𝑃] {_𝑣.0} is also an upper bound

of the expected cost of 𝑃 .

Very informally, unary higher-order logic is a form of refinement type systemwhere the assertions

are kept separate from simple types. Assertions are derived by way of the following grammar:

𝜙 ::= 𝑃 (𝑀1, . . . , 𝑀𝑛) | 𝜙 ⇒ 𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ∀𝑥 : 𝜎.𝜙 | ∃𝑥 : 𝜎.𝜙

where 𝑃 ranges over a set of base predicates, including a binary equality symbol, each having a

denotational semantics J𝑃K. Each assertion 𝜙 can have free term variables, and we write Γ ⊢ 𝜙

when 𝜙 is well-typed by the typing context Γ. If this holds, we can define J𝜙K𝜌 as the naturally

defined truth value, see Fig. 9. Judgments of the logic are of two forms:

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:19

J𝑃 (𝑀1, . . . , 𝑀𝑛)K𝜌 ⇔ (J𝑀1K𝜌 , . . . , J𝑀𝑛K𝜌) ∈ J𝑃K J¬𝜙K𝜌 ⇔ not J𝜙K𝜌
J∃𝑥 : 𝜎.𝜙K𝜌 ⇔ for some 𝑣 ∈ J𝜎K, J𝜙K𝜌 ;𝑥 ↦→𝑣 J𝜙 ∨𝜓K𝜌 ⇔ J𝜙K𝜌 or J𝜓K𝜌
J∀𝑥 : 𝜎.𝜙K𝜌 ⇔ for every 𝑣 ∈ J𝜎K, J𝜙K𝜌 ;𝑥 ↦→𝑣 J𝜙 ∧𝜓K𝜌 ⇔ J𝜙K𝜌 and J𝜓K𝜌

Fig. 9. Semantical Interpretation of Formulas in EHOL.

• The first kind of judgments derive assertions, are said to be logical judgments, and have the

shape

Γ | Φ ⊢ 𝜙 ,

where Γ is a typing context, Φ is a finite set of assertions, and 𝜙 is an assertion. When we

write Γ | Φ ⊢ 𝜙 , then Φ and 𝜙 are always assumed to be well-typed under Γ. Apart from
well-typedness, the assertions Φ and 𝜙 can be any assertions of the language, and as such

talks about specific terms only through the base predicates. The judgement Γ | Φ ⊢ 𝜙 is said to

be valid if for every 𝜌 ∈ JΓK, if JΦK𝜌 then J𝜙K𝜌 . Note that validity is well-defined, due to the

well-typedness condition on Φ and 𝜙 .

• The second kind of judgments derive assertions about a specific program 𝑀 , and are called

program judgments. They have the following form:

Γ | Φ ⊢ 𝑀 : 𝜎 | 𝜙 .

Here, as above, Γ is a typing context and Φ is a set of assertions. Now however, a term𝑀 is put

in evidence such that𝑀 has type 𝜎 in the context Γ (i.e., Γ ⊢ 𝑀 : 𝜎 holds) and 𝜙 talks about𝑀

through a distinguished variable r (i.e., Γ, r : 𝜎 ⊢ 𝜙). For brevity, as with logical judgements we

tacitly assume that all logical assertions occurring in program judgements are well-typed. Such

a program judgement is valid if for every 𝜌 ∈ JΓK, if JΦK𝜌 then J𝜙K𝜌 ;r↦→J𝑀K𝜌
.

One can give formal rules for the the logical judgments in a standard way, once axioms for the

basic predicates are identified [Aguirre et al. 2017]. The soundness of the obtained formal system

with respect to the aforementioned set-theoretic semantics, i.e. that derivability implies validity,

can be proved by induction on derivations.

But how about program judgments? Following the literature [Aguirre et al. 2017], some syntax-

directed rules can indeed be given which remain valid under our interpretation. However, some

care is required for recursive definitions. The complete system is given in Fig. 11. Here, we employ

the usual convention that typing environments are juxtaposed only when they do not share any

name, e.g., Γ;𝑥 : 𝜎 is defined only when 𝑥 does not occur in Γ. As mentioned above, all judgements

occurring in the rules are supposed to be well-typed.

To reason in an inductive style about recursive functions that converge to, rather than compute

a result, we require that the assertion attached to this function through EHOL is Scott-admissible.
Briefly, Scott-admissiblity simply states that an assertion holds for the bottom element of the

underlying domain, and that it is closed under upper limits. A way to enforce Scott-admissibility

consists of restricting to the class of assertions 𝜙 such that Γ ⊢ pos(𝜙) is derivable by the rules in

Figure 10. These assertions are called ≤-positive. Examples of ≤-positive assertions include r ≤ 𝑁 ,

stating that the result of a computation is bounded from above by 𝑁 , for 𝑁 an expression in which

r does not occur free.
We now establish the soundness of the logic w.r.t. the denotational semantics of the language.

Theorem 5.1 (Soundness of EHOL). If Γ | Φ ⊢ 𝑀 : 𝜏 | 𝜙 then for every 𝜌 ∈ JΓK,

JΦK𝜌 implies J𝜙K𝜌 ;r↦→J𝑀K𝜌
.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:20 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Γ ⊢ 𝑀 : Real+

Γ ⊢ pos(r ≤ 𝑀) [Leq]
Γ ⊢ 𝜙 Γ ⊢ pos(𝜓)
Γ ⊢ pos(𝜙 ⇒ 𝜓) [Arr]

Γ ⊢ pos(𝜙) Γ ⊢ pos(𝜓)
Γ ⊢ pos(𝜙 ∧𝜓) [Conj]

Γ ⊢ pos(𝜙) Γ ⊢ pos(𝜓)
Γ ⊢ pos(𝜙 ∨𝜓) [Disj]

Γ, 𝑥 : 𝜎 ⊢ pos(𝜙)
Γ ⊢ pos(∀𝑥 : 𝜎.𝜙) [Forall]

Fig. 10. Inference System to Derive ≤-Positiveness of Assertions.

Γ ⊢ 𝑥 : 𝜎 Γ | Φ ⊢ 𝜙 [𝑥/r]
Γ | Φ ⊢ 𝑥 : 𝜎 | 𝜙 [Var]

Γ | Φ ⊢ 𝑀 : 𝜎 | 𝜙 Γ;𝑥 : 𝜎 | Φ ⊢ 𝜙 [𝑥/r] ⇒ 𝜓 [𝑥/r]
Γ | Φ ⊢ 𝑀 : 𝜎 | 𝜓 [Sub]

Γ;𝑥 : 𝜎 | Φ, 𝜙 ⊢ 𝑀 : 𝜏 | 𝜓
Γ | Φ ⊢ _𝑥.𝑀 : 𝜎 → 𝜏 | ∀𝑥 : 𝜎. 𝜙 ⇒ 𝜓 [r 𝑥/r] [Abs]

Γ | Φ ⊢ 𝑀 : 𝜎 → 𝜏 | ∀𝑥 : 𝜎. 𝜙 [𝑥/r] ⇒ 𝜓 [r 𝑥/r] Γ | Φ ⊢ 𝑉 : 𝜎 | 𝜙
Γ | Φ ⊢ 𝑀 ·𝑉 : 𝜏 | 𝜓 [𝑉 /𝑥] [App]

