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Abstract

Information plays a ubiquitous role in nature. It provides the basis for structure and
development, as it is inherent part of the genetic code. But it also enables organisms
to make sense of their environments and react accordingly. For this, a cellular inter-
pretation and measure of information is needed. Cells have developed sophisticated
signaling mechanisms to fulfill this task and integrate many different external cues
with the help of such.

Here we focus on signaling processes that sense osmotic stress (the High Osmolarity
Glycerol (HOG) pathway) as well as α-factor stimulation (the pheromone pathway) in
the model organism S.cerevisiae. We employ stochastic modeling that simulates the
inherent noisy nature of biological processes to assess how signaling systems process
the information they receive. This information transmission is evaluated with an
information theoretic approach by interpreting signal transduction as an information
transmission channel in the sense of Shannon.

We use channel capacity to both constrain as well as quantify the fidelity in the phos-
phorelay system of the HOG pathway. In this model, simulated with the Stochastic
Simulation Algorithm by D.T. Gillespie, the analysis of signaling behavior allows us
to constrain the possible parameter sets for the system severely. A further approach
to signal processing and integration is concerned with the mechanisms that conduct
crosstalk between the HOG and the pheromone pathway. We find that the control
for signal specificity lies especially with the scaffold proteins that tether signaling
components and facilitate signaling by trans-location to the membrane and shielding
against miss-activation. As conserved motifs of cellular signal transmission, these
scaffold proteins show a particularly well suited structure for accurate information
transmission. In the last part of this thesis, we examine the potential reasons for an
evolutionary selection of the scaffolding structure. We show that solely due to its
structural mechanisms, scaffolds are increasing information transmission fidelity and
outperform a distributed signal in this regard as well as their robustness.

The presented analyses provide a structural view on signal processing in cellular
systems and combine several mathematical methods with one another.

Keywords: S.cerevisiae, cellular signaling, HOG pathway, pheromone pathway, scaf-
folding, systems biology, information theory, stochastic modeling, chemical master
equation, moment closure
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Zusammenfassung

“Information” spielt in der Natur eine zentrale Rolle. Als intrinsischer Teil des genetis-
chen Codes ist sie das Grundgerüst jeder Struktur und ihrer Entwicklung. Aber im
Speziellen dient sie auch Organismen, ihre Umgebung wahrzunehmen und sich daran
anzupassen. Die Grundvoraussetzung dafür ist, dass sie Information ihrer Umgebung
sowohl messen als auch interpretieren können, wozu Zellen komplexe Signaltransduk-
tionswege entwickelt haben, mit denen sie diese Aufgabe erfüllen können.

In dieser Arbeit konzentrieren wir uns auf Signalprozesse in S.cerevisiae die von os-
motischem Stress (über den High Osmolarity Glycerol (HOG) Signalweg) und der
Stimulation mit α-Faktor (Pheromon Signalweg) angesprochen werden. Wir wen-
den stochastische Modelle an, die das natürlich innewohnende Rauschen biologischer
Prozesse darstellen können, um verstehen zu können wie Signalwege die ihnen zur Ver-
fügung stehende Information umsetzen. Informationsübertragung wird dabei mit einem
Ansatz aus Shannons Informationstheorie gemessen, indem wir Signaltransduktion als
einen Kanal in diesem Sinne auffassen.
Wir verwenden das Maßder Kanalkapazität, um die Genauigkeit des Phosphorelays
innerhalb des HOG Signalweges messen und einschränken zu können. In diesem Modell,
welches mit dem Gillespie Algorithmus simuliert wurde, können wir durch die Analyse
des Signalverhaltens den Parameterraum zusätzlich bereits stark einschränken. Eine
weitere Herangehensweise der Signalverarbeitung und -integration beschäftigt sich mit
dem Mechanismus des “Crosstalks” zwischen HOG und Pheromon Signalweg. Wir
zeigen, dass die Kontrolle der Signalspezifizität vor allem bei Scaffold-Proteinen liegt,
die Komponenten der Signalkaskade binden und bündeln und über Lokalisierung an
der Zellmembran die Signalübertragung ermöglichen sowie vor falscher Aktivierung
schützen. Diese konservierten Motive zellulärer Signaltransduktion besitzen eine
geeignete Struktur, um Information getreu übertragen zu können. Im letzten Teil der
Arbeit untersuchen wir potentielle Gründe für die evolutionäre Selektion der Scaffold
Proteine. Wir zeigen, dass ihnen bereits durch die Struktur des Mechanismus möglich
ist, Informationsübertragungsgenauigkeit zu verbessern und einer verteilten Informa-
tionsweiterleitung sowohl dadurch als auch durch ihre Robustheit überlegen sind.

Die hier vorgestellten Analysen bieten eine strukturelle Sicht auf Signalprozesse in
zellulären Systemen und kombinieren verschiedene mathematische Methoden dafür
miteinander.
Stichwörter: S.cerevisiae, zelluläre Signaltransduktion, HOG Signalweg, Pheromon
Signalweg, Scaffolding, Systembiologie, Informationstheorie, stochastische Model-
lierung, chemical master equation, moment closure
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1. Introduction

1.1. Motivation

Stochasticity in organisms and their environments has in the recent past more
and more become a focus of scientific research as a key to heterogeneity and
diversity in biology. Stochasticity is considered a driving force in the evolution-
ary “design” of biological systems, as handling it is an important functionality
that such designs have to fulfill in order to be conserved. No organism can
survive if it cannot deal with the natural fluctuations in its environments and
in addition, every cell is “born” into its own intrinsic stochasticity of varying
molecule numbers and inherently stochastic biological processes. Yet, even
though this imperative noisy nature of biological mechanisms is all-abundant
and well established, it has been largely avoided in previous research. To
a certain degree, this can be attributed to the experimental techniques and
computational power available in the past, as only recently we see more and
more studies aiming their focus on observing single cells and molecules instead
of population means (Spiller et al., 2010). This development not only reflects
our fast technical advancement and growing understanding of fundamental
processes, but also opened up a variety of topics for deeper research in both
experimental as well as theoretical work. Studying noise has been an urgent
undertaking especially when low copy numbers and stochastic events are under
research, like for example in the case of gene expression (McAdams and Arkin,
1997; Swain et al., 2002; Elowitz et al., 2002), cellular signaling (Samoilov
et al., 2005), but also for considerations of evolutionary developments (Rivoire
and Leibler, 2011, 2014). Since we have been provided with huge datasets
containing whole genomes and individual cell behaviors within populations,
understanding this stochasticity has proven to be of great importance and
fostered many new insights and implications. This development can be seen in
many fields of molecular biology nowadays and is closely coupled to theoretical
advances.1

1A very interesting testament to that is the citation metrics of the paper Gillespie (1977),
whose popularity has risen only in the last decade in a very impressive fashion due to the
higher attention of stochastical theories and simulations in biology that came especially
with the data produced by experimental research, but also to some extend with the
availability of increased computational power and theoretical developments for model
development (e.g. Daigle et al., 2012).
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1. Introduction

Fluctuations and variations span over a large diversity of scales and types
and additionally their source, leverage point as well as contribution, is not
always apparent in systems as complex as biological organisms. Neither is the
discrimination between pure (biological) noise and vital information that fluctu-
ations can potentially carry. Yet, this distinction plays a particularly important
role when it comes to cellular signaling. External conditions vary naturally
and information about those environmental cues, stimuli and stresses is relayed
via sophisticated networks to evoke appropriate adaptations in the organism.
Signaling networks have evolved to function reliably despite their fluctuating
environments and to overcome their stochastic encoding and transmission
properties, thus achieving a natural separation of noise and vital information.
In a fascinating fashion, they manage to regulate a flow of information that
is both specific as well as sufficiently accurate and allows the decision centers
within the cell to infer what was sensed in the first place. In recent years,
theoretical research has taken this matter of separation up (i.e. Bowsher and
Swain, 2012) and is incorporating it into a better fundamental understanding of
information flow and function. As cell signaling and the failing thereof is closely
connected to cancer development and also its therapeutic treatment (Pfizer
et al., 2006; Bianco et al., 2006; Hanahan and Weinberg, 2011), many scientific
efforts have been aimed at understanding its basic principles, building blocks
and functions. Creating knowledge on how this information flow is directed
and what roles stochasticity plays within it adds an important dimension to
this research. Our grasp of biology and also our capacities for creating and
analyzing biological data has come to a point where it is possible and advisable
to take this additional dimension into account as well. Understanding, step by
step, how systems as complicated as cellular organisms (including ourselves)
achieve robustness and function, will let us take many more steps forward in
scientific research. As can be learned from economic and financial sciences, in
large systems exhibiting a high degree of complexity it is important to regard
more than just mean approximations, as some variations can have critical and
unpredictable effects on the whole system.

In the work at hand, we are exploring the notion of “information” in biolog-
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1.2. Signaling in Systems Biology - Information processing in biological
systems

ical systems using the example of signaling in Saccharomyces cerevisiae. We
aim at studying effects of structural properties of cellular mechanisms on the
processing of stochasticity and the flow of information.

1.2. Signaling in Systems Biology - Information processing in
biological systems

As with many applied fields of science, the development of biological research
has over the centuries been closely coupled with the technical advances in
physics and engineering. Although biology was mainly on the receiving end,
there has been a strong back and forth between these fields. Technical advances
delivered new methods for the experimental research of biological organisms
and in turn, the high demand for this fed back into technical refine- and ad-
vancement as well as the development of theoretical analysis. This let to a
point where it became necessary (and possible) to consider not only parts
of molecular machinery, but also connections and interactions between them,
creating a “systems view” of biological processes. Thus, the idea of “systems
biology” was developed in order to focus on such a level of understanding by
incorporating knowledge as well as data from many different experimental
fields of biology (Klipp et al., 2013; Alon, 2006; Kitano, 2002). One particular
aim of this is to use mathematical frameworks and bio-informatic analysis in
order to find and test hypotheses on structures as well as functions and create
a loop back again to experimental studies to validate, refine and extend these
hypotheses. In that way, systems biology brings together and connects the
scientific fields of biology, mathematics, physics, chemistry and informatics.
And although this involves tremendous amounts of communication between and
joint understanding of the different sciences, this circle has on many occasions
shown to be fruitful in developing new insights into biological systems.

A key point in this research has been to elucidate the connections between
different machineries within cell systems. It has been shown that there exist
designs and motifs that occur frequently and fulfill many functions in different
contexts as well as organisms (Milo et al., 2002; Yeger-Lotem et al., 2004; Alon,
2007; Legewie et al., 2008). Identifying them and exploring their potential cre-
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1. Introduction

ates a modular view on biology that places detailed research in a much broader
context (Hartwell et al., 1999). Much in analogy to the proof of “Fermat’s last
theorem” by Andrew Wiles (Wiles, 1995), the emphasize is placed on ways to
exploit connections between the different fields in order to reach a higher goal.
This also means that concepts and hypotheses along this way will have to be
refined and understood in greater detail. Recent advances (Karr et al., 2012;
Sanghvi et al., 2013; Macaulay et al., 2015; Azeloglu and Iyengar, 2015) show
that our growing understanding of how to do this integration enables further
research, making a system more than the sum of its parts. And finally, this
approach presents us with integral benchmarks on what we know and what we
cannot comprehend yet, thus suggesting where to look next. This feeds back
to experimental research and closes the mentioned “cycle of systems biology”.2

One particularly important part of such a modular view on biology is the
understanding of cellular signaling networks. They play a crucial role in the
inter-connections between modules and incorporate many recurring motifs
themselves, making them a highly integrated network. Their main function,
however, is to link the cell’s behavior to the outside environment. Many recep-
tors act as sensors to encode and transmit information to cell decision centers,
making them an integral part for survival and proliferation. They enable cells
to adapt to stresses and other environmental cues, like growth factors, nutrient
availability or signals on a population level. At the same time, their vital role
also puts them at a high risk of causing malfunction of the organism if not work-
ing properly. Mutations causing cancer development (Hanahan and Weinberg,
2011; Berg et al., 2002, chap. 15) have been predominantly associated with
signaling pathways and attempts for treatments thereof are thus often aimed
at restoring their functionality (Levitzki and Klein, 2010). Of course, this
requires a deep understanding of how the motifs in question actually function.
Regulation patterns like feedbacks (Klinger and Bluethgen, 2014), feed-forward
loops (Mangan and Alon, 2003), crosstalk between pathways (Natarajan et al.,

2Exemplary for this kind of cycle is the joint work by the labs of Jens Timmer and Ursula
Klingmüller, who engaged in many fruitful collaborations showing that with proper
communication and mutual understanding of theory and experiment, this field of research
provides progress that otherwise would not be possible in a more isolated approach (Faller
et al., 2003; Schilling et al., 2005; Raue et al., 2009).
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1.2. Signaling in Systems Biology - Information processing in biological
systems

2006) and many further mechanisms make this a non-trivial, yet important task.

Adding to this complexity is the fact that the environmental cues to be
relayed are stochastic. Thus, the gathered information is noisy by nature and
since biochemical signal transduction depends on diffusion and reactions, also
the transmission of this information will be distorted. While structural research
on molecular signaling modules has been conducted already for more than a
decade, incorporating stochastical considerations into them is a more recent and
very exciting development and is especially driven by the already mentioned
advancements in experimental biology. As with a modular view of biology, the
scope of such research varies immensely and can employ a zoom-out approach,
going from simple modeling and the understanding of basic structural implica-
tions to more complex systems integrating such smaller modules (Powell, 2004).

Cell signaling is in need of processing capabilities that regulate and inte-
grate the available information, yet how and to what extend this is done by
biological systems is unclear. Applying a stochastic systems biology approach
to this information processing of cell signaling networks grants access to a
more comprehensive and integrated view of how fluctuations and variations
are handled and additionally allows to apply evolutionary arguments to the
selection of such structures Rivoire and Leibler (2014).

Yet, as we try to understand biological function in more and more detail,
we have to restrict ourselves to basic principles and manageable systems upon
which we build knowledge. Like mathematic proofs building on one another,
biological sciences have advanced step by step to learn more (not without
stumbling, yet always with progress). With the advent of molecular biology
we have seen different model organisms arise and while we are venturing into
human applications, those biological models are still teaching us fundamental
principles upon which we can build.

13



1. Introduction

1.3. Saccharomyces cerevisiae - A model organism for systems
level science

Biological organisms are of immense complexity. Comparing theirs to the
complexity of even the largest of human designed technical systems would still
not do them justice. Especially since in that case, we ourselves are the designers
and set the rules that elude our view in a biological “design by evolution”.
And even though within this enormous diversity and heterogeneity we find
principles and recurring mechanisms that govern functionality, most of the time
our observations are merely glimpses of the real biological truths and hidden
behind convoluted causes and effects. So how can we learn and advance in the
face of such overwhelming complexity? In mathematics, a well-built structure
advances from a established statements and assumptions further to extended
implications. Biologists share this approach to some extend, by building knowl-
edge on a well-known, controlled and manageable environment, at least within
our possibilities. Such environments in the age of molecular biology are model
organisms like for example Drosophila melanogaster, Caenorhabditis elegans
or (most notably) Saccharomyces cerevisiae, each used for different purposes
in experimental science. While we are already venturing into human research
and applications, those biological models are still teaching us fundamental
principles upon which we can build. In the case of systems biology, S.cerevisiae
(“bakers yeast”, see Fig. 1) has proven to be one of the most important model
organisms (Botstein and Fink, 2011).

The knowledge obtained from experimental as well as theoretical research
of the eukaryotic S.cerevisiae spans a vast amount of biological science. More
than 80% of its genome is annotated, generating large amounts of available
knockouts and especially bridging the connection between genes and their
function that is needed to understand broader contexts. In addition, it shares
many regulatory features and mechanisms with more complex eukaryotes3.
Moreover, the organism can be handled easier than others due to the relatively
low doubling time around 100 minutes and is robust to many perturbations.
All this enables the basis for a systems approach that is unparalleled by other

3About 1000 genes were shown to have ortholog families of genes mammalian cells, that are
connected to human diseases (Heinicke et al., 2007).
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1.4. Information in Biology

Fig. 1: The model organism S. cerevisiae, (Eye Of Science /
Science Photo Library, accessed at http://thebeerdiaries.tv/
full-genome-sequencing-yeast/)

organisms. Even though it is immensely important to eventually take the
obtained knowledge to another level and research the mammalian counterparts
with all their similarities and differences, the basic knowledge we obtain by
studying yeast is still vital to scientific understanding of cellular functions and
also will be for some time to come.

Within this work, we will be focusing on signal transmission in S.cerevisiae
to utilize gathered knowledge in order to apply stochastic approaches and
regulatory elements of signaling and test their implications.

1.4. Information in Biology

The notion of “information” can be ambiguous and generally depends on the
broad context of its interpretation. This makes it hard to infer from an out-
side view what the fundamental semantics in a certain setting are. This is
particularly true for biology. In a designed technical system it is possible to
pre-define what alphabets one is working with and how valid messages are
composed. In analogy to a key exchange protocol in cryptography, those agree-
ments are subject to a larger context of a communicated agreement between
sender and receiver. Unfortunately, it is impossible to know what these terms
are exactly in a biological system and how this information is perceived and
utilized by cells. There are many ways, in which an organism can encode, store
and transmit information. The most obvious way is presented in its genetic
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1. Introduction

code in form of nucleotide sequences on DNA. It carries the information vital
for everything: On how to facilitate development, growth, decision making,
proliferation and actually, with the latter it also carries the information for
itself4. Yet, this is regulated (in fact with the regulators being part of the code
themselves as well) by incorporating information transduced by a complex
system of protein signaling pathways. Information is stored and encoded in
concentrations, gradients thereof, molecule conformations, activation states,
action potentials and a plethora of further means.5 This simply illustrates that
“information” is all abundant and the building block for life.

To us, the meaning of information in a cell and the weighting of its impor-
tance for the biological functionality is hidden. This cellular interpretation and
especially the extend to which information is also neglected by an organism
(for example as a way of optimizing a balance of energy or robustness, see also
the discussion in Voliotis et al. (2014)) is part of evolutionary development and
it is important to keep in mind that this selection process concerns both signal
transduction (the message) as well as responses (Smith, 2000). We, as the
third party trying to understand this inherent biological information processing,
can only make observations on the responses to such a communication and
integration of signals and interpret them with what we already know about
the internal processes. Experimental setups can control the environment to
a certain extend and thus enable us to modulate the external informational
cue. The experiment further leaves the interpretation to the organism and
evaluates only the changes in its behavior of the chosen observables. We might
not be able to grasp the full extend of the blackbox in between this signal and
output, yet there is a way of inferring how information was processes in it.
Here, the work of C.E. Shannon is particularly appealing. His “information
theory” provides the tools to quantify the extend and boundaries of such a
processing. Because of this, it was employed in many interesting applications
in biological signaling mechanisms. One important aspect of the theory is
that it disregards semantics. This means that any encoding or decoding can

4Yet, not in any paradox way that Bertrand Russell could use to cause chaos to the card
house of biological research.

5As shown in Selimkhanov et al. (2014) and Tostevin and Ten Wolde (2009), many encodings
make use of temporal profiles of such means.
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1.4. Information in Biology

be considered, the only prerequisite is that our approaches provide sufficient
statistics. Mere processing of the data does not change information theoretical
measures (they are invariant to transformations) and thus presents us with
an objective way to measure and constraints information transmission. Yet
when applying the theory, we have to be aware that we see upper boundaries
and constrains on signaling. This in itself can elucidate many questions, but
going into semantics is sometimes still needed as we cannot tell how much
information is merely disregarded by the cell. Nevertheless, the application to
many biological studies has shown that the numbers for such constraints are
sometimes lower than would be expected (Voliotis et al., 2014), which has two
implications: Firstly, information processing can be adjusted to incorporate a
certain amount of randomness. This could for example be less energy consum-
ing than more sophisticated signaling mechanisms and thus be chosen even
with the risk of faulty sensing. This consideration explains low capacities and
argues that this boundaries is exhausted and optimal. A second implication
can be, that we were looking for the wrong features. The observables we choose
for studying biological information have to be chosen carefully. As mentioned
earlier, an encoding can for example map stress strength to temporal profile of
a downstream species. Evaluating such a structure only by using one point in
time will not represent the full information that can be transmitted. At this
point it is important to obtain enough knowledge on structure, behavior and
basic functionality of the system in question and thus answer the question of
the underlying semantics. Information theory provides a benchmark for what
we observe and an important tool for refinement. Applying it to information
in biology can be rewarding as it gives a valid measure for it, but should be
done with careful consideration.

As in noisy signal transmission, uncertainty always remains in what we
know about biological systems, but as we progress in our understanding of
the underlying principles, we also push the boundaries of producing applicable
knowledge. We need to reach a point, where the information contained within
a cell can first be entangled, then interpreted, and ultimately also manipulated
to be used to our advantage, for example in clinical applications.

17



1. Introduction

1.5. Scope and aim of the work

Within this work, we explore the capabilities of cellular signaling mechanisms
to conduct and process information from a structural point of view. We employ
both stochastic and deterministic modeling to study their functionality with
regard to how they enable fidelity of signaling despite the noise that is inherent
in their biochemical processes and how they adapted evolutionary to still pre-
serve function and can conduct information reliably to decision centers - even
in the case of designs with multiple inputs and multiple outputs. The merging
of structural research and stochastic concepts has only recently been gaining
increased attention. Here we aim to study design principles that integrate
both ideas to gain further insight into cellular signaling and model construction
thereof.

The interpretation of signaling is closely connected to information theoreti-
cal concepts. The framework plays a key role in our work, as it enables us to
quantify information processing, put constraints on what a system is capable
of transmitting reliably and presents us with an optimality criterion that can
be used to discriminate. We introduce information theory as a field that has
many appealing applications in biology and a large potential to facilitate more.
We believe that while its application can be tricky at times, it still provides
many new insights.

Chapter 3 is focusing on a conserved two-component signaling system,
the phosphorelay in the Sln1 branch of the High Osmolarity Glycerol (HOG)
signaling pathway. This module is employed in many prokaryotic organisms
and shows a robust behavior, even if noise is introduced in the system. It is
capable of transducing a graded response to changes in osmolarity already
(and especially) at this first stage of signaling. As the response in Hog1 double
phosphorylation shows distinct temporal time courses and features to different
stress strengths, it is possible that this diversity has its origin not only in
feedback mechanisms and adaptational programs, but instead can potentially
already arise in the encoding of the input. We extend this modeling approach
and interpretation as a transmitting channel in the sense of information theory
by using the measure in a parameter space restricting fashion. Viable signaling
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1.5. Scope and aim of the work

and information transmission capabilities define how our system can be modeled.

Chapter 4 embeds this signaling motif into a broader context and regards
the whole network of pheromone and HOG signaling. We study the effects
of crosstalk as observed in a study by Vaga et al. (2014) with a deterministic
structural model. We reexamine the experimental data and suggest a modeling
approach to test a consensus view on the signaling pathway. The emphasize is
put on how crosstalk can be prevented and find that the control in this speci-
ficity lies with scaffolding proteins. We reach the conclusion that the knowledge
obtained in earlier studies is not sufficient to explain the novel findings of
the dataset and further investigations are required for a more comprehensive
understanding.

The last chapter 5 is concerned with reinterpreting the evolutionary de-
velopment of a central role that scaffold proteins play in cellular signaling.
This motif tethers signaling molecules to itself and has been shown to fulfill
a plethora of different functions (as also seen in chapter 4). We discuss the
idea that in order to develop a structure as abundantly used as scaffolding, yet
with sometimes very low similarities between particular scaffold proteins, the
incentive has to be based on a structural advantage to other motifs (for example
with higher binding affinities between signaling species instead of a tethering).
Many of the functions observed nowadays seem to be of secondary nature. As a
strong potential candidate for these evolutionary selected primary features, we
suggest an optimal and increased fidelity compared to non-scaffolded signaling.
Furthermore we present the use of multiple channels and the integration of
molecule concentrations downstream as a redundant coding for achieving higher
fidelity in signal inference. With this, cells are able to reliably judge their
environment and can adapt themselves accordingly.

Although increasingly focused on, single cell data of signaling systems
providing a sufficiently good statistics to approximate probability distributions
is still sparse. But since especially experimental techniques improve at a fast
rates nowadays, we believe that this kind of data will increase over the next
decades and potentially become a standard approach as it covers both single cell
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dynamics or properties as well as the integrated population level by averaging
over these. The availability of such data opens up applications of stochastic
modeling and information theoretical analysis. With the work at hand we hope
to provide a fundamental understanding of the application of these concepts
to probability distributions of biological species and the assessment of signal
processing for considerations in future research.
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2. Mathematical background

Within this section we will provide the reader with the mathematical funda-
mentals and details to enable a better comprehension of the frameworks used
in the following chapters. We will introduce the mathematical descriptions that
are applied to biological settings, in our case information processing mecha-
nisms in S.cerevisiae. As a center piece for analyzing information transmission
we will familiarize the reader with C.E. Shannon’s “Information Theory” and
some of its applications in section 2.1. In order to make use of this frame-
work, mathematics for stochastic modeling are needed and will be established
subsequently in section 2.2. This includes the “chemical master equation” as
a way to describe the development of probability distributions of states in a
system as well as two important practical ways to realize this development: the
“Stochastic Simulation Algorithm” (SSA) by Gillespie (1977) and the method
of “moment closure”. Both allow us to build models that can be analyzed using
information theoretic measures.

2.1. Information Theory - A framework to quantify information
processing

Over the last century, two scientific fields have showed a particularly impressive
development. Starting out with the landmark paper of J.Watson and F.Crick
(Watson et al., 1953) that described the double-helix structure of DNA, molecu-
lar biology took a very impressive and fast-paced path within this century. In a
similarly short time window after the second world war, computer sciences were
formed6 and, built upon mathematics and physics, matured with the advances
in engineering into one of the most important scientific as well as applied fields.
As in molecular biology, one single contribution played a particularly key role
in defining and driving the progression of the field: Claude E. Shannon’s
fundamental paper (Shannon, 1948), that described the complete framework
of “Information Theory”. It was developed by Shannon in 1948 while working
at Bell Laboratories - the very famous research and development department

6Of course, as with molecular biology, not without building on predecessors.
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2. Mathematical background

of a telephone company - to describe and quantify information transmission as
well as its boundaries. At that time it was of importance for telegraph and
telephone communication, but later it became an important basis of computer
science and our modern information society, by providing applications in data-
compression, -encoding, -transmission, -processing or -correction ultimately
enabling inventions like the world wide web, wireless communication, data
encryption and countless more. Also, biological sciences benefited from the
theory with several applications. With its numerous implications Shannon’s
paper is one of the most important and influential papers of the 20th century7

and one of the most impressive legacies passed on by a single man.8

Fig. 2: “Schematic diagram of a general communication system” - Fig.1 from
Shannon (1948)

While computer science thrived and built a sizable part of its advancement
upon the invention of information theory, biology has only recently noticed
the potential of the framework for its own applications.9 Before going into the
theory itself, we want to give a brief account of some of these interesting uses
to motivate the upcoming derivations and guide the interested reader towards
further information.

7One of the most cited as well.
8Remark: It also is interesting to know that Shannon’s PhD-thesis was concerned with

developing a framework for a biological setting (Shannon, 1940), namely a formal “algebra
for theoretical genetics”. The download is available from the MIT under http://hdl.
handle.net/1721.1/11174. Even before that, he developed the basis for digital computing
in his master thesis (Shannon, 1938). In the 60s, he invented one of the first portable
computers and with it applied his information theory to gambling, even going through
the risks of testing it in a casino in Las Vegas at that time (Thorp, 1998). Unfortunately,
Shannon probably never fully experienced this legacy, as he later suffered from Alzheimer’s
disease.

9In fact, the early advances even considered the applications very skeptical (Johnson, 1970).
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2.1. Information Theory - A framework to quantify information processing

A very important use of information theoretical measures developed in
the early 90s when T.D. Schneider defined “sequence logos” (Schneider and
Stephens, 1990). Since then, they have become standard in displaying the
information encoded in sequence alignments. This representation interprets the
DNA as a code that contains information, where each position can encode 2 bit,
as the possible characters at each position are A,G,C and T. Aligning such
sequences (for example around the translation initiation site “START”) gives
probability distributions for each position of the binding site, depending on the
conservation of the sequence. Thus, Schneider found a way of describing how
much information e.g. a transcription factor would gain (and need, respectively)
through binding. This has revolutionized the earlier used notion of “consensus
sequences”, where only the most likely sequence was used. Instead, Schneider’s
logos (based on the measured probabilities) show a much more detailed and
correct way of possible bindings. Nowadays, this is employed in many appli-
cations besides the pure representation of binding sites (e.g. Schneider, 2001;
Lyakhov et al., 2008).

An important use of information theory is without doubt its measure of
mutual information that quantifies how much one random variable can tell about
the other and thus, naturally provides a measure of (even non-linear) correlation.
The applications for that are manifold. In biology, especially network inference
and classification techniques (Butte and Kohane, 2000; Zheng and Kwoh, 2006;
Liang et al., 1998; Qiu et al., 2009; Slonim et al., 2005) as well as applications
in neuro-science (Borst and Theunissen, 1999; Tkacik et al., 2010; Dimitrov
et al., 2011), but also studies on signaling networks (Tostevin and Ten Wolde,
2009) have made extensive use of that.

Besides the many theoretical advances, the application of information the-
ory still encounters restrictions in experimental work. Measuring probability
distributions with single cell data of living organisms is no simple task and data
sets only started to show the quality and especially quantity needed for a good
approximation. Very important advances to that were provided by the work of
Cheong et al. (2011a) and more recently Selimkhanov et al. (2014). Whereas
data in genomics and neuro-science already provide a good basis for working
with probabilities, studies in cell signaling and metabolism are only slowly
catching up to that. Then again, this merely means that many opportunities
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2. Mathematical background

still lie ahead and it will be exciting to see the development in the near future.
Last but not least, we want to mention a very thorough and rigorous study

by Rivoire and Leibler (2011), that provides perspectives and conceptual work
on how cells perceive their environment and integrate this into decision-making
and optimizations in terms of theoretical long-term growth rates. This work
has far reaching implications for the further development of the topic, even
though it only creates unspecific concepts in many aspects. Together with the
recent more technical follow-up (Rivoire and Leibler, 2014), it provides a com-
prehensive insight into how the value of information in varying environments
is processed and integrated.

This is only a small and incomplete account of research employing the use
of information theory. For further reviews and interesting applications of the
theory, we refer to the diverse literature on the topic: Waltermann and Klipp
(2011); Adami (2004, 2012); Battail (2005); Rhee et al. (2012); Schneider
(2005); Vinga (2013).

2.1.1. Uncertainty and Mutual Information - Building blocks of signal
processing

To quantify the transmission of information within biological cell signaling, it
is possible to consider biochemical signaling pathways as noisy channels in the
sense of Information Theory as developed by Shannon (1948). This probabilistic
mathematical framework provides “channel capacity” as a measure that can be
used to evaluate how well different input signals are still distinguishable after
the signal has been transduced. We aim to quantify and evaluate the system’s
capabilities of transmitting information by observing its ability to respond to
certain inputs in the presence of noise. In a technical setting, this is the limit
to which messages can be transmitted reliably. It is important to keep in mind
that with capacity we can set an upper bound on information transmission.
The biological implications however can be very complex and possibly even
include the neglect of information. Nevertheless, it is (not without reason)
assumed that biological systems typically evolve by optimizing efficiencies
of certain biological functions. This could be an objective function like for
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2.1. Information Theory - A framework to quantify information processing

example a growth rate or cell proliferation. Bacterial organisms even combine
the two with a “bet-hedging” strategy of phenotype switching that finds a
balance between growth and pure survival of the population (Balaban et al.,
2004). Organisms thus often work in near-optimal regimes, leading to the idea
of using this optimization for the study of biological principles (Rosen, 1986;
Parker et al., 1990). We use this argument in the way that we regard signaling
pathways as evolutionary optimized (and thus fixed as a channel). Here we
give an introduction to the main concepts of the framework, embedding them
into biological settings. For more detailed information we refer to Cover and
Thomas (2012) and Brillouin (2013).

Let X be a discrete random variable associated with the corresponding
probabilities P (x) of the events x ∈ X. Each of these events will be associated
with a function called “surprisal” or “self-information” (see Fig. 3a), which
is the negative logarithm of its probability: S(x ∈ X) = − log(P (x)). This
is based on the following intuition: The occurrence of rare event would be
both surprising as well as a potent carrier for information. Imagine letters in
an alphabet and the words composed from them: Rare letters (e.g. z, j, q,
x for the English language) in a word narrows down the number of possible
words immensely even without knowing all other letters, whereas the single
occurrence of frequent letters (e.g. e, t, a, o) still leaves many choices and thus
contains less self-information. A certain event (P (x) = 1) is never “surprising”
and thus, its occurrence carries no information at all. As for the usage of
the logarithm, Shannon noted that (with referring to Hartley, 1928) it is the
natural choice for a measure of information in states, since most importantly
it scales linearly with many processes in engineering as well as nature, not to
mention its handiness in mathematical calculations that would otherwise need
more complicated statements.

As a suitable representation for measuring “information, choice and uncer-
tainty”, Shannon deduced the so called (Shannon) entropy H, as visualized
in Fig. 3b. For this, he defined important properties of our (intuitive) under-
standing of information and identified H as the only function satisfying these:
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2. Mathematical background

(a) The measure of “surprisal” or “self-
information” of an event x ∈ X, depen-
dent on the probability P (x).

(b) Entropy of a random variable
X = {x1, x2} with the associated
probability distribution P (x1) = p
and P (x2) = q = 1 − p.

Fig. 3: Fundamental measures for quantifying “information” and “uncertainty”.

H(X) = −K
∑
x∈X

P (x) · log P (x) (1)

where P (·) is the associated probability distribution of the random variable
X (Shannon, 1948, Appendix II). The constant K represents a choice of unit
for the entropy. Following the general convention, we measure entropies in
bits, referring to a base of 2 for the logarithm (K = 1/ log(2)). Intuitively
1 bit could be visualized by the toss of a fair coin: The equal probability of
“heads” and “tails” as the outcome of the toss gives us two equally good choices
for predicting the toss, reflecting the uncertainty about the random variable
measured by the entropy. Manipulating the coin to favor one outcome will lower
our uncertainty for the prediction (and thus the choice we are likely to make),
but also the information that could be gathered by tossing the coin provided we
know the probability distribution. Applying this to a set of possible external
state variables for a cell (such as nutrients, temperature or in our case osmotic
conditions), we get a measure of how uncertain our environment is and how
informative measuring it will be.

As discussed before, “information” can be a very elusive term since from
an outside point of view, interpreting the actual meaning of messages can
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2.1. Information Theory - A framework to quantify information processing

be riddling. For example, imagine an encrypted message being interrupted
and read by a person who doesn’t know the corresponding deciphering code.
Yet, in the design of systems it can be defined and classified what the term
will mean. This requires to agree on basic assumptions. For one, we need a
common alphabet. This not only means characters or signs, but also their
usage in the messages. This comes down to their probability of occurrence,
stemming from the rules for building messages (words, sentences, codes, etc.).
A typical example would be a language. Shannon gave a vivid illustration for
his theory by calculating the measure of entropy (and thus redundancy) for
different languages.

The notion of entropy as a prerequisite for describing information can
be extended in a natural way to conditional entropy by using conditional
probability distributions. The following concept then connects two random
variables to one another and states the setup for successive definitions that
conceptualize communication from a sender to a receiver. Consider two (not
necessarily independent) random variables X and Y . We can measure our
average “uncertainty” about Y when knowing X as:

H(Y |X) = −
∑

x∈X,y∈Y

P (x, y) · log2 P (y|x) (2)

where P (X, Y ) denotes the joint distribution and P (Y |X) the conditional
distribution of Y given X. Eq. (2) measures the entropy of the output when
the input is known. This can be used to define mutual information (MI),
a measure commonly used to quantify how much information one random
variable carries about the other.10

I(X; Y ) = H(X) − H(X|Y ) (3)

= H(Y ) − H(Y |X) (4)

For our purposes, another (although equivalent) interpretation of mutual infor-
mation is more convenient. Using Eq. (4), we can describe it as “the amount
of information received less the uncertainty that still remains due to the noise
10Note that this is symmetric by definition. One can be transformed into the other by

applying Bayes theorem in the definition of (conditional) entropy.
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in the system”. This scenario can be directly applied to the situation that we
have in an experimental setup. One would evaluate a noisy output (e.g. the
fluorescence of a tagged protein) as the response to a certain stimulus (e.g.
stress level, input dose). Once the probability distribution for the (natural)
input has been defined or inferred (experimentally a nearly impossible task), we
can evaluate how much information our output still contains about the input,
despite the inherent noise. The conditional distribution P (Y |X) for such a
scenario defines rules for the transmission through this biochemical channel.

The most descriptive use of mutual information is that of a measure for
correlation between two random variables. Assuming a connection between
the two (i.e. our channel), one can tell to which degree they are entwined
and since we are working with probability distributions, mutual information
even offers the advantage of covering non-linear correlations (in contrast to
other standard correlation measures11). Besides other advantages like the
invariance to transformations (see for example the representation and processing
of biological data), this is an important reason for the application of MI as the
metric of interest in the inference of gene networks (Butte and Kohane, 2000;
Liang et al., 1998; Qiu et al., 2009) or even in clustering methods (Slonim
et al., 2005). Even though mutual information does not solve the problem of
causality, it is a very useful and versatile tool due to its unique properties.

The next natural step is to maximize this mutual information. If our
(biological) system is given, its fixed transmitting properties (conveyed by
P (Y |X)) might have evolved to be optimally adapted to a certain input
distribution and perhaps a weighting on how important the reaction to a
certain level of stress is. This amounts to the formal definition of “channel
capacity”, namely

C = max
P (X)

I(X; Y ).

This optimization is performed with respect to the input distribution. Never-
theless, it is important to note that this could also be done by optimizing the
transmission probabilities themselves. But as already mentioned we assume
these to be evolutionary optimized and thus as a fixed quantity characterizing
the channel. Shannon defined in his paper how a general communication system
11A nice description of that can be found in Tkačik (2010).
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2.1. Information Theory - A framework to quantify information processing

Fig. 4: Schematic diagram of the biochemical channel as it would be used in
an experimental setup. Distinct inputs (e.g. environmental cues) are encoded
and transmitted through the channel. Due to noise added during the process
of transmission, we can only observe conditional probability distributions as
the received signal.

could look like (see Fig. 2). A biological experiment can be seen as an adapted
representation of this concept of “channel”, as visualized in Fig. 4.

In the following, we give two simple examples visualizing the approach to
that.

Example 2.1. Binary Symmetric Channel (BSC, see also Cover and Thomas
(2012))

The BSC (Fig.5) consists of two inputs {0, 1} mapping over a (noisy)
channel to two outputs {0, 1}. The error-probability is defined as f for the
faulty transmission of both inputs, hence the term “symmetric”. The matrix
comprised of the conditional transmission probabilities QY |X = P (Y =
yj |X = xi) that define our channel looks as follows:

Q(Output|Input) =
(

P (off|off) P (off|on)
P (on|off) P (on|on)

)
=
(

1 − f f

f 1 − f

)

29



2. Mathematical background

(a) Conditional transmission
probabilities in the BSC.

(b) Capacity of the BSC as a function
of the error f .

Fig. 5: Schematic representing the Binary Symmetric Channel. The channel
capacity is a function of the error f .

Thus the capacity of the BSC can be computed as

C = max
P (X)

I(X; Y ) = max
P (X)

[H(Y ) − H(Y | X)]

= H(Y ) − max
P (X)

⎡⎣∑
j

P (X = xj)H(Y | X = xj)

⎤⎦
= H(Y ) − [(1 − f) log2(1 − f) + f log2(f)]

= H(Y ) − H(f) = 1 − H(f),

giving a function of f as visualized in Fig.5. Intuitively, the capacity is
maximal if the error probability is either 1 or 0, allowing for perfect inference.
It is vanishing, when the correct input is sent in exactly half of the cases.
No error correction (e.g. with a repetition code) can then achieve any
information transmission. The signal is completely lost.

Example 2.2. The Noisy Typewriter (Cover and Thomas, 2012)

The “Noisy Typewriter” (see Fig. 6) can be described as a keyboard
being so small that its keys are hard to hit accurately. Typing a symbol
(for convenience we chose 27 different ones) will send either the selected
or one of the adjacent characters with a probability of 1/3, meaning that
the message will be distorted severely. The capacity can be calculated as

30



2.1. Information Theory - A framework to quantify information processing

Fig. 6: The “Noisy Typewriter” types the correct letter with a probability of
1/3 and one of the neighboring characters with the same probability.

follows:

C = max
P (X)

I(X; Y )

= max
P (X)

H(X) − H(X | Y )

= max
P (X)

H(X) − log(3)

= log(27) − log(3) = log(9).

Even if the noise in the channel for transmitting a message in such a
way is preventing an accurate inference of the input, it is interesting to note
that we can still select a subset of our input that can be transmitted reliably.
Such a subset could be if we chose to only use every third key, leaving out
the intermediate ones. A message can then be properly decoded after the
transmission, provided the decoder is aware of this encoding decision. In a
way, most channels look like the noisy typewriter providing a mapping from a
distinct subset of inputs to distinct subsets of outputs (see also Shannon, 1948,
Fig.10).

Within this work we apply these measures to the biological setting of signal
transduction. What serves as an “encoder” and “decoder” has to be defined by
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the respective system and is subject to the scope of the investigated mechanism.
For example, an obvious way would be to regard the cellular receptors as
encoders for external concentrations of ligands, transforming this information
into a message that can be transmitted over the pathway. As in the case
of mitogen-activated protein kinases (MAPK) cascades, this could mean a
subsequent activation via phosphorylation of the next tier of proteins. The
output level is then definable as being any of the downstream protein species.
A sensible choice would be a species that provides good experimental access
and a meaningful interpretation, like for example a downstream transcription
factor that “interprets” the activation message by binding to the DNA and
initiating the transcriptional responses.

Of course many such choices are possible. Instead of an output, a tran-
scription factor could also be seen as a hub and a converter that transforms
the message into another alphabet (base-pairs of the DNA) and relays the
information further, potentially like a broadcast channel to multiple receivers.12

Interpreting DNA and RNAs as further messages and the cell’s ribosomes
as decoders would then be viable as well. Thus, when dealing with this we
have to keep the scope of our system in mind and find appropriate defini-
tions.13 As intuition would suggest, a longer channel-“blackbox” like the one
we just stated is not beneficial per se. After all, signal transduction will also
always be governed by the data (signal) processing inequality, stating that
information can only be lost: In a Markov-chain X → Y → Z, it is intrinsic
that I(X; Z) ≤ I(X; Y ). This strict bound can be found in many every-day
scenarios (be it the sophisticated post-processing of a distorted message or
simply a game of “Chinese whispers”) and cannot be overcome by any signal
en- or decoding. In an experimental application, this means in particular that
the post-processing of experimental data can only reveal things that were in
the data beforehand (in whatever hidden way). Bio-informatics and other
theoretical analysis cannot (re-) add information about the original biological
processes that was lost or not transmitted to data in the experiment, it can
only sort and transform it in an intelligent way to a human readable format,

12After all, transcription factors in general target the expression of many genes.
13Sometimes, the experimental procedures will determine what measures can be used as an

output level beforehand.
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still leaving the task of interpreting the results.

One major advantage of Information Theory is that in order to characterize
and evaluate a (biological) system, one does not need to consider all the
details within it when interpreting it as a transmitting channel. This very
general “blackbox”-approach has numerous implications. In experiments, where
the input can be well-defined in addition to a proper output-statistic of the
“channel”, one can draw conclusions on function, structure and boundaries by
using this theory (see e.g. Cheong et al. (2011b); Rhee et al. (2012)). In a
biological setting, this can be interpreted as the pathway repeatedly sensing
environmental conditions and stresses, which could for example be provided in
experimental setups. Measuring this channel capacity then means answering
the question “How much can the receiver of a noise-distorted message tell about
what was originally sent by the encoder, given this particular transmitting
channel”. To a biological system this would translate to “How accurate can
our cells respond to external cues, given a noisy signal transmission over
the respective pathways”. With the appropriate assumptions we can obtain
knowledge of our blackbox in this way. Not only does this make sense in
experimental work, but the same approach can be fruitful for a (stochastic)
modeling approach.

2.1.2. Optimization of information transmission - Arimoto and Blahut at
work

For finite inputs and the given transmission probabilities of the channel (rep-
resented by a fixed matrix), we can use a numeric optimization algorithm
developed concurrently by Arimoto (1972) and Blahut (1972) to calculate the
channel capacity (see also Cover and Thomas, 2012) and the input distribution
that achieves this capacity. Again this quantity is given in bits, as in this way
transmitting 1 bit corresponds to measuring an on/off response representing
two states of the environment (switch-like behavior). Capacities above 1 bit

enable a channel to reliably distinguish more than just “on” and “off” and
react appropriately, leading to an input-specific response.

The optimization method uses an iterative approach to find the optimizing
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input-distribution that achieves the capacity given fixed transition probabilities
(i.e. the channel), as can be derived from Eq. (3). Going into the details of
the proofs necessary for developing the theory behind the algorithm is out of
scope for the work at hand. Nevertheless, to understand and discuss certain
properties of our outcomes, it is helpful to understand the idea behind the
Arimoto-Blahut optimization algorithm. In the following, we only aim to sketch
the approach. For detailed mathematical proof of the statements, we refer to
Blahut (1972) and Arimoto (1972).

For setting up the optimization approach of Arimoto and Blahut, a Lagrange
Multiplier restricting the solution P (x) to a valid set of input distributions is
introduced. This means satisfying the normalizing conditions ∀i : P (xi) ≥ 0
and

∑
i P (xi) = 1, given that we have a finite discrete number of inputs and

outputs.14 Thus, we set up the variational problem as

L [P (x)] =
∑
x,y

P (y|x)P (x) log2
P (y|x)
P (y) − λ

∑
x

P (x), (5)

where the channel P (y|x) is fixed and the optimization is achieved by varying
P (x).15 In the paper, Blahut developed the idea to reformulate the equation
for mutual information and execute the maximization by adding an additional
variational object (the backwards transmission channel P (x|y)):

C = max
P (x)

L [P (x)] ∼ max
P (x)

max
P (x|y)

L′ [P (x)] , P (x|y)] (6)

= max
P (x)

max
P (x|y)

∑
x,y

P (y|x)P (x) log2
P (x|y)
P (y) − λ

∑
x

P (x),

(7)

giving us the achievable maximum mutual information, the capacity of the
channel.

The integral part is to show how variational objects that maximize the term
look like when the respective other variational object is held fixed. First, let

14In a continuous case, this would correspond to using an integral instead of the sum.
15Notice, that P (y) in the denominator is a function of P (x) as well, as can be seen by

applying Bayes theorem.
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P (X) be fixed. R.Blahut came to the conclusion that

P (x|y) = P (x)P (y|x)∑
x P (x)P (y|x) (8)

achieves this maximization merely by restating the (conditional) probabilities
and showing, that the inserted backward channel leads to the same expression
of mutual information.

As the next step, we fix this channel P (x|y). Following the Lagrange
multiplier approach, we take the normalizing constraint and set the partial
derivatives of L′ with respect to P (x) equal to zero (thus finding an optimum):

∂

∂P (x)

[∑
x

∑
y

P (x)P (y|x) log(P (x|y)
P (x) ) + λ

(∑
x

P (x) − 1
)]

= 0 (9)

− log P (x) − 1 +
∑

y

P (y|x) · log P (x|y) + λ = 0 (10)

⇒ P (x) =
exp

(∑
y P (y|x) log(P (x|y))

)
∑

x exp
(∑

y P (y|x) log(P (x|y))
) , (11)

with λ fulfilling the normalization. Now the approach is to iteratively use these
two maximization steps to create a stepwise increase in mutual information
until the increase falls below an error-threshold. This leaves to show that the
obtained sequence is strictly monotone increasing and approaches the channel
capacity. We omit that step here and again refer to the original literature
(Blahut, 1972). The pseudo-code for the algorithm is visualized in Fig. 7.

Besides the channel capacity, the algorithm produces a second output: An
optimal input distribution that achieves this capacity, given the channel.16

This probability distribution often looks spike-like and seem unnatural from a
biological perspective. A typical outcome can be seen in Fig. 8. This behavior
is nothing unexpected though. It conveys the fact that for a given noisy channel,
one can select a subset of inputs (i.e. the spikes) that achieves the capacity.
This can easily be seen in example 2.2, where restricting the input to only every
third character (the subset A, D, G, ...) would result in a perfect inference of the
input after a transmission.17 In a natural setting, it makes sense to assume that

16Note that there might be more than one that does so.
17This subject is also briefly discussed in Tkačik et al. (2008a) placed in a setting of gene
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Fig. 7: Pseudo-code for the optimization Arimoto-Blahut-algorithm, taken
from Blahut (1972).
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Fig. 8: Two optimal input distributions achieving capacity (3.12 bit (green)
and 3.4 bit (blue), respectively) in an identical communication channel. The
difference is the resolution of the input: The green channel bins the input into
10 distinct stresses, the blue channel employs a resolution of 19 stresses over the
same range. We observe that both can distinguish roughly the same number
of inputs after transmission, restricting the possible resolution for the input.
green is thus a smoothed version of blue, able to transmit similar information.

these distributions would occur in a “smoothed” way, thus deviating slightly
from achieving full capacity. This “smoothing” is visualized in Fig. 8 and shows
how noise induces a maximal possible resolution that cannot be surpassed.
At this point, it is interesting to note that to a large degree the capacity is
determined by the channel transmission, whereas the input distribution adds
less variation in capacity to that. This helps also in choosing an initial input
probability distribution for the algorithm, as assigning it uniformly is usually
a feasible choice and a good first approximation. Nevertheless, many biologi-
cal processes show very specific and distinguished distributions, often in form
of an on/off-signal or in a manner that allows a binning into characteristic states.

2.2. Stochastic Modeling

Key for information theoretical analyses of signal processing is a stochastical
description of the processes in question. As can be seen from the equations of
entropy and capacity, when thinking in terms of a channel transmitting informa-

expression noise.
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tion we think in probabilities of its usage and noisy transmission probabilities,
respectively. First, sender and receiver have knowledge about a (common)
alphabet or an encoding thereof. For languages, this means characters (letters)
and subsequently words and sentences composed of them, for computers this
could mean numbers and analogously sequences of them depicting messages.
Biological systems also employ various alphabets: As an apparent example,
nucleotides composed in sequences on the DNA are used as an alphabet to
code for messages in the form of mRNAs and subsequently proteins. Other
examples are action potentials, concentrations and gradients thereof as well
as many further means of providing, storing and transmitting the information
of signals. This flow of information is omnipresent in nature and organisms
cannot survive without a proper way to encode, conduct, decode and interpret
it. This implies that, secondly, “knowing” the probability distributions of the
signal’s occurrence as well as how it is being transmitted is of importance as
well. Biologically, this is subject to evolutionary adaptation, whereas technical
systems are designed using this knowledge a priori. Yet, both have in common
that they are subject to noise and variations. By describing cellular processes in
stochastic terms, it is possible to capture this natural behavior more accurately,
study the implications of variation and investigate how a separation between
noise and information can be achieved. Ultimately, it enables us to apply an
information theoretic framework for describing this cellular flow of information
and its processing properties.

Although having been an important part of many sciences (especially in
financial research) already for a very long time, the development of stochastic
methods for modeling in biology has only seen an impressive uprise recently.
This development is not surprising, it reflects the huge advancements that both
experimental biology as well as our general knowledge of biological processes
have achieved. Nowadays, there are many ways of using stochastic frameworks
for biological settings. Here we first introduce the chemical master equation as
a general way of describing the stochastic behavior of reaction systems. This
equation is always applicable for a defined set of species and reactions, yet
solving it is only possible for few biochemical systems and limited settings. Still,
we believe that knowing the theoretical basis behind this representation gives
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many good insights into how systems will behave as well as on how to construct
them. Furthermore, it also creates awareness for the limitations of the approach.
In a next step, the basic thoughts underlying the chemical master equation lead
in a natural way to another stochastic description for the same biochemical
reaction system. The Stochastic Simulation Algorithm developed by D.T.
Gillespie will be introduced and later on applied in chapter 3, giving likely
trajectories for the vector of species over time and subsequently a sampling of
the probabilities in the master equation. As with the Gillespie-algorithm, the
last section describes an important framework, namely the moment closure,
with which we are able to approximate the distributions of the master equation
by neglecting higher moments. This will be applied in chapter 5.

2.2.1. The chemical master-equation - A deterministic description of
stochasticity

Conventional mathematical descriptions of chemical reaction systems are often
put in terms of a deterministic framework describing the time-evolution of
mean concentration values. This approach can answer many questions, yet in
certain cases it fails to capture essential parts of the natural system behavior.
This happens for example when species are sparse, the system exhibits unstable
behavior (and thus critical points that are very susceptible to variation), when
rare stochastic events pregnant with consequences are occurring (e.g. extinction
of a species) but also, and especially, when both intrinsic and extrinsic noise
plays a role in the system in question or its design. In particular, fluctuations
of components and successively their covariances are neglected in such a frame-
work. Due to the inherent noise that is the nature of biological processes, it
is important to resort to other mathematical descriptions. Despite the fact
that, as mentioned, the fundamental mathematics of stochastic approaches was
developed quite some time ago, their application to chemical reaction systems
and biological processes has only started much later in the middle of the 19th

century (see McQuarrie, 1967). One of the most important frameworks for such
a description, embedded into the concept of Markov chains (Gillespie, 1991), is
called the “chemical master equation” (CME). This equation can be interpreted
as a “gain-loss” equation for the probabilities of the distinct states our system
can occupy (Van Kampen, 2011). We will present the concept and structure
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of the equation here. For detailed derivations and proofs, we refer the reader
to standard literature on the topic: Gardiner (2009) and Van Kampen (2011)
provide excellent introductions, deriving the master equation as a special case
of the differential Chapman-Kolmogorov equation. We will follow the rigorous
derivation as presented in Gillespie (1992), since the paper in based on the
essential ideas that connect the master equation to the Stochastic Simulation
Algorithm (SSA) described in the next section (Gillespie, 1977).

In the following, we use the nomenclature of bold symbols as the notation for
vectors. We start off with a system of M chemical reactions Rm (m = 1, . . . , M)
involving a vector of N species X(t) = {X1(t), . . . , XN (t)}:

ν11X1 + ν12X2 + . . . + ν1N XN
c1−→ ν11X1 + ν12X2 + . . . + ν1N XN

ν21X1 + ν22X2 + . . . + ν2N XN
c2−→ ν21X1 + ν22X2 + . . . + ν2N XN

...
νm1X1 + νm2X2 + . . . + νmN XN

cm−→ νm1X1 + νm2X2 + . . . + νmN XN

...
νM1X1 + νM2X2 + . . . + νMN XN

cM−→ νM1X1 + νM2X2 + . . . + νMN XN .

(12)

The coefficients νmn and νmn can be combined in the stoichiometric matrix
νmn = νmn − νmn (McNaught et al., 1997), describing the change in species
Xn when reaction Rm occurs. The vector x denotes a certain state for the
species vector to be in: X(t) = x = (x1, . . . , xN ), where each xn is an integer
molecule number. Thus, simply adding one row of the stoichiometric matrix
νm = (νm1, . . . , νmN ) to the state vector x tells us how the state changed after
the reaction Rm occurred: x + νm. For each of these reactions, there exists
a distinct number of possible molecule combinations that could undergo this
reaction. This number only depends on the state of the system and can be
calculated as a product of binomial coefficients: hm(x) =

( x1
νm1

)
·
( x2

νm2

)
·. . .·

( xN
νmN

)
.

The derivation of the master equation is concerned only with bimolecular
reactions and handles reactions involving one or more than two molecules as
special cases separately. Thus, probability rates cm for reactions are found by
examining collisions of two random molecules taking part in reaction Rm.
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The stochastic rates cm are derived rigorously in Gillespie (1992) from the
physical basis of the molecule movement within a well stirred and constant
volume at thermal equilibrium. Those prerequisites give rise to two basic
assumptions: For one, the molecule positions are distributed uniformly in the
volume. And on the other hand, the movement of each molecule will follow a
Maxwell-Boltzmann velocity distribution.18 Without going into the detailed
derivation19, this gives rise to the probability of a collision of two randomly
selected Rm-reactants as well as the subsequent (conditional) probability for
the reaction Rm to occur. The product of these two probabilities gives a
(probability) rate, cm = P (collision) · P (reaction|collision), that is independent
of dt and the probability for reaction Rm to occur in the time interval [t, t + dt)
can be written as cm · dt, which is of fundamental importance for the master
equation.

As X(t) is the time evolution of system states and thus comprised of
integer numbers, it is impossible for us to find a deterministic expression.20

Nevertheless, the evolution of the probability to be in a certain state x at time
t can be described, given some initial conditions: P (x, t|X(t0) = x0, t0). Now,
the key idea is to take apart how this probability distribution would change
in a (infinitesimal) time interval dt, depending on the probability of certain
events. The paper splits these events into three observations on numbers of
reactions to occur in the time interval [t, t + dt) (see Gillespie, 1992, Theorem
1-3), that we only state here without giving the proofs. Given X(t) = x, the
probabilities are:

1. P (“No reaction”) = 1 −
∑M

m=1 cmhm(x)dt + o(dt)21

2. P (“Exactly one reaction Rm”) = cmhm(x)dt + o(dt)

3. P (“More than one reaction”) = o(dt)
18The arguments are actually concerned with infinitesimal notions of this, as the movement

as well as the position of the molecules are regarded in an infinitesimal time interval dt.
Very unfortunately, going into the details of the arguments will be out of the scope of this
introduction and work.

19The interested reader may find these steps thoroughly explained in a very appealing way
within the publication (Gillespie, 1992).

20The best we can do is to find sample paths in the state space with the Gillespie-algorithm
(see 2.2.2).

21Note on the nomenclature: o(dt) refers to the standard Landau-“little-o”-notation of terms
that vanish much faster than dt.
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Notice, that summing up these events for all reactions Rm will (in the limit
of dt → 0) equate to 1 and thus cover all possible events. Combining those
statements gives the probability to be in state x at time t + dt, given the initial
conditions.

P (x, t + dt|x0, t0) =
(

1 −
M∑

m=1
cmhm(x)dt + o(dt)

)
· P (x, t|x0, t0) (13)

+
M∑

m=1
(cmhm(x − νm)dt + o(dt)) · P (x − νm, t|x0, t0)

(14)

+ o(dt) (15)

The term (13) depicts the joint probability of “No reaction in [t, t + dt)” and
“being in state x at t”. As those events are independent, it can be stated as the
product of the two probabilities. The same is true for every reaction Rm that
could have taken place in [t, t + dt), but in this case we need to consider the dis-
tribution of the state vector before the reaction. As already mentioned, a change
in molecule numbers is described by x + νm for each reaction. Analogously,
going backwards by subtracting νm gives us the state the system was in before.
The probability of “exactly one reaction Rm” taking place times the probability
that the system was in the state x − νm, summed up over m = 1, . . . , M , now
tells us the probability of “inflow” from other states. This is the meaning of the
term (14). The last term is exactly statement 3. and tells us that the probabil-
ity of more than one reaction happening in [t, t + dt) is vanishing faster than dt.

This equation is nearly the result we were looking for. The only question
remaining is how to calculate and solve such an equation, as the contribution of
the terms o(dt) is unclear as long as dt is unspecified. One can immediately see
that dt has to be “sufficiently” small in order to make our statements valid and
that the equation invites us to form the differential quotient in the following
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way:

P (x, t + dt|x0, t0) − P (x, t|x0, t0)
dt

(dt→0)= ∂

∂t
P (x, t|x0, t0)

=
M∑

m=1
cmhm(x − νm)P (x − νm, t|x0, t0)

− cmhm(x)P (x, t|x0, t0), (16)

with the initial conditions set by

P (x, t = t0|x0, t0) =

⎧⎨⎩1, if x = x0,

0, if x ̸= x0.
(17)

This approach provides us with a system of partial differential equations,
called the “master equation”22, that can be solved to give a continuous descrip-
tion for the evolution of the probability distribution of chemical species X(t)
in the model. As mentioned at the beginning, interpreting it as balancing the
“gain” and “loss” in probability to be in a certain state gives an immediately
tractable intuition on what the equation actually describes.

The master equation can be written down for every reaction system stated
like above. Yet, solving the system is in general immensely hard. A very
interesting and elegant study on the special case of mono-molecular reactions
was performed by Jahnke and Huisinga (2007), where the authors were able to
deduce a way of solving the master-equation analytically. This special case is
of great importance, yet in a general case the master-equation is intractable to
analytical solutions as its complexity grows exponentially with the number of
species and reactions in the system. To circumvent this dilemma, the classic
approach is to use numerical simulations or dynamic approximations. We will
present the approaches that are employed in this work in the following.

22As an interesting side note: The name actually originates from a paper by (Nordsieck et al.,
1940, paragraph 3) where it was used for energy distributions as a master template “from
which all other equations [...of the paper...] can be derived”. The name got stuck with
this type of equation and, in our opinion, deserves it in many ways.
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2.2.2. Gillespie’s algorithm - Probabilities at work

As mentioned in the previous section, solving the master-equation for bigger
systems is usually not feasible. One way of circumventing the need to do so is
by obtaining paths (single trajectories) as possible solutions. Sampling such
exact solution paths then gives rise to estimating the probability distributions
that are solutions of the master-equation. D.T.Gillespie described such an al-
gorithm in 1977 (Gillespie, 1977), called the “Stochastic Simulation Algorithm”
(SSA) that uses a Monte-Carlo approach to simulate exact trajectories for the
chemical reaction system. The derivation of the algorithm can be established
using the exact same premises as for the master-equation as shown in Gillespie
(1992), which makes the two approaches equivalent to one another despite their
distinct outputs.

The technique basically splits the problem in two questions per step: “1.
When will the next reaction occur?” and “2. Which reaction Rm will be
occurring?”. This is the joint probability distribution P (τ, m|x, t) of the time τ

and reaction Rm given the state x at time t. The time τ until the next reaction
will occur is an exponentially distributed random number as was shown in the
original paper. This fact can be proven from the premises of (I) a well-mixed,
spatially homogeneous system in which molecules can be regarded as uniformly
distributed and (II) the molecules following a Maxwell-Boltzmann velocity
distribution. These were exactly the prerequisites of the derivation for the
master equation and in fact, both use similar derivations and are equivalent
to one another. Making use of the previously stated probabilities, this can
be expressed in the following manner: We see the interval [t, t + τ ] divided
into k evenly spaced subintervals of length ϵ = τ

k in which the event “no
reaction” occurs with the probability described in term (13). These are k

independent successive events and the probabilities can thus be multiplied to
give the overall probability of “no reaction” in the whole interval [t, t + τ ]. For
a shorter notation, we define the sum over the reactions in term (13) to be

a(x) =
M∑

m=1
cmhm(x).

Now, in the next infinitesimal interval [t + τ, t + τ + dτ ] after that, the reaction
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Rm is supposed to occur. And, again referring to the previous section for this
probability is the term (14). Thus with dτ → 0, we can write

P (τ, m|x, t) = (1 − a(x)ϵ + o(ϵ))k · cmhm(x) (18)

and by making the subintervals ϵ = τ
k infinitely small by k → ∞ we obtain the

central formula for the SSA:

P (τ, m|x, t) = lim
k→∞

(1 − a(x)ϵ + o(ϵ))k · cmhm(x) (19)

= lim
k→∞

(
1 − a(x)τ

k

)k

· cmhm(x) (20)

= a(x)e−a(x)τ · cmhm(x)
a(x) . (21)

The two terms of the product (21) are what is now to be simulated in Monte
Carlo fashion.

The first term in (21), a(x)e−a(x)τ , is the exponential distribution from
which we sample the time τ . We calculate the quantile function for this
distribution (by taking the inverse of its cumulative distribution function) and
thus can map a uniform random number r1 of the interval [0, 1] back to such a
τ :

τ = 1
a(x) · ln

( 1
r1

)
. (22)

Next, the reaction to be chosen will be weighted with its occurrence: We divide
the unit interval into M fractions, each of a width proportional to the amount
that the corresponding reaction Rm contributes to the sum a(x), namely the
fraction in the second term of (21). The algorithm does this by defining m as
“the smallest integer satisfying”

m∑
i=1

cihi(x) > r2a(x), (23)

with r2 being again a random number from the uniform distribution on [0, 1].
As can be seen, the specific reaction that will then be chosen to occur at
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time τ is dependent on both the state X(t) = x of the system (i.e. the number
of molecules for each species) as well as the stochastic reaction constants cm

associated with the reactions Rm. Again, the probability to choose a certain
reaction is proportional to the product of possible distinct substrate-molecule-
combinations hm(x) and the stochastic rate of the reaction. The rate itself
also depends on the volume in which the reaction will take place, since within
a smaller space the probability of molecules colliding and reacting will increase.23

After selecting the reaction Rm that is occurring, the molecule numbers x

are updated according to the reactants and products of the reaction in question
by adding the corresponding row νm of the stoichiometric matrix. The time is
increased by τ and unless the desired simulation time is reached, these steps
are repeated. The algorithm can be summarized as follows:

1. Determine the time τ of next reaction event

2. Determine the reaction Rm that will occur next

3. Update time t = t + τ and the systems state-vector x = x + νm

4. If t < tfinal, go to step 1

A typical example of a trajectory for a SSA model for gene expression can
be found in Fig. 9. The result of one SSA-run is a possible trajectory out of
the solution for the master-equation of the process, discrete in the system-
state x (molecule numbers) and continuous in time. By simulating sufficiently
enough trajectories, we can then sample and estimate the underlying probability
distribution of molecule numbers at times t, i.e. the species population vector
X(t).

The SSA is computationally expensive if the rates and/or the numbers
of molecules are high - corresponding to the huge number of reactions that
are occurring in that case. There are techniques to speed up this process by
making simplifications and assumptions that lower the complexity and thus
accuracy of the simulations. One such technique is the τ -Leaping version of
the SSA (Gillespie, 2001; Cao et al., 2006, 2007), where the species vector
23Of course, by definition reactions of first order are unaffected by the volume since no

collisions have to take place.
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Fig. 9: Trajectories in one run of a SSA simulation - mRNA and protein in a
model for stochastic gene expression (see Shahrezaei and Swain (2008)).

is regarded as constant over a time window larger than the “time to next
reaction”. Thus the firing of several successive reactions will be computed
by drawing random numbers (from appropriate distributions derived from
the equations in this section) telling which and how many occur in this time
frame. The approximation of constant species introduces a controllable error.
Another technique would be to employ continuous versions like the chemical
Langevin-equation (Gillespie, 2000) and others.

The original detailed description of the algorithm can be found in Gillespie
(1977). Tutorials and applications of the Stochastic Simulation Algorithm were
subject or tool in numerous publications. As a review, we recommend Gillespie
(2007) written by D.T.Gillespie himself.

2.2.3. Moment closure - On how to make the CME tractable

As this sampling with Monte Carlo techniques like the Gillespie-algorithm
becomes quite complex for large systems as well as in situations where events
occur too frequently (e.g. high abundant molecules or fast reaction rates),
often other approximations are employed to obtain the probability distributions
needed for our information theoretic analysis. Here we introduce one of the
most prominent of such approximations: The “moment closure”.24

24Remark: Usually, such simplifications run into problems when the system exhibits strong
non-linearities or abundances of some of the species involved become sparse. In cellular
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As a direct consequence from the master-equation, we can state the time
development of the moment generating function M(t)25 of a stochastic variable
X consisting of the states x ∈ {0, 1, 2, . . .}. Each of the states could for example
denote a number of molecules with the associated probability P (x, t) of being
in that particular state at time t. In order to familiarize the reader with the
approach, we limit the derivation of the moment closure to the accessible one-
dimensional case. The multivariate extension for multiple species X1, X2, . . .

follows the same steps in a straightforward way (for a complete derivation we
refer to Gillespie (2009)). The moment generating function26 of a probability
distribution is defined as:

M(t) :=
∞∑

x=0
P (x, t) · exθ. (24)

Remark: Notice that the lower and upper boundary of the sum do not nec-
essarily have to be zero and infinity, respectively. Rolling a dice would, for
example, require them to be 1 and 6. We, however, are applying this to
biochemical entities and thus our states are molecule numbers greater than or
equal to zero. The upper boundary might be definable by space limitations for
molecules, yet a particular number is in no way unique and thus of no importance
for us. Enclosing it in the infinite sum with the probabilities tending to zero
states the general case and also raises no difficulties with the further derivations.

signaling, the latter is not too much of a concern. Signaling molecules generally occur
in abundances that are low enough for variations and noise to matter, yet large enough
that stochastic “shocks” are of controllable magnitudes. Here, one has to factor in spatial
considerations as well. Mammalian cells are typically larger than for example yeast
cells. Concentrations of signaling molecules still need to be able to functionally cover
the volume sufficiently, thus making higher molecule numbers necessary in bigger cells.
Since our models do not mix abundant with sparse species (like mRNA production in
gene expression would for example), the scales can be handled with said approximations.
Different splitting techniques would be required, if one broadens the scope of the models
to allow for such a mix. The non-linearities occurring in our modeling structures were
seen to be in tolerable boundaries for the approximations to still be viable.

25Remark on nomenclature: As in this work the employed systems and models reflect dynamic
time-courses of molecule numbers, the parameter t will denote “time” here. In some
nomenclatures this character is used for the definition of the moment generating function.
We use θ for that matter.

26See also classical literature for statistics, e.g. Kenney and Keeping (1951); Bailey (1990);
Ross et al. (1996).

48



2.2. Stochastic Modeling

In a next step, expanding the exponential function f(xθ) = exθ as a Taylor
series around the origin results in a natural representation in terms of the
moments:

∞∑
x=0

P (x, t) · exθ =
∞∑

x=0
P (x, t) ·

[ ∞∑
n=0

f (n)(0)
n! · (xθ − 0)n

]
(25)

=
∞∑

x=0
P (x, t) ·

[ ∞∑
n=0

1
n! · xnθn

]
(26)

=
∞∑

n=0

θn

n! ·
∞∑

x=0
P (x, t)xn (27)

=
∞∑

n=0

θn

n! · E [Xn(t)] (28)

=
∞∑

n=0

θn

n! · µn(t) (29)

= µ0(t) + µ1(t) · θ1

1! + µ2(t) · θ2

2! + . . . =: M(t), (30)

where µn(t) denotes the nth moment.27 As can already be seen in this equation,
the terms in the sum are separated both in the moments as well as the distinct
powers of θ. This will be taken up again later. For now, we go back to the
definition of the master-equation as stated in Eq. (16) and follow the idea of
the moment generating function by multiplying this expression (16) with exθ

and subsequently sum over the states x.28 Omitting the conditioning on the

27Note that the 0th moment is solely the normalization
∑

P (x, t) = 1 in the case that P is a
probability distribution.

28Note that, whereas we had in Eq. (16) a vector x for all possible combinations of states,
we now only regard one species and thus only x, e.g. all possible numbers of molecules of
species X in the system!
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initial state (x0, t0) for better readability, we thus obtain

∂M(t)
∂t

=
∞∑

x=0

∂P (x, t)
∂t  

(16)

·exθ (31)

=
∞∑

x=0

M∑
m=1

(cmhm(x − νm)P (x − νm, t) − cmhm(x)P (x, t)) · exθ

(32)

=
M∑

m=1

∞∑
i=0

cmhm,i
∂iM(t)

∂θi

[
eνmθ − 1

]
(33)

Remark: The step from (32) to (33) is not straightforward to see, yet
can be grasped as a convoluted consequence of the following statement
used in (Bailey, 1990, chapter 7.4):

M(θ, t + ∆t) = M(θ, t)∆M(θ, t) (34)

and

∆M(θ, t) = E
[
eθ∆X(t)

]
. (35)

X(t) and ∆X(t) are assumed to be independently distributed for the
product in Eq. (34) (as they are in our systems). For a detailed derivation,
we refer to the aforementioned book chapter in Bailey (1990). In our case,
X(t) is identified by νm, giving the result. A use of this for cumulant
neglects can be found in Matis and Guardiola (2010)

We now write the partial derivative as established in Eq. (29) leaving out
the vanishing terms and develop the exponential in a Taylor series:

∂M(t)
∂t

=
M∑

m=1

∞∑
i=0

cmhm,i

∞∑
j=i

θj−i

(j − i)!µj(t) ·
( ∞∑

k=0

(νmθ)k

k! − 1
)

(36)

and finally sort the equation to extract powers of θ, giving the final equation
and result of this section:

∂M(t)
∂t

=
∞∑

n=0
θn

M∑
m=1

∞∑
i=0

cmhm,i

∞∑
k=0

νk
m

(
n

k

)
µn−k+i(t) (37)
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Now, comparing this final Eq. (37) with Eq. (29) and equating the coef-
ficients (powers of θ) gives us one expression for each moment µi. Each of
these expressions is a differential equation, allowing us to solve the system of
equations for a dynamic solution of all moments. Due to the fact that we only
used the stoichiometric matrix and the propensity functions for our reaction
system, we were able to translate the chemical reactions to an approximate
stochastic representation. Finally, setting moments starting from a certain
order to zero will “close” the (by definition infinite) number of equations and
give a closed unique ODE system. In our work, we will use a closure of second
order as this will give us Gaussian distributions of the involved species, which
is sufficiently exact for our systems.29 This closure is also termed “Gaussian
approximation” in the literature.

Of course, the same procedure can be done with neglecting orders of cumu-
lants instead of moments, as they are equivalent formulations of the concept (e.g.
Matis and Guardiola, 2010). Other long established procedures of probability
distribution truncations are used in the literature as well. Since we decided for
the application of the moment closure, we only want to mention some of them
here and refer to the corresponding literature for the interested reader. A very
popular way to approximate fluctuations in biological models is the “linear noise
approximation”, as used by Elf and Ehrenberg (2003); Hayot and Jayaprakash
(2004). This approach is also known as the “van Kampen system size expansion”
(Kampen, 1961; Van Kampen, 2011)30, named after the physicist who first
developed the idea. The “Kramers-Moyal expansion” (Kramers, 1940; Moyal,
1949) (already employed in a variant by Einstein (1905)) is a close relative to
that. Both methods are also introduced in Gardiner (2009). A study on the
validity of such approximations can be found in Wallace et al. (2012).

The procedure of moment closure as reviewed here is a powerful approach
for biological processes. With its direct way of going from reaction systems
to a stochastic approximation via Eq. (37), it makes fluctuations within the
system comprehensible and enables studying their implications on top of the

29As, in fact, many processes in biology follow normal distributions.
30A comparison to the second order moment closure (called “gaussian approximation”) can

be found in Lafuerza and Toral (2010).
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2. Mathematical background

conventional description of means. In this work, we apply the moment closure
in chapter 5 in order to study noise in signal transduction that incorporates
scaffolding proteins.

2.3. Parameter estimation with “Data2Dynamics”

Parameterization is a crucial step in model development. Wide ranges and
combinations of parameter choices are thinkable to serve the task at hand, yet
validating the “right” parameters that occur in nature is not possible. At the
same time, it is also not the central purpose of the modeling in the first place.
Of course, using parameters that are based on actual findings and knowledge
of the system is necessary and important, but considering all the potential
unknowns that are hidden to our view for now and the complexity of the
biological “truth”, we can only go so far as to develop and test hypotheses
about how a structural mechanism could achieve what we observe. Simplifi-
cations and approximations are thus tailored to explain how dynamic system
behavior can arise and parameterizations are fitted to this desired output.
The ways of how to do that are well-established and are used extensively in
other fields, most importantly economics. Fitting parameters encounters many
caveats. The most recognized is “unidentifiability” of parameters, meaning
that within our system, degrees of freedom exist that lead to sets of parameters
that allow infinite value combinations that produce the same behavior. Recent
research has produced software that provides many functionalities for such
fitting problems and the overall task to combine data and modeling. In this
regard, especially the group of Jens Timmer from the Institute of Physics in
Freiburg, Germany, has provided many useful concepts and studies in both
theoretical as well as applied work (e.g. Maiwald and Timmer, 2008; Kreutz
and Timmer, 2009; Raue et al., 2009, 2010). These studies are exemplary
for the approach of systems biology, enforcing the cycle of model and experiment.

For implementing the model of chapter 4 and estimating its parameters, we
utilized the software “Data2Dynamics”31 from Raue et al. (2013). This envi-
ronment enabled us to connect our theoretical model of the crosstalk between
HOG- and pheromone-pathway with the data from Vaga et al. (2014). By
31Available at http://www.data2dynamics.org/.
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2.3. Parameter estimation with “Data2Dynamics”

using latin hypercube sampling of the parameter space and the provided opti-
mization methods for data fitting, we obtained potential parameter sets for our
model that fit the structure reported in literature. As we are looking for both
agreements and disagreements between data and model output, the metrics on
the goodness of fit that “Data2Dynamics” provides will be used as a benchmark.

Many advances have also been made for parameter estimation in biolog-
ical stochastic models (e.g. Reinker et al., 2006; Daigle et al., 2012) more
recently, but this field is still in need of further development and practical
application, particularly for models of larger complexity. Yet, “Data2Dynamics”
can potentially and in a straightforward way be used with the aforementioned
approximations. Since a moment closure approach is resulting in nothing else
than a system of ODEs for the moments of species, this tool could basically
also be applied to fit such models to experimental data that include sufficiently
good statistics on variations of the species. Yet, as our approach in chapter 5
aims to understand noise in signaling from a structural point of view, and thus
is not connected to particular datasets, we did not utilize “Data2Dynamics” in
this case. Going into details for a particular scaffolding system could use this
as a simulating and fitting environment with great potential.
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3. Information processing in stress-adaptation: An
analysis of the Sln1-Phosphorelay

Within this chapter, we want to revisit a well studied pathway, the High
Osmolarity Glycerol (HOG) pathway, and approach it from a new angle. We
investigate the Sln1-Ypd1-Ssk1-phosphorelay as a modular input to the HOG
pathway and propose a stochastic view together with the idea of evaluating
signal processing capabilities in this system. Within this framework, we can
imitate the noisy perception of the cell and interpret the phosphorelay as an
information transmitting channel in the sense of C.E. Shannon’s Information
Theory (see section 2.1). We refer to the channel capacity as a measure to
quantify and investigate the transmission properties of this system, enabling
us to draw conclusions on viable parameter sets for modeling the system. This
view extends the existing approaches in a way that it incorporates not only
the signal and its transmission, but also the noise that inherently arises in the
system and limits its potential. The pathway has been described and researched
for about two decades in great detail both experimentally as well as from a
modeling perspective. This gives us the opportunity to build upon existing
knowledge and a sound foundation to test our hypotheses on this prototypical
signaling pathway.

3.1. The HOG-pathway in yeast osmotic stress response

Stress responses in S.cerevisiae are mediated by a complex network of signaling
pathways that coordinate adaptational programs. Prevalently, conserved three-
kinase cascades of mitogen-activated protein (MAP) kinases are employed for
this task (Seger and Krebs, 1995; Klipp et al., 2005). In the case of increased
osmolarity (e.g. high salt concentrations in the environment), one of the most
intensively studied signal transduction pathways, the High-Osmolarity Glycerol
(HOG) pathway, is employed. It is a close relative to the p38 signaling pathways
in mammalian cells and has been under research both from an experimental
(e.g. Posas et al., 1996b; Hohmann, 2002; Macia et al., 2009; Patterson et al.,
2010a) as well as a computational side (e.g. Klipp et al., 2005; Muzzey et al.,
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3. Information processing in stress-adaptation

2009; Petelenz-Kurdziel et al., 2013; Patel et al., 2013). The pathway provides
the cell with answers to an increased concentration of osmolytes in the environ-
ment. This concentration can be lethal for the cell as it severely changes the
pressure on the cell wall, water exchange and with it the cell volume as well as
chemical reactions within the cell. For the cell to survive, a complex system
of adaptation processes is initiated. An immediate answer is the closure of
Fps1 channels, preventing the further outflow of glycerol, the osmolyte being
accumulated within the cell. The further adaptation is regulated over the HOG
pathway facilitating a transcriptional answer, ultimately leading to glycerol
production and near perfect longterm adaptation (Muzzey et al., 2009). The
connections of the pathway are manifold and there is a strong interplay with
the cell cycle, as it is important that an adaptation to this stress is prioritized
and proliferation is stopped immediately to avoid flawed replication. For a
review of the pathway we refer to Hohmann (2009).

When facing different stress levels, the cell exhibits very distinct profiles
in Hog1 activation and cellular response. This can in part be attributed to
feedbacks in the system and the complexity of interacting mechanisms. Several
signal processing techniques have been applied to characterize the response of
the HOG pathway (e.g. Mettetal et al., 2008; Hersen et al., 2008). But even
though those studies have common aims towards a better understanding of
how signaling in complex systems works and enables adaptation, the stochastic
nature of biochemical signaling itself has been largely disregarded. Here we
explore the idea of this stress answer being part of a fidelity problem to the
cell. Ultimately, this would require that by encoding and transmitting the
extracellular signal appropriately, the cell can distinguish an optimal number
of input levels for further processing. For this we focus on the Sln1-Ypd1-
Ssk1-phosphorelay, an extended two-component signaling system that forms
the first module of the HOG pathway (Maeda et al., 1994; Stock et al., 2000).
Observing the cell’s ability to discriminate profiles already in this first signaling
instance will add a further “stochastical layer” to the study on input-output
relations (Shinar et al., 2007) of these systems.
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3.2. A stochastic model of the Yeast Sln1-phosphorelay

Here we want to investigate the role of the so called “Sln-branch”.32 For
evaluating the capabilities of S.cerevisiae to react to osmotic pressure, we are
zooming in on this first part of the HOG stress response pathway: As visualized
in Fig. 10, the phosphorelay consists of three proteins of interest: Sln1, Ypd1
and Ssk1. They form a biochemical signal transduction chain that belongs
to the family of “two-component regulators” that are a common feature in
prokaryotic signaling, but also found in eukaryotes (West and Stock, 2001).
The signaling chain can be described by the following coupled system of species
and reactions:

Sln1 k1−→ Sln1-P (38)

Sln1-P + Ypd1
k2,on−→←−
k2,off

Sln1-P-Ypd1 (39)

Sln1-P-Ypd1
k2,off−→←−
k2,on

Sln1 + Ypd1-P (40)

Ypd1-P + Ssk1 k3−→ Ypd1 + Ssk1-P (41)

Ssk1-P k4−→ Ssk1 (42)

Sln1 is a trans-membrane protein that reacts on the turgor pressure put on
the cell wall. In the non-stressed situation it constantly auto-phosphorylates
His-576 under the consumption of ATP. In our model this rate (k1) of auto-
phosphorylation plays a fundamental role as it is considered the encoder of the
(osmotic) input. Depending on the stress level this rate will be decreased by a
certain factor, mimicking a reduction in the auto-phosphorylation rate.33 The
phosphate group is subsequently transfered to the response regulator domain
Asp-1144 of the protein34, from where it can be further relayed to His-64 of

32The other branch (named “Sho-branch” after the membrane bound protein Sho1, that
takes part in the activation of the pathway) will be introduced in chapter 4.

33Since we are thinking in stochastical terms and rates, this could also be interpreted as a
decreasing probability of each Sln1 molecule in the whole set of receptors to be (auto-
)activated, capturing a conformational change. The link to a deterministic description
then appears by averaging over the ensemble, thus giving us a ratio of phosphorylated to
dephosphorylated molecules and reflecting the stress level.

34This is believed to happen between dimerized Sln1 molecules, instead of intra-molecular,
as kind of an exchange (Qin et al., 2000).
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the intermediate signaling protein Ypd1. This is mediated by the (reversible)
formation of a complex Sln1-P-Ypd1. Because the phosphate transfer within
the complex happens at a very fast rate (Janiak-Spens et al., 2005; Kaserer
et al., 2009), this step will not be modeled explicitly.

The intermediate protein Ypd1 is a more abundant although smaller molecule.
It comes in a copy number of roughly 6300 molecules per cell35 that can enter
the nucleus freely. Compared to the other species of our model (Sln1: ∼ 650
molecules, Ssk1: ∼ 1200 molecules) this is a relatively high copy number.36

This might be due to the fact that the cell needs to circumvent a bottleneck
in information shuttling.37 Ypd1 is able to interact with both Ssk1 in the
cytosol as well as nuclear Skn7 (Li et al., 1998; Lu et al., 2003) to transfer
the phosphate to the respective response regulator domain, but a transfer to
Ssk1 is strongly favored as demonstrated in Janiak-Spens et al. (2005). The
phosphoryl group was not observed to be transported back to Ypd1.

Ssk1 is the protein that is used in our model as an output in its unphospho-
rylated form by catalyzing the phosphorylation reactions of the downstream
MAPK cascade leading towards the double phosphorylation and thus activation
of Hog1.

In an unstressed environment, Ssk1 will constantly be phosphorylated and
its activating function thereby inhibited. Upon osmotic shock, Sln1 acts on the
variation of turgor pressure by a change in its conformation (Tao et al., 2002).
Its auto-phosphorylation rate will be decreased and thus successively also the
inhibition of Ssk1. Ssk1 becomes free to catalyze the downstream reactions and
activates a chain of amplification, signaling the presence of stress. The model
uses the probability distribution of this species as the relevant observable for
the system. Its fidelity defines how detailed the response of the cell will be.

Because of the way this phospho-transfer-system is designed, mutating
the phosphorylation sites of Sln1, Ypd1 or Ssk1 will have lethal consequences
(Maeda et al., 1994; Fassler and West, 2010; Posas et al., 1996a): Since Ssk1 is

35Numbers taken from “http://www.yeastgenome.org/”.
36In our model, this enables us to choose the shuttling rate k3 in a non restrictive but

computationally more efficient manner.
37A similar consideration can be found in the subsection 5.2.3.

58



3.2. A stochastic model of the phosphorelay

Fig. 10: Schematic overview of the Sln-branch phosphorelay in the Hog-pathway.

never inactivated and constitutively signals a stress situation, the cell constantly
produces an excessive amount of osmolytes that increase the pressure from
within the cell, ultimately bursting it. This also reflects the importance of the
phosphorelay system, as it was designed by nature in a way that does not allow
for instability.

The value for the association rate of the complex Sln1-P-Ypd1 was chosen
to be varied with the values k2,on = {1, 5, 10} · 106(Ms)−1 and the dissoci-
ation constant is kept at Kd = k2,off

k2,on
= 300nM , thus defining k2,off . In our

model this kinetic change will vary the response of the system and through an
decreased/increased number of forward as well as backward reactions forming
the complex also the observed variability.

As was experimentally investigated by Janiak-Spens et al. (2005); Kaserer
et al. (2009); Janiak-Spens et al. (1999) the corresponding reaction

Ypd1-P + Ssk1 → Ypd1 + Ssk1-P

was not observed to be reversible. In addition, this phosphotransfer from Ypd1
to Sln1 was very rapid. Because of the lack of reversibility we reduce this
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3. Information processing in stress-adaptation

reaction chain in our model, thus simplifying the formation of a Ypd1_P-Ssk1-
complex, the subsequent transfer of the phosphate and the dissociation of the
complex to just one single reaction with a sufficiently high reaction rate.

The volume in which the reactions take place is important for the prob-
ability of molecules reacting in our model. Since we only look at reactions
happening in the cytosol of the cell, we take this number to be vol = 30fL.38

This volume will have an effect only on the simulations for reactions of second
order, since a higher density of reactants will cause a higher probability for a
reaction. Projecting the number of molecules to concentrations illustrates the
same argument in another way as it means dividing by the volume, resulting
in higher concentrations for smaller values. Thus, adjusting this number is
crucial for comparing the variation of k2,on in the model.

To summarize the settings and parameters used for the simulations, we give
an overview over all parameter values in Tab. 1. The stoichiometric matrix
of the system depicted in the reactions (38)-(42) as used in the SSA can be
defined as

νMN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1 −1 0 0
0 −1 1 0 0 1 0
0 0 0 0 0 −1 1
1 −1 1 0 0 0 0
0 0 0 1 −1 −1 0
0 0 0 0 0 1 −1
0 1 −1 −1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sln1
Ypd1
Ssk1

Sln1-P
Ypd1-P
Ssk1-P

Sln1-Ypd1-P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where X is the vector of species and the matrix νmn has been transposed for
better readability in correspondence to the species. The number of species is
equal to the number of reactions used M = N = 7. The rates used for the
reactions follow the order of the reaction system (38)-(42).

38Volume for yeast cells varies a lot and the number chosen is just a first assumption. With
regard to the biological experiments this can be adjusted. Zi et al. (2010) i.e. uses a cell
volume of 34.8fL for computations and accounting for about 50% of the cell’s volume
belonging to the cytosol, this would result in a volume of 17.4fL in our model.
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Name Values Description

vol 30fl Volume of cytosol in the cell.

X [0%, ..., 90%] Stress level, 39 equally spaced values.

k1 [0.01, . . . , 7] s−1 Phosphorylation rate of Sln1.

(Input function of the system: k1 ∗ (1 − X).)

k2,on [1, 5, 10] · 106(Ms)−1 Association rate between Sln1 and Ypd1.

k2,off Kd/k2,on Association rate of Sln1-Ypd1 complex.

k3 10 · 106(Ms)−1 Rate of phospho-transfer from Ypd1 to Ssk1.

k4 [0.01, . . . , 7] s−1 Dephosphorylation rate of Ssk1.

Kd 300nM Dissociation constant for Sln1-Ypd1-complex.

tstst 150s Simulation time for steady-state.

tstress 40s Simulation time for stress response.

Sln1 656 Total Sln1 # (Sln1 + Sln1-P).*

Ypd1 6330 Total Sln1 # (Ypd1 + Ypd1-P).*

Ssk1 1200 Total Sln1 # (Ssk1 + Ssk1-P).*

*(For the initial state, the system is set to be in the fully phosphorylated form,

with Sln1-Ypd1-P set to 0.)

Table 1: Overview over the parameters used for the simulations.

Here, we implement the proposed phosphorelay model with the Gillespie SSA
(Gillespie, 1977) in order to simulate a sufficient number of trajectories. Fig. 11
illustrates one typical simulation run. As expected, we observe characteristic
dynamics for each species depending on the chosen parameter set. By using
the stochastic framework, we introduce noise into the system as well, enabling
us to examine its properties of signal fidelity.39 To observe the output, we
sample its probability distributions as a function of time depending on a defined
input40, simulated with an adequate number of runs. We vary the two crucial

39“Fidelity” in this sense refers to a measure on how accurate the signaling can reproduce
the input signal.

40This input being a percentage of the auto-phosphorylation rate k1 of Sln1, depending on
the stress level.
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parameters for input (k1) and output (k4) within the system to observe the
dependence of information transmission on them.

Remark: It is interesting to note that, provided a sufficient signal trans-
mission within the system without bottlenecks occurring, the control lies with
those two nodes. This is a characteristic that can be observed in general:
The system will balance and switches for the input will in a viable system
produce the desired output. For the phosphorelay, it is already apparent at
this stage that the dephosphorylation rate k4 will have to be low enough as
to not produce a strong basal output, yet high enough to let the system be
susceptible to stress in a timely manner. The signaling in HOG stress re-
sponse usually works on a timescale below one minute, requiring a fast reaction
time. Likewise, the input signal will have to be strong enough to excite the
system constitutively, yet also enable a switching off during a stressed situation.

For analyzing the phosphorelay, first a functional system needs to be ensured
by simulating its behavior in the non-stressed environment and thus its steady
state. Subsequently, the system’s capacities can be evaluated by our chosen
framework. The results of these two steps are then combined.

3.3. Implications of information transmission on parameter spaces

When working with mathematical models, considering the parametrization is
always a very important step and an art in itself. The question of what can
be achieved using different sets of parameters has to be posed and the answer
should ideally be congruent with what the aims of your model will be. As
there are more answers than there are possible combinations of parameter sets,
it is quite a difficult task to choose which variant will support a claim to the
best possible extend. After all, compared to the overwhelming complexity of
biological systems in nature, we are only working with very limited theoretical
projections of them, in a best case scenario solving barely a few riddles at a time.
Yet this doesn’t mean that modeling is helpless in the face of this complexity.
Parameters can be adjusted to fulfill certain requirements. The most prominent
one is certainly a fit to data. For our phosphorelay model, we are able to
find additional constraints on signaling by making two assumptions that our
signaling mechanism has to fulfill. The first is a functionality constraint for the
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Fig. 11: Detailed view of a single exemplary simulation run of the model with
the Gillespie algorithm. The varied parameters (see Tab. 1) are set to k1 = 2s−1,
k4 = 0.25s−1 and k2,on = 5 · 106(Ms)−1. The higher abundant protein Ypd1
has been omitted. The unstressed steady state can be observed after about
70s. Starting from this state the systems’ signal propagation properties can
be examined by applying stress. Here we focus on the analysis of the noise
emerging in the system. Matching the timing in transduction to biological
behavior could provide further insight as it places further constraints on the
dynamical kinetic parameters.
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phosphorelay and the second uses an optimality criterion to give a lower and
upper boundary on information transmission (which for a signaling module is
a sensible choice) and thus restricts the potential parameter set. The lower
boundary is a prerequisite for a reliable on/off signal and thus we use it as a
sharp requirement. The upper boundary provides optimal parameter choices
for the fidelity in the system, but can also be disregarded by the cell. Thus,
emphasizing the particular numbers of capacity should be handled with care.
In the following, we explain the two restrictions to our parameter space.

3.3.1. Saturated responses - Phosphorylation of Ssk1 in unstressed
steady state

Signaling molecules in yeast stress responses show a characteristically high
saturation in a stressed environment. For one, they are only abundant at a
relatively low number of copies, emphasizing the need for reliable signaling.
Additionally, the volume of yeast cells is small enough for even low concentra-
tions to sufficiently cover a viable signaling response.41 A high saturation also
shows an efficient use of the molecule numbers, as it implies a low energy loss
due to protein maintenance.

Aiming at an operational signal transduction in the cell we first require
that, if our environment exhibits no stress, also no signal (or only a basal level)
is transmitted. Thus, we demand that a high percentage (> 80%, or arguably
even a higher threshold) of our signaling output Ssk1 remains phosphorylated
in unstressed environmental conditions. This ensures that the relay is not
constantly activating the downstream signaling MAP kinase and thus doesn’t
keep the cell stressed without an immediate need for it. This is crucial to be
taken into account since a permanent activation of the pathway can be lethal
to the cell (Maeda et al., 1994). The threshold we are setting selects for feasible
rate combinations between phosphorylating Sln1 (k1) and dephosphorylating
Ssk1 (k4). Fig. 12 illustrates two possible scenarios for the simulations, one
activating the downstream signal constitutively and the other exhibiting a
functional non-stressed behavior.
41In comparison, mammalian cells utilize far higher molecule numbers, also owing to the fact

that their volume is larger and regulation exhibits a higher complexity.
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(a) k4 = 0.5s−1 (b) k4 = 0.25s−1

Fig. 12: Trajectories of steady state simulations for the output (Ssk1, dark
blue) with k1 = 2s−1 and k2,on = 5 · 106(Ms)−1, further parameters see
Tab. 1. Varying k4 yields two characteristic behaviors: (a) Shows a combination
that activates the downstream pathway constitutively due to a high level of
dephosphorylated Ssk1 and is hence not fit for transmitting the signal. (b)
Shows a “feasible parameter combination”, exhibiting only a basal level of
dephosphorylated Ssk1 in steady state. This allows for a functional pathway
and can be further investigated.

It is imperative that if k4 is set to a low enough value, phosphorylation will
always exceed the dephosphorylation and prevent Ssk1 from signaling further
downstream in steady state as expected. So there is no lower boundary on
k4 that violates the functionality, only one on information transmission as
explained in section 3.3.2. For the time being it will be considered the upper
limit on the dephosphorylation rate that is of interest to us. After simulating
the model for a sufficiently long time to reach the steady state, the feasibility
of the parameters can be evaluated using said threshold.

As can be seen in Fig. 13, we observe that the steady state behavior already
sets a very strict upper boundary on the rate combinations of k1 and k4. Within
the simulated range, k4 could only be chosen at a magnitude lower than the
input rate. In addition to that it only took a marginal difference in k4 to shift
the equilibrium towards a non-functional system. This small margin of possible
combinations gives an idea of how the system is constructed: While the input
rate k1 can take on a range of values that excite the system in an unstressed
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state, the dephosphorylation rate k4 has sharp restrictions. Setting it too
high will signal a basal level of activation downstream and thus potentially
activate Hog1. An interesting perspective would be to test a phosphatase whose
activity is dependent in some way on the stress level or a downstream target
as well. Signaling could then function in a low energy regime that uses slow
rate combinations and still would be able to react fast on stress induction. For
this hypothesis to be tested, a kinetic study on the activation of Ssk1 would
have to be performed.

Analyzing the parameter space with regard to the steady state behavior
in non-stressed environments forms the first part of restricting the possible
parametrization aiming towards a functional model. Alternatively, this analysis
could be done by observing the mean value of the output, corresponding to
simulations of differential equations for this system. This would enable an
analytical view on the problem, but it also would deny the possibility to exploit
the noise that we observe. We use this steady state simulations as part of the
subsequent analysis of channel capacity.

3.3.2. Information as a lower bound

One tempting way to think about objectives for biological organisms is in
terms of the optimizations of certain aspects. An organism could for example
optimize its growth rate with respect to a particular environment as suggested
in Rivoire and Leibler (2011). On the other hand, fast responses might be
evolutionary selected in the case of severe and urgent stresses that need to
be dealt with in a timely manner. Depending on the environmental variables
that biological systems are subjected to, this aim will change and pronounce
certain features more and others less.42 Yet, as to what really is important for
a cell, we can only speculate and make assumptions for sensible choices. In
a natural setting it will most definitely be a mixture of many optimizations
to be considered and balanced. Our interpretation of the phosphorelay as a
channel gives us an optimization with respect to the fidelity in the system.
Developing a sensitive and accurate information transmission necessary for
biological systems and thus we argue that such an optimization is a good choice
42After all, both the channel as well as the response are subject to evolutionary development.
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Fig. 13: Restrictions on the output rate k4 (with fixed k2,on = 5 · 106(Ms)−1,
see Tab.1 for other parameters). In non-stressed steady state, only the values
exhibiting more than 80% of phosphorylated Ssk1 are selected as feasible
behavior of the system. This provides only a narrow range for choosing k4 as
illustrated by the figure.

for cell signaling. Of course, the neglect of information has to be considered as
well. Because of that, we rather see this interpretation as presenting us with a
lower instead of an upper bound.

As described in section 2.1, we can measure the channel capacity of the
phosphorelay using the proposed setup (see Fig. 4). For this, we simulate the
system with increasing stress levels. In the model, this means that depending
on the level of stress, the initial phosphorylation rate k1 is linearly downscaled
until a basal level of activation is reached. This influence of the turgor pressure
on the ensemble of Sln1 molecules is an important assumption that will be
discussed later. We sample the probability distribution of the output species
Ssk1 over time depending on the parameter sets used for simulation. By doing
this, we simulate the time courses of the transmission probabilities P (Y |X)
that define the channel (visualized in Fig. 14). We now could directly compute
the channel capacity if we considered a certain distribution P (X) for the input.
Yet, this natural distribution is not known to us and it is the incentive that
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Fig. 14: The time course simulations give rise to the conditional probabilities
P (response r|stress s) at time t. Subsequently, the corresponding capacities
can be calculated and give a dynamic view on signaling to answer the question:
“How much can the system infer reliably at time t?”

the channel has adapted to. So, in a further step we will have to find another
way of computing capacity. As an aside, employing a moment closure of this
reaction system would be an alternative to the Monte Carlo approximation.
When using this approach, it is important to keep in mind that the derivatives
of the second moments (as they are products of our random variables) starting
at a sharp initial distribution can have very steep slopes and thus make solving
the ODEs numerically problematic, as a grid for solving below a certain error
threshold must be very fine grained. For our purposes, the simulation results
using the SSA are sufficient to approximate the probability distributions in a
manageable time window and are thus preferred for our use.

This leaves us with the optimization problem of finding the input distri-
bution that achieves the capacity, i.e. that fits the channel. We do this by
employing the Arimoto-Blahut-Algorithm (see section 2.1.2) that finds the
maximum capacity as well as the achieving input distribution numerically.
Interpreting these optimal input distributions would be interesting but is not
part of the analysis here. Generally, it will look sharper than it could be the
case in a natural setting, which is also due to the binning process that we get
by choosing a number of inputs (for numerical reasons) instead of a continuous
range of concentrations. The number of inputs that we subject the system to
is determining an upper boundary to the capacity as can be seen by Eq. (3).
However, capacity will usually saturate at a much lower level because of the
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noise that the system exhibits. This has been visualized in Fig. 15 and is part
of the discussion in section 2.1.2.

The maximum value for information transmission is found at a low acti-
vating rate k1. Increasing this parameter introduces a higher variability and
thus more noise in the system as can be seen in Fig. 15. Although the absolute
amount of capacity has to be debated (see section 3.5), a capacity of 3 bit means
that the cell could potentially identify a number of 8 distinct signals. Looking
at the landscape of capacities, we observe in the system a sharp transition from
non-informational signaling to full capacity in the lower regimes of k4. This
suggests a sensitivity of the system that the cell will have to either overcome
or use to its advantage.

By connecting the analyses for steady state phosphorylation and the channel
capacity, we observe a narrow margin (Fig. 15) that is viable for simulating
the phosphorelay model.

(a) We observe a steep gradient for the capac-
ity in the regime of a low dephosphorylation
rate k4, implying a strong sensitivity in this
parameter.

(b) The combination with the results of
Fig. 13 (see contoured area), the analysis
restricts our parameter space strongly.

Fig. 15: Capacity as a function of the input rate k1 and the output rate k4
(with fixed k2,on = 5 · 106(Ms)−1, see Tab.1 for other parameters).
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3. Information processing in stress-adaptation

3.4. Improving information processing in yeast osmotic stress
response - “The story of on and off”

In collaboration with C. Kiel and the lab of Luis Serrano at the Centre for
Genomic Regulation in Barcelona we apply this modeling approach to examine
the role of kinetic constants within this signaling motif. For this, we focus on
the association and dissociation of the complex between Sln1 and Ypd1. As
already described, we are aiming at increasing k2,on and k2,off in a way that
their ratio, the affinity for the complex building, is constant. In an experimental
setup, this was realized through electrostatic engineering in the case of k2,on

and a mutation of hot-spot interface residues that increases the dissociation
rate k2,off . As described in section 3.2, we mimic this alterations by varying
the association rate k2,on = {1, 5, 10} · 106(Ms)−1 and kept the dissociation
constant at a value Kd = k2,off

k2,on
= 300nM . These values resemble suitable

rates and affinities as occurring in natural settings, yet have not been adjusted
to the experimental data for the model at hand (in preparation). Nevertheless,
we can already observe interesting features.

What is most prominent in the performed simulations (see Fig. 16) is the
bottleneck arising through low association and dissociation for the complex
between Sln1 and Ypd1. We can see that for most parameter combinations the
pathway exhibits a constitutively active signaling. Ssk1 cannot be phosphory-
lated sufficiently to attenuate the downstream signal. This is the result of an
accumulation of the complex between Ypd1 and Sln1. The upstream signal is
“buffered” in this accumulation and further transmission of the signal is too
low to allow for a constantly phosphorylated Ssk1 to attenuate the signal in
the pathway. This bottleneck removes the ability of the input to exert control
over the pathway. A second important observation concerns the transmission
of information. While for a small set of (very low) parameters we still see
functional information transmission > 1 bit, we observe a strong decrease in
overall fidelity with low association rates. This is a critical point as it means
that this modulation impairs severely the systems ability to signal and thus
fulfill its functions. It would be interesting to compare this to the behavior as
observed in an experimental setup.

These observations are part of a larger extension to the model that is able
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3.4. Improving information processing in yeast osmotic stress response

(a) k2,on = 1 · 106(Ms)−1 (b) k2,on = 1 · 106(Ms)−1

(c) k2,on = 5 · 106(Ms)−1 (d) k2,on = 5 · 106(Ms)−1

(e) k2,on = 10 · 106(Ms)−1 (f) k2,on = 10 · 106(Ms)−1

Fig. 16: Simulations with varying association and dissociation rates k2,on

(k2,off is scaled accordingly to keep the ratio Kd constant, see Tab.1 for other
parameters) as discussed in section 3.2 and 3.4. Low rates lead in a larger
degree to constitutive signaling and at the same time exhibit lower information
transmission capability.
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to predict and explain in silico the behavior as seen in vitro. Our findings
substantiate the hypotheses as obtained from the experimental observations.
The work is still in progress and will be published in the near future.

3.5. Discussion

Within this chapter, we performed an analysis of the phosphorelay module in
the HOG pathway by interpreting the system in an information theoretical
way as a channel that transduces environmental cues to inner-cellular decision
centers. Our aim was to identify how, given a stochastic biochemical nature,
the phosphorelay system translates an input (decreasing phosphorylation of
Sln1) into its output (dephosphorylated Ssk1). We focused on the question of
fidelity that this system can achieve despite inherent noise.

Enabling fidelity

We observe that the fidelity and thus diverse response patterns of the HOG
pathway (see e.g. Macia et al., 2009, Fig.1) might already have its origin in
the first step of osmo-sensing studied by us. The capacities that potentially
could be achieved with the phosphorelay, provided a suitable input function,
exceed an on/off response that would correspond to a capacity of 1 bit. We
consider this with several implications:

With our analysis we gain a method of estimation on how to restrict the
parameter space of the model. Here we regard 1 bit as a lower bound on
information capacity. If this would not be achievable by the system under the
configuration in question, a functional adaptation of the cell to the osmo-stress
would be error prone and probably insufficient.43 Thus, we can conclude to
disregard parameter sets with capacity below 1. The capacity that exceeds this
boundary nevertheless is not necessarily used by the cell. As discussed below,

43It is important to note that an error prone system can still survive, since even a random
choice can by chance be the right one and cellular systems could make trade-offs between
risk and investment. A very interesting discussion of that can be found in Voliotis et al.
(2014). Nevertheless, we argue that in the case of life-threatening stresses, this risk will
have to be minimized over evolution or shared (similar to a bet-hedging strategy) over a
population (see e.g. Kussell and Leibler, 2005). In our case, reliable sensing should be
preferred to stochastic switching.
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the mechanism of the input plays an important role in this regard. But we also
need to consider the distribution of the external variables as well. Bowsher
and Swain (2012) used a concept related to that of mutual information, called
“informational fraction”. Similar to our output of the Arimoto-Blahut algorithm,
they draw conclusions on how the pathway could potentially have evolved to
adapt the cell to a certain scenario of environmental state distributions.

The structure of the phosphorelay as observed in experimental settings
(Janiak-Spens et al., 2005) as well as the molecule numbers that the system
works with are crucial to enable this signaling branch to work and seem to
follow a fine-tuned optimization. For one, we showed that the region of pa-
rameters in which the system is neither constitutively active nor unreliable
is a narrow margin and needs to follow a tightly defined range to be viable.
This is in particular the case for the de-phosphorylation rate k4. Another
structural feature of the phosphorelay are the ratios of signaling molecules and
transfer rates in the cascade. These numbers fulfill two important points: a)
Bottlenecks within the cascade are avoided and b) the resolution of the noisy
output can be matched to input levels in a noisy-typewriter fashion. The first
point is going hand in hand with our choice to set a threshold on basal signaling.
A bottleneck (e.g. through low Ypd1 expression or insufficient transmission
strength between the layers) would lead to a constitutive activation of the
pathway and like in knock-out mutants for Sln1 or Ypd1, to a lethal phenotype.
Changing the association and dissociation of the Ypd1-Sln1 complex has shown
such a bottleneck. Lower association rates lead to higher leakage of the pathway
as can be seen in Fig. 16 and must be avoided for the functionality of this
system. In addition, this impairs the transmission of information severely. The
second important point b) is concerned with the overall achievable resolution of
the pathway. The molecule numbers as observed in the yeast Sln1-phosphorelay
represent a good example of how a signal transduction mechanism can cope
with inherent biochemical noise. If we interpret the number N of receptors
as a resolution (in analogy to pixel on a screen for example), we can tell that
there is a maximum of 2N states (on/off) that can be transmitted. Even if
the intermediate species follows the rules of a) and allows for the efficient
transmission of the on/off signal for each receptor protein, the noisy nature of
molecular interactions and particle movement will distort the signal and map
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to a (more or less broad) conditional probability distribution, depending on the
channel transmission properties. Thus, as visualized in Fig. 8, the resolution
determines a subset of distinguishable inputs like a noisy typewriter. In the
case of the output species Ssk1, this resolution roughly doubles the resolution
of the receptor level and facilitates a reasonable level of fidelity.

An important point that can be addressed, when extending the signaling
pathway to include the downstream Hog1 and its implications, is the encoding
of signals in other features. As with constructed codes in computer sciences,
information can be stored in different characteristics, like absolute activation,
signal duration, time until full activation, area under the curve, frequency
responses and many more (e.g. Cai et al., 2008; Mettetal et al., 2008; Locke
et al., 2011; Hao and O’Shea, 2012; Batchelor et al., 2011). Information theory
can address such features as well, since it is merely a matter of definition of the
input or output events. Choosing any of the potential functions and measuring
the corresponding probability distributions then gives the opportunity to
incorporate more knowledge into estimating responses and inferring inputs
from observables. This approach has for example been used with time courses
(Tostevin and Ten Wolde, 2009) and vectors of timepoints in single cell data
(Selimkhanov et al., 2014) to increase the observed capacities. In a way, this
seems trivial (after all, using a single timepoint for a complex dynamic process
will naturally have lower information content than using the full description)
but these approaches show an important direction for future research and take
many features of dynamic cell responses into consideration. In this way we can
learn about what cells actually use to encode and transmit information.

Capturing efficiency

Furthermore, we observed a pattern of information capacity that prefers low
reaction rates over faster ones. Although slowly, capacity decreases towards a
higher auto-phosphorylation rate k1. This can be explained by the increase
of variability (and thus a lower signal to noise ratio) at higher rates. This
observation underlines the intuitive notion that cells also try to optimize their
energy consumption. Since the first reaction of Sln1 auto-phosphorylation is
constantly consuming ATP in order to keep Ssk1 phosphorylated downstream,
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lower rates could be preferred for efficiency. As the results of our study have
shown, a distinct signal transduction in a reasonable time window is still
manageable by the cell. Further study of the rates could validate this finding,
as it would also be very interesting to observe such an optimization in an
experimental setup.

In our study, we observed a steep slope of capacity of the channel (see
Fig.15). This means that within that small region, we change very quickly from
no information transmission to a good signal transduction for the system. This
sensitivity allowed us to put very sharp boundaries on the parameter space,
thereby explaining the regimes of functionality in our model without the need
of fitting it to data.

Interpreting the amounts of capacity that we observe in our system is a
debatable topic. It is impossible for us to know if that information can and will
be used. What a biological system neglects and what it actually infers through
different channels can’t be evaluated. As a matter of fact, many studies observe
relatively low capacities (e.g. Cheong et al., 2011a, Fig. S1), even below
1 bit suggesting that not even a reliable inference of an on/off signal would be
achievable. Yet, Voliotis et al. (2014) note that this is not necessarily what
nature needs. It is possible that an unreliable inference is sufficient enough
on a population level. A cell that does not adapt properly would potentially
not survive the stress, yet investing into better sensing mechanisms could be a
costly task and thus, the optimal strategy would be to live with uncertainty and
run a (possibly only small) risk of not being able to cope with the environment.
On the other hand, as was noticed earlier, Selimkhanov et al. (2014) show an
often employed feature, where the information about a response is not only
stored in single timepoints or particular features, but in multiple characteristics.
In this case, it is the encoding of information in certain temporal profiles. Yet,
other encodings are certainly possible and probable. An important example
would be to regard cell populations that communicate and thus share and
increase information. In our case, the initial response of the phosphorelay
suggests that it is able to convey even more than just an on/off switch. The
distinct temporal profiles downstream of Ssk1 hint into the same direction, yet
the use of feedbacks and adaptation is integrated in those profiles as well. So
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for now, it is not possible to disentangle this complex response and tell how
much the phosphorelay contributes. Integrating this approach into a larger
setting could present answers to these remaining questions.

Choosing the input

When we performed our simulations, we assumed a linear input that turgor
pressure has on the phosphorylation of Sln1, namely the linear decrease in
k1. Although there is still ongoing research on the topic (Tanigawa et al.,
2012), the mechanism itself has not yet been characterized comprehensively.
Neither has the stochastic influence of the whole ensemble of Sln1 sensing the
external signal been studied. So the question remains: Is the linearization of
the input function a valid assumption? This question will have to be answered
experimentally. Our analysis shows that many different choices for this input
can result in a similar behavior. In the extreme case, the input to Sln1 would
be an “on/off” for the phosphorylation rate. As can be seen from Eq. (3),
this would limit the absolute value of capacities with an upper bound44, but
neither the observations on functionality nor a information transmission (even
if minimal) are impaired by this.

We regard the channel as an evolutionary evolved and thus fixed property.
This is an important prerequisite, but under natural circumstances this is hard
to prove. How does the channel change when stress is applied? Will there
be an adaptation that the cell performs ad hoc? Whether our findings on
information transmission will hold in a living cell remains to be seen in an
experimental setup, as this is the only way to observe what a cell’s behavior
will be. Yet, the beauty of the applied methods is that they are not restricted
to analyzing a mathematically modeled system, but can instead also be used
to evaluate mechanisms and motifs solely based on observing the noisy input-
output-relation as an information transmission problem. Provided it is possible
to sufficiently capture the stochastical nature experimentally45, we believe that
this is a powerful tool to find functions and characterize biological systems and
ultimately connect theoretical and experimental work.
44In the extreme case with 1 bit.
45This requires a sufficiently large set of single cell data to approximate the conditional

probabilities needed for the analysis.
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4. Crosstalk in Yeast signaling - “Conducting
Information” or “To talk cross or not, that is here
the question”

Signaling not only in biological systems, but in a broader general sense
consists of myriads junctions and turns. The best example for this is our world
wide web, a network patched together by millions of nodes and connections, able
to transmit reliably countless numbers and messages over huge distances. In
biological terms, these networks are comprised of interacting protein species that
employ many different mechanisms to signal the cell a biochemical visualization
of its environment. In yeast, the highly conserved mechanism of MAPK
cascades (Widmann et al., 1999) facilitate many of the functions needed to
not only visualize this environment, but also embed the cell’s behavior into
these cues. An interesting feature that can be found in those signaling motifs
is the crosstalk by using identical species for information transmission. In this
chapter, we extend the description of the HOG pathway and add the network
of α-factor signaling, the pheromone (mating) pathway, to that. We present
and evaluate a modeling approach based on data of temporal phosphorylation
profiles of the species involved (Vaga et al., 2014).46

4.1. The full HOG pathway

In the previous chapter, we described a very important part of the HOG
pathway, the Sln1-branch. Yet, as mentioned, this is only one part of how
yeast cells are activating their adaptive responses. Alternatively the so-called
“Sho”-branch can facilitate the same activation by other means of sensing.
Both branches converge at the phosphorylation of the MAPKK Pbs2 which in
turn activates Hog1. While for a weak stress response each of the branches
is sufficient, for the adaptation to be perfect yeast is in need of both of them
(Tanaka et al., 2014).47 The mechanisms that activate those branches have

46The data are available at http://www.cellnopt.org/data/yeast/.
47Remark: Amongst others, this recent research also suggests that the Sho-branch actually

splits in even more redundant ways. Since only one input in this branch is important for
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been focused by many studies over the last two decades and still are providing
insights into how sensing mechanisms in biological systems is facilitated (Maeda
et al., 1994; Janiak-Spens et al., 1999; Tanigawa et al., 2012). In the following,
we give a short introduction into the functionality of both signaling branches
and the full HOG pathway.

For the description of the phosphorelay in the Sln1-branch, we refer to
chapter 3. In this model of the phosphorelay, we regarded Ssk1 in its un-
phosphorylated form as the output. Yet, the pathway continues, as Ssk1 is
catalyzing an activation of the (redundant) MAPKK kinases Ssk2 and Ssk22
downstream of it (Posas and Saito, 1998). Their phosphorylated state is able
to promote a phosphorylation in the MAPKK of the signaling cascade, the
scaffold protein Pbs2. Two phosphosites that have been shown to be of vital
importance are located at the Ser514 and Thr518 (Maeda et al., 1995; Wurgler-
Murphy et al., 1997; Soufi et al., 2009). Due to the same reason as mutations
in the phosphorelay, mutating those sites to an aspartic acid will lead to a
constitutive activation of Pbs2 which is lethal due to the excessive production
of osmolytes. This also shows the important activation characteristics of those
two phosphosites, that catalyze the phosphorylation of MAPK Hog1 at Thr174
and Tyr182 (Murakami et al., 2008). This double phosphorylation has been
identified as the main activating factor for the subsequent adaptation. Hog1 is
regulating many downstream responses Petelenz-Kurdziel et al. (2013), most
importantly the enzyme Gpd1 which is facilitating the subsequent synthesis
of glycerol to counter the osmotic pressure put on the cell from the environment.

The second activating branch for this pathway is regulated by Sho1. We
regard this species as the input for the pathway, yet its activity has been shown
to depend on the transmembrane osmo-sensors Hkr1 and Msb2 (O’Rourke and
Herskowitz, 2002; Tatebayashi et al., 2007). Sho1 assembles the downstream
MAPKK Pbs2 to the cell membrane upon osmotic stress (Raitt et al., 2000),
facilitating the interaction with Ste50 and the MAPKKK Ste11 (activated
through Cdc42-bound Ste20), which in turn activates Pbs2 by phosphorylating

our study on crosstalk, we merely mention these results for now and further lump those
mechanisms together in one single activation of Sho1 by osmotic stress.
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it at exactly the same residues as in the case of Ssk2. Thus it conducts the flow
of information through the HOG pathway, if stimulated. The interaction with
Ste20, Ste50 and Ste11 is an unusual feature, as these species are also observed
to be involved in the signaling MAPK cascades for filamentous growth and
pheromone sensing. The pheromone pathway be introduced in the next section.

4.2. The yeast pheromone pathway

A critical checkpoint within the cell cycle is the transition from Growth Phase
1 (G1) to Synthesis (S) Phase, denoting the commitment to either asexual
reproduction via mitosis or the mating with a partner Herskowitz (1988). The
latter enables yeast cells to form diploid cell types that can undergo sporulation
under challenging environmental conditions to survive. Yet for mating to be
possible, haploid yeast cells need to communicate with one another. This is
done by producing either a- or α-factor, pheromones that indicate the presence
of potential mating partners nearby and can be sensed by the corresponding
opposite cell type. Depending on a sufficiently strong dose of a- or α-factor
(signaling a mating partner in the vicinity) (see also Dohlman and Thorner,
2001; Moore et al., 2008; Hao et al., 2008), this facilitates the “shmoo-ing” and
ultimately a fusion between the cells, creating a single diploid cell that then
can undergo sporulation and meiosis. However, before that another crucial
reaction must be triggered: The cell cycle in both mating partners needs to
be stopped first to prevent them from entering S phase. This synchronization
is a prerequisite for mating. Yet, not only is this pheromone induced cell
cycle arrest important for yeast populations in their natural habitats, but it
plays a significant role in experimental setups as well (e.g. see Fantes and
Brooks (1993) and Breeden (1997)). Using haploid MATa yeast strains that
are unable to switch their mating type is one of the main techniques to achieve
a homogeneous and synchronized cell culture that can be studied after release
from the pheromone treatment. Here we want to introduce the structure and
function of the pathway enabling this synchronization: The yeast pheromone
pathway.

The input to this pathway is a G Protein-Coupled Receptor (GPCR), consist-
ing of the transmembrane proteins Ste2 or Ste3 (depending on the mating type)
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that accept binding of a- and α-factor, the Gα unit Gpa1 and the Gβγ-subunit
comprised of Ste4 and Ste18. Upon osmotic shock, the scaffold protein Ste5
translocates to Ste4 at the membrane, tethering the MAPK cascade including
Ste11 (MAPKKK), Ste7 (MAPKK) and Fus3 (MAPK). Again, as in the HOG
pathway, Cdc42-bound Ste20 is able to phosphorylate Ste11 with the help of
Ste50, thus activating the first step of the kinase cascade tethered by Ste5. In
successive activation over Ste7, the MAPK Fus3 is phosphorylated at Thr180
and Tyr182 (Gruhler et al., 2005). This kinase is considered the output of the
pathway. It induces for example the activity of the transcription factor Ste12
and phosphorylates Far1, the factor arresting the cell cycle and involved in cell
polarization.

Because of its key role in experimental techniques and its well established
functionality, scientific research has focused on this interesting pathway on
many occasions over the last two decades. Nevertheless, as with the HOG
pathway, it still produces surprising results and nurtures important insights
into the functionalities of signaling systems.

4.3. Overlap in Signaling networks - Mass-spec-data from
Crosstalk in yeast

A very intriguing feature of these two pathways and also one of the reasons for
them to be studied this well, is the degree of crosstalk within them. As both are
sharing components (Ste20, Ste50 and Ste11) in their activating branches, the
two pathways could under certain circumstances activate the wrong protocol
for one of the two stresses. Yet, the cells react in quite a distinctive and
accurate manner: Using one “channel” for multiple signals doesn’t disturb their
function. This has also been observed experimentally (McClean et al., 2007).
How do they maintain their signal specificity? This question has drawn a lot
of attention and is still fueling research (e.g. Schwartz and Madhani, 2004;
Patterson et al., 2010b; Schaber et al., 2012; Baltanás et al., 2013). Vaga et al.
(2014) have been performing extensive phospho-proteomic studies on yeast cells
in order to determine the extend to which the phospho-proteome is affected
by the two stresses. This includes not only each stress applied separately, but
measurements of consecutive excitation with both pathways for different time
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periods sampled at 0, 1, 5, 10, 20 and 45 minutes after stress induction. Over-
all, this results in 36 experimental conditions, where the aforementioned time
courses are included. The study reveals that more residues of involved signaling
proteins seem to be differentially regulated by the pathways and by crosstalk.
We were interested in using this data to model potential regulation patterns
and test the data against the knowledge obtained in previous studies on the
insulation mechanisms of the two pathways. The data seemed to provide a solid
base for fitting a reasonable model to it and extending it to more functionalities.

The work of Vaga et al. (2014)48 shows a complexity in crosstalk regulation
between the two pathways, that is higher than previously thought. The data
comprises a number of 2536 detected phosphopeptides, including 57 that are
associated with either the HOG or the pheromone pathway. A number of known
phosphosites in the two pathways was detected, foremost to be mentioned
the critical Hog1 phosphorylations at Thr174 and Tyr182 as well as Fus3
phospho-residues Thr180 and Tyr182. The behavior of these outputs was used
as a benchmark for the validation of the data.

Yet, the relevance of the regulatory interactions found as well as their
implications cannot be covered by the analysis. As a matter of fact, several
critical nodes in the known structure of the two pathways were not detected
by the experimental setup, leaving fundamental gaps for evaluating relations
and causalities. We reviewed the literature extensively in order to validate the
mechanisms that were previously shown to function in the two pathways and
can be considered as vital. Tab. 2 lists important phosphosites reported in the
literature, that are not contained in the data. The reasons for those sites being
missing can be various. For one, the experimental techniques are not able to
detect phosphorylations on aspartic acid or histidin residues. This concerns
for example the phosphorelay in the Sln1-branch of the HOG pathway, which
consists of a phosphate transfer only involving phosphate transfer via Asp and
His residues. Another reason can be that proteins are not of sufficient length
to be detected, as in the case of Ypd1 which has only a length of 167 amino
acids and thus is below a detection threshold.

48(See also Vaga, 2013).
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Protein Phosphosite References for the evidence (PMID)

’FAR1’ ’T306’ 8334305, 9148934, 9632750

’GPA1’ ’S200’ 21521692

’KSS1’ ’T183’ 1628831, 8668180

’KSS1’ ’Y185’ 1628831, 8668180

’PBS2’ ’S250’ 19823750

’PBS2’ ’S514’ 9032256, 9180081, 7624781

’PBS2’ ’T518’ 9032256, 9180081, 7624781

’SSK2’ ’T1420’ 9482735

’SSK2’ ’T1460’ 9482735

’STE11’ ’S302’ 10837245

’STE11’ ’S306’ 10837245

’STE11’ ’T307’ 10837245

’STE7’ ’S359’ 8131746

’STE7’ ’T363’ 8131746

’STE50’ ’S155’ 20932477,1885432

’STE50’ ’S196’ 20932477,1885432

’STE50’ ’S248’ 20932477,1885432

’SLN1’ ’H576’ 2957298

’SLN1’ ’D1144’ 2957298

’YPD1’ ’H64’ 2957298

’SSK1’ ’D544’ 2957298

Table 2: Summary of important phospho-sites reported in literature, that were
not detectable in the mass-spec approach of Vaga et al. (2014). The His and
Asp within the phosphorelay could not be detected due to the experimental
procedure aiming for Ser, Thr and Tyr. The information is obtained from
http://www.phosphogrid.org.
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4.4. The model

We were interested in the modeling of potential regulation patterns that could
provide a mechanism for the temporal profiles seen in the data and to study,
which regulation patterns of the data could potentially be described by a
mechanistic model. In the context of chapter 5, the aim was to examine the
data set for features of insulation and how further mechanisms could influence
the crosstalk in the pathways. For this, we built a model of ordinary differential
equations that combines and harmonizes insights from a broad range of past
research to a comprehensive view of the signaling mechanisms in the two
pathways. The model describes the events as introduced in section 4.1 and 4.2.
A schematic structure of the model can be seen in Fig. 17. We carefully
reviewed the known interactions and incorporated them to a combined, but in
parts simplified view. In order to create a parametrization for the model, we
turned to the data and looked for reasonable overlaps. The phosphopeptides
HOG1_174_Y176 and FUS3_T180_Y182 were included in the data an thus
used for fitting procedures in our modeling approach. The implementation was
done using “Data2Dynamics”49 introduced in Raue et al. (2013). The ODE
equations as well as parameters and initial values for the model are documented
in Appendix A.

Further, species showed a large variability in phosphorylation patterns
compared to the anticipated behavior. For example Ste20 facilitates many
interactions and thus showed also a large number of regulated phosphopeptides
upon both stresses. Yet, the regulation was unspecific to a certain stress. Thus,
we decided to disregard the data for now.

As a result of the modeling approach, we obtained a mechanistic view on
the two signal transduction pathways that captures the anticipated behavior
sufficiently, as can be seen in Fig. 18. In particular, the strong influence of the
scaffold proteins Ste5 and Pbs2 could be observed. We see the regulating power
of this biochemical functionality in the maintenance of specificity between the
two signals. In the model, Ste5 activation of the MAPK signaling cascade
Ste50-Ste7-Fus3 depends on the recruitment to the membrane at Ste4 and

49Available at http://www.data2dynamics.org/. The environment was simulated on MAT-
LAB R2015a.
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initiates as well as insulates the signal. A similar behavior can be seen by
the membrane located signal initiation process of the Sho1-branch in HOG
signaling. This behavior already arises with a very simple (and non-biological)
parametrization of the model, owed to the strong control that these tethering
functions exert in the pathways. This mechanical way of insulating signals
thus arises from structure already, emphasizing its importance for biological
signal transmission. Even though the modeling process was based on the
findings of phospho-proteomic data, we observed a large disparity between our
simulations and the data. This proposes that with the knowledge available at
the moment, it is not possible to explain the full extend of the data set and
further investigations are needed.

As discussed, the data obtained by Vaga et.al. shows that many previously
undiscovered regulation patterns of phospho-sites are existent in a crosstalk-like
manner between the HOG- and the pheromone-pathway. Further experimental
studies are required to either show the significance of the individual regulations
or whether certain sites are only byproducts of the crucial signaling. Neverthe-
less the data depicts a profound basis to assess further aspects of the complex
network and its inter-dependencies.

Remark: The publication of (Vaga et al., 2014, Fig. 8) includes a parallel
developed modeling approach employing the boolean ODE simulation frame-
work “CellNOpt” published in Terfve et al. (2012). This modeling approach is
based on a similar consensus network of the pathways (yet models the separate
phosphosites that were detected) and allows for model variant construction
by adding or subtracting interactions in the network. This model was used
to validate certain proposed mechanisms in the paper by introducing edges in
the model graph between different phosphosites. This approach shows that
the model then gains a better quality of fit, yet the extend of this is unclear.
Objectively seen, the qualitative behavior of most of the peptides was also
imperfect.
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Fig. 18: Simulated time courses for an important subset of the species in
the model. The expected activation patters can be shown with the model.
Especially appealing is the influence of scaffolding by Ste5 as well as the
assembly of Ste20, Ste50, Ste11 and Pbs2 via the activation of Sho1. Both
mechanisms insulate efficiently as was observed in previous research. For
parametrization, see Appendix A, Tab. 4 and 5.
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Consecutive activation patterns The mechanisms that have been identified
so far for the functionality of both pheromone and HOG signaling are to a large
extend consecutive activations in chains of signaling. There exists an interesting
overlap between species and transient as well as longterm feedbacks factor
into the system as well. Despite those non-linearities, the chain of activation
will (until a certain point) follow an order of activation. In the face of the
phospho-proteomic data, a reexamination of this has been suggested. Our
modeling approach has shown as well that the behavior of most of the detected
phosphosites does not follow the picture painted by scientific studies until now.
And while the data exhibits unfortunate gaps, that would (if filled) presumably
show exactly the anticipated consecutive activation pattern, it also suggests
that possibly more mechanisms facilitate such a chain. This could be phospho-
rylations (or the missing thereof) that unlock certain conformation changes
and subsequently allow further activations in the cascade. Yet as to what these
mechanisms are, it will be inevitable to go into molecular details that are not
in the scope of a modeling approach. Since the significance of the detected
phosphosites has not been shown and the observed patterns could merely be
by-standing phosphorylations that occur more or less without any consequences,
it is vital to follow up this research in order to understand the nature of these
patterns. The data provides a critical starting point for that, yet so far is
limited in unveiling mechanistic regulations by itself. The model contained in
the publication (Vaga et al., 2014, Fig.8) validates proposed mechanisms to
a certain degree, yet we believe that more detailed experimental research on
single phosphopeptides is necessary to substantiate proofs for their significance
and functional mechanisms. The data by Vaga et.al. can thus be primarily
viewed as a comprehensive, although non-specific basis for further investigations.

4.5. Summary & Discussion

In this chapter we have re-evaluated data obtained by Vaga et al. (2014),
containing phosphorylation profiles with high coverage of the phospho-proteome
in yeast cells that are subjected to osmotic as well as pheromone stress at
different time points. Using a high-throughput mass spectrometry approach,
the data shows a level of interplay between the two pathways under research,
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namely the HOG and the pheromone pathway. It includes previously shown
temporal phosphorylation profiles, yet unfortunately the data was not able
to cover all critical phosphopeptides, thus leaving large gaps for modeling
approaches. We built a consensus model from the literature and compared the
outcome of the structure to the observed phosphorylation time courses of the
data. We were not able to show the required overlap and even with intensive
search of the models parameter space could not find a fit to most phosphorylation
behavior. This is not too surprising, as most of the observations were not
reported previously. Nevertheless, a functioning system was established in our
work and can further be used to include potential mechanisms.

Vaga et.al. employed a crosstalk measure as introduced in Schaber et al.
(2006)50. It would be interesting to see, whether this measure can be reproduced
in a modeling approach and be compared to what was observed in the data. Yet,
with the low overlap between measured phosphosites and the model species,
the comparison for now would be ambiguous until more of the underlying
mechanisms that give rise to the observed temporal profiles in the data are
elucidated.

As a further extension for our model, including the species Kss1 as a com-
petitor to Fus3 in the binding of Ste7 would be an interesting study. The
binding of Fus3 is preferred due to the scaffolding function of Ste5, yet Kss1
has been observed to be transiently activated with a linear dose-response to
the input α-factor (Hao et al., 2008). As this interaction facilitates a transient
activity and diverts the phosphorylating activation of Ste11 via the MAPKK
Ste7 from other potential interactions (Sabbagh et al., 2001; Hao et al., 2008),
we believe that including this species could explain one finding of the data
that has been disregarded by the modeling part of the paper: No matter how
long the cells have been subjected to osmotic stress, an α-factor shock always
leads to a strong but transient decrease in Hog1 double phosphorylation. The
cause for this is unclear as of yet and since it is maybe the most surprising
result of Vaga et.al., elucidating it should be focused on. Kss1 could provide a
candidate for such a function.

50(See Vaga et al., 2014, Fig.4)
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5. Scaffolding improves information transmission in cell
signaling - “On how to play the right tone
accurately”

Gathering information is important for organisms. Gathering the right informa-
tion even more so. Environmental signals themselves are subject to (sometimes
severe) fluctuations and adding to that is the noisy nature of the biological
processes that make up cellular machinery, including its signal transmission.
So how can cells develop a reliable discrimination between “good” or “bad”
information at their decision centers and make sure that their responses are
appropriately matched to the particular input? The idea of evolutionary devel-
opment in nature is providing a simple, yet powerful answer to this question.51

Handling external cues is an adaptational process that - by a procedure of
variation, selection and elimination over large time scales - evolves structures
that are (optimally) fit to map an external input to a distinct behavior, thus
ensuring survival and proliferation. This is thought to be the most important
way of biological design, providing robust and reliable processes embedded in
enormous complexity.

Technical systems invented by humans did not go through this long-time
optimization process, but rather were designed a priori in a way that their
structure fulfills similar requirements. The need for accuracy and fidelity is a
basic requisite in most engineering applications, especially when it comes to
the transmission of information. After all, reliable input-output mapping is the
basis of controlling nearly any program or machine. To fulfill this, sophisticated
ways of signal transmission and processing as well as error correction were
invented. As introduced earlier, an important basis for this development were
the theories C.E.Shannon formalized in the middle of the 20th century.52

This need for a certain precision and a correct interpretation of external

51Very interesting takes on evolution can be found in Chen and Nowak (2012) and Rivoire
and Leibler (2014).

52Both his Master thesis (Shannon, 1938) as well as his monumental paper on information
theory (Shannon, 1948).
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cues connects the fields of signaling in cellular and engineered systems closely.
And even though in biology we face unknown settings with an immense com-
plexity, we can identify motifs that occur frequently and allow us to draw
analogies to human designed systems. Thus, we can investigate evolutionary
“designed” modules in biological organisms with our means of human technical
understanding aiming towards those similarities. In this chapter we revisit
such a highly conserved module in cell signaling, the scaffolding of proteins,
and show that if interpreted in technical terms as a signal transducing channel,
this module inherently comprises beneficial properties in its structure already.
We argue that this creates a strong potential for selection and thus adds to the
conservation of scaffolding in evolutionary development.

5.1. An evolutionary role of Scaffolds - From Accuracy to Crosstalk

Again serving as a prototypical model organism for the discovery of biological
concepts, scaffolding structures of signaling proteins have first been described in
S.cerevisiae (concurrently, yet independently researched and reported in close
succession by Chol et al. (1994) and Marcus et al. (1994)). Ste5 was observed
to tether several components of the pheromone signaling pathway, namely the
MAPK cascade comprised of Ste11 (MAPKKK), Ste7 (MAPKK) and Fus3
(MAPK). Since then, the motif has been shown to exist in many different
pathways and organisms, respectively (Posas and Saito, 1997; Schaeffer et al.,
1998; Dickens et al., 1997; Witzel et al., 2012; Dhanasekaran et al., 2007).
Not only does this scaffolding motif appear often in cellular signaling, but
it also has been observed to fulfill many different roles and functions. The
ever growing number of identified scaffolding proteins and their usages has
made our perception of cellular signaling far more complex than previously
thought, much like the discovery of microRNAs has impacted the view on gene
expression regulation (see e.g. Bartel, 2004, 2009, for reviews).53 This has
made the scaffolding motif a very interesting source for fundamental knowledge
of signaling systems as well as a promising subject of investigation, especially
53Remark: We already noted that the analogy to an information theoretic channel has been

applied to gene expression before (Tkačik et al., 2008b, 2009; Tkačik and Walczak, 2011,
e.g.) and recently, the role of microRNAs has been included in such an approach as well
(Finn and Searles, 2013; Zheng and Kwoh, 2006).
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for the field of synthetic biology. Here we will briefly review some of the central
roles that scaffolds have been associated with.

The most basic property of scaffold proteins (and their name-giving function
as it was the first to be observed) is the assembly and co-localization of
signaling molecules within a pathway. This already allows for several important
implications: As reviewed in Good et al. (2011), it leads to a spatial regulation
and coordination of the pathway components (see also Mahanty et al., 1999).
It enables them to “steer” the assembled complex to certain locations in the
cell (e.g. the cell membrane or other organelles) where signaling is then to be
initiated. While this can be used as well as a “pre-assembly” to provide quicker
reactions, scaffolds also regulate the concentrations that are experienced locally
by the signaling components, as it brings them into close proximity of one
another. This effectively increases reaction rates and efficiency of the pathways
in question. Scaffolds in this way help to catalyze reaction cascades. Yet, this
could also be achieved by increasing the affinity of binding between adjacent
signaling layers.

The concentration of scaffolding proteins has another interesting effect
on the regulation of signaling. As was investigated both theoretically and
experimentally (Levchenko et al., 2000; Witzel et al., 2012; Chapman and
Asthagiri, 2009), there exist optimal ranges of scaffold expression due to either
a saturation (low concentrations lead to a bottleneck of signal transmission) or
a combinatorial effect (high concentrations allow the assembly of incomplete
and thus non-responsive cascades). Thus, again in analogy to microRNAs,
regulating the expression of scaffolds allows the organism to regulate and
fine-tune its responsiveness to certain stresses.

While the aforementioned functions are of a passive nature, scaffolds have
also been shown to actively take part in the signaling process in addition to
that. Through their tethering function, they increase the specificity and also
sequester the activation of signaling molecules (Good et al., 2009). In that
particular case, the pathway would only be activating the MAPK Fus3 weakly
without the scaffold protein Ste5, making it essential for the transmission
process itself. This is similar to the enhancement of reactions as described
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in the previous paragraph, yet going even one step further (Sabbagh et al.,
2001): Kss1, a MAPK involved in pheromone signaling and invasive growth, is
activated by the same MAPKK as Fus3, namely Ste7. It can take the place of
Fus3 in the scaffolding complex of Ste5 (for example when Fus3 is knocked out),
but does not need the scaffold itself for its activating function. This separates
the two scenarios and makes the scaffold not only an enhancer and catalyst,
but an integral part of the signaling structure itself. Other active functions,
facilitating allosteric activation of Fus3 (Bhattacharyya et al., 2006b) and the
use of conformational changes to enable signaling (Sette et al., 2000; Zalatan
et al., 2012), have been shown for the scaffold Ste5.

While this is already an impressive number of roles that scaffolds have been
associated with, the primary one is thought to be the prevention of crosstalk
between pathways that make use of the same signaling proteins (Garrington
and Johnson, 1999; Whitmarsh and Davis, 1998; Elion, 1998). As with many
other prototypical motifs, this function has first been identified in S.cerevisiae.
We introduced the mechanism in chapter 4, where the yeast pheromone path-
way and the HOG pathway both make use of Ste11, Ste20 and Ste50, yet
still are capable of signaling distinct inputs to distinct outputs. Specificity
is achieved by the use of the scaffold proteins Ste5 and Pbs254 that control
the flow of information. This management of crosstalk is one of the most
important and also most exciting functions of scaffolds as it hands interesting
possibilities to synthetic biology (Lai et al., 2015). Re-wiring pathways and
thus re-routing information is an interesting concept and possibly evolved many
further functionalities (Bhattacharyya et al., 2006a; Good et al., 2011), yet this
would only make sense as a secondary development for an already established
system. Additionally, as with the enhancement of signaling efficiency, such
specificity could also be achieved through developing separate pathway species
with high recognition affinity patterns.

With the many functions and the high conservation of the scaffolding motif
in many organisms, the question arises as to what made the re-utilization of

54With both fulfilling additional roles (Pbs2 as a MAPKK (Posas and Saito, 1997) and Ste5
as described in this section).
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this structure favorable. As far as their usage might be spread, the (sequence)
similarity between different scaffolds is very limited and thus, it seems unlikely
that their origin is of particularly close relation. We argue that the benefits
of scaffolds are especially based on the structure and its properties, making it
appear in many different contexts. Functions like inter-pathway insulation, the
branching of information transmission routes and higher regulation patterns
are likely to be developed as improvements and extensions of an already estab-
lished and favorable design. We found that a potential reason for evolutionary
selection can be found by investigating the signal processing properties of
prototypical scaffolded signal transmission. In the following sections, we show
that scaffolding limits inherent noise and benefits the fidelity that signaling
is capable of. In addition, it shapes dose-response alignment in a near-linear way.

An important observation is that, in contrast to many other functionalities
reviewed, the here proposed enhancements of insulated signaling by scaffold
proteins are not contradictory to other roles that scaffolds have been shown to
play. On the contrary, they propose a strong incentive for reusing and refining
this structure and thus evolving into the mechanisms that we find nowadays in
nature.

5.2. A model comparison for “mixed” and “insulated” information
transmission

Our hypothesis that beneficial signaling properties exhibited by a scaffolded
pathway are leading to a preferential evolutionary selection is naturally not
verifiable, since evolution is not repeatable for us. Nevertheless, the properties
we focus on describe very fundamental levels of scaffolded signal transmission
and can set a solid basis for further development of various functionalities. In
the following sections we introduce a modeling approach to examine whether
we can achieve and recreate such a biological incentive theoretically. This
enables us to propose and test potential reasons behind the strong selection of
this motif in nature that have not been examined before. We introduce two
structural models comprised of the key features for signaling with and without
the participation of a scaffold protein and present the results of an information
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theoretic analysis. This new view provides insights into the characteristics of
potential information processing optimality of insulated signal transmission.

Fig. 19: Schematic representation of the main characteristics of insulated
(scaffolded) and mixed (non-scaffolded) signal transmission. Scaffolds tether
signaling molecules together and insulate the transmission process, whereas
a free diffusing mixed model enables all proteins of adjacent tiers to interact
with one another.

5.2.1. Setting up the models

As a prototypical model structure for signal transduction we constructed a
signaling cascade that assumes a free diffusion for the species, similar to
standard MAPK cascade models (Goldbeter and Koshland, 1981; Heinrich
et al., 2002; Blüthgen and Herzel, 2003; Klipp et al., 2005; Muñoz-García et al.,
2009, 2010). Because of the free diffusing molecules, we will denote this model
with mixed channel in the following. A number of molecular signaling tiers
{P1, P2, P3, ...} forms a chain of successive activation, as every molecule of a
tier can facilitate the activation (e.g. phosphorylation) of all molecules of the
next downstream layer. In the model, active protein forms are denoted as P A

i ,
the forward and reverse rates as ki,forw and ki,rev, respectively.55 The reverse
reaction is counteracting this activation process and ensures that the system
55The parameters and their selection will be described in more detail in 5.2.2 as well as the

subsequent sections.
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can be switched off. Usually this is facilitated by a phosphatase, yet this will
not be explicitly modeled here. A reaction scheme for this module can be
described as follows (also see Fig.20):

P1
k1,forw−→ P A

1 ; P A
1

k1,rev−→ P1

P A
1 + P2

k2,forw−→ P A
2 ; P A

2
k2,rev−→ P2

P A
2 + P3

k3,forw−→ P A
3 ; P A

3
k3,rev−→ P3

...
...

For each species in the signaling chain, the number of molecules usually
shows different expression levels. These numbers can play an important role,
since for example low concentrations of intermediate species can create bottle-
necks (see Yu et al., 2007). Especially the output species for the cascade is key
to determine the resolution with which levels of stress can be differentiated after
the signal transmission as well as the total saturation for the pathway. The key
feature for the mixed signal transmission is the large degree of inter-connectivity
between molecules of successive tiers. Even a small number of activated re-
ceptors can induce a “snow-balling” effect on the downstream layers, leading
to a switch-like ultrasensitive behavior (Huang and Ferrell, 1996). With our
information theoretical analysis we will investigate this from a new perspective.

As an alternative view on the same signal transmission process, we introduce
a second structural model that restricts the interaction of adjacent layers, thus
capturing the basic property defining a scaffolded cascade. As described in
section 5.1, a scaffold protein co-localizes several pathway components within
a close proximity, enabling and shaping the transmission of the signal (e.g.
a phosphorylation cascade) as well as shielding it from external interference.
This model will be referred to as the insulated channel. From a modeling
perspective, a single (fully assembled) scaffold could be viewed as the state-
space of a Markov chain X(t) = {0, 1}n involving the active and in-active forms
of the joined protein layers, where n is the number of successive signaling tiers.
The state-space is a hypercube that scales with the number of tiers, as we have
2n combinations of scaffold states. In nature, many systems employ three such
stages (Raman et al., 2007; Bardwell, 2005; McKay et al., 2009). In scaffolded
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Fig. 20: Schematic representation of the mixed channel consisting of three
signaling tiers. The cascade involves inactive (Pi) and active (P A

i ) states of
the species, with the active form catalyzing the downstream activation of the
next signaling tier.

as well as non-scaffolded signaling motifs, also multiple phosphorylations that
can be interpreted as successive tiers (Schüller et al., 1994; Posas and Saito,
1997)) and in addition cascade chains of six tiers (Seger and Krebs, 1995)
are observed. The transitions between states follow the activation cascade
from the external signal downstream towards the output, directing the flow of
information through our scaffold as shown in Fig. 21 for three tiers. The rules
for state transitions are fairly simple: “backwards” transitions (corresponding
to a de-activation, e.g. through a phosphatase) are allowed from every state,
whereas an activating transition is only possible if the adjacent layer upstream
of the activated species is active itself. Only one transition at a time is regarded.

In contrast to the mixed channel, the scaffolded signaling is comprised out of
m separate copies of this hypercube, each describing one instance of a scaffold
protein. The active input level encloses the sum of states, where the first
species is equal to 1. If compared to the mixed model, this sum corresponds
one to one to the P A

1 layer and is identical with that. The output of the model
is the number of activated molecules in the last cascade layer, which is the
sum of states with the nth coordinate being 1 (see Fig. 21 green box). So
on the receptor as well as output level the two models will have the same
interpretations. Yet, the internal information transmission will differ heavily
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Fig. 21: State-space of one scaffold channel with transitions that can be
interpreted as a Markov chain, restricted to three species. States within
the green box share an activated third species, thus depicting the output of
our model. Red transitions are subject to the input function (stress signal),
activating the first layer of the cascade. Each activation from a signaling layer
to the adjacent downstream layer requires the activated state of the former, thus
giving a natural description of the transitions between states. De-activating
transitions are possible in any of the states.

due to the different wirings and thus will produce a distinct input-output re-
lation as well as noise behavior that uniquely characterizes each of the structures.

Remark: In our work, we omit the process of assembling and disassembling
the scaffold, as its implications have been researched previously (e.g. Levchenko
et al., 2000; Witzel et al., 2012; Chapman and Asthagiri, 2009, as mentioned
earlier). Our modeling approach is focusing on the transmission process within
the scaffold itself, helping us understand what structural properties a scaffold
protein offers as a single entity for signal processing. This gives us a char-
acteristic that is less specific to particular pathways, but more general and
comprehensive for this large class of proteins.

In order to investigate and compare the two models using an information
theoretical approach, we apply a moment closure of order two56 to the chemical

56Wallace et al. (2012) show the applicability of the Linear Noise Approximation to systems
like ours. Analogous reasonings can be made for applying the moment closure as well.
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master equation that describes these reaction systems.57 We obtain systems of
N(N+3)

2 Ordinary Differential Equations (ODEs), where N is the number of
species. For every layer i in the mixed channel, active and inactive forms of
the molecules are considered a single species each, giving N = 2 · n, where n is
the index of the final layer. For the insulated channel, the number of species
corresponds to the number of states in the hypercube, i.e. N = 2n.

The full set of equations for the moment closure of order 2 for the systems
can be found in Appendix B, Fig. 31 (mixed channel) and Fig. 32 (insulated
channel). Parameter values for the standard models are given in Tab. 3,
subsequent variations for the analysis can be found in the respective sections.
The equation systems describe the time-courses for the moments up to 2nd order.
This comprises the means E [Xi] for all species as well as the second moments
E [XiXj ] from which we can calculate the variances V ar [Xi] = E

[
X2

i

]
−E [Xi]2

and covariances Cov [Xi, Xj ] = E [XiXj ]−E [Xi] ·E [Xj ], respectively. Solving
this ODE system enables us to analyze the dynamic responses to environmental
stress and thus capture the stochastic signaling behavior.

5.2.2. Analysis of information transmission accuracy - the Fidelity of
signaling

We designed the two models to compare simple but fundamental structural
properties and how they influence signaling. In the following sections we want
to state our prerequisites and modeling assumptions for that and present the
obtained results.

First, we define a standard variant for each model and compare both to
one another. In this reference version we assume three signaling layers with
molecule numbers of mi = 1000 for each involved layer i = 1, 2, 3. This corre-
sponds to the approximate order of magnitude for most of the MAPK signaling
molecules in S.cerevisiae. These numbers can vary immensely in different
organisms and pathways, from cell to cell or (and especially) from experiment

57The equations for this can be derived as described in section 2.2.3, yet to circumvent
the lengthy calculations we chose to employ the python script provided in Gillespie
(2009), which exports the moment ODEs from an SBML description of the reaction
system automatically by applying equation (37). The script can be downloaded from
http://pysbml.googlecode.com.
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to experiment (for comparisons, see Thomson et al., 2011; Fujioka et al., 2006;
Maeder et al., 2007; Slaughter et al., 2007).58 This is in part due to the large
differences in cell sizes and can also be attributed to functionality pathways.
Nevertheless, our findings result from the structural nature of signaling in
the two systems and are applicable to a wide range of possible setups. This
robustness is examined in section 5.2.3.

In order to make the two models comparable, it is important that we consider
the corresponding transmission strengths in a way that adjusts for the spatial
effects that scaffolds exhibit. By bringing molecules into a close proximity,
scaffold proteins enhance the strength of signal transduction immensely as the
molecules experience very high local concentrations. In nature, this enables
scaffolded signaling to e.g. react already to very low ligand concentrations and
explains the signal enhancing effect.59 This is achieved by the scaffolding struc-
ture, which by assembling the pathway components rids the signal transmission
process of its spatial dimension and sequesters stronger activation instead. The
forward reactions (and corresponding rates) in our insulated model are thus of
first order, whereas the mixed signaling employs second order forward reactions.
We correct for this by defining the forward reactions of the mixed channel
with pseudo-first-order reaction rates in analogy to experimental techniques.
This means dividing the second-order forward rate by the number m of sig-
naling molecules of the corresponding layer.60 The “signal transmission ratio”
or “transmission strength” is defined as the ratio between forward (ki,forw)
and backward (ki,rev, “reverse”) reaction, corresponding to the activation and
deactivation of the single signaling layers (e.g. through (de-) phosphorylation),

58See also http://yeastgfp.yeastgenome.org/ for specific numbers from literature in
S.cerevisiae. http://bionumbers.hms.harvard.edu/ reports ≈ 10nM−1µM as the “char-
acteristic concentration for a signaling protein” (Milo et al., 2010).

59For example, Chapman and Asthagiri (2009) find that Ste5 is expressed at a sub-optimal
level and attribute this to their observation that a higher Ste5 concentration sequesters a
higher basal activation of the pathway. This shows a high potential for signal activation
at low input-levels due to strongly amplified signal transduction rate.

60From another perspective it also means that the forward rates of the insulated channel are
m-times stronger than those of the mixed channel, as expected from the closer proximity
of reaction partners. An equivalent way to achieve this would be this exact notion of
enhancing the rate constants of the scaffolded channel by m instead of the downscaling of
the mixed channel. The result would be the same, yet from a numerical perspective the
lower rates are easier to handle and were thus chosen for this work.
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and set to
ki,forw

ki,rev
= 5s−1

1s−1 = 5, ∀i > 1

for the two reference models.61 This ratio determines the absolute level of acti-
vation as well as the dynamic properties (time to reach steady state, temporal
variance before a steady state is reached, etc.). As with molecule numbers,
these parameters will vary to a large degree for different scenarios and thus the
influence of these variations on signal transduction will be investigated later
(see page 105).

As set up in section 5.2.1, the outputs of both models are the probability
distributions of the activated last species in the signaling cascade. We can
compare them qualitatively, as they are equivalent and differ only in the
upstream transmission process. Yet, to quantify the information processing
capability of our stochastic channel models, we employ an information theoretic
analysis by defining the measure of “Fidelity F” as:

F (X; Y ) =
maxP (X) I(X; Y )

H(X) , (43)

giving us a measure with F ∈ [0, 1] that enables a comparison between the
two models for how accurately the input is inferred at the output Y with
respect to the number of inputs X = k1,forw. This measure is merely a
normalization of the channel capacity by one of its upper boundaries, as
I(X; Y ) ≤ max(H(X), H(Y ). It implies that F = 1 stands for a loss-less
information transmission (and thus the potential for perfect inference of the
input) and F = 0 denotes that barely noise is transmitted. Choosing H(X)
as a normalization factor is sensible for a low number of inputs and a high
number of output states. This is a matter of the binning employed: Since
for cell signaling, the resolution of the output (in that case defined by the
molecule numbers) will usually be larger than the number of inputs, we refer
to the input-entropy. Yet, as can be seen in Fig. 7, the channel itself sets
the achievable resolution and thus, both selections are plausible. Using the
“Fidelity” F is only viable for a discrete computational approach with finite
61k1,forw plays a special role as it encodes the input strength to the system (stress level X),

as explained later in this section.
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Name Values Description

X = k1,forw [0.001, . . . , 10]s−1 Input strength (stress level).

i i ∈ N Index of signaling layer (tier).

mi 1000 Molecule # per signaling layer i.*

ki,forw 5s−1, ∀i > 1 “Forward” rate, activation of next layer.

ki,rev 1s−1, ∀i “Reverse”, de-activation of active species.

t 150s Simulation time used for steady state.

* (This number is the sum of activated and inactive proteins of one cascade layer.)

Table 3: Overview of the parameters used in the standard model in section 5.2.2.
The parameters are subsequently varied for analysis as indicated in the sections.
For the exact values of the input strength X, see Appendix B.

inputs, as H(X) → ∞ with the number of input states X tending to infinity.
Yet, it resembles the biological nature of finite number of molecules in a cell that
act as an encoder62 and thus can be used without restrictions for our application.

The fidelity measure conveys a simple way to interpret the performance of a
system without putting emphasize on the meaning of the number of transmitted
bits. After all, it is impossible to know what a particular number could mean
to a cell without going into more details of the system in question63 - this is a
matter of semantics and not part of this theoretical analysis. Nevertheless, it
proofs to be a simple and objective way to compare our parsimonious modeling
approaches.

Signal amplification or graded response - The scaffold makes the difference

62Or, as a matter of fact, at a decoding level, should we choose to use H(Y ) for normalization.
63Nevertheless, it is interesting to know that interpretations for such bit-numbers are in

fact sometimes possible: Dubuis et al. (2013) measure gradients of morphogens and the
corresponding expression levels of gap genes in Drosophila embryos. With this they are
able to show that the biologically encoded and information transmitted (over a “gene-
expression channel”) corresponds exactly to the information needed to encode each of the
100 unique positions for cells along the anteroposterior axis. This is also an extra-ordinary
example for a biological system working at an optimized level of maximized information.
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In order to get a first grasp on how signaling through the two motifs differs
from one another, we compare the behavior of the reference models. Given
distinct stress levels (i.e. the probability rate for the first activation step), the
two system structures exhibit a strong influence on the input-output relation
as shown in Fig. 22 (see the mapping of color coded arrows). As expected,
the first species in the cascade (being the receptor level) naturally shows the
same conditional distributions of activation. This can be interpreted as the
encoding of the external stimuli into molecule numbers and since this encoding
is conducted by the same mechanism for both models, the outputs on this level
are identical by design. This changes once the different modes of transduction
enter the equation. Multiple layers of successive signaling molecules produce a
significantly different output, diverging with the number of tiers: While scaf-
folded signaling exhibits a near linear dose-response relation, the mixed relation
shows a strong amplification effect that entails a switch-like saturation behavior.

Both these behaviors can be observed in natural settings and can be as-
sociated with different functions. A switch-like response enables thresholded
signaling and would make sense in cases, where signals and/or cellular decisions
are both rare and severe. This would enable a cell to commit to adaptations
to an external stress if need be, while still reserving normal function when a
threshold is not surpassed. Apoptosis would for example be such a fatal cellular
decision, if committed to prematurely. Stresses that pose a strong threat to
the cell need to be handled within a very fast manner and could potentially
require a strong commitment and thus an amplified signal transmission as well.
MAPK cascades (Seger and Krebs, 1995) have been under investigation for
many years and are largely considered to act as such amplifiers (Goldbeter
and Koshland, 1981; Ferrell and Machleder, 1998; Kholodenko, 2000). On
the other hand, graded signaling allows for fine-tuning and distinct cellular
behavior. As an example, while the decision to undergo mating is certainly of
binary nature, the pathway output of the pheromone response shows a linear
alignment to the α-factor concentration sensed in the environment (Poritz
et al., 2001; Yu et al., 2008, Fig.2). Moreover, yeast has several distinct modes
of cellular behavior (budding, elongated growth and shmooing) depending on
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Fig. 22: Simulation results of the input-output relations for the two reference
signaling models. We display the conditional probability for the distribution
of molecules (normalized to the total protein abundance) with respect to the
input strength (color-coded), i.e. distinct stochastic rates of the first activation
step (see Tab. 3). The relation is shown for the first and the third species in
the cascades. Whereas the first layer of signaling (the receptor level) in each
model experiences identical distributions for matching stresses, the third layer
already exhibits strong differences both in transmission as well as intrinsic
noise level resulting from the structure.

the strength of α-factor stimulation (Dohlman and Thorner, 2001; Moore et al.,
2008; Hao et al., 2008). Other studies have shown an integration of both graded
and switch-like behaviors due to the use of several mechanisms in pheromone
responses (Paliwal et al., 2007) and the adaptation to high osmolarity (English
et al., 2015), respectively. An important way to facilitate both modes of re-
sponses can be to use feedbacks (Ninfa and Mayo, 2004; Bhalla and Iyengar,
1999; Legewie et al., 2008), yet we observe that scaffolding can achieve the
same behavior in a controlled way. A combination of many such mechanisms
is most likely in a natural setting.

In our analysis, the amplification effect strongly influences fidelity. As a fast
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saturation can be observed upon crossing a certain threshold, signals below and
above that cannot be distinguished reliably. This produces channel capacity
at lower numbers, slightly above an on/off switch. This behavior results from
the structural connection between the successive signaling layers: The received
signals spread in a snowballing fashion starting at the receptor level. The strong
inter-connection between the signaling layers is the key mechanism behind
this behavior of mixed signaling. In contrast to this amplification, graded
responses allow for higher achievable channel capacities and thus a more precise
inference, depending on the noise that is introduced in the system. This is the
case for the scaffolded model. Its linear structure of signal transmission leads
to a sizable enhancement of fidelity compared to the mixed channel. With
restricting each activation transmission to one molecule per tier is insulating
the process internally, achieving a high level of coordination and control.

Yet, fidelity is not defined by the input-output relation alone. When
comparing the conditional output distributions, we can draw a second important
conclusion:

Scaffolding limits the propagation of noise

With each layer of signaling molecules the propagation of noise is diverging
for the two reference models, as can be observed in Fig. 22. Scaffolds seem
to severely limit the amount of noise that is intrinsically introduced on each
layer of the transmission process, whereas the mixed model shows (together
with signal amplification) a large spread of the conditional output distributions.
This observation depicts the potential of the scaffold structure to shield the
transmission from outside perturbations, like it has been shown for example in
Perlson et al. (2006). While this might be true for particular scaffold systems in
nature, what we observe in our modeling approach is not a consequence of this
active shielding due to conformational changes. A close look into the design
of our model reveals that no external perturbations (except for the input) are
modeled explicitly. This would certainly be straightforward to do, as it would
only require to extend the backward reactions to model e.g. the influence of
different phosphatase activities. Yet, what we actually observe is a passive
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“intra-pathway-insulation” effect that is implemented naturally by the scaffold
structure. The co-localization restricts the transmission of a signal in a one-to-
one relation between signaling molecules and thus noise occurring in one scaffold
will not spread to other molecules of the subsequent downstream tier. This is a
very interesting feature, facilitated solely by the structure of the scaffold protein.

The mixed model, on the other hand, not only amplifies the signal as
described previously, but also amplifies noise on every tier. The introduced
inherent fluctuations of reactions have larger consequences in this model. As
the connection between layers is stronger due to every signaling molecule
on one tier potentially being able to activate every molecule of the next, a
stochastic variation of this particular molecule will increase covariances in many
downstream molecules and thus propagates its noise further than a scaffolded
molecule would. The amplification effect of distributed signaling is the reason
for lower fidelity. Yet, when the system aims at a switch-like behavior, this
might not necessarily be a restriction. Although it also affects the sharpness
of the threshold, one can assume that such a system might have adapted to
a stress that typically only occurs in a correspondingly switch-like “low/high”
fashion.

Comparison of Fidelity under fluctuating components

Up to this point, we merely regarded the reference models in their basic
configuration. We were able to state important implications that scaffolding
has on signal transmission. Yet, to rigorously compare the performance of the
two, it is necessary to vary the models systematically and observe the changes
in signal processing and the dependence of fidelity on our parameters. The two
features described in the previous paragraphs act in unison and are integrated
in the measure for fidelity. The results of the comparison under variation of
molecule numbers and transmission strengths are visualized in Fig. 23a and 23b,
respectively. As a surprising outcome, we find that our statements of signaling
behavior hold for a wide range of variations. This is very important, as in natu-
ral settings, those parameters will fluctuate to a large degree and also occur in
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many different configurations (e.g. de Godoy et al., 2008; Thomson et al., 2011).

When molecule numbers are varied, the most important feature that changes
linearly with it is the possible resolution at the output level: The more molecules
we employ, the more input signals can potentially be resolved. Of course, again
as with the noisy type writer (see example 2.2), this resolution is under a
strong restriction by the noise induced in the channel, leading to a saturation
of information capacity and fidelity. Once this saturation is reached, higher
molecule numbers might be futile and lower the efficiency. In fact, for a mixed
channel, fidelity might decrease again if molecule numbers are too high (not
shown), since the amplification effect acts in a non-linear way and will saturate
the response. Fig. 23a also exemplifies the natural application of the data
(signal) processing inequality: While the receptor levels equal one another, the
signaling layers further downstream can only decrease in fidelity. The impor-
tant question, however, is to what degree this happens. We observe that a
scaffolded channel always outperforms the mixed channel with respect to fidelity.

The same is true for the variation in signal transmission strength. Fig. 23b
visualizes this dependency and shows a disadvantage for the mixed channel:
Increasing the transmission strength will amplify the snowball effect of mixed
signaling in a non-linear way and lead to both a faster saturation profile (Fig. 24)
and a stronger noise propagation. As these parameters determine the speed
of the signaling process and the absolute activation of the pathway (see also
Fig. 23c), it implies that scaffolding can be tuned very efficiently to fulfill
certain requirements without loosing its profile for dose-response. This is a
feature that makes scaffold signaling a very interesting target for synthetic
biological research.

In a similar argumentation, the profiles in Fig. 24 show a very surprising
feature for the comparison between the two models: It is possible to tune the
mixed channel in a way that it behaves like the insulated channel. Yet doing
so requires a very low signal transmission ratio. This low ratio in turn leads
to a very low total activation of the pathway, making it inefficient, as well
as a slower reaction time. This behavior is visualized in figure 23c. While
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(a) Molecule numbers m (per signaling layer, m =
mi) are setting the resolution of signaling and
severely influence the amplification effect. With
increasing molecule numbers, higher resolutions are
able to increase the fidelity up to a boundary set by
the channel transmission probabilities. With excep-
tion of the first signaling layer, scaffolding fidelity
(blue lines) always exceeds mixed fidelity (red lines)
due to both amplification as well as noise propa-
gation effects. This result also visualizes the data
processing inequality (see section 2.1.1).

(b) Fidelities corresponding to the
variation of transmission strength
(ki,forw/ki,rev, with ki,rev =
1s−1). This figure complements
Fig. 24 with the calculated out-
put of transmission fidelity. Com-
pared to the insulated channel
(blue), higher rates severely limit
the fidelity of the mixed channel
(red) by increasing the non-linear
amplification effect.

(c) Exemplary time courses for the mean activation of scaffolded (blue) and mixed (red)
signaling depending on the transmission strength. Transmission rates are responsible for the
dynamic response of the systems and also influence the saturation level of the output.

Fig. 23: Fidelity as a function of varied system parameters m and ki,forw. The
measure visualizes how scaffolding outperforms a distributed mixed signaling.
Parameters follow the standard set from Tab. 3, unless varied as indicated in
the figures.
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Fig. 24: Tuning the signal transmission strength (ratio of activation to de-
activation) between the layers results in different profiles of relative activation
for the two channel models. Especially interesting is the fact that the mixed
channel can be tuned to show similar behavior, yet at the cost of total activation
level. Transmission strength (color coded) has been varied from 1.2 (blue) to
20 (red).
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scaffolded signaling is not prone to variation in this strength and thus shows a
high robustness, mixed signaling needs to be tuned correctly to achieve the
same behavior and while doing that looses in performance.

For now, we have only been looking at three consecutive species in the
cascade. The question stands to reason what happens if the chain consists of
more layers as is the case for several signaling pathways (especially, if double-
phosphorylations are counted as two tiers). As can be expected from the
analysis of three signaling layers already, such an extended chain would result
in even more pronounced properties of the channels. First of all, the signal
processing inequality (see also section 2.1.1) will by definition limit the infor-
mation transmission even more severely, implying that information cannot be
gained in a transmission chain. So adding more complexity inherently increases
the noise in the system. At the same time, the amplification effect in the mixed
channel is reinforced severely, leading to a fast saturation of the signal. These
two effects are pronounced when increasing the length of the signaling chain.

Having reached the middle of our study, we already want to summarize
the main finding of this chapter and subsequently substantiate it: Scaffolded
signaling outperforms a distributed signal transmission with regard to signaling
fidelity due to 1. a near-linear dose-response alignment as well as 2. the
improved attenuation of noise propagation inherent to the system. A third
point will extend the importance for evolutionary design and substantiate that
scaffolding has indeed the potential to promote and sustain biological fitness.

5.2.3. Robustness of the Fidelity measure in model comparison

Using simple models of the basic processes, we were able to capture a desirable
behavior for scaffolded signaling and showed the dependence of our statements
on the parameters. In a next step we want to examine the effects that stochastic
variations on the system parameters would entail. This corresponds to the
unique expression of proteins and fluctuating transmission strength in each
single cell, as in a natural setting they can vary to a large extend without
breaking the systems function (see e.g. de Godoy et al., 2008; Thomson
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et al., 2011). For analyzing the effects of these natural variations, we follow
the approach of randomizing parameter values as described in Barkai and
Leibler (1997).64 We create an ensemble of alternative models, each obtained
by randomly varying the reference parameter set k0 (see section 5.2.2). The
vector k0 consists of the values for molecule numbers and forward as well as
backward reaction probability rates. Variation around the reference values is
chosen to resemble a reasonable change in molecule numbers or reaction rates
by multiplying them with a randomized factor of 2x, with x drawn from a
Gaussian random distribution N (µ, σ). This results in log-normal distributed
values in a range that roughly halves or doubles the population and strengths,
with the weight distributed around the reference values. For the number
of signaling molecules, we aim to create random parameter sets that show
a coefficient of variation of slightly over 30% by using N (0, 0.5), as protein
abundance variation of this magnitude is for example reported in Thomson
et al. (2011). For comparing the two models we combine the variational changes
in the measure of “total parameter variation” (adapted from Barkai and Leibler,
1997):

K =
size(k0)∑

i=1
|log2( ki

ki,0
)| (44)

This approach allows us to evaluate the robustness of our models as perceived
by the fidelity of the system. Fig.25 visualizes fidelity of varied model versions
depending on how strong their parameters were varied.

With the analysis we are able to conclude that our previous observations
hold also in the face of cell-to-cell variability in molecule numbers and kinetic
transmission parameters. Over a wide range of K, the observed fidelity of
insulated signal transmission exceeds the mixed fidelity, as can be seen in
Fig. 25a. A visible overlap is only present at higher values of total parameter
variation. By looking closer at the model variants that show this behavior,
one realizes that this is due to larger differences in output resolutions between
the variants (not shown here). Low output molecule numbers are unable

64The authors use this approach to evaluate robustness in bacterial chemotaxis. See also the
use in Blüthgen and Herzel (2003) in an analysis of MAPK cascades.
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(a) Comparison of scaffolded (orange) and
mixed channel (blue) on the third signal-
ing tier under the variation of all parame-
ters (while m1 = m2 = m3 for scaffolded
signaling). The angle of the spanned cone
measures the robustness of the model. Scaf-
folded signaling exceeds the mixed model in
both fidelity as well as robustness for the
majority of variations.

(b) Comparison between the variation of
molecules in unison for all tiers (blue, in anal-
ogy to the way scaffold numbers would vary,
see also (a)) and the variation on each sin-
gle signaling tier (green) added to the var-
ied parameters. Single tier variations mildly
buffer the effects of variation in transmission
strength and provide slightly more informa-
tion capacity.

Fig. 25: Scatterplots comparing the robustness in fidelity to parameter variation
(see Eq. (44)) between the two signaling models. Each dot represents the fidelity
on the 3rd signaling level for one model variant, altered in parametrization for
mi, ki,forw and ki,rev, per signaling tier i = 1, . . . , 3.

to achieve the same fidelity as the ones of higher magnitudes. The second
important observation from the analysis is that the scaffolded signaling mo-
tif is more robust towards these variations, as the cone is spanning a lower angle.

One particular difference between the two models in this approach occurs
on the level of molecule numbers: The mixed channel enables us to change
molecule numbers on the level of each single tier. In nature, this can lead to
bottlenecks in the transmission cascade and also determines the saturation of
the downstream response. For example, with a high abundant intermediate
species, the pathway can ensure a good diffusion coverage over the cell vol-
ume and thus a high activation of the pathway. The described amplification
effect additionally makes it possible to activate a larger number of downstream
molecules compared to a scaffolded setting. Effects like this have to be investi-
gated systematically in separate studies. For the focus of this work we factor
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them merely into the robustness analysis by allowing each tier of molecules
to vary independently (yet with the same parameter variation model) of the
other species. This can be seen in Fig. 25b. With a sufficient number of
model variants65, it can be seen that the variational cone is slightly less broad.
When going into the details of the simulations, we observe that this is due
to a buffering between molecule numbers and transmission rates: A lower
transmission strength can be balanced by using a larger number of molecules
and vice versa. This interesting effect allows for a tuning, yet the motif still
lacks the regulatory possibilities of a scaffold.

Scaffolded signaling can only be realized with exactly the number of scaf-
folds that can be fully assembled and its saturation is thus restricted by the
lowest abundant species. In addition, this leads to the well-known attenuation
effect of signaling in the case of an over-expression of scaffold proteins due to
combinatorial reasons. This effect has been studied from both experimental
(Chapman and Asthagiri, 2009) and theoretical perspectives (Heinrich et al.,
2002; Levchenko et al., 2000). Since we omit the assembly process in our
modeling, the assumed number of scaffold proteins is set to the corresponding
number of functionally assembled scaffolds, namely the lowest abundant species
of the cascade. As discussed, this constrains our analysis to only consider the
transmission process and the use of one single parameter for the number of
channels. The mixed model is varied under the same constrains to enable a
fair comparison. The results are visualized in Fig. 25a.

We can conclude that the main aspects of improving signal transmission
with the use of scaffolds do not rely on a fine-tuned system, but rather are
implemented in the structure of the motif itself. They hold for a large set of
possible configurations in the parameter space and have shown to be more
resilient to cell-to-cell variation. Our simple approach of parsimonious modeling
shows that this robust structural behavior represents a strong candidate for
selection in the early stage of evolutionary development. Such a simple, yet
fundamental concept could provide a solid basis for an organism to subsequently
build up complexity and add higher functionalities for a successful advancement

65For better visualization the figure only shows a subset of simulations.
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of the species.

5.3. Information gain through teamwork - Channels working
together

As we have seen in this chapter, introducing a scaffold protein into a signaling
structure can have beneficial effects on the information transmission by shaping
the input-output relation and the propagation of inherent noise. Yet seeing
single assembled scaffolds as a separated instance for error-prone transmission
opens up a related view of signal processing. In electronic systems, error
correcting codes are employed in order to ensure that a message is transduced
and decoded correctly. This can include adding redundant information, e.g.
by repeatedly sending a message. To a certain extend this can be observed in
this biological structure as well. In this chapter we already have established
that scaffolded intra-pathway-insulation leads to enhanced signal fidelity and
the temporal activation of pathways can easily be interpreted as a repetition
of the message. Yet, instead of interpreting the activation distribution of the
last species in the cascade, we can see this output species as an m-dimensional
codeword. Interpreting each scaffold protein as one transmitting channel
allows us in addition to regard the whole ensemble of channels in the cell
as a multivariate aggregate. In a short detour to this project, we want to
examine how this would feed into the correction of even severely distorted
signal transmission.

Referring to our model of the insulated channel, we reinterpret this motif
as a simple on-off-transmission in analogy to the Binary Symmetric Channel
(BSC, see example 2.1). We established in the example, that the capacity of
this channel depends directly on the transmission error-rate f . Now, going a
small step further we can skew this transmission towards a different behavior
in stressed and non-stressed situations by introducing an additional error-rate
e for the transmission in one of the states, thus making it more adaptable to
different scenarios. Using 0 and 1 (or “off” and “on”, respectively) as input
states makes sense for example in situations where a conformation change
keeps a protein in two distinct states, with one being active and the other
not. We presented a case like this in section 3, where Sln1 played the role of
an input by changing its conformation state upon stress. One such a Binary
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Non-Symmetric Channel would have the transition matrix

Q1(Output|Input) =
(

P (off|off) P (off|on)
P (on|off) P (on|on)

)
=
(

1 − f e

f 1 − e

)
. (45)

Setting the error rates to f = 0.05 and e = 0.2 can then be interpreted as a
channel firing occasionally even in an environment with low stress conditions
(meaning a 0 is given as the input), yet under stress input the channel will be
activated with a high probability. Such a conditional probability distribution
would only give a channel capacity of C = 0, 48 bit (for example computed with
the Arimoto-Blahut algorithm using the transition matrix Q, see section 2.1.2).
Assuming that the noise in transmission cannot be reduced, there still exist
ways of improving the inference capabilities at the output level. We want to
investigate the example of an ensemble of redundant channels as a way of doing
that. Consider the previous setup. If instead of one binary channel we now
employ two identical ones, observing them as a combined channel with four
possible input states (the number of possible combinations of on and off equals
2n) and aiming to infer a binary output. The transmitting channel has now
the following structure:

Q2(Out|In) =

⎛⎜⎜⎜⎜⎜⎝
P ({off, off}|off) P ({off, off}|on)
P ({on, off}|off) P ({on, off}|on)
P ({off, on}|off) P ({off, on}|on)
P ({on, on}|off) P ({on, on}|on)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
(1 − f)2 e2

(1 − f)f e(1 − e)
f(1 − f) (1 − e)e

f2 (1 − e)2

⎞⎟⎟⎟⎟⎟⎠ ,

(46)

giving us an achievable capacity of C = 0.71 bit and thus a sizable increase
in information. Adding a third in a similar manner, increases this number to
C = 0.83 bit. The obvious next step is to enlarge the set of binary channels for
improvement of inference. The channel will transmit a codeword of length n

to a binary output, which represents a repetition code employing redundancy.
The same scenario can be viewed as the reversed setting, corresponding more
natural to a cell’s inference mechanism: For this, we define the input as binary
and the transmission an ensemble of binary channels, thus yielding a codeword
of length n as the output which then can be used for our inference. The
approach used to prove the Arimoto-Blahut algorithm (see subsection 2.1.2)
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and the definition of mutual information tells us that this reversed channel
will have the same capacity. Adding more channel instances increases the
channel capacity until a saturation point (see Fig. 26). In fact, this behavior of
redundant messages could be seen as a natural analogy of Shannon’s well-known
“Source Coding Theorem” from information theory (Shannon, 1948; Cover and
Thomas, 2012). For our channel construction, this boundary is set by the
maximum of input or output entropy, namely C ≤ H(Y ) = 1 bit of information
transmission. We observe that, provided a sufficient amount of redundancy,
even a poor single transmission channel can be used to transmit information.
It would be interesting to experimentally study and measure this conditional
transmission probabilities and compare the theoretical number of such channels
needed to reach capacity with the observed abundance of output molecules
within a cell. Obviously, extensions to our model would be needed for such a
comparison.

In summary, the consequence of our observations is that by employing a
sufficient amount of receptors and a parallel transduction of information, cells
can recover poor performances of single signaling channels and thus are enabled
to infer an external cue with arbitrary precision. This is an interesting example
for a cellular error correcting code. Of course, it also is merely a theoretical
consideration that omits parts of the embedding setting. After all, even if
for a certain number this inference could in principle be perfect, a natural
setting will always include a spatial component in addition. This, together
with the here presented toy model, provides us with an idea of what can be
interpreted by a cell: Codewords of certain lengths carrying a large amount
of redundancy can simply be an analogy to molecular concentrations that
encode a (more or less complex) information state of the cell depending on its
environment. Increasing the length of codewords enhances the resolution and
as with scaffolded channels, it can enable higher fidelities depending on our
input states and the information processing. Diffusion within the cell or other
means of transportation are then additional channels with other transmission
properties that add upon this resolution. Taking them into account would be
an interesting, yet arguably very complex extension to our setup.

115



5. Scaffolding improves information transmission in cell signaling

Fig. 26: Performance of combining multiple channels to a set producing code-
words of length n. Error rates of the transition matrix Qn are set to f = 0.2,
e = 0.05 (red) and f = 0.7, e = 0.1 (blue), where f is the probability for a single
channel to transmit the false state given an “off” input and e the respective
false transmission given the “on” input. The maximum channel capacity of
1 bit can be achieved when enough channels are present for reliable inference.
This can be thought of as error-correcting code through adding redundancy
to a message. After transmission, the concentration of active molecules of the
output species enables a perfect inference on the input signal, even in the case
of a flawed (yet, not random) signal transmission process.

116



5.4. Summary & Discussion

5.4. Summary & Discussion

Fidelity in the presence of noise in cellular systems is no miracle but a conse-
quence of design. Even with the many sources for variations within the cell as
well as the outside fluctuations of the natural environment, cells have managed
to evolve ways to circumvent and cope with this ubiquitous variability. In our
investigation, we focused on one of these mechanisms, namely the structural
motif of scaffolding proteins. This motif has been evolutionary conserved in
many different organisms and in addition fulfills just as many functional roles.
Yet, since many scaffolds show low similarity, we argue that this conservation is
the consequence of fundamental structural properties instead of a high special-
ization to certain scenarios. Our analysis examined benefits that a prototypical
scaffold can exhibit on its own in a single pathway and allow the cell to react
more reliable to its environmental settings. We found that scaffolding shapes
the relation of dose to response and strongly improves information transmission
fidelity.

In this chapter, we presented two models (see section 5.2.1) that were aimed
at assessing and comparing particular features of signal transmission. One
model employed scaffolding of signaling species, the other a mixed diffusive
signaling. Both are identical on the receptor-level and were made comparable on
the output by adjusting for spatial considerations. We found that the scaffold
structure shows advantages in its signal processing capabilities in comparison
to the reference model: Both a near-linear dose-response alignment as well as a
severely limited propagation of noise due to intra-pathway insulation allows the
scaffolded channel to outperform the mixed channel with respect to fidelity by
a large margin. In addition, the scaffolded model was shown to be more robust
to parameter variations, which can be considered one of the most important
features for evolutionary design. As is inherent in evolutionary arguments, we
are assuming that cells are optimizing features and are selected for beneficial
capabilities in evolution. This prerequisite for our hypothesis is likely, yet
impossible to prove. Nevertheless, scaffolding motifs show intriguing features
that, in particular due to their basic nature, could explain the abundant and
diverse use in nature. An additional important aspect for this is also that
the observed features in no way contradict other functions scaffolds have been
shown to fulfill.
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As a last consideration, we studied a similar toy model to show a principle
frequently used in computer science applications (see section 5.3). We showed
that using redundant codes enhances a cell’s inference behavior and ensures
that the interpretation of extracellular cues can be sufficiently correct. This is
an analogy that suggests further ways of error correction and presents us with
interesting ideas for further studies. For a given channel, we can calculate the
redundancy needed in order to infer a binary signal. An experimental setup
measuring such transmission properties and signaling molecule abundances
would allow for a comparison. Yet, for this to be meaningful, the modeling
approach will have to be refined. For one, it does not take spatial organization
of signaling and the biological meaning of molecular concentrations into account.
Another caveat is that both input and output are hard to determine in a natural
setting. Considering a synthetic approach and combining it with our theoretical
consideration will be a very interesting and challenging task.
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6.1. Summary of the work

In this work, we introduced the application of information theory to cellular
signaling systems and built upon stochastical frameworks to enable the usage
of this theory. Our main question motivating this exercise was to observe how
cellular organisms can systematically cope with inherent fluctuations as well as
noisy environments and how they could be designed to implement this coping
ability already on a structural level. To test the theoretical considerations, we
applied our modeling approaches to cellular signaling in S.cerevisiae:

First, we zoomed in on the Sln1-Ypd1-Ssk1 phosphorelay, a vital input
module to the HOG pathway reacting on osmotic stress in the environment.
We were able to show properties of signal transduction capacity for different
setups of the system and employed signaling constraints to limit the set of
possible parameter configurations. For this, we used stochastic simulation with
the Gillespie algorithm to sample dynamic probability distributions. Comparing
our results with an experimental setup predicted the role of association and
dissociation constants for increasing fidelity as well as enabling a feasible
signaling behavior.

In a second study, we reevaluated a phospho-proteomic dataset of temporal
profiles for phosphosites (Vaga et al., 2014) in the network for pheromone
and HOG signaling. We built a deterministic model to combine and harmo-
nize insights from a broad range of past research to a comprehensive view.
Unfortunately, we were not able to bring the model behavior in accordance
with and comprehensively explain the regulation patterns exhibited by the
detected phosphosites. This was due to the small overlap between established
mechanisms and the reported sites. Nevertheless, we were able to show that
our model itself produces the desired output and especially emphasizes the
importance of scaffolds in the inter-pathway insulation and the resulting signal
specificity.

Although from a different perspective as in the previous exercise, this
scaffolding motif was subject to another investigation. We connected stochastic
modeling with information theory to show that scaffolds follow an optimal
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design that exceeds other signaling motifs with respect to signaling fidelity.
Three important points led to that conclusion: 1. We observed that due to the
scaffolded structure facilitating an “intra-pathway” insulation for each protein,
a near-linear dose-response alignment was enabled and 2. additionally, the
motif displays a low amplification of the noise induced inherently in the signal
transmission process. 3. We were able to show that scaffolded signaling is more
prone to fluctuations in molecule numbers as well as rate conditions. These
points allow us to propose that scaffolding could provide strong incentives for
the selection in evolution and explain its abundance and myriad of further
secondary functions.

6.2. Outlook

The three modeling approaches that we included in this work are all con-
nected and take on a systems level share in important signaling mechanisms of
S.cerevisiae: The sensing of pheromones as well as the osmotic stress response.
An interesting way to continue this would be a more comprehensive integration
of the approaches. On one hand, introducing noise into a larger system will be
challenging, but it certainly has the potential elucidate many open questions.
For example, our results on scaffold fidelity could be evaluated in a larger
context and also be directly compared to mixed signaling in the same system.
Nevertheless, it is advisable to only slowly build such a integrated view, as
we have seen that many things are still unknown as of yet and the problems
of parameter estimation and applicability of bigger system still can lead to
non-conclusive results.

For the approach of extending this work further is of experimental nature.
The collaborative work with the lab of Luis Serrano is still ongoing and has only
been discussed briefly in the work at hand. Not all extension to our modeling
approach were shown and evaluated. The phosphorelay system comprises
for example further complex building between Ssk1 and Ypd1 than has been
modeled in our approach of 3. Adding further complexity shows an interesting
feature in the control of basal signaling of the pathway: The basal “leakage” of
the phosphorelay is correlated with the strength of association between bot
Ypd1 and Sln1 as well as Ypd and Ssk1. This correlation can be seen in vitro
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at the output level of Hog1. As the setup of our phosphorelay model (see
section3.2) was using artificial, yet sensible chosen parameters, we adjusted
the model in a way that better represents the biological data and continued to
study and capture the observed behavior in silico. The results will be published
in the near future, yet are still preliminary and currently under preparation.

Another interesting way of extending considerations of crosstalk and bring-
ing it together with the idea of multiple input multiple output (MIMO) design
from communications engineering would be to interpret the whole network
used in chapter 4 as such a channel66 and measure experimentally the multi-
input-output relations. This would be doable with the experimental setup
employed by Vaga et al. (2014), but unfortunately the statistics provided
by the approach are not sufficient to approximate the required probability
distributions. A setup using single cell measurements of the combined output
(e.g. two fluorescent reporters induced by the HOG and pheromone pathways
as employed in Baltanás et al. (2013) or Patterson et al. (2010b)) would be the
right scope for this kind of analysis. It would be interesting to combine this
with our considerations of section 5.3, where we consider multiple instances of
a pathway as a cellular error-correcting code, and see if achieving a functional
capacity and thus a reliable signal inference is possible as would be expected.

Within this thesis, we reviewed how information theoretic frameworks have
been applied to biological settings in many interesting ways and presented the
usage on modeling approaches. Yet, we believe that the vast repertoire that
has been developed build on Shannon’s theories is by far not exhausted as of
yet. In computer sciences, we saw the emergence of many sophisticated systems
that without the theory would not have been possible. And even though the
application to biological systems is even more complex and difficult due to them
not being “designed” by us67, it has shown to be of use for the understanding of
further principles. This is especially true for signaling in cellular sensing. The
analogy of interpreting these systems as channels, as presented in this work,

66Possibly, this could mean two binary channels with cross-over potential, resulting in an
input of four values and the respective output.

67After all, with all our vast knowledge we still understand very little of biological complexity
and the large networks of interplay in biological systems.
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can be applied both experimentally as well as theoretically and presents us with
an alternative way of viewing information transmission in biology. The most
important aspect of the application of information theory is that its measures
can be employed for many contexts without knowing the particular semantics.
We obtain a measure that is objectively representing correlation and potential
resolutions for information processing of such systems. This always will have
to be considered critically, as semantics are unknown to an outside view, but
it presents us with boundaries on what is achievable and could be optimal.
Many more sophisticated concepts of information theory have not been applied
in a biological research as of yet and current research only makes infrequent
use of the theory, but on both experimental as well as theoretical fields are
increasingly aware of its potential. Knowing the framework and being able to
interpret and judge its meaning, which also includes being able to recognize
both its benefits as well as boundaries, is important for the development in the
field. In this work we provided a basis for such an understanding and hope that
this will contribute to further studies. As biology seems to only have started
grasping the full potential of information theory, we believe that many more
scientific findings based on the framework can be expected in the near future.
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Systems Biology has come a long way since its (still recent) introduction.
It has matured to facilitate more and more successful integrative approaches
and also develop the connection between different fields of science. Linking
research and building a more comprehensive view on biological systems is an
important key for the future advancement of biological sciences. With the
increasing awareness of the importance for single cell behavior as well as the
noisy nature of, well, nature, Systems Biology has drawn the attention of even
another field, information theory, and included it in its merging process that
creates interesting science.

Information is the fundamental property that is needed to create, sustain and
evolve life. It is ubiquitous and thus hard to grasp as a concept. Nevertheless,
its value can be observed and measured. Biological systems are the living proof
of that: they integrate this value of information and with it create, sustain and
evolve themselves.

123





References
Adami, C. (2004). Information theory in molecular biology. Physics of Life

Reviews, 1(1), 3–22.

Adami, C. (2012). The use of information theory in evolutionary biology.
Annals of the New York Academy of Sciences, 1256(1), 49–65.

Alon, U. (2006). An introduction to systems biology: design principles of
biological circuits. CRC press.

Alon, U. (2007). Network motifs: theory and experimental approaches. Nature
Reviews Genetics, 8(6), 450–461.

Arimoto, S. (1972). An algorithm for computing the capacity of arbitrary
discrete memoryless channels. Information Theory, IEEE Transactions on,
18(1), 14–20.

Azeloglu, E. U. and Iyengar, R. (2015). Signaling Networks: Information
Flow, Computation, and Decision Making. Cold Spring Harbor perspectives
in biology, 7(4), a005934.

Bailey, N. T. (1990). The elements of stochastic processes with applications to
the natural sciences, volume 25. John Wiley & Sons.

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004).
Bacterial persistence as a phenotypic switch. Science (New York, N.Y.),
305(5690), 1622–5.

Baltanás, R., Bush, A., Couto, A., Durrieu, L., Hohmann, S., and Colman-
Lerner, A. (2013). Pheromone-induced morphogenesis improves osmoadap-
tation capacity by activating the HOG MAPK pathway. Science signaling,
6(272), ra26.

Bardwell, L. (2005). A walk-through of the yeast mating pheromone response
pathway. Peptides, 26(2), 339–350.

Barkai, N. and Leibler, S. (1997). Robustness in simple biochemical networks.
Nature, 387(6636), 913–917.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and
function. Cell, 116(2), 281–297.

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions.
Cell, 136(2), 215–233.

125



References

Batchelor, E., Loewer, A., Mock, C., and Lahav, G. (2011). Stimulus-
dependent dynamics of p53 in single cells. Molecular systems biology, 7(488),
488.

Battail, G. (2005). Should genetics get an information-theoretic education?
IEEE Engineering in Medicine and Biology Magazine, 25(1), 34–45.

Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Biochemistry. New York.

Bhalla, U. S. and Iyengar, R. (1999). Emergent properties of networks of
biological signaling pathways. Science, 283(5400), 381–387.

Bhattacharyya, R. P., Reményi, A., Yeh, B. J., and Lim, W. A. (2006a).
Domains, motifs, and scaffolds: the role of modular interactions in the
evolution and wiring of cell signaling circuits. Annu. Rev. Biochem., 75,
655–680.

Bhattacharyya, R. P., Reményi, A., Good, M. C., Bashor, C. J., Falick, A. M.,
and Lim, W. A. (2006b). The Ste5 scaffold allosterically modulates signaling
output of the yeast mating pathway. Science, 311(5762), 822–826.

Bianco, R., Melisi, D., Ciardiello, F., and Tortora, G. (2006). Key cancer cell
signal transduction pathways as therapeutic targets. European journal of
cancer , 42(3), 290–294.

Blahut, R. (1972). Computation of channel capacity and rate-distortion
functions. Information Theory, IEEE Transactions on, 18(4), 460–473.

Blüthgen, N. and Herzel, H. (2003). How robust are switches in intracellular
signaling cascades? Journal of theoretical biology, 225(3), 293–300.

Borst, a. and Theunissen, F. E. (1999). Information theory and neural coding.
Nature neuroscience, 2(11), 947–57.

Botstein, D. and Fink, G. R. (2011). Yeast: an experimental organism for
21st Century biology. Genetics, 189(3), 695–704.

Bowsher, C. G. and Swain, P. S. (2012). Identifying sources of variation and
the flow of information in biochemical networks. Proceedings of the National
Academy of Sciences of the United States of America, 109(20), E1320–8.

Breeden, L. L. (1997). alpha-Factor synchronization of budding yeast . In W. G.
Dunphy, editor, Cell Cycle Control, volume 283 of Methods in Enzymology,
pages 332 – 342. Academic Press.

Brillouin, L. (2013). Science and information theory. Courier Corporation.

126



References

Butte, A. J. and Kohane, I. S. (2000). Mutual information relevance networks:
functional genomic clustering using pairwise entropy measurements. Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing, pages
418–429.

Cai, L., Dalal, C. K., and Elowitz, M. B. (2008). Frequency-modulated nuclear
localization bursts coordinate gene regulation. Nature, 455(7212), 485–490.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step size selection
for the tau-leaping simulation method. The Journal of chemical physics,
124(4), 044109.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2007). Adaptive explicit-implicit
tau-leaping method with automatic tau selection. The Journal of chemical
physics, 126(22), 224101.

Chapman, S. A. and Asthagiri, A. R. (2009). Quantitative effect of scaffold
abundance on signal propagation. Molecular systems biology, 5(1).

Chen, I. A. and Nowak, M. A. (2012). From prelife to life: how chemical
kinetics become evolutionary dynamics. Accounts of chemical research,
45(12), 2088–2096.

Cheong, R., Rhee, A., Wang, C. J., Nemenman, I., and Levchenko, A. (2011a).
Information Transduction Capacity of Noisy Biochemical Signaling Networks.
Science, 354.

Cheong, R., Rhee, A., Wang, C. J., Nemenman, I., and Levchenko, A. (2011b).
Information transduction capacity of noisy biochemical signaling networks.
Science (New York, N.Y.), 334(6054), 354–8.

Chol, K.-Y., Satterberg, B., Lyons, D. M., and Elion, E. A. (1994). Ste5
tethers multiple protein kinases in the MAP kinase cascade required for
mating in S. cerevisiae. Cell, 78(3), 499–512.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory.
Wiley-interscience.

Daigle, B. J., Roh, M. K., Petzold, L. R., and Niemi, J. (2012). Accelerated
maximum likelihood parameter estimation for stochastic biochemical systems.
BMC bioinformatics, 13(1), 68.

de Godoy, L. M., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Fröhlich,
F., Walther, T. C., and Mann, M. (2008). Comprehensive mass-spectrometry-
based proteome quantification of haploid versus diploid yeast. Nature,
455(7217), 1251–1254.

127



References

Dhanasekaran, D., Kashef, K., Lee, C., Xu, H., and Reddy, E. (2007). Scaffold
proteins of MAP-kinase modules. Oncogene, 26(22), 3185–3202.

Dickens, M., Rogers, J. S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J. R.,
Greenberg, M. E., Sawyers, C. L., and Davis, R. J. (1997). A cytoplasmic
inhibitor of the JNK signal transduction pathway. Science, 277(5326),
693–696.

Dimitrov, A. G., Lazar, A. a., and Victor, J. D. (2011). Information theory in
neuroscience. Journal of computational neuroscience, 30(1), 1–5.

Dohlman, H. G. and Thorner, J. (2001). Regulation of G protein-initiated
signal transduction in yeast: paradigms and principles. Annual review of
biochemistry, 70(1), 703–754.

Dubuis, J. O., Tkacik, G., Wieschaus, E. F., Gregor, T., and Bialek, W. (2013).
Positional information, in bits. Proceedings of the National Academy of
Sciences of the United States of America, 110(41), 16301–8.

Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
Annalen der Physik, 322(8), 549–560.

Elf, J. and Ehrenberg, M. (2003). Fast evaluation of fluctuations in biochemical
networks with the linear noise approximation. Genome research, 13(11),
2475–2484.

Elion, E. A. (1998). Routing MAP kinase cascades. Science, 281(5383),
1625–1626.

Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic
gene expression in a single cell. Science (New York, N.Y.), 297(5584), 1183–
6.

English, J. G., Shellhammer, J. P., Malahe, M., McCarter, P. C., Elston, T. C.,
and Dohlman, H. G. (2015). MAPK feedback encodes a switch and timer
for tunable stress adaptation in yeast. Science signaling, 8(359), ra5–ra5.

Faller, D., Klingmüller, U., and Timmer, J. (2003). Simulation methods
for optimal experimental design in systems biology. Simulation, 79(12),
717–725.

Fantes, P. and Brooks, R. (1993). The cell cycle: a practical approach. IRL
Press at Oxford University Press.

128



References

Fassler, J. S. and West, A. H. (2010). Genetic and biochemical analysis of the
SLN1 pathway in Saccharomyces cerevisiae. Methods in enzymology, 471,
291–317.

Ferrell, J. E. and Machleder, E. M. (1998). The biochemical basis of an
all-or-none cell fate switch in Xenopus oocytes. Science, 280(5365), 895–898.

Finn, N. A. and Searles, C. D. (2013). Using information theory to assess
the communicative capacity of circulating microRNA. Biochemical and
biophysical research communications, 440(1), 1–7.

Fujioka, A., Terai, K., Itoh, R. E., Aoki, K., Nakamura, T., Kuroda, S., Nishida,
E., and Matsuda, M. (2006). Dynamics of the Ras/ERK MAPK cascade as
monitored by fluorescent probes. Journal of biological chemistry, 281(13),
8917–8926.

Gardiner, C. (2009). Stochastic Methods: A Handbook for the Natural and
Social Sciences Springer Series in Synergetics. Springer, Berlin, Germany.

Garrington, T. P. and Johnson, G. L. (1999). Organization and regulation of
mitogen-activated protein kinase signaling pathways. Current opinion in
cell biology, 11(2), 211–218.

Gillespie, C. S. (2009). Moment-closure approximations for mass-action models.
IET systems biology, 3(1), 52–58.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical
reactions. The Journal of Physical Chemistry, 81(25), 2340–2361.

Gillespie, D. T. (1991). Markov processes: an introduction for physical
scientists. Elsevier.

Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation.
Physica A: Statistical Mechanics and its Applications, 188(1), 404–425.

Gillespie, D. T. (2000). The chemical Langevin equation. The Journal of
Chemical Physics, 113(1), 297.

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of
chemically reacting systems. The Journal of Chemical Physics, 115(4),
1716–1733.

Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics. Annual
review of physical chemistry, 58, 35–55.

129



References

Goldbeter, A. and Koshland, D. E. (1981). An amplified sensitivity arising
from covalent modification in biological systems. Proceedings of the National
Academy of Sciences, 78(11), 6840–6844.

Good, M., Tang, G., Singleton, J., Reményi, A., and Lim, W. A. (2009). The
Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3
MAP kinase for activation. Cell, 136(6), 1085–1097.

Good, M. C., Zalatan, J. G., and Lim, W. a. (2011). Scaffold proteins: hubs
for controlling the flow of cellular information. Science (New York, N.Y.),
332(6030), 680–6.

Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Færgeman, N. J.,
Mann, M., and Jensen, O. N. (2005). Quantitative phosphoproteomics
applied to the yeast pheromone signaling pathway. Molecular & Cellular
Proteomics, 4(3), 310–327.

Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell, 144(5), 646–674.

Hao, N. and O’Shea, E. K. (2012). Signal-dependent dynamics of transcription
factor translocation controls gene expression. Nature structural & molecular
biology, 19(1), 31–9.

Hao, N., Nayak, S., Behar, M., Shanks, R. H., Nagiec, M. J., Errede, B., Hasty,
J., Elston, T. C., and Dohlman, H. G. (2008). Regulation of cell signaling
dynamics by the protein kinase-scaffold Ste5. Molecular cell, 30(5), 649–656.

Hartley, R. V. (1928). Transmission of information. Bell System technical
journal, 7(3), 535–563.

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From
molecular to modular cell biology. Nature, 402(6761 Suppl), C47–C52.

Hayot, F. and Jayaprakash, C. (2004). The linear noise approximation for
molecular fluctuations within cells. Physical biology, 1(4), 205.

Heinicke, S., Livstone, M. S., Lu, C., Oughtred, R., Kang, F., Angiuoli, S. V.,
White, O., Botstein, D., and Dolinski, K. (2007). The Princeton Protein
Orthology Database (P-POD): a comparative genomics analysis tool for
biologists. PLoS One, 2(8), e766.

Heinrich, R., Neel, B. G., and Rapoport, T. A. (2002). Mathematical models
of protein kinase signal transduction. Molecular cell, 9(5), 957–970.

130



References

Hersen, P., McClean, M. N., Mahadevan, L., and Ramanathan, S. (2008).
Signal processing by the HOG MAP kinase pathway. Proceedings of the
National Academy of Sciences of the United States of America, 105(20),
7165–70.

Herskowitz, I. (1988). Life cycle of the budding yeast Saccharomyces cerevisiae.
Microbiological Reviews, 52(4), 536–553.

Hohmann, S. (2002). Osmotic Stress Signaling and Osmoadaptation in Yeasts.
Microbiology and Molecular Biology Reviews, 66(2), 300–372.

Hohmann, S. (2009). Control of high osmolarity signalling in the yeast
Saccharomyces cerevisiae. FEBS letters, 583(24), 4025–9.

Huang, C.-Y. and Ferrell, J. E. (1996). Ultrasensitivity in the mitogen-
activated protein kinase cascade. Proceedings of the National Academy of
Sciences, 93(19), 10078–10083.

Jahnke, T. and Huisinga, W. (2007). Solving the chemical master equation
for monomolecular reaction systems analytically. Journal of mathematical
biology, 54(1), 1–26.

Janiak-Spens, F., Sparling, J. M., Gurfinkel, M., and West, A. H. (1999).
Differential stabilities of phosphorylated response regulator domains reflect
functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. Jour-
nal of bacteriology, 181(2), 411–417.

Janiak-Spens, F., Cook, P. F., and West, A. H. (2005). Kinetic analysis
of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory
phosphorelay system. Biochemistry, 44(1), 377–86.

Johnson, H. A. (1970). Information theory in biology after 18 years. Science,
168(3939), 1545–1550.

Kampen, N. v. (1961). A power series expansion of the master equation.
Canadian Journal of Physics, 39(4), 551–567.

Karr, J. R., Sanghvi, J. C., MacKlin, D. N., Gutschow, M. V., Jacobs, J. M.,
Bolival, B., Assad-Garcia, N., Glass, J. I., and Covert, M. W. (2012). A
whole-cell computational model predicts phenotype from genotype. Cell,
150(2), 389–401.

Kaserer, A. O., Andi, B., Cook, P. F., and West, A. H. (2009). Effects of os-
molytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces
cerevisiae. Biochemistry, 48(33), 8044–50.

131



References

Kenney, F. and Keeping, E. (1951). Mathematics of statistics-part two.

Kholodenko, B. N. (2000). Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen-activated protein kinase cascades. European
Journal of Biochemistry, 267(6), 1583–1588.

Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560),
1662–1664.

Klinger, B. and Bluethgen, N. (2014). Consequences of feedback in signal
transduction for targeted therapies. Biochemical Society transactions, 42(4),
770–775.

Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., and Hohmann, S.
(2005). Integrative model of the response of yeast to osmotic shock. Nature
biotechnology, 23(8), 975–82.

Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., and
Herwig, R. (2013). Systems biology. John Wiley & Sons.

Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica, 7(4), 284–304.

Kreutz, C. and Timmer, J. (2009). Systems biology: experimental design.
The FEBS journal, 276(4), 923–942.

Kussell, E. and Leibler, S. (2005). Phenotypic diversity, population growth,
and information in fluctuating environments. Science, 309(5743), 2075–8.

Lafuerza, L. F. and Toral, R. (2010). On the Gaussian approximation for
master equations. Journal of Statistical Physics, 140(5), 917–933.

Lai, A., Sato, P. M., and Peisajovich, S. G. (2015). Evolution of Synthetic
Signaling Scaffolds by Recombination of Modular Protein Domains. ACS
synthetic biology.

Legewie, S., Herzel, H., Westerhoff, H. V., and Blüthgen, N. (2008). Recurrent
design patterns in the feedback regulation of the mammalian signalling
network. Molecular systems biology, 4(1).

Levchenko, A., Bruck, J., and Sternberg, P. W. (2000). Scaffold proteins may
biphasically affect the levels of mitogen-activated protein kinase signaling
and reduce its threshold properties. Proceedings of the National Academy of
Sciences, 97(11), 5818–5823.

Levitzki, A. and Klein, S. (2010). Signal transduction therapy of cancer.

132



References

Li, S., Ault, A., Malone, C. L., Raitt, D., Dean, S., Johnston, L. H., Deschenes,
R. J., and Fassler, J. S. (1998). The yeast histidine protein kinase, Sln1p,
mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. The
EMBO journal, 17(23), 6952–62.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). Reveal, a general reverse
engineering algorithm for inference of genetic network architectures.

Locke, J. C. W., Young, J. W., Fontes, M., Hernández Jiménez, M. J., and
Elowitz, M. B. (2011). Stochastic pulse regulation in bacterial stress
response. Science (New York, N.Y.), 334(6054), 366–9.

Lu, J. M.-Y., Deschenes, R. J., and Fassler, J. S. (2003). Saccharomyces
cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus
and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p.
Eukaryotic cell, 2(6), 1304–14.

Lyakhov, I. G., Krishnamachari, A., and Schneider, T. D. (2008). Discovery
of novel tumor suppressor p53 response elements using information theory.
Nucleic acids research, 36(11), 3828–33.

Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J.,
Goolam, M., Saurat, N., Coupland, P., Shirley, L. M., Smith, M., Van der Aa,
N., Banerjee, R., Ellis, P. D., Quail, M. a., Swerdlow, H. P., Zernicka-Goetz,
M., Livesey, F. J., Ponting, C. P., and Voet, T. (2015). G&T-seq: parallel
sequencing of single-cell genomes and transcriptomes. Nature Methods,
(April), 1–7.

Macia, J., Regot, S., Peeters, T., Conde, N., Solé, R., and Posas, F. (2009).
Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal
transduction. Science signaling, 2(63), ra13.

Maeda, T., Wurgler-Murphy, S. M., and Saito, H. (1994). A two-component
system that regulates an osmosensing MAP kinase cascade in yeast. Nature,
369(6477), 242–5.

Maeda, T., Takekawa, M., and Saito, H. (1995). Activation of yeast PBS2
MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor.
Science, 269(5223), 554–558.

Maeder, C. I., Hink, M. A., Kinkhabwala, A., Mayr, R., Bastiaens, P. I., and
Knop, M. (2007). Spatial regulation of Fus3 MAP kinase activity through a
reaction-diffusion mechanism in yeast pheromone signalling. Nature Cell
Biology, 9(11), 1319–1326.

133



References

Mahanty, S. K., Wang, Y., Farley, F. W., and Elion, E. A. (1999). Nuclear
shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma
membrane and activation of the mating MAPK cascade. Cell, 98(4),
501–512.

Maiwald, T. and Timmer, J. (2008). Dynamical modeling and multi-
experiment fitting with PottersWheel. Bioinformatics, 24(18), 2037–2043.

Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward
loop network motif. Proceedings of the National Academy of Sciences,
100(21), 11980–11985.

Marcus, S., Polverino, A., Barr, M., and Wigler, M. (1994). Complexes between
Ste5 and components of the pheromone-responsive mitogen-activated protein
kinase module. Proceedings of the National Academy of Sciences, 91(16),
7762–7766.

Matis, T. I. and Guardiola, I. G. (2010). Achieving moment closure through
cumulant neglect. The Mathematica Journal, 12.

McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene
expression. Proceedings of the National Academy of Sciences, 94(3), 814–
819.

McClean, M. N., Mody, A., Broach, J. R., and Ramanathan, S. (2007). Cross-
talk and decision making in MAP kinase pathways. Nature genetics, 39(3),
409–14.

McKay, M. M., Ritt, D. A., and Morrison, D. K. (2009). Signaling dynamics
of the KSR1 scaffold complex. Proceedings of the National Academy of
Sciences, 106(27), 11022–11027.

McNaught, A. D., Wilkinson, A., et al. (1997). Compendium of chemical
terminology, volume 1669. Blackwell Science Oxford.

McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal
of applied probability, 4(3), 413–478.

Mettetal, J. T., Muzzey, D., Gómez-Uribe, C., and van Oudenaarden, A.
(2008). The frequency dependence of osmo-adaptation in Saccharomyces
cerevisiae. Science (New York, N.Y.), 319(5862), 482–4.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon,
U. (2002). Network motifs: simple building blocks of complex networks.
Science, 298(5594), 824–827.

134



References

Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer, M. (2010).
BioNumbers—the database of key numbers in molecular and cell biology.
Nucleic acids research, 38(suppl 1), D750–D753.

Moore, T. I., Chou, C.-S., Nie, Q., Jeon, N. L., and Yi, T.-M. (2008). Robust
spatial sensing of mating pheromone gradients by yeast cells. PloS one,
3(12), e3865.

Moyal, J. (1949). Stochastic processes and statistical physics. Journal of the
Royal Statistical Society. Series B (Methodological), 11(2), 150–210.

Muñoz-García, J., Neufeld, Z., and Kholodenko, B. N. (2009). Positional
information generated by spatially distributed signaling cascades. PLoS
computational biology, 5(3), e1000330.

Muñoz-García, J., Kholodenko, B. N., and Neufeld, Z. (2010). Formation
of intracellular concentration landscapes by multisite protein modification.
Biophysical journal, 99(1), 59–66.

Murakami, Y., Tatebayashi, K., and Saito, H. (2008). Two adjacent docking
sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially
interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine
phosphatase. Molecular and cellular biology, 28(7), 2481–2494.

Muzzey, D., Gómez-Uribe, C. a., Mettetal, J. T., and van Oudenaarden, A.
(2009). A systems-level analysis of perfect adaptation in yeast osmoregulation.
Cell, 138(1), 160–71.

Natarajan, M., Lin, K.-M., Hsueh, R. C., Sternweis, P. C., and Ranganathan,
R. (2006). A global analysis of cross-talk in a mammalian cellular signalling
network. Nature Cell Biology, 8(6), 571–580.

Ninfa, A. J. and Mayo, A. E. (2004). Hysteresis vs. graded responses: the
connections make all the difference. Science Signaling, 2004(232), pe20.

Nordsieck, A., Lamb Jr, W., and Uhlenbeck, G. (1940). On the theory of
cosmic-ray showers I The furry model and the fluctuation problem.

O’Rourke, S. M. and Herskowitz, I. (2002). A third osmosensing branch in
Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel
with the Sho1 branch. Molecular and cellular biology, 22(13), 4739–4749.

Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., and
Levchenko, A. (2007). MAPK-mediated bimodal gene expression and
adaptive gradient sensing in yeast. Nature, 446(7131), 46–51.

135



References

Parker, G. A., Smith, J. M., et al. (1990). Optimality theory in evolutionary
biology. Nature, 348(6296), 27–33.

Patel, A. K., Bhartiya, S., and Venkatesh, K. V. (2013). Analysis of osmoad-
aptation system in budding yeast suggests that regulated degradation of
glycerol synthesis enzyme is key to near-perfect adaptation. Systems and
Synthetic Biology.

Patterson, J. C., Klimenko, E. S., and Thorner, J. (2010a). Single-cell analysis
reveals that insulation maintains signaling specificity between two yeast
MAPK pathways with common components. Science signaling, 3(144),
ra75.

Patterson, J. C., Klimenko, E. S., and Thorner, J. (2010b). Single-cell analysis
reveals that insulation maintains signaling specificity between two yeast
MAPK pathways with common components. Science signaling, 3(144),
ra75.

Perlson, E., Michaelevski, I., Kowalsman, N., Ben-Yaakov, K., Shaked, M.,
Seger, R., Eisenstein, M., and Fainzilber, M. (2006). Vimentin binding to
phosphorylated Erk sterically hinders enzymatic dephosphorylation of the
kinase. Journal of molecular biology, 364(5), 938–944.

Petelenz-Kurdziel, E., Kuehn, C., Nordlander, B., Klein, D., Hong, K.-K.,
Jacobson, T., Dahl, P., Schaber, J., Nielsen, J., Hohmann, S., and Klipp, E.
(2013). Quantitative analysis of glycerol accumulation, glycolysis and growth
under hyper osmotic stress. PLoS computational biology, 9(6), e1003084.

Pfizer, G., Eccleston, A., Dhand, R., Shaw, R. J., Cantley, L. C., Karin, M.,
Pouysségur, J., Dayan, F., Mazure, N. M., Christofori, G., et al. (2006).
Insight: Signalling in cancer. Nature, 441, 424–430.

Poritz, M. A., Malmstrom, S., Kim, M. K.-H., Rossmeissl, P. J., and Kamb,
A. (2001). Graded mode of transcriptional induction in yeast pheromone
signalling revealed by single-cell analysis. Yeast, 18(14), 1331–1338.

Posas, F. and Saito, H. (1997). Osmotic activation of the HOG MAPK
pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science,
276(5319), 1702–1705.

Posas, F. and Saito, H. (1998). Activation of the yeast SSK2 MAP kinase
kinase kinase by the SSK1 two-component response regulator. The EMBO
journal, 17(5), 1385–94.

136



References

Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C.,
and Saito, H. (1996a). Yeast HOG1 MAP kinase cascade is regulated
by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 “two-
component” osmosensor. Cell, 86(6), 865–875.

Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. a., Thai, T. C.,
and Saito, H. (1996b). Yeast HOG1 MAP kinase cascade is regulated
by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-
component" osmosensor. Cell, 86(6), 865–75.

Powell, K. (2004). All systems go. The Journal of cell biology, 165(3),
299–303.

Qin, L., Dutta, R., Kurokawa, H., Ikura, M., and Inouye, M. (2000). A
monomeric histidine kinase derived from EnvZ, an Escherichia coli osmosen-
sor. Molecular microbiology, 36(1), 24–32.

Qiu, P., Gentles, A. J., and Plevritis, S. K. (2009). Fast calculation of pairwise
mutual information for gene regulatory network reconstruction. Computer
methods and programs in biomedicine, 94(2), 177–180.

Raitt, D. C., Posas, F., and Saito, H. (2000). Yeast Cdc42 GTPase and Ste20
PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK
pathway. The EMBO journal, 19(17), 4623–31.

Raman, M., Chen, W., and Cobb, M. (2007). Differential regulation and
properties of MAPKs. Oncogene, 26(22), 3100–3112.

Raue, a., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller,
U., and Timmer, J. (2009). Structural and practical identifiability analysis
of partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics (Oxford, England), 25(15), 1923–9.

Raue, a., Becker, V., Klingmüller, U., and Timmer, J. (2010). Identifiability
and observability analysis for experimental design in nonlinear dynamical
models. Chaos (Woodbury, N.Y.), 20(4), 045105.

Raue, A., Schilling, M., Bachmann, J., Matteson, A., Schelke, M., Kaschek,
D., Hug, S., Kreutz, C., Harms, B. D., Theis, F. J., Klingmüller, U., and
Timmer, J. (2013). Lessons Learned from Quantitative Dynamical Modeling
in Systems Biology. PLoS ONE , 8(9), e74335.

Reinker, S., Altman, R., and Timmer, J. (2006). Parameter estimation in
stochastic biochemical reactions. IEE Proceedings-Systems Biology, 153(4),
168–178.

137



References

Rhee, A., Cheong, R., and Levchenko, A. (2012). The application of infor-
mation theory to biochemical signaling systems. Physical biology, 9(4),
045011.

Rivoire, O. and Leibler, S. (2011). The Value of Information for Populations
in Varying Environments. Journal of Statistical Physics, pages 1124–1166.

Rivoire, O. and Leibler, S. (2014). A model for the generation and transmission
of variations in evolution. Proceedings of the National Academy of Sciences,
111(19), E1940–E1949.

Rosen, R. (1986). Optimality in biology and medicine. Journal of mathematical
analysis and applications, 119(1), 203–222.

Ross, S. M. et al. (1996). Stochastic processes, volume 2. John Wiley & Sons
New York.

Sabbagh, W., Flatauer, L. J., Bardwell, A. J., and Bardwell, L. (2001).
Specificity of MAP kinase signaling in yeast differentiation involves transient
versus sustained MAPK activation. Molecular cell, 8(3), 683–691.

Samoilov, M., Plyasunov, S., and Arkin, A. P. (2005). Stochastic amplification
and signaling in enzymatic futile cycles through noise-induced bistability
with oscillations. Proceedings of the National Academy of Sciences of the
United States of America, 102(7), 2310–2315.

Sanghvi, J. C., Regot, S., Carrasco, S., Karr, J. R., Gutschow, M. V., Bolival,
B., and Covert, M. W. (2013). Accelerated discovery via a whole-cell model.
Nature methods, 10(12), 1192–5.

Schaber, J., Kofahl, B., Kowald, A., and Klipp, E. (2006). A modelling
approach to quantify dynamic crosstalk between the pheromone and the
starvation pathway in baker’s yeast. Febs Journal, 273(15), 3520–3533.

Schaber, J., Baltanas, R., Bush, A., Klipp, E., and Colman-Lerner, A. (2012).
Modelling reveals novel roles of two parallel signalling pathways and homeo-
static feedbacks in yeast. Molecular systems biology, 8, 622.

Schaeffer, H. J., Catling, A. D., Eblen, S. T., Collier, L. S., Krauss, A., and
Weber, M. J. (1998). MP1: a MEK binding partner that enhances enzymatic
activation of the MAP kinase cascade. Science, 281(5383), 1668–1671.

Schilling, M., Maiwald, T., Bohl, S., Kollmann, M., Kreutz, C., Timmer, J.,
and Klingmüller, U. (2005). Computational processing and error reduction
strategies for standardized quantitative data in biological networks. Febs
Journal, 272(24), 6400–6411.

138



References

Schneider, T. D. (2001). Strong minor groove base conservation in sequence
logos implies DNA distortion or base flipping during replication and tran-
scription initiation. Nucleic acids research, 29(23), 4881–91.

Schneider, T. D. (2005). Claude Shannon: Biologist. IEEE Engineering in
Medicine and Biology Magazine, 25(1), 30–33.

Schneider, T. D. and Stephens, R. M. (1990). Sequence logos: a new way to
display consensus sequences. Nucleic acids research, 18(20), 6097–100.

Schüller, C., Brewster, J., Alexander, M., Gustin, M., and Ruis, H. (1994).
The HOG pathway controls osmotic regulation of transcription via the stress
response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The
EMBO Journal, 13(18), 4382.

Schwartz, M. A. and Madhani, H. D. (2004). Principles of MAP kinase
signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet., 38,
725–748.

Seger, R. and Krebs, E. G. (1995). The MAPK signaling cascade. The
FASEB journal, 9(9), 726–735.

Selimkhanov, J., Taylor, B., Yao, J., Pilko, A., Albeck, J., Hoffmann, A.,
Tsimring, L., and Wollman, R. (2014). Accurate information transmission
through dynamic biochemical signaling networks. Science, 346(6215), 1370–
1373.

Sette, C., Inouye, C. J., Stroschein, S. L., Iaquinta, P. J., and Thorner, J.
(2000). Mutational analysis suggests that activation of the yeast pheromone
response mitogen-activated protein kinase pathway involves conformational
changes in the Ste5 scaffold protein. Molecular biology of the cell, 11(11),
4033–4049.

Shahrezaei, V. and Swain, P. S. (2008). Analytical distributions for stochastic
gene expression. Proceedings of the National Academy of Sciences of the
United States of America, 105(45), 17256–17261.

Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits.
American Institute of Electrical Engineers, Transactions of the, 57(12),
713–723.

Shannon, C. E. (1940). An algebra for theoretical genetics. Ph.D. thesis,
Massachusetts Institute of Technology.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system
technical journal, 27(3), 379––423.

139



References

Shinar, G., Milo, R., Martínez, M. R., and Alon, U. (2007). Input output
robustness in simple bacterial signaling systems. Proceedings of the National
Academy of Sciences of the United States of America, 104(50), 19931–5.

Slaughter, B. D., Schwartz, J. W., and Li, R. (2007). Mapping dynamic protein
interactions in MAP kinase signaling using live-cell fluorescence fluctuation
spectroscopy and imaging. Proceedings of the National Academy of Sciences,
104(51), 20320–20325.

Slonim, N., Atwal, G. S., Tkačik, G., and Bialek, W. (2005). Information-based
clustering. Proceedings of the National Academy of Sciences of the United
States of America, 102(51), 18297–18302.

Smith, J. M. (2000). The Concept of Information in Biology.

Soufi, B., Kelstrup, C. D., Stoehr, G., Fröhlich, F., Walther, T. C., and Olsen,
J. V. (2009). Global analysis of the yeast osmotic stress response by
quantitative proteomics. Molecular bioSystems, 5(11), 1337–1346.

Spiller, D. G., Wood, C. D., Rand, D. A., and White, M. R. (2010). Measure-
ment of single-cell dynamics. Nature, 465(7299), 736–745.

Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2000). Two-component
signal transduction. Annual review of biochemistry, 69(1), 183–215.

Swain, P. S., Elowitz, M. B., and Siggia, E. D. (2002). Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proceedings of the National
Academy of Sciences of the United States of America, 99(20), 12795–800.

Tanaka, K., Tatebayashi, K., Nishimura, A., Yamamoto, K., Yang, H.-Y., and
Saito, H. (2014). Yeast osmosensors hkr1 and msb2 activate the hog1 MAPK
cascade by different mechanisms. Science signaling, 7(314), ra21–ra21.

Tanigawa, M., Kihara, A., Terashima, M., Takahara, T., and Maeda, T. (2012).
Sphingolipids regulate the yeast high-osmolarity glycerol response pathway.
Molecular and cellular biology, 32(14), 2861–70.

Tao, W., Malone, C. L., Ault, A. D., Deschenes, R. J., and Fassler, J. S. (2002).
A cytoplasmic coiled-coil domain is required for histidine kinase activity of
the yeast osmosensor, SLN1. Molecular microbiology, 43(2), 459–73.

Tatebayashi, K., Tanaka, K., Yang, H.-Y., Yamamoto, K., Matsushita, Y.,
Tomida, T., Imai, M., and Saito, H. (2007). Transmembrane mucins Hkr1
and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG
pathway. The EMBO Journal, 26(15), 3521–3533.

140



References

Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris,
M. K., van Iersel, M., Lauffenburger, D. A., and Saez-Rodriguez, J. (2012).
CellNOptR: a flexible toolkit to train protein signaling networks to data
using multiple logic formalisms. BMC systems biology, 6(1), 133.

Thomson, T. M., Benjamin, K. R., Bush, A., Love, T., Pincus, D., Resnekov,
O., Yu, R. C., Gordon, A., Colman-Lerner, A., Endy, D., and Brent, R.
(2011). Scaffold number in yeast signaling system sets tradeoff between
system output and dynamic range. Proceedings of the National Academy of
Sciences of the United States of America, 108(50), 20265–70.

Thorp, E. O. (1998). The invention of the first wearable computer. In Wearable
Computers, 1998. Digest of Papers. Second International Symposium on,
pages 4–8. IEEE.

Tkačik, G. (2010). From statistical mechanics to information theory: un-
derstanding biophysical information-processing systems. arXiv preprint
arXiv:1006.4291 .

Tkacik, G., Prentice, J. S., Balasubramanian, V., and Schneidman, E. (2010).
Optimal population coding by noisy spiking neurons. Proceedings of the
National Academy of Sciences of the United States of America, 107(32),
14419–24.

Tkačik, G. and Walczak, A. M. (2011). Information transmission in genetic
regulatory networks: a review. Journal of physics. Condensed matter : an
Institute of Physics journal, 23(15), 153102.

Tkačik, G., Callan, C., and Bialek, W. (2008a). Information capacity of
genetic regulatory elements. Physical Review E , 78(1), 1–17.

Tkačik, G., Callan, C. G., and Bialek, W. (2008b). Information flow and
optimization in transcriptional regulation. Proceedings of the National
Academy of Sciences of the United States of America, 105(34), 12265–70.

Tkačik, G., Walczak, A., and Bialek, W. (2009). Optimizing information flow
in small genetic networks. Physical Review E , 80(3), 1–18.

Tostevin, F. and Ten Wolde, P. R. (2009). Mutual information between input
and output trajectories of biochemical networks. Physical Review Letters,
102(21), 218101.

Vaga, S. (2013). Investigation of budding yeast signaling transmission and
integration by high-throughput quantitative mass spectrometry. Ph.D. thesis,
Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 21523, 2013.

141



References

Vaga, S., Bernardo-Faura, M., Cokelaer, T., Maiolica, A., Barnes, C. A., Gillet,
L. C., Hegemann, B., Drogen, F., Sharifian, H., Klipp, E., et al. (2014). Phos-
phoproteomic analyses reveal novel cross-modulation mechanisms between
two signaling pathways in yeast. Molecular systems biology, 10(12).

Van Kampen, N. (2011). Stochastic Processes in Physics and Chemistry.
Elsevier.

Vinga, S. (2013). Information theory applications for biological sequence
analysis. Briefings in bioinformatics, page bbt068.

Voliotis, M., Perrett, R. M., McWilliams, C., McArdle, C. A., and Bowsher,
C. G. (2014). Information transfer by leaky, heterogeneous, protein kinase
signaling systems. Proceedings of the National Academy of Sciences, 111(3),
E326–E333.

Wallace, E., Gillespie, D., Sanft, K., and Petzold, L. (2012). Linear noise
approximation is valid over limited times for any chemical system that is
sufficiently large. IET systems biology, 6(4), 102–115.

Waltermann, C. and Klipp, E. (2011). Information theory based approaches
to cellular signaling. Biochimica et Biophysica Acta (BBA)-General Subjects,
1810(10), 924–932.

Watson, J. D., Crick, F. H., et al. (1953). Molecular structure of nucleic acids.
Nature, 171(4356), 737–738.

West, A. H. and Stock, A. M. (2001). Histidine kinases and response regulator
proteins in two-component signaling systems. Trends in biochemical sciences,
26(6), 369–376.

Whitmarsh, A. J. and Davis, R. J. (1998). Structural organization of MAP-
kinase signaling modules by scaffold proteins in yeast and mammals. Trends
in biochemical sciences, 23(12), 481–485.

Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. (1999). Mitogen-
activated protein kinase: conservation of a three-kinase module from yeast
to human. Physiological reviews, 79(1), 143–180.

Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals
of Mathematics, pages 443–551.

Witzel, F., Maddison, L. E., and Blüthgen, N. (2012). How scaffolds shape
MAPK signaling: what we know and opportunities for systems approaches.
Frontiers in physiology, 3, 475.

142



References

Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., and Saito, H. (1997).
Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein
kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Molecular
and Cellular Biology, 17(3), 1289–1297.

Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter,
R. Y., Alon, U., and Margalit, H. (2004). Network motifs in integrated
cellular networks of transcription–regulation and protein–protein interaction.
Proceedings of the National Academy of Sciences of the United States of
America, 101(16), 5934–5939.

Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., and Gerstein, M. (2007).
The importance of bottlenecks in protein networks: correlation with gene
essentiality and expression dynamics. PLoS computational biology, 3(4),
e59.

Yu, R. C., Pesce, C. G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., Holl,
M., Benjamin, K., Gordon, A., and Brent, R. (2008). Negative feedback that
improves information transmission in yeast signalling. Nature, 456(7223),
755–761.

Zalatan, J. G., Coyle, S. M., Rajan, S., Sidhu, S. S., and Lim, W. A. (2012).
Conformational control of the Ste5 scaffold protein insulates against MAP
kinase misactivation. Science, 337(6099), 1218–1222.

Zheng, Y. and Kwoh, C. K. (2006). Cancer classification with microRNA
expression patterns found by an information theory approach. Journal of
computers, 1(5), 30–39.

Zi, Z., Liebermeister, W., and Klipp, E. (2010). A quantitative study of
the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces
cerevisiae. PloS one, 5(3), e9522.

143





Danksagungen / Acknowledgements

Das Ende einer Arbeit ist möglicherweise immer der Anfang einer Arbeit. Ich möchte den Ein-
schnitt an dieser Stelle jedoch dazu nutzen, kurz innezuhalten und nach all diesen Seiten noch einpaar
weitere, noch wichtige Worte aufzuschreiben.

Mein größter Dank gebührt meiner Freundin Katharina. Ich möchte ihr für all die Zeit, Verständ-
nis und Geduld danken, für all die Unterstützung und Kraft die sie in mich steckt. Es ist schön, dich
zu haben und die Welt mit dir zu teilen - ihre schönen und auch ihre stressigeren Seiten.

Desweiteren ist es mir ein Bedürftnis, meiner Betreuerin Edda Klipp zu danken, die entschei-
denden Anteil an dieser Arbeit hat. Vielen Dank für eine stets offene Tür, ein inspirierendes und
gesundes Arbeitsumfeld und die Möglichkeit, Wissenschaft zu machen und so mein Leben mit inter-
essanten Inhalten und tollen Leuten zu füllen.

Zu diesen Leuten gehören ganz besonders Katja Tummler, Matthias Reis, Wolfgang Giese, Björn
Goldenbogen und Marcus Krantz68, denen ich für ihre Freundschaft und Hilfe danken möchte. Ihr
habt die letzten Jahre erst zu der schönen Zeit gemacht, die sie waren. Dies gilt auch für die vielen
weiteren aktuellen und ehemaligen Mitglieder des Labs, die ich alle ins Herz geschlossen habe.

Nicht zuletzt möchte ich auch den Gutachtern dieser Arbeit sowie den Mitgliedern der Promo-
tionskommission danken. Für ihre Zeit und Mühe, für ihr Interesse und Verständnis, aber auch für
die interessanten Diskussionen und anregenden Lehrinhalte der letzten Jahre.

Der größte Dank jedoch gehört meinen Eltern, die mich seit 30 Jahren auf meinem Weg begleiten,
mir jeden Rückhalt geben und mir all dies hier erst ermöglicht haben. Vielen Dank!

Diese Arbeit wurde gefödert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des
Graduiertenkollegs “Computational Systems Biology” (GRK 1772) sowie das Bundesministerium
für Bildung und Forschung im Kontext des Sonderforschungsbereiches SFB 740, “From molecules
to modules”. Ich möchte mich für diese Unterstützung herzlich bedanken, da ohne sie meine Arbeit
nicht möglich gewesen wäre.

68Besonders dankbar bin ich für die gemeinsame Arbeit an unserem Scaffolding-Projekt,
welches durch dich initiiert und erdacht wurde, bis es zu unserem gemeinsamen Werk
wurde. Bitte verzeih alle Verzögerungen, die ich dir aufbürde.



A. Moment Equations for the crosstalk model of chapter 4

A. Moment Equations for the crosstalk model of
chapter 4

In this section, we give the complete set of differential equations for the crosstalk
model, described in chapter 4 as well as the parameters used. The equations
have been simulated and plotted with the D2D (“Data2Dynamics”) framework
in MATLAB R2015a (see section 2.3).

Parameters for the crosstalk model

The parameters values used for simulation of the model are given in Tab. 4.

Initial states

The model does not consider production and degradation of components.
Mass in the model is conserved and for purposes of dimension reduction we set
initial states of certain species and compounds to a very low level, while the
others define the total mass of the species. The initial states for all species are
listed in Tab. 5.

The model was run for toff = 5min, before the different stress scenarios were
applied for ton = 45min as in the stress duration of the experiments. For this,
the species “NaCl” and “alpha” are initially set to zero and at 5min switched
“on” to a value of 1, indicating the addition of salt and/or pheromone stress in
the experiment.

ODEs for the crosstalk model

The complete set of ODEs that govern the crosstalk model are stated in
Fig. 28 to 30.69

69Note, that the system is split over several figures for better readability.
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Name Value

k_p_Sln1 1e+02 ·s−1

k_p_Ssk1 1e+05 ·(mM · s)−1

k_p_Ssk2 1e+02 ·(mM · s)−1

k_p_Ste20 0.00038 ·s−1

k_p_Ste20_Ste50_Ste11 0.25 ·s−1

k_p_Ste50_Ste11_Fus3 1.7e+02 ·s−1

k_p_Ypd1 1e+06 ·(mM · s)−1

k_p_Far1 0.77 ·(mM · s)−1

k_p_Hog1 13.0 ·(mM · s)−1

k_p_Pbs2 1e+05 ·(mM · s)−1

k_p_Pbs2P _Ste50_Ste11P 1e+03 ·s−1

k_dep_Hog1 2.9 ·s−1

k_dep_Pbs2P 1e+02 ·s−1

k_dep_Ssk1 1.0 ·s−1

k_dep_Ssk2 0.17 ·s−1

k_dep_Ste20 12.0 ·s−1

k_dep_Ste50_Ste11 0.0031 ·s−1

k_dep_Far1 0.12 ·s−1

k_dep_Fus3 3.1e-05 ·s−1

k_act_Ptp2 1.4 ·s−1

k_act_Sho1 1e+03 ·s−1

k_basal_deg 0.09 ·s−1

k_comp_Pbs2_Ste50_Ste11 7.1e+02 ·(mM ·2 s)−1

k_comp_Ste20_Ste50_Ste11 1.6 ·(mM · s)−1

k_comp_Ste50_Ste11 0.24 ·(mM · s)−1

k_comp_Ste50_Ste11_Fus3 49 ·(mM · s)−1

k_deact_Sho1 1.1e-05 ·s−1

k_decomp_Pbs2_Ste50_Ste11 1.2e+02 ·s−1

k_decomp_Pbs2_Ste50_Ste11P 1e-05 ·s−1

k_decomp_Ste20_Ste50_Ste11 1.2e-05 ·s−1

k_decomp_Ste20_Ste50_Ste11P 0.0062 ·s−1

k_decomp_Ste50_Ste11 4e+02 ·s−1

k_decomp_Ste50_Ste11_Fus3 2.4e-05 ·s−1

k_decomp_Ste50_Ste11_Fus3P 0.42 ·s−1

Table 4: Parameter set of the rates used in the equations of Fig. 28 to 30.
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A. Moment Equations for the crosstalk model of chapter 4

Name Initial value Name Initial value

Far1 0.74 mM Sho1P 10−5mM

Far1P 10−5mM Ste11 0.013 mM

Fus3 0.22 mM Ste20 10 mM

Fus3P 10−5mM Ste20P 10−5mM

Sln1 10−5mM Ste50 0.035 mM

Sln1P 0.016 mM FB1 0.0 (a.u.)

Ypd1 10−5mM FB2 0.0 (a.u.)

Ypd1P 0.14 mM FB3 0.0 (a.u.)

Ssk1 10−5mM FB4inact 1.0 (a.u.)

Ssk1P 0.039 mM FB4act 0.0 (a.u.)

Ssk2 0.0004 mM Ste50_Ste11 10−5mM

Ssk2P 10−5mM Ste50_Ste11P 10−5mM

Pbs2 0.051 mM Ste20_Ste50_Ste11 10−5mM

Pbs2P 10−5mM Ste20_Ste50_Ste11P 10−5mM

Hog1 0.17 mM Ste50_Ste11_Pbs2 10−5mM

Hog1P 10−5mM Ste50_Ste11_Pbs2P 10−5mM

Ptp2 0.005 mM Ste50_Ste11_Fus3 10−5mM

Sho1 0.057 mM Ste50_Ste11_Fus3P 10−5mM

Table 5: Initial values for all species considered in the equations (Fig. 28 to 30).
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dSln1
dt

= +k_p_Ypd1 · Sln1P ·Ypd1− k_p_Sln1 · Sln1 · (1−NaCl + FB4act)

dSln1P

dt
= −k_p_Ypd1 · Sln1P ·Ypd1 + k_p_Sln1 · Sln1 · (1−NaCl + FB4act)

dYpd1
dt

= −k_p_Ypd1 · Sln1P ·Ypd1 + k_p_Ssk1 · Ssk1 ·Ypd1P

dYpd1P

dt
= +k_p_Ypd1 · Sln1P ·Ypd1− k_p_Ssk1 · Ssk1 ·Ypd1P

dSsk1
dt

= −k_p_Ssk1 · Ssk1 ·Ypd1P + k_dep_Ssk1 · Ssk1P

dSsk1P

dt
= +k_p_Ssk1 · Ssk1 ·Ypd1P − k_dep_Ssk1 · Ssk1P

Fig. 27: ODEs for the Sln1 phosphorelay of the model.

dSsk2
dt

= −k_p_Ssk2 · Ssk1 · Ssk2 + k_dep_Ssk2 · Ssk2P

dSsk2P

dt
= k_p_Ssk2 · Ssk1 · Ssk2− k_dep_Ssk2 · Ssk2P

dPbs2
dt

= k_dep_Pbs2P · Pbs2P − k_p_Pbs2 · Pbs2 · Ssk2P − k_comp_Pbs2_Ste50_Ste11 · . . .

. . . · Pbs2 · Ste50_Ste11P · Sho1P + k_decomp_Pbs2_Ste50_Ste11 · Ste50_Ste11_Pbs2
dPbs2P

dt
= −k_dep_Pbs2P · Pbs2P + k_p_Pbs2 · Pbs2 · Ssk2P

+ k_decomp_Pbs2_Ste50_Ste11P · Ste50_Ste11_Pbs2P

dHog1
dt

= k_dep_Hog1 ·Hog1P · Ptp2− k_p_Hog1 ·Hog1 · Pbs2P

dHog1P

dt
= −k_dep_Hog1 ·Hog1P · Ptp2 + k_p_Hog1 ·Hog1 · Pbs2P

dPtp2
dt

= k_act_Ptp2 ·Hog1P − k_basal_deg · Ptp2

dFB1
dt

= (Hog1P − FB1)

dFB2
dt

= (FB1− FB2)/25

dFB3
dt

= (FB2− FB3)/25

dFB4inact

dt
= −FB3 · FB4inact/5

dFB4act

dt
= FB3 · FB4inact/5

dSho1
dt

= −k_act_Sho1 · Sho1 ·NaCl + k_deact_Sho1 · Sho1P

dSho1P

dt
= k_act_Sho1 · Sho1 ·NaCl − k_deact_Sho1 · Sho1P

Fig. 28: ODEs for the MAPK cascade, the delayed feedback (FB) as well as
the Sho-branch.
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A. Moment Equations for the crosstalk model of chapter 4

dFus3
dt

= k_dep_Fus3 · Fus3P − k_comp_Ste50_Ste11_Fus3 · Fus3 · Ste50_Ste11P · (alpha)

+ k_decomp_Ste50_Ste11_Fus3 · Ste50_Ste11_Fus3
dFus3P

dt
= −k_dep_Fus3 · Fus3P + k_decomp_Ste50_Ste11_Fus3P · Ste50_Ste11_Fus3P

dFar1
dt

= k_dep_Far1 · Far1P − k_p_Far1 · Far1 · Fus3P

dFar1P

dt
= −k_dep_Far1 · Far1P + k_p_Far1 · Far1 · Fus3P

Fig. 29: ODEs for the pheromone pathway.
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B. Moment Equations for the Models of chapter 5

B. Moment Equations for the Models of chapter 5
B.1. Moments for the mixed channel
Here, we give the full sets of equations governing the first two moments of the models
implemented in chapter 5 of this work. The simulations were carried out in MATLAB
R2015a, using the ODE45 solver.

First, the equation systems (47) and (48) in Fig. 31 describes the dynamics
of the mixed signaling system for the expected value of N = 6 species {Pi, P A

i },
where i = 1, 2, 3, as well as their second moments, from which (together with the
first) variances and covariances can be calculated. As described in the text (see
section 5.2.1), the ODE system comprises N(N+3)

2 = 27 equations and utilizes 6
parameters {ki,forw, ki,rev}, where i = {1, 2, 3}.
The input strength (stress level) for the first signaling tier has been varied with

X = k1,forw

= [0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, . . .

. . . , 0.32, 0.64, 1.28, 2.54, 5.12, 10] · s−1.

For initial values as well as further variation of parameters, see chapter 5 (particularly
Tab. 3 for the standard models) in order to recreate the results from the text.

The equations can be derived as explained in section 2.2.3. Yet, since these
equations only depend on the stoichiometry of the system, giving us its master
equation and subsequently the moment generating function (and thus its closure),
automatic generation of the equations (for example from an SBML description of
the reaction system) is recommended to avoid mistakes in the lengthy calculations.
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B.1. Moments for the mixed channel
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B. Moment Equations for the Models of chapter 5
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B.2. Moments for the insulated channel

B.2. Moments for the insulated channel
As for the mixed channel, the following equation systems (49)-(53) of Fig. 32
are the basis for all simulations of the insulated channel. Since the number
of different scaffold configurations for three signaling tiers (and thus the
number species) is N = 23 = 8, the system is comprised of N(N+3)

2 = 44
ODEs that represent the first and second moments. The number of param-
eters is equal to the mixed model, i.e. 6 parameters {ki,forw, ki,rev}, for
i = {1, 2, 3} where k1,forw is the input strength.

For parametrization, see chapter 5 (Tab. 3 defines the standard models)
and the input strength k1,forw as defined in Appendix B.1.
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B. Moment Equations for the Models of chapter 5
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B.2. Moments for the insulated channel
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B. Moment Equations for the Models of chapter 5
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B.2. Moments for the insulated channel
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B.2. Moments for the insulated channel
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