16 research outputs found

    On Queue-Aware Power Control in Interfering Wireless Links: Heavy Traffic Asymptotic Modelling and Application in QoS Provisioning

    No full text
    International audienceIn this work we address the problem of power allocation for interfering transmitter-receiver pairs so that the probability that each queue length exceeds a specified threshold is fixed at a desired value. One application is satisfying QoS requirements in a dense cellular network. We deal with this problem using heavy traffic approximation techniques which lead to an asymptotic model of a (controlled) stochas-tic differential equation. The proposed power control strategy consists of allocating most of the power according to the states of the channel and a smaller fraction according to the queue lengths, for which we find a closed-form expression. We first consider a scenario where all channel realizations and queue lengths are known instantaneously to every transmitter. Then, the algorithm is extended to the case where only local SINR feedback is available and when queue length information is shared with delays among the transmitters. These models and results are also extended to the case where the transmitters are equipped with multiple antennas. Finally, the applicability in practical system settings are discussed and simulation results are provided to illustrate the performance of the proposed method

    Engineering limit cycle systems:adaptive frequency oscillators and applications to adaptive locomotion control of compliant robots

    Get PDF
    In this thesis, we present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework using nonlinear dynamical systems and is inspired by theories of self-organization. Nonlinear dynamical systems such as coupled oscillators are an interesting approach for the on-line generation of trajectories for robots with many degrees of freedom (e.g. legged locomotion). However, designing a nonlinear dynamical system to satisfy a given specification and goal is not an easy task, and, hitherto no methodology exists to approach this problem in a unified way. Nature presents us with satisfactory solutions for the coordination of many degrees of freedom. One central feature observed in biological subjects is the ability of the neural systems to exploit natural dynamics of the body to achieve efficient locomotion. In order to be able to exploit the body properties, adaptive mechanisms must be at work. Recent work has pointed out the importance of the mechanical system for efficient locomotion. Even more interestingly, such well suited mechanical systems do not need complicated control. Yet, in robotics, in most approaches, adaptive mechanisms are either missing or they are not based on a rigorous framework, i.e. they are based on heuristics and ad-hoc approaches. Over the last three decades there has been enormous progress in describing movement coordination with the help of Synergetic approaches. This has led to the formulation of a theoretical framework: the theory of dynamic patterns. This framework is mathematically rigorous and at the same time fully operational. However, it does not provide any guidelines for synthetic approaches as needed for the engineering of robots with many degrees of freedom, nor does it directly help to explain adaptive systems. We will show how we can extend the theoretical framework to build adaptive systems. For this purpose, we propose the use of multi-scale dynamical systems. The basic idea behind multi-scale dynamical systems is that a given dynamical system gets extended by additional slow dynamics of its parameters, i.e. some