Γ; ®𝑥 : ®𝜎 ⊢ pos(𝜓)
Γ; 𝑓 : ®𝜎 → Real+; ®𝑥 : ®𝜎 | Φ,∀®𝑧 : ®𝜎. 𝜙 [®𝑧/®𝑥] ⇒ 𝜓 [®𝑧/®𝑥] [𝑓 ®𝑧/r], 𝜙 ⊢ 𝑀 : Real+ | 𝜓

Γ | Φ ⊢ letrec 𝑓 ®𝑥 = 𝑀 : ®𝜎 → Real+ | ∀®𝑥 : ®𝜎. 𝜙 ⇒ 𝜓 [r ®𝑥/r]
[Letrec]

s : B1 × · · · × B𝑘 → B ∈ C ∪ F Γ | Φ ⊢ 𝑀1 : B1 | 𝜓1 · · · Γ | Φ ⊢ 𝑀𝑘 : B𝑘 | 𝜓𝑘

Γ | Φ ⊢ ∀𝑥1 · · · 𝑥𝑘 .𝜓1 [𝑥1/r] ∧ · · · ∧𝜓𝑘 [𝑥𝑘/r] ⇒ 𝜓 [s(𝑥1, . . . , 𝑥𝑘)/𝑥]
Γ | Φ ⊢ s(𝑀1, . . . , 𝑀𝑘) : B | 𝜓 [r/𝑥] [Fun]

c : B1 × · · · × B𝑘 → B ∈ C Γ | Φ ⊢ 𝑀 : B | 𝜙
Γ;𝑥1 : B1; · · · ;𝑥𝑘 : B𝑘 | Φ;𝜙 [c(𝑥1, . . . , 𝑥𝑘)/r] ⊢ 𝑁 : 𝜎 | 𝜓
Γ;𝑦 : B | Φ;∀𝑥1 · · · 𝑥𝑘 .𝑦 ≠ c(𝑥1, . . . , 𝑥𝑘) ∧ 𝜙 [𝑦/r] ⊢ 𝑂 : 𝜎 | 𝜓

Γ | Φ ⊢ case𝑀 of {c(®𝑥) ↦→ 𝑁 | 𝑦 ↦→ 𝑂} : 𝜎 | 𝜓
[Case]

Fig. 11. Higher-order Logic EHOL.

For an informal explanation and intuitions about EHOL, we now conclude this section with an

analysis of the running examples.

5.1 Examples
Coupon collector. Let us first return to the coupon collector function, whose translated version is

given in Figure 1b. For brevity, we consider the slightly simplified variant couponsCost that elides

the continuation, which, removing some syntactic sugar, reads as follows:

couponsCost : List(C) → Real+

couponsCost ≜ _𝑐𝑠.(letrec collectCost 𝑜𝑠 =
if 𝑐𝑠 ⊆ 𝑜𝑠 then 0 else 1 + ∑

𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗ collectCost (𝑐 :: 𝑜𝑠)) · []
The most important step in the analysis lies in the treatment of the auxiliary recursive function

collectCost : List(C) → Real+, which we resolve as follows. Here, we will exploit that 𝑜𝑠 — the

list of coupons drawn so far — consists only of coupons from the overall list 𝑐𝑠 of coupons. We

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:21

express this as a predicate 𝑜𝑠 ⊆ 𝑐𝑠 , conceiving 𝑜𝑠 and 𝑐𝑠 as sets. What we would now like to prove

is that for any such 𝑜𝑠 , the result of collectCost · 𝑜𝑠 is bounded by a function in 𝑜𝑠 . Let us denote

this function by 𝑄 (𝑜𝑠); the concrete definition of 𝑄 is deferred to the end of this paragraph. In

other words, we would like to verify:

𝑐𝑠 : List(C) | · ⊢ letrec collectCost𝑜𝑠 = 𝑃 : List(C) → Real+

| ∀𝑜𝑠 : List(C). 𝑜𝑠 ⊆ 𝑐𝑠 ⇒ r · 𝑜𝑠 ≤ 𝑄 (𝑜𝑠) ,
for 𝑃 the body of collectCost. For brevity, let us omit types in universal quantification. Observe

that r · 𝑜𝑠 ≤ 𝑄 (𝑜𝑠) is ≤-positive, and so by Rule (Letrec) this judgment boils down to

Γ | ∀𝑜𝑠 ′. 𝑜𝑠 ′ ⊆ 𝑐𝑠 ⇒ collectCost · 𝑜𝑠 ′ ≤ 𝑄 (𝑜𝑠;);𝑜𝑠 ⊆ 𝑐𝑠

⊢ if 𝑐𝑠 ⊆ 𝑜𝑠 then 0 else 1 + ∑
𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗ collectCost (𝑐 :: 𝑜𝑠) : Real+ | r ≤ 𝑄 (𝑜𝑠) , (★)

where Γ ≜ 𝑐𝑠 : List(C);𝑜𝑠 : List(C). In effect, we should thus prove that evaluating (the body

of) collectCost on 𝑐𝑠 yields indeed a result bounded by 𝑄 (𝑜𝑠), where we may assume that this

property holds for any recursive call on 𝑜𝑠 ⊆ 𝑐𝑠 . Let us collect in Φ the two logical premises of this

judgment, and proceed with Rule (Case) on the desugared-conditional. Here, first one verifies that,

for the guard,

Γ | Φ ⊢ 𝑐𝑠 ⊆ 𝑜𝑠 : Bool | r = 𝑐𝑠 ⊆ 𝑜𝑠 ,

holds. In the treatment of the then- and else-branches, we can now assume true = 𝑐𝑠 ⊆ 𝑜𝑠 and

false = 𝑐𝑠 ⊆ 𝑜𝑠 , respectively. Let us denote these two facts by 𝑐𝑠 ⊆ 𝑜𝑠 and 𝑐𝑠 ⊈ 𝑜𝑠 for brevity.

Concerning the two branches, it is standard to check

Γ | Φ; 𝑐𝑠 ⊆ 𝑜𝑠 ⊢ 0 : Real+ | r ≤ 0

Γ | Φ; 𝑐𝑠 ⊈ 𝑜𝑠 ⊢ 1 + ∑
𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗ collectCost (𝑐 :: 𝑜𝑠) : Real+ | r ≤ 1 + ∑

𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗𝑄 (𝑐 :: 𝑜𝑠) .
To finalise the proof, though, we will have to show r ≤ 𝑄 (𝑜𝑠) for both branches, as demanded by

Rule (Case) on the judgement (★). To this end, we can use Rule (Sub) in the two branches, which

effectively constraints 𝑄 (𝑜𝑠) to satisfy

Γ | Φ; 𝑐𝑠 ⊆ 𝑜𝑠 ⊢ 0 ≤ 𝑄 (𝑜𝑠) and Γ | Φ; 𝑐𝑠 ⊈ 𝑜𝑠 ⊢ 1 + ∑
𝑐∈𝑐𝑠 1/|𝑐𝑠 | ∗𝑄 (𝑐 :: 𝑜𝑠) ≤ 𝑄 (𝑜𝑠) .

