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Abstract

In this thesis, we present a dynamical systems approach to adaptive controllers
for locomotion control. The approach is based on a rigorous mathematical

framework using nonlinear dynamical systems and is inspired by theories of self-
organization.

Nonlinear dynamical systems such as coupled oscillators are an interesting
approach for the on-line generation of trajectories for robots with many degrees
of freedom (e.g. legged locomotion). However, designing a nonlinear dynamical
system to satisfy a given specification and goal is not an easy task, and, hitherto
no methodology exists to approach this problem in a unified way.

Nature presents us with satisfactory solutions for the coordination of many
degrees of freedom. One central feature observed in biological subjects is the
ability of the neural systems to exploit natural dynamics of the body to achieve
efficient locomotion. In order to be able to exploit the body properties, adaptive
mechanisms must be at work. Recent work has pointed out the importance of
the mechanical system for efficient locomotion. Even more interestingly, such well
suited mechanical systems do not need complicated control. Yet, in robotics, in
most approaches, adaptive mechanisms are either missing or they are not based
on a rigorous framework, i.e. they are based on heuristics and ad-hoc approaches.

Over the last three decades there has been enormous progress in describing
movement coordination with the help of Synergetic approaches. This has led to
the formulation of a theoretical framework: the theory of dynamic patterns. This
framework is mathematically rigorous and at the same time fully operational.
However, it does not provide any guidelines for synthetic approaches as needed
for the engineering of robots with many degrees of freedom, nor does it directly
help to explain adaptive systems.

We will show how we can extend the theoretical framework to build adaptive
systems. For this purpose, we propose the use of multi-scale dynamical systems.
The basic idea behind multi-scale dynamical systems is that a given dynamical
system gets extended by additional slow dynamics of its parameters, i.e. some of
the parameters become state variables. The advantages of the framework of multi-
scale dynamical systems for adaptive controllers are 1) fully dynamic description,
2) no separation of learning algorithm and learning substrate, 3) no separation of
learning trials or time windows, 4) mathematically rigorous, 5) low dimensional
systems. However, in order to fully exploit the framework important questions
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have to be solved. Most importantly, methodologies for designing the feedback
loops have to be found and important theoretical questions about stability and
convergence properties of the devised systems have to be answered.

In order to tackle this challenge, we first introduce an engineering view on
designing nonlinear dynamical systems and especially oscillators. We will highlight
the important differences and freedom that this engineering view introduces as
opposed to a modeling one. We then apply this approach by first proposing a very
simple adaptive toy-system, consisting of a dynamical system coupled to a spring-
mass system. Due to its spring-mass dynamics, this system contains clear natural
dynamics in the form of resonant frequencies. We propose a prototype adaptive
multi-scale system, the adaptive frequency oscillator, which is able to adapt its
intrinsic frequency to the resonant frequency of the body dynamics. After a small
sidetrack to show that we can use adaptive frequency oscillators also for other
applications than for adaptive controllers, namely for frequency analysis, we then
come back to further investigation of the adaptive controller. We apply the same
controller concept to a simple spring-mass hopper system. The spring mass system
consists of a body with two legs attached by rotational joints. The legs contain
spring-damper elements. Finally, we present results of the implementation of the
controller on a real robot, the experimental robot PUPPY II. This robot is a
under-actuated robot with spring dynamics in the knee joints. It will be shown,
that due to the appropriate simplification and concentration on relevant features
in the toy-system the controller concepts works without a fundamental change on
all systems from the toy system up to the real robot.

Keywords – limit cycle, adaptive frequency oscillators, robotics, compliance,
under-actuation, nonlinear dynamical system, adaptive system



Zusammenfassung

In der vorliegenden Arbeit präsentieren wir einen auf dynamischen Systemen ba-
sierenden Ansatz für adaptive Regler für die Kontrolle von Fortbewegung. Der

Ansatz basiert auf einem rigorosen mathematischen Gerüst welches sich auf nicht-
lineare dynamische Systeme abstützt und von Theorien der Selbstorganisation
inspiriert ist.

Nichtlineare Dynamische Systeme, wie z.B. gekoppelte Oszillatoren, sind ein in-
teressanter Ansatz für die zeitnahe Generierung von Trajektorien für Roboter mit
vielen Freiheitsgraden (z.B. Fortbewegung mit Beinen). Allerdings ist es schwierig
ein dem Ziel und den Spezifikationen entsprechendes nichtlineares dynamisches
System zu entwerfen. Bis jetzt gibt es keinen Ansatz um dieses Entwurfs-Problem
methodisch und einheitlich anzugehen.

Die Natur zeigt uns funktionierende Lösungen für die Koordination von vielen
Freiheitsgraden. Ein zentraler Aspekt, der in biologischen Untersuchungen her-
vortritt ist die Fähigkeit des Nervensystems die natürliche Dynamik des Körpers
auszunutzen um effiziente Fortbewegung zu erreichen. Um die Eigenschaften des
Körpers ausnützen zu können, müssen adaptive Fähigkeiten vorhanden sein. Neue-
re Arbeiten habe die Wichtigkeit des mechanischen Systemes für effiziente Fort-
bewegung aufgezeigt. Interessanterweise benötigen solche gut geeigneten mechani-
schen Systeme nur einfache Kontrolle. Doch in der Robotik fehlen solche Ansätze
entweder oder sie basieren nicht auf einer rigorosen theoretischen Grundlage, d.h.
sie basieren auf Heuristiken und ad hoc Ansätzen. Während der letzten drei
Jahrzehnte wurde ein grosser Fortschritt in der Beschreibung von Bewegungs-
Koordination mithilfe von Synergetischen Ansätzen erzielt. Dieser Fortschritt hat
zur Theorie der dynamischen Muster geführt. Diese Theorie ist mathematisch ri-
goros und gleichzeitig direkt anwendbar. Die Theorie gibt jedoch keine Hilfe und
Hinweise für synthetische Ansätze wie sie für die Konstruktion von Robotern mit
vielen Freiheitsgraden gebraucht werden. Auch erklärt die Theorie nicht direkt ad-
aptive Systeme. Wir werden zeigen wie wir die Theorie erweitern können um adap-
tive Systeme konstruieren zu können. Dafür schlagen wir multi-skalen dynamische
Systeme vor. Die grundlegende Idee die solchen multi-skalen dynamischen Syste-
men zugrundeliegt ist, dass ein gegebenes dynamisches System mit zusätzlicher,
langsamer Dynamik ihrer Parameter ausgestattet wird, d.h. einige der Parameter
werden Zustandsvariablen des Systems. Der Vorteil von multi-skalen dynamischen
Systemen für adaptive Regler sind: 1) voll dynamische Beschreibung 2) keine Tren-
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nung von Lernalgorithmus und Lernsubstrat 3) keine Auftrennung von Lernver-
suchen und Zeitfenstern 4) mathematisch rigoros 5) niedrig-dimensionale Syste-
me. Allerdings müssen wichtige Fragen beantwortet werden um diese Ansätze voll
ausnützen zu können. Allen voran müssen methodische Ansätze für den Entwurf
der Rückkopplungsschleifen gefunden werden, und wichtige Fragen über Stabi-
litäts- und Konvergenzeigenschaften solcher Systeme müssen beantwortet werden.

Um diese Herausforderung anzugehen, werden wir zuerst eine konstruktions-
orientierte Sicht auf den Entwurf von dynamischen Systemen entwickeln. Wir
werden die wichtigen Unterschiede und die Freiheit die eine solche konstruktions-
orientierte Sicht, im Gegensatz zu einer modellierungs-orientierten Sicht erlaubt,
erkennen. Die Ansätze werden dann auf die Entwicklung eines adaptiven Einfachst-
Modell, bestehend aus einen dynamischen System gekoppelt an ein Feder-Masse
System angewandt. Wegen der Feder-Masse Dynamik hat dieses System eine
klare natürliche Dynamik in der Form von resonanten Frequenzen. Wir schla-
gen ein prototypisches adaptives multi-skalen System, den frequenz-adaptiven
Oszillator vor. Dieser kann seine intrinsische Frequenz den Resonanzfrequenzen
der Körperdynamik anpassen. Nach einem kurzen Exkurs, um zu zeigen wie die
frequenz-adaptiven Oszillatoren auch für andere Anwendungen, in unserem Bei-
spiel Frequenz-Analyse gebraucht werden können, fahren wir mit der Untersu-
chung der adaptiven Regler weiter. Wir wenden dasselbe Kontrollkonzept auf ein
einfaches Masse-Feder-Sprungsystem an. Das Masse-Feder System besteht aus ei-
nem Körper an den zwei Beine mit einem Rotationsgelenk angebracht sind. Die
Beine enthalten Feder-Dämpfer Elemente. Zuletzt zeigen wir die Resultate der
Implementierung des Reglers auf einem richtigen Roboter, dem PUPPY II. Dies
Roboter ist ein nicht vollständig aktuierter Roboter mit Federdynamik in den
Kniegelenken. Wir zeigen, das Aufgrund der korrekten Vereinfachung und dem
Fokus auf die relevanten Eigenschaften im Einfachst-Modell das Regler-Konzept
ohne grundsätzliche Änderung in allen Systemen vom Einfachst-Modell bis zum
richtigen Roboter erfolgreich angewendet werden kann.

Schlagwörter – Grenzzyklus, frequenz-adaptiver Oszillator, Robotik, Nachgie-
bigkeit, unvollständige Aktuierung, nichtlineares dynamisches System, adaptives
System



Acknowledgments

At this place it is my extraordinary pleasure to acknowledge all the great people
I had the chance to meet and work with over the last few years. It’s the right

time and place to thank them for all for their the support in all the various forms:
discussions, hints, support, flying activities, French lessons, and Absinth deliveries.

First and foremost I would like to express my gratitude to my advisor Auke Jan
Ijspeert, he only made this work possible by accepting me as a PhD student. He
managed in an almost perfect manner the balance between giving me freedom to
pursue my own ideas on one hand, and good feedback and guidance on the other.
Even under the heaviest workloads he remains a calm, friendly and accessible per-
son. His feedback was certainly invaluable for the presented work. His personality
is for sure a very important factor for the enjoyable experience that my PhD at
the BIRG was.

Then, it is surely in order to thank wholeheartedly Ludovic Righetti, whom I
have met as a student to supervise and who has become a good research colleague,
but even more important a very good friend since. A lot of the ideas presented
in this thesis we developed together in many hours of discussion and many results
are an outcome of our collaboration. And, I shall not forget: “Un grand merci
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I would like to thank the members of the thesis committee: Martin Hasler,
Yasuo Kuniyoshi and Stefan Schaal, as well as the president Wulfram Gerstner
for accepting to serve in my thesis committee, their invested time and effort, and
giving me good feedback.

Then, I would like to thank Marlyse Taric for always being very friendly, helpful
and efficient. Without her, the lab would come to a grinding halt in the shortest
of times. Her experience and effectivity was surely an important part of making
the organization of the LATSIS conference a much more enjoyable experience. Of
course here I shall not forget to thank to Natascha, who supported Marlyse in the
beginning of my time at the EPFL.

Further, I would like to thank Christof Teuscher, he not only introduced me
to many of the deep secrets of a doctoral student’s life at the EPFL and our lab
but also later supported me in many important ways.

“Muito obrigado” to Cristina, it was fascinating to get to know a person with
such a concurring view on the world of science, others of our preferred past times
and much more. I always enjoyed spending my time with you. Many thanks for



vi Acknowledgments

your continuing support and encouragement!

A warm thanks goes to Paula who supported me in my decision to start this
PhD and for the good times we had.

A big thank certainly also goes to Alessandro. He started at the same time
finishing at the same time, but was already a long-term EPFL-dweller, so he was
very helpful to the the newcomer to find his way trough the complicated organism
that such a school represents. And of course thanks to him all our IT infrastructure
always runs as perfectly as one could only imagine in a dream.

To Fumiya, not only for the support in robotics questions – he made a part
of the experiments only possible – but also for sharing a good time around some
beers and Long Island Ice Teas.

A further big thanks goes to my fellow pilot and preferred tandem passenger
Fabien for all the good moments we spent on all our smaller and bigger flying
trips. I wish you always happy landings, not too fast, not too hard!

Many thanks to the people at Cyberbotics: Olivier and Yvan, for always
improving their, already great, simulator and listening to our needs.
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Chapter 1
Introduction

Goals

In this thesis we pursue three main goals. First, we investigate a dynamical
systems approach to adaptive systems. We study aspects of a dynamical systems
approach to adaptivity and learning which is based on self-organizing systems.
Second, we would like to propose new ideas for robotic locomotion. We do that
by studying the application of such adaptive dynamical systems systems to agile
legged robotic locomotion. Third, we attempt to present an engineering view on
oscillators and dynamical systems in general. More specifically we clarify aspects
of the use of oscillators for technological applications.

1.1 Motivation

Nature has always been a major inspiration source for those seeking solutions to
technical challenges. A particular area of research which has continued to pose
unsolved challenges is agile robotic locomotion, especially for complex terrains. If
we look around, we see solutions to those problems every day on many scales, from
insects up to mammals. And, as a matter of fact, we ourselves have implemented
a solution to this problem. It is thus natural to turn to these natural systems,
study them and try to unlock some of the key principles, in the hope this will
boost our technological progress.

Despite the recent excitement about bio-inspiration it is nothing new, but
has an age old tradition. However, there are a few things which have given new
dimensions and momentum to bio-inspired approaches today. First of all, the-
oretical approaches in biology are more and more commonplace and accepted.
Theoretical biology is a well established research area by now. This theoretical
fundament helps in singling out fundamental principles and putting hypotheses
on firm ground. Second, we can put those ideas to the test on several levels, from
theoretical, over simulation to real world implementations. We have powerful dig-
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ital computers which allow to do simulation of large complex processes. Building
complex machines such as robots gets simpler and more accessible every day. This
means we can test out concepts that where not easily testable a few years ago at a
reasonable effort in terms of time, cost and material. In this thesis we show work
on all this levels, from theoretical to real world implementations.

However, on the downside, bio-inspiration has some issues. First and foremost
we have to be clear that bio-inspiration is not always useful and does not automat-
ically lead to good engineering solutions. Nature can be messy and nobody needs
to understand how a given “solution” works in order to maintain it. Furthermore,
in many bio-inspired contributions there is no clear separation between modeling
and application oriented work, goals and aims are not clearly formulated, which
often leads to a choice of inappropriate systems and methodology. Sometimes
there is careless use and transfer of concepts and terms which dilutes the clarity
of the work instead of being beneficial. All this has negative consequences on the
quality and usefulness of the contributions. Furthermore, in the engineering field,
bio-inspiration can not be an excuse to propose solutions which do not serve the
purpose. Consequently, a part of this thesis is devoted in resolving some of these
issues in the subject of oscillators applied to robotics.

A key property of natural system is their plasticity and adaptivity. In contrast,
technical solutions can get very inflexible, especially when they grow to a certain
complexity. It is very difficult to change even small aspects after the deployment
of a technical solution. Even worse, such changes can lead to very far-reaching,
sometimes catastrophic, changes in the overall systems behavior and performance.
Not so in natural systems, where often even very dramatic changes in the environ-
ment, the operating conditions and the system itself do not impair the functioning,
or at least not completely, i.e. often there is graceful degradation.

And, almost most importantly, there is a fundamental difference on how en-
gineers tackle problems and how nature resolves “problems”. Engineers tend to
separate a problem in to smaller problems until they are of manageable and under-
standable size and structure. From the solutions to those smaller problems, the
overall solutions is then assembled. When assembling the partial solutions one
needs to take care that the single units still operate as expected. This is an ex-
tremely powerful approach, but it bears certain problems and shortcomings. The
problems are mainly in terms of scalability and efficiency. Each single property of
the system needs to be carefully planned for, implemented and tested. While due
to the divide-and-conquer approach it has been tried to make as many sub-systems
as independent form each other as possible, there are certain aspects which can not
be separated and furthermore, there will always been mutual influences that have
not been taken in account. Thus ideally the system would need to be planned,
analyzed and tested for all “combinations” of the systems state in order to be sure
of its proper function. For large systems evidently this becomes impossible due
to a combinatorial explosion. It would thus be desirable to design systems which
can sort out certain aspects by themselves without – or with less – need of human
specification.
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So, Nature works differently, and key to understand this difference is the point
of view lies in the theories of self-organization, i.e. how spatio-temporal structure
comes about without explicit design and despite a noisy and imperfect world.
Nature works more the other way round than the established engineering processes,
there are structures which emerge due to self-organizing processes. If they are
useful and stable for long enough, i.e. they survive, they are usually exploited in
one way or the other, to “solve” a problem. This leads to very robust solutions
since the underlying processes are already very robust, they are “attractors” of the
system, after a perturbation the system returns back. If the perturbation is too
large, the system wanders off and settles into a new stable mode which satisfies
the new conditions.

Unfortunately, while we have a large body of knowledge of self-organizing
systems, we are largely missing a methodology to deal with self-organized systems
in a methodological way and harness them for engineering purposes.

Locomotion is a very good example for all the aspects introduced above. It
is a very clearly defined problem with abundant natural examples. It bears clear
signs of the importance of self-organization and there is a large body of knowledge
which can be scrutinized. Hence, in this thesis we investigate a small aspect of
adaptivity in robotic locomotion under the light of self-organization.

It has long been proposed to use oscillators and networks of oscillators to gener-
ate movement for robotic locomotion. Oscillators have a long tradition in physical
and biological modeling. But there are certain shortcomings when transferring to
applications, often models are not used in an appropriate fashion. For example a
neural inspired oscillator is used in places where first of all there is no real justifi-
cation to use a neural oscillator as the level that it concerns is not the neural one
and secondly, the model is too complicated for the task to be achieved. I hope to
have contributed with my work to clarifying some of these issues. In this work,
I am mainly interested in the engineering aspect, as opposed to a modeling aim.
This means we have more freedom in proposing radical changes to the systems in
order to make them work in a certain way. We exploit this insight by showing that
network of oscillators serving as a trajectory generator becomes more useful when
it is built with harmonic oscillators instead of “neural” inspired ones. Employing
such harmonic oscillators means focusing on the key properties which are impor-
tant for the application. And, we design an adaptation scheme that comes out of
set of “specifications” which is derived from some general observations/principles
instead of a direct biological mechanism. But, even if the presented work is some-
what orthogonal to the efforts in the modeling community it is my conviction that
some of the results are important for the biological modeling community as will
be discussed later.



4 Chapter 1. Introduction

1.2 Outline of the thesis

The thesis is structured into seven chapters and contains mostly already published
papers and two unpublished ones. The papers are organized in a thread leading
from basic considerations about the systems to be used over the formulation of an
abstract, proof of principle example, to the proof that the proposed system is also
working in real world.

After a discussion of the background and related work in the next chapter, in
Chapter 3 we will lay out our approach to engineering with the help of nonlinear
dynamical systems, especially oscillators, and how important it is to get a clear pic-
ture about the goal that should be achieved by using such systems, as this largely
influences many choices that need to be made. It will be shown how appropriate
choices of systems and design parameters enable successful application.

Then, with Chapter 4 we arrive at a central part of the thesis namely the
application of the aforementioned ideas to research in adaptive locomotion. We
will introduce a very much simplified and abstract adaptive locomotion system. In
this chapter we introduce and motivate the formulation of the adaptive frequency
oscillator (AFO).

In Chapter 5, the AFOs will be treated in more detail. Their convergence is
proven, in numerical examples the broad applicability of the simple adaptation
rule is shown and finally, as a small side-track, another application of the AFOs,
namely in a feedback connected pool of many such AFOs for signal processing is
presented.

After the small digression into signal processing, in Chapter 6 we come back
to the use of AFOs for adaptive locomotion on compliant systems. We show on
gradually more complex and realistic systems that the basic idea works without
fundamental modification. Concretely we present results on a simulated spring
mass hopper and a real robot.

Finally, in Chapter 7 we conclude the thesis with a few general conclusions
and an outlook.

1.3 Contributions

In this thesis we present original contributions which can loosely be grouped into
the following four topics: (1) The development of a novel type of oscillator, the
adaptive frequency oscillator (AFO) which can tune its intrinsic frequency on the
frequencies of arbitrary external signals. (2) The application of the AFOs for
adaptive controller for compliant robots and systems with resonant frequencies in
general. (3) The application of AFOs for signal processing. (4) An engineering
view on oscillators, on the application of dynamical systems approaches and on
self-organization. These contributions will be detailed further at the end of the
thesis.



Chapter 2
Background & Related Work

The background for the presented work is a confluence of inspiration from many
different areas of science and engineering. In the following I will point out

the most important and influential contributions and some concepts which are
important to give the scientific frame of the work that will be presented in the
remainder of the thesis. In particular I will review relevant work in locomotion
research and neurobiology, robotics, statistical physics and systems theory.

Central Pattern Generators When investigating on the origin for the locomo-
tion patterns seen in vertebrates, researchers started to realize the importance of
the spinal cord for the pattern generation. Early evidence for so called half-centers
are documented at the beginning of the 20th century [17, 18]. A very influential
experiment is documented in [205]. In the experiment a spinalized cat (i.e. a cat
in which the connection between the spinal cord and the rest of the brain has been
cut) is put on a treadmill. If the treadmill is set in motion, not only can locomotion
pattern be observed that are very close to the normal patterns, but, moreover the
cat changes gaits when the speed of the treadmill is continually increased. Similar
gait transitions can be induced by the electrical stimulation of the brain stem. It
seems that the spinal cord is enough to autonomously coordinate large parts of the
movement necessary for locomotion. In other experiments, where isolated spinal
cords of the lamprey [46] or the salamander [40] are stimulated, fictive swimming
is observed. Such observations have led to the formulation of the concept of a
Central Pattern Generator (CPG). A CPG is a neural center which generates co-
ordinated high-dimensional output for the different muscle groups, controlled by
simple (often tonic, i.e. non-phasic) input signals. A review of CPGs and the
development of the concept can be found in [56] and another overview in [82].
Two of the model organisms to study CPGs were the lamprey [46,83,84] and the
salamander [40]. They have been used because being lower vertebrates and thus
a locomotion system of moderate complexity makes them particularly suited for
this kind of research.
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CPGs can show very different modes, such as the different gaits of mammals
or as in the salamander. The Salamander is an amphibian animal, whose body
is propelled through the water by traveling wave running over the body. When
going to land, the traveling waves are superseded by standing waves, which have
the knots between each pair of legs. The salamander CPG is meanwhile very
well investigated, there are extensive biological studies [40], there is a lot theoret-
ical work about CPGs [35–37, 47, 77, 78, 195] and experimental studies of model
CPGs [104,108,109] and implementation of such models on robots [42,52,141,224].
Meanwhile we have many other documented CPGs, not only for locomotion, but
also for breathing, digestion, flying etc (cf. [9] for a review). The CPGs can be
identified in some animals, e.g. the lobster, neuron by neuron [203]. In vertebrate
locomotion things are much more complicated, there are more neurons involved,
usually the centers can not be isolated as such and are intertwined with other
functions [115]. Nevertheless, there is good evidence that the CPG also plays an
important role in those animals and in humans. These concepts are the support
for walking rehabilitation treatments for patients with partially lesioned spinal
cord [113]. CPGs are an important concept for the research presented in this
thesis. It turns out that CPGs are a useful concept for robotics, especially for the
reduction of the dimensionality of the control problem, e.g. in the coordination of
the degrees of freedom for legged locomotion (see [107]).

Control theory & Linear Systems Theory Modern control theory is a vast
field. In its essence it deals with the problem of how to give inputs to a given system
to make it go to, or stay in, certain states. In other words, control theory mostly
investigates the problem of how to make the system to follow certain trajectories in
the state space. But it does not address the question about where the trajectories
to follow come from in the first place. The largest part of control theory deals
with linear systems (c.f. [68,206] for some introductory books). Usually nonlinear
plants are linearized, for some special cases of nonlinear systems there are direct
methods [124,207].

Thus classical control theory covers a somewhat different domain than what
we would like to achieve with CPGs for robots. And typically the application of a
CPG in a robot is on top of a rather classical level of low level control that ensures
that the trajectories are followed (as in [107]). However, if this is really the best
way of applying CPGs is debatable, and we show in our applications that it can
often be beneficial to not fully control every aspect of the robot (cf. Chapter 6).

Yet, control theory clearly is powerful and has its place in many industrial
applications. As we put it, what we present should is by no means a replacement
of classical methods. It should be more looked at as an extension. Consequently
we will use tools of control theory in the treatment of the systems.

An important aspect in our work is also the notion of resonant frequencies.
Which are readily defined in linear systems theory and a very central aspect of
control engineering. Yet, the identification of the resonant frequency of a given



7

real world system is not exactly straight forward. The usual way is to excite the
system in an appropriate way (i.e. by frequency sweeps or step inputs), measure
the system response. From the system response the resonant frequency has to be
extracted by help of the Fourier transform (or variants of it) and some additional
algorithms (i.e. to find peaks in the spectrum). As we will see, by shifting away
the focus from linear to nonlinear systems we find a much simpler way of achieving
the same goal.

Nonlinear Dynamics, Dynamical Systems In the present work we make
extensive use of oscillators. Oscillators have been investigated a lot over the last
30 years and they are often used in biological modeling but also in physics. Some
important work can be found in [45,61,63,130,132,134,135,214,215,234]. Oscilla-
tors are inherently nonlinear systems, but they still belong to a class of nonlinear
systems which show a rather simple attractor behavior, namely a closed curve.
They posses a very interesting feature, namely the tendency to synchronize on
rhythmic inputs. The inputs do not even need be large, very small inputs suffice.
This has to do with the special stability properties of the limit cycle attractor.
This issue will be discussed in more depth in Chapter 3. An excellent introduc-
tion to oscillators and synchronization phenomena can be found in [166]. The
synchronization property makes oscillators a nice building block to build pattern
generators, where we need high dimensional coordinated output. Early work of
CPGs modeled by oscillators [41,43,44,47,129,131,195,218–220]. The dynamical
systems formalism allows to investigate many interesting aspects of the system,
e.g. bifurcation studies [85, 171].

Self-organization & Pattern formation Investigation on self-organization
has now a quite long tradition in statistical physics. By studying open systems,
far from equilibrium it has been realized that in such systems pattern formation
is the rule and not the exception [87, 88, 90]. Later on it has been realized that
similar ways of looking at the systems is also successful in the biological context,
and especially in movement research [121, 196]. In locomotion and movement
coordination research the HKB model [91] is quite well known. For an overview of
work related to movement science see [79,119,192], some applications [117,118,190]
and samples of recent research in [114].

CPGs are clearly open system, composed of many nonlinearly interacting ele-
ments, they show high-dimensional coordinated output modulated by simple con-
trol parameters, thus they possess all elements for a self-organized system which
will show pattern formation. Thus it not surprising from the more theoretical
point of view the CPG can be treated with theories of self-organization and pat-
tern formation [195]. In such studies CPGs are very often modeled by coupled
oscillators as will be discussed below.

Besides the application to movement coordination the ideas of self-organization
and their related dynamical systems framework have also been investigated for
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robot navigation [12,60,193,194] and robot arm coordination [188,201].

Unfortunately for the interested engineer, the studies of self-organization do
not show how to use the knowledge for synthetic approaches. But, they highlight
the importance of non-linear features and the interesting phenomena that such
systems can exhibit. Realizing this, an investigation of such systems under the
light of engineering application is more than justified and logical. Engineers usu-
ally have to take care to rule out “excessive pattern formation” capabilities in their
systems. Self-organization for engineering is yet a mostly a unstructured effort,
distributed over many disciplines (cf. [33]). Early inspiration to the formulation
of our adaptation framework are in [191,197–200].

Spring-mass models in locomotion Blickhan and Full [13,14,70] where among
the first to put forward the use of spring mass models for modeling animal loco-
motion in a systematic fashion. Other early work can be found in [7, 150].

More recently a large body of knowledge about the common features of the
mammalian locomotion mechanisms has been accumulated by Fischer and co-
workers. Based on studies in which they filmed animals with sizes spanning several
orders of magnitude with fast X-ray cameras they could propose unifying principles
for mammalian legged locomotion. Based on the insight gained in these studies
they introduced the concept of “anti-gravity” muscles or muscle groups. And,
they concluded that the pivot around the hip joint is the important movement
that contributes to forward locomotion (c.f. [66] and references therein).

On the more abstract side in [204] Seyfarth investigated a very simple spring
mass hopper, very similar to the concept we will use in Chapter 6. He could prove
the passive stability of the spring mass hopper. Geyer et al could show that simple
spring mass systems have different stable modes and that this simple spring mass
model can unify modeling of running and walking [74].

There is a large body of work showing that animals and humans, under some
circumstances, work near the optimum in terms of cost of transportation [10, 11,
80, 86, 95, 99]. It is however not clear yet how animals know about this optimum.
Especially it looks like the adaptation to this optimum works too fast, compared
to the known processes that would possibly allow to sense the optimum. Could it
be that a purely mechanical fact coupled with a simple mechanism as presented
with the adaptive frequency oscillators is the key to this question? Even more,
could it be that the efficiency is only a secondary product of the adaptation to
resonant frequencies, that then has been favored by evolution? These questions
will be addressed in Chapter 6.

Robotics Traditionally robots are built as strongly and fully actuated rigid
machines. This has also to do with the fact, that it in this way they are fully
controllable and its easy to know their state. Unfortunately for tasks requiring
high agility such as autonomous robotic locomotion those robots become either
slow or very energy consuming, or the actuators become prohibitively large etc.
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Compliance is usually not a wanted feature since it makes the control problem
harder and it is more difficult to know the state. All this makes perfectly sense for
industrial robotics (which is hitherto the main market for robotics) where usually
the robots have to repeat certain tasks with very high precision and as fast as
possible and flexibility is not a major concern. Furthermore, these robots are
deployed in a very controlled environment and task. Thus, it is feasible to develop
accurate models of the working space and the robot.

But on the experimental side, In 80s and 90s Raibert experimented with hop-
ping robots [172, 173] with hydraulic actuators, which already possess a certain
compliance which is helpful for the legged locomotion that is performed. This re-
search was followed by the work of Pratt [169,170] who designed a planar bipedal
robot exploiting natural dynamics. Research on robots which make use of passive
compliant elements to improve the performance for certain tasks is a more novel
strain of research. While meanwhile a range of autonomous robotic systems can
be bought off the shelf they do not support the features which are needed for
the kind of research that we present. In the area of locomotion research there
are mainly two fully working robots which are of interest: Tekken by Kimura
and Fukuoka [126] and Puppy by Iida [100]. A second version of Puppy is the
experimental platform used in some of our own research (cf. Chapter 6). A very
impressive robot, of which unfortunately not many details are known is BigDog
by Boston Dynamics [167]. The robot employs compliant elements, not much is
known about the internals of the control system to us.

In the Leg lab at the University of Jena, there are furthermore robotic legs
with compliant elements under investigation [187] as well as a biped with compliant
legs [102] and a spring-mass hopper.

Notably in addition to the aforementioned research robots there is a toy which
exploits the resonant dynamics of its body to locomote in an efficient manner.
This small humanoid robot called Robo-sapien (by Wow Wee) has springs in its
torso and rocks its body from one side to the other in order to unload the legs
for the forward swing. This rocking movement is excited by the simple controller
exactly in the resonant frequency of the body. This toy-robot is an off-spring
of Hasslacher and Tildens research into exploiting the self-organizing capabilities
of controller-robot systems [92, 93, 174, 210, 222] - as exciting this work is, many
questions remain that hinder the easy transfer of this knowledge into research
robots.

There are some existing applications of CPGs to robots, e.g. to a quadruped
with compliant elements [126], other quadrupedal robots [42,224], for amphibious
snake and salamander robots [51, 52, 106, 107] and to bipedal robots [141]. In the
thesis we will present controllers which are loosely inspired by the CPG concept.

Learning systems and search algorithms There is a large number of meth-
ods, systems and algorithms for adaptive and learning systems nowadays. Re-
search in machine learning was a very prolific area in the last 20 years. One of
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the contributions setting off this research area was certainly Rosenblatt’s percep-
tron [183] and later-on the formulation of the back-propagation algorithm which
made a training of the multi-layer perceptron possible [186,230]. Later many vari-
ants of so called artificial neural networks (ANN) have been proposed [94], before
it got clear that they are mostly variants of one and the same topic.

Another important strand of algorithms has more been inspired by evolu-
tion and is hence called genetic (GA) or evolutionary algorithms (EA), they are
stochastic search algorithms. Furthermore, there are some physics inspired search
algorithms such as simulated annealing (SA) [128]. Then, another important fla-
vor of algorithms are those which should uncover hidden structure in the data, e.g.
clustering algorithms and statistical learning such as training of Hidden-Markov-
Models.

Common to those algorithms is that they are basically all search algorithms
in different flavors, i.e. gradient descent (ANN), stochastic gradient descent [209]
or a type of random search (SA,GA,EA). Consequently there are general methods
that encompass many of these methods, e g. kernel methods [226]

The advantage of such methods and algorithms is their universal use for any
type of problem which can be parameterized, one of the central points is the fact
that all of the methods have an explicit cost function, i.e. an estimation of quality
or similar (sometimes the cost function is somewhat implicit, such as the energy
terms in the clustering algorithms). It turns out that the formulation of the cost
function is more critical than the search algorithm. A problematic point is the
disproportion of the overhead of such algorithms to their performance (training
duration, system sizes, e.g. the layers of a NN). Usually there is no rule to di-
mension the system, what means it has to be dimensioned conservatively what
leads to suboptimal solutions in terms of overhead. Furthermore, they have the
conceptual property that learning algorithm and learning substrate are separated
entities. Depending on the view point this can be considered and advantage or
disadvantage. But, even more the two parts of the system are very often formu-
lated in different formalisms (e.g. in a NN, the learning substrate is a general
function, the learning is formulated as an algorithm). This is in stark contrast to
the facts we are presented with in Nature (e.g. the brain is learning substrate and
the implementation of the “learning mechanism” in one system), tells us that we
should at least make an attempt to unify the two parts of the system and see to
what insight this leads. Furthermore, the pattern-formation theories suggest that
the dynamic nature of such processes is important. A fully dynamic description
of the algorithms does not come naturally to the discussed methods. It might be
useful and interesting to explore alternatives, i.e. methods that do not have an
explicit cost function, no separation between learning substrate and algorithm and
that are formulated in a dynamic way. The language of dynamical system might
be helpful for sorting out fundamental facts of learning and adaptation, much as
it helped to sort out fundamental facts for pattern formation. While we have
a mathematical language for pattern formation we are only in the beginning for
such a language for adaptation. But, this is the key to exploit it for engineering
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purposes as the history of control theory for example has shown [140]. In the
dynamical systems approach of course there is still an objective function in the
wider sense, but it is implicit, it is encoded into the attractor dynamics of the
system, this can have some advantages (e.g. [60]) but bears the problem that we
have to find a way to develop this dynamics as outlined in the next section.

2.1 A note about modeling adaptive systems in the
framework of self-organization

Pattern formation is an inherently nonlinear process, linear systems can not pro-
duce stable patterns. Furthermore, systems that show pattern formation are open
systems and very often very high-dimensional. Yet, the observed, emergent pat-
terns can very often be described by a small number of variables. The key mecha-
nism for this reduction of the degrees of freedom is captured by the center manifold
theorem, also known as slaving principle or adiabatic elimination [87,89]. It is this
principle what justifies the usually proposed low dimensional models for CPGs,
such as oscillator networks, producing coordinated spatio-temporal patterns.

The variables use to describe the low dimensional structures emerging are
called order parameters, their behavior is controlled by a set of parameters, the
control parameters. Thus, the simple models that we usually employ of large scale
systems reflects the behavior of the order parameters.

If now we want to build on top of this pattern formation formalism to inves-
tigate on adaptive systems, we need to enhance this framework. If such a system
now slowly adapts, another – even slower – mode becomes important in the sys-
tem. Therefore, we propose to enhance a given pattern-forming system with an
additional feedback loop, which accounts for the adaptation mechanism. The time
constants of this loop will be in general larger then the time constants of the rest
of the system.

While the control parameters are usually constant, they become now a function
of the systems behavior. This means we have to find the law that determines their
evolution over time. In the dynamical systems framework this law should have
the form of a differential equation. The AFO based controller that we are going
to present is in this way an example of such an adaptive system. It adapts to
properties of the pattern which is formed by the interaction of the controller with
the body on a faster timescale.

This multi-scale property also amounts into a practical challenge for the sim-
ulation, i.e. numerical integration of such systems. Since we have slow effects on
one hand and fast effects on the other hands, which can not be separated, i.e. it
is exactly their interaction which we are after, we need to integrate the system at
high precision for a long time, which means computational demanding runs. To
support the integration of such systems, especially also in high-dimensions, with
the help of Ludovic Righetti I programmed an integration framework in C++. The
framework allows for a very efficient yet flexible numerical integration of dynam-
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ical systems. The data analysis is done in Matlab for its ease of use, availability
of numerical algorithms and graphical features.

To summarize, the basic properties which such adaptive systems will have are:
(1) system modeling the order parameter is usually non-linear (2) the system has a
multi-scale property which can not be separated, otherwise the sought phenomena
of adaptation are lost, and (3) the feedback loop is in general non-linear.

One can now ask about the relationship of such multi-scale systems with adap-
tive control and adaptive filters, which are a widely used technique in signal pro-
cessing and control engineering. While the idea of slowly varying parameters is
also at the center of adaptive control and adaptive filters, they are inherently
building the linear systems theory. We have pointed out why the systems that we
are interested in usually will be inherently nonlinear (otherwise they will not show
pattern formation capabilities). Yet, in the theory of adaptive control and filters
very powerful results and methods have been developed which should be used as
long as appropriate.



Chapter 3
Engineering: Simpler Systems –
Analyzable Solutions

In this chapter we show first in an example and then in a more systematic way
how important it is to assess well the model systems which are employed in

terms of their suitability for the chosen goal.
In the first example we show that we can improve existing networks of oscil-

lators serving as a model CPG by using a simpler oscillator, namely a harmonic
oscillator. We can calculate and design in a straight forward manner key prop-
erties of the network. The results of this paper will be reused in Chapter 6 to
construct the adaptive controllers for an actual robot.

In the second section we extend the discussion, to a general discussion about
the use of oscillators for engineering applications, and how this viewpoint on os-
cillators allows to sort out the common basic principles behind such systems.
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3.1 Improving a CPG

Distributed Central Pattern Generator Model for
Robotics Application Based on Phase Sensitivity

Analysis
Jonas Buchli and Auke Jan Ijspeert

This paper has been originally published as
J. Buchli and A.J. Ijspeert. Distributed central pattern generator
model for robotics application based on phase sensitivity analysis. In
A.J. Ijspeert, M. Murata, and N. Wakamiya, editors, Biologically In-
spired Approaches to Advanced Information Technology: First Inter-
national Workshop, BioADIT 2004, volume 3141 of Lecture Notes in
Computer Science, pages 333–349. Springer Verlag Berlin Heidelberg,
2004

Abstract A method is presented to predict phase relationships between coupled
phase oscillators. As an illustration of how the method can be applied, a dis-
tributed Central Pattern Generator (CPG) model based on amplitude controlled
phase oscillators is presented. Representative results of numerical integration of
the CPG model are presented to illustrate its excellent properties in terms of
transition speeds, robustness and independence on initial conditions. A particu-
larly interesting feature of the CPG is the possibility to switch between different
stable gaits by varying a single parameter. These characteristics make the CPG
model an interesting solution for the decentralized control of multi-legged robots.
The approach is discussed in the more general framework of coupled nonlinear
systems, and design tools for nonlinear distributed control schemes applicable to
Information Technology and Robotics.

3.1.1 Introduction

Information Technology has seen an unprecedented growth in possibilities and
capacity in the second half of the 20th century. Powerful theories have emerged
along with engineering principles that turn these theories into successful real world
applications. Almost all of this progress has been made by adopting a linear and
sequential approach to analyze and design systems. Under this view, each of the
subsystems must be carefully engineered, in order to make them as reliable as
possible. When connecting them, one is striving for a linear interaction as this al-
lows one to guarantee that the prediction made for interacting subsystems remains
valid. The order of operation, tasks and information flow is usually sequential as
this simplifies the understanding of the mode of operation of the system and the
identification of possible problems.

This is in contrast to how natural systems work. In nature, the subsystems are
usually unreliable, non-uniform, noisy but in huge numbers. The subsystems and
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their interaction are of active, nonlinear nature, leading to emergent phenomena
on the system level. Therefore, these systems often work naturally in a paral-
lel fashion. This tends to give interesting properties to natural systems such as
robustness, fast computation, high energy efficiency and versatility despite slow,
noisy and unreliable components. In order to be able to construct systems with
similar properties, it is crucial to have adequate theoretical tools for modeling and
designing these complex systems.

In this article, we would like to contribute to this effort in the field of oscillatory
systems. We develop a method for predicting phase relationships in systems of
coupled oscillators, and use it to design systems that can switch between well-
defined phase-locked states. In particular, we apply our approach to a concrete
example: the distributed control of locomotion in robots with multiple degrees of
freedom.

3.1.2 Designing Biologically Inspired Distributed Controllers for
Walking Robots

Controlling walking in robots has proved to be a difficult engineering challenge.
It requires coordinating multiple degrees of freedom using signals of the right
frequencies, phases, and amplitude. As nature presents very robust and elegant
solutions to that problem, some engineers have turned to biology as a source of
inspiration. At first sight, the animal locomotory system seems to be of enormous
complexity. But, despite the large number of elements taking part in locomotion
control, a few simple common features have been observed by biologists among a
large variety of different species. One of these is the notion of the Central Pattern
Generator (CPG) [81, 82]. A CPG is a network of neurons, capable of producing
oscillatory signals without oscillatory inputs. For locomotion, CPGs are located
in the spine, and receive relatively simple signals from higher centers of the brain
for the control of speed and direction. Sensory feedback is usually not needed to
produce the basic patterns, although it plays an important role in adapting the
patterns to the given situation the animal is faced with.

Another important concept is to classify different walking patterns by the
phase relationships between the individual limbs. This method allows to uncover
striking similarities between the gait patterns observed in very different animals.
In quadruped locomotion there are three gait patterns that are very often observed:
walk, trot and bound.

Models of different complexity and based on different assumptions have been
devised that can produce the abstract gait patterns [47, 69, 218, 223, 235]. One
important approach is – motivated by the oscillatory limb movements – to use the
most simple mathematical model that produces stable oscillatory behavior as gait
pattern generator for one limb. This mathematical model is a nonlinear oscillator
of some form. This oscillators are then connected together in order to achieve
inter-limb coordination (see [47,69,223]).

Except [223, 235] most previous models use nonlinear oscillators that are mo-
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tivated by neuronal circuits and that have therefore limit cycles with irregular
shapes. In this contribution, the point is made to use the simplest oscillators
possible as canonical subsystems, in order to have systems that are well under-
stood and are simpler to treat analytically. The canonical subsystem is taken
out of the class of nonlinear oscillators. In this article, the canonical subsystem
which serves as model for the pattern generator of a single limb will be a simple
amplitude controlled phase oscillator (ACPO). By this choice of the canonical sub-
system one does avoid the problems involved with the aforementioned neuronal
oscillators. The analytical treatment leads to a understanding of the system be-
havior that allows to apply synthetic approaches to construct a network with these
canonical subsystems with desired global behavior. Furthermore, the network is
constructed to have one single parameter by which the exhibited gait pattern can
be controlled. This is a simplification comparing to previous approaches which
usually need several parameters to be changed at the same time.

The desired properties that our CPG model should exhibit are the follow-
ing. First, the CPG model should be independent of initial conditions and robust
against perturbations. Second, the expressed gaits should ideally be controlled by
one simple control variable. This simplifies control, and also replicates the bio-
logical observation that the modulation of a simple electrical stimulation signal is
sufficient to change gait in cats [205]. Finally, when changing the control variable,
the CPG should exhibit fast transitions, ideally within one cycle. The transitions
are a critical moment since the animal can loose its stability if the transitions are
not appropriate. Furthermore, fast transitions are also observed in nature. To the
best of our knowledge, hitherto there exists no simple model that fulfills all the
criteria just stated.

3.1.3 Outline

A short outline of our approach will be given as follows. First, the canonical
subsystem will be presented. The notion of the phase will be introduced, since
the phase is crucial to understand synchronization behavior. Then, it will be
shown, that by examining the form of the limit cycle the sensitivity of the phase
on perturbations can be derived. With this result, it will be shown how the
phase relationship between two unidirectionally coupled oscillators can be derived.
Out of the insights gained by that treatment, a method is presented to chose an
arbitrary phase relationship between the two oscillators.

Next, a quadruped walking controller composed of four coupled oscillators will
be constructed. The additional couplings give raise to additional constraints on
the phase relationships. It will be shown by numerical experiments that only phase
relationships that fulfill these constraints are stable. In a next step, it will be shown
how we can exploit these additional constraints to have an continuous valued
parameter that allows us to chose the gait pattern expressed. In the discussion we
show how the results presented in this article fit in the larger picture and show
that our assumptions and simplifications are based on firm theoretical grounds.



3.1. Improving a CPG 17

3.1.4 A Distributed Quadruped Central Pattern Generator

Predicting the Phase Between Two Oscillators

Our goal in this section is to predict how an oscillator reacts to perturbations
by looking at its limit cycle from a geometrical point of view, and to use this
prediction for determining the phase relationship between coupled oscillators.

To start with the concepts needed to discuss nonlinear oscillators, the notion
of a perturbed nonlinear dynamical system is introduced:

q̇ = F (q) + p (3.1)

where q is the vector of state variables and p a perturbation vector. In the case
the unperturbed system (p = 0) converges to a periodic solution, it is called an
oscillator and the set of q on which it continues to evolve is called the limit cycle
of the system. As described in [166], every oscillator can be transformed into a
phase (θ) – radius (r) coordinate system:

θ̇ = ω0 + pθ (3.2)

ṙ = Fr(r, θ) + pr (3.3)

where ω0 is the natural frequency of the (unperturbed) oscillator, Fr is the dynam-
ical system describing the evolution of r, pθ is the component of the perturbation
acting on the phase and pr is the component of the perturbation acting in direc-
tion of the radius. Perturbations on a stable limit cycle have different effects on
the phase depending on the pθ and pr components. The pθ component will modify
the phase, since the phase is marginally stable [166]. On the other hand, the pr

component, i.e. in the direction of the radius, will be damped out and will have
little effect on the phase.

When two oscillators (F1, F2 with corresponding state vectors q1,q2) are cou-
pled together (pθ,2 = f(q1)), several types of dynamics can result including chaos
(i.e. no periodic behavior) and phase-coupling. In this article, we are interested
in 1:1 phase-locked regimes, i.e. when the oscillators synchronize such that [166]

θd ≡ θ2 − θ1 ≈ const (3.4)

Assuming that the system has phase-coupled1, we are now interested in how to
predict θd given two oscillators and their coupling. The general outline of our
method is as follows:

1. From the limit cycle of the perturbed oscillator a sensitivity function Sp(p)
is derived.

1Determining which conditions are necessary for phase-coupling is out of the scope of the
current article.
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2. From the limit cycle of the perturbing system (the other oscillator), the
coupling and the sensitivity function, the perturbation term pθ is calculated.
pθ is usually a function of the phase difference and the phase of the perturbed
system.

3. From the requirement of phase synchronization (3.4) a differential equation
(DE) for the phase difference between the perturbed and the perturbing
system (θd) can be derived. This DE is usually a function of the phase
difference and the phase of the perturbed system.

4. By integrating pθ over the evolution of the perturbed limit cycle the pertur-
bation of the phase that stays in the system is computed. This allows to
derive a DE that only depends on θd. By help of that DE, the fixed points
for θd can be found.

5. By applying a stability analysis of the DE, the stable and unstable fixed
points can be distinguished.

When looking at the phase space representation of a nonlinear dynamical system
we can conclude that changes in the derivative of phase can only stem from com-
ponents of the perturbation that are in direction of θ, i.e. tangential to the limit
cycle. The unit vector tangential to the limit cycle is

eθ =
q̇

|q̇| (3.5)

Therefore, the effective perturbation on the phase is

pθ = p · eθ (3.6)

The derivative of the phase becomes

θ̇ = ω0 + p · eθ (3.7)

So we found the sensitivity of the phase on perturbations:

Sp(p)
.
=

pθ

|p| =
p

|p| · eθ =
p

|p| ·
q̇

|q̇| (3.8)

With (3.7) we found an explicit form for the time evolution of θ. By using the
definition in (3.4) we can derive a differential equation for θd. We require synchro-
nization after some transient phase which is not discussed here:

∫ t2

t1

θ̇ddt = 0 (3.9)

On the other hand
θ̇d = θ̇2 − θ̇1 (3.10)
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θ̇d = ω0,2 + pθ2 − (ω0,1 + pθ1) (3.11)

This is usually a function of θd and θ2. As we are mainly interested in the steady
state of the system, we integrate it over time. The integration over time is done
implicitly by integration over θ2 (which increases monotonically with time), after
the system reached the steady phase locked state. We assume the criterion for
phase locking to be fulfilled at θ2 = Θ0, and that the system subsequently is in
the steady phase locked state for θ2 > Θ0. From (3.9) we see that the integral
should be zero

θ̇d,res = lim
Θ→∞

∫ Θ

Θ0

θ̇ddθ2 =
∞∑

n=1

∫ 2nπ+Θ0

2(n−1)π+Θ0

θ̇ddθ2 ≡ 0 (3.12)

We now have outlined all the steps needed to arrive with a differential equation
for θd. In the following, we will show the analysis of the phase oscillator that will
be used to construct the CPG.

The Amplitude Controlled Phase Oscillator

As outlined before, the CPG model will be constructed of simple canonical sub-
systems. In this case the subsystems are an amplitude controlled phase oscillator
(ACPO). The ACPO is defined by the following dynamical system:

[θ̇, ṙ]T = [ω,−g(r − r0)]
T (3.13)

The description of this system can be transformed into an equivalent description
in the Cartesian coordinate system (x = r cos θ,y = r sin θ):

q̇ =

[
ẋ
ẏ

]

=

[

g

(

r0
√

x2 + y2
− 1

)

x − yω, g

(

r0
√

x2 + y2
− 1

)

y + xω

]T

(3.14)

A short hand notation of this system is introduced: q̇ = FACPO(q), where q =
[x, y]T is the state vector of the system. This system shows a limit cycle that has
the form of a perfect circle with radius r0 (Fig. 3.1(a)). The intrinsic frequency
of the oscillator is ω.