of the parameters become state variables. The advantages of the framework of multi-scale dynamical systems for adaptive controllers are 1) fully dynamic description, 2) no separation of learning algorithm and learning substrate, 3) no separation of learning trials or time windows, 4) mathematically rigorous, 5) low dimensional systems. However, in order to fully exploit the framework important questions have to be solved. Most importantly, methodologies for designing the feedback loops have to be found and important theoretical questions about stability and convergence properties of the devised systems have to be answered. In order to tackle this challenge, we first introduce an engineering view on designing nonlinear dynamical systems and especially oscillators. We will highlight the important differences and freedom that this engineering view introduces as opposed to a modeling one. We then apply this approach by first proposing a very simple adaptive toy-system, consisting of a dynamical system coupled to a spring-mass system. Due to its spring-mass dynamics, this system contains clear natural dynamics in the form of resonant frequencies. We propose a prototype adaptive multi-scale system, the adaptive frequency oscillator, which is able to adapt its intrinsic frequency to the resonant frequency of the body dynamics. After a small sidetrack to show that we can use adaptive frequency oscillators also for other applications than for adaptive controllers, namely for frequency analysis, we then come back to further investigation of the adaptive controller. We apply the same controller concept to a simple spring-mass hopper system. The spring-mass system consists of a body with two legs attached by rotational joints. The legs contain spring-damper elements. Finally, we present results of the implementation of the controller on a real robot, the experimental robot PUPPY II. This robot is a under-actuated robot with spring dynamics in the knee joints. It will be shown, that due to the appropriate simplification and concentration on relevant features in the toy-system the controller concepts works without a fundamental change on all systems from the toy system up to the real robot

    Information processing in cellular signaling

    Get PDF
    Information spielt in der Natur eine zentrale Rolle. Als intrinsischer Teil des genetischen Codes ist sie das Grundgerüst jeder Struktur und ihrer Entwicklung. Im Speziellen dient sie auch Organismen, ihre Umgebung wahrzunehmen und sich daran anzupassen. Die Grundvoraussetzung dafür ist, dass sie Information ihrer Umgebung sowohl messen als auch interpretieren können, wozu Zellen komplexe Signaltransduktionswege entwickelt haben. In dieser Arbeit konzentrieren wir uns auf Signalprozesse in S.cerevisiae die von osmotischem Stress (High Osmolarity Glycerol (HOG) Signalweg) und der Stimulation mit α-Faktor (Pheromon Signalweg) angesprochen werden. Wir wenden stochastische Modelle an, die das intrinsische Rauschen biologischer Prozesse darstellen können, um verstehen zu können wie Signalwege die ihnen zur Verfügung stehende Information umsetzen. Informationsübertragung wird dabei mit einem Ansatz aus Shannons Informationstheorie gemessen, indem wir sie als einen Kanal in diesem Sinne auffassen. Wir verwenden das Maß der Kanalkapazität, um die Genauigkeit des Phosphorelays einschränken zu können. In diesem Modell, simuliert mit dem Gillespie Algorithmus, können wir durch die Analyse des Signalverhaltens den Parameterraum zusätzlich stark einschränken. Eine weitere Herangehensweise der Signalverarbeitung beschäftigt sich mit dem “Crosstalk” zwischen HOG