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a b s t r a c t

Java Card is a version of Java developed to runondeviceswith severe storage andprocessing
restrictions. The applets that run on these devices are frequently intended for use in critical,
highly distributed, mobile conditions. They are required to be portable and safe. Often, the
requirements of the application impose the use of dynamic, on-card verifications, but most
of the research developed to improve the safety of Java Card applets concentrates on static
verification methods. This work presents a runtime verification approach based on Design
by Contract to improve the safety of Java Card applications. To this end, we propose JCML
(Java Card Modelling Language) a specification language derived from JML (Java Modelling
Language) and its implementation: a compiler that generates runtime verification code.
We also present some experiments and quality indicators. This paper extends previous
published work from the authors with a more complete and precise definition of the JCML
language and new experiments and results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Java Card programming language [32] is a version of Java. Its programs are intended to run on very restricted
architectures such as Smart Cards, SIM cards or security tokens. For this reason, many features and constructors of Java
are not present in Java Card. These include some primitive types such as float and most library classes. A specific version
of the Java Virtual Machine (JVM) has been defined to run Java Card applets [9]. These applets are usually deployed in
highly distributed andmobile situations and tend to be used in critical applications. To reduce financial and/or human risks,
rigorous verification of such applets is often required to guarantee the intended behaviour of the system to which these
applets belong.

The relevance of formal specification and verificationmethods for Java Card applications is reflected by the large amount
of work in this area. A typical example of this is the Mondex case study [19]; an electronic purse application specified in the
context of the Grand Challenge on Verified Software. The Mondex specification ensures some important properties of the
system, such as that no money may be created by the application.

The JavaModelling Language (JML) [21,23] is a language designed to specify Java programs in detail. Software developers
can use JML to add specifications in accordance with the Design by Contract [29] principles by means of assertions, such as
method preconditions and postconditions and class invariants. JML annotations can be automatically translated into runtime
assertion checking code by JMLc [10,7], the JML compiler. JMLc produces Java executable bytecode supposed to run on any
Java virtual machine where the JML runtime classes are available.
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The usefulness of Design by Contract in general and JML for Java is already well established, as presented in [23]. Due to
the critical nature of smart card applications, runtime verifications associated to Design by Contract could contribute to the
development of more robust code, e.g., by dealing with exceptional behaviour. However, JML and JMLc are not supported
by the Java Card virtual machine. The input programming language accepted by the Java Card virtual machine has been
restricted to cope with the restrictions imposed by the target devices where most of Java Card applets run. A consequence
of this restriction is that Java Card cannot benefit from JML specification and verification tools in order to improve the safety
of its applets at runtime.

The motivation for our work is that, although the Java Card virtual machine is not able to deal with the code produced
from a full JML specification, the safety of Java Card applets can be improved at least by a subset of JML. Such a subset can be
defined in order to avoid all those features that are not supported by the Java Card virtual machine. It is necessary to ensure
that both data and control structures involved in the specifications as well as the code generated for the verification of these
specifications are compliant with the Java Card virtual machine.

In this context, the main contributions of this work are:

• The proposal of JCML, a restricted version of JML as a Java Card specification language.
• The design and implementation of a compiler for this language. Unlike the original JML compiler, our implementation

focuses on the generation of concise and efficient code. To achieve this goal: (1) someoptimization techniques are used for
the generation of the Java Card code that will be run on-card, and (2) some verifications cannot be dealt with completely,
and, if needed, have to be performed statically or in an off-card testing environment.
• Two case studies where the size and execution times of the JCML-generated programs are compared to those programs

generated by the standard JML compiler. The size of the generated code is the main restriction when considering
constrained devices after compatibility with the Virtual Machine. Execution times come just afterwards, as card
processors are not as powerful as desktop ones and it is not acceptable for a card to take significant amounts of time
to respond to the user’s requests.

This paper is an extended, revised version of [11,12]. Some important, new contributions have been included, such as:
(i) a more precise and complete definition of the JCML language; (ii) the implementation of some new verification items
and static analysis to improve the verification of non-boolean conditions; (iii) the addition of a new case study (iv) and the
inclusion of new experiments and results.

This paper is organized as follows: Section 2 presents Design by Contract and JML. Section 3 introduces the Java Card
platform and discusses related limitations and advantages. After that, Section 4 shows how Java Card restrictions affect the
definition of JCML and presents JCML in detail through its grammar. Section 5 introduces the implementation of the JCML
compiler, including the translation from JCML assertions to Java Card code. Experimental results are shown in Section 6,
where we compare the code produced by the JCML compiler and that produced by the JML compiler in terms of size and
execution times. Finally, Sections 7 and 8 present some related work and the next steps to be taken to improve JCML and its
compiler, as well as our final remarks.

2. Design by contract and JML

Design by Contract [28,29] is a software development method based on the definition of contracts between software
units. The method proposes the run-time verification of these contracts. Design by Contract uses logical assertions
(preconditions, postconditions and class invariants) to specify contracts. These assertions can be added to the source code
of a program and can be dynamically verified.

JML implements these ideas by usingmodel-based specificationswithmathematical concepts such as sets and first order
logic to specify the contents of each contract condition. However, differently fromothermodel-based specification languages
such as Z [40] and B [1], JML uses Java syntax as much as possible in its specifications, adding extra constructs to cope with
specification concepts that are not directly expressed in Java, such as first order logic quantifiers.

In JML, assertions are expressed within the Java program by using a special kind of comment which expresses the
conditions as first-order logic formulae, as follows:

JML supports Design by Contract by means of two styles of specifications: lightweight specifications and heavyweight
specifications. Roughly, lightweight specifications may be partial, i.e., specifications where only part of the required
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1 import ...
2 public class UserAccess {
3
4 public static final byte MAX_USER_ID_LENGTH = 15;
5
6 //types of users
7 public static final byte STUDENT = 0;
8 public static final byte PROFESSOR = 1;
9
10 //different requirements for different types of users
11 public static final byte MAX_AREAS = 20;
12 public static final short MAX_CREDITS = 3000;
13 public static final byte STUDENT_MAX_AREAS = 10;
14 public static final short STUDENT_MAX_CREDITS = 1000;
15
16 //class attributes
17 private /*@ spec_public @*/ byte[] userId;
18 private /*@ spec_public @*/ byte userType;
19 private /*@ spec_public @*/ byte[] authorizedAreas;
20 private /*@ spec_public @*/ byte nextArea;
21 private /*@ spec_public @*/ short printerCredits;
22

Fig. 1. Initial part of the UserAccess class definition with JML annotations.

properties of a class or method are specified. Heavyweight specifications, on the other hand, are supposed to be complete,
i.e., if an item is not explicitly stated, the default specification condition for that item is assumed.

JML annotated Java programs may be compiled with the JML compiler into instrumented Java programs. These resulting
programs perform the original computation together with the verification steps. For instance, if a precondition p is specified
for a method m and, at runtime, m is called in a context where p evaluates to false, the execution of m can be blocked and
a warning message be sent to the user. Also, if in spite of all care, a specified class invariant is broken by some method
execution, this situation can be immediately detected and made visible to the user. Together with static (type) verification,
the dynamic verification of assertions increases confidence in the applications, and so, it should be particularly useful in the
smart card domain. However, because of this domain’s severe restrictions, a JML-like language was not yet available for it.
Up to now, most smart card code is manually programmed and inserted into the card programs, without any kind of formal
verification.

One of the goals of JML is to provide a tool that can be used for industrial applications. Thismeans that a precise definition
of the features of the language is needed, to be used by application programmers. At the same time, JML is a language under
development, allowing several research groups to define and experiment with new features. In order to comply with these
two, apparently conflicting, requirements, JML defines six levels, containing different syntactic constructors. These levels
[22] are targeted at different classes of users and are described as follows:
Level 0: This level defines the kernel of the language, including those features that any JML implementation must include.
It represents the stable, fundamental version of the language.
Level 1: The syntactic constructors present in this level include features that can be defined in terms of several level 0
constructors (syntactic sugar), redundant features as well as some features for which static verification is still problematic
(including method and constructors calls in assertions).
Level 2: Contains specialized features, to be used by specific kinds of users.
Level 3: This level contains even more exotic and semantically not-well-understood features.
Level C: The features of this level are devoted to the use of JML to annotate Concurrent Java programs.
Level X: Includes experimental features, to be included at other levels in future releases of the framework.

2.1. An example

Let us now present parts of an application named UserAccess (Figs. 1–3), to be used by students and staff of a university.
The application runs a printingmanagement quota system and also grants access to certain parts of the building.We propose
a JML specification for this application. It will be used to present some key features of JML.

The UserAccess class includes methods for: defining and returning the user ID (setID(byte[] m), getID()),
adding rights of access to a location to the user or checking if the user has the right to access a given area (addArea
(byte local_cod), hasAccess(byte local_cod), adding or using printer credits (addCredits(short value),
rmCredits(short value)), checking the balance of printer credits (short getCredits()), defining and returning
the user type (setType(byte[] m), getType()). This class is defined in standard Java code to which JML annotations
are added through special comments limited by ‘‘/*@’’ and ‘‘@*/’’. In lines 17 to 21, the spec_public annotations state
that these attributes, although private in the context of the Java code, are public in the context of the specification.

Specification of Invariants. Invariants for a class are properties that must hold throughout the execution of every instance
of the class. In JML, one can specify static and instance invariants: static invariants are properties over static attributes and
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23 // no userId may have more than MAX_USER_ID_LENGTH
24 /*@ invariant userId.length <= MAX_USER_ID_LENGTH; @*/
25
26 //every user is either a student or a professor
27 /*@ invariant userType == STUDENT || userType == PROFESSOR; @*/
28
29 // global limits and values
30 /*@ invariant authorizedAreas.length <= MAX_AREAS; @*/
31 /*@ invariant \forall byte a; 0 <= a && a < authorizedAreas.length;
32 authorizedAreas[a] >= 0; @*/
33 /*@ invariant printerCredits >= 0 &&
34 printerCredits <= MAX_CREDITS; @*/
35
36 //restricted limits for students
37 /*@ invariant userType == STUDENT ==>
38 authorizedAreas.length <= STUDENT_MAX_AREAS; @*/
39
40 /*@ invariant userType == STUDENT ==> printerCredits <=
41 STUDENT_MAX_CREDITS; @*/
...

Fig. 2. UserAccess class invariants.

1 /*@ requires value >= 0 &&
2 (value + getCredits()) <= MAX_CREDITS &&
3 (userType == STUDENT ==>
4 (value + getCredits()) <=STUDENT_MAX_CREDITS);
5 ensures printerCredits >= value;
6 @*/
7 public void addCredits(short value) {
8 printerCredits += value;
9 }
10
11 public short getCredits(){
12 return printerCredits;
13 }

Fig. 3. addCredits and getCreditsMethods.

instance invariants deal with instance fields. Instance methods must comply with both static and instance invariants. The
only variables allowed to appear in JML invariants are class attributes. In runtime verification, invariants are supposed to be
checked before and after each method is called.

The UserAccess invariant (Fig. 2, lines 23–41) defines: (i) that no userId may have more than MAX_USER_ID_LENGTH
characters (line 24); (ii) that every user is either a student or a professor (line 27); (iii) global limits and values for the
number of authorized areas and printer credits per user (lines 30, 33 and 34); (iv) restricted limits for students (lines 37
to 41); (v) that area codes are natural numbers (lines 31 and 32).

UserAccess Methods Specification. Let us now see how a method may be annotated with JML. The addCredits method is
used to add printer credits to the user. This method, shown in Fig. 3, has one parameter, called value, corresponding to
the amount to be credited. The specification requires that the value to be credited is non-negative (line 1), and that the
resulting credit balance is not greater than the allowed limit for the user. Notice that the specification uses the method
getCredits(), which provides the current balance stored in the card (lines 2 to 4). The specification also states (at line 5)
that, at the end of themethod execution, the available credit is at least the amount which was credited. One important thing
to notice here is that the code that implements the method (lines 7 to 9) does not take care of these restrictions. It will just
execute the assignment (line 8), independently of whether the assertions hold or not, leaving the responsibility of verifying
the satisfaction of the precondition to the user (or to the verification code generated by the specification compiler).

2.2. Static and dynamic verification of contracts

The verification of contracts consists in checking that the assertions that define the contract hold. This activity can be
performed at compile time as well as during the execution of the program. In our context, static and dynamic verifications
are complementary and are used together. The use of static analysis can achieve a more general coverage of the program’s
properties than the use of dynamic techniques. This is justified by the fact that static verification can explore execution paths
that are rarely activated in practice. Static analysis also can achieve a better coverage by using abstractions on the program
and data-flow analysis performed over source or object code. On the other hand, since static analysis deals only with the
(incomplete) information known at compile-time, some verifications are hard or even impossible to be performed, such as
decidingwhen different object references are aliases for a same object, verifying conditions over recursive data structures or
even the existence of certain classes of possibly non-terminating loops [2]. Such kind of verification can be done at runtime
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when the state of the program is completely known. Runtime verification also copes more easily with problems such as the
one dealt with by [26] in a static verification context where it is difficult to guarantee invariant validity on an object oriented
context.

Static analysis is usually employed by formal verifiers that perform proofs of correctness given a specification or amodel.
So, whenever the existence of an error is not conclusive such verifiers issue ‘‘false positives’’, that is, errors that do not occur
in practice. This reduces the effectiveness of the produced warnings. In order to reduce false positives, the code can be
annotated with conditions under which the execution must be considered.

Dynamic analysis can be part of automated testing tools that interleave the execution of the original program with
testing routines. In practice, calls to the original routines are replaced with calls to versions where the contract verification
is performed (and error messages are generated in case of non-compliance). So, dynamic analysis has access to all the
information regarding the execution environment and can issue detailed error reports for given inputs, without false
positives. Since program execution is inherent to dynamic analysis, such an approach increases the size and running time of
programs. Testing is intended to reveal the presence of errors, not to prove correctness. Therefore, the effectiveness of tests
depends on the selection of inputs and there are no guarantees about activating faulty execution paths. On the other hand,
automated testing requires less specialized knowledge and can scale to larger designs than the static approaches [3].

The combination of static and dynamic analysis seems to be the best choice in the case of contract verification, each one
complementing the other. Static analysis can be used to guide the dynamic testing by reducing the number of conditions to
be observed during runtime and improve performance, whereas dynamic testing can discover errors that arise in practice
but that are difficult to find by static approaches. In [3,13,35] different interactions between static and dynamic analyses are
shown.

3. Java Card

Java Card is a Java platform designed for resource-constrained devices. Due to the nature of those devices, the platform
is quite limited. Memory restrictions are crucial for the design of Java Card applications: typical smart cards have as low as
12KB RAM, 374KB ROM and 144KB EEPROM. The read-only memory is used to store the Java Card Virtual Machine (JCVM),
a severely downsized version of the JVM. The main differences between JVM and JCVM standards are the exclusion of some
important JVM features such as many primitive types, dynamic classes and threads.

Java Card applications are called applets. In order to run one of these applets in a Java Card device, one must: (1) write
the Java Card applet; (2) compile the applet; (3) convert the binary classes into a converted applet CAP file; (4) install the
CAP file on the card; (5) run the applet. Compliance problems are detected by an off-card component of the JCVM [9], the
converter, before the applet is installed on the card.

Because of these restrictions, a typical Java Card application will be very limited, and only some basic functionalities will
be provided on-card. Most of the more heavy processing is executed on the so-called host side, the program that runs on the
terminal to which the card is temporarily connected. However, for safety reasons, some card data may not be seen by the
host application. Such sensitive data must be manipulated on the card, safely and correctly. This is one of the advantages
of smart cards with respect to magnetic strip cards: their on-card code may be used to ensure the safety and correctness
of data apart from the host application. This is where tools for a rigorous specification and verification of on-card data and
functionalities become necessary.

Java Card API. The Java Card API specification [30,20] defines a small subset of the traditional Java programming language
API which is supported by JCVM. On top of this, the Java Card framework defines its own set of core classes that specifically
support Java Card applications. The main packages are described below:

1. javacard.framework : Defines the interfaces, classes, and exceptions for services that compose the core Java Card
Framework.

2. javacard.security : The Java Card specification defines a robust security API that includes various types of private
and public keys and algorithms, e.g., Key, PrivateKey, PublicKey interfaces, and, Checksum, KeyAgreement, Signature classes;

3. java.io : Defines one exception class: the IOException class. None of the other traditional java.io classes are included;
4. java.lang : Defines Object and Throwable classes that are defined in the J2SE framework, the Exception class, various

runtime exceptions, and the CardException class. None of the other traditional java.lang classes are included.
5. java.rmi : Defines the Remote interface and the RemoteException class. None of the traditional java.rmi classes are

included.

Java Card and the Mondex electronic purse system. Mondex is a smart card electronic purse system. It was defined around
1996 and is part of the MasterCard suite of products. Mondex has been formally verified, and it is a key contribution to the
Grand Challenge in Verified Software [18] repository. A number of works address the Mondex System [17,4,41,15,34]. The
work on [34] describes a Java Card implementation of the Mondex protocol, obtained by refinement of a Z specification into
a JML specification and statically verified using the KeY system [6].

We used this JML Mondex specification, as described in [38], as a real world case study to test our approach,
complementing previous simpler case studies that had previously been run.

Some results of this case study are presented in Section 6.
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(0) jcml-compilation-unit ::= [package-definition]
(import-definition)* (type-definition)*

(1) import-definition ::= [model] import name-star

(2) type-definition ::= class-definition | interface-definition | ;
(3) class-definition ::=modifiers class ident [class-extends-clause]

[implements-clause] class-block

(4) interface-definition ::=modifiers interface ident
[interface-extends] class-block

(5) class-extends-clause ::= extends name [weakly]
(6) implements-clause ::= implements name-weakly-list

(7) interface-extends ::= extends name-weakly-list

(8) name-weakly-list ::= (name [weakly])+
(9)modifiers ::=modifier*

(10)modifier ::= public | protected | private | abstract | static
| final | jcml-modifier

(11) jcml-modifier ::= spec_public | spec_protected |model
| ghost | pure | instance | helper
| uninitialized
| non_null | nullable | nullable_by_default

Fig. 4. JCML grammar — (part 1).

4. Java Card Modelling Language (JCML)

JML is an extension of Java that includes specification constructs. These constructs can contain Java code that is used only
when the JML specification is verified. Likewise, JCML specifications are Java Card programs annotated with specification
constructs. The specification part of a JCML program is defined using a special kind of comment. Java Card constructs defined
within the annotations are treated by our JCML compiler and can be used in the pre/postconditions and invariants.

To specify and verify Java Card applications, only those constructs that are Java Card-compliant can be used. Such a
restriction leads to two different, but related, requirements for a Java Card-compliant variant of JML: (1) Java Card constructs,
instead of Java constructs, are allowed in the specification, and (2) the additional runtime verification code, which is
generated by the tool, has to be formedby Java Card constructs. As a consequence, not onlymust the specification languagebe
Java Card compliant, but the verification code generator must also be designed to generate strictly Java Card compliant code
to perform runtime verification. Beside these restrictions, time and memory consumption have to be taken into account on
the definition of themodelling language and the corresponding verification code. The design of such a specification language
has to consider the trade-off between expressiveness and feasibility.

With these requirements in mind, in [11,12] we first presented JCML: the Java Card Modelling Language. These previous
works only present an informal overview of the language. In this paper we give JCML a more precise presentation of the
syntax and compilation process of the language.

JCML was designed to be as close as possible to JML. More precisely, almost all of the JML fundamental level (level 0)
constructs are included in JCML (and some features of other levels). This means that many JML constructs are present in
JCML even if their runtime verification on a smart card platform is not feasible with current technology. In this case, the
construct may be present in the language only as a specification tool, but no verification code is generated for it.

To fulfil the goal of staying as close as possible to JML, the grammatical definition of JCMLwas derived from the grammar
for JML in [22]. The grammatical definition of JCML is given next, stressing on the explanation of those aspects of JCML
that differ from JML. The EBNF (Extended Backus-Naur Form) for JCML is shown in Figs. 4–11. Notice that the grammar for
JCML includes a Java Card-compliant subset of Java, in the sameway as JML includes Java. For space reasons, our presentation
focuses on the specification-related parts of JCML. It includes some Java Card constructors, when necessary, in order to clarify
the explanation. We use the following convention: non-terminal symbols are written in this italic font while non-terminals
symbols are written in bold roman characters.

We start with the initial symbol, jcml-compilation-unit (Fig. 4, rule 0). A JCML compilation unit is a Java card construct
which defines zero or more types (classes or interfaces) and import declarations; the whole, possibly grouped inside a
package. Comparing with the original JML grammar, two syntactic classes have been removed from the compilation unit
rule: MultiJava constructs (our JCML compiler does not extend the MultiJava Compiler, but the standard Java one) and JML
specification refinement constructs. Refinement constructs are not included in the present version of the tool since they are
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(12) class-block ::= { ( field )* }
(13) field ::=member-decl | jcml-declaration | class-initializer-decl

(14)member-decl ::=method-decl | variable-definition
| class-definition | interface-definition

(15) jcml-declaration ::=modifiers invariant
|modifiers history-constraint
|modifiers represents-decl

(16) class-initializer-decl ::= [static] compound-statement
| jcml-method-specification [static] compound-statement
| jcml-method-specification [static_initializer]
| jcml-method-specification [initializer]

(17)method-decl ::= [jcml-method-specification]
modifiers method-head method-body

(18) variable-definition ::=modifiers variable-decls

Fig. 5. JCML grammar — (part 2).

(19) invariant ::= invariant-keyword predicate ;
(20) invariant-keyword ::= invariant | invariant-redundantly
(21) history-constraint ::= constraint-keyword predicate

[for constrained-list] ;
(22) constraint-keyword ::= constraint | constraint-redundantly
(23) constrained-list ::=method-name-list | \everything
(24) represents-decl ::= represents-keyword store-ref-expression

l-arrow-or-eq spec-expression ;
| represents-keyword store-ref-expression
\such_that predicate ;

(25) represents-keyword ::= represents | represents-redundantly
(26) l-arrow-or-eq ::=← | =

Fig. 6. JCML grammar — (part 3).

(27) jcml-method-specification ::= specification | extending-specification

(28) extending-specification ::= also specification

(29) specification ::= spec-case-seq [redundant-spec] | redundant-spec

(30) spec-case-seq ::= spec-case (also spec-case)*

(31) spec-case ::= lightweight-spec-case | heavyweight-spec-case

Fig. 7. JCML grammar — (part 4).

used at an early moment in the development process, when code is not yet run on the card. We plan to include refinement
constructs in a later version of the JCML framework.

The production rule for package-definition, used in rule 0, is omitted here as it is the standard Java one and does not
lead to any specification. The JCML version of an import-definition, is similar to the standard Java Card construct, with the
optional addition of amodel keyword. This keyword is used to declare an import at the specification level (the non-terminal
name-star corresponds to the usual java name convention as in, e.g., java.util.*). A type-definition (rule 2) may be a class or
interface and may lead to JCML specification constructs.

The production rules 3 and 4 in Fig. 4 are identical to the ones of JML and, at this level, are standard Java constructs.
However, from this point on, JCML specification constructs begin to show up, such as the specification of a weak extension
or implementation (rules 5 to 8) which avoid history constraints to be inherited. History constraints (presented in Fig. 6)
are global constraints on the behaviour of attributes and methods which are useful to specify global evolution restrictions
on attribute values.

A difference between JCML and JML is the set of available modifiers (rules 9 to 11), which may appear in class or
interface definitions (rules 3 and 4). The Java modifiers synchronized, transient, volatile, native, strictfp and const are



540 U.S. da Costa et al. / Science of Computer Programming 77 (2012) 533–550

(32) lightweight-spec-case ::= generic-spec-case

(33) generic-spec-case ::= [spec-var-decls] spec-header [generic-spec-body ]
| [spec-var-decls] generic-spec-body

(34) spec-header ::= (requires-clause)+

(35) generic-spec-body ::= simple-spec-body | {| generic-spec-case-seq |}
(36) simple-spec-body ::= (simple-spec-body-clause)+

(37) simple-spec-body-clause ::= diverges-clause | assignable-clause
| ensures-clause | signals-only-clause
| signals-clause | captures-clause

(38) generic-spec-case-seq ::= generic-spec-case (also generic-spec-case)*

Fig. 8. JCML grammar — (part 5).

(39) requires-clause ::= requires-keyword pred-or-not ;
(40) pred-or-not ::= predicate | \not_specified | \same
(41) requires-keyword ::= requires | pre | requires_redundantly

| pre_redundantly
(42) ensures-clause ::= ensures-keyword pred-or-not ;
(43) ensures-keyword ::= ensures | post | ensures_redundantly

| post_redundantly
(44) signals-clause ::= signals-keyword (reference-type [ident] )

[pred-or-not] ;
(45) signals-keyword ::= signals| ensures | ensures_redundantly

| signals_redundantly
(46) signals-only-clause ::= signals-only-keyword reference-type

(, reference-type)* ;
| signals-only-keyword \nothing ;

(47) signals-only-keyword ::= signals_only |signals_only_redundantly
(48) diverges-clause ::= diverges-keyword pred-or-not ;
(49) diverges-keyword ::= diverges | diverges_redundantly
(50) assignable-clause ::= assignable-keyword (ident (, ident)*

| store-ref-keyword) ;
(51) assignable-keyword ::= assignable | assignable_redundantly

|modifiable |modifiable_redundantly
|modifies |modifies_redundantly

(52) store-ref-keyword ::= \nothing | \everything | \not_specified
(53) captures-clause ::= captures-keyword store-ref-list ;
(54) captures-keyword ::= captures | captures_redundantly

Fig. 9. JCML grammar — (part 6).

not recognized in Java Card, and they are not included in JCML. Similarly, the JML specification modifiers spec_java_math,
code_java_math, spec_safe_math, code_safe_math, spec_bigint_math and code_bigint_math are not part of JCML as they
do not have a precise definition in the JML Reference Manual (they are classified as level 2 JML). The JML modifiers that are
allowed in JCML (rule 11), have a variety of uses, such as changing visibility or restricting the possible values of variables or
behaviours of methods.

In Fig. 5, we present the main components of a class or interface definition: A class-block (rule 12) is composed by zero or
more fields. Each field (rules 13 to 18) may be amethod declaration (rule 17), a variable, class or interface definition (defined
by rules 18, 3 and 4, respectively) or a class initialization and specification (class-initializer-decl, rule 16) or a jcml-declaration
(rule 15).

Rule 17 defines the usual structure for a Javamethod, with the addition of an optional jcml-method-specification (detailed
in Fig. 7), and the extra jcml-modifiers which, as already seen (in Fig. 4), are included as part of the modifiers non-terminal.
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(55) heavyweight-spec-case ::= behavior-spec-case
| exceptional-behavior-spec-case
| normal-behavior-spec-case

(56) behavior-spec-case ::= [ privacy ] behavior-keyword generic-spec-case

(57) behavior-keyword ::= behavior | behaviour
(58) normal-behavior-spec-case ::=

[privacy] normal-behavior-keyword normal-spec-case

(59) normal-behavior-keyword ::= normal_behavior | normal_behaviour
(60) normal-spec-case ::= generic-spec-case

(61) exceptional-behavior-spec-case ::=
[privacy] exceptional-behavior-keyword exceptional-spec-case

(62) exceptional-behavior-keyword ::= exceptional_behavior
| exceptional_behaviour

(63) exceptional-spec-case ::= generic-spec-case

(64) privacy ::= public | protected | private

Fig. 10. JCML grammar — (part 7).

(65) jcml-primary ::= result-expression | old-expression | fresh-expression
| nonnullelements-expression | informal-expression
| typeof-expression | elemtype-expression
| type-expression | spec-quantified-expr

(66) result-expression ::= \result
(67) old-expression ::= \old (spec-expression [, ident])

| \pre ( spec-expression )
(68) fresh-expression ::= \fresh ( spec-expression-list )
(69) nonnullelements-expression ::= \nonnullelements ( spec-expression )
(70) typeof-expression ::= \typeof ( spec-expression )
(71) elemtype-expression ::= \elemtype ( spec-expression )
(72) type-expression ::= \type ( type )
(73) spec-quantified-expr ::= ( quantifier quantified-var-decls ; [[ predicate ] ; ]

spec-expression )
(74) quantifier ::= \forall | \exists | \max | \min |

\num_of | \product | \sum

Fig. 11. JCML grammar — (part 8).

Amethod-head is similar to its corresponding Java definition, with the exception of the possibility of modifying parameters
with the information nullable or non_null. A method-body is a compound statement. Finally, a variable-definition is also a
regular Java construct, possibly preceded by Java and JCML modifiers. There are two main restrictions with respect to a JML
variable-definition: data types are restricted to Java Card, and so, only one-dimensional arrays are allowed, for instance, and
JML data groups, used for extra access control, have not been included in JCML (but may be included in the future).

Fig. 6 defines the different JCML specification constructs that may appear globally in a class or interface declaration:
the invariant (rules 19 and 20), stating properties that must always hold, the history constraints (rules 21 to 23), which
constrain how variables may evolve trough method execution, and the represents-decl (rules 24 to 26), which relates model
and concrete variables. A store-ref-expression identifies a set of memory locations (as in this, for instance). predicate and
spec-expression are Java Card expressions extended with JML level 0 predicate constructs such as quantifiers and commands
for type retrieval.

The redundantly versions of each of the constructs in Fig. 6 are used to state that the corresponding property is a logical
consequence of its counterpart. Some JML constructs are not present in JCML: initially-clause (an extra predicate to be
satisfied by constructors), monitors-clause, readable-if-clause and writable-if-clause (extra access control predicates) and
axiom-clause (meant to provide provers with additional axioms).
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The rules 27 to 31 in Fig. 7 are the same as those found in JML, and define the specification of methods. Specification
cases (rule 31) are classified in lightweight or heavyweight, and each specification case may extend previously stated ones
by using the keyword also. For generality, JCML grammar preserves heavyweight specifications but, due to the restricted
platform for which it is being developed, only lightweight specifications should be verified, for a complete heavyweight
specification verification would in general be too big to run in a smart card.

In Figs. 8 and 9 the rules defining lightweight specification cases are presented, while heavyweight specification cases
are presented in Fig. 10. As in JML, stating explicitly redundant specifications is allowed in JCML, but, as explained later
in this paper, our JCML verification code generator assumes that this redundancy is to be checked statically, reducing in
this way the amount of verification code to be run on the card. We thus do not detail here the redundancy constructions
which are the same as JML’s. Finally, JCML does not include model specifications, which are an advanced feature of JML
(level 2, Section 2), and focuses on development steps which are not related to runtime verification, the focus of our
work.

As seen in rules 32 to 38 in Fig. 8, a lightweight specification case (lightweight-spec-case) contains an optional declaration
part, where specification variables may be defined, an optional series of preconditions (requires clauses — rules 34 and 39
to 41), and a specification body (rules 35 to 38). JML specification clauses which were not compatible with Java Card were
eliminated: when-clause (concurrency related), working-space-clause and duration-clause (which use the long integer
to specify heap space or time consumption, respectively). The preserved clauses are the ones in rule 37: diverges-clause
(specifies that a method may not return — rules 48 and 49), assignable (declares which variables and objects may have
there value changed during method execution — rules 50 to 52), captures (declares when an object may be captured during
a method call — rules 54 and 55), ensures (specifies normal execution postconditions — rules 42 and 43), signals-only and
signals (indicate which exceptions may be thrown by the method — rules 44 to 47).

As far as syntax is concerned, heavyweight specification cases (rules 55 to 63 in Fig. 10) are similar to lightweight
specification cases (it all reduces to generic-spec-case), with the special behaviour keywords (rules 57, 59 and 62) and the
possibility to override code visibility rules with extra privacy indicators (rules 56, 58, 61 and 63). The only difference here
with respect to JML is the removal of the code keyword, which is not part of JML level 0, and allows to block inheritance of
a method specification in case the method is overridden.

Finally, in Fig. 11 we present the JCML specification specific parts of a predicate expression, which may appear in many
places of a JCML annotated Java Card program (e.g., invariants and constraints in Fig. 6). These constructs are those of JML
level 0. A predicatemay then refer to the return value of amethod (result-expression, rule 66), to the value of parameters and
variables before a method’s execution (old-expression, rule 67), to a type (typeof-expression, elemtype and type, rules 70 to
72), a quantified expression (spec-quantified-expr, rules 73 and 74), or to the fact that objects in an expression are fresh, i.e.,
newly allocated (fresh-expression, rule 68). This last one, although classified as JML level 0, is not reasonable in the context
of Java Card applications where objects are usually allocated once and reused as much as possible throughout execution. It
has not been implemented in JCML.

5. The JCML compiler

The current version of the JCML compiler generates Java Card-compliant verification code for lightweight specifications.
It implements invariant and condition verifications. The organization of the generated code preserves the structure of the
original Java Card program, adding the verification code to it. The focus of the implementation is the generation of code
suitable to be run on very restrictive devices. Because of this, the JCML compiler had to be developed from scratch.

5.1. General structure of the generated code

The JCML compiler originally used thewrapper approach proposed in [10]. In this approach, some auxiliary methods are
generated for the verification of preconditions, postconditions and invariants. These auxiliarymethods rise exceptionswhen
the assertions are violated. The original method being verified is renamed and made private. Finally, awrapper methodwith
the samenameand signature as the originalmethod itwraps is defined. In its body, it checks the preconditions and invariants
and then executes the original method. After that, the wrapper checks the invariant and any specified postconditions.

The experiments in [11,12], updated in Section 6, show however that this approach presents a drawback in execution
times, which is an important feature of a Java Card application. For this reason the current version of the compiler allows
the user to specify, through a compiler directive, among four different code generation patterns, which the user may choose
depending on the available memory and execution speed requirements:
1. -wrapper: Uses the wrapper approach, as presented above.
2. -inLineMethod: Method inlining is used for the original, user methods. Instead of creating new, private methods, the

body of each method is inlined into its wrapper (i.e, the method call inside the wrapper is substituted by the method’s
body). This is the default option in our implementation.

3. -inLinePrePost: Inlining of the original methods, and the ones which carry out pre- and postcondition verification.
Invariant-checking methods are still generated.

4. -inLineAll:All themethods for checking preconditions, postconditions and invariants, aswell as the original Javamethod
are inlined into the wrapper.
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Fig. 12. JCMLc x JMLc.

1 private void checkInv$ClassName$() {
2 try{
3 if (!(P1)) {
4 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);}
5 ...
6 if (!(Pn)) {
7 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);}
8 }catch(Exception e){
9 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
10 }
11}
12
13 private void checkPre$MethodName$(T1 a1,..., Tk ak) {
14 try{
15 if (!(Q1)) {
16 ISOException.throwIt(RequiresException.SW_REQUIRES_ERROR);}
17 ...
18 if (!(Qm)) {
19 ISOException.throwIt(RequiresException.SW_REQUIRES_ERROR);}
20 }catch(Exception e){
21 ISOException.throwIt(RequiresException.SW_REQUIRES_ERROR);
22 }
23}

Fig. 13. Java Card methods to check invariants and preconditions.

Our compiler reads a source file <name>.java and produces a Java file named <name> JCML.java. The generated Java
program is similar to the source file, with the addition of the assertion-checkingmethods. It can be compiledwith a standard
Java Card compiler in order to generate the executable class, and finally converted into a CAP file to be run on a smart card.
This process, shown in Fig. 12, is similar to the one implemented by JMLc, the JML compiler. Notice that the file generated
from the JML specification cannot be run on-card, even if the original annotated code is Java Card compliant. This happens
because the verification code generated by JMLc uses libraries and types which are not in the Java Card platform.

In Fig. 13 we present the structure of the auxiliary methods that check invariants and preconditions. Each assertion is
definedby apredicatePi. The condition verified by the auxiliarymethodcheckInv$ClassName$ (lines 1–11) corresponds
to the conjunction of all the predicates for the invariants for the class ClassName. This method does not take parameters,
since invariants are defined over global variables. If any of the predicates Pi evaluates to false, an InvariantException
is signalled.

The checkPre$MethodName$(T1 a1,. . . , Tn an) method (defined in Fig. 13, lines 13–23) performs the
verification of a precondition Q1 & . . . & Qm. This method has the same parameters as the method whose precondition
is being verified. As in the case of invariants, an exception will be raised if the precondition evaluates to false. The case of
postconditions is analogous.

5.2. Implemented semantics of boolean expressions

In recent versions of the JML compiler [22, §2.7], the semantics of the evaluation of undefined expressions has been
modified. The original semantics [10,21] tried to mimic the mathematical logic interpretation of formulæ. This was done
by approximating their truth value, by considering both angelic and demonic behaviours of undefined expressions, using
contextual information. The new versions of JML Runtime Assertion Checker (RAC) incorporate a more traditional approach
to the validation of boolean expressions. The goal of the new approach is to match the semantics of undefined expressions
as defined for the Java programming language meaning that ‘‘an assertion is considered valid if and only if its evaluation
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1 private void checkInv$UserAccessJCML$() throws InvariantException{
2 try{
3 if (!(userId.length <=MAX_USER_ID_LENGTH )) //(i)
4 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
5 if (!(userType == STUDENT || userType == PROFESSOR )) //(ii)
6 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
7 if (!(authorizedAreas.length <=MAX_AREAS )) //(iii)
8 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
9 for (byte a = 0; a < authorizedAreas.length ;a++){
10 if (!(authorizedAreas [a]>=0 )) //(v)
11 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
12 }
13 if (!(printerCredits >=0 &&
14 printerCredits <=MAX_CREDITS )) //(iii)
15 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
16 if (!(!(userType == STUDENT ) ||
17 ( authorizedAreas.length <=STUDENT_MAX_AREAS ))) //(iv)
18 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
19 if (!(!(userType == STUDENT ) ||
20 ( printerCredits <=STUDENT_MAX_CREDITS ))) //(iv)
21 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);
22 }catch(Exception e){
23 ISOException.throwIt(InvariantException.SW_INVARIANT_ERROR);}
24 }

Fig. 14. UserAccessJCML Check Invariant Method.

(terminates and) results in true without raising an exception’’ [8, (sic)]. As shown in [8], the new semantics are not only
more familiar to developers but also their implementation is simpler, yielding to more concise and efficient code. This kind
of interpretation is present in our tool since its first version [36]. The very restrictive nature of our compiler’s requirements
imposed to adopt these semantics; the size of the code generated to check (possibly undefined) conditions in early versions
of the JML compiler was one of our first concerns. Our approach is shown in lines 8–10 and 20–22 of Fig. 13, where we
define the treatment of exceptions (of any kind) raised during the evaluation of conditions. These lines implement a strong
validity semantics for conditions, where undefined expressions provoke the rise of an exception. Our implementation is even
simpler than that described in [8], since we have restricted the assertion language in order to (i) have a very simple form of
quantified expressions (see Section 5.4) and (ii) rule out all forms of informally-defined assertions.

5.3. Example

The UserAccess example presented in the presentation of JML in Section 2.1, is actually JCML compatible. It is used here
to demonstrate how runtime verification code is generated.

Verification of invariants. As class invariants are properties that must hold throughout the execution of every instance of the
class, JCML invariants are checked before and after each method is called. The JCML compiler generates a separate invariant
method for each kind of invariant (class or instance) found in the source code.

The JCML compiler translates the invariant expressions into a private invariant-checking method that raises an
InvariantException when one of the conditions is broken. The generated code is shown in Fig. 14, where manual
comments have been included to associate each verification to the items above. The verification code for the forall quantifier,
item (v), includes a for-loop that will be explained in Section 5.4.

UserAccess Methods Verification. Let us now see how a JCML-annotated method is dealt with. As explained in Section 2.1,
the addCredits specification requires that the resulting credit balance is not greater than the allowed limit for the user.
The addCredits wrapper method (Fig. 15), generated by JCML, wraps the original method call in a try-catch block that
(i) checks the invariant and precondition; (ii) calls the original method and (iii) checks the invariant and postcondition.
Fig. 16 shows the generated code for checkPre$addCredits$.

5.4. Supporting non-Java operators

JCML includes, in its assertions, some operators that are not primitive in Java (nor in Java Card). These operators are
a logical implication operator (==>) as well as universal and existential quantifiers. The JCML compiler generates the
implementation of these operators in Java Card, as follows:

Modelling implications. Formulae of the type A ==> B found in a specification generate verification conditions
corresponding to their equivalent: !A || B.

Modelling quantifiers. Consider the JCML quantified expression:

\forall short i,j; 0 <= i && i < j && j < 10; a[i] < a[j];
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1 public void addCredits(short value) {
2 try{
3 checkInv$UserAccessJCML$();
4 checkPre$addCredits$(value);

5 addCredits$original$(value); // Call the original method

6 checkPost$addCredits$(value);
7 checkInv$UserAccessJCML$();
8 }catch (InvariantException invEx) {
9 ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);
10 }catch (RequiresException reqEx) {
11 ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);
12 }catch (EnsuresException ensEx) {
13 ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);
14 }
15 }

Fig. 15. Generated addCreditsMethods (wrapper).

1 private void checkPre$addCredits$( short value)
2 throws RequiresException{
3 try{
4 if(!(value >=0 && (value + getCredits ())<=MAX_CREDITS &&
5 (!(userType == STUDENT ) ||
6 ( (value + getCredits ())<=STUDENT_MAX_CREDITS ))))
7 ISOException.throwIt(RequiresException.SW_REQUIRES_ERROR);
8 }catch(Exception e){
9 ISOException.throwIt(RequiresException.SW_REQUIRES_ERROR);
10 }
11 }

Fig. 16. Generated method for precondition verification.

which follows the JCML grammar rule:

(73) spec-quantified-expr ::= quantifier quantified-var-decls ; [predicate ;]
spec-expression

This expression uses the universal quantifier to specify that the vector a is sorted at indexes between 0 and 9. According
to the JML Reference Manual [22], in the absence of a range predicate, the quantified expression must be evaluated over
every value of the type of the quantified variable. For instance, in the example, the verifier would check all the possible
values of i and j, from MinShort to MaxShort. Evaluating this kind of expression can be very problematic in the context of
Java Card: even for short-based types, the time required for on-card verification can be unacceptable.

The JCML compiler tackles this problem by using static analysis to reduce the search space. The algorithm processes the
conditions in a quantifier, in order to restrict the range of values assumed by each variable. Initially, our algorithm assumes
the lower and upper bounds of the type, and proceeds in two steps: (1) the definition of tighter bounds for each variable
and (2) the code generation.

The first step is a traversal of the quantifier’s predicate. In the example predicate given above, we have the following
sequence of upper and lower bounds for its variables:

1. We begin with MinShort ≤ i ≤ MaxShort and MinShort ≤ j ≤ MaxShort.
2. From the equation 0 ≤ i we can define a new lower bound for i. Now we have 0 ≤ i ≤ MaxShort and MinShort ≤

j ≤ MaxShort.
3. From the equation i < j we can define new bounds for both i and j. Now we have 0 ≤ i ≤ j − 1 and

i+ 1 ≤ j ≤ MaxShort.
4. Finally, from the conditionj < 10we candefine a newupper bound forj. Nowwehave 0 ≤ i ≤ j−1 andi+1 ≤ j ≤ 9.

The second step generates code to verify the specification in accordancewith the bounds defined in the first step. For each
variable, a (nested) for-loop is generated using the calculated upper and lower bounds. The order in which the variables are
defined is relevant. For instance, in the given example, the bounds for i must be absolute. This means that the expression
j − 1 must be replaced by its maximum possible value 8. The bounds for j can refer to i. Our algorithm produces the
following code:

1 private void checkMethod() {
2 for (i = 0; i <= 8; i = i + 1) {
3 for (j = i+1; j <= 9; j = j + 1) {
4 if (!(a[i] < a[j])) throws Exception; }}}
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The range predicate presented above is a conjunction of conditions (that can be part of a larger, disjunctive expression).
Our algorithmwill suppose that predicates in the quantifier expressions are given in disjunctive normal form. For each one
of the (conjunctive) components of a disjunctive clause, the algorithmwill produce a nested for-loop. The loops generated for
each conjunctive clause will be placed in a sequence. For instance, the code generated for a disjunctive clause ∀i, j.P ∨Q ∨R
will have the following structure:
for (i= ...)

for (j = ...)
try {if(!P) throws Exception;
} catch {
try {if(!Q) throws Exception;
} catch {
if(!R) throws Exception;
}

Even using our algorithm, this number of operations can be too high to be run on-card. Our JCML compiler issues a
warning when such a situation arises. The user can enable the code generation for quantifiers, for instance to be used during
the application test phase. This code will not be generated for the production, on-card version of the applet.

The treatment of existential quantifiers uses the equivalence ∃x.P(x) ≡ ¬∀x.¬(P(x)), yielding similar results as for the
universal quantifier.

5.5. Implementation details

In order to ensure the optimal use of the resources, the JCML compiler complies with the following requirements:

• No checking methods or calls are generated for empty specifications. For instance, if a class does not contain an invariant
specification, the method to check invariant is not generated.
• No checking methods or calls are generated for the trivial specification (true).
• If there is no verification to be done for a method call, then, this method is not renamed and a wrapper for it is not defined.
• If the specification to be checked is a Java Card expression, then this expression is used as it is, without generating extra

evaluation code for it. This does not happen, for instance, with quantifiers.
• Compilation flags are used to set the level of verification required. For instance, no methods are generated for invariant or

postcondition when only preconditions are required.
• If a specification does not hold, an exception is signalled.
• If a specification cannot be checked, it is supposed to be false. (Closed-world assumption.)

The JCML code generator uses the Visitor Pattern [16] to generate Java Card code. The purpose of the Visitor Pattern is to
separate the code generation algorithm for each constructor from the actual syntactic structure of the program. This pattern
of software allows to change the operation being performed on a data structure without the need of changing the classes
that define the data structure.

6. Experiments, optimization and results

Our experiments consider the UserAccess example as well as the annotated classes presented in [33,21] and the Mondex
JML specification presented in [38,34]. We compare the code produced by the JCML compiler with the code produced by the
original JML compiler [10] in terms of the sizes of the generated code, the size of the executable class files and the execution
time for methods. Notice that our compiler generates Java Card code, but the code generated by the JML compiler is not Java
Card compliant.

The wrapper approach proposed in Section 5 generates methods for preconditions, postconditions, invariants and
renames the original method, which becomes internal and private. This situation generates a large number of method calls.

In the following, we explore the inlining optimization technique for the JCML compiler. Method inlining can have the
advantage of reducing the processing time, at the cost of possibly increasing the size of the generated code. Due to the
restrictive nature of our applications, the use of this technique on the compiler should be carefully studied. So, we devised
several versions of the compiler, using inlining to different extents:

JCMLc1: No inlining. This behaviour corresponds to the -wrapper option when calling the JCML compiler.
JCMLc2: Inlining is used only for the original methods. This behaviour corresponds to the -inLineMethod command-line

option.
JCMLc3: Inlining of original methods, pre- and postconditions. It corresponds to the compiler’s -inLinePrePost option.
JCMLc4: All the methods for checking preconditions, postconditions and invariants, as well as the original java method are

inlined into the wrapper. This version is produced by using the -inLineAll command-line option.
Table 1 shows the execution times of each method of the UserAccess example (the other examples presented similar

general behaviour). Tables 2 and 3 present the total size of code generated by each version of our compiler for the UserAccess
and Mondex examples. In all tables, the column Original corresponds to the original annotated program and the columns
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Table 1
UserAccess — Execution times (in milliseconds).
Method Original JCMLc 1 JCMLc 2 JCMLc 3 JCMLc 4 JMLc

setID 0.005 0.127 0.086 0.034 0.007 0.403
getID 0.005 0.031 0.039 0.014 0.006 0.580
setType 0.005 0.083 0.059 0.014 0.006 0.556
getType 0.005 0.049 0.039 0.014 0.006 0.568
addArea 0.028 0.059 0.060 0.037 0.055 0.726
hasAccess 0.010 0.042 0.058 0.022 0.011 0.723
addCredits 0.005 0.062 0.072 0.060 0.031 0.452
rmCredits 0.005 0.061 0.036 0.017 0.010 0.617
getCredits 0.005 0.035 0.016 0.013 0.006 0.605

Sum 0.073 0.553 0.470 0.229 0.140 5.234

Table 2
UserAccess and Mondex — Sizes (in KB).
Method Original JCMLc 1 JCMLc 2 JCMLc 3 JCMLc 4 JMLc

UA.java 3.421 10.806 9.814 9.039 36.123 76.300
UA.class 1.938 5.558 4.572 3.473 8.557 28.200
M.java 18.823 47.309 44.508 39.765 88.455 –
M.class 6.204 13.158 14.879 11.123 22.221 –

Table 3
UserAccess Card Memory Requirements (in KB).
Method Original JCMLc 1 JCMLc 2 JCMLc 3 JCMLc 4

UA.cap+ .exp 2.99 4.24 3.98 3.71 6.72
Memory increase (%) – 42 33 24 125

JCMLc1 to JCMLc4 correspond to each version of the program, as generated by our JCML compiler, using the optimization
levels described above. Finally, the column JMLc corresponds to the code generated by JMLc.

The last row on Table 1 adds up the values in each column to provide a rough idea of general time consumption of each
approach. Notice that the inlining of all the generated methods JCMLc4 resulted in execution times that are comparable to
the ones without verification code, even with one quantifier in the invariant that is repeatedly checked. Execution times in
Table 1 are the average of CPU times in 10 (ten) executions, given in milliseconds. The experiment was run on a MacBook
Core2Duo 2.4GHz with 2GB RAM. The data were collected using the Profiler plugin for Eclipse.

In Table 2 the total size of the generated code is expressed in kilobytes of Java code (.java (KB)) and kilobytes of executable
file (.class (KB)) for the UserAccess and Mondex examples, respectively indicated in the rows labeled by UA and M.

Table 3 shows kilobytes of on-card files (.cap+.exp (KB)). The last row indicates the percentage of growth in cardmemory
needs of the different compiled versions of the specification with respect to the verification free code.

A conclusion to be drawn from the experiments is that, depending on the resources available, different compilation
options are recommended. If memory is the more critical resource in an application, the -wrapper (JCMLc 1) can be chosen,
although JCMLc 2 and JCMLc 3 present similar behaviours, concerning the size occupied in the card. Otherwise, if processing
time is the critical bottleneck, the -inLineAll (JCMLc4) approach is the more indicated, but it almost doubles memory needs.
The best compromise between memory and execution times is obtained with option -inLinePrePost, or JCMLc 3. Because
verification of pre- and postconditions is not replicated in the same way as it happens with the invariant, the inlining of
these verification methods generates no extra code with respect to the non-inlined versions.

The data shown in these tables is depicted in Figs. 17 and 18.
Fig. 17(a) shows the size (in kilobytes) of the code generated for the UserAccess example. Notice that the times

corresponding to the JCML programs are much nearer to the execution time for the original program (without annotations)
than to those of JML. Fig. 17(b) shows the same data as in Fig. 17(a), but without the data for JML, in order to better show
the relative execution times for the original files, as well as for each version of the JCML-generated code. Notice that the
execution times for our JCMLc 4 implementation are quite similar to those of the original (no annotations) program. From
these graphics, we can conclude that JCML is a viable solution for the specification of Java Card programs.

Fig. 18(a) shows the size (in kilobytes) of the code generated for the UserAccess example. From these graphics, it can be
seen that the size of the generated files for JCML is both similar to the original Java Card files and much smaller than the
code generated by JML. Fig. 18(b) shows the same data as in Fig. 18(a) where the data for JML has been omitted, in order to
show the sizes of the original files, when compared to JCML.

The code generated by JCMLc (i) is, in all cases, much smaller than the one generated by JMLc and (ii) depending on
the optimization level, may have a size which is similar to the original annotated program when we consider the on-card
files.
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Fig. 17. Execution times (in KB).

Fig. 18. Generated code size (in KB).

We have also experimented with five classes presented in [33,21]:

• Animal — Class for representing animals, with constructor and methods for consulting the gender of the animal and for
setting its age.
• Person — Extension of the Animal class, with the same methods.
• Patient — Extension of the Person class, with the same methods.
• StackAsArray — Class for representing stacks, with constructor and push, pop, top, isEmpty and length methods.
• IntMathOps — Class with a method for returning square roots.

Those programshave been originally specifiedwith JML and their verification codes have been produced by JMLc. Because
such programs are not Java Card compliant, we are not able to produce .cap and .exp files. The experimental results presented
in Table 4 show that the codes produced by JCMLc for those programs and their original specifications are also significantly
smaller than the ones produced by JMLc, for all optimization levels. In Table 2 the size of the .class files are given in kilobytes.
Notice that the size of files decreases as more methods are inlined in the produced code. Different from the UserAccess
example, the size of code also reduces from the JCMLc3 to the JCMLc4 version, since we do not have invariant specification
in those programs (except in the Patient class, but the invariant is very simple).

One important note to make here, is that some of this verification code (at least the one corresponding to the
preconditions) would be included by the developer anyway, as this is the usual Java Card robust programming style.

The execution times, together with the size of the on-card files for the programs we have experimented with, show that
the use of JCML is both possible for Java Card and not too expensive. The code generated by our compiler is consistently
faster and smaller than the code generated by JMLc. The facts stated above allow us to conclude that one can afford the use
of a behavioural specification language on Java Card.
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Table 4
Animal, Person, Patient, InMathOps and Stack class sizes (in KB).
Class Original JCMLc 1 JCMLc 2 JCMLc 3 JCMLc 4 JMLc

Animal 0.757 2.40 1.98 1.30 1.30 15.50
Person 0.742 2.25 1.96 1.29 1.29 18.00
Patient 0.589 2.06 1.96 1.49 1.48 12.70
InMathOps 0.395 1.06 0.99 0.65 0.65 9.38
StackAsArray 0.751 2.60 2.15 1.27 1.27 19.80

7. Related work

The problem of building reliable Java Card applications has many features in common with its counterpart for the Java
programming language. However, the memory and processing limitations of our setting lead to some important differences
among these problems. A number of challenges (and proposed solutions) for the specification and verification for object-
oriented programs are addressed in [24] . Some of these challenges are shared with our problem (like those dealing with
the need for formal tools to study the effect of methods on static variables; the need for tools to deal with finalizers or the
need for assistance in specifying libraries of classes). Other challenges in [24], mostly dealing with partial specifications and
with complex data, are not related to our language.

In a recent paper [8], Chalin and Rioux report a change in the evaluation of expressions present in JML assertions. The
new semantics simplifies the interpretation undefined expressions, by using an approach similar to the Java language. These
kinds of semantics were adopted by our tool since their first implementation, since the generated code for expressions is
much simpler than that for the original JML proposal [10].

There exist some systems that address the formal treatment of Java Card. Two of these systems are the most popular
among developers: Krakatoa [27] and the KeY System [6,5]. Krakatoa proves Java/Java Card programs annotated with
JML specifications by using the Why [14] and Coq [37] tools. Why is a proof obligation generator and Coq is a proof
assistant. Krakatoa translates Java/Java Card code into the Why input language (an ML-like language), which generates
proof obligations to be interactively proved bymeans of the Coq proof assistant. The KeY system is intended to integrate the
design, implementation and formal specification and verification of object-oriented languages. The KeY system is based on
a theorem prover for the first-order Dynamic Logic for Java and can verify Java Card programs thoroughly. Both Krakatoa
and KeY perform static verification only, as it is the case of other related works [25,31,39].

Efforts towards runtime verification of Java (and Java ME) can be found in [33]. That work proposes the use of AspectJ to
implement a JML compiler that takes specifications and generates bytecode compliant with both Java and Java ME virtual
machines. Regarding their language constructs, Java ME is a richer language than Java Card and the architectures for which
Java ME is targeted are less constrained than those in which Java Card applets run.

8. Conclusions and future work

This paper presented JCML – a language for the specification of Java Card programs – and its associated compiler. JCML
annotates Java Card programs to produce runtime verification codewhich can be performed on deviceswith severememory
and processing restrictions. JCML includes all JML constructs which can be translated into Java Card compliant code. A case
study was used, and the obtained results show that the proposed approach is effective. For instance, in our example, JCML
generated an executable code which is approximately 75% smaller than the one generated by JMLc, even when execution
speed is the primary concern (all verification methods inlined).

The code generated by our compiler is smaller and faster than equivalent code generated by the original JML compiler.
This is due to the following facts:

• JCMLc is devised to be optimized: For instance, no tests or calls are generated for empty conditions. The original JML
compiler generates code for all conditions, independently of the original JML specification.
• We use static analysis to define the upper and lower bound of variables in quantifiers.
• In the original JML compiler, assertion undefinedness is treated in such a way that assertion runtime checking considers

the context and the kind of event that led to the exception to conservatively preserve JML semantics avoiding false
positives as much as possible. This complex treatment given by JMLc is however too heavy for a smart card environment.
Our choice was then to assume that any uncheckable specification is false.

The version of the compiler presented here implements all those primitives of JCML level 0 that are meaningful in the
context of Java Card, aswell as some constructs of other levels. Our compiler allows the user to choose the amount ofmethod
inlining for each unit. This feature can be used to choose the most adequate setting for each application.

As a futurework, we plan to deal with exceptional behaviour so that the application that runs on-card is able to gracefully
recover from faults.

In another line of work, studies concerning the use of aspects in the implementation of the compiler, as done in [33], will
also be carried out. We plan to compare results with our current approach and to identify possible common features and
improvements.
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