Two Coupled ACPO

We introduce now a system of two ACPO where one ACPO is coupled unidirec-
tionally to the other one.

q̇1 = FACPO(q1) (3.15)

q̇2 = FACPO(q2) + pc(q1) (3.16)

where q1 = [x1, y1], q2 = [x2, y2]. Next will be shown, how we can derive the phase
relationship θd from the knowledge of the shape of the limit cycle and pc. We
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Figure 3.1: a) Limit cycle of the amplitude controlled phase oscillator for r0 =
1, g = 10, ω = 2π[rads−1]. The arrows show the flow q̇ defined by the FACPO

(3.13). b) This figure shows the phase difference established for the following
values of ωd = −0.0042, λ = 2 and g = 1000. With help of (3.23) predicted
value is θd = 0.2493 (dashed line). The value from numerical integration is shown
with the solid line (mean over t = [10, 20] is θd = 0.2554). c) The structure of
the ACPO-CPG. Note that the connections illustrated by arrows involve rotation
matrices (compare to text).
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will do this in an analytical way to illustrate how the method works. However,
the method is not limited to cases where we know the form of the limit cycle
by analytical derivation, but also works for cases where we get the form of the
limit cycle and fc by numerical integration. To illustrate how the method works,
consider the simple connection scheme:

pc = λ[0, x1]
T (3.17)

In words: State variable x from ACPO 1 is coupled on the derivative of state y of
ACPO 2 with a coupling constant λ.

1. We derive

eθ2 =
q̇2

|q̇2|
= [− sin(θ2), cos(θ2)]

T (3.18)

2.

pc = λ[0, x1]
T = λ[0, r cos(θ1)]

T (3.19)

From (3.6) we get

pθ2
= λr[0, cos(θ1)]

T · [− sin(θ2), cos(θ2)]
T = λr

1

2
[cos(θd) + cos(2θ2 − θd)] (3.20)

3. Using (3.10) and (3.20)

θ̇d = ω0,2 − ω0,1 + λr
1

2
[cos(θd) + cos(2θ2 − θd)] (3.21)

4. From (3.12) and (3.21) we get

θ̇d,res =

∫ 2π

0
θ̇ddθ2

=

∫ 2π

0

[
ω0,2 − ω0,1
︸ ︷︷ ︸

ωd

+λr
1

2
[cos(θd)
︸ ︷︷ ︸

const

+ cos(2θ2 − θd)
︸ ︷︷ ︸

periodic, zero mean

]
]
dθ2

= 2πωd + λrπ cos(θd) ≡ 0 (3.22)

From this equation we can calculate the (averaged) fixed points for θd

θd

∣
∣
∣
θ̇d,res≡0

= arccos

(

−2ωd

λr

)

(3.23)

We note that we need |2ωd

λr
| < 1 for this particular system to phase-lock (i.e.

for (3.23) to have equilibrium points). Since we assume steady phase locked
state, r ≈ r0 can be assumed. We are interested in the stable fixed points,
since they determine to which phase relationship the system will evolve. For
example, for ωd = 0, we find solutions at π

2 + nπ, n ∈ Z0.
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5. The stability of the fixed points is determined by the one-dimensional Jaco-
bian for θ which can be obtained by differentiating (3.22)

∂θ̇d

∂θd
= −λrπ sin(θd) (3.24)

From this equation we can calculate that ∂θ̇d

∂θd
= −λr < 0 for θd = π

2 + 2nπ

and ∂θ̇d

∂θd
= λr > 0 for 3π

2 + 2n (for λ > 0, opposite if λ < 0). Therefore, for
ωd = 0 only phase differences θd = π

2 + 2nπ are stable fixed points.

Using (3.23) we can therefore determine the phase difference to which the two
oscillators evolve when coupled, under the assumption that they phase-lock. For
ωd 6= 0 the fixed points for θd have slightly different values and are dependent
on the choice of r0, as can be seen from (3.23). In Fig. 3.1(b) the results for
numerical integration of the system treated above are presented for ωd 6= 0 and
compared to the value predicted by the analytical treatment.

Method for Choosing Arbitrary θd

Based on the insight gained in the previous section a method will be presented to
chose arbitrary θd. Therefore, a more general coupling scheme is introduced:

p2 = λPq1 (3.25)

where P is the coupling matrix. In the aforementioned example (3.17) it would
be

P =

(
0 0
1 0

)

(3.26)

We define a rotation matrix

R =

(
cos θR − sin θR

sin θR cos θR

)

(3.27)

By taking q1,r = Rq1, we get a vector that is equivalent to the vector q1(θ′1),
θ′1 = θ1 + θr. In other words, if we take q1,r to perturb the second oscillator the
effect is the same as if the first oscillator would be in state θ′1. Thus,

p2 = λPq1,r = λPRq1 = λr[0, cos θ1 cos θR − sin θ1 sin θR]T (3.28)

Using the same approach as in (3.20)-(3.23) we get

θ̇d,res = 2πωd + λrπ [cos θd cos θR − sin θd sin θR] ≡ 0 (3.29)

By exploiting the trigonometric addition theorems this transforms into

θd

∣
∣
∣
θ̇d,res≡0

= arccos

(

−2ωd

λr

)

− θR (3.30)
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where again r ≈ r0 is the steady state behavior. As can be seen θd is directly
proportional to the rotation angle θR. Using (3.30) we can design couplings be-
tween the oscillators such as to obtain arbitrary phase difference between them.
Note that the coupling does not need to be unidirectional. It is straight forward
to introduce bidirectional coupling by changing (3.15) to

q̇1 = FACPO(q1) + pc(q2) (3.31)

and working out the math as outlined above. Equivalently to (3.28), a second
rotation matrix P2 is introduced. Therefore, a third additive term in (3.29) arises.

The ACPO CPG

The three most common gaits observed in quadrupeds are walk, trot and bound.
To ease the notation, the legs of the quadruped are numbered in the following
way: left front 1, left hind 2, right hind 3, right front 4 (cf. Fig. 3.1(c)). If we
define θd,ij = θi − θj as the difference between the phase of limb i and j then, the
gaits can be classified according to Table 3.1(a) (the phases are normalized: θ = 1
corresponds to the full circle).

A quadruped CPG is constructed from four fully connected ACPO, i.e. all
oscillators are coupled bidirectionally to every other one (see Fig. 3.1(c)). The
coupling matrix is of the form

P =

(
1 0
0 1

)

(3.32)

and λ = 2 for all connections. A ring structure basically is enough to build the
CPG, cf. [47, 195]. However, the additional, redundant connections increase the
speed of the gait transitions.

Let us outline how we can design specific gait patterns into this network. First
of all, for this gait pattern the phase difference between the pairs of oscillators
that are connected need to be known. We can derive these phase differences by
help of Table 3.1(a). Then, for each connection a corresponding rotation matrix
can be derived. If we take as an example the walk pattern we see that we come
up with four different rotation matrices (θd = ±0.25± 0.5) for the 12 connections.
In order to be able to change from one gait pattern to another we make the
rotation matrices dependent on a parameter Pgait and we exploit the fact that
R(θd) = R−1(−θd). By analysis of the requirements needed to generate walk, trot
and bound we come up with three parameter sets of θR (cf. Table 3.1(b)). Instead
of fixing the θd we can define continuous functions that provide these values when
a parameter Pgait is increased. We chose the functions given in 3.33-3.35. This
allows to chose the gait pattern by the single continuous valued parameter Pgait.
The three corresponding rotation matrices are used in the connection scheme as
presented in Table 3.1(c) (using the short notation Ri = R(θR,i)).
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Table 3.1: (a) The table shows the phase differences corresponding to the three
most common gaits observed in quadrupeds. (b) The table shows the 3 differ-
ent rotation angles that are needed in the construction of the ACPO-CPG. (c)
Connection scheme used for the ACPO-CPG.

(a)

θd,12 θd,13 θd,14

walk 0.75 0.25 0.5
trot 0.5 0.0 0.5
bound 0.5 0.5 0.0

(b)

θR,1 θR,2 θR,3

walk 0.25 0.25 0.5
trot 0.5 0.0 0.5
bound 0.5 0.5 0.0

(c)
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Figure 3.2: θR,1,2,3 as a function of the chosen gait parameter. Pgait = 0 corre-
sponds to the walk pattern, Pgait = 1 to trot, and Pgait = 2 to the bound. Solid
line: θR,1, dashed line: θR,2, dash-dotted line: θR,3. The dots correspond to values
that correspond exactly to the values for the different gait patterns. However, also
for settings quite far from these points the gait patterns are stable.
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Simulation Results of the ACPO-CPG

In the following, the results of numerical integration of the ACPO-CPG are pre-
sented. The system was integrated with a variable step Runge-Kutta solver [146].
The tolerance settings were Trel = 10−3 and Tabs = 10−6. The initial conditions
were always chosen randomly in θ1,2,3,4 ∈ [−1, 1]. Because the system is robust
against random initial conditions, we do not present the transient behavior at the
beginning of the integration procedure but rather focus on the more interesting
phenomena during gait transitions. In Fig. 3.3, all possible transitions are shown.
The time t = 0 always corresponds to the time when the gait control parameter
Pgait is changed abruptly from one setting to another. Noteworthy here is that
not all transitions are made with the same ease. Especially the transitions from
walk to bound and back take up to about 1.5 s to begin. Also the transient time is
higher for these transitions. Furthermore, we have an asymmetry in transitions.
The transitions from walk to bound is faster then from bound to walk. Inter-
estingly, Kelso et al. [118] have shown the same effects when human subjects are
asked to consciously switch from one coordination task to another. The authors
also establish the link to the physical theories of complex systems that will be
addressed in the discussion.

Random fluctuations play a very important role in synergetic systems. It turns
out that they are fundamental to any pattern formation process. Furthermore, we
want our model to be robust against noise. Therefore, we use a noisy model to
test the influences of noise. For that the differential equation of the system gets
transformed into a stochastic difference equation

∆q = (1 + ξ)F (q)∆t (3.36)

where ξ is a uniformly distributed random number in [-0.1,0.1]. The stochastic
difference equation was then integrated using the Euler method with a time-step
of ∆t = 10−4 s. Representatively, for the illustration of the effect of the noise, the
transition from bound to walk has been chosen, because from the above presented
results it is known to be slowest. In Fig. 3.4(a) the results are presented and
as can be seen the begin of the transition occurs about one second earlier, while
the steady states are basically not affected by that noise level. Thus, our system
is not only robust against noise, but even benefits from it. Such noise induced
improvements has been shown in a variety of systems [72] and are now commonly
called stochastic resonance.

Finally, in order to illustrate one significant advantage of dynamical systems
based CPG models for controlling walking over other methods (e.g. trajectory
replay), we present the behavior of the model in case of an external disturbance
in Figs. 3.4(b) and 3.4(c).

3.1.5 Discussion

The ACPO CPG. We have presented a model for a quadruped central pattern gen-
erator. The model is of distributed nature and shows fast transitions and only one
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Figure 3.3: Results of the numerical integration of the ACPO CPG. a) Trajec-
tories of the ACPO-CPG when switching from walk to trot to bound and the
corresponding phase difference plots (θd,ij). Dashed line: θd,12, solid line: θd,13,
dash-dotted line: θd,14. The upper figure presents the oscillatory activity (xi),
while the lower figure shows the corresponding phase difference evolution. b)
phase difference plots for walk to trot (upper figure) and trot to walk (lower fig-
ure). The dashed vertical line indicates the time at which Pgait is changed. c)
walk to bound and bound to walk d) trot to bound and bound to trot.
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Figure 3.4: a) Further experiments on the influence of perturbations on the tran-
sition speed. Representatively the bound to walk transitions is chosen which is
the slowest. Noise is added during the integration procedure (see text). As can be
observed the transition is initiated about 1 s earlier then in the case without noise.
b), c) To illustrate the robustness against perturbation that is inherently built in
the structurally stable dynamical system model of the CPG we present the case
when the state variable for the left hind leg gets fixed for 0.2 s and then released
again during walk. The two vertical lines show the time when the legs is fixed and
released again. As can be observed, the leg increases in speed in order to catch
up with the other legs to fulfill the requirements of the gait pattern. Within less
than 0.5 s, the normal gait is re-established.
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global attractor. It is robust against noise and perturbations. By one continuous
variable we have the control over the chosen gait patterns. From the algorith-
mic point of view the model is very simple. Considering all these properties, we
conclude that the ACPO-CPG is a viable candidate for the implementation in a
robot. The presented CPG is however only applicable to interlimb coordination.
Additional oscillators are needed for intralimb coordination (i.e. coordinating dif-
ferent DOFs at the hip, knee, and ankle). However, the presented methodology is
applicable for these problems as well.

The choice of the subsystem in form of simple oscillators [47, 69, 218], and
more specifically phase oscillators [223, 235] has been presented before. However,
we motivate our choice with concepts from physics of complex systems rather then
base the model on simplified cell models. That this abstraction implied by the
choice of simple oscillators makes sense and is based on firm theoretical grounds
can be seen when looking on the observations made by biologists from a complex
systems perspective.

Modeling in the complex systems framework. We argue that these observations
(i.e. low dimensional dynamics and autonomous oscillatory behavior of nerve cen-
ters) and the resulting abstract concepts (i.e. CPG) are not a coincidence, but
rather a necessity. The reason for that necessity can be understood by physical
theories of complex systems developed over the last few decades. These theories
deal with systems that are constructed from active subsystems. Understanding
the concepts covered by these theories and gaining the insight that modeling con-
trollers for walking robots is an example of a much broader class of problems, we
can turn the physical theories into a design methodology that allows us to decide
which features need to be preserved in our model and which one can be abstracted
away in order to arrive with a controller that satisfies given global properties.

Haken [89] puts the argument forward that a large ensemble of interacting
systems normally exhibits low-dimensional dynamics under very broad conditions.
While others have formulated parts of the ideas before it was his contribution to
formulate an integrated theory of such systems, which he called synergetic systems.
He enhances the concept of the order-parameter introduced by Landau [136]. The
order parameters are identified as slowly evolving variables in a dynamical system
(e.g. in the laser, a prime example of self-organizing systems, the order-parameter
is the field strength of the laser light). The order-parameters turn out to be
the instable modes of that system and their number remains usually a very few
comparing to the full state space of the system. The key point is that all the
other variables of the system follow the order parameters, and, on the other hand,
the activity of the full system influences the evolution of the order parameters.
Haken formulated that fact in the slaving principle. One can build hierarchies of
systems where the order parameters of one subsystem constitute the subsystems
for the next hierarchy level. In the case of the locomotory system the order
parameters of interest are the phase relationships between the limbs. The scales of
the order parameters and the subsystems differ in about three orders of magnitude
(neurons: ∼ 10−3 s – limb activity ∼ 100 s). The different scales are typical
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for synergetic systems. Furthermore, it has been shown theoretically [89] and
experimentally [165], that the behavior of the order parameters is very independent
of the exact nature of the subsystems. Even more, at the order parameter level,
completely new phenomena can occur, which are not foreseeable at the subsystem
level2.

Conclusion of the complex systems perspective. Considering the aforemen-
tioned facts, it gets clear that there are two approaches of modeling the behavior
of such systems. Both of them have strengths and weaknesses. The first method is
to derive models for the subsystems and couple them to come up with the complete
model. This is an important approach, especially if one is interested in the exact
behavior of the real system being modeled and the influence of all the parameters
(for an example see [162]). However, especially when the chosen level of descrip-
tion is very detailed, this method is rather tedious, it leads to complicated models
that are normally computationally intensive and possess a large number of param-
eters. One has to have an enormous knowledge of the details of the subsystems
which in reality is often missing. Especially, if one is successful with this modeling
approach, one will rediscover the aforementioned system hierarchies. The other
approach is to focus on the order-parameter level, if one is mainly interested in
mimicking the overall system behavior. It is an phenomenological approach. The
advantage here, is that one is freed from a huge amount of parameters, the systems
are usually simple and easy to simulate. Yet, the physics guarantees that we still
catch the important aspect of the system behavior, namely the behavior of the
order-parameters (i.e. models for human inter-limb coordination see [117, 118]).
The model derived by this approach typically consists of one low-dimensional dy-
namical system describing the behavior of the order parameters (e.g. quadruped
CPG see [195]). In this article we are following the second approach.

As we are free to chose which level of the system hierarchy we would like
to model in order to arrive with an usable model for a robotic application, a
good approach is to keep a distributed model consisting of a few subsystems.
The subsystems themselves are still models of complex systems. Therefore, they
model order-parameter behavior. Naturally, one splits up the whole system into
subsystems, where the system being modeled also shows some modularization
(i.e. Body segments, Limbs, ...) or where we identify parts that lend themselves
to easy measurement of the subsystem behavior. In case of the walking controller,
the order parameters are the population activity of the motoneurons for one limb.
The population activity serves to drive the muscles. The subsystems are the single
neurons of the limb CPG, the muscle cells and all the other numerous parts that
form the neuro-mechanical system. Because we are at the order-parameter level of
description, it gets clear that there is no need to use models that are motivated by
observations made on the single neuron in order to model the behavior on the CPG
level. Another motivation for the choice of the canonical subsystem in form of a
simple phase oscillator is the fact that from an mathematical viewpoint all limit

2aka. emergence, network effects, self-organization
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cycle systems belong to the same universality class [65]. I.e. effects observed in one
limit cycle system are also to be expected in another limit cycle system (However,
in practical cases, the relationship is often enough only accessible in a qualitative
manner. Even, if, from the mathematical viewpoint, a quantitative relationship
exists). Furthermore, with this method we arrive with a model that does not
show certain drawbacks of earlier models such as dependence on initial conditions,
slow and lacking transitions, or periodic driving and prove therefore that our
modeling approach is viable. Most probably the most fundamental advantage for
our goal of controlling robots is that by choosing the simple oscillator model, we
can predict the phase relationships with more ease and to a certain extent by
analytical methods.

The level of abstraction of the ACPO-CPG corresponds to the order parameter
description of dynamical systems. At this level of description a very simple model
can be derived as shown by [195]. The model presented by Schöner et al. however
is not of distributed nature anymore. As mentioned before, one interesting prop-
erty of synergetic systems is their distributed nature. In a robot one would like
to have simple distributed control for low level tasks such has locomotion, thus
allowing a central processor to use its power to address more involved tasks, such
as path planning, communication and the like. Therefore, in this contribution
we constructed a model with a more complex structure, that lends itself for a
distributed implementation in a robot built of uniform elements.

Outlook and future work. From a more theoretical point of view it will be
interesting to do more rigorous analysis of the model, e.g. bifurcation analysis.
Furthermore, it will be interesting to take a closer look at the improvement by
noise, and compare the observation to other examples and theoretical considera-
tions about stochastic resonance. It is known that there exists a certain optimal
level of noise for a given system. This optimum remains to be found.

Since the characteristics of coupled dynamical systems, that we exploited to
construct the ACPO-CPG, are universal characteristics that can be observed in
many real world systems such as semiconductors [165], analog electronics [157],
chemical reactions [202] and many more, one is basically able to implement this
models on top of a variety of substrates. The choice in nature are neurons, but
for applications we are not restricted to this substrate. The substrate of choice for
implementation in the long term will be the one where we have the appropriate
control over the characteristic time and length scales on one hand, and suitable op-
eration conditions (temperature, field strengths, power consumption) on the other
hand. In addition to that, it should be cheap and simple to manufacture. There-
fore, to find such suitable substrates and the way of implementing the systems on
top of them, a lot of experiments have to be done.

Conclusions. In recent years a lot of progress has been made in understanding
complex systems from a theoretic point of view. Moreover, advances in technology
allows us to implement and partially simulate systems of a complexity hitherto
impossible. Yet, for applications, these powerful concepts are not yet exploited in
a systematic fashion. Researchers in different fields often make implicit use of the
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concepts contained in the theory of complex systems when they make investiga-
tions and observations, yet, sometimes make assumptions that are not well aligned
with this theory. In the authors opinion, it is important and one of the grand chal-
lenges for the next decades to transform the knowledge into design principles and
collect experiences in order to harness the full power of active distributed sys-
tems. The research presented here, belongs to a more general effort that aims at
using theories of coupled dynamical systems in the solution of difficult engineering
problems and tries to devise new design principles. The possible fields of applica-
tion are numerous - network engineering, multichannel information transmission,
sensor networks and robotics just to name a few.
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Abstract Periodic behavior is key to life, and is observed in multiple instances
and at multiple time scales in our metabolism, our natural environment, and
our engineered environment. A natural way of modelling or generating periodic
behavior is done by using oscillators, i.e. dynamical systems that exhibit limit
cycle behavior. While there is extensive literature on methods to analyze such
dynamical systems, much less work has been done on methods to synthesize an
oscillator to exhibit some specific desired characteristics. The goal of this article is
two-fold: (1) to provide a framework for characterizing and designing oscillators,
and (2) to review how classes of well known oscillators can be understood and
related to this framework.

The basis of the framework is to characterize oscillators in terms of their fun-
damental temporal and spatial behavior, and in terms of properties that these
two behaviors can be designed to exhibit. This focus on fundamental properties is
important because it allows us to systematically compare a large variety of oscilla-
tors which might at first sight appear very different from each other. We identify
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several specifications that are useful for design, such as frequency-locking behav-
ior, phase-locking behavior, and specific output signal shape. We also identify two
classes of design methods by which these specifications can be met, namely off-line
methods and on-line methods. By relating these specifications to our framework
and by presenting several examples of how oscillators have been designed in the
literature, this article provides a useful methodology and toolbox for designing
oscillators for a wide range of purposes. In particular the focus on synthesis of
limit cycle dynamical systems should be useful both for engineering and for com-
putational modelling of physical or biological phenomena.

3.2.1 Introduction

Periodic behavior is central to our lives. Our body functions thanks to many types
of periodic behaviors ranging from heart beats, breathing, chewing, locomotion,
various rhythms in the brain, down to cycles in gene regulatory networks. Similarly
our natural environments have multiple periodic phenomena such as rotations of
the earth around the sun and around itself, seasons, tides, cycles in ecological
systems (e.g. prey-predator populations), in chemical reactions, etc. Finally,
many systems that we engineer are meant to exhibit periodic behavior such as
clocks (for watches or CPUs), lasers, music, traffic lights, satellites, to name just
a few examples. All these phenomena share many common features, and can be
modelled (or controlled for engineered systems) by systems of differential equations
that exhibit limit cycle behavior, that is by oscillators.

The importance and ubiquity of periodic behavior explains why oscillator mod-
els are published in such a large variety of journals in different fields (nonlinear
dynamics, physics, biology, chemistry, engineering, etc.). This makes oscillators
a very exciting topic of study, but at the same time makes it difficult to extract
common principles from all these models. Indeed each field has its own termi-
nology, variable/parameters names, systems of coordinates, methods of analysis,
methods of synthesis and this makes it hard to see similarities and differences
between models. Furthermore, the choice of a particular oscillator in a given
field is often not transparent, and depends sometimes more on historical reasons
than on pure design or modelling considerations. The reason for that is usually
a lack of abstraction of the concept of oscillators. Finally, another difficulty with
oscillators is that while there are many tools for analyzing the behavior of an os-
cillator (see [75, 134, 166, 234] for some outstanding textbooks), there is a lack of
methodologies for designing them to exhibit a particular behavior.

The goal of this article is therefore to provide a framework for characterizing
different oscillator models in a systematic way, and to focus on methodologies
that can be used for designing them. In this process, we review a large range of
oscillator models that have been developed as well as some of our own work in
adaptive frequency oscillators. We will try to focuss on the fundamental principles
of limit cycle systems, and separate those from unnecessary details of a particular
implementation. These principles can then be applied to the design of systems,
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and used to provide guidelines of how to endow a system with a set of predefined
properties. Our perspective is therefore mainly an engineering one, i.e. we want
to address the problem of how an oscillator or a system of coupled oscillators can
be designed to do something useful (e.g. for coordination, sequencing, and/or
pattern formation), but the approach should also be interesting for computational
modelling.

Oscillators are of interest for engineers for several reasons. They can be ex-
ploited for timing and sequencing. They can synchronize to external signals, and
show coordinated behavior with perturbations and other oscillators. Connecting
them into networks or latices they can form coordinate yet flexible spatio-temporal
patterns. These networks can act as pattern generators which can reduce the di-
mensionality of a given control problem, in the sense that a small number of simple
(scalar) parameters can control multidimensional output patterns. Of course they
also exhibit all the common features of structurally stable dynamical systems such
as smooth changes under parameter variation. The structurally stability makes
it possible to fuse in input without destroying the autonomous dynamics of the
system, i.e. the resulting dynamics is a combination of internal and external dy-
namics.

An interesting example of the use of oscillators in engineering is in the field of
locomotion control in robots. Locomotion control is still a difficult and unsolved
problem for robots with multiple degrees of freedom (e.g. legged robots). Loco-
motion requires multi-dimensional coordinated periodic patterns that need to to
satisfy multiple constraints in terms of efficient locomotion, energy and adapta-
tion to complex terrain. One approach to solve this problem relies on accurate
models of the robot and environment dynamics to develop control laws for loco-
motion. These model-based methods have however significant difficulties dealing
with environments that are hard to model properly (e.g. with complex terrains).
An alternative approach is to use systems of coupled oscillators and to take in-
spiration from animal motor control. In vertebrate animals, an essential building
block of the locomotion controller is the central pattern generator (CPG) located
in the spinal cord. A CPG is a neural circuit capable of producing coordinated
patterns of rhythmic activity in open loop, i.e. without any rhythmic inputs from
sensory feedback or from higher control centers [54, 82]. A CPG can be mod-
elled as a system of coupled oscillators [129, 131]. The motivation for using CPG
models in robotics is to produce the periodic patterns necessary for locomotion as
limit cycles. If this is the case, the oscillatory patterns are robust against tran-
sient perturbations (i.e. they asymptotically return to the limit cycle), and this
makes them well suited to deal with unexpected perturbations from the environ-
ment. Furthermore, the limit cycle can usually be modulated by some parameters,
which offers the possibility to smoothly modulate the gait (e.g. increase frequency
and/or amplitude) or even to induce gait transitions (i.e. bifurcations between
different types of limit cycles, see for instance [47]). Finally, CPGs can readily
integrate sensory feedback signals in the differential equations, and show inter-
esting properties such as entrainment by the mechanical body [220]. Because
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of these interesting properties, CPGs are increasingly used in robotics (see for
instance [30,59,125,181,232]).

The paper is organized as follows. First, in Section 3.2.2, we introduce oscilla-
tors (i.e. limit cycle systems) by definitions, and present a description of the very
basic features common to all limit cycle systems. We then discuss the typical sta-
bility properties of oscillators, and this leads us to the formulation of two distinct
coordinate systems, the Phase-Radius coordinate system and the Q coordinate
system (the ”physical” coordinate system), and their relationship. Examples of
the abstract concepts by help of well known oscillators will be given along the
way. This discussion helps us to get clear what properties of an oscillator can be
designed. Based on this discussion we then address the issue how we can con-
struct an oscillatory system to exhibit specific properties. This part addresses the
three core questions: What can we do (Section 3.2.3)? How can we do it (Section
3.2.4)? What are the resulting systems (Section 3.2.5)? Finally, we conclude with
a general discussion of design choices and give an outlook on future research in
this direction.

We assume some familiarity with basic concepts of nonlinear dynamical sys-
tems, a good introduction can be found in e.g. in [213], especially the concept of
stability will be used extensively. The mathematical facts presented in this article
are often not new (many are on textbook level), however the way of presenting
oscillators is new due to the focus of generic properties of all oscillators. This leads
to a novel discussion of oscillators centered around the transformation between a
canonical system in the Phase-Radius coordinate system in which it is particularly
simple to discuss the influence of perturbation of oscillators, and the ”physical”
system, i.e. the traditional way of representing oscillators. To support the discus-
sion the new concept of radius isochrones is introduced. Finally, we would like to
give a note about mathematical detail and completeness. For the sake of clarity
we do not discuss every subtlety and every case since we think that would dilute
the clarity of the concepts. An excellent and very comprehensive introduction to
oscillators and synchronization phenomena is [166].

3.2.2 Limit cycle systems

In this section we will introduce the mathematical concept of an oscillator. As will
get clear there are some subtle differences of what commonly is called an oscillator
and the mathematical concept of an oscillator.

The presented concepts are key to all the design issues discussed later, such
as the choice of type of oscillator, coupling etc. This means, an engineer wanting
to use an oscillator needs a thorough understanding of those concepts. This will
allow him/her to chose the right type of oscillator and gives him/her the tools to
engineer its properties.

Definitions In order to support our mathematical discussion of oscillators we
start with its definition.



3.2. An engineering view on oscillators 35

F(q, ρ) System of equations describing the dynamics of the system,
F(q) = [f1, . . . , fD]T

q State vector q = [q1, . . . , qD]T

ρ Vector of parameters
p(t) Vector of perturbations
D Dimension of the system
φ Phase of the oscillator
ω Intrinsic frequency of the oscillator
r Radius of the oscillator r = [r1, . . . , rD−1]

T

T Period of the oscillator
Ωi Instantaneous frequency
eφ,er Unit vectors in direction of phase and radius
T Transformation from q to [φ, r]
q∞ The set of points describing the limit cycle
PRCS Phase-radius coordinate system
QCS The q-coordinate system
LC Limit cycle
PS Phase sensitivity
PRC Phase response curve

Table 3.2: Nomenclature, conventions and common abvrevations used to discuss
oscillators in this article.

Definition 1 An oscillator is a autonomous dynamical system, i.e. a system
of differential equations with at least one limit cycle attractor. In other words
the solution of the system (after a transient time) is a closed cycle, which is
asymptotically stable, i.e. if the system gets perturbed out of the limit cycle
it returns back to it.

We see that the limit cycle attractor is the defining property of an oscillator, hence
the name limit cycle (LC) system is used as synonym for oscillator.

This means the system has a self-sustained oscillatory behavior to which it
returns after a transient perturbation. Oscillators possess thus an intrinsic pe-
riod (and hence frequency) with which the system repeats the pattern of activity.
Thus, a linear 2nd (or higher) order system can not be an oscillator in that sense.
It can only exhibit sustained oscillations with an oscillatory input in case the sys-
tem is damped. If it is not damped, the system is just on the border between
stability and instability and oscillations are not structurally stable (i.e. after a
transient perturbation possibly another pattern is assumed). On the other side of
the stability border the oscillations will increase to infinite amplitude.

Let us detail this definition a bit more, for this we need some nomenclature
which we list in Table 3.2.

With the help of those variables we can put above definition in more concise
terms:
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Definition 2 (equivalent to Def. 1) If the dynamical system

q̇ = F(q) (3.37)

has a stationary solution which is a closed curve and the solution is struc-
turally stable, (3.37) is an oscillator.

The limit cycle The set on which q evolves is called the limit cycle, which we
denote with q∞. It is an attractor of dimension 1 (i.e. a curve) which is closed in
itself, so it needs to be embedded in a space of dimension D ≥ 2 (cf. Fig. 3.5). The
fact that the attractor forms a closed curve implies that the time shift invariance
holds: if q(t) is a solution then q(t) = q(t + nT ), T is the time of repetition, i.e.
the period of the system and is inversely proportional to the intrinsic frequency ω
of the system T = 2π

ω
(cf. Fig. 3.5b).

The fact of having a closed curve implies also a special stability property
of the attractor. The flow described by the set of equations lets all solutions
within the basin of attraction converge to the limit cycle. Perpendicular to the
limit cycle the system is thus asymptotically stable. But the phase point moves
along the limit cycle. In other words in every point on the limit cycle the flow is
stable/contracting in to D-1 directions, but drives the state in the one direction
perpendicular to the other directions. This is the very essence of a limit cycle
system, these stability properties are the only ones that allow for a closed 1-
dimensional attractor. And they are the key to understand the properties of
oscillators their particular behavior and phenomena such as synchronization.

We can thus distinguish two characteristic stability directions on the limit
cycle by introducing a coordinate system of which one basis vector is tangential to
the limit cycle limit cycle, eφ, and D − 1 vectors perpendicular to the limit cycle,
which we do denote representatively by er (cf. Fig. 3.5a).

As we will see in the next section the marginally stable direction tangential to
the limit cycle is of central importance to discuss oscillators.

The phase In every oscillator we can identify a variable (which does not nec-
essarily correspond to a state variable but is a function of those) which grows
uniformly in time and is interpreted mod 2π (or any other convention). This
variable is called the phase of the oscillator.

The phase of the oscillator is a measure where the oscillator is in the cycle.
We remember that the frequency of the oscillator is ω = 2π

T
. We define the phase

in the following way

Definition 3 For the unperturbed system F, the variable φ for which

φ̇ = ω(= const) (3.38)

is called phase of the oscillator F.
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Figure 3.5: a) The schematic illustration of a limit cycle. It is a closed curve in
phase space. The stability directions eφ,er are illustrated as well as the projections
pr and pφ of a perturbation p,which has a direction in the phase space, onto those
stability directions. b) The time series of an hypothetical oscillator. There is a
characteristic period T after which the activity of the oscillator and with this the
time series repeat. c) The limit cycle is a 1-dimensional manifold embedded in
a D-dimensional space (D ≥ 2), we can transform the system into a coordinate
system in which the manifold shows particularly simple form and of which the
stability directions constitute the base vectors.

By help of the phase also the frequency can be cast into a definition

Definition 4 The rate of change ω of φ in the unperturbed oscillator is the
intrinsic frequency of the oscillator.

The reason why we define the frequency by help of the phase will become clear
later when we will discuss the oscillator under perturbations. It is important to
note that ω is not always an explicit parameter. However, it is always a function
of the parameters, ω = f(ρ).

Now, every oscillator can be transformed into a phase (φ) – radius (r) coordi-
nate system [166]:

φ̇ = ω (3.39)

ṙ = Fr(r) (3.40)

where Fr is the dynamical system describing the evolution of r (refer to Fig. 3.5c)
and has a stable fixed point.

The vectors eφ and er that we introduced above based on stability consider-
ations form the basis vectors of the phase radius coordinate system. In Eq. 3.39

the fact that the phase is a marginally stable variable (dφ̇
dφ

= 0) is immediately
evident. This coordinate system is the natural one to discuss influences on the
oscillator since the stability directions are decoupled.

At this stage it is also worth noting, that in a unperturbed oscillator the phase
completely describes the state of the system in the stationary regime (cf. phase
oscillators in Section 3.2.3). This means we can write r∞ = f(φ).
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It is important to realize, that the phase is not necessarily proportional with
time. This is only the case when the oscillator is unperturbed, where indeed
φ is proportional to t mod 2π - but more importantly and this is the key to
the entrainment effects as we will see later, in case of perturbations the phase
and time “get decoupled” i.e. the phase can be shifted forward or backwards.
The oscillations can be accelerated or de-accelerated. Designing entrainment and
other aspects of the oscillator is all about designing these acceleration and de-
acceleration effects. We will discuss this in more detail when we look at LCs under
perturbations in Section 3.2.2. But first we need to complete our understanding
of the phase-radius coordinate system.

The geometry of the limit cycle Normally the oscillator is not readily rep-
resented in the ideal phase-radius coordinate system (as in Eqs. 3.39–3.40). We
need to discuss the relationship between the oscillators representation in q and in
[φ, r]. As we will see that is the key to understand the behavior of the oscillator
under perturbations.

If we transform the coordinate system and the metrics we could possibly gain
a simpler oscillator but the complexity gets transfered into the coupling of the
oscillator the input. We will give an example when we discuss phase oscillators in
Section 3.2.3.

But then how is the coordinate system usually determined? Let us reflect on
the role of the state variables. Usually the state variables are defined by a physical
interpretation or they have a concrete conceptual meaning such as a voltage or a
chemical concentration, for instance, and that is the way the coordinate system
gets defined. This coordinate system is the natural one to formulate the physical
laws and interaction between the different physical entities (while, as we have seen,
phase radius is the natural one to discuss perturbation because of the separation
of variables according to stability properties). And in modeling it is usually the
case that the input and outputs of an oscillator are formulated in the physical
coordinate system.

But, for engineering, if we want to exploit some of the abstract properties of
the oscillator we are not bound to an interpretation of the variables. Thus it
can be useful to formulate the inputs and outputs in the phase radius coordinate
system or any other suitable coordinate system.

We name thus two coordinate systems, the phase radius coordinate system:
PRCS and the coordinate system of q: QCS. The transformation from QCS to
PRCS is given by T.

[φ, r]T = T(q) (3.41)

Let us look in more detail at this transformation and some of its properties. The
transformation can be split up in to components, namely the transformation from
q to φ: φ = Tφ(q) and the transformation from q to r r = Tr(q), thus

T =

[
Tφ

Tr

]
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Since we are not only interested in the transformation of the state variables but
also in the transformation of the dynamics under this transform let us investigate
the derivatives of the transformed coordinates, we do this exemplary on φ since it
works the same way for all state variables.

φ = Tφ(q) (3.42)

⇒ φ̇ =
dTφ(q)

dt
=

∂Tφ(q)

∂q
q̇

=
∂Tφ(q)

∂q
F(q) (3.43)

We see that Tφ is intrinsically defined (by the fact that Eq. 3.43 has to be
equivalent to ω, being a constant) but there is some freedom in the choice of Tr.
To remove this ambiguity we define the behavior of an oscillator in the canonical
PRCS as

φ̇ = ω (3.44)

ṙ = 1 − r (3.45)

This is somewhat arbitrary but the choice will become clear later in the dis-
cussion of the relationship of PRCS and QCS. At this place its choice is already
partially motivated by Eq. 3.45 representing the simplest dynamical system with
stable, non-zero fixed point behavior where the fixed point is r = 1.

The inverse of T, T
−1, transforms the system from the PRCS into the QCS.

This means by designing T
−1 the PRCS can be mapped into any type of oscillator.

Example: Consider the transform of r into r′, given by r′ = (r−1)g + r0. This
transforms the canonical oscillator (Eqs 3.44 – 3.45) into

[φ̇, ṙ′]T = [ω,−g(r′ − r0)]
T (3.46)

We can now transform this system further by applying the well known trans-
formation from a Polar coordinate system into the Cartesian coordinate system:
q1 = r′ cos φ, q2 = r′ sin φ. By this transform we yield the following system

[
q̇1

q̇2

]

=







g

(

r0√
q2
1+q2

2

− 1

)

q1 − q2ω

g

(

r0√
q2
1+q2

2

− 1

)

q2 + q1ω







(3.47)

We have thus transformed the canonical oscillator into a phase oscillator in a
Cartesian coordinate system. The radius and convergence rate of the oscillator
can be controlled by r0 and g respectively.

While here we can express the transform T
−1 and its inverse by rather simple

mathematical expressions this is usually not possible. Even more, the transform
might often not be expressible in a closed analytical form.
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Graphical assessment of T

We will now discuss a graphical way of assessing relationship of PRCS and QCS,
i.e. T for a given oscillator. For this the notion of time becomes important, i.e.
at what velocity the phase point moves through the phase space. What specifies
the equivalence of a point in QCS and a point in PRCS? If for time t0 q(t0) =
T
−1([φ(t0), r(t0)), then for all time q(t) = T

−1([φ(t), r(t)). This means if we could
find a way of comparing the development of the two points in both coordinate
systems at regular intervals and repeat this for different initial conditions we would
get an idea of T.

The activity of the oscillator can be plotted in the QCS (phase portrait) in
which the limit cycle will show up as a closed curve. But, the information about
the phase velocity is lost. So even that we know that for example the limit cycle
in the QCS corresponds to the limit cycle in the PRCS, we do not know which
point on the limit cycle in one coordinate system corresponds to which point in
the other one. While in PRCS the phase moves along the limit cycle with constant
velocity ω, in general, for an arbitrary oscillator F in the QCS, the phase point
will not move along the limit cycle in the phase space with a constant velocity.
Thus, the phase does not correspond to the simple “position” on this curve (i.e.
an infinitesimal part of the curve does not correspond to the same infinitesimal
of φ, dq 6= dφ). In order to investigate on this relationship, we could plot points
with always equal ∆φ.

However, the phase is only uniquely defined on the limit cycle, but we would
like to get a global idea of the transformation. We can generalize the notion of a
phase outside the limit cycle by the concept of isochrones. We follow the definition
of [166] and generalize the phase by help of the cycle time T , i.e. the mapping
q(t) → q(t + T ).

Definition 5 Isochrones – The set of points being invariant under the map-
ping q(t) → q(t+T ) and crossing the limit cycle at q⋆ (i.e. q⋆ is a fixed point
of the mapping) is called an isochrone through q⋆.

In other words, all points of the phase space which converge to having the same
phase on the limit cycle form an isochrone.

If we plot isochrones for every ∆φ = const they show the relationship of the
phase with the geometry of the system in the QCS (cf. Fig 3.6). Where they
are tightly spaced the phase point moves slowly, thus values of different phase are
tighter spaced. If they are equally spaced on the limit cycle, the lengths of an arc
of the limit cycle is proportional to a ∆φ (dφ = 1

S
2πds, where s is the arclength

and S the total length of the limit cycle). If the isochrones are straight (as in Fig.
3.6b) this means that the DE for φ and r are decoupled, and the transformation
T corresponds to a transformation from Cartesian to Polar coordinates.

Now, the isochrones give us an idea how φ is embedded into QCS. But in order
to complete our picture of the transformation T we need to get an idea of how r
is embedded into this coordinate system.
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For this we define the Radius-Isochrones, which will give us an idea on how r
evolves over time.

Definition 6 Radius-Isochrones – The set of points q(t) satisfying dist(q(t+
∆t),q∞) = ǫ, are called a Radius-Isochrone with ∆t.

Function dist denotes the distance between the point q and the limit cycle.
Intuitively this means all points which converge to the limit cycle in the same
time form a radius-isochrone. We see that the definition of the radius-isochrones
implies a distance measure from the limit cycle. This distance can be defined in
different ways. We use the perpendicular direction to the limit cycle and consider
as converged to the limit cycle when it enters the “tube” of radius ǫ ≪ 1 around
the limit cycle.

We can use the isochrones and the radius-isochrones to get an idea how the
abstract phase-radius oscillator is embedded into the coordinate system for q. The
time to get from one isochrone to the next is constant, the time from one radius-
isochrones to the next is also constant. The radius-isochrones gives information
about the rate of convergence, tightly space radius-isochrones mean a slow con-
vergence to the limit cycle, widely spaced mean fast convergence (see Fig. 3.6 and
its description).

If we plot isochrones equally spaced in φ and radius-isochrones for equally
spaced ∆t for the oscillator in the canonical PRCS (Eqs. 3.44–3.45) we get a
rectangular grid as seen in Fig. 3.6a with equally spaced vertical lines and expo-
nentially spaced horizontal lines. This means whenever we see those characteristics
in an oscillator we know it behaves like the canonical oscillator (i.e. exponential
convergence towards the limit cycle and isochrone behavior).

Limit cycles under perturbations

Considering the fact that we can transform every oscillator into a PRCS, it gets
clear that we can consider all unperturbed oscillators are equivalent up to a trans-
formation T. They only differ in the way how a (physical) input to the system
affects its dynamics, i.e. how the input output space is related to PRCS. So far we
considered the autonomous, i.e. unperturbed, oscillator. However, the advantage
of the use of oscillators (e.g. vs. function based approaches) becomes only effective
when using them to be coupled to perturbations. This can mean the oscillator is
coupled to some external in- and output or to other oscillators.

If the input and outputs are formulated in a QCS then, in respect to their
influence on the limit cycle, they undergo the same transformation T. We thus
have to investigate limit cycle systems under perturbations. Therefore, we have
to consider the single oscillator as non-autonomous system,

q̇ = F(q,p(t)) (3.48)

It is important to stress, that the perturbation can theoretically have any ar-
bitrary functional form, and the perturbation is also not limited on acting on the
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Figure 3.6: Illustrating the transformation T, by help of the isochrones and the
radius-isochrones. For each oscillator 16 equally spaced isochrones are used and
a varying number of radius-isochrones with a given ∆t are plotted in the phase
portrait (upper panels) and below the time series are shown. The fine vertical
lines indicate the isochrones (only indicating the temporal position on the time
series.) We see while they are always equally-spaced in the time series plot, in
the phase plot this is not necessarily the case. a) The phase plot of the canonical
oscillator in the phase-radius coordinate system PRCS (Eqs. 3.39–3.40). The
isochrones form straight and equidistant vertical lines. The radius-isochrones
(∆t = [5, 6, 7]s) form exponentially spaced straight horizontal lines. b) The Hopf
oscillator (Eqs.3.66–3.67). The isochrones form straight rays at equal angles, which
reflects the polar interpretation of φ in the transformation. The radius-isochrones
(∆t = [0.7, 1.4, 2.1]s outside of the LC and ∆t = [0.7, 1.4, 2.1, 3.5]s inside) reflect
the 3th order convergence behavior of the radius. In the time-series we see the
harmonic nature of the limit cycle reflected. c) The Energy oscillator (Eqs. 3.58–
3.59). Due to the appearance of the nonlinear energy term only in the first ODE
the system looses its circular symmetry. The isochrones and the radius-isochrones
(∆t = [2, 2.4, 2.8, 3.2]s outside of the LC and ∆t = [2, 2.4, ..., 5.2]s inside) get a
characteristic deformation. d) van der Pol Oscillator (Eqs.3.78–3.79). This is a
strongly nonlinear oscillator. This fact is reflected in the strong deformation of the
isochrones. The strong deformation of the radius-isochrones ∆t = [0.3, 0.6, 0.9]s
away from the limit cycle in the upper left and lower right corner of the figure
indicates the rapid convergence of the system in that region. It is immediately
visible that the transformation from this QCS to the PRCS is a very complicated
one.
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first state variable only. However, a discussion of the different types of perturba-
tions is out of the scope of this article. We will focus on an often used form of
perturbation, the additive perturbation

q̇ = F(q) + p(t) (3.49)

We will however realize that the additive form in a QCS transforms into a more
complicated functional form in the PRCS. The oscillator in the PRCS becomes

φ̇ = ω + pφ (3.50)

ṙ = Fr(r, φ) + pr (3.51)

pφ is the component of the perturbation acting on the phase and pr is the com-
ponent of the perturbation acting in direction of the radius.

Expressed by help of the transformation T we yield for the additive case (i.e.
Eq. 3.49)

⇒ φ̇ =
∂Tφ(q)

∂q
F(q) +

∂Tφ(q)

∂q
p (3.52)

On the limit cycle eφ = T(q), thus the relationship between the PRCS and the
QCS coordinate system is the determinant for the effect of the perturbations to
the oscillator.

Let us give a geometric intuition, which lets us easily derive pφ, without relying
on the transformation T. But, this derivation is only valid on the limit cycle, while
above transforms are more general.

To arrive at this, it is important to realize that every perturbation has a
direction in the phase space. Consider a pulse like additive input, i.e. a infinitely
short input at time tp The perturbation will bring the phase point away from
the limit cycle. The stability properties will bring it back to the limit cycle, but
on another position, relative to the unperturbed system. Thus the phase of the
system φ(tp+) is not the same as before the perturbation φ(tp−), the phase is reset
hence the term “phase resetting” (cf. Fig. 3.7).

Thus, for small perturbations the effect that remains in the system is the effect
of the perturbation in direction of the phase eφ, this is the direction tangential to
the limit cycle or equivalently the direction q̇:

eφ =
q̇

|q̇| (3.53)

Therefore, the effective perturbation on the phase is

pφ = p · eφ (3.54)

The derivative of the phase becomes

φ̇ = ω0 + p · eφ (3.55)

So we found the sensitivity of the phase on perturbations:
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Sp(p)
.
=

pφ

|p| =
p

|p| · eφ =
p

|p| ·
q̇

|q̇| (3.56)

This means that depending on the state of the oscillator, the same perturbation
can have a different influence, at one stage it can speed the oscillator slightly up
at the other state slow it down. If the sum of this acceleration or de-acceleration
is non-zero this leads to entrainment effects.

The sensitivity of the phase to perturbations is summarized in the phase-
reset curve (PRC) and its generalization the phase sensitivity (PS). The PRC
is a function which describes the effect of a unitary pulse like perturbation as a
function of the phase of the oscillator it arrives at. In other words it tells how
much the phase is shifted by that perturbation.

The phase sensitivity generalizes this idea as it does not restrict to a single
pulse like perturbation per cycle, but it is an “instantaneous” description of the
effect of perturbations. Due to its importance in the discussion about influence of
perturbation on oscillators a lot of research has been done mainly on PRC but also
on PS, see [166] and references therein. For an example of the derivation phase
locking with the presented tools see [23].

It can be difficult or impossible to get analytical form of the PRC or PS.
However, with the directional idea introduced in Eq. 3.56 it can be estimated
from numerical integration. It can also be measured to a certain extent in real-
world systems. We will come back to the role of the PRC/PS when discussing the
design of entrainment effects in Section 3.2.5.

Since the frequency of the oscillator corresponds to the rate of change of the
phase we see that in a perturbed oscillator the observed frequency is not necessarily
the same anymore:

Definition 7 The instantaneous frequency Ωi is defined as the momentary
rate of change of the phase

Ωi = φ̇ (3.57)

While for the autonomous oscillator the instantaneous frequency is equal the
intrinsic frequency and constant (Ωi = ω = const), in the perturbed oscillator
the instantaneous frequency is not equal the intrinsic frequency (Ωi 6= ω) and is
also a function of time (Ωi = f(t)). Ωi is the frequency which will be observed or
measured at any given time (e.g. by methods like windowed FFT, spectrograms
or wavelets). ω is the parameter, while Ωi is a variable which can be decoupled
from ω by a perturbation.

Remembering the relation Ωi = φ̇, this also means that the observed frequency
is not the same as the intrinsic frequency : if we have phase locking (i.e. when the
difference between the phase of the oscillator and the phase of the perturbation
remains bounded) the observed frequency will be the frequency of the perturba-
tion. Consider as an example two mutually connected oscillators with intrinsic
frequencies ω1,2 which are different but close enough to have mutual entrainment.
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p(t)

∆
φ

Figure 3.7: Effect of a small pulse like perturbation on the limit cycle. The per-
turbation p(t) arrives when the phase point is at the position marked by a the
green dot. The phase point is then pushed back to the limit cycle by the sta-
bility properties of the system, i.e. it approaches asymptotically the limit cycle.
It however retains a phase difference (∆φ) in comparison with the unperturbed
reference system. The phase difference can be of different amplitude and sign de-
pending on the direction of the perturbation and the state the system currently is
in when the perturbation arrives. Understanding this fact is key to understanding
synchronization phenomena.
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The observed frequency Ωi will be the same for both oscillators, but different from
the two intrinsic frequencies, i.e. Ωi 6= ω1,2 (it will be in between the two).