und Pheromon Signalweg. Wir zeigen, dass die Kontrolle der Signalspezifizität vor allem bei Scaffold-Proteinen liegt, die Komponenten der Signalkaskade binden. Diese konservierten Motive zellulärer Signaltransduktion besitzen eine geeignete Struktur, um Information getreu übertragen zu können. Im letzten Teil der Arbeit untersuchen wir potentielle Gründe für die evolutionäre Selektion von Scaffolds. Wir zeigen, dass ihnen bereits durch die Struktur des Mechanismus möglich ist, Informationsgenauigkeit zu verbessern und einer verteilten Informationsweiterleitung sowohl dadurch als auch durch ihre Robustheit überlegen sind.Information plays a ubiquitous role in nature. It provides the basis for structure and development, as it is inherent part of the genetic code. It also enables organisms to make sense of their environments and react accordingly. For this, a cellular interpretation of information is needed. Cells have developed sophisticated signaling mechanisms to fulfill this task and integrate many different external cues with their help. Here we focus on signaling that senses osmotic stress (High Osmolarity Glycerol (HOG) pathway) as well as α-factor stimulation (pheromone pathway) in S.cerevisiae. We employ stochastic modeling to simulates the inherent noisy nature of biological processes to assess how systems process the information they receive. This information transmission is evaluated with an information theoretic approach by interpreting signal transduction as a transmission channel in the sense of Shannon. We use channel capacity to both constrain as well as quantify the fidelity in the phosphorelay system of the HOG pathway. In this model, simulated with the Gillespie Algorithm, the analysis of signaling behavior allows us to constrain the possible parameter sets for the system severely. A further approach to signal processing is concerned with the mechanisms that conduct crosstalk between the HOG and the pheromone pathway. We find that the control for signal specificity lies especially with the scaffold proteins that tether signaling components and facilitate signaling by trans-location to the membrane and shielding against miss-activation. As conserved motifs of cellular signal transmission, these scaffold proteins show a particularly well suited structure for accurate information transmission. In the last part of this thesis, we examine the potential reasons for an evolutionary selection of the scaffolding structure. We show that due to its structure, scaffolds are increasing information transmission fidelity and outperform a distributed signal in this regard

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Complex systems methods characterizing nonlinear processes in the near-Earth electromagnetic environment: recent advances and open challenges

    Get PDF
    Learning from successful applications of methods originating in statistical mechanics, complex systems science, or information theory in one scientific field (e.g., atmospheric physics or climatology) can provide important insights or conceptual ideas for other areas (e.g., space sciences) or even stimulate new research questions and approaches. For instance, quantification and attribution of dynamical complexity in output time series of nonlinear dynamical systems is a key challenge across scientific disciplines. Especially in the field of space physics, an early and accurate detection of characteristic dissimilarity between normal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. This review provides a systematic overview on existing nonlinear dynamical systems-based methodologies along with key results of their previous applications in a space physics context, which particularly illustrates how complementary modern complex systems approaches have recently shaped our understanding of nonlinear magnetospheric variability. The rising number of corresponding studies demonstrates that the multiplicity of nonlinear time series analysis methods developed during the last decades offers great potentials for uncovering relevant yet complex processes interlinking different geospace subsystems, variables and spatiotemporal scales

