265 research outputs found

    Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: analysis, circuit realization and combination synchronization in its fractional-order form

    Get PDF
    In this paper, an autonomous Toda jerk oscillator is proposed and analysed. The autonomous Toda jerk oscillator is obtained by converting an autonomous two-dimensional Toda oscillator with an exponential nonlinear term to a jerk oscillator. The existence of Hopf bifurcation is established during the stability analysis of the unique equilibrium point. For a suitable choice of the parameters, the proposed autonomous Toda jerk oscillator can generate antimonotonicity, periodic oscillations, chaotic oscillations and bubbles. By introducing two additional parameters in the proposed autonomous Toda jerk oscillator, it is possible to control partially or totally the amplitude of its signals. In addition, electronic circuit realization of the proposed Toda jerk oscillator is carried out to confirm results found during numerical simulations. The commensurate fractional-order version of the proposed autonomous chaotic Toda jerk oscillator is studied using the stability theorem of fractional-order oscillators and numerical simulations. It is found that periodic oscillations and chaos exist in the fractional-order form of the proposed Toda jerk oscillator with order less than three. Finally, combination synchronization of two fractional-order proposed autonomous chaotic Toda jerk oscillators with another fractional-order proposed autonomous chaotic Toda jerk oscillator is analysed using the nonlinear feedback control method

    A new two-scroll chaotic system with two nonlinearities: dynamical analysis and circuit simulation

    Get PDF
    Chaos theory has several applications in science and engineering. In this work, we announce a new two-scroll chaotic system with two nonlinearities. The dynamical properties of the system such as dissipativity, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension and bifurcation diagram are explored in detail. The presence of coexisting chaotic attractors, coexisting chaotic and periodic attractors in the system is also investigated. In addition, the offset boosting of a variable in the new chaotic system is achieved by adding a single controlled constant. It is shown that the new chaotic system has rotation symmetry about the z-axis. An electronic circuit simulation of the new two-scroll chaotic system is built using Multisim to check the feasibility of the theoretical model.

    A New 3-D Multistable Chaotic System with Line Equilibrium: Dynamic Analysis and Synchronization

    Get PDF
    This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the complete synchronization of the new chaotic system with itself as leader-follower systems

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled ā€œSymmetry in Chaotic Systems and Circuitsā€, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    New Construction Methods and Performance Analysis of WINDMI Chaotic System

    Get PDF
    Chaos is an active topic of study in the field of secure communication systems that have garnered much consideration in recent years because of excessive sensitivity to a simple change in its initial conditions. In this paper, the essential features of the suggested WINDMI chaotic system like the phase portraits of the attractors, bifurcation, PSD, correlation, and balance property of the windmi chaotic system have been depicted in detail through MATLAB tools simulations and circuital application. The bifurcation examination detects a wealthy and attractive characteristic of the proposed windmi chaotic oscillators such as periodical multiple bifurcations, has two stable states chaotic demeanor, periodical windows, and recapture bifurcations. In this paper, after exploring the dynamic features of the windmi chaos paradigm, a practical chaotic circuit is implemented on the fpaa chip. Eventually, the circuit practical results of the windmi chaotic attractors present similarities with numerical simulations. The importance of the work is reflected in the use of field programmable analog array in the implementation of the windmi oscillator, and the possibility of varying the initial condition during the operation of the system. An unlimited number of signals can be generated, which enables it to be used as an oscillator utilized in many transceiver systems, that utilized an unlimited number of signals

    Adaptive Hybrid Projective Synchronization Of Hyper-chaotic Systems

    Get PDF
    In this paper, we design a procedure to investigate the hybrid projective synchronization (HPS) technique among two identical hyper-chaotic systems. An adaptive control method (ACM) is pro- posed which is based on Lyapunov stability theory (LST). The considered technique globally determines the asymptotical stability and establishes identification of parameter simultaneously via HPS approach. Additionally, numerical simulations are carried out for visualizing the effectiveness and feasibility of discussed scheme by using MATLAB

    Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems

    Get PDF
    In this paper, the synchronization problem of T chaotic system and Lu chaotic system is studied. The parameter of the drive T chaotic system is considered unknown. An adaptive projective lag control method and also parameter estimation law are designed to achieve chaos synchronization problem between two chaotic systems. Then Lyapunov stability theorem is utilized to prove the validity of the proposed control method. After that, some numerical simulations are performed to assess the performance of the proposed method. The results show high accuracy of the proposed method in control and synchronization of chaotic systems

    Hidden homogeneous extreme multistability of a fractional-order hyperchaotic discrete-time system: chaos, initial offset boosting, amplitude control, control, and synchronization

    Get PDF
    Fractional order maps are a hot research topic; many new mathematical models are suitable for developing new applications in different areas of science and engineering. In this paper, a new class of a 2D fractional hyperchaotic map is introduced using the Caputo-like difference operator. The hyperchaotic map has no equilibrium and lines of equilibrium points, depending on the values of the system parameters. All of the chaotic attractors generated by the proposed fractional map are hidden. The system dynamics are analyzed via bifurcation diagrams, Lyapunov exponents, and phase portraits for different values of the fractional order. The results show that the fractional map has rich dynamical behavior, including hidden homogeneous multistability and offset boosting. The paper also illustrates a novel theorem, which assures that two hyperchaotic fractional discrete systems achieve synchronized dynamics using very simple linear control laws. Finally, the chaotic dynamics of the proposed system are stabilized at the origin via a suitable controller

    Dynamic system with no equilibrium and its chaos anti-synchronization

    Get PDF
    Recently, systems with chaos and the absence of equilibria have received a great deal of attention. In our work, a simple five-term system and its anti-synchronization are presented. It is special that the system has a hyperbolic sine nonlinearity and no equilibrium. Such a system generates chaotic behaviours, which are verified by phase portraits, positive Lyapunov exponent as well as an electronic circuit. Moreover, the system displays multistable characteristic when changing its initial conditions. By constructing an adaptive control, chaos anti-synchronization of the system with no equilibrium is obtained and illustrated via a numerical example
    • ā€¦
    corecore