Thus, it can be said that the oscillator gets entrained by the perturbation it
could be said that it adapts, but this change is only temporary, i.e. reactive. If
the input is switched off the system immediately returns to its intrinsic dynamics,
there is no memory of the input, no lasting change to the dynamics.

Further, there can be a influence on the radius by the perturbation which
can also be exploited. The stability directions here are however less special so
this usually reduces to quite standard treatment of ODEs with fixed points under
perturbation. Note that however the behavior of the radius under perturbation
can still be difficult, especially when there is a strong deformation of the radius-
isochrones in the QCS (e.g. as for the van der Pol, cf. Fig. 3.6). Such a deforma-
tion means that the convergence behavior is very non-uniform and a perturbation
has a completely different effect on r depending where it arrives.

Thus, summarizing the findings of this section, it must be realized that for
the design it is important to know the stability properties and the effect of per-
turbations in the coordinate systems of the stability directions. Simply said, if
we want to change radius only, then we need to act perpendicular the limit cycle,
i.e. move the point on the same isochrone, if we want to affect the phase only we
need to move the phase point tangential to the limit cycle, to move on the radius
isochrones.

3.2.3 The design space

We realize that the oscillator can be completely reduced to the phase radius co-
ordinate system and the inputs can be formulated in that system. We can then
possibly use the transformation T

−1 into a given interpretation coordinate sys-
tem to talk about the oscillator in a physically or conceptually more meaningful
coordinate system. So all design choices will deal in one way or the other with
investigating what the effects of perturbation in the phase radius coordinate sys-
tem (PRCS) are (and then possibly backwards via T, what the this means for the
behavior in the QCS).

We are now at a stage where we can discuss what can be designed in an oscil-
lator. There are three basic ways how an oscillator and its in and output can be
defined:

1. Chose an ODE system F(q, ρ) and functional form of in and output, i.e.
F(q, ρ) → F(q, ρ,p).

Then we need to work out the relation of F to [φ̇, ṙ], i.e. we have to work
out T (or parts of it), the transformation is implicitly specified.

Here we need to able to convince ourselves either analytically or at least
numerically that F(q, ρ) represents indeed a structurally stable oscillator.
Then we are sure about the existence of the phase radius coordinate system
and the stability properties that have been discussed.
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Example:

q̇1 = −α
q2
1 + q2

2 − E

E
q1 − q2 + px(t) (3.58)

q̇2 = q1 (3.59)

This oscillator’s steady state solution is
q∞ = [

√
E cos(t + t0),

√
E sin(t + t0)]. Structural stability is most easily

shown by transforming into polar coordinates and showing that the ODE for
the radius has a stable fixed point. We can then show with rather straight-
forward analysis that in stationary regime:

φ̇ = ω + sin(φ)px(t) (3.60)

2. Use an ideal phase or phase radius oscillator and given input and output di-
rectly in this coordinate system, the transformation is thus implicitly specified
by this choice.

Note that the transformation does not necessarily have to be fully specified,
e.g. if only a scalar output is needed it suffices to define a part of the
transformation.

Example: Thus, we choose a phase oscillator and add a nonlinearity in the
input φ̇ = ω + sin(φ)p(t) will synchronize on p(t) if frequencies are close.
The output is chosen to be o = sin(φ).

3. Specify input in QCS and specify T
−1 explicitly.

Example: Choose q = [q1, q2], a Cartesian coordinate system, and T as the
transformation into a polar coordinate system, i.e. Tφ = arctan q1

q2
(arctan

denotes the four-quadrant arcus-tangent), Tr =
√

q2
1 + q2

2. The input acts
on the first state variable only: p = [p1, 0]. We can split up the relevant
term from Eq. 3.52 in the following way

∂Tφ(q)

∂q
= [T∂q1 , T∂q2 ]

T (3.61)

Since p = [pq1 , 0]T , we can write

pφ = [T∂q1 , T∂q2 ]
T · [pq1 , 0]T = T∂q1pq1 (3.62)

Using φ = arctan q1

q2

T∂q1 =
d

dq1
arctan

q1

q2
=

1

1 + ( q2

q1
)2

−q2

q1
2

= −r sinφ

r
= sinφ
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Specification Required Property

1) Unperturbed avg. frequency: Ωi = ω
∫ 2π

0 pφ = 0

2) Frequency locking: Ωi = ωF
1
2π

∫ 2π

0 pφ = ωF − ω(= −ωd) if Ωi =
ωF , in differential terms: show that
φd = φ − φF is bounded

∫ 2π

0 φ̇d =
∫ 2π

0 pφ + ωd = 0

3) Phase locking: φd = Φr φ̇d(Φr) = pφ(Φr) + ωd = 0 and
d
dφ

φ̇d(Φr) < 0 (phase locking implies
frequency locking).

4) Spec. instantaneous frequency:
φ̇(t) = Ωr(t)

pφ = Ωr(t) − ω

5) Arbitrary output signal shape:
x(φ) = xr(φ) or x(q) = xr(q)

Appropriate function, i.e. filter

6) Arbitrary form of LC in QCS: q∞ =
qref (t)

stability directions i.e.
F(qref )
|F(qref | =

D(qref )
|D(qref )| and

∂n(qref )
∂n

< 1

Table 3.3: Common design goals and the required properties of the oscillator.

⇒ pφ = − sinφpq1

As one can see, the three examples are equivalent in their phase behavior. We
also see that it is often not needed to have a full knowledge of the theoretical
transformation T.

In large parts of the literature we see method 1 employed. Often with some
complicated F out of the modeling literature. Immediately we realize that for
engineering this is often not the best choice.

By help of the introduction of the stability directions and the geometrical
aspects of interpretation of the phase-radius coordinate system (i.e. T), we can
identify two somewhat orthogonal design axes: (1) Timing: Design that influences
the phase of the oscillator, here we have (a) influence on (relative) phase, (b)
instantaneous frequency, and (c) average frequency. (2) Design that influences the
geometry of the oscillator. To name here are (a) influences on r directly and (b)
the design of T

−1, i.e. output filter. This is a very interesting and important result,
since orthogonal design axis are extremely helpful for engineering tasks. It means
we can decouple the influence of parameters on the outcome. In other words, by
choosing a more suitable coordinate system, those influences get decoupled while
in the original coordinate system they are not.

To detail this more, in the following we address some common design goals
and how they translate into properties which the system has to exhibit (summary
in Table 3.3).

1. Specification: Unperturbed average frequency: Ωi = ω. Average observed
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frequency should be equal to the intrinsic frequency ω.
Required Property:

∫ 2π

0 pφ = 0
We need the effect on the phase to have in average zero effect.

2. Specification: Frequency locking with an external signal of frequency ωF i.e.
Ωi = ωF

Required Property: 1
2π

∫ 2π

0 pφ = ωF − ω(= ωd) if Ωi = ωF , in differential

terms: show that φd = φ − φF is bounded
∫ 2π

0 φ̇d =
∫ 2π

0 pφ + ωd = 0 the
perturbation in the phase needs in average to make up for the differences
between the intrinsic frequency and the frequency of the perturbation.

3. Specification: Phase locking with arbitrary phase lag: φd = Φr.
Required Property: φ̇d(Φr) = pφ(Φr)+ωd = 0 and d

dφ
φ̇d|Φr < 0. The DE for

φd needs a stable fixed point at Φr. This is achieved when the perturbation
at every instant cancels for the differences between the intrinsic frequency
and the frequency of the perturbation. Note, phase locking implies frequency
locking.

4. Specification: Arbitrary instantaneous frequency: φ̇(t) = Ωr(t).
Required Property: pφ = Ωr(t) − ω.

5. Specification: Arbitrary T -periodic output signal shape. Required Property:
An appropriate output function or dynamical system has to be found, i.e.
this leads to filter design, or the design of T

−1.

6. Specification: Arbitrary form of limit cycle in QCS, i.e. q = r(t) – one or
several state variables should follow a reference trajectory. This means we
want a general form of the limit cycle: We have a closed curve in QCS which
should be the limit cycle. Required Property: We need thus to design the
stability directions to be tangent, i.e. on the curve the flow has to have the
direction of the tangent. Normal to the curve the flow has to be stable. If
D(.) denotes the tangential and n(.) the normal direction to a curve, we

require (i) flow tangential to reference trajectory F(r(t))
|F(r(t)| = D(r(t))

|D(r(t))| and (ii)

contracting perpendicular to the limit-cycle ∂n(r(t))
∂n

< 1.

Remember that if we decide to work with a QCS, the the perturbation on
the phase is pφ = f(T), thus the properties to be satisfied to meet above design
goals contain the relationship between a chosen coordinate system (QCS) and the
PRCS.

The properties listed above will not necessarily allow a directed design without
further assumptions and simplifications as they can lead to very difficult expres-
sions. In the second part of the article we will address how some of the above
properties have been designed in previous work.
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Classes of Limit Cycles

Here we list a few important classes of oscillators, with properties in terms of the
above discussed topics. They are loosely ordered from “simple” to more “compli-
cated” (in the sense of T). As we have seen above, the classification only makes
sense for a given coordinate system. We present them in the coordinate system in
which they are usually used and additive input is used.

Phase oscillator – The probably simplest type of oscillator, where the radius
is completely neglected, only the phase is retained. The phase oscillator is
a linear system defined on the circle S

1 instead of the Euclidean space R
1

which implies a closeness of the solution, and with that the system fulfills
our definition of an oscillator.

Properties The phase oscillator is essentially a first order linear differential
equation, the nonlinearity lies in the interpretation of the phase modulo 2π
and input/output relation. It is the most abstract oscillator. An important
assumption for applicability of phase oscillator is that the limit cycle is
strongly damped, i.e. that the phase point is always on the limit cycle (or
very close).

The output signal shape can not change based on input (other than direct
functional coupling).

References: The phase oscillator were and are the “work-horse” to work on
synchronization effects, e.g. the Kuramoto oscillators [134,215].

Equations

φ̇ = ω + p(F (t), φ) (3.63)

Illustration

0 3 6

−1

0

1

φ

r 0 2 4
0

3

6

φ

0 2 4
−1

0

1

r

Time

Isochronous oscillator

Properties The isochronous oscillators has straight isochrones, i.e. they are
perpendicular to the limit cycle.

Equations
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In the simplest case, the isochronous oscillator is a linear differential equation
system. However not defined on the Euclidean R

D space but on S
1 × R

D−1

φ̇ = ω mod 2π (3.64)

ṙ = f(r0, r, φ) (3.65)

Where f(r0, r) is DE with stable fixed point r0. The interpretation of φ
modulo 2π, e.g. in Cartesian coordinates makes it an oscillator, e.g. the
Hopf oscillator

ẋ = (µ − r2)x + ωy (3.66)

ẏ = (µ − r2)y − ωx (3.67)

Illustration
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References The oscillator in [23] is isochronous.

Amplitude controlled phase oscillators (ACPO)

The ACPO is the extension of the phase oscillator with a radius. The radius
is controlled by a differential equation with a fixed point attractor.

Properties The ACPO simple in the sense that the phase shows up as an
explicit state variable. This often allows for analytical treatment [23]. How-
ever, in order to achieve higher order locking the input needs to be generating
to opportunities for these locking regimes, in the sense that it needs to gen-
erate higher order harmonics or sub-harmonics of the input. In contrast to
the isochronous oscillator, the differential equation for the radius depends
on the phase.

Equations

φ̇ = ω (3.68)

ṙ = F(r, φ) (3.69)

f is a nonlinear function with stable fixed point.



52 Chapter 3. Simpler Systems – Analyzable Solutions

Illustration
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Harmonic oscillators – An oscillator with a harmonic limit cycle: i.e. station-
ary solution q∞(t) = [r cos(t), r sin(t)]. Note that this term conflicts with
the common use to describe a linear second order system. Such a system is
however not an oscillator after our definition as discussed above.

Properties Due to its harmonic limit cycle some analytical results on the
PS/PRC are possible and thus closed form solutions for phase relationships
and locking behavior can be derived.

Typical for harmonic oscillators is a possible description in Cartesian coor-
dinates where the linear second order oscillatory system shows up with an
addition of nonlinear terms stabilizing the radius.

Equations

q̇1 = ωq2 + f1(q) (3.70)

q̇2 = −ωq1 + f2(q) (3.71)

See Eqs. 3.58– 3.59 for a concrete example.

Illustration See illustrations for the isochronous oscillator and ACPO which
are both harmonic oscillators.

References The Hopf oscillator [98] and the oscillators in [23, 106] are har-
monic oscillators.

Piecewise Linear Systems – A system constructed of a set of linear systems
of the same order, of which always one is active depending on conditions on
the state variables.

Properties Rather straight forward to design and analyze (piece wise solu-
tion), can be problematic to simulate. Physical interpretation of switching
effect is some fast effect.
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Equations Consider the oscillator from [217]

q̇1 = −q1 − w max(q3, 0) − βq2 + 1 (3.72)

q̇2 = −q2 + max(q1, 0) (3.73)

q̇3 = −q3 − w max(q1, 0) − βq4 + 1 (3.74)

q̇4 = −q4 + max(q3, 0) (3.75)

The system is switched whenever one of the state variables q1,3 crosses 0,
so the above form is a short form to describe four different systems and
oscillates for certain parameter values (e.g. w = 2.5, β = 2)

Illustration
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References The well known Matsuoka oscillators [147], applications of the
Matsuoka oscillator in [69, 217]. Such systems are also known as switched
linear system or hybrid systems.

Linear systems with reset – A linear, often second order system, which is
reset if a variable passes a certain threshold. Those system are an approxi-
mation of the relaxation oscillators where we can consider the fast effect to
be infinitely fast.

Properties In between resets they behave like a linear system which implies
that they are analyzable under this condition, i.e. a partial tractability.
Can be problematic for certain solver schemes due to the discontinuity in
the ODEs introduced by the reset. Due to the fact that by the reset the
whole semi-plane q2 > 1 is reduced to a point (q = [0, 1]), the isochrones
and radius-isochrones are identical except for the point on the limit cycle.
Therefore, the transformation T is mathematically problematic.

Equations From [112]

q̇1 = bq1 − ωq2 + I (3.76)

q̇2 = ωq1 + bq2 If q2 > 1, [q1, q2] = [0, 1] (3.77)

where b < 0 and I are constants.

Illustration
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References The resonant and fire neurons in [112].

Relaxation oscillators – Properties In general no closed form solution, charac-
teristic phase space with sharp corners, a fast/slow system i.e. two involved
time scales which can often been related to physical mechanisms. Relax-
ation oscillators allow for fast phase locking due to their bent isochrones.
Furthermore, they allow naturally higher order locking.

Equations The van der Pol Oscillator

q̇1 = q2 + p(t) (3.78)

q̇2 = µ(p2 − q2
1)q2 − ν2q1 (3.79)

Illustration
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References The well known Hodgkin-Huxley (HH) model of the giant squid
axon [96] can exhibit relaxation type oscillatory activity, by a simplification
of HH the Fitzhugh-Nagumo (FHN) Oscillator [67] have been derived. The
FHN is very closely related to the van der Pol Oscillator.

It is important to realize that a given oscillator can belong the several of
the here presented classes (i.e. isochronous, harmonic, ACPO are not mutually
exclusive).
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3.2.4 Design approaches

Thus so far we have seen what can be designed. In this section we address the
issue how the design goals can be achieved. Thus, as we have seen we need to find
structure and parameterization of either F or T. Those can be found in different
ways, with off-line and online methods.

Off-line – Here the structure and parameters are found by some process before
the systems is deployed. Once the system is working they remain fixed.
There are different ways to find a suitable structure and parameterization
of the ODEs:

(1) System can be designed by hand, by help of suitable mathematical tools.
(2) By search/optimization (i.e. an algorithm outside of the dynamical sys-
tem) (3) Dynamically shaped (i.e. the tuning is part of the dynamical sys-
tem), but once deployed this process is frozen.

On-line adaptation

We could also imagine having some of the parameters changing over time
as the system is deployed. This basically means that the parameters are
not constant any more. They are turned in a certain sense into state vari-
ables as well. Again different approaches can be used: (1) By an algorithm
which is outside of the dynamical system. Usually this includes the assess-
ment/measurement of the some predefined quality of the system and an
algorithm which tunes the parameters to achieve a better quality. (2) Dy-
namically – Here the relevant parameters are turned into state variables and
a dynamic law in form of ODEs has to be found that will tune the system
into the required dynamics. This is very recent research with oscillators
(early work [61, 158, 159], more recent [24, 178]). We only call such systems
adaptive, since they combine the to be exploited dynamics and the adapta-
tion process into a single dynamical system. This is also in line with the use
of the term adaptive in the framework of adaptive control but is in contrast
to the use of the term in many applications of oscillators.

We can thus change the properties as discussed before in Section 3.2.3:
(1a,b,c,2a,b) and use the here described design approaches. In table 3.4 we list
some of the literature in which oscillators are used either in modeling which had
influence on robotic applications, are related to or are directly robotic applications.
In the next section we will discuss some aspects of Table 3.4 in more detail.

3.2.5 Design results: From reactive to adaptive oscillators

Thus, we have come a long way in describing the basic characteristic of oscilla-
tors, how they lead to design specification and properties. Finally, we would like
to discuss some aspects of the resulting system. The resulting systems can have
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different properties in terms how they react to the perturbation, how long infor-
mation about the perturbation is retained. The oscillator can be purely reactive,
i.e. the perturbation has only a short term, transient effect. Or the system can be
adaptive. The system has a memory and the effect of the information stays pos-
sibly for infinite time. We note this classification in Table 3.4 in the first column
by R/A.

Reactive: Temporary entrainment and shape changes

The basic property of structurally stable dynamical systems can be exploited.
In other words, the fact that their behavior is a combination of their intrinsic
dynamics and external input. This means external inputs can partially modify
or even “override” the autonomous behavior of the system (annihilate attrac-
tors/induce bifurcations). This can possibly be exploited for applications. The
changes to the system are reactive in the sense that there is no lasting change in
the system. If the input signal is switched off the system will immediately behave
according to its original autonomous dynamics. In other words the parameter,
i.e. intrinsic dynamics, stays constant. Memory effects can only be realized by
the state of phase point and are transient and shortlived. In this category we
can count all the exploitation of synchronization, phase resetting etc. (such as
in [23, 47, 59, 64, 69, 106, 147, 148, 188, 189, 195, 200, 201, 217–219, 233]). As an ex-
ample, in case of phase locking the oscillator is matching its frequency to the
frequency of the input. This is reactive since the frequency does not stay in the
system. The system has no memory of the frequency. The very moment the in-
put is switched off it rotates with the intrinsic frequency. The only remaining
perturbation is a possible shifted phase compared to the hypothetically same but
unperturbed oscillator. Thus the system is more reactive than adaptive (despite
the use of the word in many contributions). One can argue that the above made
distinction a reactive and an adaptive system is somewhat arbitrary, but often
we can argue by separation of time scales. The “parameters” will usually evolve
on time scales slower than the “state variables”. This separation of time-scales
is an important concept in physics and engineering to decide which variables are
considered static and which dynamic [50,87].

Entrainment, synchronization & phase locking As we have seen in the
previous section, the limit cycle has very characteristic stability properties: It is
marginally stable in the direction of rotation. This implies that a perturbation
in this direction is not “forgotten” by the system, while the perturbation per-
pendicular, i.e. asymptotically stable direction, to the limit cycle are damped
out.

We can exploit the synchronization properties of a limit cycle system to sightly
modify the oscillators timing so that it works “in step” with some outside process.
A meanwhile very common application in robotics is to exploit synchronization
for legs to work in step with some sensorial input (e.g. touch sensors on the foot,



3.2. An engineering view on oscillators 57

cf. [69, 155,217]).

An important aspect in the design of oscillator especially if they are coupled
with others into networks is often the question how to design the phase relation-
ship, i.e. with which phase lag the activity of the oscillator is synchronized with
the perturbation. An interesting approach to desing specific phase lags is the to
use contraction theory [228].

As we have seen important concepts for the designing are the phase response
curve (PRC) [166] or the more general concept of Phase sensitivity (PS) [23,
62, 133]. PRC/PS can be derived in an analytic fashion only for some types of
oscillators (i.e. harmonic oscillators, phase oscillators; thus they might be the
oscillator of choice for this reason). Basically having a closed form of PRC/PS
is equivalent in knowing the closed form of the limit cycle. However for other,
non-tractable oscillators, we can measure the PRC/PS by numerical integration.
The PRC and PS typically have zeros which means that a perturbation arriving
when the oscillator is at this phase does not affect the phase. The phase of the
oscillator will thus be shifted by a perturbation until it reaches this point and
remain there (given it is a stable point). This means to design a certain phase
relationship, we have to design either the PRC/PS of the system, i.e. its zeros
or need a filter to the input that the desired phase relationship is attained (e.g.
rotation of signal as in [23]).

In [23] a discussion about the choice of oscillators can be found an it is shown
that the simpler oscillators allow for a good design of some of the properties of
network of oscillators used as CPG.

A key requirement for synchronization is that the frequency of the oscillator
needs to be close to the frequency of the input. If the differences between the
frequencies is large the oscillator does not fully synchronize, it will only show a
tendency to synchronization, an effect which is called phase slips [166]. In average
the signals of the oscillators will drift relative to each other. A way around this
problem is to make the frequency adaptive which will be discussed in the next
subsection.

Another way of designing phase relationship in networks of coupled oscillators
is by help of the theory of symmetry, where the phase pattern can be achieved
without the single oscillator satisfying necessarily the correct properties in the
PRC/PS [76,180,195]. However, even along with this method the consideration of
the properties of the single oscillator helps to design non-frustrated systems, i.e.
systems where the individual behavior is in accordance with the global pattern,
which settle down faster and are more stable. The synchronization properties can
also be exploited to sequence and time actions as outlined in [188,189,201].

Inter cycle timing Another desired property could be that the input signal
should influence the instantaneous frequency without changing the average ob-
served frequency. The key to such behavior is the property 1) in Table 3.3 and
discussed before. While we are not aware of a contribution directly exploiting this
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characteristic it would be straight forward to impose an additional constraint on
the oscillator used in [180] to satisfy this property.

Reactive shape changes Changes of radius are less frequently exploited than
the entrainment effects. But of course due to the stability properties we can very
well imagine an input which deflects the limit cycle by changing temporarily the
fixed point for the radius. This translates in the outputs to have temporarily a
larger or smaller amplitude. An example can be found in [181].

Shaping the dynamical system Another way of designing an oscillator with
given output is to use a system which is a universal approximator and approximate
the oscillator with this dynamical system. In [71,139,185] the authors use recurrent
neural networks to achieve arbitrary limit cycles. The disadvantage of this method
is that it usually leads to a very high dimensional system of which the influence
of the parameters can not easily be grasped.

An alternative way to changing the intrinsic dynamics of the oscillator is to
shape its output into to some given form with filters. One possibility is to design
the filter purely functional or to design a dynamical dynamical system which
transforms the output (cf. linear filter). In [110] the authors use Gaussian filters
shaped by locally weighted learning. In [236] the authors use Neural Networks
as filters. The use of filters has the disadvantage that a discontinuous change in
the parameters of the filter can lead to a discontinuous change in the output (i.e.
one of the advantages of using dynamical systems is negated). In [163] shaping
of arbitrary limit cycles is discussed by a direct design of the flow. In [181] the
authors shape the limit cycle by help of a network of adaptive frequency oscillators.

Adaptation: Lasting changes to the dynamics

In this section we address lasting changes to the intrinsic dynamics, i.e adaptation.
Such lasting changes could also be called called learning and in some communities
this is the preferred term. We do use the terms as equivalent here.

As we have seen the limit cycle system is parameterized by a set of parameters
ρ, which are usually kept constant. Adaptation means now that we find a law to
change some or all of the parameters so that an adaptation goal is achieved. There
are two conceptually different ways of achieving that, either the parameters are
changed by an external process or algorithm, or the dynamical system itself gets
enhanced with additional state variables and ODEs that represent the parameters
and their evolution respectively. This means we have to find suitable differential
equations ρ̇ = Fρ(q, ρ, t). This implies that the set of parameters reflects the
state of the adaptation process, especially also after the system is halted. We can
thus possibly also read out certain information about the system. This adaptation
process constitutes a longer-term memory, in contrast to the reactive changes in
the previous section which are forgotten and do not get remembered in the state
of the parameters.
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The first, algorithmic method, is from the methodological point of view simpler
since standard optimization, learn and search techniques can be employed. In [144]
Powell’s method is used to optimize the parameters of an oscillator network. Many
other optimization methods could be used for similar tasks. The second, dynamic
method, is more appealing from the conceptual point of view and leads to more
efficient and robust solutions (cf. [30]).

Dynamic adaptation of limit cycle systems is a more recent development and
young field of research. There are some investigations on adaptation of parameters
(frequency, others), e.g. in [24,137,159,178].

An example is introduced in [24] and analyzed in detail in [178] where a Hopf
oscillator (Eqs. 3.66–3.67) is enhanced with a evolution law for the frequency ω
in the following way

ω̇ = −k
y

√

x2 + y2
p(t) (3.80)

where k is a coupling constant and p(t) an additive perturbation to Eq. 3.66.
This law allows the oscillator to adapt to the frequency of the perturbation p(t).
Such an additional law for the parameter ω endows the system with many very
nice properties and can be exploited for different tasks such as adaptation to body
dynamics [24,28,30] or programmable CPGs [181].

As can be seen in Table 3.4, the column with the adaption is only sparsely
populated. A lot of questions have to be answered and methodologies have to be
found.

Adaptation can also be used in the design phase and then the adaptation pro-
cess is frozen for the deployment phase (i.e. online vs off-line adaptation). This
means the dynamics is adapted, then remains fixed for the application (learn-
ing/exploitation phase is distinguished) whereas in the first case the adaptation
works continously.

3.2.6 Conclusion & Discussion

Discussion of design choice Oscillators have been used widely in robotics
over the last few years with a lot of success, however a lack of abstraction often
leads to suboptimal solutions for the given goal. These suboptimal choices arise
due to a lack of abstraction of the concepts and/or a fixation on traditionally used
oscillators.

For engineering of an application with oscillators we first of all have to get clear
what feature of an oscillator is the important one for the task. In other words, we
have to decide if its a generic feature of oscillators, of a class of oscillators, or if
its unique to a certain oscillator/input/output.

We have to think about readouts, what information needs to be available, e.g.
an oscillatory output signal with certain properties (e.g. harmonic), or does the
phase of the oscillator have to be available as output? We can then think if one of
the well known oscillator/coupling schemes which is suitable for the task at hand.
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Of course sometimes it can be helpful to take an existing oscillator and modify it
to fit (cf. e.g. [116,180])

Most of the time oscillators are used for their synchronization properties. Thus,
we are interested in how the phase φ behaves over time. In addition influence on
the radius can be exploited, but this is far less common. This means that for many
applications the phase oscillator will a good and completely sufficient choice.

While it is often very convenient to use a phase oscillator we have to be careful
with coupling which explicitely use the phase of the input signal (i.e. as it is often
done in work on coupled phase oscillators). Because couplings that worked out
this way do usually not generalize so easily to a general periodic signal of which
the phase is not directly accessible. A way to bridge the gap and to investigate
arbitrary periodic signals are Fourier series.

As always in engineering it is not possible to give rules that are valid for all
cases, but important questions to guide the choice of oscillator and design strategy
are:

• First and foremost: get clear about the design goals, i.e. what property of
an oscillator do you want to exploit and why?

• Is direct access to the phase or the frequency required? In other words,
should they be presented as explicit variable and parameter?

• Is there a restriction in the number of state variables and complexity of
integrating the system (e.g. for embedded computing)?

• Should it be possible to prove or predict analytically properties of the system
(convergence, phase relationship)?

• How many elements should the system contain, i.e. is a network of oscillators
needed (e.g. half-center, interneurons) or might a single oscillator be enough?

• Is there an advantage to use a strongly nonlinear oscillator or is a har-
monic/phase oscillator enough, e.g. is a “neural” oscillator really the right
one to achieve my goal? In modeling, does my model really concern the
neural level so that the use of a neural oscillator is justified?

• Try to make the design space as orthogonal as possible (e.g. in the Matsuoka
oscillator there is a strong influence on the shape if the oscillator gets coupled
to others).

• Should the complexity and nonlinearity be placed into the oscillator or into
the coupling (e.g. for higher order locking: either, phase oscillator and
coupling which generates the higher order frequency components, or complex
oscillator and simple couplings.)?

An often made assumption to treat limit cycle systems is the assumption that
influence on phase and radius can be completely separated, this assumption di-
rectly follows out of the stability directions as discussed. However, a perturbation
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perpendicular to the limit cycle can in general very well have an influence on the
phase and vice versa (e.g. in the van der Pol) the separation of the directions is a
very useful approximation but is limited to a region “close” to the limit cycle. If
we want to have a complete separation the oscillator has to be chosen accordingly,
i.e. a harmonic isochronous oscillator.

Sometimes it is desired to synchronize the signal in another ratio than 1:1, in
general oscillators can phase lock in any ratio n/p n, p ∈ N. However, harmonic
oscillators are not sufficient to achieve this task unless the input contains higher
harmonics (ideally pulse like). Relaxation oscillators can phase lock with other
ratios to a harmonic signal.

Finally, it is important to stress that there are many design aspects which in
this article could not be discussed. As an example consider transient time for
locking. It turns out that relaxation oscillators are well suited for rapid phase
locking [208], this is due to the bent isochrones, i.e. even a small perturbation
can drive oscillator over many isochrones and thus advance it rapidly in towards
a stable phase. We see that also for such discussions the basics are the topics
discussed in the paper.

We do not address another way of distinguishing two dynamical systems
namely by their bifurcation behavior. In dynamical systems it is a typical phe-
nomenon that if some parameters are changed beyond a critical value the qualita-
tive behavior of the system can completely change, e.g. an oscillator can bifurcate
to fixed point behavior. If two systems differ in their bifurcation behavior it is
usually not possible to transform one into the other by only a change of coordi-
nate systems. Different oscillators can have different bifurcation behavior. It is
important to realize, that we do only discuss the oscillators in their oscillatory
regime, far away from the bifurcation points and the above made statements are
only valid in this parameter range.

Furthermore, we have simplified the discussion by the fact that we do only
concentrate on the limit cycle attractor of the system, while it can possibly have
other attractors. Thus our discussion is limited to the basin of attraction of the
limit cycle attractor (e.g. every limit cycle encloses a unstable fixed point from
which the solutions would not converge to the limit cycle).

Outlook and future research It is an immense task to classify the design of
oscillators and many details could not be discussed in this article.

We are convinced that taking an engineering perspective on oscillators is
needed in order to make full use of them in robotics applications. This paper
is only a first step in that direction.

It is possible that an engineered system might lack some of the self-organization
properties and flexibility of natural oscillatory networks, but this is a fundamental
problem when trying to exploit systems capable of self-organization to engineering.
On the other hand we gain methodology, guarantees, but clearly such questions
are open for research, see [33] for a deeper discussion.
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There are many substrates other than digital computers which allow for struc-
turally stable oscillators, i.e. chemical oscillators, (analog) electronic, biological
(see also [33]). Choosing such a substrate however narrows down the degrees of
freedom in the design, but still the key to understanding and engineering those
systems is presented in this article. It would of course be interesting to exploit
such substrates for engineering applications.
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offline online
contribution R/A “by

hand”
algo-
rithmic

dynamic algo-
rithmic

dynamic

[64] R 1a
[233] R 1a
[106] R 1a
[147,148] R 1a
[195] R 1a
[200] R 1a
[59] R 1a
[155] R 1a
[180] R 1b
[217–219] R 1a
[23] R 1a
[69] R 1a
[188,189,201] R 1a
[47] R 1a
[104] R 1a/2
[236] R 2b
[163,164] R 2a
[110] R 2b
[185] R 2
[71,139] R 2
[181] R 1a/2b
[144] A 1a
[159] A 1c/1a
[61] A 1c
[137,138] A 1a 1c
[24,28,30,178] A 1c

Table 3.4: Table classifying some of the contribution of the field oscillators applied
to robotics and related modeling. The contributions are classified according the the
design method as discussed in Section 3.2.4. The labels in each case correspond
the design goals identified in Section 3.2.3: (1) Timing: Design that influence
the phase of the oscillator: (a) influence on (relative) phase, (b) instantaneous
frequency, and (c) average frequency. (2) Design that influences the geometry of
the oscillator: (a) influences on r, (b) the design of T

−1/ output filter. The column
“R/A” indicates whether the resulting system is reactive or adaptive. This table
has sparsely populated columns which point to open research question.
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Chapter 4
Adaptive Locomotion Reduced to the
Essential: A Toy-System

This chapter introduces one of the central concepts of the thesis, the adaptive
frequency oscillator, along with their use as adaptive controllers.

The motivation for the introduction of the AFO was to find the simplest con-
troller which can adapt to a clearly defined body property. The body property has
been chosen to be the resonant frequency as this is a clearly defined concept and
we can easily construct simple systems with clearly defined resonant frequencies.
(And as we will see later, 2nd order LTI systems possess this property which comes
handy for more advanced analysis of the AFOs in feedback loops, cf. Chapter 6).

Moreover, the system is an application of the previously introduced ideas. It
shows that based on the ideas in the last chapter, namely a simplification of the
dynamical systems and a reduction to the essential features of the locomotion
system.

While the original formulation of the AFOs was very much oriented on the
application to the toy-systems, only later on –step by step– many more interesting
properties of the AFOs and their possible applications have been discovered.

The proposal of a toy-system is very much in the tradition of physics, where it
is a successful method to propose systems which allow to study certain aspects of
a problem by deliberately neglecting certain, for the problem irrelevant, aspects
of the real system. By this the systems get simpler and amenable to scientific
investigation. Since it is not always clear from the on-set what the relevant mech-
anisms are, such systems have to prove their suitability to explain the investigated
phenomena later on. As we will see in the next chapter, the concept that we pro-
pose does work without fundamental modification from the simplest system, as
proposed here, to real robots. We can thus argue that some of the assumptions
that are the basis of the formulation of the toy system are at least not completely
wrong.
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A Simple, Adaptive Locomotion Toy-System
Jonas Buchli and Auke Jan Ijspeert

This paper has been originally published as
J. Buchli and A.J. Ijspeert. A simple, adaptive locomotion toy-system.
In S. Schaal, A.J. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam,
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Behavior (SAB’04), pages 153–162. MIT Press, 2004

Abstract In order to successfully transfer biological principles to engineering
problems, it is important to study the fundamental properties of biological sys-
tems. The goal is to arrive with useful abstractions that are (1) implementable, (2)
testable by experiments and sample implementations, (3) retain the, for an engi-
neering point of view, essential good properties of the biological systems. At BIRG,
we are interested in the fundamentals of locomotion control and their possible ap-
plications to robotics. In this article, we present a simple, adaptive locomotion
toy system that is of oscillatory nature. It is composed of two parts: an adaptive
controller based on a nonlinear oscillator, and a mechanical system made of two
blocks attached by an active and a passive spring. The controller is designed to
be robust against perturbations, and to adapt its locomotion control to changing
body kinematics or added external load. The tools to develop such a toy-system
are a 2-scale nonlinear dynamical system, namely a Hopf oscillator with adap-
tive frequency, and a understanding of synchronization behavior of oscillators. A
further central ingredient that will be discussed is the concept of asymmetric fric-
tion forces. We show that the system possesses several critical parameters. It
is illustrated that the bifurcations connected with some of these parameters can
be identified as non-smooth phase transitions and power law behavior. Links to
biology and possible applications to robotics are discussed.

4.0.7 Introduction

Natural locomotion systems are of great interest for robotics as they present refined
and robust solutions to a difficult engineering challenge. Namely, they manage to
coordinate multiple degrees of freedom needed for locomotion, using signals of
the right frequencies, phases and amplitudes [105]. However, any given natural
locomotion system is of great complexity. In the case of a vertebrate locomotion
system, it consists of an enormous number of muscle and neural cells and many
other types of body parts such as bones, tendons, etc. And even the locomotion
apparatus of single cell organisms turns out to be of astonishing complexity [145].

However, as many people have pointed out, simple copying of biological pro-
cesses can not be what we have to strive for when trying to enhance engineering
principles by biological inspiration. It is rather the identification of the principles
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at a given level of abstraction that makes adaptation of biological principles for
engineering problems successful [23].

Therefore, we have to look for fundamental principles underlying locomotion.
In order to identify these principles, a broad range of locomotion systems have
to be looked at. This includes single cell movement, worm, snail, snake, insect
and mammalian locomotion, different types of flying and swimming but also more
abstract concepts like active Brownian particles and ratchet systems.

When we try to find a few abstract principles common to all types of locomo-
tion the following key observations arise:

• Locomotion is the process of transforming energy (unordered movement of
many parts, particles) into directed movement (coordinated movement of
the particles).

• From the first point we can directly conclude that locomotion always implies
an active system and consumes energy1.

• Any form of locomotion implies asymmetric interaction forces with the en-
vironment, e.g. an asymmetric friction mechanism (it turns out that this
mechanism is what renders locomotion into a energy consuming process).

• Biological locomotion is robust, i.e. works under a very broad range of ex-
ternal (temperature, external forces, textures, . . . ) and internal (body prop-
erties, fatigue, sicknesses, . . . ) conditions. There are adaptation processes
inherent in the locomotion systems to ensure this robustness.

• The adaptation processes work on many, very different timescales. In other
words, the time scales of, for instance, locomotion control, adaptation to
fatigue, and adaptation to body development span over several orders of
magnitude.

In order to make these fundamental principles accessible to theoretical and ex-
perimental investigation without the overhead of complicated experimental setups
and difficult to control environments and subjects (all of which can easily hamper
clear insight) we are looking for simple systems that, nevertheless, show all the
properties listed above. Here we will report on a particular simple instance of a
nonlinear dynamical system that possesses the described properties.

Modeling neuro-mechanical systems with oscillators During the last
decades there have been growing numbers of attempts to model locomotion con-
trol systems with the help of oscillators [23]. On the other hand bio-mechanical
systems were modeled by spring mass systems or inverted pendulums - and are
therefore of oscillatory nature [13,70]. The logical consequence to model the com-
plete neuro-mechanical systems by coupled oscillators has been used [218] and

1The consumed energy can be potential energy (e.g. passive walkers) as well as energy from
active mechanisms.



68 Chapter 4. A Toy System

robotics controllers have been developed on the base of oscillators [156]. Oscilla-
tors are an important and widely used system to model phenomena in a broad
range of fields. Often, simple oscillators with fixed parameters such as frequency
and damping are used. Recently however, it was found that for modeling cer-
tain phenomena, oscillators with fixed frequencies are not sufficient. Therefore,
oscillators with adaptive frequencies are investigated [4, 5].

Exploiting adaptive frequency oscillators for locomotion control In this
contribution we show that by using a Hopf oscillator with adaptive frequency we
can devise a controller that adapts to the resonant frequencies of the mechanical
system and therefore excites it. Together with asymmetric interaction forces with
the environment – which turn out to be a fundamental property of any locomotion
system – this leads to directed movement. There are 3 core ideas in our approach.

• The (bio)mechanical system is of oscillatory nature. I.e. it possesses resonant
frequencies at which it can easily be excited.

• The controller is of oscillatory nature.

• The intrinsic frequency of the oscillator is adaptable and gets influenced by
the mechanical system.

by the proper choice of the mechanical system and the controller, a system that
is self-exciting and adaptable can be devised. In order to convert the oscillatory
movement of the mechanical system into directed movement a fourth fundamental
property is necessary: The system needs some type of asymmetric interaction
forces in our case asymmetric friction, i.e. the friction coefficients are lower for
one direction compared to the other.

We use a simple mechanical spring-mass system to investigate the require-
ments needed for such a system to make directed movement. Furthermore, we are
interested in a (simple) controller that is able to adapt to changing properties of
the mechanical system (i.e. growth, mass changes, length changes).

4.0.8 A Simple, Adaptive Locomotion Toy-System

In order to study the aforementioned fundamental principles we devised a simple
mechanical system controlled by an oscillator. We will describe the two main
constituents of the system and their important properties along with how the two
subsystems get connected in order to build the adaptive locomotion system.

Mechanical system The mechanical part of the system consists of two masses
connected by two parallel springs Sa, Sp (cf. Fig. 4.1(a)), with different resting
lengths la and lp. For convenience, we will express them as la = lm + ld and
lp = lm − ld, where lm is the mean value and 2ld the difference between both
lengths. Both springs are linear springs with spring constant ka, kp. The system
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presented in this article is one-dimensional, in other words, the masses are assumed
to move on, and remain in contact with, a horizontal plane and moving on a
straight line. In the following, we present the mathematical description of such a
system in terms of a system of differential equations. The system can be written
as follows:

q̇ = Aq + Fc + Fr(q) (4.1)

where q = [x1, v1, x2, v2]
T are the state variables of the system (position and

velocities of the two masses), A is the matrix describing the action of the spring
on the masses (without any friction), Fr is the friction present in the system and
Fc is constant force arising from the differences and mean value of the resting
length of the springs. A takes the following form

A =








0 1 0 0

−ka+kp

m
0

ka+kp

m
0

0 0 0 1
ka+kp

m
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0


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


(4.2)

where m are the masses attached at each end of the springs. And,

Fc =
ld(kp − ka) − lm(ka + kp)

m
[0, 1, 0,−1]T (4.3)

With the choice of lm and ld the resting position of the masses can be influ-
enced. The choice of the friction term Fr will be discussed below. Such a second
order linear system possesses a resonant frequency, which can be calculated as:

ωm =

√

2(ka + kp)

m
(4.4)

In other words, this type of mechanical system can be interpreted as a band
pass filter with the pass band around ωm. For generating displacements of the
system, we replace the spring Sa described above with an active spring whose
spring constant ka can be modulated by a controller (see next section). The
active spring can be seen as an abstract muscle-like actuator that can both pull
and push.

Hopf oscillator As controller/activator of the mechanical system, we use a Hopf
oscillator:

ż = (µh + iωh)z − |z|2z + F (t), z ∈ C (4.5)

which can be written in Cartesian coordinates:

ẋh = (µh − r2)xh + ωhyh + Fx(t) (4.6)

ẏh = (µh − r2)yh − ωhxh + Fy(t) (4.7)
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M1 M2FsFs

Fr,1 Fr,2

Sa

Sp
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HO MS
ka(z)
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Figure 4.1: a) The mechanical sub-system of the adaptive locomotion toy system.
It consist of two identical masses connected by a spring. From the mechanics of
the system the forces acting on the body can be determined: Fs is the force that
the springs exert on the blocks. It is of the same amplitude and opposite sign for
the two masses. Fr,i are the friction forces acting on the masses. With the help
of this forces and Newton’s law we are able to derive the system of differential
equations that govern the mechanical system (Eq. 4.1). b) Schematic of the
adaptive locomotion toy-system with its two main parts: The Hopf Oscillator (HO)
and the spring mass system (MS). The Hopf Oscillator influences the mechanical
system via the spring constant ka(z). The mechanical in turn disturbs the Hopf
oscillator by coupling in the velocity difference dv as an additive disturbance to
the Hopf Oscillator equations.
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where xh = Re(z), yh = Im(z) and r = |z| =
√

x2
h + y2

h. ωh is the intrinsic

frequency of the oscillator and Fx(t) = Re(F (t)) and Fy(t) = Im(F (t)) are per-
turbing forces. The solutions of this system will be discussed below. The Hopf os-
cillator is coupled to the mechanical system in the following way (cf. Fig. 4.1(b)):
First, the spring constant ka is made a function of z in the following form:

ka = k0 + a
xh

r
(4.8)

where k0 is a constant for the offset of the spring constant and a is a coupling
constant, where a < k0 to ensure Sa remains a spring (ka > 0). Since xh will be
an oscillating term, this choice of coupling leads to an undulatory modulation of
ka, where the frequency of the modulation will be ωh. The division by radius r
serves to normalize the maximum of the modulation term to 1.

Second, the Hopf oscillator has feedback from the mechanical system:

F (t) = c dv
.
= −c(v1 − v2) (4.9)

where c is a coupling constant. Here, the choice has been on the considerations
that mainly the coordination between the two bodies is important. Therefore, the
choice of a difference term2. The choice of the difference of velocities is chosen in
order to have a more sensitive coupling in contrast to choosing the difference of
positions3.

Properties of the Hopf Oscillator The Hopf oscillator acts as a frequency
selective amplifier [58], i.e. frequency components of F(t) that are close to ωh are
amplified. Especially the setting µh = 0 is special in the sense that the system
undergoes a fundamental change at that point: For µh < 0 the system exhibits a
stable fixed point at z = 0, whereas for µh > 0 a stable limit cycle occurs with
radius r =

√
µh. This phenomena is known as a Hopf bifurcation [98]. At µh = 0,

there is no signal oscillating at ωh weak enough not to get amplified by the Hopf
oscillator. Therefore, for that setting the Hopf oscillator can be considered an
ideal amplifier4. This means that, if the resonant frequency ωm of the mechanical
system and the intrinsic frequency ωh are close enough, any signal components
close to the resonant frequency of the mechanical system get amplified. Thus, an
excitation of the system can be expected.

In case of a biological setting, this would correspond to a case where the acti-
vation pattern of the muscles is well adapted to the properties of the mechanical
system, and, therefore, a very energy efficient mode of locomotion can be ex-
pected where only a small amount of energy has to be spent in order to maintain

2Such a difference is also more plausible from the practical and biological point of view, where
no absolute values can play a role.

3It is expected, however, that with a proper choice of the coupling constant the qualitative
behavior should not depend on this choice.

4We can not delve into the mathematical details of the Hopf oscillator in this contribution.
For a more detailed treatment see e.g. [123] and references therein.
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high locomotion velocity5. Animals possess adaptive processes which bring the
locomotion system to (near) optimum mode of operation.

Adaptive frequency oscillator In our toy-system, adapting the oscillator to
the mechanical systems means a proper choice or a tuning of ωh. But, we can
avoid manual tuning of ωh by enhancing the dynamical system describing the
Hopf oscillator. Instead of fixing ωh we treat it as a variable with a corresponding
differential equation describing the time evolution:

ω̇h = f(ωh, q, t) (4.10)

The choice of f(ωh, q, t) that serves our purpose is chosen by understanding
the synchronization behavior of two coupled oscillators. To get a good grasp on
the effects of perturbations on a limit cycle system it is helpful to look at it in
the phase plane representation (cf. [213]). In the phase plane all perturbations
have a direction, i.e. they can be represented as a vector in that plane. It is
known that a small perturbation of a limit cycle system can only affect that phase
strongly if it perturbs the oscillator in direction tangential to the limit cycle, the
perturbations perpendicular to the limit cycle are damped out6. Thus, depending
on the state of the oscillator (the position of the phase point on the limit cycle) the
perturbation accelerates the phase point or slows it down. If the perturbation is a
periodic signal, with a frequency close to the intrinsic frequency of the oscillator,
this results in an average acceleration or deceleration depending on the frequency
difference and to synchronization. If we take this same effect to tune the frequency
of the oscillator (on a slower time scale) the frequency should evolve toward the
frequency of the perturbation. Therefore, the effect of f(ωh, q, t) is the same as
the effect leading to synchronization. Thus, (in average) driving ωh toward ωm.
On that ground, we chose

ω̇h = −τhdv
yh

r
(4.11)

where τh ≪ 1. However, the adaptation of ωh happens on a slower time scale than
the evolution of the rest of the system. This adaptation time scale is influenced
by the choice of τh.

As explained, the output of the Hopf oscillator is coupled via setting ka = f(z)
to the mechanical system. The mechanical system serves as a bandpass filter.
Therefore, the Hopf oscillator, via the aforementioned feedback, slowly adapts its
frequency to the mechanical system.

5Everybody knows this effect from sitting on a swing and trying to get it to move. If one moves
the legs at the right frequency, with a minimum effort the swing can be brought to breathtaking
heights.

6This is, of course, a simplification of the real facts. In fact, perturbations perpendicular to
the limit cycle can, in general, perturb the phase of the oscillator. However, for the case of phase
oscillators, such as the Hopf oscillator, the above simplification comes very close to the real thing.
To discuss the general case is beyond the scope of this article.



73

In order to measure the excitation of the system we can use the energy content
of the mechanical part. There are two contributions to the energy of the mechan-
ical system: The kinetic energy of the masses Ek = 1

2m(v2
1 + v2

2) and the potential
energy of the springs Ep = 1

2

(
ka(x2 − x1 − lm + ld)

2 + kp(x2 − x1 − lm − ld)
2
)
.

We will use this formalism to investigate the optimal excitation frequency of the
system in the next section.

Friction Friction dissipates the energy of the system. Therefore, if no energy is
pumped into the system the system will always come to standstill from any initial
condition. We have tested the system with two different friction schemes: viscous
friction and Coulomb friction. Both are introduced as asymmetric friction forces,
i.e. the parameters are lower for one direction compared to the other. In viscous
friction, the friction force is proportional to the velocity of movement:

Fr = [0,−ρ1v1, 0,−ρ2v2]
T (4.12)

where

ρi =

{
ρ+ if vi > 0
ρ− if vi < 0

(4.13)

The second model that has been tested is the Coulomb friction model, in which
the friction coefficients are constant:

Fr = [0, Fc,1, 0, Fc,2]
T (4.14)

Fc,i =

{ −|Fs| if Fs < µS |FN| and vi = 0
− vi

|vi|µr,i|FN| otherwise
(4.15)

where FN = gm is the normal force of the body on the ground, and Fs is the spring
force acting on the body. Coulomb friction has a static mode (when vi = 0) and a
dynamic mode. In our case, the dynamic friction is made asymmetrical as follows

µr,i =

{
µ+ if vi > 0
µ− if vi < 0

(4.16)

With the Coulomb friction scheme the system would be unstable since the
increase in the input of energy is increasing faster then the dissipation of energy
due to friction. In order to avoid this instability problem, the coupling from the
Hopf oscillator is slightly changed. The coupling constant a is made dependent
on the rate of change of distance of the two masses, i.e. the velocity difference:

acoulomb =

{
a if |v1 − v2| < vthr

0 if |v1 − v2| > vthr
(4.17)

In other words, the coupling is switched off, if, due to heavy excitation the masses
separate too fast. Thus, the mechanical system runs passively for a short moment
when reaching this maximum velocity until the spring forces and dissipation of
energy bring it again below that threshold.

For this article the default friction model is the viscous model unless otherwise
noted.
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4.0.9 Simulation Results

The basic mode of locomotion is presented in Fig. 4.2(a). We show in vertical order
consecutive snapshots of the mechanical system, at every 0.05 s. The locomotion
of the system most closely resembles rectilinear-movement observed in some types
of worms and snakes. The two masses exhibit an undulatory movement by which
they are constantly stretching and compressing the springs between them. Due to
the asymmetric friction forces one of the bodies is pushed (dragged respectively)
toward one direction.

For the remainder of this section we would like to illustrate a few other impor-
tant aspects of the presented locomotion toy-system. First, we list the parameters
and initial conditions used in the simulations (unless otherwise noted):

Default parameter values

parameter value parameter value

µh 0 lm [m] 12
τh 0.1 l2 [m] 0.5
c [sm−1] 0.1 ρ+ [Nsm−1] 0.2
a [Nm−1] 10 ρ− [Nsm−1] 0.1
m [kg] 1 µs 0.3
k0 [Nm−1] 10 µ+ 0.21
kp [Nm−1] 100 µ− 0.19
vthr[ms−1] 10

Default initial
conditions

variable initial
value

z 0
ωh[rads−1] 12
x1 [m] 0
v1 [ms−1] 0
x2 [m] 11.595
v2 [ms−1] 0

In order to verify that the frequency calculated above is really the resonant fre-
quency of the whole system (Hopf oscillator included) we make the following nu-
merical experiment. We set τh = 0, i.e. we go back to the fixed frequency oscil-
lator. Then, we numerically integrate the system for different values of ωh over a
duration of 100 s. In Fig. 4.3, the resulting average energy content of the system
is plotted against ωh. The vertical lines depict the resonant frequency of the me-
chanical system and its 0.25, 0.5, 2,3 and 4 folds. As expected, the broadest peak
is measured around the mechanical resonant frequency. Furthermore, there is a
second strong peak (even higher amplitude but less broad) close to the harmonic
2ωm. Apparently, the resonant effects at that point are very strong. Also around
0.25ωm and 0.5ωm resonant effects can be observed. They are however, much less
strong. Furthermore, there seems to be a systematic shift of the resonant frequen-
cies toward lower values for ωh < ωm and toward higher values for ωh > ωm. In
the lower panel the attained mean velocity of the center of mass is given. We
see that that it follows the same pattern as the energy content of the mechanical
system.

Henceforth, we introduce frequency adaptation into the Hopf oscillator by
setting τh = 0.1 and investigate the adaptation capability. We illustrate that the
adaptation of ωh leads to an increase of the forward velocity of the system. To get
a first idea of how the system adapts ωh and how this influences the speed of the
mechanical system, we show a representative plot of ωh and x1 in Fig. 4.4(a) and
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Figure 4.2: Illustration of the basic mode of locomotion. See text for description.
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Figure 4.3: Top panel: Mean energy (Ep + Ek) content of the mechanical system
for different ω0 = [0, 60] at steady state. Bottom panel: Mean velocity. As clearly
can be seen we have a broad peak around the resonant frequency of the mechanical
system ωm = 14.8324.
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Figure 4.4: (a) This representative plot shows how the adaptation of ωh increases
the velocity of the locomotion system. ωh starts at 12. The top panel shows
the development of ωh, the second panel shows the position x1 of M1. There is
some activity in the system from the beginning, however the excitations gets much
stronger the closer ωh comes to to the resonant frequency of the mechanical system
ωm (vertical line). The steady state for ωh is around 14.4, which is lower then the
calculated resonant frequency of the passive mechanical system: ωm = 14.8324.
(b) To illustrate the robustness that is built into the locomotion system by its
frequency adaptation we show a representative experiment in which the mass of
the bodies is 1kg to 1.5kg at t=100s (vertical line). Immediately, the frequency of
the oscillator ωh starts to adapt to the new resonant frequency of the mechanical
system (dash-dotted horizontal line).

the illustration of what happens with the masses from 60 to 80 seconds in Fig.
4.2(b). It can clearly be seen how the frequency adapts, first slowly then faster
and finally reaches a steady state around ωh = 14.4. As can be seen the resonant
effects start to excite the mechanical system heavily when ωh passes at around 13
and the system starts to move forward at high speed.

In the next experiment, the mass is changed during the experiment at time
t = 100 s from m = 1 kg to m = 1.5 kg. As we can see in Fig. 4.4(b) the oscillator
quickly adapts its frequency to the new resonant frequency of the system and
there is little change in the forward velocity. This corresponds for example to the
biological case of growth of an animal or an addition of an external load. The
adaptation to the massive change in the properties of the body immediately sets
in, and after a few seconds the system has reached the new steady state.

As a further important aspect, the role of initial conditions of ωh at t = 0 for
the adaptation capability has been explored. As can be seen in Fig. 4.5, ωh will
always converge to the same value, but the initial conditions strongly affect the
time ωh needs to reach steady state. Furthermore, from the results in Fig. 4.3
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Figure 4.5: Adaptation of ωh with viscous friction scheme. Different initial values
for ωh(0) = 0, 1, . . . , 32 have been chosen. Clearly, the further away the longer ωh

takes to reach its stable steady state. The horizontal lines depict 0.5ωm and 2ωm,
where from the energy diagram (Fig. 4.3) resonant effects have to be expected
and their influence on ωh clearly can be observed here. Refer to text for further
description.
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Figure 4.6: Comparison of the development of ωh for viscous and Coulomb friction
scheme. The Horizontal line indicates the resonant frequency of the passive me-
chanical system. (A) Viscous friction. (B) Coulomb friction. See text for further
discussion.

we expect to see some clearly visible effects at 0.5ωm and 2ωm (the 1:2 and 2:1
resonant frequencies). At around 0.5ωm this leads to a slightly attractive area for
ωh (so called ghost points). Even more interesting is the effect at 2ωm. From the
energy diagram (Fig. 4.3) we know that the system reacts very strongly at that
point. We can see that this violent reaction basically kicks the ωh out of that
region toward ωm. So we see that even if the possible attained velocity is higher
at ωh = 2ωm, this mode is not an attractor of the adaptation process.

Finally, in Fig. 4.6, a comparison between the viscous friction scheme and the
Coulomb are presented. We see that the convergence for ωh is slower in the case
of the Coulomb scheme, and the final value is closer to the calculated resonant
frequency of the passive mechanical system.

Influences of the Parameters Next, we want to shed light on the influence
of the different parameters of the system. Note that the results in this section
are of preliminary nature, since a lack of space and time does not allow to treat
this topic in all detail in this article. There are a number of parameters which
we can expect to influence the system fundamentally: First, the adaptation time
scale of the Hopf oscillator τh directly influences the adaptation speed, but also
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Figure 4.7: In order to quantify the steady state behavior of ωh the mean mωh
and

variance σωh
have been measured after the system reached steady state (horizontal

lines). Therefore, mωh
is a measure for (M) and σωh

correlates with the distance
(U)-(L). Note this figure is illustrative only – the actual values can change.

the stability of the adaptation process. Second, the coupling constants between
the Hopf oscillator and the mechanical system (a, c) can influence transient times
as well as stability of the system. Third, the choice of the friction parameters
(ρ+, ρ−, µr, µs, µd) obviously influences the locomotion speed of the system.

The mechanical parameters, such as masses, resting distances and spring con-
stants, which seem to be important at first sight, turn out to be not so fundamental
in a second look. They merely determine the time and length scales on which the
solutions will be found but do not influence the type of solutions that are possible.

We will now present results of numerical simulations, highlighting the influ-
ences of the parameters listed above. First of all, the behavior of the attained
steady state values for ωh depending on the choice of the coupling parameter c
will be illustrated. The parameter c influences how strongly the mechanical sys-
tem perturbs the Hopf oscillator. In order to quantify the dependence of ωh on
this (and other) parameters, we use the mean (mωh

) and variance (vωh
) of ωh after

it reached the steady state (cf. Fig. 4.7). These values are measures for location
and shape (width/depth) of the attractor for ωh.

In Fig. 4.8(a), can be seen that there is a bifurcation7 for a critical value of
c = Cc. For c < Cc there is a deviation of mωh

from the resonance frequency of
the mechanical system ωm. The deviation grows with an exponential increase in
the variance when approaching Cc. At c = Cc the mean and variance drop to 0,
i.e. the system gets quenched. Such discontinuous behavior in the mean value and
power law behavior of the variance are ubiquitous phenomena in phase transitions
(bifurcations).

7Note that the names bifurcation and phase transition are basically two names for the same
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Figure 4.8: (a) Upper panel: the mean value attained for ωh dependent on c (note
the log scale). Lower panel: Variance for ωh (note log-log scale). Note that for
c > Cc the variance drops to 0, therefore it is not drawn on the log scale. The
vertical dotted line indicates the default setting of c = 0.1 and the dashed lines
indicates the approximate value of Cc. The variance can be fitted with a power
law σ2 ∼ τα. The exponent of the fit is α = 2.6959. This behavior is typical for
phase transitions.
(b) Dependence of mean and variance of ωh on τh for steady state behavior. Again,
the dotted line indicates the default setting of τ = 0.1 and the dashed lines indi-
cates the approximate value of τh,c. The variance can be fitted with a power law
σ2 ∼ τα. The exponent of the fit is α = 1.9903. (c) The attained mean values
mv1 of v1 after the system reached steady state depending on coupling parameter
a. There is a very clear linear relationship mv1 = qa. The fit is for q = 1.5451.
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Next, we shed light on the influence of τh (cf. Fig. 4.8(b)) again we have a
clear bifurcation behavior for a critical value of τh. For high values of τh > τh,c it
seems the system sets out onto a route into chaos (data not shown). The reason
for that might be that for higher values of τh the timescales of the adaptation
process and the other time scales of the system start to overlap, and therefore
irregular behavior may occur. This conjecture however bases on visual inspection
and is not confirmed yet. Again, we have a very clear power law behavior of σωh

.

Now we turn our attention to the coupling from the Hopf oscillator to the me-
chanical system. The corresponding parameter is a. This parameter determines
how strongly ka is modulated by the activity of the Hopf oscillator (cf. Eq. 4.8).
We measure the influence by calculating the mean value mv1 of the attained ve-
locity of M1 at steady state. Here, we find a very clear linear dependence of mv1

on a (cf. Fig 4.8(c)) for the explored range.

Finally, in Fig. 4.9, the influence of the friction asymmetry (ρ+,ρn) is pre-
sented. After the transient phase the attained mean velocity of the center of mass
is measured. As can be seen there is an exponential dependence of the velocity on
the friction parameters.

Loss of feedback and disturbances It is also interesting to see how the system
reacts when the feedback is cut from the mechanical system to the Hopf oscillator
by setting c = 0. In Fig. 4.10(a), one can observe, that because of the setting of
µh = 0, the system keeps on moving, but at much reduced speed. If µh is set to
slightly negative values µh = [−1,−10], the oscillations of the Hopf oscillator fade
out and the system comes to a stand still (data not shown).

In a next step, we inhibit the frequency adaptation only by setting τh = 0. In
Fig. 4.10(b), can be seen how the system keeps on moving as normal, however it
is not able to adapt to changing conditions anymore (data not shown).

In order to get an idea how the system behaves when it gets disturbed, we
blocked one of the masses for 100 s. In Fig. 4.11, can be observed how the system
reacts. Immediately the adaptation mechanism for ωh starts to tune the system

to the new resonant frequency ωm =
√

ka+kp

m
. After releasing the blocks the

system moves backward for a moment, before converging to the normal steady
state again. What happens with the masses around t = 100 and t = 200 can also
be seen in Fig. 4.2(c) and 4.2(d). Especially from Fig. 4.2(d) it can be understood
where the backward movement comes about. In the moment of the release of M1,
M2 happens to move with high velocity toward M1, which leads to acceleration
backward in the moment of the release.

4.0.10 Discussion

In this article we have shown that, by using a Hopf oscillator with adaptive fre-
quency, we can devise a controller that adapts to the resonant frequencies of a

phenomena, even though with emphasis on different aspects. See [87] for a discussion.
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Figure 4.9: Influence of the friction asymmetry in viscous mode. The z axis is the
position of m1 after 200s for a given setting of ρ− and ρ+. White regions corre-
spond therefore to fast forward locomotion, black to fast backward locomotion.
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Figure 4.10: a) At t = 400 the feedback from the mechanical system to the Hopf
Oscillator is cut by setting c = 0. This as well inhibits the frequency adaptation. b)
At t=400 only the frequency adaptation is cut by setting τ = 0. This means there
is still feedback from the mechanical system to the Hopf oscillator. Therefore, the
system keeps moving with the same speed. However, it can not react to changing
mechanical properties anymore (not shown).
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mechanical system and therefore excites it. We exploited the oscillatory nature
of the systems and the understanding of synchronization behavior of oscillators.
Together with asymmetric friction – which turns out to be a fundamental property
of any locomotion system – this leads to directed movement. Asymmetric friction
generalizes to asymmetric interaction forces for other types of locomotion, e.g. the
elongated body of fishes have a low longitudinal and a large perpendicular drag
coefficient, which by proper undulation of the body leads to forward movement. In
the case of legged locomotion, the asymmetric interaction forces are implemented
by having a stance phase with ground contact forces and a swing phase with zero
interaction forces.

Two distinct time scales have been introduced into the dynamical system.
Therefore, the system is a simple instantiation of a multi-scale8 dynamical system.
The fast time scale is what normally is associated with the control of locomotion.
The slow time scale can be associated with learning or, more generally, with
adaptive behavior. Thus, we see the descriptive power that is naturally built into
such multi-scale dynamical systems. Especially, there is no distinction between
learning algorithm and learning substrate. Moreover, it is worthwhile noting that
for a full understanding of the behavior of such a system, the two time scales can
not be treated completely separately.

Hitherto, multi-scale dynamical systems did not receive a lot of attention. One
reason might be that there are some problems inherent in their investigation. One
first problem that one encounters, is that, since there are many, possibly quite
different, time scales in the system, the system has to be integrated in a way to
encompass all time scales. In other words, the integration has to be exact enough
(i.e. sampled fast enough) in order to calculate correctly the phenomena on the
fastest time scale. On the other, hand the simulation has to run long enough in
order to see the phenomena on the slowest time scale. The time scales are not
fully separable since it is exactly the influence between them that is of interest.
Furthermore, the interesting multi-scale systems usually exhibit strong nonlinear
behavior and complicated bifurcation structure with many critical parameters, all
of which makes it difficult the get a good understanding of the systems behavior.
Recently, however, the interest in such systems is rising. One important reason is
that cheap, fast workstations allow fast simulation of such systems and thus make
their investigation more amenable.

Relation to biology We would like to stress the fact that the presented system
is not meant to model detailed biological processes. It is rather a biologically
inspired experimental system to investigate fundamental properties of locomotion
(i.e. the generation of directed movement).

Nevertheless, and this is our hope, the treatment of such toy systems might

8As a matter of fact it contains more than 2 time scales. Already a nonlinear oscillator
possesses at least two time scales: One is the time scales of the oscillations and the other is the
time scale at which it approaches its limit cycle.
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lead to interesting questions for biologists. For instance, we have seen that our
model reaches high velocities on higher order locking with the mechanical system.
It would be interesting to see if the same phenomenon is observed in CPGs, and
potentially, experimentally modify the CPG frequencies (e.g. through the appli-
cation of excitatory neurotransmitters), and investigate whether it starts to work
at these other resonant frequencies. In our case we saw a strong reaction, and it
would be interesting to analyze the reaction of the natural system.

Furthermore, it is clear that the resonant frequencies of a locomotion system
change very dramatically in an animal life time, and this at different time scales,
e.g. due to the addition of external loads (e.g. carrying a prey) and to the growth
of the animal. The natural locomotion systems have to cope with all such changes,
and it would be interesting to explore the different types of adaptation mechanisms
that play a role in keeping locomotion efficient. This is an area where the interplay
between biology, engineering and mathematics can prove very fruitful.

Future work and outlook There are several avenues to build up on the pre-
sented results. First, there are many theoretical questions that may be asked.
Even if the system seems to be a quite simple one, the influence of the parame-
ters is far from trivial. It will be interesting to further investigate the bifurcation
behavior of the system. A careful investigation of the influence of the parameters
remains to be done. We know that the system contains several critical parameters
as outline above. In the presented results, most of them have been chosen in order
to be on the safe side, e.g. τh has been chosen small enough in order to have two
well separated time scales in the system.

Second, there are several extensions that can be made to the systems, such as
an extension to non-oscillatory systems, for instance. We see that by exploiting
synchronization behavior we can devise a useful system. On the other hand, there
exist generalizations of the notion of phase locking and synchronization for ape-
riodic and non-oscillatory systems [134]. This could indicate that the presented
approach is an interesting path to follow also for investigation of other problems,
such as cognition, pattern recognition, evolutionary models and the like. Other
extensions include introducing other coupling schemes and different types of os-
cillators.

The control of speed and direction also needs to be addressed. More springs
and oscillators can be introduced in order to get a system that can change its
direction of locomotion (2/3D system). Furthermore, the system should have
some control over speed. Currently there is only stop and full speed (disregarding
the transients between the two modes). However, a control of speed could be
introduced, e.g. with an intentional detuning of the oscillator and/or with a
modulation of the amplitude of oscillatory control signals. There are various
other possibilities, of which the respective advantages and disadvantages and their
implications on the system have to be carefully studied.

Finally, it would be interesting to construct a real-world robotics implemen-
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tation of this toy-system as well as to implement it as a realistic dynamical sim-
ulation in a physics-based simulator. The system (most probably in a slightly
modified form) should prove interesting for several robotics applications such as
snake robots, (ad-hoc) modular robotics, and legged robots.
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Chapter 5
A Prototype Adaptive Dynamical
System:
The Adaptive Frequency Oscillator

In this chapter, we continue the analysis of a central building block of the adaptive
controller that are developed in the frame of this thesis, the adaptive frequency

oscillator. The idea has been introduced in the previous chapter on some intuitive
grounds and shown to be working by numerical simulation. It is always very
desirable to get an analytical grip on the systems that are employed, first of all
to have an indisputable argument that the systems work as they are supposed
to, making it safer to use them in critical applications and, second, analytical
treatment leads to a better understanding of the system, which also will foster
further theoretical advances, consequently we will use the results of this chapter
for the analysis of AFOs in feedback loops later in the thesis (cf. Chapter 6).

5.1 Generalization and proof of convergence of the
adaptation rule

This section shows the following two results (1) the generalization of the concept
of the adaptive frequency oscillators. Supported by numerical simulations we show
that the same basic adaptation law works for a large number of different oscillators.
(2) The proof of convergence for ω for the adaptive frequency Hopf oscillator.

For the content of this section I am particularly indebted to Ludovic Righetti,
who was first a master student under my supervision, then a fellow PhD student.
While I worked in the beginning on the conceptual basis of the proof by postu-
lating it was possible to treat it with perturbation methods and the Fourier series
decomposition, it was him who has the merits of having arrived with the proof, did
the hard to job working it out and putting it into complete and readable shape. I
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do however not omit this section since I feel that it is an important logical brick
in the interesting story of the adaptive frequency oscillators.

Dynamic Hebbian Learning in Adaptive Frequency
Oscillators

Ludovic Righetti, Jonas Buchli and Auke Jan Ijspeert

This paper has been originally published as
L. Righetti, J. Buchli, and A.J. Ijspeert. Dynamic hebbian learning
in adaptive frequency oscillators. Physica D, 216(2):269–281, 2006

Abstract Nonlinear oscillators are widely used in Biology, Physics and Engi-
neering for modeling and control. They are interesting because of their synchro-
nization properties when coupled to other dynamical systems. In this paper, we
propose a learning rule for oscillators which adapts their frequency to the fre-
quency of any periodic or pseudo periodic input signal. Learning is done in a
dynamic way: it is part of the dynamical system and not an offline process. An
interesting property of our model is that it is easily generalizable to a large class of
oscillators, from phase oscillators to relaxation oscillators and strange attractors
with a generic learning rule. One major feature of our learning rule is that the
constructed oscillators can adapt their frequency without any signal processing nor
the need to specify a time window or similar free parameters. All the processing
is embedded in the dynamics of the adaptive oscillator. The convergence of the
learning is proved for the Hopf oscillator, then numerical experiments are carried
out to explore the learning capabilities of the system. Finally, we generalize the
learning rule to non-harmonic oscillators like relaxation oscillators and strange
attractors.

5.1.1 Introduction

Nonlinear oscillators have been widely used to model various physical and biologi-
cal processes and for the last two decades, they are also used in engineering fields,
as for example autonomous robotics. Models of Josephson junctions [216], lasers,
central pattern generators (CPGs) [48,78,131,221], associative memories [15,161]
or beat perception [57,137] are a few examples that show the importance of oscil-
lators in modeling and control.

Oscillator models are interesting because of their synchronization capabilities,
either with other oscillators or with external driving signals. In most cases, it is
a difficult task to choose the right parameters of the oscillators to ensure they
will synchronize as desired. Most studies are using phase-locking behavior, but
when parameters are outside the phase-locking region synchronization fails. This
is mainly the case because oscillators lack plasticity, they have fixed intrinsic
frequencies and cannot dynamically adapt their parameters.

Some recent studies, however, concentrate on developing dynamic plasticity for
oscillators, so they can learn and synchronize with a wider range of frequencies,
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without having to tune the parameters by hand [4, 15, 61, 156, 158, 159]. But
these attempts are so far limited to very simple classes of oscillators, equivalent
to phase oscillators, mainly because this is the only class of oscillators that can
be analytically studied and for which convergence can be proved, when adding
adaptivity to the system. Adaptive relaxation oscillators were also developed to
model rhythm perception [57]. These oscillators are able to adapt their frequencies
to synchronize with external input. But these input signals are simple and reduce
to periodic pulse trains.

Recently, we designed an adaptive oscillator for studying adaptive locomotion
in biologically inspired robotics [24, 28]. In that work we developed an adaptive
frequency Hopf oscillator able to adapt to the resonant frequency of a mechanical
system. The oscillator is able to adapt its frequency to the frequency of complex
input signals. In this contribution, we prove the convergence of this oscillator and
generalize the adaptive rule for more complex oscillators so they can learn the
frequencies of, and synchronize with, any rhythmic input signal. An interesting
property of our method is that we go beyond phase-locking of oscillations. We
add plasticity to the system, in the sense that the system can change its own
parameters in order to learn the frequencies of the periodic input signals. So
the range of frequencies that can be learned is not limited and after learning
the oscillator continues to oscillate at the learned frequency, even if the input
signal disappears. We call our adaptive mechanism1 dynamic Hebbian learning
because it shares similarities with correlation-based learning observed in neural
networks [122].

One major aspect of our approach is that an oscillator learns the frequency
of any periodic input, without any signal processing. Its means that an oscillator
can adapt its frequency to any kind of periodic, or even pseudo-periodic, input.
The process is completely dynamic, and does not require the specification of time
windows or similar free parameters as it is often the case in signal processing
algorithms. The whole learning process and the frequency extraction from the
input is totally embedded in the dynamics of the system. Another interesting
property of the method is that we can directly apply it to many kinds of oscillators,
for example relaxation oscillators or strange attractors. An oscillator, perturbed
by a periodic signal F , is described by the general equations

ẋ = f(x, y, ω) + ǫF
ẏ = f(x, y, ω)

with ω some parameter influencing the frequency of the oscillations. We introduce
a learning rule for this parameter

ω̇ = ±ǫF
y

√

x2 + y2

The sign depends on the direction of rotation of the limit cycle in the (x, y) phase
space. This general adaptation rule works for many different oscillators, ω will

1In this article, we use adaptation and learning as synonyms
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converge to a value such that one frequency component of the oscillator and one
of the input F match. We discuss this general learning rule in this contribution.

In Section 5.1.2, we first present the adaptive learning rule with a simple
Hopf oscillator and prove the convergence and the stability of the whole system.
Then, in Section 5.1.5, we present some numerical simulations, to show that the
oscillator can adapt its frequency to the frequency of any kind of periodic or
pseudo-periodic signals. Finally, in order to demonstrate the generality of our
method, we construct, in Section 5.1.10, an adaptive Van der Pol oscillator which
we discuss in details. We also present examples of frequency adaptation with
an adaptive Rayleigh oscillator, an adaptive Fitzhugh-Nagumo oscillator and an
adaptive Rössler system. In Section 5.1.13, we finish this contribution with a
discussion.

5.1.2 Learning frequencies with a Hopf oscillator

In this section, we introduce the learning rule for frequency adaptation in oscilla-
tors. To keep discussion as simple as possible, we use a Hopf oscillator to discuss
our learning method, because its phase evolution is simple to describe. Gener-
alization to more complex oscillators will be presented in further sections. We
first present the model, then we prove the convergence of the adaptive dynamical
system.

5.1.3 Model description

The Hopf oscillator

The dynamics of the Hopf oscillator is governed by the following differential equa-
tions

ẋ = (µ − r2)x − ωy + ǫF (5.1)

ẏ = (µ − r2)y + ωx (5.2)

Where r =
√

x2 + y2, µ > 0 controls the amplitude of the oscillations and ω is the
intrinsic frequency of the oscillator. It means that without perturbations (when
ǫ = 0), the system is oscillating at ω rad · s−1. This oscillator is coupled with a
periodic force F . When the force is zero, the system has an asymptotically stable
harmonic limit cycle, with radius

√
µ and frequency ω. As the limit cycle of the

Hopf oscillator is structurally stable, small perturbations around its limit cycle
(ǫ > 0) do not change the general behavior of the system. It means that the limit
cycle will still exist, only its form and time-scale will change. Structural stability
assures that this change is close to identity.

As we are mainly interested in the phase dynamics, we rewrite the system in
polar coordinates. We set x = r cos φ and y = r sinφ. Equations (5.1) and (5.2)
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transform into

ṙ = (µ − r2)r + ǫF cos φ (5.3)

φ̇ = ω − ǫ

r
F sinφ (5.4)

It is well known that when the oscillator has its intrinsic frequency ω close to one
frequency component of the periodic input, it will phase-lock (this phenomena
is also called entrainment) [166]. It means that the oscillations synchronize with
the frequency of the periodic input. The maximum distance between the intrinsic
frequency of the oscillator and the periodic input that still permits phase-locking
depends directly on the coupling strength. The stronger the coupling is, the larger
the entrainment basin. Outside this basin, the oscillator is still influenced by the
coupling but does not synchronize. If the periodic input has several frequency
components, then several entrainment basins will appear. Phase-locking will be
possible with each frequency component. Outside the basin, the oscillator will
have tendency to accelerate or decelerate, according to the term F sinφ, in average
the oscillator will tend to oscillate at a frequency which is between the intrinsic
frequency of the oscillator and the frequency of the input. In the case of multi-
frequency inputs, these oscillations will be influenced in a similar manner.

Adaptive dynamical system

Now we can build our adaptation rule by using the influence of the external per-
turbation on the activity of the oscillator. The adaptation rule will be a dynamical
system of the form

ω̇ = f(ω, r, φ, F ) (5.5)

In the following we motivate the concrete choice of the adaptation rule by reasoning
about the effects of a perturbation in a geometric way in the phase space of the
dynamical system. This provides insights into our choice of the learning rule. In
further sections, we will show more rigorously that this reasoning is appropriate
and leads to the desired behavior.

To get a good grasp on the effects of perturbations on a limit cycle system
(i.e. an oscillator) it is helpful to look at the limit cycle in the phase space
representation. In the phase space all perturbations have a direction, i.e. they
can be represented as a vector ~P in that space.

Due to the stability properties of a limit cycle system a perturbation can in
the long term only affect the phase of the oscillator. The phase is marginally
stable whereas the system is damped perpendicularly to the limit cycle. This
means that the phase point always returns to the limit cycle, but it can be phase
shifted. In other words the system after a singular perturbation will forget all the
perturbation’s influence except its influence on the phase.

Especially in a small neighborhood of the limit cycle a small perturbation can
only affect the phase strongly if it perturbs the oscillator in the direction tangential
to the limit cycle. The perturbations perpendicular to the limit cycle are damped
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out. The domain where this assumption is valid depends on the coupling of phase
and radius. While for the Hopf oscillator this assumption is valid for a very
large neighborhood, the neighborhood can be very small for other oscillators, e.g.
oscillators with strongly bent isochrones.

To discuss the influence of the perturbation on the phase in this neighborhood,
let us introduce a coordinate system with its origin on the phase point. The first
base vector ~er is chosen perpendicular to the limit cycle, while the second base
vector ~eφ is chosen tangential to the limit cycle (cf. Fig. 5.1). Thus, this coordinate
system rotates with the phase point along the limit cycle. In order to know the
influence pφ = | ~pφ| of the perturbation on the phase it is sufficient to project ~P
on ~eφ

pφ = ~P · ~eφ (5.6)

Thus, depending on the external perturbation and the state of the oscillator (i.e.
the position of the point on the limit cycle) the perturbation accelerates the phase
point or slows it down. If the perturbation is a periodic signal, this results in an
average acceleration or deceleration depending on the frequency difference. This
effect, if the frequency of the oscillator and the external frequency are close, leads
to well known phase-locking behavior. Thus, the influence carries the information
needed to adjust to the frequency of the external perturbation. Consequently,
if we take this same effect to tune the frequency of the oscillator (on a slower
time scale) the frequency should evolve toward the frequency of the perturbation.
Therefore, the effect of f(ω, r, φ, F ) on ω has to be the same as the effect of the
perturbation on the phase, thus, (in average) driving ω toward the frequency of
the perturbation.

While the discussion here is valid for limit cycles of any form and in any
dimension, in the case of the Hopf oscillator and the perturbation as chosen in
Eqs.(5.3) and (5.4) it is evident that pφ = ǫ

r
F sinφ. We chose accordingly

ω̇ = −ǫF sinφ (5.7)

which corresponds in Cartesian coordinates to

ω̇ = −ǫF
y

√

x2 + y2
(5.8)

The adaptation of ω happens on a slower time scale than the evolution of the rest
of the system. This adaptation time scale is influenced by the choice of ǫ. Note
that the r variable is dropped because we do not want a learning rule which is
scaled by the amplitude of the oscillations. With this rule, the oscillator will adapt
to the frequency of any input signal. As iin applications most signals will be non-
harmonic, i.e. they have several frequency components, the oscillator will adapt
to one of these components, generally the closest to the intrinsic frequency of the
oscillator. We must also note that it is required to keep the oscillator coupled with
the input, because it is the evolution of φ(t), i.e. change of frequency correlated
with ω̇, that enables adaptation in Equation (5.7). A proof of convergence of
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~pr ~P
~pφ

~er ~eφ

Figure 5.1: We illustrate the coordinate system in which synchronization is most
naturally discussed. The figure shows an arbitrary limit cycle. The system is
strongly damped in direction perpendicular to the limit cycle ~er and marginally
stable in direction tangential to the limit cycle ~eφ. This is the reason for the
structurally stable limit cycle in the first place and allows for a resetting of the
phase on the other hand. Note that the 2-dimensional representation is always
valid for discussing a limit cycle since there exists always a 2 dimensional manifold
which contains the limit cycle. Refer to text for a discussion of the perturbation
~P .

this adaptive oscillator (Eqs (5.3), (5.4) and (5.7)) in the general case of multi-
frequency inputs is given in the next section.

5.1.4 Proof of convergence with the Hopf oscillator

In this section we prove the stability of the adaptive Hopf oscillator, but we will
see in next sections that the results we derive in this section can also justify
convergence for other types of oscillators. The new dynamical system we study
is the one composed of the oscillator and its learning rule for the frequency (Eqs.
(5.3), (5.4) and (5.7)). As long as ω > 0, because of structural stability, the
behavior of the oscillator (Eqs. (5.3) and (5.4)) is known, so we just have to prove
that ω converges to the desired input frequency.

We use perturbation methods (cf. [124]) to discuss the convergence of the sys-
tem. The solution of the system {r(t), φ(t), ω(t)} can be written as a perturbation
series, with ǫ < 1

r(t) = r0 + ǫr1 + ǫ2r2 + ǫ3Rr (5.9)

φ(t) = φ0 + ǫφ1 + ǫ2φ2 + ǫ3Rφ (5.10)

ω(t) = ω0 + ǫω1 + ǫ2ω2 + ǫ3Rω (5.11)

with initial conditions r0(t0) = r0, φ0(t0) = 0 and ω0(t0) = ω0 independent of ǫ.
Here, ri, φi and ωi are functions of time and Rr, Rω and Rφ are small residues of
the order ǫ3. Which means there exists a constant k such that Ri < k, generally k
is small. The following proof will hold under the hypothesis that k ≪ 1, numerical
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simulations in Section 5.1.5 will confirm this hypothesis. We could also expand
the perturbation series to higher order: the finer the approximation is, the wider
the time interval valid for the approximation. But we will show that convergence
appears on the time-scale associated with the second order approximation. By
inserting Eqs. (5.9), (5.10) and (5.11) into Eqs. (5.3), (5.4) and (5.7), and by
observing that

sin(φ0 + ǫφ1 + ǫ2φ2 + ǫ3Rφ) =

∞∑

k=0

(−1)k(φ0 + ǫφ1 + ǫ2φ2 + ǫ3Rφ)2k+1

(2k + 1)!

= sinφ0 + ǫφ1 cos φ0 + O(ǫ2) (5.12)

and similarly that

cos(φ0 + ǫφ1 + ǫ2φ2 + ǫ3Rφ) = cos(φ0) − ǫφ1 sin(φ0) + O(ǫ2) (5.13)

we can identify the terms corresponding to each ǫn and derive the following dif-
ferential equations

ṙ0 = (µ − r2
0)r0 (5.14)

φ̇0 = ω0 (5.15)

ω̇0 = 0 (5.16)

ṙ1 = µr1 − 3r1r
2
0 + F cos φ0 (5.17)

φ̇1 = ω1 −
1

r0

(
r1φ̇0 − r1ω0 + F sin φ0

)
(5.18)

ω̇1 = −F sinφ0 (5.19)

ṙ2 = µr2 − 3r2r
2
0 − r2r

2
1 − Fφ1 cos φ0 (5.20)

φ̇2 = ω2 −
1

r0

(
r1φ̇1 − r1ω1 + r2φ̇0 − r2ω0 + Fφ1 cos φ0

)
(5.21)

ω̇2 = −Fφ1 cos φ0 (5.22)

with initial conditions r0(t0) =
√

µ, φ0(t0) = 0, ω0(t0) = ω0 and ri(t0) = φi(t0) =
ωi(t0) = 0, ∀i = 1, 2. We consider that the unperturbed system (i = 0) has already
converged to the limit cycle and that at time t0, the are no perturbations. We have
to solve Equations (5.16), (5.19) and (5.22) to construct an approximate solution
of Equation (5.7) and thus show the convergence properties of the adaptation
rule ω. The behavior of the two other state variables is already known since
the Hopf oscillator has a structurally stable limit cycle. In order to solve these
equations we also have to solve Equations (5.14), (5.15) and (5.18). The error
of the approximation will be of order O(ǫ3) and will hold for some time interval
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[t0, t0 + σ]. The solutions of Equations (5.14)-(5.16) are straightforward

r0(t) =
√

µ (5.23)

φ0(t) = ω0(t − t0) (5.24)

ω0(t) = ω0 (5.25)

To solve the other equations, we first rewrite the periodic input as its complex
Fourier series

F (t) =
∞∑

n=−∞
AneinωF t (5.26)

Where ωF is the frequency of the input. We now consider the case where ω0 6= nωF ,
∀n ∈ N, which means that at the beginning the system is not synchronized with
any frequency component of the periodic input F . We then get

ω̇1 = −
( ∞∑

n=−∞
AneinωF t

)

sin(ω0(t − t0))

= −
∞∑

n=−∞
An

ei(nωF +ω0)t−iω0t0 − ei(nωF−ω0)t+iω0t0

2i
(5.27)

Which solves into

ω1(t) =
1

2

∞∑

n=−∞

An

(

−
(
ei(nωF −ω0)t+iω0t0 − einωF t0

)

(nωF − ω0)
+

(
ei(nωF +ω0)t−iω0t0 − einωF t0

)

(nωF + ω0)

)

(5.28)

and

φ̇1 = ω1 +
ω̇1√
µ

(5.29)

which solves into

φ1(t) = ω1(t)√
µ

+ 1
2

∑∞
n=−∞ An

(

(ei(nωF +ω0)t−iω0t0−einωF t0)
i(nωF +ω0)2

+

2ω0(t−t0)einωF t0

n2ω2
F−ω2

0
− (ei(nωF −ω0)t+iω0t0−einωF t0)

i(nωF−ω0)2

)

(5.30)

By combining Equations (5.25) and (5.28), we have a first order approximation
ω(t) = ω0 + ǫω1(t) + ǫ2Rω. This approximation is a periodic solution with mean
equal ω0. Nevertheless, this first order approximation does not show any adapta-
tion of ω(t). This seems normal, since we argued before that the learning takes
place on a larger time-scale than the perturbation (which is of order ǫ). We now
derive the second order approximation to show that learning appears on the as-
sociated time-scale. As we are interested in the second order form of ω, we now
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solve Equation (5.22)

ω̇2 = −
( ∞∑

m=−∞
AmeimωF t

)(

eiω0(t−t0) + e−iω0(t−t0)

2

)

φ1(t)

= −1

2

( ∞∑

m=−∞
Am

(

ei(mωF +ω0)t−iω0t0 + ei(mωF−ω0)t+iω0t0
)
)

φ1(t)

(5.31)

By expanding the equation we find a sum of simpler terms that can be easily
integrated

ω2 =

∫ t

t0




1

4

∑

m,n∈Z

AmAn (E1 + E2 + E3 + E4 + E5 + E6)



 (5.32)

where

E1 = ei((m+n)ωF +2ω0)t−2iω0t0

( −1√
µ(nωF + ω0)

− 1

i(nωF + ω0)2

)

E2 = ei((m+n)ωF−ω0)t+2iω0t0

(
1√

µ(nωF − ω0)
+

1

i(nωF − ω0)2

)

E3 = ei(mωF +ω0)t+i(nωF−ω0)t0

( −2ω0√
µ((nωF )2 − ω2

0)
− 4nωF ω0

i((nωF )2 − ω2
0)

2

)

E4 = ei(mωF−ω0)t+i(nωF +ω0)t0

( −2ω0√
µ((nωF )2 − ω2

0)
− 4nωF ω0

i((nωF )2 − ω2
0)

2

)

E5 = ei(m+n)ωF t

(
2ω0√

µ((nωF )2 − ω2
0)

+
4nωF ω0

i((nωF )2 − ω2
0)

2

)

E6 =
(

eiω0(t−t0) + e−iω0(t−t0)
)( −2ω0

(nωF )2 − ω2
0

)

ei(mωF t+nωF t0)(t − t0)

Prior, we postulated that ω0 6= nωF , ∀n ∈ N, consequently, the integration of E1,
E2, E3 and E4 gives periodic functions with zero mean. The integration of E6 gives
a function oscillating with some frequency but with its amplitude varying because
of the t term, the average contribution of this function is zero. The integration
of E5 is more interesting because when n = −m, the exponential disappears and
we have a constant instead. Thus when integrating we will find linear terms. For
the case m 6= −n, after integration, we find a periodic function with zero mean.
Therefore, ω2(t) is composed of a periodic function ω̃2(t) with zero mean and a
deviation Dω(t).

ω2(t) = ω̃2(t) + Dω(t) (5.33)
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where

Dω(t) =

∫ t

t0

1

4

∑

n∈Z
m=−n

AnAm

(
2ω0√

µ((nωF )2 − ω2
0)

− 4nωF ω0

i((nωF )2 − ω2
0)

2

)

=

∫ t

t0

(

−A0

2
√

µω0
+
∑

n∈N∗

AnĀnω0√
µ((nωF )2 − ω2

0)

)

=

(

−A0

2
√

µω0
+
∑

n∈N∗

|An|2ω0√
µ((nωF )2 − ω2

0)

)

(t − t0) (5.34)

Then, the solution of ω(t) in a neighborhood of t0 is

ω(t) = ω0 + ǫω1(t) + ǫ2ω̃2(t) + ǫ2Dω(t) + O(ǫ3) (5.35)

The solution is composed of small oscillations of amplitude much smaller than
ǫ around ω0 and a slight deviation ǫ2Dω(t). This deviation term determines how
the frequency converges to the input frequency. It can also be used to predict
the basins of attraction for inputs with several frequency components (cf. Section
5.1.8). For an input signal that has only one frequency in its spectrum, the devi-
ation is obviously done in the direction of this frequency, since Dω(t) > 0 when
ωF > ω0 and Dω(t) < 0 otherwise. As this approximation is valid for any ω0

and any t0, i.e. the point in time when we make the approximation is not impor-
tant, the oscillator will always, in average, change its frequency in the direction
of the input frequency. For more complex signals with more than one frequency
component, because of the (nωF )2 − ω2

0 term in Dω, the system will just change
its frequency according to the distance between its intrinsic frequency ω0 and the
frequency components of the input. The amplitudes An of the frequency com-
ponents will also influence this convergence, in the sense that the more intensity
a frequency component has, the more it will attract ω(t). Section 5.1.5 shows
examples of such convergence. We must also note that the zero frequency (the
mean of the periodic signal) can also influence the convergence because of the A0

term. Thus, if the input signal has a non-zero mean, ω could eventually converge
to 0 if A0 has a stronger influence than the other frequency components. In this
case, the limit cycle of the Hopf oscillator would bifurcate into a fixed point.

We still have to discuss the case ω0 = nωF for a given n ∈ N. In this case,
the oscillator is synchronized with one frequency component of the perturbation.
Thus, ω(t) oscillates and deviates from nωF . Then there are two cases, either the
deviation becomes an attraction as soon as ω0 6= nωF and the intrinsic frequency of
the oscillator is always staying in a small neighborhood of nωF . Or ω(t) diverges
from this frequency and gets attracted by another frequency component of the
input signal, with stronger amplitude.

We notice that ǫ controls both the amplitude of oscillations around nωF and
the learning rate of the system (proportional to ǫ2). So the faster the learning is,
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Figure 5.2: Plot of the evolution of ω for four different values of ǫ. Here we set
µ = 1, x(0) = 1 and y(0) = 0, the perturbing force is F = cos(30t). For every
value of ǫ, we see that ω converges to 30, which is the frequency of the input signal.
Therefore, the system is able to learn the frequency of the input signal. We also
notice that ǫ controls the convergence rate, the higher it is, the faster the system
learns.

the higher the error of adaptation will be. But as ǫ < 1, the error of adaptation
is bounded and small (of the order of ǫ).

So we have proved that the learning rule makes the frequency converge to a
frequency component of the input signal, for any initial conditions (t0, ω0). The
attracting frequency component depends on its distance to the intrinsic frequency
of the oscillator and its intensity. The proof is global because we did not make
any assumption on the initial condition for ω and on the neighborhood of the
attracting frequencies.

5.1.5 Numerical simulations

The goal of this section is to study the behavior of the learning dynamical system
with numerical simulations. First we give a simple example of adaptation of the
oscillator receiving a simple periodic signal as input. Then we confirm the proof
of Section 5.1.4 by calculating the second order approximation error for a simple
example. We also use the analytic results to predict the behavior of the system
when varying several parameters. Finally, we show that the system can adapt to
pseudo-periodic signals.

5.1.6 Simple example of learning

First of all, we want to show a simple example of how the system works and discuss
the influence of the learning rate ǫ. The adaptive Hopf oscillator is composed of
the perturbed Hopf oscillator

ẋ = (µ − r2)x − ωy + ǫF (5.36)

ẏ = (µ − r2)y + ωx (5.37)
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and of the adaptive frequency learning rule

ω̇ = −ǫF
y

√

x2 + y2
(5.38)

Here we use a simple cosine signal F = cos(30t) as input, with µ = 1 and initial
conditions r(0) = 1, φ(0) = 0 and ω(0) = 40. We integrate the system numerically
for several values of ǫ, the results of the simulations are shown in Figure 5.2. In
this figure, we can see that the oscillator adapts its intrinsic frequency to the
frequency of the input signal. We also see that ǫ controls the adaptation rate of
the system, the higher ǫ is, the faster the learning.

5.1.7 Error evaluation of the analytic approximation for a simple
perturbing force

In Section 5.1.4, we derived an approximate solution of the learning dynamical
system, in order to prove its convergence. The error of this approximation is
bounded by some constant k. We now evaluate numerically the error of the ap-
proximation, for a simple sinusoidal input, in order to show that this constant is
really small and that the hypothesis made for proving convergence holds. We set
F = sin(ωF t), t0 = 0, µ = 1. Then we can derive an approximate solution of ω(t)
using Equations (5.25),(5.28) and (5.32).

ω0(t) = ω0 (5.39)

ω1(t) = − 1

2(ωF − ω0)
sin((ωF − ω0)t) +

1

2(ωF + ω0)
sin((ωF + ω0)t) (5.40)

ω2(t) =
sin(2ω0t)

16ω0(ωF − ω0)
− sin(2ωF t)

16ωF (ωF − ω0)
− sin(2(ωF − ω0)t)

16(ωF − ω0)2
+

t

8(ωF − ω0)

− t

8(ωF + ω0)
+

sin(2(ωF + ω0)t)

16(ωF + ω0)2
− sin(2ω0t)

16ω0(ωF + ω0)
+

sin(2ωF t)

16ωF (ωF + ω0)

+
cos(2ωF t) − 1

16ωF (ωF − ω0)2
+

cos(2ω0t) − 1

16ω0(ωF − ω0)2
+

cos(2(ωF − ω0)t) − 1

16(ωF − ω0)3

− cos((ωF + ω0)t) − 1

4(ωF − ω0)2(ωF + ω0)
− cos((ωF − ω0)t) − 1

4(ωF − ω0)3

−cos(2(ωF + ω0)t) − 1

16(ωF + ω0)3
− cos(2ωF t) − 1

16ωF (ωF + ω0)2
+

cos(2ω0t) − 1

16ω0(ωF + ω0)2

+
cos((ωF + ω0)t) − 1

4(ωF + ω0)3
− cos((ωF − ω0)t) − 1

4(ωF + ω0)2(ωF − ω0)
(5.41)

We can now numerically evaluate the errors of the approximations of order 1,
ωǫ(t) = ω0 + ǫω1(t), and of order 2, ωǫ2(t) = ω0 + ǫω1(t)+ ǫ2ω2(t). The upper plot
of Figure 5.3 shows the result of this simulation. First of all, we clearly see that
the dynamical system correctly learns the frequency of the input signal. In this
figure we also plotted the function ωǫ(t) and ωǫ2(t), we clearly see that the second
order approximation is really better than the first and explains the behavior of
the system on a larger time scale. Actually, it explains very well the convergence
process of the learning dynamical system. We see that the learning appears on a
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Figure 5.3: Results of the simulation of the first and second order approximations.
For a simple input, here F = sin(40t), ǫ = 0.9, initial conditions are t0 = 0,
w0 = 30. The upper figure shows the evolution of the ω variable for the initial
dynamical system (Eq. (5.38)), the first order approximation ωǫ(t) and the 2nd
order approximation ωǫ2(t). The lower figure shows quadratic errors between the
initial system and the 2 approximations, for the evolution of ω.

Table 5.1: This table summarizes the maximum errors of the simulation for the
first and second order approximations discussed from Figure 5.3

Time Maximum Error ωǫ Maximum Error ωǫ2

0s 0 0
0.001s 5.18e−13 1.70e−19

0.01s 4.91e−7 1.15e−12

0.1s 0.0053 6.30e−11

1s 0.0114 1.85e−7

10s 0.0340 4.25e−4
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coarser time scale than the oscillations of the system. In the lower plot, we see the
square error between the original system and the approximations. We clearly see
that the 2nd order approximation follows the real system for quite a long time.
Table 5.1 summarizes the maximum square error of the approximations. It must
be noted that numerical integration of the dynamical system is done with an em-
bedded Runge-Kutta-Fehlberg(4,5) algorithm, with absolute and relative errors of
10−6. As a matter of fact, errors below this value cannot be taken as significant
errors. Obviously, the first order approximation diverges rapidly, at 0.1s of simula-
tion, the error is becoming really significant. On the other hand, the second order
approximation is really good still after 10s. These results validate the hypothesis
of the approximation methods and so, the analytic proof. It also emphasizes the
fact that learning takes place on a larger time-scale than the perturbations on the
oscillator and its oscillations. Consequently, the adaptive Hopf oscillator has two
distinct time scales. The finer one describes the perturbation on the oscillator and
its oscillations. Learning takes place on the coarser one.

5.1.8 Predicting learning with multi-frequency inputs

When learning frequency of multi-frequency input signals, we might expect the
system to converge to one of the frequency components of the input. But how
can we calculate the range of initial frequencies for which the adaptive oscillator
will converge to a specific frequency component of the input? While proving the
convergence of the system, we derived a deviation equation, Equation (5.34), that
describes the deviation from the initial intrinsic frequency, ω0, of the oscillator

Dω(t) =

(

−A0

2
√

µω0
+
∑

n∈N

|An|2ω0√
µ((nωF )2 − ω2

0)

)

(t − t0) (5.42)

We saw that this equation is depending on the initial frequency of the system
ω0, the frequency components of the periodic input nωF and their amplitude An.
Thus, for a given input signal, we can calculate the values of ω0 for which the
function is equal to zero ∀t. These zeros give the intervals of convergence, the
dynamical system converging towards the frequency components located in the
same interval as ω0.

For example consider the following input

F = 0.2 sin(20t) + 0.5 sin(30t) + 0.3 sin(40t) (5.43)

The main frequency of this signal is ωF = 10. The amplitude of the frequency
component are A2 = 0.2

2i , A3 = 0.5
2i , A4 = 0.3

2i and Ai = 0, ∀i ∈ N \ {2, 3, 4}. Thus
we only have to find the roots of the following equation

0.22ω0

4(202 − ω2
0)

+
0.52ω0

4(302 − ω2
0)

+
0.32ω0

4(402 − ω2
0)

= 0 (5.44)



104 Chapter 5. Adaptive Frequency Oscillators

0 500 1000
15

21.36

30

37.82

45

Time

ω

Figure 5.4: In this figure, we plotted ω(t) for several initial conditions, ω0. The
periodic input is Equation (5.43), ǫ = 0.9. The dotted lines indicates the boundary
between the different basins of attraction, corresponding to the different frequency
components of the input, that were predicted analytically.
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Figure 5.5: The left plot of this figure represents the evolution of ω(t) when the
adaptive Hopf oscillator is coupled to the z variable of the Lorenz attractor. The
right plot represents the z variable of the Lorenz attractor. We clearly see that the
adaptive Hopf oscillators can correctly learn the pseudo-frequency of the Lorenz
attractor. See the text for more details.

The solutions of this equation are 0 and ±
√

717±
√

134089
0.76 . As we are working with

frequencies > 0 we have the following bounds ωdown ≃ 21.3598 and ωup ≃ 37.8233.
Thus we must expect to have convergence to 20, 30 or 40 when ω0 ∈ [0, ωdown],
[ωdown, ωup], [ωup,∞] respectively. With some uncertainty at the limit of the
intervals, because of the oscillations of order ǫ that can make the system switch
from one interval to the other. Figure 5.4 shows this behavior, the horizontal
dotted lines mark the bounds. Convergence corresponds to what we predicted.

5.1.9 Learning pseudo-period of chaotic signals

We proved convergence for periodic signals, but we argue that even pseudo-
periodic signals can be used as input for the learning dynamical system. In order
to show this fact, we present the result of learning, when coupled to a chaotic
pseudo-periodic signal. We couple the oscillator with the z-variable of the Lorenz
system [213], whose equation is

ẋ = −σx + σy (5.45)

ẏ = −xz + rx − y (5.46)

ż = xy − bz (5.47)

Where σ = 10, r = 28 and b = 8
3 (parameters for which the system produces

a strange attractor). The Fourier spectrum of the z-variable indicates two major
frequency components (data not shown). The first one at frequency 0 (A0 in the
Fourier series), because the average of z, 〈z〉 6= 0, and the second one at ∼ 1.3Hz.
As the zero frequency component has a really strong amplitude compared to the
other and we do not want adaptation to this frequency, we center the z-variable
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before coupling to the oscillator. Otherwise, ω converges to 0 and the oscillations
disappear. Indeed the basin of attraction corresponding to frequency ∼ 1.3Hz is
not very wide and ω gets kicked out of it because of the chaotic nature of the
input. Thus the input for coupling we use is F = z − 〈z〉.

Figure 5.5 shows the result of the learning process. After convergence, 〈ω〉 ≃
8.13 rad ·s−1 which corresponds to an intrinsic frequency of the oscillator of ∼ 1.29
Hz. Thus our adaptive dynamical system has learned the pseudo-frequency of the
strange attractor. As this is not a strictly periodic signal, ω(t) oscillates, following
the constantly changing pseudo-frequency of the attractor.

This experiment enforces the idea that our adaptive dynamical system is able
to learn the frequency of any periodic, or pseudo-periodic signal. It learns a fre-
quency component of the input, even if the signal is really noisy or if the frequency
is not strictly defined.

5.1.10 Generalization to non-harmonic oscillators

In previous sections, we presented an adaptive Hopf oscillator able to learn the
frequency component of a periodic signal. The goal of this section is to show how
we can easily apply our adaptive rule to non-harmonic oscillators like relaxation
oscillators. The problem with such oscillators is that they have two time scales
(slow buildup and fast relaxation) so it is difficult to treat them analytically to
prove convergence of the adaptive rule. In this section, we discuss in details the
case of the Van der Pol oscillator, then we show results of the adaptive rule with
the Rayleigh oscillator, the Fitzhugh-Nagumo oscillator and the Rössler system.

5.1.11 An adaptive Van der Pol oscillator

The Van der Pol oscillator

The Van der Pol is a classical example of relaxation oscillator and is often used in
biological modeling, for example to model CPGs for quadrupedal locomotion [47].
Its equation is

ẍ + α(x2 − p2)ẋ + ω2x = 0 (5.48)

Here α controls the degree of nonlinearity of the system (the relaxation part),
p the amplitude of the oscillations and ω mainly influences the frequency of the
oscillations. In this study we set the amplitude of oscillations to p = 1. We rewrite
the system in a 2-dimensional form and perturb it in the direction of x as we did
in Section 5.1.2

ẋ = y + ǫF (5.49)

ẏ = −α(x2 − 1)y − ω2x (5.50)

Because of the relaxation property of the oscillator, the frequency spectrum con-
tains, in addition to the frequency of the oscillations, an infinite number of fre-
quency components. They are all multiples of the frequency of the oscillations
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Figure 5.6: Frequency spectrum of the Van der Pol oscillator, both plot with ω =
10. The left figure is an oscillator with α = 10 and on the right the nonlinearity
is higher α = 50. On the y-axis we plotted the square root of the power intensity,
in order to be able to see smaller frequency components.

and have smaller intensities. The nonlinear part of the system, whose impor-
tance is driven by the α variable, influences the intensity of these components. It
means the higher α is, the more intensity high frequency components have. The
frequency of the oscillations are mainly defined by ω, but α also influences this
frequency. In fact an increase of the nonlinear term α tends to slow the oscillator
down.

Figure 5.6 shows the frequency spectrum of the x variable for two different
values of α. We clearly see that the intensities of the fast frequency components
increase as α increases. We also observe that the oscillator gets slower when α
increases (the peaks shift to the left). But still ω is a good control parameter of
the frequency of the system.

The complexity of the frequency spectrum of such oscillators complicates learn-
ing. Indeed, according to the initial conditions (i.e. according to the distance
between the frequency of the periodic force and the main frequency of the os-
cillator), the oscillator may learn different frequencies and synchronize one of its
higher frequency components to the input, instead of adapting its main frequency.

The adaptive dynamical system

The adaptive rule we introduced in this article dynamically changes the parameter
that mainly controls the frequency of the oscillations. Thus, in this case we will
make the ω parameter a dynamical system. Before discussing adaptation, we
want to discuss the locations of the entrainment basins in function of ω, in order
to understand how the adaptive rule will work. The entrainment basins are the
regions of frequencies where the oscillator phase-lock with an input signal [166].

Figure 5.7 shows the entrainment basins of a Van der Pol oscillator with high
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Figure 5.7: Plot of the frequency of the oscillations of the Van der Pol oscillator
according to ω. Here α = 50. There are 2 plots, in dotted line the oscillator
is not coupled and in plain line the oscillator is coupled to F = sin 30t. The
strength of coupling is ǫ = 2. We clearly see basins of phase-locking, the main one
for frequency of oscillations 30. The other major basins appears each 30

n
(dotted

horizontal lines). We also notice small entrainment basins for some frequencies of
the form 30p

q
. For a more detailed discussion of these results refer to the text.



5.1. Proof of convergence 109

0 1000 2000

10

20

30

40

50

60

Time

ω

Figure 5.8: This figure shows the convergence of ω for several initial frequencies.
The Van der Pol oscillator is perturbed by F = sin(30t), with coupling ǫ = 0.7,
α = 50. We clearly see that the convergence directly depends on the initial
conditions and as expected the different kinds of convergence correspond to the
several entrainment basins of Figure 5.7.

nonlinear component α = 50, which is forced by a periodic signal sin(30t). As
expected, we see phase locking at frequency of oscillations 30, with an entrainment
basin of ω ∈ [32, 35]. We also explained that the oscillator may phase lock its
higher frequency components, as these frequency components are equally spaced,
one should expect phase lock for fractions of the frequency of the perturbing force.
In this case, for example, we see phase locking at frequencies of oscillations 30

2 , 30
3

and 30
4 .

This figure may become even more complex if the input signal has several
frequency components. We would see entrainment basins every time a frequency
component of the oscillator is close enough to any frequency component of the
external signal. Then, when using our adaptive rule, one should expect conver-
gence to any entrainment basins, depending on the initial conditions. Therefore,
the oscillator might adapt its higher frequency components to the frequency of the
input.

We now discuss the learning rule we introduced in Section 5.1.2, applied to the
Van der Pol oscillator. We just change the sign of Equation (5.7). This is justified
because when looking to the limit cycle of the Van der Pol oscillator, we see that
it is rotating in the opposite direction of the Hopf oscillator limit cycle. So the
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learning rule is

ω̇ = ǫF
y

√

x2 + y2
(5.51)

We do not give an analytical proof of convergence for the Van der Pol oscillator
because to use perturbation methods, as we did for the Hopf oscillator, we need
to know the solution of the unperturbed Van der Pol oscillator, but to the best
of our knowledge, only implicit solutions are known [55] and thus such a proof is
beyond the scope of this article. But the general behavior of the system should
be qualitatively the same, because of the linear coupling on the oscillator. Lets
rewrite Equations (5.49) and (5.50) into polar coordinates

ṙ = ǫF cos φ + (1 − ω2)r cos φ sinφ + αr3 sin4 φ (5.52)

φ̇ = −ω2 cos2 φ − sin2 φ + αr2 sin3 φ cos φ − ǫF

r
sin φ (5.53)

Even if the phase evolution is more complex than for the Hopf oscillator, the
interaction between the phase of the oscillator φ and the perturbation F is of the
same kind. Indeed, we clearly identify the same − ǫF

r
sinφ terms for the phase of

both oscillators (Eqs. (5.52), (5.53) and Eqs. (5.3), (5.4)). So we can expect the
same deviation of ω and therefore, the same convergence properties.

Now that we discussed the different expected behaviors, we present a series
of experiments in order to confirm our predictions and the functionality of the
adaptive dynamical system.

Numerical confirmation

We predicted that the adaptive Van der Pol oscillator will either adapt its fre-
quency of oscillations or one of its higher frequency component to the frequency
of the input. In order to show this, we study convergence of ω for different initial
conditions, when the oscillator is coupled with a simple sinus input (F = sin(30t)).
Figure 5.8 shows the result of the simulation.

When the initial condition ω0 > 23, we clearly see that ω converges to 34 which
corresponds to a frequency of oscillations of 30 rad · s−1. In this case the oscillator
is correctly adapting its frequency to the frequency of the input. For lower values
of ω0, we see convergence to other frequencies, corresponding to the entrainment
basins of Figure 5.7. We can conclude that the adaptive rule is changing ω in order
to get one frequency component of the oscillator to the same frequency than the
input signal. In fact, ω is falling into the nearest entrainment basin. Therefore,
we see how useful entrainment basins studies are to understand the dynamics of
the adaptive oscillator.

Moreover, even if there is not a direct relation between ω and the frequency of
the oscillations, the adaptive learning rule can appropriately tune ω so that the
frequency of oscillations (or one of the other frequencies of the oscillator) are the
same than the frequency of the input signal. Figure 5.9 shows the result of the
adaptation of the oscillator for various input signals. From these experiments, we
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Figure 5.9: We show the adaptation of the Van der Pol oscillator to the frequency
of various input signals: (a) a simple sinusoidal input (F = sin(40t)), (b) a si-
nusoidal input with uniformly distributed noise (F = sin(40t) + uniform noise
in [−0.5, 0.5]), (c) a square input (F = square(40t)) and (d) a sawtooth input
(F = sawtooth(40t)). For each experiment, we set ǫ = 0.7 and α = 100 and we
show three plots. The right one shows the evolution of ω(t). The upper left graph
is a plot of the oscillations, x, of the system, at the beginning of the learning. The
lower graph shows the oscillations at the end of learning. In both graphs, we also
plotted the input signal (dashed). In each experiment, ω converges to ω ≃ 49.4,
which corresponds to oscillations with a frequency of 40 rad ·s−1 like the input and
thus the oscillator correctly adapts its frequency to the frequency of the input.



112 Chapter 5. Adaptive Frequency Oscillators

see that ω converges to a value that corresponds to a correct adaptation of the
frequency of the oscillations to the frequency of the input. In each experiment,
we see that after learning, the Van der Pol oscillator and the input signal are
oscillating at the same frequency.

The adaptive Van der Pol oscillator demonstrates how to generalize our adap-
tive rule to complex oscillators. But, an increase in the complexity of the frequency
spectrum of an oscillator also generates side effects, like adaptation toward syn-
chronization of the higher frequency components of the oscillator and the frequency
of an input signal. Thus, when using highly nonlinear oscillators, one should al-
ways know the kind of frequency spectrum it has, in order to be able to predict the
behavior of the oscillator. Even if we cannot analytically prove the convergence of
our model, by numerically calculating the positions of the entrainment basins of
the oscillator when perturbed, we are able to predict the behavior of the system
in a quite powerful way.

In this section, we also discussed a very important property of the adaptive
learning rule. Although, the parameter we tune has not a linear relation with the
frequency of the oscillator, as it is often the case in highly nonlinear oscillators,
the adaptive oscillator is able to correctly adapt this parameter and find the ap-
propriate frequency of oscillations. It seems that a monotone relation between the
frequency of the oscillations and the parameter we tune is sufficient for frequency
adaptation.

5.1.12 Other examples of adaptive oscillators

In this section, in order to show the generality of the adaptive rule, we present
experimental results with three other oscillators. We build an adaptive Rayleigh
oscillator, an adaptive Fitzhugh-Nagumo oscillator and an adaptive Rössler sys-
tem.

The construction of the adaptive dynamical system is straightforward. The
main task is to identify in each oscillator the parameter that mostly influences
the frequency of the oscillations. Then, we only have to make this parameter
a dynamical system in the same way we did for the Hopf or the Van der Pol
oscillator. The right column of Figure 5.10 gives the resulting equations for each
oscillator.

In order to demonstrate the frequency adaptivity of these modified oscillators,
we made experiments for each oscillator. The results of the experiments are sum-
marized in Figure 5.10. In these experiments, the oscillators were perturbed by
a simple sinusoidal input and each oscillator was able to adapt its ω parameter
in order to learn the frequency of the input. Moreover, although the parameters
controlling the frequency in each oscillator are not linearly related to the frequency
of the oscillations, the adaptive rule is able to correctly find the correct value for
the ω parameter to learn the desired frequency.
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a) Adaptive Rayleigh oscillator

ẋ = y + ǫF
ẏ = δ(1 − qy2)y − ω2x
ω̇ = ǫF y√

x2+y2

ǫ = 0.3, δ = 50, q = 1, F = sin(20t)
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b) Adaptive Fitzhugh-Nagumo oscillator

ẋ = x(x − a)(1 − x) − y + ǫF
ẏ = ω(x − by)
ω̇ = −ǫF y√

x2+y2

ǫ = 5, a = −12, b = 0.01, F = sin(8t)
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c) Adaptive Rössler strange attractor

ẋ = −ωy − z + ǫF
ẏ = ωx + ay
ż = b − cz + xz
ω̇ = −ǫF y√

x2+y2

ǫ = 4, a = 0.15, b = 0.1, c = 8.5, F = sin(20t)

Figure 5.10: We show results for several adaptive oscillators. For each oscillator,
we give its equation in the right column, ω corresponding to the adaptive parame-
ter. We also specify the values of the different parameters used in the experiments.
In the left column we plotted results of the experiment. Each figure is composed
of 3 plots. The right one is a plot of the evolution of ω. The left ones are plots
of the oscillations (the x variable) and of the input signal F (dashed line), before
(upper figure) and after (lower figure) adaptation.
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5.1.13 Discussion

Fields such as control of autonomous robots or signal processing may need mod-
els of plastic dynamical systems to adapt to a constantly changing environment.
Moreover, plasticity in nonlinear oscillators might become an important aspect
in modeling adaptive processes, as for example in biology where adaptivity and
memory are major properties of living systems. The learning rule presented in
this article is a step towards a general framework of plastic dynamical systems,
which are systems for which learning is embedded in their dynamics and not an
offline optimization process.

The evolution of the parameter controlling the frequency of the adaptive os-
cillators that we discussed can be viewed as the correlation between the phase
of the oscillator and the input signal. So we defined a type of correlation-based
learning for periodic functions. In neurobiology, correlation based-learning rules
are known as Hebbian learning [122], hence we call our rule dynamic Hebbian
learning to highlight its correlation properties. Possible relevance to biology has
to be investigated in further research.

The construction of adaptive oscillators that we presented is simple, and gen-
eral enough to be applied to non-harmonic oscillators and not only to phase oscil-
lators. The adaptive rule is general for an oscillator, perturbed by a signal F (t),
with general equation

ẋ = f(x, y, ω) + ǫF (t)
ẏ = f(x, y, ω)

(5.54)

with ω influencing the frequency of the oscillations. We have the general learning
rule

ω̇ = −ǫF
y

√

x2 + y2
(5.55)

Only the sign in front of F may change according to the orientation of the flow of
the oscillator in the phase space. In this sense we generalize the concept of learning
presented by Nishii in [158,159], in which learning rules were only derived for phase
oscillators. Nevertheless, in addition to frequency adaptation, Nishii also derived
learning rules for coupling strength in populations of oscillators, which is an issue
we do not address in this contribution.

The learning rule we presented is not rigid and can be modified. For instance,
for the Hopf oscillator, a change in the learning rule in Eq. (5.7), from sinφ
to cosφ or any combination of periodic functions will not change the convergence
properties. This would only correlate the force to more complex periodic functions
instead of sinφ. Intuitively, the proof of convergence should give the same results,
since the learning part of the approximation (Equation (5.34)) depends on the
conjugate symmetry of the complex Fourier series of the input signal, which is
true for every real input signal.

The mathematical proof given in this paper leads to a better comprehension of
the learning process, which takes place on a coarser time scale than the oscillations
of the system. This proof also allows us to predict what the oscillator would learn
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in the case of multi-frequency inputs. Nevertheless, we only give a proof for
the adaptive Hopf oscillator and even if we numerically show that more complex
adaptive oscillators can be designed, a general rigorous proof for a larger class of
oscillators is still missing. Constructing such a proof is a very difficult task.

A major feature of our learning rule is that the oscillator can extract the fre-
quency of any input signal without any explicit signal processing (Fourier trans-
form) or any explicit time window or similar parameters. All the processing is
embedded in the dynamics of the oscillator. We also showed that the system can
learn frequencies from really noisy signals or from pseudo-periodic signals, like
a signal from the Lorenz strange attractor. The adaptive rule is also valid to
tune parameters that do not control linearly the frequency of the oscillations. A
monotonic, possibly nonlinear, relation between the frequency of oscillations and
the adapted parameter is sufficient for correct adaptation of the parameter as we
showed for the case of relaxation oscillators. In this case, the system is able to
correctly find a value that produces oscillations at the same frequency as the input
signal.

Dynamic Hebbian learning for adaptive oscillators has an important impli-
cation in the design of CPG models. Actually, coupled nonlinear oscillators are
often used for modeling CPGs [48,78,131,221], but the coupling has to be defined
by hand and this is a non-trivial task. By using adaptive oscillators, one could
build CPGs that can dynamically adapt their frequencies and consequently, create
a desired pattern of oscillations. For instance, we are currently exploring how a
population of adaptive oscillators can implement some kind of dynamic Fourier
transform [175]. Furthermore, one can imagine using this adaptation mechanism
to model various processes where self-synchronization is observed.
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5.2 Frequency analysis with AFOs

In this section we show that it is natural to use the same building block for
other applications than robotics. We do this by showing how we can do dynamic
frequency analysis with a pool of adaptive frequency oscillators.

Frequency Analysis with Coupled Nonlinear
Oscillators

Jonas Buchli, Ludovic Righetti, Auke Jan Ijspeert

This paper is under review.

Abstract We present a method to obtain the frequency spectrum of a signal
with a nonlinear dynamical system. The dynamical system is composed of a pool
of adaptive frequency oscillators with negative mean-field coupling. For the fre-
quency analysis, the synchronization and adaptation properties of the component
oscillators are exploited. The frequency spectrum of the signal is reflected in the
statistics of the intrinsic frequencies of the oscillators. The frequency analysis is
completely embedded in the dynamics of the system. Thus, no preprocessing or
additional parameters, such as time windows, are needed. Representative results
of the numerical integration of the system are presented. It is shown, that the
oscillators tune to the correct frequencies for both discrete and continuous spec-
tra. Due to its dynamic nature the system is also capable to track non-stationary
spectra. Further, we show that the system can be modeled in a probabilistic man-
ner by means of a nonlinear Fokker-Planck equation. The probabilistic treatment
is in good agreement with the numerical results, and provides a useful tool to
understand the underlying mechanisms leading to convergence.

5.2.1 Introduction

Frequency analysis is an important method in science and engineering. It has been
realized that the frequency spectrum of a signal carries important information
that is not easily accessible and exploitable in the time domain. Consequently,
frequency domain methods are of major importance in many disciplines both for
signal processing and for signal generation.

Several well-known techniques have been developed to carry out frequency
analysis, most prominently techniques based on Fourier transforms, filter banks,
and wavelets. The goal of this article is to explore alternative methods and to
answer the following question: is it possible to carry out frequency analysis using
a dynamical system and nothing else? As we will see, the answer is yes, by using
a system of coupled (adaptive frequency) oscillators.

This work was mainly driven by intellectual curiosity, and the resulting system
is therefore not meant to outperform current techniques nor to model a partic-
ular biological or physical phenomenon. Nonetheless, as discussed at the end of
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the article, the system presents several interesting properties which might lead
to interesting applications in engineering, and/or in science, e.g. for exploring
questions of adaptation in rhythmic systems.

Oscillators and systems of coupled oscillators are known as powerful modeling
tools [166] and are widely used in physics and biology to model phenomena as
diverse as neuronal signaling, circadian rhythms [214], heart beating, flashing
of fireflies [154], inter-limb coordination [91], Josephson junctions [231], lasers
to name a few. Quite often the oscillator’s parameters (such as the intrinsic
frequency) are kept fixed. Recently, we proposed an adaptive frequency mechanism
for oscillators which enables the oscillator to adapt its intrinsic frequency to one
of the frequency components of an input signal [24, 178].

Here, we present a system consisting of a population of mean field coupled
adaptive frequency oscillators which is able to extract the frequency components
of any arbitrary teaching signal T (t) presented to the system and to reproduce
it by a signal O(t) ≈ T (t). The main results presented here are twofold: First,
we show, verified by numerical integration, that the system indeed reproduces the
frequency spectrum of a given signal. The spectrum is reflected in the distribution
of individual intrinsic frequencies of the population of oscillators. The system
works for signals that have discrete and continuous spectra, where these spectra
can be stationary or time-varying. Second, we show that the frequencies of the
oscillators can be treated as particles under external forces and this allows one
to use the Fokker-Planck formalism to pose a macroscopic model which serves to
study its convergence properties in an additional way.

Central to the system are: a) the adaptive frequency property of the basic
oscillators, b) a negative feedback mechanism exerting influence via the mean
field, and c) a large number of oscillators. The oscillators serve as discrete building
blocks to construct the desired signal. After convergence, the distribution of the
frequencies of the oscillators corresponds, with respect to the fundamental limits,
to the frequency spectrum of the input signal, which could otherwise be obtained
e.g. via the FFT. To the best of our knowledge the presented system is the first
of its kind, exploiting the properties of oscillators to do frequency analysis.

5.2.2 A dynamical system for frequency analysis

In this section, we will first describe the basic unit out of which the whole the
complete system is constructed, namely the adaptive frequency oscillator that we
developed. We then present the complete system build as a pool of adaptive
frequency oscillators coupled with a negative mean-field feedback mechanism.

Basic unit: The adaptive frequency oscillator

The basic unit of the system is an adaptive frequency Hopf oscillator [24, 178].
The oscillator receives an input I(t) which is an additive perturbation to ẋ and
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which also influences the evolution of the frequency ω

ẋ =
(
µ − (x2 + y2)

)
x + ωy + KI(t) (5.56)

ẏ =
(
µ − (x2 + y2)

)
y − ωx (5.57)

ω̇ = KI(t)
y

√

x2 + y2
(5.58)

where x, y are the states of the oscillator and ω its intrinsic frequency, 0 < K
is a coupling constant, µ determines the steady state amplitude of oscillations
(x2

∞ + y2
∞ = µ). We choose for simplicity µ = 1.

The convergence properties of adaptive frequency oscillators as presented in
Eqs. (5.56)–(5.58) are discussed in detail in [178]. Important for the frame of
this article is the fact that an adaptive frequency oscillator adapts its intrinsic
frequency ω to one of the frequency components present in the input signal. By
perturbation series analysis it can be proved that the adaptive frequency Hopf
oscillator converges. From this analysis it gets furthermore clear that the conver-
gence behaves according to [178]

ω̇ = K2
∑

n∈N

|An|2ω
(nωF )2 − ω2

+ F̃ (t) (5.59)

where ωF is the fundamental frequency of the perturbation and An are the Fourier
components of the signal I(t) perturbing the oscillator. F̃ (t) summarizes other
driving terms which have average zero or are of very small order and do thus not
contribute to the long-term evolution of ω. Equation 5.59 furthermore shows that
there exist several basins of attraction (i.e. one for each An 6= 0).

At this point, it is important to point out that the convergence of the fre-
quency adaptation (i.e. the behavior of ω) should not be confused with the lock-
ing behavior (i.e. the classic phase locking behavior, or synchronization, as well
documented in literature, cf. [166]). The frequency adaptation process is an exten-
sion of the common oscillator with fixed intrinsic frequency. (1) The adaptation
process changes the intrinsic frequency and not only the resulting frequency, (2)
the adaptation generally has an infinite basin of attraction (i.e. for every initial
condition ω(0) it will converge to a frequency nωF as opposed to the limited range
in which synchronization can take place, also known as Arnol’d tongues struc-
ture [8, 166]), (3) the frequency stays encoded in the system when the input is
removed (e.g. set to zero).

In Figure 5.11 the typical convergence of the intrinsic frequency ω for different
input signals is shown. Here, we only show a single adaptive frequency oscillator
in these examples, without the mean-field feedback, to give the reader a feeling of
the properties of the building block of the full system. It is important to realize
that the adaptive frequency oscillator will find not only the frequency of harmonic
signals (Fig. 5.11a), but also of nonharmonic signals (Fig. 5.11b–f).

Adaptive frequency oscillators will also track non-stationary signals with vary-
ing frequencies (Fig. 5.11d). If the input has several frequency components the
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final value of ω is dependent on its initial condition ω(0) and the structure of the
frequency spectrum of the input signal, i.e. there exist several basins of attraction
(see Fig. 5.11e). The size and boundaries of a basin of attraction depend on the
energy content of the frequency component constituting the attractor in this basin
and can be inferred from Eq. (5.59) (see [178] for details). Finally the oscillator
also adapts to the pseudo-frequency of non-periodic signals like the output of the
Rössler system [184] in its chaotic regime (Fig. 5.11f).

In Fig. 5.12 we show how the adaptation rate can be modulated by choosing
different coupling constants K. It is evident that while a larger K means shorter
adaptation time, the amplitude of the oscillations at steady state behavior in-
creases as well. The problem of increased steady state oscillations however does
to a large extent not affect the final system with the mean-field feedback, as will
be discussed later.

All the aforementioned properties of the adaptive frequency oscillator, i.e. ex-
traction of frequencies and tracking are important and exploited for the construc-
tion of our system capable of dynamical frequency analysis.

Complete system: Pool of adaptive frequency oscillators

A pool of N such oscillators is used to create the final system. The input I(t) is
chosen as the difference between the mean field m(t) produced by the oscillators
and the teaching signal T (t)

I(t) = T (t) − m(t) = T (t) − 1

N

N∑

i

xi (5.60)

The output is chosen equal to the mean field O(t) = m(t). Thus, Eq. 5.60
establishes negative feedback via the mean activity of the oscillators. Fig. 5.13
illustrates the construction of the system.

By the negative feedback (Eq. 5.60), the action of the oscillators is subtracted
from the teaching signal, thus the remaining oscillators only “feel” the frequency
components not fully covered yet by the already adapted oscillators. When the
system starts with uniformly or randomly distributed initial frequencies, the dif-
ferent oscillators will gradually populate the frequency spectrum of the teaching
signal. Since the Hopf oscillator has a harmonic limit cycle and due to the ad-
ditive property of the system, the population of oscillators naturally reconstructs
the frequency spectrum of the signal by matching the distribution of the intrinsic
frequencies to the frequency spectrum of the input signal. In other words, we
have a means of frequency analysis in a fully dynamic way. If the power of the
signal is different from 1 a normalization of the signal is helpful. But even if the
signal power is not normalized, the system is either able to partially recover the
spectrum (power larger than 1) or it will be able to recover the whole spectrum
with the surplus oscillators adding to the noise floor (power smaller than 1). We
will not concentrate on these secondary results as we want to present the basic
properties of the system and present results with normalized signals.
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Figure 5.11: (a) Typical convergence of an adaptive frequency oscillator (Eqs 5.56–
5.58) driven by a harmonic signal (I(t) = sin(2πt)). The frequencies converges in
an oscillatory fashion towards the frequency of the input (indicated by the dashed
line). After convergence it oscillates with a small amplitude around the frequency
of the input. The coupling constant determines the convergence speed and the am-
plitude of oscillations around the frequency of the driving signal in steady state. In
all figures, the top right panel shows the driving signals (note the different scales).
(b–f) Non-harmonic driving signals. We depict representative results on the evo-
lution of ω−ωF

ωF
vs. time. The dashed line indicates the zero error between the

intrinsic frequency ω and the base frequency ωF of the driving signals. (b) Square
pulse I(t) = rect(ωF t), (c) Sawtooth I(t) = st(ωF t) (d) Chirp I(t) = cos(ωct)
ωc = ωF (1 + 1

2( t
1000)2) (Note that the graph of the input signal is illustrative

only since the change in frequency takes much longer than illustrated.) (e) Signal

with two non-commensurate frequencies I(t) = 1
2

[

cos(ωF t) + cos(
√

2
2 ωF t)

]

, i.e. a

representative example how the system can evolve to different frequency compo-
nents of the driving signal depending of the initial condition ωd(0). (f) I(t) is the
non-periodic output of the Rössler system. The Rössler signal has a 1/f broad
band spectrum, yet it has a clear maximum in the frequency spectrum. In order
to assess the convergence we use ωF = 2πfmax, where fmax is found numerically
by FFT. The oscillator convergences to this frequency.
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Figure 5.12: Typical convergence of an adaptive frequency oscillator (Eqs 5.56–
5.58) driven by a harmonic signal (I(t) = sin(2πt)) and different coupling constants
K. The coupling constant determines the convergence speed and the amplitude of
oscillations around the frequency of the driving signal in steady state – the higher
K the faster the convergence and the larger the oscillations.

. . .K
1
N

∑
T (t) O(t)

−
I(t)

∑

m(t)

Figure 5.13: The structure of the dynamical system that is capable to reproduce a
given teaching signal T(t). The system is made up of a pool of adaptive frequency
oscillators. The mean-field produced by the oscillators is fed back negatively on
the oscillators. Due to the feedback structure and the adaptive frequency property
of the oscillators it reconstructs the frequency spectrum of T(t) by the distribution
of the intrinsic frequencies.
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5.2.3 Simulation Results

The following results present the numerical integration2 of the pool of oscillators.
The initial condition for the frequencies is drawn from an uniform random distri-
bution. The presented results are representative for the behavior of the pool of
oscillators. Unless otherwise stated, the system is integrated with the following
default parameters: µ = 1, K = 200, N = 1000.

Discrete spectrum In Fig. 5.14 we present the evolution of the system for an
input signal T (t) = 1

6 [3 sin(2πt) + 2 sin(3
√

2πt) + sin(2π2t)] (cf. Fig. 5.14a) and
initial frequency distribution ω(0) ∼ U(1.5, 21.5). Fig. 5.14a shows how the sys-
tem locks almost immediately to the input signal and reproduces it. In Fig. 5.14b,
the system is shown after t = 1000s and we can see that the system matches the
input signal very well. The time evolution of the square-root error is shown in
Fig. 5.14c and we see that it quickly drops already in the first seconds of the evolu-
tion. In Fig. 5.14d the time evolution of the distribution of intrinsic frequencies is
depicted. The initial uniform distribution gets structured and converges towards
the frequency components, i.e. the system develops from an initial unordered state
into an ordered state which corresponds to the input signal. Visible is also how
the strongest frequency component in the input signal (at 2π) exerts the strongest
attraction which translates into the fastest convergence of the corresponding os-
cillators. This is in agreement with Eq. 5.59. In Fig. 5.14e,f, two measures
of the convergence of the frequency distribution are shown, in (e) the number
of oscillators which have converged to the correct frequencies and (f) the average
Manhattan distance which is calculated as follows: The distribution of oscillator is
sorted and the vector corresponding to the (sorted) distribution of the target spec-
trum is subtracted, then the sum of the absolute value of this difference is taken
and divided by N (i.e. d = 1

N

∑ |ωi − ωr,i|, where ω = [ω0, . . . , ωN ] is the state of
the oscillator frequencies, sorted from highest to lowest, and ωr = [ωr,0, . . . , ωr,N ]
is the target distribution, again sorted) between the current state of the oscilla-
tors and the target spectrum. Both convergence measures clearly show a rapid
convergence to the final correct frequency distribution. While the Manhattan dis-
tance shows very fast convergence in the first few seconds, the count of converged
oscillators takes a bit more than 20 seconds to raise to around 80%. In Fig. 5.14g
the histogram of the intrinsic frequencies of the pool of oscillators at t = 1000 s is
presented. The bars correspond to the number of oscillators in a given range of
frequencies, thus they indicate the frequencies and strength of the components. It
is clearly visible that the histogram matches very closely the theoretical frequency
components. There are some oscillators which have not yet converged, however
their number is small (∼ 3 %).

In Fig. 5.15 we show that the final state of the distribution is not dependent
on the initial conditions. We also see that the initial condition influences the

2Embedded Runge-Kutta-Fehlberg (4,5) method, tabs = 10−6,trel = 10−3
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Figure 5.14: (N = 1000, K = 200) – a) The teaching signal T (t) (dashed) vs.
the output signal O(t) (bold) in the beginning (t = [0, 1.5]s) The output almost
immediately tracks the teaching signal since we have a very strong coupling con-
stant. b) T (t) vs O(t) after 1000 s, now the output signal is basically identical to
the teaching signal. c) The square root error e(t) =

√

(O(t) − T (t))2 d) Evolution
of the distribution of ω. The traces of the evolution of the ωi are shown. Thus,
we can clearly see the development of the distribution of the intrinsic frequencies
from the initial uniform distribution to the distribution which corresponds to the
Fourier spectrum of the signal. e) The average Manhattan distance between the
distribution of the frequencies of oscillators and the Fourier spectrum (cf. text).
f) The fraction of oscillators which have converged. It can be seen that the there is
fast convergence of the oscillators in the first few seconds. The measure stabilizes
at around 0.96. g) The distribution of the intrinsic frequencies ω distribution after
t=1000 s (bars) the crosses indicate the theoretical value of the Fourier spectrum
of the signal.
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Figure 5.15: (N = 1000, K = 200) – Simulation with an initial condition which
is further off the end target spectrum. As can be seen due to the negative feed-
back the oscillators cross over the frequencies which are already covered. This
means they take longer to converge but the final distribution is very close to the
case presented in Fig. 5.14. c) The count of converged oscillators (bold line) in
comparison with the example from before (dashed).

transient time. We chose an initial condition ω(0) ∼ U(3, 6), i.e. all oscillators
start lower than the lowest frequency component of the teaching signal. As can
be seen the oscillators do not get stuck at the lowest frequency components and
are able to cross over the middle components of the signal. This is because the
middle components are already covered by enough oscillators and thus subtracted
via the negative feedback; the remaining oscillators thus only “feel” the remaining
frequency component. The final state is the same, apart from the position of the
oscillators which have not yet converged. Their number is the same (∼ 3 %).

As mentioned in the introduction of the basic oscillator, we can influence the
convergence speed by increasing the coupling constant K. Thus, we show the effect
of varying K in Fig. 5.16 for the mean-field coupled system. The input signal is a
simple sinus T (t) = sin(10t), the initial condition is ω(0) ∼ U(2, 18) The system is
using N = 100 oscillators. While in the first seconds of the evolution it is clearly
the case that the higher the coupling constant K the faster the evolution, for the
long term evolution, as can be seen from Fig. 5.16b, there seems to be a value of
K for which convergence is the best, i.e. converges to the lowest error, at around
K = 200. The oscillators with the negative-mean field coupling do not suffer from
the negative effects for strong K as encountered for the single oscillator. The
reason for this is that the oscillator locks to the input signal and is thus removed
from the input via the feedback. Thus there is no large input driving the oscillator
even for very strong coupling.

In Fig. 5.17 we show the simulation results for N = 6 oscillators, which is the
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Figure 5.16: (N = 100) – a) Convergence over time for different values of K
(T (t) = sin(10t) ω(0) ∼ U(2, 18)) as measured by the average Manhattan distance
(note the logarithmic scale for the time). We can see that in general larger K mean
faster convergence. b) Distance after 1s, 100s 300s, and 5000s for different values
of K.

minimal number of oscillators needed to exactly represent the teaching signal. The
results show that the convergence in this example works perfectly. In the presented
example an initial condition of ω(0) ∼ U(1, 50) has been chosen. In turns out,
that with a lower number of oscillators the initial condition gets more critical.
The more spread out the initial condition is the more likely the convergence works
perfectly (data not shown). Yet, even if the convergence does not work perfectly,
the most important components of the signal are generally correctly identified
(data not shown), i.e. a convergence of 3 oscillators to ω = 2π and 3 oscillators to
ω = 3

√
2π, instead of 3 to ω = 2π, 2 to ω = 3

√
2π and 1 to ω = 2π2.

Non-stationary spectrum A further important aspect is that the system is
able to recover the spectrum of non-stationary input signals. In Fig. 5.18 we show
a case where the input signal has strongly varying frequencies (quadratic chirps:
T (t) = 1

2 [sin(ω1t) + sin(ω2t)], ω1 = 2π(1 + ( t
3000)2), ω2 = 2π(3 − ( t

3000)2)). In the

figure the instantaneous frequencies φ̇1,2 (φ1,2 = ω1,2t) are drawn along with the
statistics of the frequencies of the oscillators. It is clearly visible that the system
tracks the time dependent frequencies. The figure corresponds to spectrograms
which can be obtained via wavelet transforms or other multi-scale filter methods.

Continuous spectrum In physics, many signals of interest have a continuous,
often broad, spectrum. In the following we show how the system performs on a
broad-band chaotic signal from the Rössler oscillator. In Figure 5.19a we show
the statistics of the intrinsic frequencies of the oscillators along with the FFT of
the teaching signal. We used the y variable of the Rössler oscillator in its chaotic
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perfect convergence to the given input signal. It can be seen that in this example
the convergence works perfectly. b) shows the histogram after 100 s - see text for
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Figure 5.18: (N = 1000, K = 200) – T (t) is a non-stationary input signal (cf.
text), in contrast to Figs 5.14 and 5.15 the histogram of the distribution of the
frequency ωi is shown for every 50s, the grey level corresponds to the number of
oscillators in the bins (note the logarithmic scale). The thin white line indicates
the theoretical instantaneous frequency. Thus, it can be seen that the distribution
tracks very well the non-stationary spectrum, however about 4% of the oscillators
diverge after the cross-over of the frequencies.
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parameter range as a teaching signal3 [184]. For the pool of oscillators to be able to
cover the whole signal, the Rössler signal has been normalized by its mean energy.
We used the settings K = 0.1, N = 104, initial conditions P (ω, 0) ∼ U(1.5, 2.5),
and show the state of the pool of oscillators after 105 s.

As can be seen in Fig. 5.19a the important features of the spectrum are
replicated, especially the broad spectrum. However, the distribution is not as
broad as the frequency of the driving signal. There is some cut-off effect. The
cut-off frequency is dependent on the coupling constant K and the number of
oscillators N : the lower K and the higher N , the higher the cutoff frequency
(data not shown). Another interesting fact is that the oscillators chose a symmetric
spectrum (i.e. about half of them having negative frequencies), this is of course a
fully valid solution. Even if the oscillators do not exactly match the spectrum we
can see that the essential features such as the broad distribution and important
peaks of the teaching signal are replicated.

In Fig. 5.19b, where the time-series of the output signal is compared with the
teaching signals, we see how the output of the system nicely follows the teaching
signal, in terms of zero crossings and general signal shape. However, we also see
here the manifestation of the fact that the signal is missing some high frequency
components, i.e. it does not accurately follow the teaching signal to its peak
values. This is in line with the observation of the spectrum.

5.2.4 Probabilistic Treatment: Fokker-Planck Equation

In order to investigate the convergence properties of our system, the oscillators can
be treated in a probabilistic manner, i.e. instead of looking at the single activities
of the oscillators we characterize the state of the frequencies by a probability
density function P (ω, t). Instead of looking at the the convergence of the large
scale system, we can then look at the behavior of this simplified system. Another
motivation for the probabilistic formalism is the fact that it is also a very good way
of testing the understanding of the important and relevant mechanisms at work.
In other words, when the simplified probabilistic model matches to a large extend
the results of the full scale system, it strongly suggests that the understanding,
assumptions and simplifications that went into the formulation of components of
the Fokker-Planck equation are correct, and the retained mechanisms relevant.

For the probabilistic treatment, the frequencies of the oscillators can be treated
as massless particles under external forces, which allows us to use the well known

3Rössler system (a = 0.2, b = 0.2, c = 5.7, T (t) = y):

ẋ = −y − z

ẏ = x + ay

ż = b − cz + xz
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Figure 5.19: (N = 10000, K = 0.1) – a) The FFT (black line) of the Rössler signal
(for t = [99800,100000]) in comparison with the distribution of the frequencies of
the oscillators (grey bars, normalized to the number of oscillators) at time 105s.
The spectrum of the FFT has been discretized into the same bins as the statistics
of the oscillators in order to allow for a good comparison with the results from the
full scale simulation. b) Time-series of the output signal O(t) (bold line) vs the
teaching signal T(t) (dashed line).

Fokker-Planck equation of the form

∂P (ω, t)

∂t
= − ∂

∂ω

[

A(ω, P )P (ω, t) − 1

2

∂

∂ω
B(ω)P (ω, t)

]

(5.61)

where the probability current is composed of a drift term (first summand) and a
diffusion term (second summand).

Drift term The drift term, is a function of the ”force” A(ω, P ) acting on the
intrinsic frequencies ω of the oscillator. As discussed in Section 5.2.2, without the
negative feedback, the force driving the intrinsic frequency can be written as [178]:

A(ω, P ) = K2
∑

n∈N

|An|2ω
(nωF )2 − ω2

+ F̃ (t) (5.62)

where ωF is the fundamental frequency and An are the Fourier components of
the signal perturbing the oscillator. F̃ (t) summarizes forces which have average
zero or are of very small order and are thus neglected for the mean-field treat-
ment. However, in case of the feedback coupled system, the effective force is
dependent on the current state of the distribution P (ω, t) in the following way:
Due to the negative feedback, the oscillators that have already converged diminish
the forces that make the oscillators converge. In order to account for this fact, a
correction factor is multiplied with the actual amplitudes of every frequency com-
ponent of the signal, i.e. every summand in Eq. 5.62, is multiplied with a factor
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an =

(

1 − cn

(
|An|
A∑

)−1
)

. The quantity cn is the fraction of oscillators which have

converged and locked to nωF (cn = Cn

N
, Cn: number of converged oscillators), AΣ

is the sum of the absolute values of all Fourier components AΣ =
∑

n∈N
|An|, thus

|An|
AΣ

designates the value of cn at which there are enough oscillators to replicate
the part of the signal with given frequency (we exploit the conjugate symmetry of
the Fourier spectrum of real signals to consider only the positive part of the spec-
trum). Hence, an designates the amount of signal energy for a given frequency
nωF that can still be felt by the oscillators that have not yet converged, thus,
potentially driving them to this frequency. an converges to zero for cn → |An|

AΣ
.

Hence, the force term reads4

A(ω, P ) = K2
∑

n∈N

∣
∣
∣
∣

(

1 − cn

(
|An|
A∑

)−1
)

An

∣
∣
∣
∣

2

ω

(nωF )2 − ω2
(5.63)

Until here the formulation of the Fokker-Planck equation is general and not
does depend on assumptions on the coupling constant K. We need however a way
to calculate cn. The key to assessing cn is counting the “converged” oscillators
in the full scale system, which translates into an integration of P over a certain
region of ω for the Fokker-Planck formulation: cn =

∫

L
P (ω)dω. In Appendix

5.2.6, the approximation of cn as used in the numerical integration is outlined.

Diffusion term The second part of the Fokker-Planck Equation, the diffusion
rate B(ω) is a function of the noise in the system. For a physical system it has
to be non-zero and positive. Obviously we defined the system in Eqs. (5.56)
– (5.58) to be purely deterministic. However, it is straightforward to enhance
Eqs. 5.56 – 5.58 with additive noise terms and therefore transform them into
Langevin equations. Then the diffusion term B(ω) is a constant, proportional to
the variance of the noise σ2 (B = 0.5σ2, Eqs. 5.56–5.58 describing the system are
enhanced by an additive white Gaussian noise term with the same variance) [182].

Especially, in the noiseless limit case (B(ω) = 0), as we will see next, the results
from the Fokker-Planck equation correspond very well to the results obtained by
integration of the full-scale system for large N .

Example: Harmonic signal

Let us take a concrete example with a harmonic teaching signal T (t) = sin(ωF t).
In this case we can write down the Fokker-Planck equation straightforwardly and

4The term for the absolute value can further be simplified: | . . . | = |An − cnAΣ|. However,
the origin of the terms is then obscured, thus we prefer the other formulation for its explanatory
power.
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Figure 5.20: T (t) is a harmonic signal a) c1(t) for Fokker-Planck (dashed) and
full-scale simulation (N = 1000, K = 1) in the noise-less limit (B(ω) = 0) b) The
difference between c1(t) for Fokker-Planck and full-scale simulation.

Eq. 5.63 simplifies to

A(ω, P ) = K2

∣
∣
∣
∣

(

(1 − c1)
1

2

)∣
∣
∣
∣

2 ω

ω2
F − ω2

(5.64)

To compare the dynamical system and its Fokker-Planck interpretation, the
quantity c1, i.e. the fraction of oscillators which have converged to ωF , is used,
as a measure for the convergence of the system. In Figure 5.20 the results of
c1 in full-scale simulation vs. the integration of the Fokker-Planck equation (Eq.
5.61) are presented. The following parameters have been used for the simulations:
number of oscillators in full scale simulation N = 1000, initial condition P (ω, 0) ∼
U(ωF − 2, ωF + 2), ωF = 15, x(0), y(0) ∼ U(0, 1). The nearly perfect coincidence
of the results of the Fokker-Planck equations with the full scale simulation is
clearly visible. This confirms the validity of the probabilistic treatment. In the
beginning c1 in the full scale simulation is lower than predicted by the Fokker
Planck equation, however after about 30 s the match is very close.

In Figure 5.21 we show the results of the full-scale simulation and the Fokker-
Planck equation for B 6= 0.5 Especially for low levels of noise, the correspondence
of the frequency distribution in the large scale simulation and the results from
the Fokker-Planck equation are very good. Even for high levels of noise the char-
acteristics of the distribution are well preserved. In Fig. 5.21g we compare the
measure c1 in the full-scale simulation with the c1 from the Fokker-Planck equa-
tion. In both, full-scale and Fokker-Planck, we see clearly how the noise does not

5Euler Integration ∆t = 10−3 s
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affect the system strongly for moderate levels of noise, the mean values are close
to one and not affected by the noise. Only for stronger noise (σ > 10−4) does the
influence become evident, the mean values degrade and the fluctuations in the full
scale system are enhanced (visible in the increased variance). Interestingly the
main peak in the full scale simulation starts to oscillate around the correct value
(cf. Fig 5.21, the peak of the histogram shifts left and right of the peak given by
the Fokker-Planck solution). This means the oscillators do not de-phase and start
having different frequencies, but they fall into a coherent large scale oscillation.
This comes from the interaction between the oscillators with close frequencies, an
effect not captured by the presented Fokker-Planck equation. This behavior under
influence of noise is different than simple diffusion in Brownian motion, where the
variance would observed would be exactly the variance of the added noise (i.e. σ2).
Interestingly, the behavior of mean and variance in the full scale simulation as seen
in Fig. 5.21g shows the typical fingerprint of a phase transition, and indeed we
can also observe in the solution of the Fokker-Planck equation, how this solution
qualitatively changes from a clear peak (Fig. 5.21a,b) with two characteristic side
lobes to a more tent-shaped distribution (Fig. 5.21e,f).

Example: Discrete spectrum

To present how the Fokker-Planck Equation behaves with more complex spectra,
we integrate it for the same signal and initial conditions as used in Fig. 5.14,
namely T (t) = 1

6 [3 sin(2πt) + 2 sin(3
√

2πt) + sin(2π2t)] and ω(0) ∼ U(1.5, 21.5).
The comparison is shown in Fig. 5.22. We see that especially in the beginning
the match is very good. For longer evolution the Fokker-Planck equation predicts
a slightly better convergence than seen in the full scale simulation. While at
t=15000 the statistics predicts that all oscillators should have converged, in the
full scale system there are still some oscillators which have not converged yet. We
will discuss some possible reasons for that below.

5.2.5 Conclusions & Discussion

General properties Summarizing, we have presented a dynamical system
which is able to reproduce the frequency spectrum of any incoming signal. Es-
pecially interesting are the facts that no preprocessing of the signal is needed,
that there is no need to set time windows or similar parameters (see below), and
that the input does not need to be stationary. The mechanism that enables the
“learning” of the frequency spectrum is the adaptive frequency mechanism of the
oscillators, a mechanism which is related to Hebbian learning known in theoreti-
cal neurobiology [122, 178]. As a matter of fact, learning and adaptation can be
considered as dynamics of the parameters of the system, on a slower time scale.
This gives a general and unified point of view of learning and adaptive systems.
To the best of our knowledge, our system presents a novel approach to do signal
processing using dynamical systems. In order to obtain the frequency spectrum
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Figure 5.21: Results from integration of Fokker-Planck and full-scale simulation
(N = 1000, K = 1) for different levels of noise: σ2 = [10−6, 10−2] a)–f) Compari-
son between the distribution of the large scale simulation (bars) and the Fokker-
Planck integration (line), note the logarithmic scale. The continuous distribution
P (ω, t) has been discretized in order to allow for a good comparison with the
results from the full scale simulation g) Measures of the convergence in steady
state. (Triangles) Fokker-Planck c1, (Circles) Full-scale simulation c1, (Crosses)
Variance of c1 in the full scale simulation. Clearly visible is that the full-scale
simulation and the Fokker-Planck equation show the same qualitative behavior
under different levels of noise. Interestingly there is a peak of variance for a level
of noise between σ2 = 10−3 and 10−2 in the full-scale simulation (discussion see
text).
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Figure 5.22: Comparison between the results of the Fokker-Planck integration
and the full scale simulation (N = 1000, K = 1) for a more complicated signal,
namely the signal used in Fig. 5.14. The grey histogram shows the statistics of the
full scale simulation and the black line shows the prediction of the Fokker-Planck
integration. Note that the statistics of the oscillator does not show more detail
since the single oscillator is the lower limit for resolution (zero line in the plot),
this resolution could arbitrarily pushed up by choosing more oscillators. We see
that especially in the beginning the match is very good. For longer evolution the
Fokker-Planck equation predicts a slightly better convergence than seen in the full
scale simulation (cf. text).
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of the input signal T (t) it suffices to feed in the signal as input to the system.
The frequency spectrum can be read out from the distribution of ω. The system
tracks dynamically any changes in the spectrum and is thus not limited to sta-
tionary signals, this is a property which directly follows from the use of dynamical
systems.

Fokker-Planck analysis We showed that the full scale dynamical system can
be simplified and treated by a non-linear Fokker-Planck equation. Despite not
being solvable analytically, the Fokker-Planck equation allows for an integration
of the system that is orders of magnitude faster and thus allows for the investiga-
tion of convergence properties, with the disadvantage that for its integration the
Fourier spectrum of the signal has already to be known. Thus, the Fokker-Planck
equation is only a way to analyze the system but does not replace the original
setup for possible applications. Furthermore, there are clearly differences between
the Fokker-Planck equation and the behavior of the full-scale system in the high
noise range. There are interactions in the system which are not caught by the
presented Fokker-Planck equation, which, in its current form, only describes the
mean-field feedback. Effects that are neglected include nonlinear cooperative ef-
fects such as clustering and mutual influence of oscillators with close frequencies.
These effects remains to be studied in detail. However, the Fokker-Planck equation
and its related probability distribution P is a good description for the system in
the thermodynamic limit (N → ∞) and gives already good results for finite sized
systems. While it was rather straight forward to write down the Fokker-Planck
equation, deriving its analytical solution is much more difficult or even impossi-
ble. The theoretical approximations and the numerical solutions presented in this
article should provide a first step towards a full analytical treatment. While for
the sake of performance in the first part of the article we used from small to very
large K, the theoretical understanding is only firm for lower K. As pointed out in
the appendix A, important parts of the theoretical fundament for large K remain
to be worked out. Since it is generally known that strongly coupled oscillators are
very difficult to analyze, for large K we have much less of theoretical knowledge
that we can build upon.

Open parameters: K, N, and initial distribution When applying our sys-
tem to a new, unknown, signal, three items need to be instantiated: the coupling
strength K, the number of oscillators N , and the initial distribution of intrinsic
frequencies ω(0).

As we have seen, the coupling strength K determines the speed of convergence
towards the frequency components of the input signal, with large K leading to
faster convergence. In the single oscillator case, a large K leads to undesirable
overshoots and oscillations of the frequency ω around the input frequency. This
problem is however much less significant in the complete system with populations
of oscillators because the driving signal gets effectively removed from the input by
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the negative feedback after convergence. This means that in practice K can be
chosen in a range of several orders of magnitude, from 1 to 1000 (see Fig. 5.16) and
still provide good convergence to a stationary input signal. Clearly, the choice of
K becomes more critical with non-stationary signals. From the theoretical point
of view we know that there must be a limit how fast the system can track a non-
stationary signal, this limit is influenced by the choice of K, i.e. the higher K,
the faster the system can track non-stationary effects.

Obviously, there is also limit in the approximation capacity of the system due
to the discretization by the component oscillators. The level of accuracy can
be chosen and scales with ∼ 1

N
. We showed that the system is already capable

of converging with the minimum number of oscillators, however the smaller the
number of N the more critical becomes the initial condition. In practice one
should choose an intermediate number of oscillator (e.g. N = 100, . . . , 1000) to
balance between the dependence on initial conditions and the computational cost.
In the way the system is constructed it works best for normalized signals, otherwise
the result will have a noise floor or the oscillators are not able to fully cover the
spectrum. Furthermore, as we have seen, the system is better suited for discrete
spectra, but also performs reasonably well on continuous spectra. However here
the choice of a large N becomes more critical.

In summary, it is important state that the exact choice of the parameters is
usually not critical.

Last but not least, no special initial conditions need to be given. However, of
course the initial conditions (mainly ω(0)) determine the transient times.

Comparison with related signal processing techniques It will further be
interesting to investigate how the system relates to the fundamental limits of
signal processing, such as the uncertainty relationship. It is evident that the
presented system can not circumvent these limits. The choice of K and N do
implicitly specify the time-frequency resolution such as in wavelet transforms [143]
or windowed FFT. Yet, to work out the analytical dependence of this resolution
window on those two parameters remains to be done. But only by knowing this
dependence the system will be comparable to the other well established techniques
in a quantitative way.

Out of this reasoning it follows that, comparing the statistics of the oscillators
against the FFT of the continuous signal in Fig. 5.19 might not be the best
method to assess the system, since the FFT is a statistics over a longer time
window, while the oscillator statistics shows the system in a given moment with
the statistics dependent on the implicit time window that we do not know how to
calculate yet.

Filter-banks are a way of analyzing the frequency spectrum of a signal based
on (linear) dynamical systems. But the output of the filter-bank needs to be post-
processed by algorithmic treatment to get the spectrum. Filter-banks are thus not
a way to do the frequency analysis with only dynamical systems as we asked for
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in the introduction. Furthermore, in contrast to filter-bank methods, our method
works without explicitely specifying different bands for filtering, it adjusts itself
to the needed frequency components.

Future work We are currently investigating variants of the presented, basic
system, including (i) replacing the simple sum by a weighted sum for the generation
of the output signal such that a single oscillator rather than a group of oscillators
can produce a given frequency component, (ii) adding direct coupling between the
oscillators (i.e. other than through the mean-field) to achieve structurally stable
solutions after the teaching signal is switched off (cf. [175] for an example), and (iii)
using non-harmonic oscillators (e.g. van der Pol or FitzHugh-Nagumo oscillators).
For non-harmonic oscillators, the direct correspondence between distribution of
intrinsic frequency and Fourier spectrum would be lost, but these oscillators posses
wider stable regions for higher order locking, thus such systems could be more
suitable to replicate non-harmonic limit cycles in a structural stable way.

Possible applications As mentioned in the introduction, this work was mainly
meant as an exploration of the use of dynamical systems to perform frequency
analysis, and its real applicability remains to be explored. It could be used as
an alternative to methods such as FFT, wavelets, and filter banks, but its pros
and cons compared to those methods remain to be studied in detail. Possible
applications include any application that uses frequency analysis, e.g. signal pro-
cessing, signal filtering, and signal compression. In addition to the interesting
properties listed at the beginning of this section, we would like to point out a pos-
sible advantage of our system: the system lends itself directly to a fully parallel
implementation. This means it would be well suited for a very fast hardware im-
plementation. Furthermore, as discussed above, the system can be extended with
direct coupling between oscillators to do robust signal generation. For instance,
the system could learn a rhythmic gait pattern for a legged robot, and then replay
it robustly (i.e. as the limit cycle attractor of the system of coupled oscillators).
Compared to fixed pre-recorded gait patterns, such a dynamical systems approach
is interesting because it allows online modulation of the gaits and offers robustness
against temporary perturbations (i.e. the system will return to the limit cycle af-
ter a short transient period). See [181] for an example applied to the walking of a
humanoid robot.

The relevance to modeling should also be explored. Several physical and bio-
logical systems show similar frequency adaptation mechanism. For instance, many
animals have body properties (e.g. dimensions and mass) that change over several
orders of magnitude from larval stages to adulthood. The frequencies of loco-
motion cycles typically also change over a large range. It would be interesting
to explore what are the developmental mechanisms that underly this frequency
adaptation. Clearly our model is very abstract, and is as such not suitable for
mechanistic explanations of such phenomena. But it might be that some of the
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adaptation mechanisms present in biological systems could be compared to the
adaptation rule that underlies our system.

5.2.6 Appendix – Calculation of cn for small K

We show in the following how cn can be approximated for low K, later we discuss
what needs to be done to extend the formulation for large K which turns out to be
much more difficult. While weakly coupled oscillators are fairly well understood
and treated extensively in the literature, the picture changes for strongly coupled
oscillators which are much more difficult to handle. In any case cn is a function of
P (ω), i.e. the state of the oscillators. Hence, the Fokker-Planck equation becomes
nonlinear.

For the given assumption that K is small we can calculate the integration
region L in a straight forward manner by exploiting the locking condition for
weakly coupled harmonic oscillators. The locking condition is a condition on the
difference of the intrinsic frequency of the oscillator and the perturbation. As soon
as the frequencies are close enough, i.e. the difference of frequencies is below the
critical value (|nωF − ω| < ωc), the oscillator will phase lock on the perturbation.
This means it will oscillate at the frequency of the perturbation (ωF ) instead of
the intrinsic frequency ω. As shown in [23], by analyzing the geometry of the limit
cycle of system Eqs. (5.56)–(5.57) and the influence of perturbations, the critical
difference in frequency can be calculated as

ωc =
Kµ

2
(5.65)

Because for small K the locking region is about the same size as the region where
the frequency convergence mechanism makes the frequency “snap” into the final
frequency, we can safely consider the oscillator as converged when it enters the
locking condition. This assumption is based on empirical evidence, but the results
of the numerical integration in Sections 5.2.4 and 5.2.4 shows that it is justified.

Using condition from Eq. 5.65, which gives the bounds on the frequencies
for which component oscillators phase lock, cn can then be calculated as cn ≈
∫ nωF +ωc

nωF−ωc
P (ω)dω.

While we have seen that this assumption and derivation of cn gives good results
for small K (i.e. up to K ≈ 1), for large K the correction factor needs further
modification. Unmodified the present formulation of cn would over-estimate the
number of converged oscillators because it removes all oscillators from the driving
forces when they enter the locking region, which gets large for large K.

But since even if the locking region is very large, the oscillators continue to
converge once they enter the locking region, cf. example in Fig. 5.14, where all
oscillators start in the locking region of the signal components, nevertheless there
is a convergence of the frequencies. Calculating cn based on critical frequency
ωc would thus lead to an overestimation of the number of converged oscillators.
Thus, we have to figure out how to modify the calculation of cn for large K. In



138 Chapter 5. Adaptive Frequency Oscillators

the following we shortly describe the largest effects that we have observed which
will be the basis for the modification.

For large values of K, even if the oscillator has locked on the signal (which
happens very early due to the larger locking region) it will not completely remove
the associated part of it since it will run phase shifted with the signal. The
small remaining signal is amplified by the strong coupling constant to drive other
oscillators towards the frequency.

Furthermore, for such strong coupling, the radius of the limit cycle is changed
to an extent that the effects need to be taken into account. What happens is
that due to the strong coupling the radius of the limit cycle is larger than

√
µ.

This effect accounts for the steady state error (i.e. the oscillators which do not
converge), since due to the larger radius, fewer oscillators are needed to actually
cover the full signal.

Thus, while we have an idea for the mechanism which have to go into the
formulation the modification term for strong K we yet have to work out the
theoretical fundament and analytical form of these mechanisms.
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Chapter 6
From Abstract to Reality

In this chapter we develop the ideas from Chapter 4 further. The abstract con-
troller concept is step by step applied to more complex robots, first in simula-

tion and then in the real world. It will be shown that the original concept is not
only working without a fundamental modification on all the systems on which it
has been tried, but that the results get ever more interesting and promising the
more complex the underlying “body” becomes.

In a first simulation study, the adaptive frequency oscillators are applied to a
simple 4-DOF spring mass hopper. Finally, the controllers are implemented and
put to the test on a real robot, the experimental compliant and under-actuated
robot PUPPY II.

6.1 A simulated hopper robot

A Dynamical Systems Approach to Learning:
A Frequency-adaptive Hopper Robot
Jonas Buchli, Ludovic Righetti and Auke Jan Ijspeert

This paper has been originally published as
J. Buchli, L. Righetti, and A.J. Ijspeert. A dynamical systems ap-
proach to learning: a frequency-adaptive hopper robot. In Proceedings
of the VIIIth European Conference on Artificial Life ECAL 2005, Lec-
ture Notes in Artificial Intelligence, pages 210–220. Springer Verlag,
2005

Abstract We present an example of the dynamical systems approach to learn-
ing and adaptation. Our goal is to explore how both control and learning can
be embedded into a single dynamical system, rather than having a separation be-
tween controller and learning algorithm. First, we present our adaptive frequency
Hopf oscillator, and illustrate how it can learn the frequencies of complex rhythmic
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input signals. Then, we present a controller based on these adaptive oscillators
applied to the control of a simulated 4-degrees-of-freedom spring-mass hopper.
By the appropriate design of the couplings between the adaptive oscillators and
the mechanical system, the controller adapts to the mechanical properties of the
hopper, in particular its resonant frequency. As a result, hopping is initiated
and locomotion similar to the bound emerges. Interestingly, efficient locomotion
is achieved without explicit inter-limb coupling, i.e. the only effective inter-limb
coupling is established via the mechanical system and the environment. Further-
more, the self-organization process leads to forward locomotion which is optimal
with respect to the velocity/power ratio.

6.1.1 Introduction

Nonlinear dynamical systems are a promising approach both for studying adap-
tive mechanisms in Nature and for devising controllers for robots with multiple
degrees of freedom. Indeed, nonlinear dynamical systems can present interesting
properties such as attractor behavior which can be very useful for control, e.g.
the generation of rhythmic signals for the control of locomotion. However, con-
trollers for engineering applications usually need to be tailor-made and tuned for
each application. This is in contrast to Nature where multiple adaptive mecha-
nisms take place to adjust the controller (the central nervous system) to the body
shape, and vice-versa. For the control of locomotion for instance, there are mech-
anisms to adapt the locomotor networks to changing body properties (e.g. due
to growth, aging, and/or lesions) during the life time of an individual, and this
greatly increases its survival probability.

In order to endow robots with similar capabilities, we are investigating the
possibility to construct adaptive controllers with nonlinear dynamical systems.
This is achieved by letting the parameters of the system change in function of the
systems behavior, and, therefore, also in function of external influences. Thus, we
aim at designing systems in which learning is an integral part of the dynamical
system, not a separate process, in contrast to many approaches in artificial neural
networks and other fields.

In an earlier study [24] we presented an adaptive frequency oscillator as a
controller for a simple locomotion system. The motivation to use an adaptive
frequency oscillator was to deploy a controller that is able to adapt to “body”-
properties, i.e. properties of the mechanical system. In this case the body property
to be adapted to is the resonant frequency of the mechanical system. The presented
approach is especially useful when the mechanical properties of the body are not
known or changing. In such cases, properties such as the resonant frequencies
and similar are not directly accessible, but have to be inferred by some sort of
measurement.

In this paper we pursue further the idea of the adaptive frequency oscillator
used as an adaptive locomotion controller (cf. [24]). First, we will present how the
adaptive frequency oscillator can learn the frequencies of arbitrary rhythmic input
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signals. The main interesting features of the adaptive oscillator are (1) that it can
learn the frequencies of complex and noisy signals, (2) that it does not require any
pre-processing of the signal, and (3) that the learning mechanism is an integral
part of the dynamical system.

Then, we will present a more complex and realistic example of a robot that is
capable of hopping, namely a 4-DOF spring-mass hopper with an adaptive con-
troller based on the adaptive frequency oscillators. Spring-mass systems have been
widely used to study fundamental aspects of locomotion [14,70] and several robots
based on this concept have been presented [34,53,172]. In [73] the mechanical sta-
bility of spring-mass systems is discussed. Recently, robots with legs including
elastic elements have been presented [69, 103, 127]. Coupled oscillators have been
extensively studied for locomotion control [47, 69, 220, 223]. However, usually the
structure and parameterization of these controllers are fixed by heuristics or are
adapted with algorithms which are not formulated in the language of dynamical
systems. One exception is [158] where learning is included in the dynamical sys-
tem. The results are, however, for many coupled phase oscillators and no direct
application example is given. Another exception is [39] where an adaptation of
the stride period is investigated, with a discrete dynamical system.

In our contribution, thanks to the adaptive mechanisms, the controller tunes
itself to the mechanical properties of the body, and generates efficient locomotion.
As we will see, the system, albeit its simplicity, shows a rich and complicated
emergent behavior. In particular, efficient gait patterns are evolved in a self-
organized fashion, and are quickly adjusted when body properties are changed.
Interestingly, the emergent gaits are optimal with respect to the velocity/power
ratio.

6.1.2 Adaptive Frequency Oscillators

In this section we introduce our adaptive frequency Hopf oscillator, and will show
its behavior under non-harmonic driving conditions. The adaptive frequency Hopf
oscillator is described by the following set of differential equations. We introduce
it in the Cartesian coordinate system (Eqs. 6.1–6.3) as this allows an intuitive
understanding of the additive coupling. In order to understand convergence and
locking behavior it is also convenient to look at the oscillator in its phase, radius
coordinate system which in the case of the Hopf oscillator, having a harmonic
limit cycle, coincides with the representation in polar coordinates (Eqs. 6.4–6.6).

ẋh = (µh − r2)xh − ωhyh + cFx(t)(6.1)

ẏh = (µh − r2)yh + ωhxh (6.2)

ω̇h = − 1

τh

y

r
cFx(t) (6.3)

ṙh = (µh − r2)r + cos(φh)cFx(t) (6.4)

φ̇h = ωh − 1

r
sin(φh)cFx(t) (6.5)

ω̇h = − 1

τh

sin φhcFx(t) (6.6)

where xh, yh are the states of the oscillator, ωh is its intrinsic frequency, r =
√

x2
h + y2

h and Fx(t) is a perturbing force (the subscript h distinguishes the
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variables of the Hopf oscillator from variables in the mechanical system). If
Fx(t) = 0, this system shows a structurally stable, harmonic limit cycle with
radius r =

√
µ for µ > 0. It can be shown [176] that such an oscillator adapts to

frequencies present in a rhythmic input signal. In the case of a harmonic signal
Fx(t) = sin(ωF t) this means ωh is evolving toward ωF . If the input signal has
many frequency components (e.g. square signal) the final value of ωh is dependent
on the initial condition ωh(0). The size and boundaries of the basins of attraction
are proportional to the energy content of the frequency component constituting
the basin of attraction, see [176] for further discussion of the convergence prop-
erties. Our adaptive frequency oscillators have many nice features which makes
them useful for applications and a good example for the dynamical systems ap-
proach to learning: 1) no separation of learning substrate and learning algorithm,
2) learning is embedded into the dynamics, 3) no preprocessing needed (e.g. no
extraction of phase, FFT, nor setting of time windows), 4) work well with noisy
signals, 5) robust against perturbation, 6) they possess a resonant frequency and
amplification properties.

Now we shall present a few representative results from numerical integration,
to show the correct convergence of the adaptive frequency oscillator. First, we
show the convergence for a harmonic perturbation Fx(t) = sin(ωF t). As we are
interested to show that ωh → ωF , we use ωd = ωh − ωF and φd = φh − φF to
plot the results. For all simulations τ = 1, c = 0.1, ωd(0) = 1, φd(0) = 0 and
rh(0) = 1. We present results of the integration of the system Eqs. 6.4-6.6. In
Fig. 6.1 the behavior of variables φd and ωd is depicted. In Fig. 6.1(b), we present
the phase plot of the system for the harmonic perturbation. Clearly visible is
that the system is evolving towards a limit set. The limit set corresponds to
the phase locked case φd ≤ const and the frequency has adapted so that ωd ≈
0. Since we want to be sure that the convergence works for a wide range of
input signals (as in the case when the oscillator is coupled with the mechanical
system) we show then results with general nonharmonic perturbation by general
TF -periodic functions f(t, ωF ), TF = 2π

ωF
(Fig. 6.2). The system was subjected

to the following driving signals: (a) Square Pulse Signal f(t, ωF ) = rect(ωF t), (b)
Sawtooth f(t, ωF ) = st(ωF t), (c) Quadratic Chirp f(t, ωF ) = cos(ωct),ωc = ωF (1+
1
2( t

1000)2), (d) Signal consisting of two non-commensurate frequency components,

f(t, ωF ) = 1
2

[

cos(ωF t) + cos(
√

2
2 ωF t)

]

, (e) Chaotic signal from the Rössler system.

There are differences in the convergence speed and in the limit set. Yet, in all cases
the oscillators converge to the appropriate frequencies. Very interesting cases are
signals with 2 or more pronounced frequency components (such as signals (a),(b)
and (d)). In this case the initial condition ωd(0) determines to which frequency the
oscillator adapts (cf Fig. 6.2(d)). The size of the basin of attraction is proportional
to the ratio of energy of the corresponding frequency component to the total energy
of the signal (due to the lack of space the data is not shown, but can be found
in [176]). These simulations show that the adaptation mechanism works despite
complex input signals (convergence under broad driving conditions). In the next
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section we will explore how these interesting properties can be applied to control
a mechanical system.

6.1.3 The adaptive active spring-mass hopper

In this section we will present the spring-mass hopper. We will first present the
mechanical structure and then focus on the adaptive controller. As a general idea
we will exploit the bandpass, and amplification/attenuation properties of both the
mechanical system and the adaptive frequency Hopf oscillator.

Since our main interest is the adaptation in the controllers, we do not discuss
the problem of mechanical stability of the locomotion. We avoid stability problems
by an appropriate mechanical structure (wide feet, low center of mass), thus the
feet of the robot are wide enough to ensure stability in lateral direction, i.e. the
robot is essentially working in a vertical (the “sagittal”) plane. The spring-mass
hopper consists of 5 rigid bodies joined by rotational and linear joints (cf. Fig.
6.3). A prolonged cubic body is supported by two legs. The two legs are identical
in their setup. A leg is made of an upper part Mu and a lower part Ml which
are joined by a spring-mass system and a linear joint. The function of the linear
joint is just to ensure the alignment of the body axes and is otherwise passive.
The spring between the two parts of the leg is an activated spring of the form
Ff = −kdl, where k = fk(t) and dl is the distance between Mu and Ml. The
damper is an ideal viscous damping element of the form Fd = −cdvd, where cd

is the damping constant and vd = vu − vl, is the relative velocity of Mu and Ml.
The rotational joints between the upper part of the leg Mu and the body Mb

are activated by a servo mechanism which ensures that the desired velocity vref

is always maintained (cf. [3]). The choice of the spring activation function fk(t)
and the choice of the desired velocity vref = fv(t) will be discussed below, when
the coupling between controller and mechanical system is introduced. Due to the
spring-mass property of the legs the contraction mechanism possesses a resonant
frequency ωF

1. In other words, this type of mechanical system can be interpreted
as a band-pass filter with the pass band around ωF . This fact is important for
the controller to be able to activate the body [24]. This will be further discussed
towards the end of this section.

The controller of the leg consists of an adaptive frequency Hopf oscillator (Eqs.
6.1–6.3), which is perturbed by the activity of the mechanical system (see below
for the exact form). The Hopf oscillator acts as a frequency selective amplifier [58],
i.e. frequency components of Fx(t) that are close to ωh are amplified. Especially
the setting µh = 0 is special in the sense that the system undergoes a fundamental
change at that point: For µh < 0 the system exhibits a stable fixed point at z = 0,
whereas for µh > 0 a stable limit cycle occurs with radius r =

√
µh. This phe-

nomenon is known as a Hopf bifurcation. At µh = 0, there is no signal oscillating
at ωh weak enough not to get amplified by the Hopf oscillator. Therefore, for

1Note, that the leg can also be considered as a pendulum and thus possesses a second resonant
frequency. We will not focus on this intrinsic dynamics in this article.
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Figure 6.1: (a) Integration of the System Eqs. 6.1-6.3 (b) corresponding phase
plot, in which the frequency adaptation and the phase locking can be seen.
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Figure 6.2: On the top left panel the nonharmonic driving signals are presented.
(a) Square pulse (b) Sawtooth (c) Chirp (Note that this is illustrative only since
the change in frequency takes much longer as illustrated.) (d) Signal with two
non-commensurate frequencies (e) Output of the Rössler system. – We depict
representative results on the evolution of ωd

ωF
vs. time. The dashed line indicates

the base frequency ωF of the driving signals. In (d) we show in a representa-
tive example how the system can evolve to different frequency components of the
driving signal depending on the initial condition ωd(0).
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fore leg hind leg (b)

a
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MS

HO

HO

fore leg

hind leg

Default parameter values

parameter value parameter value

µh 0.0001 mb [kg] 0.35
τh [s] 1 mu[kg] 0.09
c [sm−1] 0.5 ml [kg] 0.0056
a [Nm−1] 10 cd [N m−1 s] 0.7
av [rad s−1] 10 k0 [N m−1] 40

(c)

Figure 6.3: (a) The mechanical structure of the spring-mass hopper. The trunk is
made up of a rigid body Mb on which two legs are attached by rotational joints.
The lower part of the leg is attached by a spring-mass system SD. The lower part
consist of a small rigid body. The length of the body is 0.5m (b) The coupling
structure of the controller and the mechanical system used for the spring-mass
hopper. The upper Hopf oscillator is used for the activation of the fore leg and
the lower feedback loop for the hind leg. (c) This table presents the parameters
that have been used for the simulations, unless otherwise noted. Note that this
parameters can be chosen from a wide range and the results do (qualitatively)
to a large extent not depend on the exact values of the parameters. Bottom
row: Snapshots of the movement sequence of the spring-mass hopper when the
frequency is adapted, i.e. steady state behavior (cf also movie [1]).
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that setting the Hopf oscillator can be considered an ideal amplifier. We use a
setting µh ≈ 0. The coupling from the oscillator to the mechanics is established
via the spring constants k = fk(t) and desired angular joint velocity vref = fv(t).
The oscillator therefore drives both a linear actuator (the spring in the leg) and
a rotational actuator (the servo in the hip). The function for the spring constant
is chosen as k = k0 + axh

r
, where k0 is a constant and a a coupling constant. The

function for the desired velocity is chosen as vref = avyh where av is a coupling
constant. The choice of this function, which introduces a π

2 phase lag between
the spring activity and the joint angular velocity is based on the observation of a
phase lag between hip and knee joints in locomoting humans and animals. The
coupling from the mechanical system to the Hopf oscillator is established via the
relative velocity between upper and lower part of a limb as follows Fx(t) = cvd Fig.
6.3 illustrates the coupling scheme. Thus, by the coupling scheme a feedback loop
is established between the oscillator and the mechanical system. If the resonant
frequencies of mechanical system and the Hopf frequency match, i.e. ωF ≈ ωh, an
increase of the activity in the system is expected due to the amplifying proper-
ties of the Hopf oscillators (cf. [24]). Instead of tuning the controller manually to
the appropriate frequency, we let the controller adapt its frequency. In order to
achieve this adaptation, we introduce an influence of the mechanical perturbation
to the evolution of ωh via an appropriate choice of Fω.

Adaptive Frequency The coupling of the perturbation of the mechanical system
to the evolution of ωh, allows the controller to adapt to the mechanical system
and is equivalent to the perturbation arriving at the oscillator projected on the
tangential direction of the limit cycle multiplied with an adaptation rate constant:
ω̇h = − 1

τh
cvd

yh

r
= − 1

τh
Fx(t)yh

r
. This is the same coupling as used for the adaptive

frequency Hopf oscillator before.

6.1.4 Simulation results

The spring-mass hopper simulation was implemented in Webots, a robot simulator
with articulated-body dynamics [153]. In Table 6.3 we present the parameters for
the spring-mass hopper that were used for the simulations unless otherwise noted.
Note that this parameters can be chosen from a wide range and the qualitative
results do to a large extent not depend on the exact values of the parameters.

We first show how the adaptation of the Hopf frequency ωh leads to an ex-
citation of the system and hopping is initiated. To avoid influence of the hip
movements on the generated movement the joints are, in this case, fixed at an an-
gle of zero degrees and av = 0, i.e. the hopper is just able to hop in place. Thus,
the experiment verifies that the frequency adaptation works. As can be seen in
Fig. 6.4, indeed, due to the adaptation the feet start to lift from the ground. In
a next experiment the coupling from the oscillators to the rotational hip joints is
set to its default value (av = 10). Due to the activation of the hip joints complex
movements emerge. The diversity and self-organization of the movement depends
on many factors, therefore in this article we will show preliminary results on the
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Figure 6.4: Simulation results of the
spring-mass hopper when the rotational
joints are not activated. a) Evolution of the
intrinsic frequencies of the Hopf oscillators
ωh. Note that the frequencies of both os-
cillators nearly coincide and therefore only
one seems visible. b) Fore limb foot ele-
vation. c) Hind limb foot elevation. The
adaptation of the frequency is clearly visi-
ble and as can be seen in the feet elevation
measurements the activity of the system is
increased as hopping starts at around 20 s
(arrow). The dashed line depicts the the-
oretical resonant frequency of the spring-
mass system when it would not leave the
ground. Due to the lift-off of the feet the
real resonant frequency is smaller than the
calculated value.
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Figure 6.5: Simulation results of the
spring-mass hopper when the rotational
joints are activated a) The frequencies of
the Hopf oscillators ωh b,c) Foot elevation
yf,h d) Displacement of the center of mass
of the body xb. The adaptation of the fre-
quency is clearly visible. As can be seen
in the feet elevation measurements and the
displacement of the body this adaptation
enhances the activity of the leg and initi-
ates a displacement of the body. Interest-
ingly there is a burst of activation (arrow)
which increases the adaptation speed be-
fore the system settles to steady state be-
havior.
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Figure 6.6: Test of the adaptation capa-
bility of the controller when the mass is
changed. At t = 40 s (dashed line) the mass
of the body Mb is changed from mb = 0.2 kg
to 0.4 kg. See text for discussion.
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most typical locomotion pattern that was observed. This pattern resembles the
bound. The movement sequence of the hopping movement is shown in a series
of representative snapshots in Fig. 6.3. In Fig. 6.5, the adaptation, feet eleva-
tion and displacement of the body is presented. The average achieved velocity in
steady state for mb = 0.35 kg is about 0.53 ms−1 (approx. one body length per
second). The next experiment shows that the controller correctly tracks changes
in the mechanical system. To demonstrate this adaptation capability the mass of
the body Mb is changed from mb = 0.2 kg to mb = 0.4 kg at time t = 40 s. The re-
sults are presented in Fig. 6.6. As the mass is changed, the controller immediately
starts to adapt and settles after about 50 s to the new resonant frequency. When
looking at the displacement of the body xb it is evident that the change in the
mass slows down the system for a moment but due to the adaptation the velocity
is increased again (cf also movies of the experiments [1]). The average velocity
before change of mass is about 0.68 ms−1. After the change, when reached steady
state behavior again, the velocity is in average 0.49 ms−1.

In a last experiment we investigate the efficiency of the hopper for forward
locomotion. We define the efficiency as the ratio ρ =

vx,b

PΣ
i.e. the ratio between

average forward velocity vx,b of the body and the average power PΣ consumed by
all activated joints. In order to assure steady state measurements, the learning
is disabled (τh = 0) and the experiment is repeated for different Hopf frequencies
ωh = [10, 10.5 . . . , 20]. The transient behavior is removed before the efficiency is
measured. In Fig. 6.7, the results of the efficiency measurements are presented.
The line indicates the frequency to which the system evolves if τ 6= 0, thus it is
clear that the adaptive frequency process finds the optimal efficiency. It is worth
noting, that this optimum in efficiency does not correspond to the maximum of
power consumption nor the maximum of velocity (data not shown). This is in line
with the observations on animals.

6.1.5 Discussion

When introducing adaptation into a system it is important to investigate the
convergence properties of the adaptation mechanism. From the mathematical
point of view adaptivity on one hand and convergence and stability on the other
hand are somewhat opposing requirements. We have shown, that the adaptive
frequency oscillator can be driven with general, nonharmonic signals and still
adapts to the frequency of the signal.

We have presented a 4-DOF spring-mass hopper with a controller based on
adaptive frequency Hopf oscillators which adapts to mechanical properties of the
hopper. This adaptation has the effect that the spring-mass system starts to
resonate and initiates hopping locomotion, similar to the bound. The adaptation
is embedded into the dynamics of the system and no pre-processing of sensory
data is needed. The system shows fast adaptation to body properties.

The results presented in this paper show that with a simple control scheme,
it is possible to initiate complex movements and to adapt to the body properties
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which are important for this movement. In order for this simple scheme to be
successful it is important that the controller exploits the natural dynamics of the
body. This is in line with observations in nature, where the controllers are found
to be complementary to the bodies they control. In fact the adaptation can be
considered a type of Hebbian learning as it maximizes the correlation between the
signal perturbing the oscillator and the activity of the oscillator. Interestingly,
there is no direct coupling between the controllers for the hind and the fore limb.
The only coupling between the two controllers is via the mechanical structure and
the environment. Nevertheless, an efficient inter-limb coordination emerges and
a fast, efficency-optimal locomotion is established. This is interesting as there is
no explicit notion of velocity in the system, so it is surprising that the system
optimized on velocity/power efficiency.

Immediate possible applications of such adaptive nonlinear dynamical systems
are e.g. modular robotics, micro robots, robots which are difficult to model, and
adaptive Central Pattern Generators (CPG) for legged locomotion. Furthermore,
it will be interesting to explore the use of such adaptive systems in other fields
such as in Physics, Biology and Cognitive Sciences, where oscillators are widely
used model systems.

Acknowledgments This work is funded by a Young Professorship Award to
Auke Ijspeert from the Swiss National Science Foundation (A.I. & J.B.) and by the
European Commission’s Cognition Unit, project no. IST-2004-004370: RobotCub
(L.R.). We would like to thank Bertrand Mesot for constructive comments on
earlier versions of this article.

Additional results From the simulation used in the just presented study, more
interesting results have been obtained, which where omitted in the publication for
lack of space. We do present it in the following as it completes the understanding
of the system.

In Fig. 6.8, we show first the two quotients making up the efficiency measure,
namely the energy consumed by the robot and the velocity. It is clearly visible
that they do not show an extremal value for the found frequency, but only their
quotient as presented in the article. Furthermore, we show, that the system finds
distinct gait patterns (expressed by the phase difference between hind and fore
leg) for each frequency. This data is the motivation for some of the experiments
shown later on the real robot with local controllers.

As an additional very interesting result, we show where the energy for loco-
motion is actually spent. The main contribution is from the motor of the hind
limbs(∼ 45 %), followed by the motor of the front limbs (∼ 35 %), and only then
comes the contributions of the springs (∼ 15 % and ∼ 5 %).

Interestingly this distribution of the power corresponds qualitatively to biolog-
ical data, where (1) the hind limbs contribute most for locomotion and (2) in the
limbs, it is mainly the pivotal action around the hip joint that contributes to the
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Figure 6.8: Further results from the simulation study a) total energy consumed by
the robot over the simulation run b) The mean velocity achieved by the robot. It
can be seen that the neither the energy nor the velocity show an extremum at the
resonant frequency. c) Gait pattern (phase difference), depending on the detuning
of the controller different gait patterns emerge. d) Energy distribution over the
different actuators of the robot. After adaptation, the hind legs contribute more
to the locomotion. Hip joints more than the springs: Mean energy A) hind hip
joint B) fore hip joint C) hind spring D) fore spring.
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forward motion. The other muscles are anti-gravity muscles and do not contribute
to locomotion. Those muscles correspond to the springs in our systems. In the
robot, as we will see below, we will have non-activated knee joints and it is the
energy distribution from this simulation which suggested that we the approach
will work well with non-activated springs - the results we will present will show
that this assumption is correct.

We can thus put forward the hypothesis that the observed energy distribution
and consequently muscle and limb dimensions in mammals follow from very basic
mechanical facts to which evolution has been tuning its solutions.

6.2 First real world tests

This paper shows preliminary results on PUPPY II and a treatment of AFOs in
feedback loops. The work is extended in the next section.

Finding Resonance: Adaptive Frequency Oscillators
for Dynamic Legged Locomotion
Jonas Buchli, Fumiya Iida and Auke Jan Ijspeert

This paper has been originally published as
J. Buchli, F. Iida, and A.J. Ijspeert. Finding resonance: Adaptive
frequency oscillators for dynamic legged locomotion. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3903–3909. IEEE, 2006

Abstract There is much to gain from providing walking machines with passive
dynamics, e.g. by including compliant elements in the structure. These elements
can offer interesting properties such as self-stabilization, energy efficiency and
simplified control. However, there is still no general design strategy for such
robots and their controllers. In particular, the calibration of control parameters
is often complicated because of the highly nonlinear behavior of the interactions
between passive components and the environment.

In this article, we propose an approach in which the calibration of a key pa-
rameter of a walking controller, namely its intrinsic frequency, is done automat-
ically. The approach uses adaptive frequency oscillators to automatically tune
the intrinsic frequency of the oscillators to the resonant frequency of a compliant
quadruped robot. The tuning goes beyond simple synchronization and the learned
frequency stays in the controller when the robot is put to halt. The controller is
model free, robust and simple. Results are presented illustrating how the con-
troller can robustly tune itself to the robot, as well as readapt when the mass of
the robot is changed. We also provide an analysis of the convergence of the fre-
quency adaptation for a linearized plant, and show how that analysis is useful for
determining which type of sensory feedback must be used for stable convergence.
This approach is expected to explain some aspects of developmental processes in
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biological and artificial adaptive systems that “develop” through the embodied
system-environment interactions.

6.2.1 Introduction

Although rigid bodies and high-gain motor control for tracking precise trajecto-
ries are the basis for the design of traditional robotic systems, there has been
an increasing interest of endowing robots with passive dynamics for locomotion
behaviors inspired from biological research. In biological locomotion research it
has long been realized that the control systems have to work together with the
bodies they are controlling. As observed by Marc Raibert, the central nervous sys-
tem does not control the body, it can only make suggestions [172]. An increasing
number of legged robots are, similarly to their biological counterparts [6, 70], en-
dowed with passive dynamics in the form of springs and/or pendulums, and have
demonstrated interesting properties such as energy efficiency, self-stabilization,
and simple control [38, 49,101,126,149,173].

However, an important problem with robots that have passive dynamics is that
we do often not know how to properly control them. Because passive dynamics is
intrinsically dependent on the physical constraints of the environment, the control
architectures have to be highly dynamic and adaptive. For the operation in com-
plex environments, in particular, it is useful for the robot to autonomously find
the intrinsic locomotion dynamics. Because the locomotion dynamics is highly
dependent on the physical constraints of the body and the environments (e.g.
body weight and ground friction), the robot has to constantly and dynamically
track and readapt the control parameters to maintain the locomotion dynamics.
This is possible since body and sensors yield redundant information and invari-
ants, which a suitable controller can find and exploit. After all, biological systems
for locomotion control are extremely adaptive and seem to fulfill these adaptivity
requirements.

Therefore, a successful control methodology needs to address the following
questions: (1) how can we stabilize the controller-robot systems, (2) control them,
and (3) modulate their behavior. These requirements are not different from the
ones addressed with traditional linear controller design. For robots with passive
dynamics, however additional properties of the controller are needed. Namely, (4)
how to find in an autonomous fashion the intrinsic locomotion modalities and,
because they can change due to the environment or changes in the body, (5)
constantly track and readapt to them.

We propose an approach that addresses the problem of how to automatically
and dynamically tune a controller to the, possibly time-varying, properties of a
compliant robot body and exploit those properties for locomotion. In particular,
we are interested in designing systems made of coupled nonlinear oscillators that
are bi-directionally coupled to the robot for the control of locomotion. In this con-
text, it is important for the controllers to be able to track the resonant frequencies
of the compliant robot in order to minimize the amount of energy that needs to be



6.2. First real world tests 153

applied for obtaining locomotion. We do not address the problem of mechanical
stability in this work, we are mainly interested in the adaptation problem.

In this article, we implement such an approach by using the adaptive frequency
Hopf oscillator [24, 178] for controlling the hopping of a compliant quadruped
robot. We designed this oscillator to have several interesting properties such as a
structurally stable limit cycle and the ability to tune its intrinsic frequency to the
frequency components of arbitrary rhythmic input signals. Particularly interest-
ing are the facts that the system is simple, that it does not require complicated
preprocessing and signal analysis techniques, and that it does not require external
learning/optimization algorithms (learning is part of the dynamical system).

Oscillators for locomotion control have been presented before (e.g. [47, 104,
126, 217]), however the automatic, online tuning of their parameters is usually
not addressed. In some studies the intrinsic synchronization properties of the
oscillators are exploited to modify the gait patterns slightly based on sensory
input. These studies use the well-known synchronization properties of nonlinear
oscillators, namely that an oscillator receiving a forcing rhythmic input (e.g. from
sensors) will oscillate at the frequency of the input as long as the coupling is
strong enough and that the intrinsic frequency of the oscillator is not too different
from that of the input. This means (1) that synchronization only works when
the intrinsic frequency is designed to be close to that of the input, and (2) that
frequency of the input is forgotten once the input is removed. In contrast, our
approach based on frequency adaptation has three interesting properties: (1) it
tunes the intrinsic frequency of the oscillator, not the resulting frequency, (2) the
intrinsic frequency converges to the input frequency from any initial condition (ie.
even if it is initially very different from it), and (3) after convergence, the intrinsic
frequency keeps the value of the input frequency even when the input signal is
removed.

In previous work, we have demonstrated in simulation that the adaptive fre-
quency oscillators can be used to adapt to the resonant frequency of the body
and initiate locomotion in crawling and hopping robots [24,28]. In particular, we
illustrated how it could adapt to changes in body weight. Here, we extend that
work by applying the control architecture to a real robot, the quadruped robot
PUPPY II, and by demonstrating that the system can deal with all the noise and
time delays of a real system. In addition, we provide a mathematical analysis of
the convergence of the frequency adaptation for a linearized plant, and show how
that analysis is useful for determining which type of sensory feedback must be
used for stable convergence. Interestingly, this analysis explains the experimental
facts that the convergence of the adaptation process can be achieved with the
sensory information from some sensors but not others (unless the sensor signals
are modified). As it becomes clear later in this paper, this finding allows further
insights into sensory motor-coupling of adaptive behavior in robots with passive
dynamics.

In the next sections, we first describe the adaptive frequency Hopf oscillator
and its application to the control of hopping with the quadruped robot (Sec-
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tion 6.2.2). Experiments show the nice online adaptive property of the controller
but also that convergence of the frequency adaptation is obtained with some sen-
sors but not with others (namely with the inertial sensor but not the knee joint
angle sensor). We then present a general analysis of a complete system composed of
the adaptive oscillator bi-directionally coupled with a linear plant (Section 6.2.3).
We use that analysis to explain the robotic experiments, i.e. how convergence de-
pends on the modality of the sensory information (Section 6.2.4). Finally, results
are discussed in Section 6.2.5.

6.2.2 Adaptive frequency oscillator on a real robot

This section explains the control architecture and the initial experimental results
with the robotic platform where we use the adaptive frequency Hopf oscillator
as a controller. The aim is to motivate the subsequent analysis, more detailed
results on the robot experiments will be reported elsewhere. We will see that we
need to develop an understanding of adaptive frequency oscillators in feedback
loops to explain the experimental results. And hitherto no analysis of adaptive
frequency oscillators with feedback loop exists. This article is a first step toward
this analysis.

PUPPY II is a small experimental quadruped robot for the investigation of
locomotion in robots with passive dynamics. The robot has 4 servo motors in
the “hip” joints and passive rotational knee joints with a spring (see Figure 6.9).
It is thus under-actuated and has a very pronounced intrinsic body dynamics in
terms of the resonant frequency. The used version of this robot has several sensor
capabilites: 3-axis inertia sensors, touch sensors, knee angle sensors, force sensors
under the feet, and an IR distance sensor. From previous research (see [101]) it is
known that such a robot has interesting intrinsic locomotion modalities which are
closely linked with its passive dynamics. So far however these modes where found
by parameter tuning, trial and error, systematic parameter sweeps or other search
techniques. Our research aims at finding controllers which are autonomously ca-
pable of finding and exploiting such intrinsic locomotion capabilities. We have
shown in simulation how very simple dynamical systems can find intrinsic loco-
motion modalities and elicit them [28]. This robot allows to test the presented
approach on a real robot.

The controller consists of an adaptive Frequency Hopf oscillator which has the
form [24,178]:

ṙ = (µ − r2)r + cos φ y (6.7)

φ̇ = ω − 1

r
sinφ y (6.8)

ω̇ = −1

τ
sin φ y (6.9)

where r, φ and ω are the state variables for amplitude, phase and frequency re-
spectively. u = r cos φ is the oscillatory output signal and y is an input signal that
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a)

b)

c)

Figure 6.9: a) PUPPY II, a robot “dog” with passive dynamics (cf. springs in the
knee joints) and several sensor modalities b) Mechanical structure of PUPPY II
and sensor placement: 1,3: FSR (Force Sensitive Resistors) 2,4: Potentiometers
of the passive joints 5: 3-axis acceleration sensors 6: PSD (Position Sensitive
Detector). Circles with a cross denote actuated joints, blank circles denote passive
joints. c) Control structure used in the experiments: One of the sensor channels is
used to perturb an adaptive frequency Hopf oscillator, the output of the oscillator
(a state variable) is used to send motor commands (position control). Thus, this
system constitutes a nonlinear feedback loop.
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is used to feed sensory input into the oscillator. u (with an appropriate scaling
and offset) is used as position setpoint for the servos. If the input y = 0, this
oscillator exhibits a harmonic limit cycle with radius

√
µ and frequency ω. If the

input is a rhythmic signal the oscillator will tune its frequency to the frequency of
the input (see [176] for details). Note that this mechanism is more than mere syn-
chronization, it is real frequency adaptation with a theoretically unlimited basin
of attraction. τ represents the adaptation time constant. Its choice is to a large
extent uncritical (here we use τ = 0.3). The higher this constant the faster the
adaptation, but also the larger the fluctuations around the steady state value after
convergence. In the presented experiments, one oscillator is used to drive all four
legs, i.e. all four legs get the same position set point (i.e. hopping). The aim is
to replicate some of the results from [28] on a real robot and then go further and
explore more possibilities. As input to the oscillator one of the sensors of the robot
is used. The closest match to the setup as in [28] intuitively is using one of the
knee sensors (sensor 2 or 4) as input. In Fig. 6.10, the result of the experiment
with the knee sensor is shown. It is clear that with the knee sensor there is no
convergence. This somehow contradicts the intuition from the previous simulation
experiments. Thus, a more formal understanding of such a system is needed to
understand the convergence properties. Furthermore, if however the inertia sen-
sor (sensor 5, z-axis) is used as an input to the oscillator, a nice convergence is
observed, the frequencies to which the oscillator develops indeed correspond to a
hopping forward locomotion of the robot (see movies under [2]). Fig. 6.11 shows
an example of the resulting hopping behavior. And, in analogy to the simulation
experiments, in Fig. 6.10b we present the capability of the controller to readapt
to change of body properties. This dynamic re-adaptation follows directly from
the formulation of the controller as a dynamical system.

The question arises how we can understand the convergence properties and
ultimately can we use the insight to improve the convergence properties or design
the controller to converge to another body property of our choice.

6.2.3 Adaptive Hopf Oscillator with Linear Feedback loop

In order to begin with the analysis of the system, the plant (i.e. the robot) will
be modeled by a linear time-invariant system. This is a simplification but as we
will see in the remainder of this article this simplification yields already significant
understanding of the mechanism that leads to convergence/divergence.

Thus, in the following we treat the “body” as a linear system. Therefore, lets
assume the following systems: First, a linear n-th order SISO (the “robot”) of the
form

ẋ = Ax + Bu (6.10)

y = Cx + Du (6.11)

A is a n × n, B a n × 1, C a 1 × n matrix, and D a scalar. u is the (scalar)
input to the linear system and y the (scalar) output.
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Figure 6.10: Results of adaptation experiments with the real-world robot a) The
frequency ω of the oscillator is shown as it changes over time (bold line) adapta-
tion using the z-axis of the inertia sensor: convergence.of the frequency adapta-
tion; (dashed line) adaptation using the knee sensor: divergence of the frequency
adaptation with increased rate around the resonant frequency b) An experiment
showing the advantage of using online adaptive controllers. The body weight is
changed from w1 = 0.905 kg to w2 = 0.695 kg. The controller immediately adapts
to the changed body property.
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Figure 6.11: These snapshots show the hopping movement of the robot after the
frequency adaptation has converged. There are moments when the robot has all
four legs lifted.

Second, the adaptive frequency Hopf oscillator as described by Eqs. 6.7– 6.9.
We set u = r cos φ. Hence, the Hopf oscillator and the linear systems are connected
in a feedback structure through their inputs y (from the linear system to the Hopf
Oscillator) and u (from Hopf to the linear system).

As can be shown by linear systems theory, the linear system can not generate
other frequencies than already present in the input u, it can however modify phase
and amplitude of the signal. Therefore, we can write:

y = Ar cos(φ + α) (6.12)

where A = |H(s)| and α = arg(H(s)). (H(s) is the transfer function of the linear
system).

We begin the analysis of the oscillator by writing the phase of the Hopf oscil-
lator perturbed by an input y

φ̇ = ω − 1

r
sinφy

As outlined above we write y(t) to be the Hopf state amplified by A and rotated
by α

y(t) = Ar cos(φ + α)

thus
φ̇ = ω − sinφA cos(φ + α)

Using trigonometric transformations we can write this expression as

⇒ φ̇ = ω +
1

2
A[sinα − sin(2φ + α)]

The results in [178] show that we have a separation of timescale, i.e. the frequency
adaptation process works on a timescale much slower then the convergence to the
limit cycle with given frequency and radius. Thus, we assume ω = const and
investigate what the observed frequency will be. If this frequency is different then
the intrinsic frequency, it should drive the slower adaptation process. ω = const
also implies that A and α are constants (s = jω). We evaluate the average effective
frequency with the given assumptions:

ω =
1

2π

∫ 2π

0
ω +

1

2
[A sinα − sin(2φ + α)]dφ (6.13)
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Since by assumption ω is a constant and therefore α,A are constant, it follows
that the first two summands are constants. The last summand is a 2π-periodic
mean-free function, thus we get

ω = ω +
1

2
Ar sinα (6.14)

Let us define ∆ω as ∆ω = ω −ω, which is a useful notation to discuss conver-
gence:

∆ω = ω − ω =
1

2
Ar sinα (6.15)

From [178]

⇒ ω̇ ≈ 1

2
A2 ω

ω2
F − ω2

(6.16)

where
ωF = ω + ∆ω

Assuming ω, ωF > 0 this means if ∆ω > 0, ω increases, otherwise it decreases.
If ∆ω has a zero crossing with a negative slope (∂∆

∂ω
< 0), there is an attractive

region around ∆ω ≈ 0. Therefore, we expect the adaptation of the frequency to
have a stable fixed point in this region. Hence, ∆ω gives us information on the
convergence of the system.

The magnitude of the linear system A = |H(s)| can not be the determinant
for convergence since it is positive, thus we have to focus on the phase of the
linear system α = arg H(s). We see that the term sin α determines the zeros and
the sign of ∆ω, conclusively the phase of the linear system α = arg H(s) is the
determinant for convergence of the adaption process. We will come back to the
use of the phase for determining stability in the presentation of the examples. But
first we verify numerically the derived approximation.

Numerical test of the approximation

Indeed the result shows that the observed frequency is not the intrinsic frequency.
This can be confirmed by computing an FFT on one of the oscillatory state vari-
ables (x, y) of the oscillator (data not shown). Here we present another numerical
verification of the results.