    Distributed Resource Management in Converged Telecommunication Infrastructures

    Get PDF
    Η πέμπτη γενιά (5G) των ασύρματων και κινητών επικοινωνιών αναμένεται να έχει εκτεταμένο αντίκτυπο σε τομείς πέρα από αυτόν της τεχνολογίας πληροφοριών και επικοινωνιών (Information and Communications Technology - ICT). Το 5G ευθυγραμμίζεται με την 4η βιομηχανική εξέλιξη (4th industrial evolution), θολώνοντας τα όρια μεταξύ της φυσικής, της ψηφιακής και της βιολογικής σφαίρας. Σχεδιάστηκε για να προσφέρει δυνατότητες πολλαπλών υπηρεσιών και χρηστών, εκπληρώνοντας ταυτόχρονα πολλαπλές απαιτήσεις και επιχειρηματικά οικοσυστήματα. Ωστόσο, ορισμένες υπηρεσίες, όπως η επαυξημένη πραγματικότητα (Augmented Reality -AR), το εργοστάσιο του μέλλοντος (Factory of the Future) κ.λπ. θέτουν προκλήσεις για την ανάπτυξη μιας ενιαίας 5G υποδομής με βάση την ενεργειακή και οικονομική αποδοτικότητα. Σε αυτή τη κατεύθυνση, η παρούσα διδακτορική διατριβή υιοθετεί την ιδέα μιας καθολικής πλατφόρμας 5G που ενσωματώνει μια πληθώρα τεχνολογιών δικτύωσης (ασύρματες και ενσύρματες), και στοχεύει στην ανάπτυξη μαθηματικών εργαλείων, αλγορίθμων και πρωτοκόλλων για την ενεργειακή και λειτουργική βελτιστοποίηση αυτής της υποδομής και των υπηρεσιών που παρέχει. Αυτή η υποδομή διασυνδέει υπολογιστικούς, αποθηκευτικούς και δικτυακούς πόρους μέσω του προγραμματιζόμενου υλισμικού (hardware-HW) και της λογισμικοποίησης του δικτύου (network softwarisation). Με αυτό τον τρόπο, επιτρέπει την παροχή οποιασδήποτε υπηρεσίας με την ευέλικτη και αποτελεσματική μίξη και αντιστοίχιση πόρων δικτύου, υπολογισμού και αποθήκευσης. Αρχικά, η μελέτη επικεντρώνεται στις προκλήσεις των δικτύων ραδιοπρόσβασης επόμενης γενιάς (NG-RAN), τα οποία αποτελούνται από πολλαπλές τεχνολογίες δικτύου για τη διασύνδεση ενός ευρέος φάσματος συσκευών με υπολογιστικούς και αποθηκευτικούς πόρους. Η ανάπτυξη μικρών κυψελών (small cells) είναι ζωτικής σημασίας για τη βελτίωση της φασματικής απόδοσης και της ρυθμαπόδοσης και μπορεί να επιτευχθεί είτε μέσω παραδοσιακών κατανεμημένων δικτύων ραδιοπρόσβασης (D-RAN) είτε μέσω δικτύων ραδιοπρόσβασης νέφους (C-RAN). Ενώ το C-RAN προσφέρει μεγάλα οφέλη όσο αφορά την επεξεργασία σήματος και τον συντονισμό σε σχέση με τα D-RAN, απαιτεί υψηλό εύρος ζώνης μετάδοσης και επιβάλλει σοβαρούς περιορισμούς καθυστέρησης στο δίκτυο μεταφοράς. Για την αντιμετώπιση αυτών των ζητημάτων, προτείνεται μια νέα αρχιτεκτονική «αποσύνθεσης των πόρων». Σύμφωνα με αυτήν, οι λειτουργιές βασικής επεξεργασίας σήματος (BBU functions) μπορούν να διαχωριστούν και να εκτελεστούν είτε στην ίδια θέση με τη κεραία (RU), είτε απομακρυσμένα σε κάποια μονάδα επεξεργασίας που βρίσκεται κοντά (DU) ή μακριά (CU) από την κεραία. Αυτή η έννοια της «αποσύνθεσης των πόρων» επιτρέπει την πρόσβαση σε κοινόχρηστους πόρους που παρέχονται από κέντρα δεδομένων μικρής ή μεγάλης κλίμακας, χωρίς να απαιτείται ιδιοκτησία των πόρων. Ωστόσο, η προσέγγιση αυτή απαιτεί την ανάπτυξη νέων πλαισίων βελτιστοποίησης για τη βελτίωση της αποδοτικότητας και της ευελιξίας των υποδομών 5G, ώστε να διαχειρίζονται αποτελεσματικά τους διαχωρισμένους πόρους. Καθοριστικό ρόλο σε