Coming to a concrete bound, let us define 𝑄 (𝑜𝑠) ≜ |𝑐𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |), where 𝐻 (𝑛) = ∑𝑛
𝑖=1

1/𝑖
denotes the 𝑛-th harmonic number, with the convention that 𝐻 (0) = 0. While the first constraint

can be immediately discharged, note that the latter simplifies to

Γ | Φ; 𝑐𝑠 ⊈ 𝑜𝑠 ⊢ 1 +∑
𝑐∈𝑐𝑠 𝐻 (|𝑐𝑠 \ 𝑐 :: 𝑜𝑠 |) ≤ |𝑐𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |) .

Now observe that, when 𝑐 ∈ 𝑐𝑠 is already in 𝑜𝑠 , then 𝐻 (|𝑐𝑠 \ 𝑐 :: 𝑜𝑠 |) is simply 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |). On the

other hand, when 𝑐 is a newly collected coupon, exploiting that the set of collected coupons 𝑜𝑠 is a

proper subset of all coupons 𝑐𝑠 under the given assumptions, then𝐻 (|𝑐𝑠 \ 𝑐 :: 𝑜𝑠 |) = 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |−1)
with |𝑐𝑠 \ 𝑜𝑠 | > 0. It is thus the case that the above constraint is equivalent to

Γ | Φ; 𝑐𝑠 ⊈ 𝑜𝑠 ⊢ 1 + |𝑜𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |) + |𝑐𝑠 \ 𝑜𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 | − 1) ≤ |𝑐𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |) .
Using the identity

𝐻 (|𝑐𝑠 \ 𝑜𝑠 |) = 𝐻 (|𝑐𝑠 \ 𝑜𝑠 | − 1) + 1

|𝑐𝑠 \ 𝑜𝑠 |
this last constraint is now not difficult to discharge.

We have now established, within EHOL, the concrete bound 𝑄 (𝑜𝑠) ≜ |𝑐𝑠 | ∗ 𝐻 (|𝑐𝑠 \ 𝑜𝑠 |) for the
auxiliary function collectCost. From here, we finally see that

· | · ⊢ couponsCost : List(C) → Real+ | ∀𝑐𝑠. r ≤ |𝑐𝑠 | ∗ 𝐻 (|𝑐𝑠 |) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:22 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

Observe that couponsCost is nothing else than couponsCPS with the continuation 𝑘 specialized

to the constant-zero function. With Theorem 4.15, the so derived bound now transfers to the

probabilistic source program coupons from Figure 1a. Notice that this bound, which lies in𝑂 (|𝑐𝑠 | ∗
log(|𝑐𝑠 |)), is precise.

Higher-order random walks. Let us now turn our attention to the higher-order combinator

function walk from Example 3.1, whose CPSed version is given in Example 4.7. As usual for many

higher-order combinators and not unique to probabilistic programs, its (expected) cost — here the

number of iterations — is impossible to judge by looking at walk alone: the cost depends crucially on
the supplied predicate p : Int → Bool used to terminate the walk, and the function f : Int → Int
picking the next position in terms of the current one. Indeed, if we instantiate walk for instance
to geo, as we have done in Example 3.1, then the expected cost becomes constant, while if we

instantiate walk as in randomWalkp it can even become unbounded.

Is it then even conceivable to reason about this function compositionally? With EHOL, we can

answer this question in the affirmative. The logic is expressive enough to articulate the interactions

between functions and its arguments in the necessary granularity on the CPSed terms, even at

higher-order types. Let us illustrate this with a single EHOL proof on the CPSed term walkCPS
of walk given in Example 4.7. As a second step, we then show how the derived bound can be

instantiated to reason about the expected cost of geo and randomWalk, despite that their complexity

vastly differs.

For concrete parameters p and f, let us express the expected cost of walk as a function 𝐺 (𝑛) in
terms of the current integer position. Let us first assume that f and p are non-probabilistic, and let

us denote by an assertion𝜓 (𝑛) the Boolean value of p · 𝑛 within EHOL. Then 𝐺 (𝑛) should, in the

case the else-branch is executed (i.e., ¬𝜓 (𝑛)), bind the cost 𝐺 (f · 𝑛) + 1 of the recursive call plus

one for the current iteration. As the cost transformer translates f · 𝑛 to a CPSed term fCPS · 𝑛 · ^,
with ^ the cost of its continuation — in our case that of the recursive call — this amounts to saying

that fCPS should satisfy

∀𝑛 : Int. ¬𝜓 (𝑛) ⇒ ∀𝑟 : Int → Real+.(∀𝑚 : Int. ⊤ ⇒ 𝑟 𝑚 ≤ 𝐺 (𝑚)) ⇒ fCPS 𝑛 𝑟 + 1 ≤ 𝐺 (𝑛) .

The universally quantified variable 𝑟 refers to the cost of the recursive call and is therefore by

assumption bounded by 𝐺 .

Let us now consider the general case. So far, in our argumentation we have neglected that the

then-branch of the conditional incurs a cost depending on the supplied argument 𝑘 : Int → Real+.
Second, the guard p may be probabilistic, hence the two branches of the conditional are potentially

only executed with a certain probability and, conclusively, their expected cost could be much higher

than the expected cost 𝐺 (𝑛), i.e., the value of walkCPS 𝑓 𝑝 𝑛 𝑘 . Therefore, let us introduce two

functions 𝑇 (𝑛) and 𝐸 (𝑛) to denote bounds for the then- and else-branch, respectively. First, we set

up 𝑇 to indeed bind 𝑘 , via

𝜙 (𝑘) ≜ ∀𝑛 : Int.𝜓 (𝑛) ⇒ 𝑘 · 𝑛 ≤ 𝑇 (𝑛) .

Second, the above constrain on the stepping-function turns into

𝜙 (𝑓) ≜ ∀𝑛 : Int. ¬𝜓 (𝑛) ⇒ ∀𝑟 : Int → Real+.(∀𝑚 : Int. ⊤ ⇒ 𝑟 ·𝑚 ≤ 𝐺 (𝑚)) ⇒ 𝑓 ·𝑛 ·𝑟 +1 ≤ 𝐸 (𝑛) .

Let us denote by [·] the indicator function on assertions. Once the two above bounds are in place, a

bound for the conditional

if 𝑏 then 𝑘 · 𝑛 else 1 + 𝑓 · 𝑛 · ^𝑟
is given with [𝜓 (𝑛)] ∗𝑇 (𝑛) + [¬𝜓 (𝑛)] ∗𝐸 (𝑛) when 𝑏 = 𝜓 (𝑛), for any ^𝑟 : Int → Real+ bounded by
𝐺 . What we now require for the CPSed version 𝑝 : Int → (Bool → Real+) → Real+ of the guard

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:23

— the entry point of the recursion — is the following:

𝜙 (𝑝) ≜ ∀𝑛 : Int. ⊤ ⇒ ∀𝑐𝑜𝑛𝑑 : Bool → Real+.