To test if our assumptions and simplifications are correct we can numerically
integrate the differential equation (6.16) and compare the results with the inte-
gration of the full system (Eqs. 6.7–6.11). As can be seen in Fig. 6.12, the
approximation yields very close results to the full system for ω 6= ωF (using pa-
rameters from example A below). Looking at the reasoning in [178] it is clear that
the approximation is only correct if ω 6= ωF . Thus the observed erratic behavior
after convergence at t > 860 s is clearly not a surprise and does not invalidate
above results. Furthermore, this erratic behavior is partially due to numeric arti-
facts by integrating the equation in a straight forward manner with a Runge-Kutta
solver.
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Figure 6.12: In this figure we compare the results of the integration of the full
system (Eqs.6.7–6.11) with the results of the approximation (Eq. 6.16): (blue) ω
from the integration of the full system, (red dashed) ω predicted by the approx-
imation. The dashed horizontal line marks the resonant frequency of the linear
system.
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6.2.4 Examples of linear feedback loops

Now that we are confident that our reasoning is correct, let us present two examples
for a feedback loop with a linear system. The linear system is inspired by a spring
mass system. It does however not represent a detailed modeling of the robot.

The two examples will replicate the basic observations in the two presented
experiments in Fig. 6.10. Thus, the goal of these two examples is to show how
generic linear systems model for the plant helps to explain the convergence prop-
erties of the complete feedback system. We also show that it is very easy to reason
for stability once the Bode plots of the linear system are known.

The phase of a linear system is commonly drawn as part of the Bode plot.
Bode plots are a very fundamental tool in control engineering for determining
stability of feedback loop systems, robust control performance, etc. We can thus
exploit all the knowledge experience and tools of working with Bode plots for
the analysis of our problem. This means we have a very well developed, rather
simple but still very powerful tool to analyze the convergence property of adaptive
frequency Hopf oscillators in feedback loops. Furthermore, it can ultimately allow
us to design for certain convergence properties, by engineering the phase of the
system. This is commonplace in conventional control engineering, thus very well
developed techniques exist.

Stable at resonance

Lets assume the following linear system:

A =

[
0 1

− k
m

−d

]

B =

[
2
0

]

C = [1, 0]

D = 0

This is 2nd order (e.g. spring mass) system, which possesses a clear resonant

frequency at ωr =
√

k
m

. The values of the constants are largely irrelevant for the

general result. For the presented data we have chosen k = 272, m = 1 and d = 0.1.
(Note that we use unit-less constants as their physical interpretation can vary).

In Figure 6.13, we present the Bode diagrams for the linear systems, and the
result of the adaptation of oscillator. As discussed above, the bode plot already
gives us a hint for stability of the adaptation process. More precisely we need to
look at function ∆ω, but since this is a second order system, we know that the
phase shift is maximum 2π, thus the phase can only have a single zero crossing.
Since sin is a odd function we also know that the sign does not change, thus we
can read the stability of the adaptation directly out of the bode plot. In this
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example we see a negative zero crossing at the resonant frequency, thus we expect
the adaptation process converge to the resonant frequency.

In cases where we have a higher order linear system, and also for getting an
idea about the quantitative behavior of the convergence, i.e. convergence rates, it
is indeed helpful to look at the function ∆ω which we obtain in a straight forward
manner from the data in the bode plot and inserting into Equation 6.14.

Thus, in this example we see that the convergence rate should increase and
come to a sudden stop. This is indeed the case as can be seen in Fig. 6.13d, where
we show the integration of the full system (Eqs. 6.7–6.11).

Unstable at resonance

Now, lets assume the same system as above but we change the coupling from the
linear system to the Hopf oscillator (i.e. “change the sensor modality”), by setting

C = [0, 0.1]

i.e. the second state variable of the linear system is now used as input to the
Hopf oscillator. Changing only the coupling means, the system has the same
resonant frequency as before. Nevertheless, as we will see the adaptation does not
converge to this frequency. Again, in Figure 6.14, we present the Bode diagram.
As before by looking at the phase of the linear system we already gain insight
into the expected convergence properties of the frequency adaptation. This time
there is no zero crossing, and the rate is positive. Thus, we expect the adaptation
process to diverge. Looking at the function ∆ω, we can see that the convergence
rate should be very low, but increases to a peak around the resonant frequency.
And indeed, looking at Fig. 6.14c this prediction is confirmed. Thus, with the two
presented examples we reproduce the observations in the experiments on the real
robot that we have convergence with some sensors but not with others (compare
Fig. 6.10 with Figs. 6.13/6.14d).

6.2.5 Conclusion & Discussion

We have presented results on an adaptive controller adapting and exploiting pas-
sive dynamics in a robot. This paper showed that the proposed control architec-
ture is able to find the resonance frequency given by the passive dynamics of the
real-world robot. The convergence properties are further analyzed by using linear
plant models.

The experimental results demonstrated a number of potential advantages of the
proposed adaptive frequency oscillator in real-world autonomous adaptive robots.
In particular, it is important to note that this architecture requires no prepro-
grammed models of body dynamics, but it autonomously finds adequate control
parameters. The experimental results, however, need to be discussed further to-
ward our comprehensive understanding of adaptive control architectures.
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Figure 6.13: A linear system for which
the convergence is stable at resonance.
a,b) Bode plot for H(s), the dashed line
indicates the resonant frequency. Note
that the phase has a negative 0 crossing
at the resonant frequency, this means
the adaptation process has a attractor
at the resonant frequency. c) The func-
tion ∆ω = sin(H(s)). Strictly speak-
ing we need to look at this function to
determine stability. d) Time series of
the integration of the full system show-
ing the adaptation of the oscillator fre-
quency ω. It is clearly visible how the
oscillator frequency adapts to the res-
onant frequency of the linear system
(dashed line), what corresponds to the
prediction from the Bode plot and ∆ω.

Figure 6.14: A linear system for which
there is no convergence at resonance.
a,b) Bode plot for H(s), note that the
phase has no negative 0 crossing at
the resonant frequency, this means the
adaptation process has no attractor at
the resonant frequency, and especially
∆ω (c), is always positive with a dis-
tinct peak at the resonant frequency.
This means divergence of the oscilla-
tor frequency ω with an increased rate
to be expected around the resonant fre-
quency. d) Time series of ω. The pre-
diction is confirmed by the data ob-
tained by the integration of the full sys-
tem.
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The presented analysis has brought us a big step forward in understanding
adaptive frequency oscillators in feedback loops. If we compare the convergence
behavior of the system with the linear feedback loops (Figs. 6.13/6.14d) with
the results from the robot experiment (Fig. 6.10) we see that the linear systems
already reproduce the basic features observed in the experiment. We conclude that
the linear systems analysis is sufficient to understand basic convergence properties
of adaptive frequency Hopf oscillators with feedback loops. We have shown that
the phase shift of the linear system is the main determinant of the stability of the
adaptation process. Treating the body as linear system presents the simplest case
for analysis but yields very important results. The presented work is an important
step towards the understanding and designing adaptive controllers for robots with
passive dynamics.

Furthermore, this paper also shows how with a description of our adaptive
systems in the language of dynamical systems, we can readily explore it with
powerful mathematical tools. We have seen that Bode plots are a helpful tool for
the analysis but they can also help in the design of the controllers.

Such an adaptive controller is able to autonomously find invariants of the
sensor-motor system. The state of the controller reflects these invariants (here
the resonant frequency). This states can serve as segmented behavior patterns
which can serve as a fundament on which more comprehensive and sophisticated
sensory-motor control can build on. Those behavior patterns need to be stable
over a certain time otherwise they can not be exploited. In a certain sense such an
adaptive controller extracts the slowly varying properties out of the sensor-motor
dynamics, and thus represents such meta-stable properties. We can also look at
the oscillator as a (very rough) model of the robot of which the parameters are
tuned to match the real robot. Loosely speaking finding the correct frequency
for the oscillator corresponds to adapting the body schema (the oscillator) to the
real body. It is likely that the understanding of such adaptive systems leads to an
understanding of the development of cognitive capabilities.

Future work We have employed linear models for the plant, but the situation
on the real robot is a bit more complicated, it needs to be seen to what extent
linear models are valid. In order to arrive there, linear models of the sensor-motor
modalities of the robot need to be derived. This can be done either theoretically,
model-based or by systems identification methods. The prediction of the linear
model need then to be checked against the results obtained from the robot.

Furthermore, in future we can explore the design of convergence properties by
designing H(s) or adding additional systems in the feedback loop. As an example,
phase shift elements (as used to ensure stability of linear feedback loops) could
be used to stabilize/destabilize the adaptation process according to some needs.
Design techniques for such linear systems are well developed in control theory.

Furthermore, the implications and potential of feedback loops of adaptive fre-
quency oscillators with linear systems is not fully explored and exploited. It is
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well possible that we can obtain further results from the analysis of this system.
A further development is to generalize above system by using MIMO systems in
the feedback loop. MIMO systems would correspond to the case where several
sensors channels and several actuators are used at the same time.
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6.3 More real world experiments

The next paper presents more results of the application of AFO based controllers
on PUPPY II. At this point we would like to point to another study, which started
in a supervised master project. In this study the concept has been proven to work
on a real robot, namely a Sony AIBO and is summarized in [16]. The AFO con-
troller has been implemented on the AIBO, however, the clarity of the application
gets diluted by the fact that the AIBO robot has no intrinsic compliance, so spring
dynamics has to be emulated by low level controllers. The study was a test of
the concept before we had PUPPY II available for our research. The conceptual
results contained in this study are all present in the studies contained in the thesis.

Self-organized Adaptive Legged Locomotion in a
Compliant Robot

Jonas Buchli and Auke Jan Ijspeert

This paper has not been submitted for review yet.

Abstract In this contribution we present experiments of an adaptive locomo-
tion controller on a compliant robot. The adaptive controller consists of adaptive
frequency oscillators in different configurations. In the experiments we show that
(1) the adaptive controller is constantly tracking body properties and readjusting
to them (2) that important gait parameters are dependent on the geometry and
movement of the robot and the controller can account for that and (3) that local
control is sufficient and the adaptive controller can adapt to the different mechan-
ical modes. Furthermore, we show the analytical treatment of adaptive frequency
oscillators in closed feedback loops, and compare the results to the real data.
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6.3.1 Introduction

The current state of the art in robotic legged locomotion does not compare in any
means to legged locomotion observed in the animal kingdom. The fact that there
already has been a large research effort devoted to robotic locomotion, points to
the fact that it is not just a matter of better implementing the, possibly correctly
identified, basic principles. No, it points to a more fundamental problem, namely
that the way robots are built and controlled simply do not support fast, efficient,
robust and elegant locomotion.

While it has been realized for a while now that (1) compliance might be a key
factor and (2) body environment system is self-organizing and locomotion can not
be understood by separating the single systems, (3) the systems need to be highly
adaptive, systems implementing all those key factors are rare.

In this article we investigate on the following three main questions and topics:
(1) It is well known that a body, of an animal or robot, has specific resonant
frequencies (e.g. from elasticity or pendulum dynamics). Less studied however is
how these frequencies depend on the posture and type of gait. We will show that
they do depend from posture and type of gait and we will present an adaptive
controller which can account for this dependence. (2) One central feature which
makes attractor dynamics an interesting tool to design controllers or, in the wider
sense, behaviors for a robot is that attractor dynamics is very robust under noisy
conditions and perturbations. We show here that concepts earlier only presented
in simulations [24,28] are very robust with noisy signals and therefore the simple
systems developed in theory and simulations can readily be implemented in real
world systems. (3) We show that we have a theory to understand adaptive fre-
quency oscillators in feedback loops. This gives us a tool to work with resonant
dynamics of any type of system, adaptive frequency oscillators can be used to
either find them or avoid them.

An important concept from neurobiology which has stimulated a lot of research
in robotics is the concept of the Central Pattern Generator (CPG). It has been
realized that in vertebrates the neural centers generating the high-dimensional
coordinated gait patterns are located in a distributed fashion in the spine rather
than in higher brain centers [82]. The CPG is under modulatory control by the
brain. Subsequently, a lot of researchers have taken up the ideas and many studies
ranging from theoretical [47, 195] to implementation studies (e.g. [52, 104, 107])
about the use and properties of CPGs have been done. Yet, most applications of
CPGs are on stiff, fully actuated robots where the trajectories given by the CPG
are accurately followed by help of high-gain control. But this is probably not
how the CPG work in nature. As observed by Marc Raibert, the central nervous
system does not control the body, it can only make suggestions [172]. In this
contribution, we show exactly the application of Raibert’s insight. There have
been difficulties in putting those ideas to realization. We argue that parts of this
is due to a inappropriate methodology which is unable to deal with such compliant
and self-organizing system in a methodological fashion.
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The controllers that we use in this article are loosely inspired by the CPG
concept in that they are dynamical systems which can show their own coordinated
spatio-temporal pattern. We illustrate their novel property of being truly adaptive,
in that the controllers tune key parameters to match the body properties of the
robot.

In this paper we will show results of an adaptive controller on a compliant
robot. We employ an underactuated compliant robot with strong body dynamics.
As [101] shows such a robot as used in our study can show many different modes of
locomotion, dependent of many critical parameters. Such modes include bounding
(alternating) gaits, hopping gaits, gaits with higher periodicity etc. In the previous
studies these parameters where found/tuned by hand. They emphasized the need
to adapt to the different environment and body conditions, but do not show a
process which can do that. In this contribution we show a first attempt at such an
adaptive controller, and we take the concept further and even allow some of the
parameters to be determined by the robot environment system itself, namely phase
(i.e. gait pattern) and the frequency. This means we exploit the self-organization
capabilities of the body-environment system to simplify the control problem and
improve the the controller performance.

The controller consists of adaptive frequency oscillators. This paper has two
parts in which, firstly we show experimental results of adaptive controllers on a
compliant robot, highlighting different important aspects and findings, and sec-
ondly, show theoretical results about the convergence behavior of such adaptive
controllers.

Related work Early work on spring dynamics in animal models can be found
in [70] and important contributions from the robotics community showing self-
stabilization and simple control in robot with appropriate body dynamics can be
found in [39,49,101,126,149,173].

Recent studies on mammals have shown that many muscle groups in the mam-
malian legs effectively are anti-gravity muscles and do not directly contribute to
locomotion [66]. These studies have sparked quite some theoretical treatment of
locomotion with springy legs [73].

While the idea to “adapt” to resonant body dynamics is not new, usually the
systems employed work more in a reactive fashion then truly adaptive, i.e their
parameters remain constant, and especially do not reflect the body parameters
after the adaptation process. See [31] for a more in-depth discussion of this issue.
In the frame of oscillators this typically means that synchronization (i.e. phase
locking) is exploited. However, as we will explain later, the adaptive frequency
property that we exploit in our study is a fundamental extension of synchronization
or phase locking. An interesting example is [227]. While still not truly adaptive,
the remarkable result of this study is that the locking region is extremely large.

The use of adaptive frequency oscillator for adapting to resonant body dy-
namics has been first presented in [24]. Further result on a more complex robot
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simulation has been presented in [28]. In [30] we presented first preliminary re-
sults of the adaptation on a real robot. Here we present more detailed data for
different experiments. The theoretical understanding of adaptive frequency oscil-
lators has been advanced in [178] by proving its convergence and first results on
the treatment of AFOs in feedback loops are shown in [30].

6.3.2 Adaptive Controller

In this section we introduce the dynamical systems and methods that we use to
construct the controllers of the robot. The controller consists of one or several
oscillators mutually coupled and influenced by sensory information.

The building blocks of our controllers are oscillators. More specifically, we use
the Hopf oscillator [98]:

q̇ = FH(qi) =

[ (
µ − (q2

1 + q2
2)
)
q1 + ωq2(

µ − (q2
1 + q2

2)
)
q2 − ωq1

]

+ p (6.17)

where, q = [q1, q2] are the state variables,
√

µ is the steady state amplitude, and
ω the intrinsic frequency of the oscillator. p = [p1, p2] is an additive input to the
oscillator. The nice feature of this oscillator is its harmonic limit cycle, i.e. we can
write the steady state solution of the system (6.17) by q1(t) =

√
µ cos(ωt + φ0),

q2(t) =
√

µ sin(ωt + φ0), where φ0 is the angle of the initial condition q(0). The
harmonic limit cycle allows to analytically determine the phase sensitivity and this
allows to determine the phase relationship to other oscillators for example [23].

The oscillators receive input from the sensors of the robot. The form of the
input is different for different experiments. In general the sensor values are con-
verted into a mean free signal by a high-pass filter and multiplied by a coupling
constant to achieve a suitable input range (typically values between -1 and 1). In
other words p1 = Kss(t) + . . . where s is the (filtered) sensor value.

Adaptive Frequency Oscillators In some experiments the oscillators will be
extended to adaptive frequency oscillators. Adaptive frequency oscillators have
been introduced in [24] and generalized and treated in more detail in [178].

The idea behind adaptive frequency oscillators is that we endow the oscillators
with the capability to tune their intrinsic frequency to the frequency of a pertur-
bation. This can be achieved by posing the following general rule as DE for the
intrinsic frequency (or a parameter which tunes the intrinsic frequency):

ω̇ = −τp1
q2

√

q2
1 + q2

2

(6.18)

where τ is an adaptation constant. It is important to realize, that the adaptive
frequency property that we exploit in our study is a fundamental extension of
synchronization or phase locking. (1) The adaptation process changes the intrinsic
frequency and not only the resulting frequency, (2) the adaptation generally has
an infinite basin of attraction (i.e. for every initial condition ω(0) it will converge



6.3. More real world experiments 169

to a frequency nωF as opposed to the limited range in which synchronization can
take place, also known as Arnol’d tongues structure [8, 166]), (3) the frequency
stays encoded in the system when the input is removed (e.g. set to zero).

Network of oscillators In some experiments, we use small networks of oscil-
lators. Networks of oscillators can be built by introducing a functional coupling
between oscillators, i.e. extending p by an additional summand comprised of the
signals of the other oscillators.

p = . . . +
∑

j

λjiPjiRjiqj

where λ is a coupling constant, P is the, binary, coupling matrix and R is the
rotation matrix (examples of the coupling will be given later).

R =

(
cos θji − sin θji

sin θji cos θji

)

(6.19)

The use of harmonic oscillator makes it possible to design arbitrary phase relation-
ships into networks of such oscillators. We use the method outlined in [23] which
is based on the idea that we can rotate the signal of an oscillator to introduce
phase shifts. As shown in [23] choosing θ is equivalent in specifying the phase
shift between the oscillators.

So the complete expression reads

q̇i = FH(qi) +
∑

j

λjiPjiRjiqj

︸ ︷︷ ︸

coupling

+[Kk,isk(t)
︸ ︷︷ ︸

sensor input

, 0]T (6.20)

6.3.3 Hardware

PUPPY II is a 8 DOF experimental quadruped robot designed by F. Iida [100]. For
the purpose of this article, its main interesting characteristics are that it is under-
actuated and has spring dynamics in the legs. See Fig. 6.15 for an illustration of
the robot. We describe in turn the important characteristics of the robot.

Mechanical system Each leg has a rotational “hip” joint and a knee joint.
Only the hip joint is actuated, directly by attaching the leg to a strong RC servo
motor. The knee joint features a spring (cf. Fig. 6.15 for the geometry of the
leg). Thus, the robot is underactuated, only 4 of the 8 DOF are actuated and in
addition, due to the springs, it has a very pronounced intrinsic dynamics in form
of resonant frequencies. The weight of the robot is roughly 0.7 kg. The robot is
energetically not autonomous, the power is fed to the robot by a cable.



170 Chapter 6. From Abstract to Reality

a)

b)

c)

Figure 6.15: a) PUPPY II, a robot “dog” with passive dynamics (cf. springs in
the knee joints) and several sensor modalities b) Mechanical structure of PUPPY
II and sensor placement: 1,3: FSR (Force Sensitive Resistors) 2,4: Potentiometers
of the passive joints 5: 3-axis acceleration sensors 6: PSD (Position Sensitive
Detector). Circles with a cross denote actuated joints, blank circles denote passive
joints. c) Control structure used in the experiments: One of the sensor channels is
used to perturb a controller consisting of one or several adaptive frequency Hopf
oscillators, the output of the oscillator (a state variable) is used to send motor
commands (position control). Thus, this system constitutes a nonlinear feedback
loop.
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Sensors & Motors The robot is outfitted with 4 different sensor modalities:
Force sensitive resistors on the body of the robot and under the feet of the robot,
3-axis acceleration sensor, IR-position sensitive detector sensor, and potentiome-
ters to measure the knee angles. In the presented work we use the knee angle
sensors and the inertia sensor. Those sensors convey a lot of information about
the movement of the robot. The motors of the robot are strong off-the-shelf RC
servo motors which are controlled in position.

Control loop The oscillators are integrated with Euler integration on a off-
board computer with a time-step of ts = 10−3 s. The sensor values are read
and calculated setpoints are sent to the robot via the USB bus, with a sampling
frequency of 50 Hz, i.e. every 200th integration step the values are read out and the
sensor values are updated. The faster integration step for the dynamical system
is to ensure the numerical accuracy of the integration scheme.

The signal of the oscillator is converted into an desired angle for the leg in the
by a linear transform

αt = α1x(t) + α0 (6.21)

where αt is the desired angle for the leg, α0 is the center angle, α1 is the amplitude
for a signal of amplitude 1. Later when presenting the results, we will list α1 and
α0 for each experiment.

There is a low level controller (PD controller in the servos) which controls the
position of the motor. The control performance of the low-level position control
at the frequencies used for our experiments is sufficiently high that we can assume
that the actual angle of the leg corresponds to the desired angle αt. The delay in
the feedback loop is also sufficiently small that it does not pose a problem for the
presented application.

Posture For each experiment we will characterize the setup of the robot in
the following way (1) controller structure, i.e. number of oscillators, connection
to sensors, motors and mutually (2) posture (cf. Fig. 6.16) of the robot and
amplitude of movements for a signal of amplitude x(t) = 1 and the center angle,
i.e. the angle the leg assumes for a signal of amplitude x(t) = 0. It is important
to note these angles determine implicitly the posture of the robot, i.e. if the body
is horizontal or more tilted forward or backwards.

6.3.4 Experimental Results

In the following we describe several experiments which demonstrate some of the
interesting features of the adaptive controller working together with the compliant
robot.

We show two main results: (1) The adaptive controller is able to track the
resonant frequency of the robot which is a function of different body parameters
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α1 α1

αt

α0

Figure 6.16: Parameters describing the posture of the robot: center angle, i.e.
angle for zero signal x(t) = 0, angle corresponding to a signal of amplitude x(t) =
1. αt is the actual position of the leg, α0 is the offset (compared to a vertical
position) of the center position of the leg. Note that the vertical position denotes
α0 = 0, legs titled backwards from this position have negative angles, and vice
versa. This means the larger this angle, to more tilted forward is the leg. α1 is
the amplitude of the leg for a signal of amplitude 1 (measured against α0).

(2) controllers based on dynamical systems as we present are able to “recognize”
mechanically intrinsic modes of locomotion, adapt to them and enforce them.

Further, we show that key properties of the gaits are not only depending on
properties of the body but also the actual mode of movement that the body is
operating in. And we show that even if we specify the gait pattern on the level
of the CPG (by full coupling) the chosen gait pattern (measured by the foot-fall
pattern) does not necessarily correspond to the CPGs pattern.

Experiment 1 – Change of body properties In this experiment we demon-
strate the capability of the dynamical system to constantly track the resonant
properties, i.e. as soon as the body properties, here the weight, is changed the
oscillators readjust the frequency to the new conditions.

The posture is: front legs α0 = 14.38, hind legs: α0 = 3.23, the amplitudes for
both pairs is α1 = 10.8. The controller setup is illustrated in Fig. 6.17. It consists
of a single oscillator which is connected to the output of the z-axis (vertical axis)
of the inertia sensor.

To demonstrate the continuous adaptation capability, after the adaptation has
converged, the weight of the robot is changed, what changes its resonant frequency.
In Fig. 6.17 the data of the adaptation experiment is shown. It can be seen how
immediately after the change of the body property the controller starts to tune to
the new frequency. Later in the article we also present results with changed leg
stiffness (cf. Experiment 5 and Fig. 6.24).
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Figure 6.17: Experiment 1 to show the online adaptation of the controller. On the
left an illustration of the sensor-controller structure. The z-value of the accelera-
tion sensor (A) is used as an input to the oscillator. The signal of the oscillator is
used to set the motor position according to Eq. 6.21. On the right the intrinsic
frequency ω of the oscillator is shown as it evolves during the experiment. The
body weight is changed from m1 = 0.905 kg to m2 = 0.695 kg. The controller
immediately starts to adapt to the changed body property.

Experiment 2 – Posture dependent frequency In this experiment we show
that the frequency is not only dependent of obvious parameters like the weight
of the robot but other, e.g. geometrical parameters, can influence the frequency
as well. Here we show that it is dependent from the posture of the legs and the
adaptive frequency oscillator is able to account for these different frequencies.

For this experiment again the robot is driven by a single oscillator and the
inertia sensor is used as input to the oscillators (cf. Fig. 6.17a). While the front
leg parameters are kept at α0 = 14.38 and α1 = 10.80, in this experiments the
angle of the hind leg is varied from α0 = −13.11 to α0 = 3.23 while all the other
parameters remain the same.

In Fig. 6.18 we show the average frequency which is assumed by the oscillator
vs the angle of the leg. As can be seen, the steeper the angle of the leg the higher
the frequency found by the adaptation process.

By varying the posture angle α0 of the leg we vary the (average) incident
angle of the foot which induces a change in the resonant frequency of the robot.
As illustrated in Fig. 6.19 this makes sense considering the geometry of the leg:
The steeper the leg the less of the force acting on the foot loads the springs and
the larger becomes the force vector pushing along the axis of the foot and thus
loading the motor. The force vector acting perpendicular (i.e. in direction of the
free movement) to the lower leg gets smaller, thus there is less force loading the
spring. The leg feels stiffer. Thus, the further the leg is tilted back, the stiffer the
systems becomes, therefore the frequency increases with decreasing α0 and vice
versa.
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α0 = −13.11 α0 = −3.23
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Figure 6.18: a) The range of posture angles used in the experiment illustrated on
the robot. b) The average frequency (squares) found by the adaptive frequency
oscillator vs posture, i.e. the angle of the leg. The bars show the standard devia-
tion.
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Smaller α0, steeper foot incident
angle, higher stiffness, higher fre-
quency

Larger α0, shallower foot incident
angle, lower stiffness, lower fre-
quency

Figure 6.19: Illustration of the effect of the posture angle α0 on the load distribu-
tion on the spring and motor respectively. Of the force acting on the leg (blue),
only the part of the force active perpendicular to the foot loads the spring (red),
the force acting parallel to the foot will act on the motor (green). Note that this
is illustrative only for the principles at work, and that the real case is more com-
plicated (e.g. amongst other things the force vector on the foot is not necessarily
vertical).



176 Chapter 6. From Abstract to Reality

a) b)

Figure 6.20: Controller setup with two oscillators. a) Setup with θd = 0, i.e. the
two oscillator will synchronize in phase, this can also be interpreted as excitatory
coupling as denoted by the arrow. b) Setup with θd = π, i.e. the two oscillator
will synchronize in anti-phase. This can also be interpreted as inhibitory coupling
as denoted by the circle.

Experiment 3 – Gait dependent frequency In this experiment the robot
is set up to assume two different gait patterns, by appropriate posture and the
different controller setups.

In this experiment the legs are driven by two oscillators (illustrated in Fig.
6.20). Two distinct runs are made, one where the setpoints are given to the robot
so that all the legs are in phase (Controller a, θd = 0) and the second one so that
the hind-legs are in anti-phase with the front legs (Controller b, θd = π).

Otherwise all the parameters of the robot are the same, especially the angles
of the legs (i.e. the posture) to avoid effects on the tuning of the frequency of such
parameters (as seen in the previous experiment).

In order to classify the gait pattern that the robot actually assumes we need
to know when the feet touch the ground. In PUPPY II, we can infer the different
phases (stance/swing) from the knee angle sensor. Since the springs are very stiff
and the lower legs very light we can neglect dynamic effects of the rotation of the
legs on the knee angle signal and assume that if the knee angle is not zero the leg
is loaded, thus the leg is touching the ground.

As a control that the robot really assumes the gait pattern we want, in Fig.
6.21a we show the gait pattern for the two runs. We present the data as it is often
presented in the biological/physiological literature, i.e. stance and swing phase. It
gets clear that for the in-phase pattern the legs are active at the same time, while
for the case when we invert the signal for the back legs we see a more alternating
gait. In 6.21b the results of the two adaptation runs are presented, as can be seen
the frequency found is very distinct.

In order to investigate the reason for that its worth while looking at the gait
pattern that the robot assumes in the two cases. The reason for the different
frequencies stems from the fact that for the in phase gait, the springs of all four
legs are loaded in more or less the same time, while for the bounding gait the
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Figure 6.21: Experiment to investigate the influence of the gait pattern on the
resonant frequency. a) gait pattern, stance/swing phases, black is stance phase
and white is swing phase, H depicts the hind legs and F depicts to fore legs,
for simplicity only one leg per pair is shown, the data in each pair looks very
similar. Top row for θd = 0, it is well visible that the front and hind limbs are
active at the same time, while for θd = π, we clearly see a alternating gait. b)
resulting frequency of the adaptation process, the mean is at ω = 24.89 for θd = π
(alternating gait) and at ωd = 20.02

springs of the front and hind legs loaded more in an alternating fashion. This can
be explained by a very simple spring mass model of the overall robot where we
lump the springs of the legs into one single spring with a spring constant keff .
If the springs of the legs are contracting at same time we have to add up the
respective spring constants. Thus, for gaits where the leg are active at the same
time the system behaves stiffer in average.

Experiment 4 – Self-organization of gait: CPG pattern does not cor-
respond to gait pattern The aim of this experiment is to show, that the gait
pattern that the robot actually is assuming does not necessarily correspond to the
gait pattern commanded by a CPG.

Again we use the same controller setup as before as in the last experiment with
a single oscillator, and the two different phase settings. In this experiment we do
not focus on the adaptation capability of the controller, but hold the frequency
fixed at ω = 20 rads−1. The Posture of the robot is tilted forward by choosing a
steeper angle for the back leg tan for the front leg: hind α0 = −10.44 α0 = 10.06.
The amplitude is α1 = 10.8.

In Fig. 6.22 we present the gait patterns as estimated from the knee angles (in
the same way as in the last experiment). First, (in Fig. 6.22a) we present again
the gait pattern by showing the stance and swing phases. Then, we present the
time series of the phase difference of the two signals estimated with the Hilbert
transform. We can see that if we specify a phase difference of π for the CPG
we indeed get the expected result, a bounding gait where the front and the hind
legs touch the ground with a phase difference of around π. However, if the phase
difference for the CPG is specified as zero degrees, the robot does not assume a
jumping gait in which both legs touch down in the same time, as one would assume.
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Figure 6.22: Gait pattern estimated by the knee angle data, black is stance and
white is swing phase. a) Coupling θd = 0, the first panel shows the gait pattern
estimated by the knee angle data, the second panel shows the phase differences
estimated by difference of the phase of the Hilbert transform of the knee angle
data (in red the average difference). b) The information but this time the angle
of the CPG is specified as θd = π.

But, the phase difference estimated by the Hilbert transform varies mainly between
0.4π and π, and in the stance-swing-diagram we can clearly see how the front legs
touch down shortly after followed by a longer stance phase of the hind legs which
initiates a flight phase. In other words, we command two very different patterns,
but the body exhibits both times very similar gaits. Furthermore, we see that
the gait pattern for θd = 0 is more irregular and more pseudo-periodic than the
pattern for θd = π, which means that this gait is less robust.

Also one has to note that the robot can be biased by tilting forward, i.e. for
this experiment the robot posture is biased towards an anti phase gait, while in
the experiment before there was a more symmetrical posture which allow in-phase
gaits to be mechanically stable.

Experiment 5 – Self-organization of gait pattern: Local adaptive con-
trollers The aim of this experiment is to show, that we can exploit the ten-
dency of the body of the robot to prefer certain gait patterns to use simpler,
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namely purely local control structures. Motivated by the results of the previous
experiment and earlier simulation studies [28], namely the fact that the robot has
modes which are mechanically more suitable, in this experiment we constrain the
controllers of the robot less - there is no direct coupling between the oscillators
for the hind and front legs. The only coupling that is established works over the
mechanical system. As shown if Fig. 6.23 we use two oscillators, one for each pair
of front and hind legs. The sensor feedback is the knee angle data from each leg.
The oscillators are not directly coupled. The posture of the robot is as follows:
hind leg α0 = −10.44, front leg α0 = 10.06 and α1 = 11.88 for both pairs. Note
that we have changed the stiffness of all legs, by attaching the spring differently,
so that is has less lever. This makes the leg less stiff, and the frequency decreases.
The reasons for this are twofold. First, to show yet another resonant frequency by
changing the spring stiffness (as opposed to body mass as in Experiment 1). And
secondly, the slower movements facilitate the experiment.

In Fig. 6.24a we show the frequency of the oscillators adapting to the body,
and readapting after a perturbation. As can be seen in Fig. 6.24b, where we show
the difference between the frequencies of the oscillators, despite the fact that they
are not directly coupled, they remain very close. Furthermore, we show the phase
difference in Fig. 6.24c, where it can be seen that the oscillators remain phase
locked over the whole experiment. So the mechanical influence is enough to keep
the oscillators phase locked and adapting in a coordinated fashion. Furthermore, it
can be seen that the oscillators lock into an anti-phase pattern, what corresponds
to the tendency for anti-phase gaits as found in the experiment before. We see
that despite the freedom of the system and the loss of the specification of the phase
difference, the system settles into a well coordinated movement, which corresponds
to the mechanical “mode” of the robot. It can thus be said that this controller
adapts to the mechanical properties of the body and current posture. We also see
that the phase relationship is not exactly π, thus we see that a phase relationship
which does not exactly correspond to π seems more suited for the mechanical
system in this setup since it is chosen by letting the body organizing the phase
difference itself.

Thus from this experiment we can conclude, that for coordinated motion,
purely local controllers can be enough, i.e. mechanical coupling is enough to
coordinate the different pairs of legs. We can then ask, what is the need of direct
coupling then. It turns out that we can make the gait more robust by employing a
direct coupling. As an example, in such an experiment if the posture is too “tilted”
the two oscillators will converge to two different frequencies, on the other hand
the tilted position is good for efficient forward locomotion. We can thus imagine,
that the robot learns about the appropriate gait pattern in a more upright fashion,
after that the pattern is “fixed” by introducing a coupling which corresponds to
the found mechanical gait pattern (i.e. by setting θd to the found value). Then,
the robot can be tilted forward to make it locomote with a good gait pattern.
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Figure 6.23: Controller schema for Experiment 5. No connection between the
oscillators for the hind and front leg.
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Figure 6.24: Data from the adaptation experiment with local controllers (Ex. 5).
a) Adaptation of the frequencies, at around 400s the frequencies are reset to 6
rads−1. It is clearly visible that there exists an attractor for the convergence
process are around 11 rads−1 b) The difference between the frequencies for the
front and hind leg. It is clearly visible how closely together the two frequencies
evolve. c) The phase difference of the two oscillators, as can be seen they phase
lock at a value slightly higher than 0.5. And the phase locking is never lost during
the whole experiments, i.e. the legs are always well coordinated.
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6.3.5 Toward a theory for AFOs in feedback loops

So far we have presented empirical results, but it would be nice to be able to
analyze what frequency the controller converges to. For this we have to develop an
understanding of AFOs in feedback loops. While in [178] the convergence behavior
of the open loop case is analyzed we need to extend those results for the treatment
of the closed loop case. As shown in [22] for certain sensor modalities there is no
convergence, but the frequency diverges. We need to develop an understanding
for those cases. Thus, here we will show that we can understand the convergence
behavior with the help of linear systems theory. In the following we will show the
convergence analysis given a few assumptions hold.

For the following treatment it is convenient to write the Hopf oscillator, i.e.
system Eq. (6.17), in the polar form, which is done by a straight forward trans-
formation by substituting φ = ωt and r =

√
q1 + q2. We furthermore assume

(without loss of generality) that the perturbation is p = [p1, 0]. The system in the
polar form reads

ṙ = (µ − r2)r + cos φ p1 (6.22)

φ̇ = ω − 1

r
sinφ p1 (6.23)

ω̇ = −1

τ
sinφ p1 (6.24)

Adaptive Hopf Oscillator with Linear Feedback loop

In order to begin with the analysis of the system, the plant (i.e. the robot)
will be modeled by a linear time-invariant system. This is a simplification (i.e.
neglecting nonlinearities from the springs, kinematics of the body etc), but, as we
will see in the remainder of this article, this simplification yields already significant
understanding of the mechanism of the adaptation process.

Thus, in the following we treat the “body” as a linear system. Therefore, let
us assume the following systems: First, a linear n-th order SISO (the “robot”, i.e.
the motor commands are all lumped into one variable and only one sensor channel
is modeled) of the form

ẋ = Ax + Bu (6.25)

y = Cx + Du (6.26)

A is a n × n, B a n × 1, C a 1 × n matrix, and D a scalar. u is the (scalar)
input to the linear system and y the (scalar) output. Here, we can interpret y as
the sensory feedback and u as the motor command.

Second, the adaptive frequency Hopf oscillator as described by Eqs. 6.22–
6.24. We set u = r cos φ and p1 = y. Hence, the Hopf oscillator and the linear
systems are connected in a feedback structure through their inputs y (from the
linear system to the Hopf Oscillator) and u (from Hopf to the linear system). See
Fig. 6.25 for an illustration of the feedback structure.
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H(s)AFO
u

y

Figure 6.25: Illustration of the feedback loop of the adaptive frequency oscillator
with the linear system and the conventions used. The adaptive frequency oscillator
(AFO) is connected to the plant, which is modeled as a linear system H(s) through
u (the motor commands) and the sensory feedback from the robot to the AFO is
modeled by y.

As can be shown by linear systems theory, the linear system can not generate
other frequencies than already present in the input u, it can however modify phase
and amplitude of the signal. Therefore, we can write:

y = Mr cos(φ + α) (6.27)

where M = |H(s)| and α = arg(H(s)) (H(s) is the transfer function of the linear
system).

We begin the analysis of the oscillator by writing the phase of the Hopf oscil-
lator perturbed by a signal y

φ̇ = ω − 1

r
sinφy (6.28)

As outlined above we write y(t) to be the state of the Hopf oscillator amplified by
M and rotated by α

y(t) = Mr cos(φ + α) (6.29)

thus
φ̇ = ω − sin φM cos(φ + α) (6.30)

Using trigonometric transformations we can write this expression as

⇒ φ̇ = ω +
1

2
M [sinα − sin(2φ + α)] (6.31)

The results in [178] show that the systems shows a separation of timescale, i.e.
the frequency adaptation process works on a timescale much slower then the con-
vergence to the limit cycle with given frequency and radius. Thus, we assume
ω = const and investigate what the observed frequency of the closed loops sys-
tem will be. If this frequency is different from the intrinsic frequency, it should
drive the slower adaptation process. ω = const also implies that M and α are
constants (s = jω). We evaluate the average effective frequency Ω with the given
assumptions:

Ω =
1

2π

∫ 2π

0
ω +

1

2
[M sin α − sin(2φ + α)]dφ (6.32)
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Since by assumption ω is a constant and therefore α, M are constant, it follows
that the first two summands are constants. The last summand is a 2π-periodic
mean-free function, thus we get

Ω = ω +
1

2
Mr sinα (6.33)

Let us define ∆ω = Ω − ω, which is a useful notation to discuss convergence:

∆ω = Ω − ω =
1

2
Mr sinα (6.34)

From [178], we know that the slow variation of ω is as follows

⇒ ω̇ ≈ 1

2
M2 ω

ω2
F − ω2

(6.35)

where ωF is the frequency of the rhythmic signal applied to the AFO. Here, with
the feedback loop ωF = Ω and as we shown above this can be written as

ωF = ω + ∆ω

Assuming ω, ωF > 0 this means if ∆ω > 0, ω increases, otherwise it decreases.
If ∆ω has a zero crossing with a negative slope (∂∆

∂ω
< 0), there is an attractive

region around ∆ω ≈ 0. Therefore, we expect the adaptation of the frequency to
have a stable fixed point in this region. Hence, ∆ω gives us information on the
convergence of the system.

The magnitude of the linear system M = |H(s)| can not be the determinant
for convergence since it is positive, thus we have to focus on the phase of the
linear system α = arg H(s). We see that the term sin α determines the zeros and
the sign of ∆ω, conclusively the phase of the linear system α = arg H(s) is the
determinant for convergence of the adaption process. In the following we illustrate
the result with a simple linear system for two different “sensory channels”.

Stable at resonance

Let us assume the following linear system:

A =

[
0 1

− k
m

−d

]

B =

[
2
0

]

C = [1, 0]

D = 0

This is 2nd order (e.g. spring mass) system, which possesses a clear resonant

frequency at ωr =
√

k
m

. The values of the constants are largely irrelevant for the
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general result. For the presented data we have chosen k = 272, m = 1 and d = 0.1.
(Note that we use unit-less constants as their physical interpretation can vary).

In Figure 6.26, we present the Bode diagrams for the linear systems, and the
result of the adaptation of oscillator. As discussed above, the bode plot already
gives us a hint for stability of the adaptation process. More precisely we need to
look at function ∆ω, but since this is a second order system, we know that the
phase shift is maximum 2π, thus the phase can only have a single zero crossing.
Since sin is a odd function we also know that the sign does not change, thus we
can read the stability of the adaptation directly out of the bode plot. In this
example we see a negative zero crossing at the resonant frequency, thus we expect
the adaptation process converge to the resonant frequency.

In cases where we have a higher order linear system, and also for getting an
idea about the quantitative behavior of the convergence, i.e. convergence rates, it
is indeed helpful to look at the function ∆ω which we obtain in a straight forward
manner from the data in the bode plot and inserting into Equation 6.33.

Thus, in this example, according to the peak in the convergence rate in Fig.
6.26c the convergence rate should increase and come to a sudden stop. This is
indeed the case as can be seen in Fig. 6.26d, where we show the integration of the
full system (Eqs. 6.22–6.26).

Unstable at resonance

Now, let us assume the same system as above but we change the coupling from
the linear system to the Hopf oscillator (i.e. “change the sensor modality”), by
setting

C = [0, 0.1]

i.e. the second state variable of the linear system is now used as input to the Hopf
oscillator. Changing only the coupling means, the system has the same resonant
frequency as before. Nevertheless, as we will see the adaptation does not converge
to this frequency. Again, in Figure 6.27, we present the Bode diagram. As before
by looking at the phase of the linear system we already gain insight into the
expected convergence properties of the frequency adaptation. This time there is
no zero crossing, and the rate is positive. Thus, we expect the adaptation process
to diverge. Looking at the function ∆ω, we can see that the convergence rate
should be very low, but increases to a peak around the resonant frequency. And
indeed, looking at Fig. 6.27c this prediction is confirmed. Instead of convergence,
this means that ω crosses the resonant frequency with increased rate (Fig. 6.27d).

Comparison with real world data

In Fig. 6.28, we present data from the real robot for the two cases (conver-
gence/divergence) and compare it with a fitted model of the basic system used
before. The convergent behavior is observed by using the acceleration sensor, the
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Figure 6.26: A linear system for which
the convergence is stable at resonance.
a,b) Bode plot for H(s), the dashed line
indicates the resonant frequency. Note
that the phase has a negative 0 crossing
at the resonant frequency, this means
the adaptation process has a attractor
at the resonant frequency. c) The func-
tion ∆ω = sin(H(s)). Strictly speak-
ing we need to look at this function to
determine stability. d) Time series of
the integration of the full system show-
ing the adaptation of the oscillator fre-
quency ω. It is clearly visible how the
oscillator frequency adapts to the res-
onant frequency of the linear system
(dashed line), what corresponds to the
prediction from the Bode plot and ∆ω.

Figure 6.27: A linear system for which
there is no convergence at resonance.
a,b) Bode plot for H(s), note that the
phase has no negative 0 crossing at
the resonant frequency, this means the
adaptation process has no attractor at
the resonant frequency, and especially
∆ω (c), is always positive with a dis-
tinct peak at the resonant frequency.
This means divergence of the oscilla-
tor frequency ω with an increased rate
to be expected around the resonant fre-
quency. d) Time series of ω. The pre-
diction is confirmed by the data ob-
tained by the integration of the full sys-
tem.
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Figure 6.28: Comparison of data from the real robot with the linear model. Top:
sensor (acceleration) that leads to convergence. Bottom: Sensor (knee angle) that
does not lead to convergence. While the basic properties of the real world data are
reproduced by the LTI model there is some differences between the real data and
the prediction of the LTI model. The dashed line indicates the estimated resonant
frequency. See text for further discussion.

divergent behavior can be observed by using the knee angle sensor instead. For
the stable behavior (Fig. 6.28a) the data is k = 25.52, C = [0.45, 0] and for the
unstable behavior k = 282, C = [0, 0.12] (Fig. 6.28b), all the other parameters are
as above. As can be seen in the figures the linear systems reproduce qualitatively
the data from the real robot. We are thus confident, that the linear treatment
we presented conveys well the basic convergence properties of AFOs in feedback
loops.

As we can see for the divergent case the match seems less good, however,
already in the converging case we see the fact that the linear model predicts a
higher convergence rate for regions close to the target frequency. This same effect
leads to the mismatch between the linear model and reality in both cases only in
the divergent case the effects become much more visible, since there is no fixed
point behavior to which both solutions converge.

It is natural that the model can not fully predict the behavior close to the
target frequency, since it was based on results which investigate the convergence
behavior only for frequencies which are further away.

From theory to design

The developed theoretical insight can be used in the design of the robot or an
experiment. If we understand the phase shift of the different sensory channels
(either based on a model or on data) we can chose the sensor which will work
best. Furthermore, if no sensor has the appropriate phase shift, then we can
use filters to induce additional phase shifts and thus make convergence possible
nevertheless.
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6.3.6 Conclusions & Discussion

We have shown, that controllers based on adaptive frequency oscillator are able to
track the resonant frequency of the robot. Different parameters can influence the
frequency, such as mechanical parameters (weight, lengths, spring stiffness etc),
but also geometrical “gait” parameters such as the angles of the legs.

In Experiment 4 we have shown that in a compliant robot, such as the pre-
sented one, chosen gait pattern is NOT necessarily the same as the CPG pat-
tern. This is a fact which is often overseen in the discussion of CPGs applied
to robots (and animals). This is in contrast to design methodologies which are
aimed at high-gain fully actuated non-compliant robots, where its made sure the
commanded trajectories are accurately followed and a influence from the body dy-
namics is not desired. In the case of a underactuated compliant robot as presented
here, the physics of the body has to be taken into account, i.e. the dynamics of
the body, the fact that we have distinct flight and stance phases in which the
underactuated system reacts differently etc. We can exploit this organizational
capability of the robot for certain situations, i.e. to achieve efficient self-organized
locomotion with a minimum of control effort. Consequently, in Experiment 5 we
show that controllers built with well suited dynamical system which are adaptive
and not over-specified can adapt to the bodie’s “preferred” locomotion modes.
With this experiment we also showed, that the inter-controller communication is
not always mandatory, which could be interesting in the framework of modular or
ad-hoc robots.

In a second part of the article we have laid out the theoretical treatment of
AFOs in feedback loops and have compared the results of a simple linear model
with data from the real robot. This comparison shows that even the simplest
spring mass model can account quite well for the convergence effects that are
observed. The theoretical treatment of AFO in feedback loops together with a
more complete model of the robot (i.e. where the posture angles show up as
parameters) will allow to understand most of the effects seen in the experiment in
a straight forward manner.

Discussion We can conclude from such experiments that compliant robots offer
opportunities and challenges for control. There are two main areas where we
lack support for usable, agile robotic legged locomotion. First in the area of
activators, and second in the control methodology. Such a robot as presented here
definitely lacks certain controllability which severely restricts its practical use. It
is a fundamental theoretical fact, that elastic modes decrease the controllability of
the plant. In other words, as an example, we can not achieve exact foot placement
with this robot. There would be a way around this problem, and again we see it
implemented in animals, that allow to use the advantages of both, high accurate
control and compliant mechanics. For this we need activators of which we can
control the stiffness. In the beginning it would already be interesting just to
experiment with activators which can switch from passive to active mode. Stiffness
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control would allow precise control for some tasks while allowing self-organized
movements for other tasks. Such activators are not a nice-to-have feature but
an absolute must do we ever want to achieve the flexibility and agility with our
robot as observed in their natural counterparts. The theoretical aspects of stiffness
control, or more general impedance control is already being investigated for robotic
tasks which involve contact with the environment [97, 225] and recently also for
legged robots with elastic actuators [168]. It will be interesting to bring together
those results with adaptive controllers as presented here.

Then, as for the methodology to develop such adaptive controller and the ap-
plied concepts, it sums up to the challenges for controller design for self-organizing
systems, i.e. controller which can make use of the self-organizing capabilities of
the system to be controlled [33]. Ideally we would like to have a system which is
able to learn about the system to be controlled. About the intrinsic modes, i.e.
we need a controller which feels the intrinsic patterns formed by the underlying
system, can modulate, enforce, stabilize or destabilize those modes depending on
specified goals. In the here presented system, one of this modes is for example the
coordination between front and hind legs, i.e. the phase relationship, another one
the resonant frequency.

In [33] it has been proposed to give the systems freedom to self-organize on
certain variables of the system (i.e. the phase in our case), i.e. pull out control
(in the appropriate way). Here we do exactly that: normally the oscillators are
coupled, we removed this coupling and show that the system nevertheless finds
good locomotion, in this sense the presented system is an application example of
the proposed concepts.

While there are many reports, that biological motor systems are self-organizing
[91, 120, 121, 195, 196] we have not methodology at hand for synthesizing such a
system or its controller. Ideally we would like the system to be able to recognize,
learn and adapt to different possibly co-existing modes. For this traditional con-
trol theory is not of big help as it deals mostly with linear (or linearized) systems,
in which no self-organization can take place. To develop such adaptive controller
which can find and switch between modes, the normal control engineering ap-
proach does not work because it usually involves a linearizing step after modeling,
by this step we remove all the other attractors in the system, thus a controller
which is developed grounded on this model can evidently not exploit different
modes.

Arriving with such controllers would mean we could build systems which are
less frustrated (i.e. where the activation works in step with the body dynamics
instead of forcing “artifical” patterns on the body). Non-frustrated systems mean
also less energy consumption, higher efficiency less mechanical stress, wear and
tear etc. In Experiment 3 (Fig 6.21) and Experiment 4 (Fig. 6.22) we note that
if the system is specified against its “natural”/intrinsic modes, the gaits are less
regular which points to the fact that the movement is less robust, this points out
that it is important that the controller work with the body.

Summarizing to achieve agile legged robotic locomotion we need
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• An appropriate body: self-stabilizing, compliant, with stiffness controlled
actuators.

• An appropriate controller which can coordinate with the body and other
controllers. The controller needs to be able to adapt to body and environ-
ment.

• Appropriate sensors. In order that the controller can get information about
the body and its state the robot has to be equipped with appropriate sensors.
Interestingly, it turns out that many sensor convey information about the
intrinsic modes. It will however, be interesting in what extend redundant
sensory information can be exploited to extract more meaningful informa-
tion.

We showed one building block for such controllers with interesting results and
a way how to approach the problem but a lot of work needs to be done before we
reach our goal.

Future work Thus in future, the presented research needs to be put forward
on the identified two main axes, mechanics and control.

(1) Mechanics – Develop and test systems where we can switch from one control
mode to the other, i.e. from high gain to compliant.

(2) Theory of control – We have laid out the theoretical fundament for the
understanding of adaptive frequency oscillators in feedback loops. The next large
step for the theoretical treatment is a generalization of the understanding to MIMO
systems. Furthermore, to advance the theoretical understanding in a next step
a comprehensive model of the robot should be developed and the theory applied
to this models. More generally we have to put forward a theory of control for
self-organizing systems as discussed above.

As a more concrete example, on a robot, it will be interesting to investigate
how such controllers can be combined with the control of speed and direction, and
how to resolve possibly conflicting goals within the controller architecture.

In addition to the presented ones we have observed many more interesting
phenomena, such as higher periods in gaits and bistability amongst other dynamic
effects, which will be the focus of future experiments. However, the description of
phenomena will take more data gathering, amongst others with a motion tracking
system.
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Additional results We have attempted to replicate the optimality result of the
simulation study presented in Section 6.1. However, so far the results do not match
completely the simulation results. While the energy consumption, qualitatively
scales in the same way (cf. Fig. 6.29a) the velocity results are different (Fig.
6.29b). The reason for that is that even if the activity of the robot has its peak at
the resonant frequency, this activity does not necessarily get ideally transformed
into forward locomotion at the resonant frequency. If we look at the acceleration
sensor data, we see a clear effect of the resonance. However, this activity does not
get translated into forward velocity as properly as in the simulation study (with
its much simplified mechanics, contact and friction models). In Fig. 6.29b we
show the variance of the acceleration on the three axes, normalized on the sum of
the variances. While this is not exactly accurate it tells us where the energy goes,
i.e. in up-down movements (z-axis), forward-backwards (x-axis) or lateral rocking
(y-axis). We see that at the resonant frequency the z-axis sees an increase, i.e. the
robot is mostly hopping vertically instead of moving forward. Furthermore, we
see that a lot of the energy gets transformed into lateral rocking, this is something
which might be improved in future robots and experiments. Another practical
problem is that the friction of the feet. The feet tend to slip at higher frequencies,
or if the friction of the feet and the ground is higher (e.g. by using a rubber mat
on the ground) they tend to generate friction during parts of the swing phase.
Furthermore, with the geometry of the robot as it is now, with only one knee joint
the posture can not always be chosen optimally as it would lead to problem with
the friction of the feet. We can get past some of those problems, by increasing
the amplitudes, but this is very demanding for the motors and the mechanics of
the robot. So there is a practical upper limit to increasing the amplitude. We can
possibly correct such shortcomings in a future robot.
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Figure 6.29: Additional results on PUPPY II. a) The average power vs. frequency.
Compared to Fig. 6.8 the scaling is qualitatively similar as in the simulation. The
vertical line indicates the line found by the adaptive frequency oscillator. b)
The average velocity. c) Partition of the movement of the robot vs. the frequency
(bold) x-axis (dashed) y-axis (dash-dot) z-axis. Refer to the text for an explanation
of the data.
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Chapter 7
Epilogue

While we have drawn conclusions for each of the presented studies in the re-
spective articles, I would like to conclude the thesis by restating the achieved

contributions and drawing a few general conclusions, before finally make a few re-
marks about future directions of the research that was presented.

7.1 Original contributions

Adaptive frequency oscillators (Chapter 5) – A very general rule for ex-
tending oscillators with the capabilities to adapt to the frequencies of exter-
nal signals has been proposed. The rule has first been proposed on intuitive
grounds, then it has been proven1 for the adaptive frequency Hopf oscillator
and its general applicability has been shown by numerical integration. To
the best of my knowledge this is the first system which can adapt to fre-
quencies of arbitrary signals in a fully dynamic way and is so general that it
can be applied to almost any type of oscillator. Existing adaptive frequency
oscillators (e.g. [137,160]) are limited to special types of oscillators or require
special input signals (e.g. pulses).

Analysis of AFOs in feedback loops (Chapter 6) – The convergence be-
havior of AFOs in feedback loop with LTI system has been studied and
it has been shown that (1) LTI systems are sufficient to explain the basic
convergence behavior of real systems and (2) the phase shift of the system
is the determinant for convergence.

Frequency Analysis with AFOs (Chapter 5) – A system has been presented
which allows one to find the frequency spectrum of an incoming signal. The
system has been analyzed on a macroscopic level by help of the Fokker-
Planck formalism. The system performs in that sense a dynamic Fourier

1Together with L. Righetti
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Transform and is the first of its kind which does frequency analysis by means
of dynamical systems only.

The simplest adaptive locomotion toy-system (Chapter 4) – One of the
simplest systems to study adaptive locomotion has been proposed. The
body contains a very clear body property in form of resonant frequencies.
The simple adaptive controller is able to find this property and constantly
track it. The system is formulated in the language of dynamical systems.
It is arguably one of the simplest adaptive locomotion system which can
be formulated, but still proved to be relevant for the development of the
controller concept for real robots.

Proof of concept in simulations and real robots (Chapter 6) – The pro-
posed controller concepts have been implemented and proven to work in
physics based simulations and real compliant and under-actuated robot.

Engineering view on oscillators (Chapter 3) – An engineering view on os-
cillators has been given. For this discussion the new concept of radius
isochrones has been proposed.

Results on oscillator based control of compliant robots (Chapter 6) –
New results on the use of oscillator based controllers for compliant robots
have been presented. It has been shown, that the organizational capabilites
of the body lead to unexpected results (gait pattern) and can be exploited for
simpler control. Furthermore, we have shown how the resonant frequencies
depends on gaits and posture and the implications for the control of such
robots.

7.2 Discussion & Conclusions

We first discussed a few basic considerations when biologically inspired models
and dynamical systems should be used for engineering purposes and showed how
adhering to the derived principles leads to more efficient, better performing and
simpler solutions.

Based on a set of desired properties which an adaptive locomotion system
should possess, we then proposed a simple adaptive system which is able to adapt
to the key properties of a compliant robot, namely the resonant frequency. The
adaptive locomotion controllers work without fundamental modification for the
application to systems that range from toy-system to real under-actuated com-
pliant robots. The controllers are formulated as dynamical systems which brings
certain advantages namely 1) fully dynamic description, 2) no separation of learn-
ing algorithm and learning substrate, 3) no separation of learning trials or time
windows, 4) mathematically rigorous, 5) low dimensional systems. A further ad-
vantage is that once we have formulated the system in this way, it is amenable for
many of the tools from dynamical systems theory. Such systems do not have an
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explicit cost function, which can be problematic for certain applications, e.g. to
move as fast as possible. The equivalent of a cost function, i.e. the specification of
what the system ultimately achieves is done implicitly via the design of the slow
feedback loop.

The key component for these controllers, the adaptive frequency oscillators
have been investigated analytically and by numerical simulation and shown to be
a versatile and interesting building block. It can be used wherever there is interest
in resonant frequencies in a system, to tune to them or avoid them. It delivers
information about the frequency component in a signal, this information is directly
accessible without further processing by reading out the state variable ω. The
adaptive frequency oscillators have only a small number of state variables (3 for a
single AFO), yet they posses a large range of capabilities. Those capabilities allow
them to be used for tasks which normally need to be accomplished by complicated
and resource demanding signal processing algorithms.

7.3 Outlook

This thesis shows one example of the dynamical systems approach to adaptive
systems. But a lot of work remains to be done in this subject.

On first sight legged adaptive locomotion might look like a trivial task, but on
close look it is far from simple. As a matter of fact, we will not arrive at the goal
of having agile robotic locomotion very soon because many key components are
missing on different levels, ranging from supporting technology up to theoretical
insight. Consequently there are several strands on which the presented work can
be extended.

(1) Theory of multi-scale systems and adaptive dynamical systems –
Here fundamental properties of such systems need to be studied. Further-
more, are there general rules for adaptive systems and can we develop general
purpose methods to devise the adaptation rule for a given set of specifica-
tions? We need to get an “engineering” grip on this question in order to
make use of adaptive system in a systematic way in engineering. In our
case, the difficulty in proposing a useful multi-scale dynamical system lies
in finding an appropriate feedback structure (cf. Chapter 2). We only have
proposed an example. It will thus be a great challenge to find general meth-
ods for such feedback loops. The old paradox between pre-specification and
adaptive capabilites comes up, we discussed this challenge elsewhere in more
depth [33].

More concretely for the AFOs, we think it should be feasible to make a more
general proof of the convergence of the adaptive frequency oscillator than
the one presented in [178]. This would involve expressing the oscillator and
the incoming (periodic) signal by (general) Fourier series and working out
the perturbation approach on the general series. This rather tedious work
remains to be done yet.
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As for the AFOs, they promise to be interesting for signal processing ap-
plications. However, quite some research has to be done to assess their
properties when harnessed for such applications and a careful comparison to
other techniques remains to be done. It seems straight forward to implement
an AFO in analog electronics and in parallel computing. Such an implemen-
tation might be interesting in hindsight to applications (especially in signal
processing), and could give such a system an advantage over others.

(2) AFOs and higher dimensional systems – What has been presented in
the course of this thesis is the application of the controllers to systems with
rather low number of degrees of freedom. Yet, interesting systems in robotics
– which usually lead to problems for other methods – are higher dimensional
(i.e. typically in the range of 10 to 30 DOF, e.g. for quadruped and humanoid
robots). So, an evident question to be asked is how would controllers such
as we presented behave on such systems and how would one go about the
analysis of those systems.

As we have seen in the experiments in Chapter 6, there is an interaction
between the “local” controllers (consisting of one AFO each) over the me-
chanical system. In our experiments we try to exploit this interaction to get
coordination. But we could as well imagine situations where the interaction
leads to unwanted effects of one DOF to another one, and possibly conflict-
ing adaptation, e.g. different frequencies for different DOF. The possibility
of such unwanted interaction of course increases with the numbers of DOF
and AFOs in the setup. It will thus certainly be very interesting to try out
such AFO based controllers (and other similar ones) on systems with many
more DOF. Yet, it is important to note that in quite some applications, e.g.
locomotion, it might be sufficient to have only one “central” AFO and force
to frequencies of the other oscillators to be the same as the AFO.

As for the analysis, from the systems theoretic view point the means by
which the interaction is established (i.e. physical vs. direct “mathemati-
cal” coupling) is not of importance. Once the model is there, the analysis
proceeds in the same way.

This means, even if so far we have only analyzed what looks like a rather
simple case (i.e. LTI SISO systems), this is the first and fundamental step
towards the analysis of such more complicated cases. Further analysis means
generalizing parts of the system or loosening some of the assumptions made
in the analysis, i.e. MIMO (multiple input, multiple output) systems instead
of SISO, including time-delays, time varying parameters, non-linearities, etc.

In other words, to understand such situation theoretically the mechanical
systems have to be modeled and treated at least as LTI MIMO system. A
particular challenge will be to capture the mechanical systems into suitable
models. As we have seen the geometry, posture and even the gaits have an
influence, i.e. in general we will encounter problems of nonlinear mechan-
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ics, modeling of impact forces and other problems of advanced mechanical
analysis such as nonholonomic and underactuated systems.

Once the models are established an analysis should be in principle straight
forward, yet not necessary simple from the purely technical point of view.

Furthermore, the knowledge gained from the feedback analysis, i.e. the im-
portance of phase shift will help us to correct or to account for possible
unwanted effects. Finally, the adaptive system as its formulated in the AFO
is surely open for enhancement and adaptation to special needs (e.g. modu-
lation of the adaptation rate, modification of the adaptation rule) the system
as we presented merely constitutes the simplest scheme which works for fre-
quency adaptation. It could even be the case that the adaptation scheme
should sometimes be turned off, e.g. in non-steady-state situation, such as
uneven ground. For sure, in such situations the time scale over which the
adaptation works could become much more critical.

The discussion about more sophisticated mechanical systems and models
also leads us to a small note about the influence of the morphology on the
outcome of the adaptation, and the correspondence of resonant frequency
with proper forward locomotion. In the simulation experiments the reso-
nant frequency that the AFOs find clearly corresponds to a nice forward
locomotion. In the real robot things become a bit more complex. In some
experiments the robot indeed locomotes forward very nicely while in other’s
the posture is not ideal for forward locomotion. This has per se nothing to
do with the adaptation process but is more a problem of the “morphology”
of the robot which is different than the simulation models and too limited
to replicate exactly the results from the simulation. In future this could
be accounted for by building robot with more suited morphologies for these
experiments.

On a more general note, suitable models of sufficiently generic mechanical
systems are the key to understand what morphologies can offer to adaptive
controllers. Based on such models then hopefully methods can be worked
out which are general enough to help in the engineering of adaptive agile
autonomous robots.

(3) Adaptive control of self-organizing systems – We have shown that it is
possible to formulate systems which adapt to the patterns which are formed
in a self-organized system. However, in order to fully exploit the framework,
important questions have to be solved. Most importantly, methodologies
for designing the feedback loops have to be found and important theoretical
questions about stability and convergence properties of the devised systems
have to be answered. This means we have to investigate the use of the in
(1) discussed, to be developed, theory with hindsight on controllability.

(4) Robotics – We are only in the beginning of exploiting compliance for robotic
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applications. More sophisticated actuators and mechanics are needed which
are robust and simple to use. Furthermore, we need to put forward new
experimental systems to test out control approaches and build proof of prin-
ciple applications.

While the basic results from the simulation could be reproduced on PUPPY
II, not all experiments could be reproduced on the real robot. This has to to
with differences in the mechanical setup, particularities in modeling friction
and contacts in the simulation etc. Yet, I am convinced that the chosen way
is an interesting one and should be pursued.

There are several other key parameters for locomotion controller such as
offset and amplitudes, but also more “global” parameters, such as gait pat-
terns, which should be investigated as a object of an adaptive system. While
the basic ideas of an adaptive dynamical system should be the same, other
adaption laws than the adaptive frequency rule have to be found in order to
propose such systems. In the end, tuning of the frequency is only a small
part of a truly adaptive locomotion controller.

When thinking about the applications of some of the robotic technology
which is presented here it is interesting that there is a successful toy robot
which exploits the ideas of acting in resonance (the Robo-sapien). It is true
that looking at PUPPY is very compelling, it behaves more “life-like”, it
always behaves interestingly. I do expect that more such robots will show
up on the toy market in near future. But this will only be the beginning,
adaptive systems in connection with compliant robots offer so many advan-
tages that in the long run there will be many systems for a large range of
applications. There are other domains in robotics such as humanoid robotics
and ad-hoc modular self-reconfigurable robots, which could profit of the pre-
sented research. Ad-hoc modular robots pose a particular challenge to con-
trol engineering since traditional model based approaches as well as off-line
optimization strategies are not feasible. Our approach might offer an inter-
esting approach for controllers which are model-free (i.e. without explicit
model) and on-line adaptive.
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3.1 a) Limit cycle of the amplitude controlled phase oscillator for r0 =
1, g = 10, ω = 2π[rads−1]. The arrows show the flow q̇ defined
by the FACPO (3.13). b) This figure shows the phase difference
established for the following values of ωd = −0.0042, λ = 2 and
g = 1000. With help of (3.23) predicted value is θd = 0.2493
(dashed line). The value from numerical integration is shown with
the solid line (mean over t = [10, 20] is θd = 0.2554). c) The
structure of the ACPO-CPG. Note that the connections illustrated
by arrows involve rotation matrices (compare to text). . . . . . . . 20

3.2 θR,1,2,3 as a function of the chosen gait parameter. Pgait = 0 corre-
sponds to the walk pattern, Pgait = 1 to trot, and Pgait = 2 to the
bound. Solid line: θR,1, dashed line: θR,2, dash-dotted line: θR,3.
The dots correspond to values that correspond exactly to the values
for the different gait patterns. However, also for settings quite far
from these points the gait patterns are stable. . . . . . . . . . . . 24

3.3 Results of the numerical integration of the ACPO CPG. a) Tra-
jectories of the ACPO-CPG when switching from walk to trot to
bound and the corresponding phase difference plots (θd,ij). Dashed
line: θd,12, solid line: θd,13, dash-dotted line: θd,14. The upper figure
presents the oscillatory activity (xi), while the lower figure shows
the corresponding phase difference evolution. b) phase difference
plots for walk to trot (upper figure) and trot to walk (lower fig-
ure). The dashed vertical line indicates the time at which Pgait is
changed. c) walk to bound and bound to walk d) trot to bound
and bound to trot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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3.4 a) Further experiments on the influence of perturbations on the
transition speed. Representatively the bound to walk transitions is
chosen which is the slowest. Noise is added during the integration
procedure (see text). As can be observed the transition is initiated
about 1 s earlier then in the case without noise. b), c) To illustrate
the robustness against perturbation that is inherently built in the
structurally stable dynamical system model of the CPG we present
the case when the state variable for the left hind leg gets fixed for
0.2 s and then released again during walk. The two vertical lines
show the time when the legs is fixed and released again. As can be
observed, the leg increases in speed in order to catch up with the
other legs to fulfill the requirements of the gait pattern. Within less
than 0.5 s, the normal gait is re-established. . . . . . . . . . . . . . 27

3.5 a) The schematic illustration of a limit cycle. It is a closed curve in
phase space. The stability directions eφ,er are illustrated as well as
the projections pr and pφ of a perturbation p,which has a direction
in the phase space, onto those stability directions. b) The time se-
ries of an hypothetical oscillator. There is a characteristic period T
after which the activity of the oscillator and with this the time series
repeat. c) The limit cycle is a 1-dimensional manifold embedded in
a D-dimensional space (D ≥ 2), we can transform the system into a
coordinate system in which the manifold shows particularly simple
form and of which the stability directions constitute the base vectors. 37
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3.6 Illustrating the transformation T, by help of the isochrones and the
radius-isochrones. For each oscillator 16 equally spaced isochrones
are used and a varying number of radius-isochrones with a given
∆t are plotted in the phase portrait (upper panels) and below the
time series are shown. The fine vertical lines indicate the isochrones
(only indicating the temporal position on the time series.) We see
while they are always equally-spaced in the time series plot, in the
phase plot this is not necessarily the case. a) The phase plot of the
canonical oscillator in the phase-radius coordinate system PRCS
(Eqs. 3.39–3.40). The isochrones form straight and equidistant
vertical lines. The radius-isochrones (∆t = [5, 6, 7]s) form expo-
nentially spaced straight horizontal lines. b) The Hopf oscillator
(Eqs.3.66–3.67). The isochrones form straight rays at equal angles,
which reflects the polar interpretation of φ in the transformation.
The radius-isochrones (∆t = [0.7, 1.4, 2.1]s outside of the LC and
∆t = [0.7, 1.4, 2.1, 3.5]s inside) reflect the 3th order convergence
behavior of the radius. In the time-series we see the harmonic na-
ture of the limit cycle reflected. c) The Energy oscillator (Eqs.
3.58–3.59). Due to the appearance of the nonlinear energy term
only in the first ODE the system looses its circular symmetry. The
isochrones and the radius-isochrones (∆t = [2, 2.4, 2.8, 3.2]s outside
of the LC and ∆t = [2, 2.4, ..., 5.2]s inside) get a characteristic defor-
mation. d) van der Pol Oscillator (Eqs.3.78–3.79). This is a strongly
nonlinear oscillator. This fact is reflected in the strong deformation
of the isochrones. The strong deformation of the radius-isochrones
∆t = [0.3, 0.6, 0.9]s away from the limit cycle in the upper left and
lower right corner of the figure indicates the rapid convergence of
the system in that region. It is immediately visible that the trans-
formation from this QCS to the PRCS is a very complicated one. 42

3.7 Effect of a small pulse like perturbation on the limit cycle. The
perturbation p(t) arrives when the phase point is at the position
marked by a the green dot. The phase point is then pushed back to
the limit cycle by the stability properties of the system, i.e. it ap-
proaches asymptotically the limit cycle. It however retains a phase
difference (∆φ) in comparison with the unperturbed reference sys-
tem. The phase difference can be of different amplitude and sign
depending on the direction of the perturbation and the state the
system currently is in when the perturbation arrives. Understand-
ing this fact is key to understanding synchronization phenomena. 45
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4.1 a) The mechanical sub-system of the adaptive locomotion toy sys-
tem. It consist of two identical masses connected by a spring. From
the mechanics of the system the forces acting on the body can be
determined: Fs is the force that the springs exert on the blocks.
It is of the same amplitude and opposite sign for the two masses.
Fr,i are the friction forces acting on the masses. With the help of
this forces and Newton’s law we are able to derive the system of
differential equations that govern the mechanical system (Eq. 4.1).
b) Schematic of the adaptive locomotion toy-system with its two
main parts: The Hopf Oscillator (HO) and the spring mass system
(MS). The Hopf Oscillator influences the mechanical system via the
spring constant ka(z). The mechanical in turn disturbs the Hopf
oscillator by coupling in the velocity difference dv as an additive
disturbance to the Hopf Oscillator equations. . . . . . . . . . . . . 70

4.2 Illustration of the basic mode of locomotion. See text for description. 75

4.3 Top panel: Mean energy (Ep+Ek) content of the mechanical system
for different ω0 = [0, 60] at steady state. Bottom panel: Mean
velocity. As clearly can be seen we have a broad peak around the
resonant frequency of the mechanical system ωm = 14.8324. . . . . 76

4.4 (a) This representative plot shows how the adaptation of ωh in-
creases the velocity of the locomotion system. ωh starts at 12. The
top panel shows the development of ωh, the second panel shows the
position x1 of M1. There is some activity in the system from the
beginning, however the excitations gets much stronger the closer
ωh comes to to the resonant frequency of the mechanical system
ωm (vertical line). The steady state for ωh is around 14.4, which
is lower then the calculated resonant frequency of the passive me-
chanical system: ωm = 14.8324.
(b) To illustrate the robustness that is built into the locomotion
system by its frequency adaptation we show a representative ex-
periment in which the mass of the bodies is 1kg to 1.5kg at t=100s
(vertical line). Immediately, the frequency of the oscillator ωh starts
to adapt to the new resonant frequency of the mechanical system
(dash-dotted horizontal line). . . . . . . . . . . . . . . . . . . . . . 77

4.5 Adaptation of ωh with viscous friction scheme. Different initial val-
ues for ωh(0) = 0, 1, . . . , 32 have been chosen. Clearly, the further
away the longer ωh takes to reach its stable steady state. The hori-
zontal lines depict 0.5ωm and 2ωm, where from the energy diagram
(Fig. 4.3) resonant effects have to be expected and their influence
on ωh clearly can be observed here. Refer to text for further de-
scription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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4.6 Comparison of the development of ωh for viscous and Coulomb fric-
tion scheme. The Horizontal line indicates the resonant frequency of
the passive mechanical system. (A) Viscous friction. (B) Coulomb
friction. See text for further discussion. . . . . . . . . . . . . . . . 79

4.7 In order to quantify the steady state behavior of ωh the mean mωh

and variance σωh
have been measured after the system reached

steady state (horizontal lines). Therefore, mωh
is a measure for

(M) and σωh
correlates with the distance (U)-(L). Note this figure

is illustrative only – the actual values can change. . . . . . . . . . 80

4.8 (a) Upper panel: the mean value attained for ωh dependent on c
(note the log scale). Lower panel: Variance for ωh (note log-log
scale). Note that for c > Cc the variance drops to 0, therefore it
is not drawn on the log scale. The vertical dotted line indicates
the default setting of c = 0.1 and the dashed lines indicates the
approximate value of Cc. The variance can be fitted with a power
law σ2 ∼ τα. The exponent of the fit is α = 2.6959. This behavior
is typical for phase transitions.
(b) Dependence of mean and variance of ωh on τh for steady state
behavior. Again, the dotted line indicates the default setting of
τ = 0.1 and the dashed lines indicates the approximate value of
τh,c. The variance can be fitted with a power law σ2 ∼ τα. The
exponent of the fit is α = 1.9903. (c) The attained mean values mv1

of v1 after the system reached steady state depending on coupling
parameter a. There is a very clear linear relationship mv1 = qa.
The fit is for q = 1.5451. . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Influence of the friction asymmetry in viscous mode. The z axis is
the position of m1 after 200s for a given setting of ρ− and ρ+. White
regions correspond therefore to fast forward locomotion, black to
fast backward locomotion. . . . . . . . . . . . . . . . . . . . . . . 83

4.10 a) At t = 400 the feedback from the mechanical system to the
Hopf Oscillator is cut by setting c = 0. This as well inhibits the
frequency adaptation. b) At t=400 only the frequency adaptation
is cut by setting τ = 0. This means there is still feedback from the
mechanical system to the Hopf oscillator. Therefore, the system
keeps moving with the same speed. However, it can not react to
changing mechanical properties anymore (not shown). . . . . . . . 84

4.11 M1 blocked at t = 100 (dashed vertical line) and released at t = 200
(dash dotted vertical line). . . . . . . . . . . . . . . . . . . . . . . 85
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5.1 We illustrate the coordinate system in which synchronization is
most naturally discussed. The figure shows an arbitrary limit cy-
cle. The system is strongly damped in direction perpendicular to
the limit cycle ~er and marginally stable in direction tangential to
the limit cycle ~eφ. This is the reason for the structurally stable
limit cycle in the first place and allows for a resetting of the phase
on the other hand. Note that the 2-dimensional representation is
always valid for discussing a limit cycle since there exists always a 2
dimensional manifold which contains the limit cycle. Refer to text
for a discussion of the perturbation ~P . . . . . . . . . . . . . . . . . 95

5.2 Plot of the evolution of ω for four different values of ǫ. Here we set
µ = 1, x(0) = 1 and y(0) = 0, the perturbing force is F = cos(30t).
For every value of ǫ, we see that ω converges to 30, which is the
frequency of the input signal. Therefore, the system is able to learn
the frequency of the input signal. We also notice that ǫ controls the
convergence rate, the higher it is, the faster the system learns. . . 100

5.3 Results of the simulation of the first and second order approxima-
tions. For a simple input, here F = sin(40t), ǫ = 0.9, initial con-
ditions are t0 = 0, w0 = 30. The upper figure shows the evolution
of the ω variable for the initial dynamical system (Eq. (5.38)), the
first order approximation ωǫ(t) and the 2nd order approximation
ωǫ2(t). The lower figure shows quadratic errors between the initial
system and the 2 approximations, for the evolution of ω. . . . . . . 102

5.4 In this figure, we plotted ω(t) for several initial conditions, ω0.
The periodic input is Equation (5.43), ǫ = 0.9. The dotted lines
indicates the boundary between the different basins of attraction,
corresponding to the different frequency components of the input,
that were predicted analytically. . . . . . . . . . . . . . . . . . . . 104

5.5 The left plot of this figure represents the evolution of ω(t) when the
adaptive Hopf oscillator is coupled to the z variable of the Lorenz
attractor. The right plot represents the z variable of the Lorenz
attractor. We clearly see that the adaptive Hopf oscillators can
correctly learn the pseudo-frequency of the Lorenz attractor. See
the text for more details. . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Frequency spectrum of the Van der Pol oscillator, both plot with
ω = 10. The left figure is an oscillator with α = 10 and on the
right the nonlinearity is higher α = 50. On the y-axis we plotted
the square root of the power intensity, in order to be able to see
smaller frequency components. . . . . . . . . . . . . . . . . . . . . 107
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5.7 Plot of the frequency of the oscillations of the Van der Pol oscillator
according to ω. Here α = 50. There are 2 plots, in dotted line the
oscillator is not coupled and in plain line the oscillator is coupled to
F = sin 30t. The strength of coupling is ǫ = 2. We clearly see basins
of phase-locking, the main one for frequency of oscillations 30. The
other major basins appears each 30

n
(dotted horizontal lines). We

also notice small entrainment basins for some frequencies of the
form 30p

q
. For a more detailed discussion of these results refer to

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 This figure shows the convergence of ω for several initial frequen-
cies. The Van der Pol oscillator is perturbed by F = sin(30t), with
coupling ǫ = 0.7, α = 50. We clearly see that the convergence
directly depends on the initial conditions and as expected the dif-
ferent kinds of convergence correspond to the several entrainment
basins of Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 We show the adaptation of the Van der Pol oscillator to the fre-
quency of various input signals: (a) a simple sinusoidal input (F =
sin(40t)), (b) a sinusoidal input with uniformly distributed noise
(F = sin(40t) + uniform noise in [−0.5, 0.5]), (c) a square input
(F = square(40t)) and (d) a sawtooth input (F = sawtooth(40t)).
For each experiment, we set ǫ = 0.7 and α = 100 and we show three
plots. The right one shows the evolution of ω(t). The upper left
graph is a plot of the oscillations, x, of the system, at the beginning
of the learning. The lower graph shows the oscillations at the end of
learning. In both graphs, we also plotted the input signal (dashed).
In each experiment, ω converges to ω ≃ 49.4, which corresponds to
oscillations with a frequency of 40 rad · s−1 like the input and thus
the oscillator correctly adapts its frequency to the frequency of the
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10 We show results for several adaptive oscillators. For each oscillator,
we give its equation in the right column, ω corresponding to the
adaptive parameter. We also specify the values of the different
parameters used in the experiments. In the left column we plotted
results of the experiment. Each figure is composed of 3 plots. The
right one is a plot of the evolution of ω. The left ones are plots of
the oscillations (the x variable) and of the input signal F (dashed
line), before (upper figure) and after (lower figure) adaptation. . . 113
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5.11 (a) Typical convergence of an adaptive frequency oscillator (Eqs
5.56–5.58) driven by a harmonic signal (I(t) = sin(2πt)). The fre-
quencies converges in an oscillatory fashion towards the frequency
of the input (indicated by the dashed line). After convergence it
oscillates with a small amplitude around the frequency of the input.
The coupling constant determines the convergence speed and the
amplitude of oscillations around the frequency of the driving signal
in steady state. In all figures, the top right panel shows the driving
signals (note the different scales). (b–f) Non-harmonic driving sig-
nals. We depict representative results on the evolution of ω−ωF

ωF
vs.

time. The dashed line indicates the zero error between the intrin-
sic frequency ω and the base frequency ωF of the driving signals.
(b) Square pulse I(t) = rect(ωF t), (c) Sawtooth I(t) = st(ωF t)
(d) Chirp I(t) = cos(ωct) ωc = ωF (1 + 1

2( t
1000)2) (Note that the

graph of the input signal is illustrative only since the change in
frequency takes much longer than illustrated.) (e) Signal with two

non-commensurate frequencies I(t) = 1
2

[

cos(ωF t) + cos(
√

2
2 ωF t)

]

,

i.e. a representative example how the system can evolve to differ-
ent frequency components of the driving signal depending of the
initial condition ωd(0). (f) I(t) is the non-periodic output of the
Rössler system. The Rössler signal has a 1/f broad band spectrum,
yet it has a clear maximum in the frequency spectrum. In order to
assess the convergence we use ωF = 2πfmax, where fmax is found
numerically by FFT. The oscillator convergences to this frequency. 120

5.12 Typical convergence of an adaptive frequency oscillator (Eqs 5.56–
5.58) driven by a harmonic signal (I(t) = sin(2πt)) and different
coupling constants K. The coupling constant determines the con-
vergence speed and the amplitude of oscillations around the fre-
quency of the driving signal in steady state – the higher K the
faster the convergence and the larger the oscillations. . . . . . . . . 121

5.13 The structure of the dynamical system that is capable to repro-
duce a given teaching signal T(t). The system is made up of a
pool of adaptive frequency oscillators. The mean-field produced
by the oscillators is fed back negatively on the oscillators. Due to
the feedback structure and the adaptive frequency property of the
oscillators it reconstructs the frequency spectrum of T(t) by the
distribution of the intrinsic frequencies. . . . . . . . . . . . . . . . 121
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5.14 (N = 1000, K = 200) – a) The teaching signal T (t) (dashed) vs.
the output signal O(t) (bold) in the beginning (t = [0, 1.5]s) The
output almost immediately tracks the teaching signal since we have
a very strong coupling constant. b) T (t) vs O(t) after 1000 s, now
the output signal is basically identical to the teaching signal. c)
The square root error e(t) =

√

(O(t) − T (t))2 d) Evolution of the
distribution of ω. The traces of the evolution of the ωi are shown.
Thus, we can clearly see the development of the distribution of the
intrinsic frequencies from the initial uniform distribution to the dis-
tribution which corresponds to the Fourier spectrum of the signal.
e) The average Manhattan distance between the distribution of the
frequencies of oscillators and the Fourier spectrum (cf. text). f)
The fraction of oscillators which have converged. It can be seen
that the there is fast convergence of the oscillators in the first few
seconds. The measure stabilizes at around 0.96. g) The distribution
of the intrinsic frequencies ω distribution after t=1000 s (bars) the
crosses indicate the theoretical value of the Fourier spectrum of the
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.15 (N = 1000, K = 200) – Simulation with an initial condition which
is further off the end target spectrum. As can be seen due to the
negative feedback the oscillators cross over the frequencies which
are already covered. This means they take longer to converge but
the final distribution is very close to the case presented in Fig. 5.14.
c) The count of converged oscillators (bold line) in comparison with
the example from before (dashed). . . . . . . . . . . . . . . . . . . 124

5.16 (N = 100) – a) Convergence over time for different values of K
(T (t) = sin(10t) ω(0) ∼ U(2, 18)) as measured by the average Man-
hattan distance (note the logarithmic scale for the time). We can
see that in general larger K mean faster convergence. b) Distance
after 1s, 100s 300s, and 5000s for different values of K. . . . . . . . 125

5.17 (N = 6, K = 200) – The same input signal as in Figs. 5.14 and
5.15. This time we use the minimal number of oscillators (N = 6)
needed for perfect convergence to the given input signal. It can be
seen that in this example the convergence works perfectly. b) shows
the histogram after 100 s - see text for further discussion. . . . . . 126

5.18 (N = 1000, K = 200) – T (t) is a non-stationary input signal (cf.
text), in contrast to Figs 5.14 and 5.15 the histogram of the dis-
tribution of the frequency ωi is shown for every 50s, the grey level
corresponds to the number of oscillators in the bins (note the log-
arithmic scale). The thin white line indicates the theoretical in-
stantaneous frequency. Thus, it can be seen that the distribution
tracks very well the non-stationary spectrum, however about 4% of
the oscillators diverge after the cross-over of the frequencies. . . . . 126
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5.19 (N = 10000, K = 0.1) – a) The FFT (black line) of the Rössler
signal (for t = [99800,100000]) in comparison with the distribution
of the frequencies of the oscillators (grey bars, normalized to the
number of oscillators) at time 105s. The spectrum of the FFT has
been discretized into the same bins as the statistics of the oscillators
in order to allow for a good comparison with the results from the
full scale simulation. b) Time-series of the output signal O(t) (bold
line) vs the teaching signal T(t) (dashed line). . . . . . . . . . . . . 128

5.20 T (t) is a harmonic signal a) c1(t) for Fokker-Planck (dashed) and
full-scale simulation (N = 1000, K = 1) in the noise-less limit
(B(ω) = 0) b) The difference between c1(t) for Fokker-Planck and
full-scale simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.21 Results from integration of Fokker-Planck and full-scale simulation
(N = 1000, K = 1) for different levels of noise: σ2 = [10−6, 10−2]
a)–f) Comparison between the distribution of the large scale sim-
ulation (bars) and the Fokker-Planck integration (line), note the
logarithmic scale. The continuous distribution P (ω, t) has been
discretized in order to allow for a good comparison with the results
from the full scale simulation g) Measures of the convergence in
steady state. (Triangles) Fokker-Planck c1, (Circles) Full-scale sim-
ulation c1, (Crosses) Variance of c1 in the full scale simulation.
Clearly visible is that the full-scale simulation and the Fokker-
Planck equation show the same qualitative behavior under different
levels of noise. Interestingly there is a peak of variance for a level
of noise between σ2 = 10−3 and 10−2 in the full-scale simulation
(discussion see text). . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.22 Comparison between the results of the Fokker-Planck integration
and the full scale simulation (N = 1000, K = 1) for a more com-
plicated signal, namely the signal used in Fig. 5.14. The grey
histogram shows the statistics of the full scale simulation and the
black line shows the prediction of the Fokker-Planck integration.
Note that the statistics of the oscillator does not show more detail
since the single oscillator is the lower limit for resolution (zero line
in the plot), this resolution could arbitrarily pushed up by choos-
ing more oscillators. We see that especially in the beginning the
match is very good. For longer evolution the Fokker-Planck equa-
tion predicts a slightly better convergence than seen in the full scale
simulation (cf. text). . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 (a) Integration of the System Eqs. 6.1-6.3 (b) corresponding phase
plot, in which the frequency adaptation and the phase locking can
be seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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6.2 On the top left panel the nonharmonic driving signals are presented.
(a) Square pulse (b) Sawtooth (c) Chirp (Note that this is illus-
trative only since the change in frequency takes much longer as
illustrated.) (d) Signal with two non-commensurate frequencies (e)
Output of the Rössler system. – We depict representative results
on the evolution of ωd

ωF
vs. time. The dashed line indicates the base

frequency ωF of the driving signals. In (d) we show in a represen-
tative example how the system can evolve to different frequency
components of the driving signal depending on the initial condition
ωd(0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 (a) The mechanical structure of the spring-mass hopper. The trunk
is made up of a rigid body Mb on which two legs are attached
by rotational joints. The lower part of the leg is attached by a
spring-mass system SD. The lower part consist of a small rigid
body. The length of the body is 0.5m (b) The coupling structure of
the controller and the mechanical system used for the spring-mass
hopper. The upper Hopf oscillator is used for the activation of the
fore leg and the lower feedback loop for the hind leg. (c) This table
presents the parameters that have been used for the simulations,
unless otherwise noted. Note that this parameters can be chosen
from a wide range and the results do (qualitatively) to a large extent
not depend on the exact values of the parameters. Bottom row:
Snapshots of the movement sequence of the spring-mass hopper
when the frequency is adapted, i.e. steady state behavior (cf also
movie [1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Simulation results of the spring-mass hopper when the rotational joints

are not activated. a) Evolution of the intrinsic frequencies of the Hopf

oscillators ωh. Note that the frequencies of both oscillators nearly coincide

and therefore only one seems visible. b) Fore limb foot elevation. c) Hind

limb foot elevation. The adaptation of the frequency is clearly visible

and as can be seen in the feet elevation measurements the activity of the

system is increased as hopping starts at around 20 s (arrow). The dashed

line depicts the theoretical resonant frequency of the spring-mass system

when it would not leave the ground. Due to the lift-off of the feet the real

resonant frequency is smaller than the calculated value. . . . . . . . . . 147

6.5 Simulation results of the spring-mass hopper when the rotational joints

are activated a) The frequencies of the Hopf oscillators ωh b,c) Foot el-

evation yf,h d) Displacement of the center of mass of the body xb. The

adaptation of the frequency is clearly visible. As can be seen in the feet

elevation measurements and the displacement of the body this adaptation

enhances the activity of the leg and initiates a displacement of the body.

Interestingly there is a burst of activation (arrow) which increases the

adaptation speed before the system settles to steady state behavior. . . 147



210 LIST OF FIGURES

6.6 Test of the adaptation capability of the controller when the mass is

changed. At t = 40 s (dashed line) the mass of the body Mb is changed

from mb = 0.2 kg to 0.4 kg. See text for discussion. . . . . . . . . . . . . 147

6.7 Efficiency ρ vs ωh. See text for the definition of ρ, details of measurement

and experimental protocol. The dashed line indicates the frequency to

which the oscillators adapt. It is clearly visible that this corresponds to

the maximum of the efficiency. . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Further results from the simulation study a) total energy consumed
by the robot over the simulation run b) The mean velocity achieved
by the robot. It can be seen that the neither the energy nor the
velocity show an extremum at the resonant frequency. c) Gait pat-
tern (phase difference), depending on the detuning of the controller
different gait patterns emerge. d) Energy distribution over the dif-
ferent actuators of the robot. After adaptation, the hind legs con-
tribute more to the locomotion. Hip joints more than the springs:
Mean energy A) hind hip joint B) fore hip joint C) hind spring D)
fore spring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.9 a) PUPPY II, a robot “dog” with passive dynamics (cf. springs in
the knee joints) and several sensor modalities b) Mechanical struc-
ture of PUPPY II and sensor placement: 1,3: FSR (Force Sensitive
Resistors) 2,4: Potentiometers of the passive joints 5: 3-axis accel-
eration sensors 6: PSD (Position Sensitive Detector). Circles with
a cross denote actuated joints, blank circles denote passive joints.
c) Control structure used in the experiments: One of the sensor
channels is used to perturb an adaptive frequency Hopf oscillator,
the output of the oscillator (a state variable) is used to send mo-
tor commands (position control). Thus, this system constitutes a
nonlinear feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . 155

6.10 Results of adaptation experiments with the real-world robot a)
The frequency ω of the oscillator is shown as it changes over time
(bold line) adaptation using the z-axis of the inertia sensor: con-
vergence.of the frequency adaptation; (dashed line) adaptation us-
ing the knee sensor: divergence of the frequency adaptation with
increased rate around the resonant frequency b) An experiment
showing the advantage of using online adaptive controllers. The
body weight is changed from w1 = 0.905 kg to w2 = 0.695 kg. The
controller immediately adapts to the changed body property. . . . 157

6.11 These snapshots show the hopping movement of the robot after the
frequency adaptation has converged. There are moments when the
robot has all four legs lifted. . . . . . . . . . . . . . . . . . . . . . . 158
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6.12 In this figure we compare the results of the integration of the full sys-
tem (Eqs.6.7–6.11) with the results of the approximation (Eq. 6.16):
(blue) ω from the integration of the full system, (red dashed) ω pre-
dicted by the approximation. The dashed horizontal line marks the
resonant frequency of the linear system. . . . . . . . . . . . . . . . 160

6.13 A linear system for which the convergence is stable at resonance.
a,b) Bode plot for H(s), the dashed line indicates the resonant fre-
quency. Note that the phase has a negative 0 crossing at the reso-
nant frequency, this means the adaptation process has a attractor at
the resonant frequency. c) The function ∆ω = sin(H(s)). Strictly
speaking we need to look at this function to determine stability. d)
Time series of the integration of the full system showing the adap-
tation of the oscillator frequency ω. It is clearly visible how the
oscillator frequency adapts to the resonant frequency of the linear
system (dashed line), what corresponds to the prediction from the
Bode plot and ∆ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.14 A linear system for which there is no convergence at resonance. a,b)
Bode plot for H(s), note that the phase has no negative 0 crossing
at the resonant frequency, this means the adaptation process has no
attractor at the resonant frequency, and especially ∆ω (c), is always
positive with a distinct peak at the resonant frequency. This means
divergence of the oscillator frequency ω with an increased rate to be
expected around the resonant frequency. d) Time series of ω. The
prediction is confirmed by the data obtained by the integration of
the full system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.15 a) PUPPY II, a robot “dog” with passive dynamics (cf. springs in
the knee joints) and several sensor modalities b) Mechanical struc-
ture of PUPPY II and sensor placement: 1,3: FSR (Force Sensitive
Resistors) 2,4: Potentiometers of the passive joints 5: 3-axis accel-
eration sensors 6: PSD (Position Sensitive Detector). Circles with
a cross denote actuated joints, blank circles denote passive joints.
c) Control structure used in the experiments: One of the sensor
channels is used to perturb a controller consisting of one or several
adaptive frequency Hopf oscillators, the output of the oscillator (a
state variable) is used to send motor commands (position control).
Thus, this system constitutes a nonlinear feedback loop. . . . . . . 170
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6.16 Parameters describing the posture of the robot: center angle, i.e.
angle for zero signal x(t) = 0, angle corresponding to a signal of
amplitude x(t) = 1. αt is the actual position of the leg, α0 is the
offset (compared to a vertical position) of the center position of
the leg. Note that the vertical position denotes α0 = 0, legs titled
backwards from this position have negative angles, and vice versa.
This means the larger this angle, to more tilted forward is the leg.
α1 is the amplitude of the leg for a signal of amplitude 1 (measured
against α0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.17 Experiment 1 to show the online adaptation of the controller. On
the left an illustration of the sensor-controller structure. The z-
value of the acceleration sensor (A) is used as an input to the oscil-
lator. The signal of the oscillator is used to set the motor position
according to Eq. 6.21. On the right the intrinsic frequency ω of the
oscillator is shown as it evolves during the experiment. The body
weight is changed from m1 = 0.905 kg to m2 = 0.695 kg. The con-
troller immediately starts to adapt to the changed body property. 173

6.18 a) The range of posture angles used in the experiment illustrated
on the robot. b) The average frequency (squares) found by the
adaptive frequency oscillator vs posture, i.e. the angle of the leg.
The bars show the standard deviation. . . . . . . . . . . . . . . . . 174

6.19 Illustration of the effect of the posture angle α0 on the load distri-
bution on the spring and motor respectively. Of the force acting on
the leg (blue), only the part of the force active perpendicular to the
foot loads the spring (red), the force acting parallel to the foot will
act on the motor (green). Note that this is illustrative only for the
principles at work, and that the real case is more complicated (e.g.
amongst other things the force vector on the foot is not necessarily
vertical). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.20 Controller setup with two oscillators. a) Setup with θd = 0, i.e. the
two oscillator will synchronize in phase, this can also be interpreted
as excitatory coupling as denoted by the arrow. b) Setup with
θd = π, i.e. the two oscillator will synchronize in anti-phase. This
can also be interpreted as inhibitory coupling as denoted by the circle.176

6.21 Experiment to investigate the influence of the gait pattern on the
resonant frequency. a) gait pattern, stance/swing phases, black is
stance phase and white is swing phase, H depicts the hind legs and
F depicts to fore legs, for simplicity only one leg per pair is shown,
the data in each pair looks very similar. Top row for θd = 0, it
is well visible that the front and hind limbs are active at the same
time, while for θd = π, we clearly see a alternating gait. b) resulting
frequency of the adaptation process, the mean is at ω = 24.89 for
θd = π (alternating gait) and at ωd = 20.02 . . . . . . . . . . . . . 177
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6.22 Gait pattern estimated by the knee angle data, black is stance and
white is swing phase. a) Coupling θd = 0, the first panel shows
the gait pattern estimated by the knee angle data, the second panel
shows the phase differences estimated by difference of the phase of
the Hilbert transform of the knee angle data (in red the average
difference). b) The information but this time the angle of the CPG
is specified as θd = π. . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.23 Controller schema for Experiment 5. No connection between the
oscillators for the hind and front leg. . . . . . . . . . . . . . . . . . 180

6.24 Data from the adaptation experiment with local controllers (Ex. 5).
a) Adaptation of the frequencies, at around 400s the frequencies are
reset to 6 rads−1. It is clearly visible that there exists an attractor
for the convergence process are around 11 rads−1 b) The difference
between the frequencies for the front and hind leg. It is clearly
visible how closely together the two frequencies evolve. c) The
phase difference of the two oscillators, as can be seen they phase
lock at a value slightly higher than 0.5. And the phase locking is
never lost during the whole experiments, i.e. the legs are always
well coordinated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.25 Illustration of the feedback loop of the adaptive frequency oscilla-
tor with the linear system and the conventions used. The adaptive
frequency oscillator (AFO) is connected to the plant, which is mod-
eled as a linear system H(s) through u (the motor commands) and
the sensory feedback from the robot to the AFO is modeled by y. . 182

6.26 A linear system for which the convergence is stable at resonance.
a,b) Bode plot for H(s), the dashed line indicates the resonant fre-
quency. Note that the phase has a negative 0 crossing at the reso-
nant frequency, this means the adaptation process has a attractor at
the resonant frequency. c) The function ∆ω = sin(H(s)). Strictly
speaking we need to look at this function to determine stability. d)
Time series of the integration of the full system showing the adap-
tation of the oscillator frequency ω. It is clearly visible how the
oscillator frequency adapts to the resonant frequency of the linear
system (dashed line), what corresponds to the prediction from the
Bode plot and ∆ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.27 A linear system for which there is no convergence at resonance. a,b)
Bode plot for H(s), note that the phase has no negative 0 crossing
at the resonant frequency, this means the adaptation process has no
attractor at the resonant frequency, and especially ∆ω (c), is always
positive with a distinct peak at the resonant frequency. This means
divergence of the oscillator frequency ω with an increased rate to be
expected around the resonant frequency. d) Time series of ω. The
prediction is confirmed by the data obtained by the integration of
the full system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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6.28 Comparison of data from the real robot with the linear model. Top:
sensor (acceleration) that leads to convergence. Bottom: Sensor
(knee angle) that does not lead to convergence. While the basic
properties of the real world data are reproduced by the LTI model
there is some differences between the real data and the prediction
of the LTI model. The dashed line indicates the estimated resonant
frequency. See text for further discussion. . . . . . . . . . . . . . . 186

6.29 Additional results on PUPPY II. a) The average power vs. fre-
quency. Compared to Fig. 6.8 the scaling is qualitatively similar
as in the simulation. The vertical line indicates the line found by
the adaptive frequency oscillator. b) The average velocity. c) Par-
tition of the movement of the robot vs. the frequency (bold) x-axis
(dashed) y-axis (dash-dot) z-axis. Refer to the text for an explana-
tion of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
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3.1 (a) The table shows the phase differences corresponding to the three
most common gaits observed in quadrupeds. (b) The table shows
the 3 different rotation angles that are needed in the construction
of the ACPO-CPG. (c) Connection scheme used for the ACPO-CPG. 24

3.2 Nomenclature, conventions and common abvrevations used to dis-
cuss oscillators in this article. . . . . . . . . . . . . . . . . . . . . 35

3.3 Common design goals and the required properties of the oscillator. 48
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the geometry of the oscillator: (a) influences on r, (b) the design
of T

−1/ output filter. The column “R/A” indicates whether the
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