αυτό αποτελεί η αρχιτεκτονική της Δικτύωσης Καθορισμένης από Λογισμικό (SDN), η οποία στοχεύει να επιτρέψει την προγραμματιζόμενη και δυναμική διαχείριση των πόρων του δικτύου μέσω κεντρικού ελέγχου. Έχοντας υπόψιν τα παραπάνω, στο πρώτο μέρος της διατριβής αναπτύσσεται ένα πλαίσιο βελτιστοποίησης που προσδιορίζει το βέλτιστο λειτουργικό διαχωρισμό μεταξύ των λειτουργιών βασικής επεξεργασίας σήματος, σε συνδυασμό με τη βέλτιστη τοποθέτηση του SDN ελεγκτή, λαμβάνοντας επίσης υπόψη τη σταθερότητα του συνολικού συστήματος και τη μείωση των συνολικών λειτουργικών δαπανών. Η ανάλυση επεκτείνεται περαιτέρω με προηγμένα σχήματα βελτιστοποίησης, με σκοπό την προσέγγιση ενός πιο ρεαλιστικού περιβάλλοντος 5G, όπου η ραγδαία αύξηση της κίνησης συνεπάγεται την ανάγκη για μεγαλύτερες δυνατότητες κλιμάκωσης για τη διαχείριση των χωρικών και χρονικών μεταβολών της, καθώς και τερματικών με διαφορετικές απαιτήσεις ποιότητας. Στη συνέχεια μελετούνται τα δίκτυα πυρήνα του 5G. Στα δίκτυα πυρήνα 5G κάθε λειτουργία είναι λογισμικοποιημένη (softwarized) και απομονωμένη, επιτρέποντας την ανάπτυξη της σε υλικό γενικής χρήσης. Επίσης εισάγεται ένας νέος διαχωρισμό μεταξύ των λειτουργιών του επιπέδου ελέγχου και του επιπέδου δεδομένων (Control and User Plane Seperation – CUPS) με βάση την SDN αρχιτεκτονική. Με τον τρόπο αυτό διαχωρίζεται η δικτυακή κίνηση μεταξύ των διαφορετικών 5G οντοτήτων (επίπεδο ελέγχου) και η δικτυακή κίνηση των χρηστών (επίπεδο χρήστη). Κρίσιμο ρόλο στο χειρισμό σημαντικού μέρους του επιπέδου χρήστη στα συστήματα 5G διαδραματίζει η οντότητα «λειτουργία επιπέδου χρήστη» (User Plane Function – UPF). Το UPF είναι υπεύθυνο για την προώθηση της πραγματικής κίνησης χρηστών με πολύ αυστηρές απαιτήσεις απόδοσης. Ανάλογα με τον τύπο της απαιτούμενης υπηρεσίας και την αρχιτεκτονική του δικτύου ραδιοπρόσβασης, οι κόμβοι UPF μπορούν να βρίσκονται είτε πιο κοντά είτε πιο μακριά από αυτό, ανακατευθύνοντας την κυκλοφορία σε διακομιστές κοντά στην άκρη του δικτύου για μείωση του χρόνου καθυστέρησης ή σε κεντρικές εγκαταστάσεις. Ως εκ τούτου, προκύπτει το ερώτημα της επιλογής των βέλτιστων στοιχείων UPF, καθώς η επιλογή ενός μη διαθέσιμου υπολογιστικού πόρου UPF μπορεί να οδηγήσει σε μπλοκάρισμα και καθυστερήσεις της υπηρεσίας. Για την αντιμετώπιση αυτού του ζητήματος, προτείνουμε ένα μοντέλο ειδικά σχεδιασμένο για δυναμική επιλογή βέλτιστων στοιχείων UPF με στόχο την ελαχιστοποίηση της συνολικής καθυστέρησης της υπηρεσίας. Αναπτύσσουμε συναρτήσεις κόστους για το μοντέλο χρησιμοποιώντας εργαστηριακές μετρήσεις που ελήφθησαν από μια πλατφόρμα 5G ανοιχτού κώδικα που φιλοξενείται σε περιβάλλον νέφους οπτικού κέντρου δεδομένων. Με το προτεινόμενο μοντέλο, μπορούμε να επιλέξουμε δυναμικά το καταλληλότερο στοιχείο UPF για τη χρήση υπολογιστικών πόρων, μειώνοντας τη καθυστέρηση εξυπηρέτησης. Επεκτείνοντας την έννοια αποσύνθεσης των δικτυακών πόρων, η ανάλυση εστιάζει στα συστήματα 6G, τα οποία αναμένεται να υποστηρίξουν ένα ευρύ φάσμα υπηρεσιών μέσω μιας κοινής υποδομής που διευκολύνεται από τον τεμαχισμό δικτύου (network slicing). Τα συστήματα 6G προβλέπεται να λειτουργούν με αποκεντρωμένο τρόπο, που επιτρέπει στις εφαρμογές να παρεμβαίνουν άμεσα στις διαδικασίες ελέγχου για την πιο αποτελεσματική διασφάλιση της ποιότητας εμπειρίας (Quality of Experience – QoE) των τελικών χρηστών. Αυτό πραγματοποιείται μέσω της χρήσης της οντότητας «λειτουργία εφαρμογής» (Application Function – AF), η οποία διαχειρίζεται την εφαρμογή που εκτελείται στο τερματικό χρήστη (User Equipment – UE) και στο διακομιστή (Application Server - AS) που υποστηρίζει την υπηρεσία. Το AF διαδραματίζει κρίσιμο ρόλο στην παροχή υπηρεσιών υψηλού QoE, καθώς