(∀𝑏 : Bool. 𝑏 = 𝜓 (𝑛) ⇒ 𝑐𝑜𝑛𝑑 · 𝑏 ≤ [𝜓 (𝑛)] ∗𝑇 (𝑛) + [¬𝜓 (𝑛)] ∗ 𝐸 (𝑛)) ⇒ 𝑝 · 𝑛 · 𝑐𝑜𝑛𝑑 ≤ 𝐺 (𝑛)
This formula ties the assertion𝜓 (𝑛) to the possibly sampled Boolean outcome within the conditional

continuation, whose bound is assumed to be of the shape as just derived. Finally, this assertion also

relates the outcome of walkCPS’s body to the bounding function 𝐺 (𝑛).
It is now standard to check that the assertions on the arguments yield that walkCPS · 𝑝 · 𝑓 · 𝑛 · 𝑘

is bounded by 𝐺 (𝑛), i.e.,
· | · ⊢ walkCPS : 𝜎 | ∀𝑝. 𝜙 (𝑝) ⇒ ∀𝑓 .𝜙 (𝑓) ⇒ ∀𝑛.⊤ ⇒ ∀𝑘. 𝜙 (𝑘) ⇒ r · 𝑓 · 𝑛 · 𝑘 ≤ 𝐺 (𝑛) ,

for 𝜎 the type of walkCPS, is valid.
Let us now look at the instances geoCPS and randomWalkCPSp also given in Example 4.7, yielding

precisely the expected cost of functions geo and randomWalk given in Example 3.1. Assume these

two functions are executed in an empty context. Correspondingly, in both cases we restrict our

attention to 𝑘 = _𝑛.0 and set 𝑇 (𝑛) ≜ 0. Recall that in the case of geoCPS, functions

p ≜ (__𝑘.1/2 ∗ (𝑘 · true) + 1/2 ∗ (𝑘 · false)) and f ≜ (_𝑛𝑘.𝑘 · (𝑛 + 1))
are supplied as arguments 𝑝 and 𝑓 to walkCPS, respectively. Fix now𝜓 (𝑛) ≜ 𝑏, and take 𝐺 (𝑛) ≜ 1

and 𝐸 (𝑛) ≜ 2. The term [𝜓 (𝑛)] ∗𝑇 (𝑛) + [¬𝜓 (𝑛)] ∗ 𝐸 (𝑛) simplifies to [¬𝑏] ∗ 2. As we can derive

validity of the judgments

· | · ⊢ p : Int → (Bool → Real+) → Real+ | ∀𝑛. ⊤ ⇒ ∀𝑐𝑜𝑛𝑑. (∀𝑏. 𝑏 = 𝑏 ⇒ 𝑐𝑜𝑛𝑑 · 𝑏 ≤ [¬𝑏] ∗ 2)
⇒ 𝑝 · 𝑛 · 𝑐𝑜𝑛𝑑 ≤ 1 ,

and

· | · ⊢ f : Int → (Int → Real+) → Real+ | ∀𝑛. ¬𝑏 ⇒ ∀𝑟 .(∀𝑚. 𝑟 ·𝑚 ≤ 1) ⇒ 𝑓 · 𝑛 · 𝑟 + 1 ≤ 2 ,

thereby witnessing that 𝜙 (p) and 𝜙 (f) hold, we conclude that
𝑛 : Int | · ⊢ geoCPS · p · f · 𝑛 · (_𝑛.0) : Real+ | r ≤ 1 .

This shows that, independent on 𝑛, geo’s expected cost is bounded by one.

The function randomWalkCPSp is treated in a similar fashion, using the parameters𝜓 (𝑛) ≜ (𝑛 ≤
0),𝑇 (𝑛) = 0 and 𝐸 (𝑛) = 𝐺 (𝑛) ≜ 1/2𝑝 − 1∗abs(𝑛) for abs(𝑛) the absolute value of the Integer 𝑛. While

checking 𝜙 (p) for p = _𝑘.𝑘 · (𝑛 ≤ 0) poses no problems, verifying 𝜙 (f) for
f = _𝑛𝑘.p ∗ (𝑘 · (𝑛 − 1)) + (1 − p) ∗ (𝑘 · (𝑛 + 1))

leaves us, slightly simplifying, with the constraint

𝑛 : Int | 𝑛 > 0 ⇒ 𝑝 ∗ 1/2𝑝 − 1 ∗ abs(𝑛 − 1) + (1 − 𝑝) ∗ 1/2𝑝 − 1 ∗ abs(𝑛 + 1) ≤ 1/2𝑝 − 1 ∗ abs(𝑛) .
As this constraint is valid whenever 𝑝 > 1/2, we then ultimately conclude that the expected cost of

randomWalkp · n is bounded by
1/2𝑝 − 1 ∗ abs(𝑛) for such 𝑝 .

6 EMBEDDING OF THE ERT CALCULUS
In Section 2, we have motivated the use of a CPS translation for reasoning about expected costs

by coupling Rosendahl’s program transformation approach with ideas from the expected runtime

transformer of Kaminski et al. [2018], itself presented in the form of a weakest pre-expectation

calculus for reason about the expected runtime of randomized algorithms written in an imperative

probabilistic language. In this section, we are going to show how the ert-calculus can be embedded

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:24 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

C LCM : Valn → Valn LCM† : Valn → (Valn → Real+) → Real+

empty _𝜎.𝜎 _𝜎𝑘.𝑘 · 𝜎
skip _𝜎.𝜎✓ _𝜎𝑘.1 + 𝑘 · 𝜎
halt Ω _𝜎𝑘.0

𝑥𝑖 :≈ ` _𝜎.updi (𝜎, p` (𝜎))✓ _𝜎𝑘.1 + E` (𝜎) (_𝑣.𝑘 · updi (𝜎, 𝑣))
C
1
; C

2
_𝜎.LC

2
M · (LC

1
M · 𝜎) _𝜎𝑘.LC

1
M† · 𝜎 · (_𝜎 ′.LC

2
M† · 𝜎 ′ · 𝑘)

if (Z) {C
1
} {C

2
} _𝜎.(if pZ (𝜎)

then LC
1
M · 𝜎

else LC
2
M · 𝜎)✓

_𝜎𝑘.1 + EZ (𝜎) (_𝑏.if 𝑏
then LC

1
M† · 𝜎 · 𝑘

else LC
2
M† · 𝜎 · 𝑘)

while (Z) {D} letrec 𝑙𝑜𝑜𝑝 𝜎 =

(if pZ (𝜎)
then 𝑙𝑜𝑜𝑝 · (LDM · 𝜎)
else 𝜎)✓

letrec 𝑙𝑜𝑜𝑝 𝜎 𝑘 =

1 + EZ (𝜎) (_𝑏.if 𝑏
then LDM† · 𝜎 · (_𝜎 ′.𝑙𝑜𝑜𝑝 · 𝜎 ′ · 𝑘)
else 𝑘 · 𝜎)

Fig. 12. Embedding of the ert-Calculus within our Language and Resulting Expectation Transformer.

into our formalism by way of a state-passing monad, thus witnessing that our approach strictly

extends upon this sound and complete methodology.

The imperative language under consideration is based on Dijkstra’s Guarded Command Language,
additionally equipped with sampling operations. More specifically, the underlying language of

programs (in the style of IMP, see e.g. [Winskel 1993]) includes assignments, sequencing, condi-

tionals, and loops. Variable assignments and guards are however allowed to be probabilistic. A full

list of program commands C can be seen in the leftmost column of Figure 12, where ` stands for a

probabilistic expression and Z for a probabilistic guard. All variables are global in IMP, and without

any loss of generality we can assume that any program value 𝑣 : Val is drawn from a discrete but

otherwise arbitrary domain, while program states 𝜎 : Valn map the 𝑛 program variables 𝑥1, . . . , 𝑥𝑛
to their content 𝑣𝑖 : Val.
The second column of Figure 12 gives a functional interpretation of imperative commands

C within our source language, as a probabilistic term ⊢ LCM : Valn → Valn mapping initial

states to final ones. From an operational perspective, empty and skip are no-ops. Whereas empty
incurs no cost, skip incurs a runtime cost of one by definition. The command halt signals an

abnormal termination and is interpreted as the non-terminating function Ω = letrec 𝑓 𝑥 = (𝑓 · 𝑥).
Probabilistic assignment 𝑥𝑖 :≈ ` assigns to 𝑥𝑖 a value sampled from the (discrete) distribution

expression `. Within the function interpretation of such assignments, ` is represented as a sampling

primitive p` : Valn → Val ∈ D, a primitive function updi : Valn × Val → Valn is used to

update the content of 𝑥𝑖 with the value sampled value, and a runtime cost of one is incurred. The

interpretation of command composition, conditionals and while-loops is standard. Since guards

Z can be probabilistic, such expressions are represented via probabilistic primitives pZ : Valn →
Bool ∈ D, as in the case of assignments.

In the rightmost column of Figure 12 we draw the value translation on the functional interpreta-

tion of commands C. We have simplified the presentation by removing administrative redexes, and

exploiting that LhaltM† = Ω†
is semantically equivalent to the constant zero function.

Correctness of the Embedding. The just described embedding can be proved correct by relating it

to the so-called expected runtime transformer as defined by Kaminski et al. Let T denote the set of
runtimes, i.e., the set of functions from program states to R+∞. The expected runtime transformer

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:25

expresses the expected runtime of any program C by means of a transformer ert[C] : T→ T on
runtimes. In particular, ert[C] applied to the constant zero function yields the expected runtime of

C. The following captures the fact that what we do in Figure 12 is not different from ert[C], thus
correct.

Proposition 6.1. For all imperative programs C and ⊢ ^ : Valn → Real+,

ert[C] (J^K) =
(
𝜎 ↦→

q
ect

[
LCM · 𝜎

]
{^}

y)
.

7 DISCUSSION
Expectations and AST. We have showed that the expected cost of any expression 𝑃 can be obtained

by applying the denotational interpretation of its CPS transform to the continuation _𝑣.0. However,

the usefulness of the CPS translation is not limited to deriving expected costs. In particular, it can

be used for computing the (pre-)expectation of any expression, as captured by the following result.

Theorem 7.1. Enf (𝑃)
(
J^K

)
≡ ect[𝑃] {^} for any cost-free term 𝑃 ∈ ΛB

𝑝 and ^ ∈ ΛB→Real+

R .

As an example, the CPS translation can be used to reason about the probability of termination.

Specifically, Theorem 7.1 instantiated with ^ being set to _𝑣 .1 boils down to saying that the

semantics of ect[𝑃] {^} precisely gives the probability of convergence of 𝑃 . Giving an estimation

to the probability of termination and to the expected cost are well known to be highly undecidable

problems having incomparable recursion-theoretic statuses, the former being Π2

0
-complete and the

second being Σ2

0
-complete [Kaminski and Katoen 2015].

Type-based Verification. The formal system of higher-order logic we introduced in Section 5 is

a sound methodology to derive upper bounds on the expected cost of higher-order randomised

programs via a CPS translation, as witnessed by Theorem 4.15 and Theorem 5.1. In EHOL, types and

assertions are separated, and play different roles: the former plays the usual role of guaranteeing the

absence of type errors, without providing any guarantee on the actual I/O behavior of terms, while

the latter can be employed to specify such constraints. A different approach is that of refinement

types, in which specifications are embedded into types. Since refinement types are well-known to

be interpretable in HOL [Aguirre et al. 2017], the obtained type systems would arguably not add

anything to HOL in terms of expressive power, although taking the form of a proper type system.

Continuous Distributions. The CPS transformation we consider in this paper takes as input terms

of a probabilistic _-calculus in which sampling can be performed on discrete distributions, only.
Generalizing what we do to transformation in which, on the other hand, we can also perform

sampling from continuous distributions, would be extremely interesting as a first step towards

moving towards Bayesian programming languages. The main obstacle, in this sense, consists in

endowing the target language with an operator for integration, itself necessary for interpreting the

expectation of programs which sample from continuous distributions.

Applicability. While we have shown that the expected cost of the source program is precisely

reflected within the target program, and thereby our CPS translation constitutes not only a sound

but also complete methodology for reasoning about expected costs, our program logic EHOL has

been proven only sound for deriving upper-bounds. On the other hand, we conjecture that EHOL

is also complete relative to the underlying programming logic, thereby further witnessing the

strength of our overall approach. A formal proof, though, is beyond the scope of this work.

Orthogonal, it would also be interesting to implement EHOL in the style of an interactive theorem

prover, and couple this implementation with the CPS translation. Such an implementation would

greatly improve upon the applicability of our approach. While this is clearly feasible, a further step

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

87:26 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

would be to incorporate some form of automatism for deriving upper-bounds. At least for programs

whose cost analysis is not relying on too complicated functional properties, it seems feasible

to incorporate template based approach resting on SMT-solvers — the pre-dominant approach

underlying automated tools (see e.g. [Avanzini et al. 2015; Wang et al. 2020]). Ideally, one would

arrive at a semi-automated analysis tool, where simple proof steps are automatically discharged

and the user can focus on the non-trivial aspects of the cost analysis.

8 RELATEDWORK
This is definitely not the first paper about randomised higher-order computation. Starting from the

pioneering work by Saheb-Djaromi [Saheb-Djahromi 1978], the field has developed at a relatively

slow pace, mainly due to the intrinsic difficulties one faces when giving denotational semantics

to such programs [Jung and Tix 1998]. Recently, satisfactory solutions for the problem have been

devised [Ehrhard et al. 2014; Goubault-Larrecq 2019; Heunen et al. 2017], and also other challenges

like termination and complexity analysis or program equivalence have been tackled.

The growing interest in Bayesian programming idioms such as Anglican [Tolpin et al. 2016],

Church [Goodman et al. 2008], Hakaru [Narayanan et al. 2016], themselves functional languages,

has also served as a motivation for the study of higher-order probabilistic programming languages.

In these languages, programs are meant to embody probabilistic models rather than algorithms, and

evaluating a program consists of applying inference algorithms to the underlying model. For all this

to be useful, programs are required not only to sample from (various forms of) distributions but also

to condition the result of sampling to the observed data. The vehicle lambda-calculus we consider

here does not have any primitive for conditioning. Noticeably, program transformations, some of

them reminiscent to ours [Ramsey and Pfeffer 2002], have been used to improve the performances

of inference algorithms.

Continuation-passing style transformations [Danvy and Filinski 1992; Plotkin 1975] are a perva-

sive tool in program transformation and compiler construction [Appel 1991]. They are, in particular,

very effective as a way to lift various forms of effects away from the underlying program [Fil-

inski 1994], this way restoring purity, and facilitating program analysis and optimizations. The

kind of CPS transformation we consider here is peculiar, as it is focused on probabilistic and

cost effects. CPS transformations specifically tailored for randomised _-calculi have already been

considered [Dal Lago and Zorzi 2012], the underlying goal being the one of targeting a calculus in

which the underlying reduction strategy does not matter. CPS transformations have already found

applications in the context of Anglican and other Bayesian programming languages, where they

serve as a way to implement Bayesian inference (see also [Ścibior et al. 2018]).

Over the recent years, the literature on (almost-sure, bounded) termination and, as a refinement,

resource analysis of probabilistic, specifically imperative programs has significantly grown. So-

lutions have taken the form of abstract interpretations [Chakarov and Sankaranarayanan 2014;

Monniaux 2001]; martingales, e.g., ranking super-martingales [Agrawal et al. 2018; Brázdil et al.

2015; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016, 2017a,b; Esparza et al. 2005;

Takisaka et al. 2018; Wang et al. 2019]; or equivalently Lyapunov ranking functions [Avanzini

et al. 2019b; Bournez and Garnier 2005]; model checking [Katoen 2016]; program logics [Avanzini

et al. 2020; Kaminski et al. 2018; McIver et al. 2018; Ngo et al. 2018; Wang et al. 2018]; proof assis-

tants [Barthe et al. 2009; Tassarotti and Harper 2018]; recurrence relations [Sedgewick and Flajolet

1996]; methods based on program analysis [Celiku and McIver 2005; Katoen et al. 2010; Kozen

1985]; and finally, symbolic inference [Gehr et al. 2016]. Notable, among them is the ert-calculus
that we relate to in Section 6.

When, on the other hand, the underlying program has higher-order functions, the range of

techniques currently available is much narrower and is essentially reduced to types. Although the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

On Continuation-Passing Transformations and Expected Cost Analysis 87:27

kind of verification technique presented in this paper is substantially different, being based on

program transformation, a comparison with type-based techniques is in order.

The recent works on expected cost analysis by way of linear dependent types [Avanzini et al.

2019a] and intersection types [Dal Lago et al. 2021] aim at giving very expressive type systems

in which bounds on the expected cost of the typed programs can be derived. In the first case, we

are talking about a system obtained by generalizing Dal Lago and Gaboardi’s ideas [Dal Lago and

Gaboardi 2011] to a probabilistic _-calculus, obtaining a very expressive, although not relatively

complete, methodology. The feasibility of type inference is not considered. In the second case,

we are faced with a type system which is complete, but unsuitable for verification: as usual in

intersection-type systems [Bucciarelli et al. 2003], the expressiveness in terms of the functions (as
opposed to the computations) that can be captured is very low. In other words, typing a functional

program requires, in general, giving a distinct type derivation for every possible input.

Notable also, in [Wang et al. 2020], the amortized cost analysis underlying resource aware
ML [Hoffmann et al. 2012] has been suited to probabilistic programs. This work sets itself apart by

having a fully automated inference machinery, differently from what we do here. The two particular

instances of walk given in Example 3.1 lie within the scope of [Wang et al. 2020]’s methodology,

when specialized to two first-order programs. However, depending on its functional arguments,

the expected cost of walk can vary between constant, to linear, or even be infinite. To the best

of our knowledge, the higher-order function walk itself is beyond the scope of any automated

technique, so far. Within EHOL, as shown in Section 5, we are able to derive a parametric bounding
function for the higher-order combinator, encompassing these two concrete instances. This makes

our treatment of this example subtly different and more general than the one in [Wang et al. 2020].

9 CONCLUSION
In this paper, we studied how CPS program transformations can be employed in the setting of

randomised computation, particularly as a technique for reducing the problem of estimating the

expected cost of a randomised program to the one of analyzing the input-output behavior of its

CPS counterpart. Along the way, we proved the introduced program transformation correct, and

we showed how a formal system of unary higher-order logic soundly derives upper bounds to the

output-value of deterministic programs obtained via our CPS transformation. This, in turn, can be

lifted back to an upper-bound on the expected cost of the initial randomized program.

We see the idea of channeling the expected cost through the underlying continuation as a natural

one, which could be useful also for other calculi. As an example, extending what we have done here

to calculi with continuous distributions looks feasible. Another related but orthogonal direction

consists of capturing a form of (soft) conditioning primitives akin to score or observe by way

of CPS, this way going towards the inference machinery of languages like Anglican. Finally, how

about generalizing all this to algebraic effects? This would rely on a generic notion of expectation,

which is unfortunately lacking.

ACKNOWLEDGMENTS
This work is partially supported by the Agence Nationale de la Recherge (ANR) under the Grant

ANR-19-CE48-0014 (https://www.irif.fr/anrpps) and the European Research Council under the ERC

CoG DIAPASoN GA 818616 (https://site.unibo.it/diapason/en).

REFERENCES
S. Agrawal, K. Chatterjee, and P. Novotný. 2018. Lexicographic Ranking Supermartingales: An Efficient Approach to

Termination of Probabilistic Programs. PACMPL 2, POPL (2018), 34:1–34:32. https://doi.org/10.1145/3158122

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

https://www.irif.fr/anrpps
https://site.unibo.it/diapason/en
https://doi.org/10.1145/3158122

87:28 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P.-Y. Strub. 2017. A Relational Logic for Higher-order Programs. PACMPL
1, ICFP (2017), 21:1–21:29. https://doi.org/10.1145/3110265

Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini. 2012. Cost analysis of object-oriented

bytecode programs. Theor. Comput. Sci. 413, 1 (2012), 142–159. https://doi.org/10.1016/j.tcs.2011.07.009

Andrew W. Appel. 1991. Compiling with Continuations. Cambridge University Press. https://doi.org/10.1017/

CBO9780511609619

R. Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science 7, 2 (2011).

https://doi.org/10.2168/LMCS-7(2:17)2011

M. Avanzini, U. Dal Lago, and A. Ghyselen. 2019a. Type-Based Complexity Analysis of Probabilistic Functional Programs.

In Proc. of 34th LICS. IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785725

M. Avanzini, U. Dal Lago, and G. Moser. 2015. Analysing the Complexity of Functional Programs: Higher-Order Meets

First-Order. In Proc. of 20th ICFP. ACM, 152–164. https://doi.org/10.1145/2784731.2784753

M. Avanzini, U. Dal Lago, and A. Yamada. 2019b. On Probabilistic Term Rewriting. SCP 185 (2019), 102338.

M. Avanzini, G. Moser, and M. Schaper. 2020. A Modular Cost Analysis for Probabilistic Programs. PACMPL 4, OOPSLA

(2020), 172:1–172:30. https://doi.org/10.1145/3428240

G. Barthe, B. Grégoire, and S. Z. Béguelin. 2009. Formal Certification of Code-based Cryptographic Proofs. In Proc. of 36th

POPL. 90–101. https://doi.org/10.1145/1480881.1480894

K. Batz, B. L. Kaminski, J.-P. Katoen, and C Matheja. 2021. Relatively Complete Verification of Probabilistic Programs: An

Expressive Language for Expectation-based Reasoning. PACMPL 5, POPL (2021), 1–30. https://doi.org/10.1145/3434320

O. Bournez and F. Garnier. 2005. Proving Positive Almost-Sure Termination. In Proc. of 16th RTA (LNCS, Vol. 3467). Springer,
323–337. https://doi.org/10.1007/978-3-540-32033-3_24

T. Brázdil, S. Kiefer, A. Kucera, and I.H. Vareková. 2015. Runtime Analysis of Probabilistic Programs with Unbounded

Recursion. J. Comput. Syst. Sci. 81, 1 (2015), 288–310. https://doi.org/10.1016/j.jcss.2014.06.005

A. Bucciarelli, A. Piperno, and I. Salvo. 2003. Intersection Types and lambda-Definability. MSCS 13, 1 (2003), 15–53.

https://doi.org/10.1017/S0960129502003833

O. Celiku and A. McIver. 2005. Compositional Specification and Analysis of Cost-Based Properties in Probabilistic Programs.

In Proc. International Symposium of Formal Methods Europe (LNCS, Vol. 3582). Springer, 107–122. https://doi.org/10.1007/

11526841_9

A. Chakarov and S. Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Proc. of 25th CAV (LNCS,
Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34

A. Chakarov and S. Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed Points. In

Proc. of 21th SAS. 85–100. https://doi.org/10.1007/978-3-319-10936-7_6

K. Chatterjee, H. Fu, and A. K. Goharshady. 2016. Termination Analysis of Probabilistic Programs Through Positivstellensatz’s.

In Proc. of 28th CAV (LNCS, Vol. 9779). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

K. Chatterjee, H. Fu, and A. Murhekar. 2017a. Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds.

In Proc. of 29th CAV (LNCS, Vol. 10426). Springer, 118–139. https://doi.org/10.1007/978-3-319-63387-9_6

K. Chatterjee, P. Novotný, and D. Zikelic. 2017b. Stochastic Invariants for Probabilistic Termination. In Proc. of 44th POPL.
ACM, 145–160. https://doi.org/10.1145/3009837.3009873

P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints. In Proc. of 4th POPL. ACM, 238–252. https://doi.org/10.1145/512950.512973

J. W. Cutler, D. R. Licata, and N. Danner. 2020. Denotational Recurrence Extraction for Amortized Analysis. PACMPL 4,

ICFP (2020), 97:1–97:29. https://doi.org/10.1145/3408979

U. Dal Lago, C. Faggian, and S. Ronchi Della Rocca. 2021. Intersection Types and (Positive) Almost-sure Termination.

PACMPL 5, POPL (2021), 1–32. https://doi.org/10.1145/3434313

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. Log. Methods Comput. Sci. 8,
4 (2011).

U. Dal Lago and C. Grellois. 2017. Probabilistic Termination by Monadic Affine Sized Typing. In Proc. of 26th ESOP (LNCS).
Springer, 393–419. https://doi.org/10.1145/3293605

U. Dal Lago and M. Zorzi. 2012. Probabilistic Operational Semantics for the Lambda Calculus. RAIRO - TIA 46, 3 (2012),

413–450. https://doi.org/10.1051/ita/2012012

N. A. Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In Proc.
of 35th POPL. ACM, 133–144. https://doi.org/10.1145/1328438.1328457

N. Danner, D. R. Licata, and Ramyaa. 2015. Denotational Cost Semantics for Functional Languages with Inductive Types. In

Proc. of 20th ICFP. ACM, 140–151. https://doi.org/10.1145/2784731.2784749

Oliver Danvy and Andrzex Filinski. 1992. Representing Control: a Study of the CPS Transformation. Mathematical Structures
in Computer Science 2, 4 (1992), 361–391. https://doi.org/10.1017/S0960129500001535

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

https://doi.org/10.1145/3110265
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1145/3428240
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/3434320
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1016/j.jcss.2014.06.005
https://doi.org/10.1017/S0960129502003833
https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3408979
https://doi.org/10.1145/3434313
https://doi.org/10.1145/3293605
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1017/S0960129500001535

On Continuation-Passing Transformations and Expected Cost Analysis 87:29

O. Danvy and L. R. Nielsen. 2003. A First-Order One-pass CPS Transformation. TCS 308, 1-3 (2003), 239–257. https:

//doi.org/10.1016/S0304-3975(02)00733-8

K. De Leeuw, E. Moore, C. Shannon, and N. Shapiro. 1956. Computability by Probabilistic Machines. Automata Studies 34
(1956), 183–198.

T. Ehrhard, M. Pagani, and C. Tasson. 2014. Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF. In POPL.
ACM. https://doi.org/10.1145/2535838.2535865

T. Ehrhard, M. Pagani, and C. Tasson. 2018. Full Abstraction for Probabilistic PCF. J. ACM 65, 4 (2018), 23:1–23:44.

https://doi.org/10.1145/3164540

J. Esparza, A. Kucera, and R. Mayr. 2005. Quantitative Analysis of Probabilistic Pushdown Automata: Expectations and

Variances. In Proc. of 20th LICS. 117–126. https://doi.org/10.1109/LICS.2005.39

Andrzej Filinski. 1994. Representing Monads. In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994. ACM Press, 446–457.

T. Gehr, S. Misailovic, and M. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Proc. of 28th CAV.
62–83. https://doi.org/10.1007/978-3-319-41528-4_4

S. Goldwasser and S. Micali. 1984. Probabilistic Encryption. JCSS 28, 2 (1984), 270–299. https://doi.org/10.1016/0022-

0000(84)90070-9

N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. 2008. Church: A Language for Generative

Models. In UAI. 220–229.
J. Goubault-Larrecq. 2019. A Probabilistic and Non-Deterministic Call-by-Push-Value Language. In Proc. of 34th LICS. IEEE,

1–13. https://doi.org/10.1109/LICS.2019.8785809

C. Heunen, O. Kammar, S. Staton, and H. Yang. 2017. A Convenient Category for Higher-order Probability Theory. In Proc.
of 32nd LICS. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005137

J. Hoffmann, K. Aehlig, and M. Hofmann. 2012. Resource Aware ML. In Proc. of 24th CAV (LNCS, Vol. 7358). Springer,
Heidelberg, DE, 781–786. https://doi.org/10.1007/978-3-642-31424-7_64

J. T. Gill III. 1974. Computational Complexity of Probabilistic Turing Machines. In Proceedings of STOC 1974. ACM, 91–95.

https://doi.org/10.1145/800119.803889

S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. 2010. Static Determination of Quantitative Resource Usage for

Higher-order Programs. In Proc. of 37th POPL. ACM, 223–236. https://doi.org/10.1145/1706299.1706327

A. Jung and R. Tix. 1998. The Troublesome Probabilistic Powerdomain. ENTCS 13 (1998), 70–91. https://doi.org/10.1016/S1571-
0661(05)80216-6

B. L. Kaminski and J.-P. Katoen. 2017. A Weakest Pre-expectation Semantics for Mixed-sign Expectations. In Proc. of 32nd

LICS. IEEE, 1–12. https://doi.org/10.1109/LICS.2017.8005153

B. Lucien Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2016. Weakest Precondition Reasoning for Expected Run-Times

of Probabilistic Programs. In Proc. of 25th ESOP (LNCS, Vol. 9632). Springer, 364–389. https://doi.org/10.1145/3208102

B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2018. Weakest Precondition Reasoning for Expected Runtimes of

Randomized Algorithms. JACM 65, 5 (2018), 30:1–30:68.

B. L. Kaminski and J.-P. Katoen. 2015. On the Hardness of Almost-Sure Termination. In MFCS 2015, Part I. 307–318.
https://doi.org/10.1007/978-3-662-48057-1_24

J.-P. Katoen. 2016. The Probabilistic Model Checking Landscape. In Proc. of 31nd LICS. 31–45. https://doi.org/10.1145/

2933575.2934574

J.-P. Katoen, A. McIver, L. Meinicke, and C.C. Morgan. 2010. Linear-Invariant Generation for Probabilistic Programs: -

Automated Support for Proof-Based Methods. In Proc. of 17th SAS. 390–406. https://doi.org/10.1007/978-3-642-15769-1_24
D. Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.
D. Kozen. 1985. A Probabilistic PDL. JCSC 30, 2 (1985), 162 – 178. https://doi.org/10.1016/0022-0000(85)90012-1

A. McIver, C. Morgan, B. L. Kaminski, and J-P Katoen. 2018. A New Proof Rule for Almost-sure Termination. PACMPL 2,

POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

D. Monniaux. 2001. An Abstract Analysis of the Probabilistic Termination of Programs. In Proc. of 8th SAS (LNCS, Vol. 2126).
Springer, 111–126. https://doi.org/10.1007/3-540-47764-0_7

Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press.

P. Narayanan, J. Carette, W. Romano, C. Shan, and R. Zinkov. 2016. Probabilistic Inference by Program Transformation in

Hakaru (System Description). In Proc. of 13rd FLOPS (LNCS, Vol. 9613). Springer, 62–79. https://doi.org/10.1007/978-3-

319-29604-3_5

N. C. Ngo, Q. Carbonneaux, and J. Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic Programs. In

Proc. of 39th PLDI. ACM, 496–512. https://doi.org/10.1145/3192366.3192394

Hanne Riis Nielson. 1987. A Hoare-Like Proof System for Analysing the Computation Time of Programs. Sci. Comput.
Program. 9, 2 (1987), 107–136. https://doi.org/10.1016/0167-6423(87)90029-3

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1145/3164540
https://doi.org/10.1109/LICS.2005.39
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1109/LICS.2019.8785809
https://doi.org/10.1109/LICS.2017.8005137
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/800119.803889
https://doi.org/10.1145/1706299.1706327
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1109/LICS.2017.8005153
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1145/3158121
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1016/0167-6423(87)90029-3

87:30 Martin Avanzini, Gilles Barthe, and Ugo Dal Lago

F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. 2016. Reasoning About Recursive Probabilistic Programs. In Proc. of
31nd LICS. 672–681. https://doi.org/10.1145/2933575.2935317

G.D. Plotkin. 1975. Call-by-name, Call-by-value and the _-calculus. TCS 1, 2 (1975), 125–159. https://doi.org/10.1016/0304-

3975(75)90017-1

M. O. Rabin. 1963. Probabilistic Automata. Information and Control 6, 3 (1963), 230–245.
I. Radicek, G. Barthe, M. Gaboardi, D. Garg, and F. Zuleger. 2018. Monadic Refinements for Relational Cost Analysis. PACMPL

2, POPL (2018), 36:1–36:32. https://doi.org/10.1145/3158124

N. Ramsey and A. Pfeffer. 2002. Stochastic Lambda Calculus and Monads of Probability Distributions. In Proc. of 29th POPL.
ACM, 154–165. https://doi.org/10.1145/503272.503288

M. Rosendahl. 1989. Automatic Complexity Analysis. In FPCA. 144–156. https://doi.org/10.1145/99370.99381

N. Saheb-Djahromi. 1978. Probabilistic LCF. In MFCS. 442–451. https://doi.org/10.1007/3-540-08921-7_92

E. S. Santos. 1969. Probabilistic Turing Machines and Computability. Proc. of AMS 22, 3 (1969), 704–710.
A. Ścibior, O. Kammar, M. Vákár, S. Staton, H. Yang, Y. Cai, K. Ostermann, S. K. Moss, C. Heunen, and Z. Ghahramani.

2018. Denotational Validation of Higher-order Bayesian Inference. PACMPL 2, POPL (2018), 60:1–60:29. https:

//doi.org/10.1145/3158148

R. Sedgewick and P. Flajolet. 1996. An Introduction to the Analysis of Algorithms. Addison-Wesley-Longman.

T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. 2018. Ranking and Repulsing Supermartingales for Reachability in Probabilistic

Programs. In Proc. of 16th ATVA (LNCS, Vol. 11138). Springer, 476–493. https://doi.org/10.1007/978-3-030-01090-4_28

J. Tassarotti and R. Harper. 2018. Verified Tail Bounds for Randomized Programs. In Proc. of 9th ITP (LNCS, Vol. 10895).
Springer, 560–578. https://doi.org/10.1007/978-3-030-01090-4_28

D. Tolpin, J.-W. van de Meent, H. Yang, and F. D. Wood. 2016. Design and Implementation of Probabilistic Programming

Language Anglican. In Proc. of 28th IFL. ACM, 6:1–6:12. https://doi.org/10.1145/3064899.3064910

D. Wang, J. Hoffmann, and T. W. Reps. 2018. PMAF: an algebraic framework for static analysis of probabilistic programs. In

Proc. of 39th PLDI. 513–528. https://doi.org/10.1145/3192366.3192408

D. Wang, D. M. Kahn, and J. Hoffmann. 2020. Raising Expectations: Automating Expected Cost Analysis with Types.

PACMPL 4, ICFP (2020), 110:1–110:31. https://doi.org/10.1145/3408992

P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. 2019. Cost Analysis of Nondeterministic Probabilistic

Programs. In Proc. of 40th PLDI. ACM, 204–220. https://doi.org/10.1145/3314221.3314581

B. Wegbreit. 1975. Mechanical Program Analysis. Comm. ACM 18, 9 (1975), 528–539. https://doi.org/10.1145/361002.361016

G. Winskel. 1993. The Formal Semantics of Programming Languages. MIT Press.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 87. Publication date: August 2021.

https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/3158124
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/99370.99381
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/3158148
https://doi.org/10.1145/3158148
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1145/3064899.3064910
https://doi.org/10.1145/3192366.3192408
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/361002.361016

	Abstract
	1 Introduction
	2 Randomized Programs and CPS: a Bird's Eye View
	3 A Probabilistic Higher-Order Language
	3.1 The Pure Fragment
	3.2 The Non-pure Fragment
	3.3 A Semantic Expected Cost Transformer

	4 Computing Expected Costs
	4.1 The Target Language and Its Semantics
	4.2 The Cost Transformer

	5 On Higher-Order Logic and Expectations
	5.1 Examples

	6 Embedding of the ERT Calculus
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