ενημερώνεται από την εφαρμογή και μπορεί να επηρεάσει τις αποφάσεις δρομολόγησης της κυκλοφορίας. Ωστόσο, η ανεξέλεγκτη λειτουργία του AF μπορεί να οδηγήσει σε αστάθεια στο σύστημα. Για την αντιμετώπιση αυτού του ζητήματος σχεδιάζουμε, εφαρμόζουμε και αξιολογούμε θεωρητικά και πειραματικά ένα πλήρως κατανεμημένο πλαίσιο λήψης αποφάσεων για την εκχώρηση ροών (flow assignment) στα συστήματα 6G. Το πλαίσιο αυτό αποδεικνύεται ότι, υπό συγκεκριμένες συνθήκες, συγκλίνει σε ένα σταθερό σημείο που παρέχει τη βέλτιστη ισορροπία μεταξύ QoE και αποδοτικότητας κόστους. Οι συναρτήσεις κόστους που χρησιμοποιούνται ενσωματώνουν τόσο το κόστος δικτύου όσο και το υπολογιστικό κόστος, τα οποία προκύπτουν ρεαλιστικά μέσω μιας λεπτομερούς διαδικασίας που διεξάγεται σε μια λειτουργική 5G πλατφόρμα. Αυτή η διαδικασία επιτρέπει τη μοντελοποίηση της απόδοσης του συστήματος και των απαιτήσεων σε διαφορετικά σενάρια λειτουργίας, τα οποία μπορούν να βοηθήσουν στη βελτιστοποιημένη διαχείριση του κύκλου ζωής των παρεχόμενων υπηρεσιών. Τέλος, η μελέτη επικεντρώνεται στην πραγματική ανάπτυξη μιας υποδομής 5G που υποστηρίζει τον τεμαχισμό του δικτύου κατά παραγγελία από πολλαπλούς χρήστες. Ο τεμαχισμός του δικτύου επιτρέπει τον διαχωρισμό της φυσικής υποδομής δικτύου σε πολλαπλές λογικές υποδομές που μπορούν να υποστηρίξουν διαφορετικές κατηγορίες υπηρεσιών. Ένα τμήμα δικτύου (slice) έχει τους δικούς του αποκλειστικούς πόρους από το δίκτυο πρόσβασης, μεταφοράς, και πυρήνα, καθώς και στοιχεία από διάφορους τομείς κάτω από τους ίδιους ή διαφορετικούς διαχειριστές. Η κοινή χρήση της υποκείμενης φυσικής υποδομής από τα τμήματα δικτύου περιλαμβάνει την ανάπτυξη κατάλληλων διεπαφών που μπορούν να χρησιμοποιηθούν για την σύνδεση των διαφορετικών δικτυακών στοιχείων, καθώς και τη δημιουργία κατάλληλων περιγραφών (descriptors) για την εικονοποίηση των 5G λειτουργιών (Εικονικές Δικτυακές Λειτουργίες 5G - 5G Virtual Network Functions – VNFs). Η συλλογή και ο κατάλληλος συνδυασμός πολλαπλών VNF δίνει μια 5G υπηρεσία δικτύου (Network Service - NS) από άκρη σε άκρη (End to End - E2E). Μέσω μιας πλατφόρμας διαχείρισης και ενορχήστρωσης (Management and Orchestration Platform - MANO), μπορούμε να συνδυάσουμε αυτές τις υπηρεσίες δικτύου για να δημιουργήσουμε και να διαχειριστούμε ένα 5G τμήμα δικτύου. Για να επιτευχθεί αυτό, στη μελέτη αυτή χρησιμοποιείται ένας ενορχηστρωτής που ονομάζεται Open Source MANO (OSM), ο οποίος είναι συμβατός με το πρότυπο της Εικονικοποίησης Λειτουργιών Δικτύου (NFV). Αναπτύσσονται descriptors τόσο για τις λειτουργίες του επιπέδου ελέγχου του 5G, όσο και για το επίπεδο χρήστη. Συνδυάζοντας αυτούς τους descriptors, επιτυγχάνεται η δυναμική υλοποίηση πολλαπλών τμημάτων δικτύου πάνω σε μια 5G πλατφόρμα που υποστηρίζει πολλαπλούς χρήστες και φιλοξενείται σε μια υποδομή κέντρου δεδομένων. Χρησιμοποιώντας τα δημιουργημένα VNF, μπορούμε να εκτελέσουμε το δίκτυο πυρήνα με το πάτημα ενός κουμπιού και να παρέχουμε πολλαπλά τμήματα δικτύου με διαφορετικά χαρακτηριστικά.The fifth generation (5G) of wireless and mobile communications is expected to have a far-reaching impact on society and businesses beyond the information and communications technology (ICT) sector. 5G is aligned with the 4th industrial evolution, blurring the lines between the physical, digital, and biological spheres. A common design is necessary to accommodate all service types based on energy and cost efficiency. To address this, this PhD thesis adopts the idea of a universal 5G platform that integrates a variety of networking technologies (wireless and wired), and aims to develop mathematical tools, algorithms and protocols for the energy and operational optimization of this infrastructure and the services it provides. This infrastructure interconnects computing, storage and network components that are placed at different locations, using the concepts of programmable hardware (hardware-HW) and network software (network softwarisation). In this way, it enables the provision of any service by flexibly and efficiently mixing and matching network, computing and storage resources. The thesis targeted four distinct contributions. All proposed contributions are implemented and investigated experimentally in a 5G open-source lab testbed. The first contribution focused on optimal function and resource allocation adopting the innovative 5G RAN architecture, that splits flexibly the baseband processing function chain between Remote, Distributed and Central Units. This enables access to shared resources provided by micro or large-scale remote data centers, without requiring resource ownership. To support this architecture, networks adopt the Software Defined Networking (SDN) approach, where the control plane is decoupled from the data plane and the associated network devices and is centralized in a software-based controller. In this context, the goal of the proposed approach was to develop effective optimization techniques that identify the optimal functional split, along with the optimal location and size of the SDN controllers. The second contribution concentrated on solving the User Plane Function (UPF) selection problem in 5G core networks. According to the SDN paradigm 5G core control plane functions manage the network, while UPFs are responsible for handling users’ data. Depending on the 5G RAN deployment option and the nature of the service, UPF nodes can be placed closer to the network edge, directing traffic to the Multi-access Edge Computing (MEC) servers hence reducing latency, or be placed deeper into the network directing traffic to central cloud facilities. In this context, a framework that selects the optimal UPF nodes to handle user’s traffic minimizing total service delay has been proposed. The third contribution pertained to service provisioning in upcoming telecommunication systems. 6G systems require novel architectural Quality of Experience (QoE) models and resource allocation strategies that can differentiate between data streams originating from the same or multiple User Equipment (UEs), respond to changes in the underlying physical infrastructure, and scale with the number of connected devices. Currently, centralized management and network orchestration (MANO) platforms provide this functionality, but they suffer scalability issues. Therefore, future systems are anticipated to operate in a distributed manner, allowing applications to directly intervene in relevant control processes to ensure the required QoE. The proposed approach focused on developing a flow assignment model that supports applications running on UEs. The final contribution of this thesis focused on the deployment of a 5G infrastructure that supports multi-tenant network slicing on demand. Sharing of the underlying physical infrastructure was achieved through the development of suitable interfaces for integrating different network components and the creation of appropriate descriptors for virtual 5G network functions (VNFs). By collecting and combining multiple VNFs, an end-to-end 5G Network Service (NS) can be obtained. Using a MANO platform, these NSs can be combined to instantiate and manage a 5G network slice

    Space station systems: A bibliography with indexes (supplement 6)

    Get PDF
    This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore