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Symmetry in Chaotic Systems and Circuits
Christos Volos

Laboratory of Nonlinear Systems, Circuits & Complexity (LaNSCom), Department of Physics,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; volos@physics.auth.gr

Nowadays, Chaos theory consists one of the most fascinating fields in modern science,
revolutionizing our understanding of order and pattern in Nature. On the other hand,
Symmetry is a traditional and highly developed area of Mathematics, which seems to lie
at the opposite end of the spectrum. However, in the last few years, scientists have found
connections between these two areas, connections which can have profound consequences
for our understanding of the complex behavior in many physical, chemical, biological, and
mechanical systems.

Therefore, symmetry can play an important role in the field of nonlinear systems and
especially in the field of designing nonlinear circuits that produce chaos. In more detail,
from designing chaotic systems and circuits with symmetric nonlinear terms to the study of
system’s equilibria with symmetry, in the case of self-excited attractors, or symmetric line
of equilibria, in the case of hidden attractors, the feature of symmetry can play significant
role in this kind of systems.

The overall purpose of this Special Issue lies in presenting the latest scientific advances
in nonlinear chaotic systems and circuits that introduce various kinds of symmetries.
Applications of chaotic systems and circuits with symmetries, or the deliberate lack of
symmetry, is also presenting in this Special Issue. The volume has 14 published papers,
where the authors are from geographically distributed countries (Algeria, Bulgaria, China,
Greece, Iran, Iraq, Malaysia, Mexico, Russia, Taiwan, Thailand, Turkey, Vietnam). This
reflects the high impact of the proposed topic and the seniority in organization of this
special issue.

In the first paper of this Special Issue entitled “Symmetry Evolution in Chaotic System”,
by C. Li et al. presents a comprehensive exploration of symmetry and conditional symmetry
from the evolution of symmetry. Unlike other chaotic systems of conditional symmetry, in
this work it is derived from the symmetric diffusionless Lorenz system. Transformation
from symmetry and asymmetry to conditional symmetry is examined by constant planting
and dimension growth, which proves that the offset boosting of some necessary variables
is the key factor for reestablishing polarity balance in a dynamical system [1].

The paper “A Nonlinear Five-Term System: Symmetry, Chaos, and Prediction”, by Vo
Phu Thoai et al. presents a simple symmetrical system including only five nonlinear terms.
By using various tools from nonlinear theory, such as phase portraits, bifurcation diagrams,
Lyapunov exponents, and entropy, system’s rich dynamical behavior is discovered. Inter-
estingly, multi-stability is also observed when changing system’s initial conditions. Chaotic
behavior of such a system is predicted by applying a machine learning approach based on
a neural network [2].

The paper “A Symmetric Controllable Hyperchaotic Hidden Attractor”, by Xin Zhang
et al. presents that by introducing a simple feedback, a hyperchaotic hidden attractor is
found in the newly proposed Lorenz-like chaotic system. Some variables of the equilibria-
free system can be controlled in amplitude and offset by an independent knob. Furthermore,
a circuit experiment based on Multisim, which has been presented, is proved to be consistent
with the theoretic analysis and numerical simulation [3].

Xinhe Zhu and Wei-Shih Du in the paper entitled “New Chaotic Systems with Two
Closed Curve Equilibrium Passing the Same Point: Chaotic Behavior, Bifurcations, and

Symmetry 2022, 14, 1612. https://doi.org/10.3390/sym14081612 https://www.mdpi.com/journal/symmetry1
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Synchronization”, propose a chaotic system with infinitely many equilibrium points laying
on two closed curves passing the same point. The proposed system belongs to a class of sys-
tems with hidden attractors. The dynamical properties of the new system were investigated
by means of phase portraits, equilibrium points, Poincaré section, bifurcation diagram,
Kaplan-Yorke dimension, and Maximal Lyapunov exponents. The anti-synchronization of
systems is obtained using the active control. This study broadens the current knowledge of
systems with infinite equilibria [4].

In the paper “Three-Saddle-Foci Chaotic Behavior of a Modified Jerk Circuit with
Chua’s Diode”, by Pattrawut Chansangiam the chaotic behavior of a modified jerk circuit
with Chua’s diode is investigated. The Chua’s diode considered in this work is a nonlinear
resistor having a symmetric piecewise linear voltage-current characteristic. To describe
the system, we apply fundamental laws of electrical circuit theory in order to formulate
a mathematical model in terms of a third-order (jerk) nonlinear differential equation, or
equivalently, a system of three first-order differential equations. The system’s analysis
shows that it has three collinear equilibrium points. Furthermore, numerical simulation
illustrates that the system’s oscillations are dense, have no period, are highly sensitive to
initial conditions, and have a chaotic hidden attractor [5].

In the next paper “Two New Asymmetric Boolean Chaos Oscillators with No De-
pendence on Incommensurate Time-Delays and Their Circuit Implementation”, Jesus M.
Munoz-Pacheco et al. propose two new chaotic oscillators based on Autonomous Boolean
Networks (ABN), preserving asymmetrical logic functions. That means that the ABNs
require a combination of XOR-XNOR logic functions. The two ABNs do not have fixed
points, and therefore, can evolve to Boolean chaos. Using the Lyapunov exponent’s method
the chaotic behavior of the proposed oscillators is proved to be insensitive to incommen-
surate time-delays paths. As a result, they can be implemented using distinct electronic
circuits. More specifically, logic-gates-, GAL-, and FPGA-based implementations verify the
theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is
also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical
behaviors of those implementations are analyzed using time-series, time-lag embedded
attractors, frequency spectra, Poincaré maps, and Lyapunov exponents [6].

The paper entitled “The Effect of a Non-Local Fractional Operator in an Asymmetrical
Glucose-Insulin Regulatory System: Analysis, Synchronization and Electronic Implemen-
tation”, by Jesus M. Munoz-Pacheco et al. analyzes the dynamics of a glucose-insulin
regulatory system by applying a non-local fractional operator in order to represent the
memory of the underlying system, and whose state-variables define the population den-
sities of insulin, glucose, and β-cells, respectively. The authors have focused mainly on
four parameters that are associated with different disorders (type 1 and type 2 diabetes
mellitus, hypoglycemia, and hyperinsulinemia) to determine their observation ranges as a
relation to the fractional-order. Like many preceding works in biosystems, the resulting
analysis showed chaotic behaviors related to the fractional-order and system parameters.
Subsequently, an active control scheme for forcing the chaotic regime (an illness) to follow
a periodic oscillatory state (i.e., a disorder-free equilibrium) is proposed. Finally, the elec-
tronic realization of the fractional glucose-insulin regulatory model to prove the conceptual
findings is also presented [7].

In the next paper “A New Hyperchaotic Map for a Secure Communication Scheme
with an Experimental Realization”, Nadia M. G. Al-Saidi et al. present a new 2D chaotic
map, namely, the 2D Infinite-Collapse-Sine Model (2D-ICSM). By using various metrics,
including Lyapunov exponents and bifurcation diagrams complex dynamics and robust
hyperchaotic behavior of the 2D-ICSM is demonstrated. Furthermore, the cross-correlation
coefficient, phase space diagram, and Sample Entropy algorithm prove that the 2D-ICSM
has a high sensitivity to initial values and parameters, extreme complexity performance,
and a much larger hyperchaotic range than existing maps. Finally, in order to empirically
verify the efficiency and simplicity of the 2D-ICSM in practical applications, a symmetric
secure communication system using the 2D-ICSM is presented [8].
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In the next paper ”A Two-Parameter Modified Logistic Map and Its Application to
Random Bit Generation”, L. Moysis et al. propose a modified logistic map based on the
system previously proposed by Han in 2019. The constructed map exhibits interesting
chaos-related phenomena like antimonotonicity, crisis, and coexisting attractors. In ad-
dition, the Lyapunov exponent of the map can achieve higher values, so the behavior of
the proposed map is overall more complex compared to the original. The map is then
successfully applied to the problem of random bit generation using techniques like the
comparison between maps, XOR and bit reversal. The proposed algorithm passes all the
NIST tests, shows good correlation characteristics, and has a high key space [9].

The paper entitled “A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and
Its Application to Voice Encryption”, by S. Mobayen et al. studies a new chaotic system
with hyperbolic sinusoidal function. The proposed chaotic system provides a new category
of chaotic flows, which gives better perception of chaotic attractors. In more detail, in
the proposed chaotic flow, according to the changes of parameters of the system, a self-
excited attractor and two forms of hidden attractors are occurred. Dynamic behavior of
the proposed chaotic flow is studied through eigenvalues, bifurcation diagrams, phase
portraits, and spectrum of Lyapunov exponents. Moreover, the existence of double-scroll
attractors in real word is considered via the Orcard-PSpice software through an electronic
execution of the new chaotic flow and illustrative results between the numerical simulation
and Orcard-PSpice outcomes are obtained. Furthermore, Random Number Generator
(RNG) design based on the proposed system is also presented and a novel voice encryption
algorithm is proposed [10].

In the next paper “Symmetric Key Encryption Based on Rotation-Translation Equa-
tion”, Borislav Stoyanov and Gyurhan Nedzhibov propose an improved encryption algo-
rithm based on numerical methods and rotation-translation equation. The new encryption-
decryption algorithm is developed by using the concept of symmetric key instead of public
key. The goal in this work is to improve an existing encryption algorithm by using a faster
convergent iterative method, providing secure convergence of the corresponding numerical
scheme, and improved security by a using rotation-translation formula [11].

G. Zhang et al., in the paper entitled “Image Encryption Algorithm Based on Tent
Delay-Sine Cascade with Logistic Map”, present a new chaotic map combined with delay
and cascade, called Tent Delay-Sine Cascade with Logistic map (TDSCL). Compared with
the original one-dimensional simple map, the proposed map has increased initial value
sensitivity and internal randomness and a larger chaotic parameter interval. The chaotic
sequence generated by TDSCL has pseudo-randomness and is suitable for image encryption.
Based on this chaotic map, an image encryption algorithm with a symmetric structure,
which can achieve confusion and diffusion at the same time, is proposed. Simulation
results show that after encryption using the proposed algorithm, the entropy of the cipher
is extremely close to the ideal value of eight, and the correlation coefficients between the
pixels are lower than 0.01, thus the algorithm can resist statistical attacks. Moreover, the
Number of Pixel Change Rate (NPCR) and the Unified Average Changing Intensity (UACI)
of the proposed algorithm are very close to the ideal value, which indicates that it can
efficiently resist chosen-plain text attack [12].

In the next paper “A Novel Method for Performance Improvement of Chaos-Based
Substitution Boxes”, Fırat Artuğer and Fatih Özkaynak examine the chaotic behavior in
the field of information security. In this direction a novel method is proposed in order
to improve the performance of chaos-based substitution box structures. Substitution box
structures have a special role in block cipher algorithms, since they are the only nonlinear
components in substitution permutation network architectures. However, the substitution
box structures used in modern block encryption algorithms contain various vulnerabilities
to side-channel attacks. Recent studies have shown that chaos-based designs can offer
a variety of opportunities to prevent side-channel attacks. The problem of chaos-based
designs is that substitution box performance criteria are worse than designs based on
mathematical transformation. Therefore, in this work, a post processing algorithm is
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proposed to improve the performance of chaos-based designs. The analysis results show
that the proposed method can improve the performance criteria. The importance of these
results is that chaos-based designs may offer opportunities for other practical applications
in addition to the prevention of side-channel attacks [13].

The last paper entitled “Dynamic Symmetry in Dozy-Chaos Mechanics”, by Vladimir
V. Egorov presents all kinds of dynamic symmetries in dozy-chaos (quantum-classical)
mechanics by taking into account the chaotic dynamics of the joint electron-nuclear motion
in the transient state of molecular “quantum” transitions. The reason for the emergence of
chaotic dynamics is associated with a certain new property of electrons, consisting in the
provocation of chaos (dozy chaos) in a transient state, which appears in them as a result of
the binding of atoms by electrons into molecules and condensed matter and which provides
the possibility of reorganizing a very heavy nuclear subsystem as a result of transitions
of light electrons. Various dynamic symmetries appearing in theory are associated with
the emergence of dynamic organization in electronic-vibrational transitions, in particular
with the emergence of an electron-nuclear-reorganization resonance (the so-called Egorov
resonance) and its antisymmetric (chaotic) “twin”, with direct and reverse transitions, as
well as with different values of the electron-phonon interaction in the initial and final states
of the system. All these dynamic symmetries are investigated using the simplest example
of quantum-classical mechanics, namely, the example of quantum-classical mechanics of
elementary electron-charge transfers in condensed media [14].

The Guest Editor hopes you will delight in reading this Special Issue focused on cutting-
edge research on symmetry in chaotic systems and circuits. We expect the collected works
will motivate researchers to strive for further advances in this emerging area.

Finally, the Guest Editor would like to thank the authors of all the papers submitted
to this special issue, as well as the anonymous reviewers, some of whom helped with
multiple review assignments. Additionally, the Guest Editor would like to thank the
journal’s Editorial Board for being very encouraging and accommodative regarding this
special issue.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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10. Mobayen, S.; Volos, C.; Çavuşoğlu, Ü.; SKaçar, S. A simple chaotic flow with hyperbolic sinusoidal function and its application to
voice encryption. Symmetry 2020, 12, 2047. [CrossRef]

11. Stoyanov, B.; Nedzhibov, G. Symmetric key encryption based on rotation-translation equation. Symmetry 2020, 12, 73. [CrossRef]
12. Zhang, G.; Ding, W.; Li, L. Image encryption algorithm based on tent delay-sine cascade with logistic map. Symmetry 2020, 12, 355.

[CrossRef]

4



Symmetry 2022, 14, 1612
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Abstract: A comprehensive exploration of symmetry and conditional symmetry is made from the
evolution of symmetry. Unlike other chaotic systems of conditional symmetry, in this work it is derived
from the symmetric diffusionless Lorenz system. Transformation from symmetry and asymmetry to
conditional symmetry is examined by constant planting and dimension growth, which proves that
the offset boosting of some necessary variables is the key factor for reestablishing polarity balance in
a dynamical system.

Keywords: symmetry; asymmetry; offset boosting; chaotic system

1. Introduction

The system structure is a fundamental topological constraint to the dynamical evolution,
which determines how the attractor stretches in phase space. Symmetric systems give birth to
attractors with a symmetrical face [1–5]. When symmetry is broken, the attractor splits into a symmetric
pair of attractors [6–8] or is preserved by doubling coexisting attractors [9]. Asymmetric systems
seem to give a single asymmetric attractor in most cases, although sometimes it hatches coexisting
asymmetric attractors [10–14] under a set of combined parameters. However, many asymmetric
systems have coexisting attractors of conditional symmetry with the new polarity balance from the
offset boosting.

Furthermore, symmetric structure does not reject conditional symmetry. In this paper,
the symmetry evolution in chaotic systems is analyzed, as shown in Figure 1. From the start of
the variable polarity reversal, if a dynamical system can establish its own polarity balance from
itself, the system is symmetric, or else losing the polarity balance indicates the asymmetric structure.
If a system recovers its polarity balance from a step with offset boosting, the derived system is of
conditional symmetry. From this observation, we can conclude that a system, whether it is symmetric
or asymmetric, can be transformed to be of conditional symmetry. In Section 2, the early proposed
chaotic systems of conditional symmetry are collected. In Section 3, conditional symmetry is coined
in a symmetric system. In Section 4, the collapse of polarity balance is thoroughly explored in two
directions, one of which is from the constant planting, and the other of which is from the dimension
growth. Conditional symmetry is therefore in the primary road where the offset-boosting-induced
polarity balance is well preserved. The conclusion is given in the last section.

Symmetry 2020, 12, 574; doi:10.3390/sym12040574 www.mdpi.com/journal/symmetry
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Figure 1. Relationship among symmetry, asymmetry and conditional symmetry.

2. Conditional Symmetry from Asymmetry

As we know, for a dynamical system
.

X = F(X) = ( f1(X), f2(X), . . . , fN(X))T, (X =

(x1, x2, . . . , xN)
T), if there exists a variable substitution ui1 = −xi1 , ui2 = −xi2 , · · · , uik = −xik , ui = xi,

(here 1 ≤ i1, · · · , ik ≤ N, i1, · · · , ik are not identical, i ∈ {1, 2, . . . , N}\{i1, · · · , ik}) satisfying
.

U = F(U)

(U = (u1, u2, . . . , uN)), then the system
.

X = F(X) (X = (x1, x2, . . . , xN)) is symmetric. Conditional
symmetry is a new terminology to describe the polarity balance from offset boosting [15–18].
For a differential dynamical system,

.
X = F(X) = ( f1(X), f2(X), . . . , fN(X))T, (X = (x1, x2, . . . , xN)

T),
the substitution ui0 = xi0 + c (i0 ∈ {1, 2, . . . , N} (c is an arbitrary constant) brings the offset boosting
in the variable xi0 , where the new constant c will change the average value of the variable xi0 .
For a dynamical system, if there exists a variable substitution, ui0 = xi0 + c0, ui = xi (here c0 is
a non-zero constant, then i0 ∈ {1, 2, . . . , N}, and i ∈ {1, 2, . . . , N}\{i0}), which makes the deduced
system

.
U = F∗(U) =

(
f ∗1(U), f ∗2(U), . . . , f ∗N(U)

)
(U = (u1, u2, . . . , uN)) asymmetric, but when f ∗j0(U)

(1 ≤ j0 ≤ N, j0 � i0) is revised, the system becomes symmetric, and then system
.

X = F(X)

(X = (x1, x2, . . . , xN)) is conditionally symmetric. Some early proposed chaotic systems of conditional
symmetry [19,20] are listed in Table 1. All the coexisting attractors of conditional symmetry are shown
in Figure 2. As we can see, all these systems are asymmetric ones but give twin attractors.

 

Figure 2. Coexisting twin attractors in chaotic systems in Table 1: (a) CS1, (b) CS2, (c) CS3, (d) CS4,
(e) CS5, (f) CS6.
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Table 1. Early explored typical chaotic systems of conditional symmetry.

Cases System Equations Parameters Initial Condition
Lyapunov
Exponents

CS1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = y2 − az2,
.
y = −z2 − by + c,
.
z = yz + F(x),

F(x) = |x| − 3

a = 0.4,
b = 1.75,
c = 3

(3, −1.5, −2)
(3, −1.5, 1)

0.1191,
0,
−1.2500

CS2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = y2 − a,
.
y = bz,
.
z = −y− z + F(x),

F(x) = |x| − 3

a = 1.22,
b = 8.48

(3, 1, 0.5)
(−3, 1, 0.5)

0.2335,
0,
−1.2335

CS3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = F(y),
.
y = z,
.
z = −x2 − az + b(F(y))2 + 1,

F(y) =
∣∣∣y∣∣∣− 4

a = 2.6,
b = 2

(0.5, 4, −1)
(0.5, −4, −1)

0.0463,
0,
−2.6463

CS4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = y,
.
y = F(z),
.
z = x2 − ay2 + bxy + xF(z),

F(z) = |z| − 8

a = 1.24,
b = 1

(4, 0.8, −2)
(−4, 0.8, 2)

0.0645,
0,
−1.2582

CS5

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = 1−G(y)z,
.
y = az2 −G(y)z,
.
z = F(x),

F(x) = |x| − 3
G(y) =

∣∣∣y∣∣∣− 5

a = 0.22 (−1, 1, −1)
(2, 6, −1)

0.0729,
0,
−1.6732

CS6

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = F(y),
.
y = xG(z),
.
z = −axF(y) − bxG(z) − x2 + (F(y))2,

F(y) =
∣∣∣y∣∣∣− 5

G(z) = |z| − 5

a = 3,
b = 1.2

(0, −6 −6)
(0, 6, 6)

0.0506,
0,
−0.2904

3. Constructing Conditional Symmetry from Symmetry

Interestingly, a symmetric structure also gives the chance for hosting an offset-boosting-assisted
polarity balance and leading to conditional symmetry. Taking the diffusionless Lorenz system [21,22],
for example, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

.
x = y− x + n,
.
y = −xz + m,
.
z = xy−R.

(1)

where the parameters m and n are introduced for later discussion. When m = n = 0, R = 1, the system has
a chaotic attractor with Lyapunov exponents (0.2101, 0, −1.2101) and a corresponding Kaplan–Yorke
dimension DKY = 2.1736 under initial conditions (−1, 0, −1). In this work, for obtaining representative
Lyapunov exponents rather than absolute ones [23–25], all the finite-time Lyapunov exponents (LEs) are
computed for the time interval [0, 107] for the initial points on the attractor based on the Wolf algorithm.
It is a simple matter to determine the Kaplan–Yorke dimension from the spectrum of Lyapunov
exponents by k + (LE1 + . . . + LEk)/|LEk+1| (here LE1 + . . . + LEk ≥ 0, and LE1 + . . . + LEk+1 ≤ 0).
System (1) is of rotational symmetry since the system is invariant under the transformation (x, y, z)→
(−x, −y, z) when m = n = 0, corresponding to a 180◦ rotation about the z-axis. In this case, system (1)
has a symmetric oscillation or a symmetric pairs of twin attractors under different initial condition (IC),
as shown in Figure 3.
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Figure 3. Symmetric attractor or symmetric pairs of attractors of system (1) with m = n = 0, IC = (1, 1, 1)
is red and IC = (1, −1, 1) is green: (a) R =1, (b) R =4.9, (c) R = 5.2, (d) R = 5.4.

Taking a further function introducing,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = F(y) − x + n,
.
y = −xG(z) + m,
.
z = xF(y) −R.

(2)

where F(y) =
∣∣∣y∣∣∣− 6, G(z) = |z| − 8, m = n = 0, R = 1, system (2) gives birth to twin coexisting attractors

of conditional symmetry, as shown in Figure 4. Compared with the rotational symmetry with system (1),
system (2) is of conditional reflection symmetry since it is invariant under the transformation (x, y, z)→
(−x, y + c1, z + c2) (c1, c2 stand for calling a polarity reverse from the absolute value function). We can
compare these twin attractors; each one is symmetrically different from the above cases.

Figure 4. Coexisting twin attractors of system (2) with F(y) =
∣∣∣y∣∣∣− 6, G(z) = |z| − 8, m = n = 0, R = 1,

IC = (1, 7, 9) is red, and IC = (−1, −6, −7) is green.

4. Recovering Conditional Symmetry from Destroyed Symmetry

4.1. Symmetry Destroyed by the Constant Planting

For observing the effect to conditional symmetry owing to the symmetric structure, two additional
constants are introduced in the diffusionless Lorenz system. The constant term, like a polarity fire
extinguisher, revises the polarity balance. As shown in Figures 5 and 6, when m and n vary, system (1)
switches between symmetric attractors and asymmetric ones for the compound structure with Lorenz
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attractor. Note that any constant m or n removes the polarity balance, which identifies that system (1)
loses symmetry when m � 0, or n � 0. However, for system (2), the situation is different. If m = 0,
n � 0, system (2) does not keep conditional symmetry. However, if n = 0, m � 0, system (2) maintains
conditional symmetry, giving two coexisting bifurcations, as shown in Figure 7. Unlike the attractors
shown in Figures 3 and 4, now all the coexisting attractors of conditional symmetry reside in the
asymmetric structure, as shown in Figure 8. Two typical pairs of chaotic signals are shown in Figure 9,
where the signals lose symmetry but stand steadily in the form of conditional symmetry.

Figure 5. Dynamical evolvement in system (1) with n = 0, R = 1 and initial conditions (1, 1, 1):
(a) Lyapunov exponents (LEs), and (b) bifurcation diagram.

Figure 6. Dynamical evolvement in system (1) with m = 0, R = 1 and initial conditions (1, 1, 1):
(a) Lyapunov exponents, and (b) bifurcation diagram.

Figure 7. Dynamical evolvement in system (2) with n = 0, R = 1: (a) Lyapunov exponents,
and (b) bifurcation diagram.

11
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Figure 8. Conditional symmetric pairs of attractors in system (2) with n = 0, R = 1, IC = (1, 7, 9) is red
and (−1, −6, −7) is green: (a) m = 0.25, (b) m = 0.45, (c) m = 0.55, (d) m = 0.7.

Figure 9. Conditional symmetric pairs of signals in system (2) with n = 0, R = 1, IC = (1, 7, 9) is red and
(−1, −6, −7) is green: (a) m = 0.25, (b) m = 0.45.

4.2. Symmetry Evolution Induced by the Dimension Growth

The influence of dimension growth to polarity balance is complicated, some of which may preserve
or destroy the polarity balance of the original system. Taking the following system, for example,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = y− x,
.
y = −xz,
.
z = xy−R + axu,
.
u = bx.

(3)

In this case, system (3) is still symmetric, since it is invariant under the transformation (x, y, z, u)→
(−x, −y, z, −u). Now system (3) has a symmetric chaotic attractor with Lyapunov exponents (0.2609, 0,
−0.0079, −1.2530) and corresponding Kaplan–Yorke dimension DKY = 3.2019, is shown in Figure 10.

12
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Figure 10. Symmetric attractor of system (3) with a = 0.5, b = 0.1, R = 3, IC = (1, 1, 1, 2) is red, IC = (−1,
−1, 1, −2) is green: (a) x-y-z space, (b) x-z-u space.

System (3) is also a seed system for hosting conditional symmetry,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = F(y) − x,
.
y = −xG(z),
.
z = xF(y) −R + axu,
.
u = bx.

(4)

where F(y) =
∣∣∣y∣∣∣− 15, G(z) = |z| − 15, a = 0.5, b = 0.1, R = 3; system (4) gives birth to twin coexisting

attractors of conditional symmetry, as shown in Figure 11. System (4) is of conditional rotational
symmetry since it is invariant under the transformation (x, y, z, u)→ (–x, y+c1, z+c2, –u) (c1, c2 stand
for calling a polarity reverse from the absolute value function).

Figure 11. Coexisting conditional symmetric attractors in system (4) with F(y) =
∣∣∣y∣∣∣− 15, G(z) = |z| − 15,

a = 0.5, b = 0.1, R = 3, IC = (1, 16, 16, 2) is red, IC = (−1, −14, −14, −2) is green.

The dimension growth sometimes changes the polarity balance of the original system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = y− x− axu,
.
y = −xz,
.
z = xy−R,
.
u = bx.

(5)

System (5) becomes asymmetric since it is changed under the polarity transformation. When a = 0.1,
b= 0.1, R= 3, system (5) has chaotic attractor with Lyapunov exponents (0.0432, 0, −0.1083, −2.8978) and
corresponding Kaplan–Yorke dimension DKY = 2.3989 under initial conditions (1, 1, 1, 2). Interestingly,
this time the variable u is positive, and therefore the absolute value symbol of u can be introduced for
hatching coexisting attractors, as shown in Figure 12.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = y− x− ax

∣∣∣u∣∣∣,
.
y = −xz,
.
z = xy−R,
.
u = bx.

(6)
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where a= 0.1, b= 0.1, R= 3; system (6) has a symmetric pair of coexisting chaotic attractors. Interestingly,
here these coexisting attractors are unlike the cases shown in reference [9]. In the fourth dimension of
system (6), the polarity balance is recovered by the out variable x rather than by an extra imported
signum function.

Figure 12. Symmetric attractor of system (6) with a = 0.5, b = 0.1, R = 3, IC = (1, 1, 1, 2) is red, IC = (−1,
−1, 1, −2) is green.

Furthermore, based on the above case, the dimension growth also leaves the possibility for hosting
conditional-symmetry-like coexisting attractors. Taking a further function introducing to system (6).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = F(y) − x− ax

∣∣∣H(u)
∣∣∣,

.
y = −xG(z),
.
z = xF(y) −R,
.
u = bx.

(7)

where F(y) =
∣∣∣y∣∣∣ − 15, G(z) = |z| − 15, H(u) = |u| − 10, a = b = 0.1, R = 3; system (7) gives birth to

twin coexisting attractors, which have the features of conditional symmetry, as shown in Figure 13.
However, system (7) is not of conditional rotational symmetry since it seems not invariant under the
transformation (x, y, z, u)→ (−x, y + c1, z + c2, u + c3) (c1, c2, c3 stand for calling a polarity reverse from
the absolute value function). The mechanism of the coexistence of attractors hides in the same balance
ability from the structure (6).

Figure 13. Coexisting attractors in systems (7) with F(y) =
∣∣∣y∣∣∣ − 15, G(z) = |z| − 15, H(u) = |u| − 10,

a = b = 0.1, R = 3, IC = (1, 16, 16, 11) is red, IC = (−1, −14, −14, −10) is green.

5. Conclusions

Conditional symmetry is a more flexible symmetry, which can be derived from both symmetry
and asymmetry. In fact, in the physical world symmetric structure is prone to be destroyed by a newly
introduced constant or by the dimension growth. However, asymmetric systems have enough space
for conditional symmetry if the offset-boosting assisted polarity balance is established. Conditional
symmetric systems are more promising than symmetric ones, which have reliable twin attractors rather
than a broken butterfly. In those chaos-based communications, conditional symmetry or symmetry

14



Symmetry 2020, 12, 574

usually indicates that the corresponding system has double monopolar chaotic signals, which meets
the needs of engineering application to a large extent.

Author Contributions: Conceptualization, C.L.; Data curation, C.L. and J.S.; formal analysis, T.L. (Tianai Lu);
funding acquisition, C.L.; investigation, C.L., J.S., T.L. (Tianai Lu) and T.L. (Tengfei Lei); methodology, C.L.;
project administration, C.L.; resources, C.L.; software, T.L. (Tianai Lu); supervision, C.L.; validation, C.L.
and T.L. (Tengfei Lei); visualization, J.S.; writing—original draft, C.L.; writing—review and editing, C.L. and
T.L. (Tengfei Lei). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported financially by the National Natural Science Foundation of China (Grant No.:
61871230), the Natural Science Foundation of Jiangsu Province (Grant No.: BK20181410), and a project funded by
the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lai, Q.; Chen, S. Generating multiple chaotic attractors from Sprott B system. Int. J. Bifurc. Chaos
2016, 26, 1650177. [CrossRef]

2. Bao, B.C.; Bao, H.; Wang, N.; Chen, M.; Xu, Q. Hidden extreme multistability in memristive hyperchaotic
system. Chaos Solit Fractals 2017, 94, 102–111. [CrossRef]

3. Zhang, X.; Wang, C.H. Multiscroll Hyperchaotic System with Hidden Attractors and Its Circuit
Implementation. Int. J. Bifurc. Chaos 2019, 29, 1950117. [CrossRef]

4. Deng, Q.L.; Wang, C.H. Multi-scroll hidden attractors with two stable equilibrium points. Chaos
2019, 29, 093112. [CrossRef] [PubMed]

5. Zhao, X.; Liu, J.; Liu, H.J.; Zhang, F.F. Dynamic Analysis of a One-parameter Chaotic System in Complex
Field. IEEE Access 2020, 8, 28774–28781. [CrossRef]

6. Sprott, J.C. Elegant Chaos: Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010; pp. 1–40.
7. Sprott, J.C. Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 2014, 24, 1450009.

[CrossRef]
8. Zhang, X.; Wang, C.H.; Yao, W.; Lin, H.R. Chaotic system with bondorbital attractors. Nonlinear Dyn. 2019, 97,

2159–2174. [CrossRef]
9. Li, C.; Lu, T.; Chen, G.; Xing, H. Doubling the coexisting attractors. Chaos 2019, 29, 051102. [CrossRef]
10. Barrio, R.; Blesa, F.; Serrano, S. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and

chaotic attractors. Physica D 2009, 238, 1087–1100. [CrossRef]
11. Sprott, J.C.; Li, C. Asymmetric bistability in the Rössler system. Acta Phys. Pol. B 2017, 48, 97–107. [CrossRef]
12. Sprott, J.C.; Wang, X.; Chen, G. Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos

2013, 23, 1350093. [CrossRef]
13. Jafari, S.; Ahmadi, A.; Panahi, S.; Rajagopal, K. Extreme multistability: When imperfection changes quality.

Chaos Solitons Fractals 2018, 108, 182–186. [CrossRef]
14. Karthikeyan, R.; Jafari, S.; Karthikeyan, A.; Srinivasan, A.; Ayele, B. Hyperchaotic Memcapacitor Oscillator

with Infinite Equilibria and Coexisting Attractors. Circuits Syst. Signal. Process. 2018, 37, 1–23.
15. Li, C.; Sprott, J.C. Variable-boostable chaotic flows. Opt. Int. J. Light Electron. Opt. 2016, 127, 10389–10398.

[CrossRef]
16. Gu, Z.; Li, C.; Iu, H.H.C.; Min, F.; Zhao, Y.B. Constructing hyperchaotic attractors of conditional symmetry.

Eur. Phys. J. B 2019, 92, 221. [CrossRef]
17. Lu, T.; Li, C.; Jafari, S.; Min, F. Controlling Coexisting Attractors of Conditional Symmetry. Int. J. Bifurc. Chaos

2019, 29, 1950207. [CrossRef]
18. Zhang, X. Constructing a chaotic system with any number of attractors. Int. J. Bifurc. Chaos 2017, 27, 1750118.

[CrossRef]
19. Li, C.; Sprott, J.C.; Xing, H. Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 2017, 87,

1351–1358. [CrossRef]
20. Li, C.; Sprott, J.C.; Liu, Y.; Gu, Z.; Zhang, J. Offset Boosting for Breeding Conditional Symmetry. Int. J.

Bifurc. Chaos 2018, 28, 1850163. [CrossRef]
21. Schrier, G.V.D.; Maas, L.R.M. The diffusionless Lorenz equations; Shil’nikov bifurcations and reduction to an

explicit map. Physica D 2000, 141, 19–36. [CrossRef]

15



Symmetry 2020, 12, 574

22. Li, C.; Sprott, J.C.; Thio, W. Linearization of the Lorenz System. Phys. Lett. A 2015, 379, 888–893. [CrossRef]
23. Leonov, G.A.; Kuznetsov, N.V.; Mokaev, T.N. Homoclinic orbits, and self-excited and hidden attractors in

a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 2015, 224, 1421–1458.
[CrossRef]

24. Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Prasad, A.; Shrimali, M.D. Finite-time Lyapunov dimension
and hidden attractor of the Rabinovich system. Nonlinear Dyn. 2018, 92, 267–285. [CrossRef]

25. Kuznetsov, N.V.; Mokaev, T.N. Numerical analysis of dynamical systems: Unstable periodic orbits,
hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension. J. Phys. Conf. Ser.
2019, 1205, 012034. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

16



symmetryS S

Article

A Nonlinear Five-Term System: Symmetry, Chaos,
and Prediction

Vo Phu Thoai 1, Maryam Shahriari Kahkeshi 2, Van Van Huynh 3, Adel Ouannas 4

and Viet-Thanh Pham 5,*
1 Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam;

vophuthoai@tdtu.edu.vn
2 Faculty of Engineering, Shahrekord University, Shahrekord 64165478, Iran;

m.shahriyarikahkeshi@alumni.iut.ac.ir
3 Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and

Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam; huynhvanvan@tdtu.edu.vn
4 Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Laarbi Tebessi, Tebessa 12002,

Algeria; ouannas.adel@univ-tebessa.dz
5 Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang

University, Ho Chi Minh City, Vietnam; phamvietthanh@tdtu.edu.vn
* Correspondence: phamvietthanh@tdtu.edu.vn

Received: 19 April 2020; Accepted: 22 May 2020; Published: 25 May 2020

Abstract: Chaotic systems have attracted considerable attention and been applied in various
applications. Investigating simple systems and counterexamples with chaotic behaviors is still
an important topic. The purpose of this work was to study a simple symmetrical system including
only five nonlinear terms. We discovered the system’s rich behavior such as chaos through phase
portraits, bifurcation diagrams, Lyapunov exponents, and entropy. Interestingly, multi-stability
was observed when changing system’s initial conditions. Chaos of such a system was predicted by
applying a machine learning approach based on a neural network.

Keywords: chaos; symmetry; entropy; prediction

1. Introduction

The study of chaos in nonlinear systems has attracted significant attention in recent research [1–4].
Interestingly, new chaotic systems have continued to be proposed. A memristor-based chaotic circuit
showing multi-stability was constructed by Song et al. [1]. Azar and Serrano [2] designed port
Hamiltonian systems with chaos while Askar and Al-khedhairi mentioned a chaos of duopoly game for
a player’s actions [5]. Chaos appeared in fractional systems, fractional-order maps, and discrete-time
systems [6–8]. Chen et al. discovered entropy for indicating early-warning signals of zero-eigenvalue
chaotic systems [9]. Disturbance observer control was applied to synchronize a chaotic system
having one constant term and no equilibrium [10]. The special characteristics of chaos provide useful
applications such as cryptography, transmission, security, and fractional chaotic memory [11–13].
Image encryption was developed by using a chaos of Farhan’s system [11] while a combination
of compressed sensing and chaos in encryption scheme was introduced in [14]. Parallel mode of
chaotic cryptography provided a transmission efficiency and resisted dangerous attacks [15]. Xie et al.
developed image restoration for chaos-based transmission, which is effective to reduce devices’
consumption [12]. S-boxes were constructed with special systems’ chaos [16,17]. Ouannas et al.
investigated MIMO communications using chaos synchronization [18]. By applying constant phase
elements, Petrzela implemented chaotic memory [13].

Increased interest in symmetry in chaotic system has been reported in recent works [19].
Zhu and Du presented a chaotic system with a symmetrical curve equilibrium [20]. Chaotic oscillators

Symmetry 2020, 12, 865; doi:10.3390/sym12050865 www.mdpi.com/journal/symmetry
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were built with asymmetrical logic functions, illustrating the feasibility for integrated circuits [21].
It is noted that a symmetrical hyperchaotic attractor was able to control [19]. Especially, Li et al.
examined comprehensively the evolution of symmetry [22]. From the viewpoint of information
security, the vital roles of symmetry are verified by the improvement of substitution box structures [23],
image encryption [24], and symmetric key encryption [25]. Discovering symmetrical chaotic systems
is still an open topic.

When studying chaotic systems, discovering simple systems and counterexamples with chaotic
behaviors is a vital research topic [26]. Common three-dimensional chaotic systems often have more
than six terms and five-term chaotic systems are the most elegant ones [26]. Moreover, chaotic systems
without linear terms have rarely been reported [27]. The purpose of our work was to investigate a
novel five-term chaotic system without a linear term. Table 1 is provided for comparison with the
results of recent studies.

Table 1. Numbers of linear and nonlinear terms in some three-dimensional chaotic systems.

System Linear Term Nonlinear Term Total Term

[17] 6 4 10
[1] 6 2 8

[20] 1 7 8
[27] 0 8 8
[16] 3 4 7
[28] 2 5 7
[11] 2 4 6
[9] 2 3 5

This work 0 5 5

This work focuses on the aim to study a symmetrical system with chaos. Its simple form and rich
dynamics are presented in Section 2. Section 3 presents an entropy measurement of the system while
chaos prediction using neural network is reported in Section 4. The last section concludes our work.

2. System without Linearity

We investigate a system with no linear terms:

ẋ = ayz,
ẏ = 1 − z2,
ż = bx3 + yz.

(1)

In system (1), a and b are positive parameters (a, b > 0). Interestingly, five terms of the system (1) are
nonlinear ones. Only few systems without linear terms have been studied [27]. Simple chaotic
systems/circuits have attracted considerable attention because of their elegance [26]. From the
viewpoint of terms, the simplest chaotic systems are five-term ones [26]. Therefore, we would like to
consider system (1), which includes five nonlinear terms. In addition, the system can be implemented
physically by using common electronic elements such as resistors, capacitors, operational amplifiers,
and analog multipliers. A practical implementation of system (1) is illustrated in Figure 1. In the design,
the circuit of system (1) includes five resistors, three capacitors, three operational amplifiers, and four
analog multipliers. However, corresponding equations of the system do not describe certain events.

Considering coordinate transformation (2)

(x, y, z) → (−x, y,−z), (2)

system (1) is invariant. Therefore, system (1) is symmetric. It is worth noting that symmetry in
nonlinear systems has attracted interest in recent years [19–21].
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By solving ⎧⎪⎨
⎪⎩

ayz = 0,
1 − z2 = 0,
bx3 + yz = 0,

(3)

we get two equilibria of system (1)
E1(0, 0, 1), (4)

E2(0, 0,−1). (5)

The Jacobian matrix of system (1) is given by

J =

⎡
⎢⎣ 0 az ay

0 0 −2z
3bx2 z y

⎤
⎥⎦ . (6)

Because of symmetry, by considering the Jacobian matrix at the equilibrium E1, we get the
characteristic equation

λ3 + 2λ = 0. (7)

and two eigenvalues
λ1 = 0, (8)

λ2,3 = ±j
√

2. (9)

Therefore, this calculation shows that the system (1) is at a critical case for E1 and E2.

Figure 1. Illustration of a circuit, which is designed to realize system (1). Voltages at the outputs of
three operational amplifiers X, Y, Z correspond to three state variables x, y, z of system (1).

System (1) displays rich dynamics when varying a. The bifurcation diagram in Figure 2 shows
windows of chaos, which are also verified by maximum Lyapunov exponents (see Figure 3). Chaos can
be found in ranges, for example [1, 1.21], and [1.903, 2.275]. Illustration of chaos is presented in Figure 4
for a = 1, and b = 0.05. The maximum Lyapunov exponent equals to 0.02714. Chaotic dynamics
is similar to the observed chaotic one of the Lorenz system [29]. The Lorenz system describes the
atmospheric convection and includes seven terms (with five linear terms). Our system has five terms
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(without linear terms).The waveforms of the variables x and z in Figure 5 display slow–fast dynamics.
Slow–fast dynamics are important to get the autowaves [30].

Figure 2. Bifurcation diagram. We change parameter a while keeping b = 0.05, and initial conditions
(0.5, 1, 0.5).

Figure 3. Maximum Lyapunov exponents. We change a while keeping b = 0.05, and initial conditions
(0.5, 1, 0.5).

(a) (b) (c)

Figure 4. Attractors observed in three planes illustrating chaos in system (1) for a = 1: (a) x − y,
(b) x − z, and (c) y − z.
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(a) (b)

Figure 5. (a) Waveform of x, and (b) waveform of z observed in system (1) for a = 1, and b = 0.05.

The symmetrical property of system (1) leads to the appearance of multistabily, which has been
investigated in Figure 6. We plot simultaneously two bifurcation diagrams for initial conditions
(±0.5, 1,±0.5). Different coexisting attractors are reported in Figure 7.

Figure 6. Bifurcation diagrams for initial conditions (0.5, 1, 0.5) (black) and (−0.5, 1,−0.5) (red) while
keeping b = 0.05.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Coexisting attractors in system (1) for (x(0), y(0), z(0) = (0.5, 1, 0.5) (black) and
(x(0), y(0), z(0) = (−0.5, 1,−0.5) (red): (a) a = 1.23, (b) b = 1.6, (c) b = 1.845, and (d) a = 1.93.

3. System’s Entropy

Entropy is an important tool not only in information theory but also in nonlinear works [31].
Entropy represents quantifies of information in a particular information system. It is useful for
researches to describe nonlinear system’s complexity with entropy. Interestingly, entropy measurement
has been witnessed for chaotic systems for last years [28,32]. Memristor-based chaotic oscillator has
been developed by Liu et al. to achieve a high spectral entropy [3]. Chen et al. has indicated the usage
of entropy as early warning indexes of chaotic signals [9].

We calculate entropy of system (1) to consider its complexity. The approximate entropy (ApEn)
is measured for x variable. ApEn highlights advantages such as small samples demand, simple
computation, and noise reduction [33].

Approximate entropy calculation [33] is presented briefly as follows. Firstly, we take a set of
data x(1), x(2), ..., x(n) from system (1). Vectors X(j) for j = 1, . . ., n − m + 1 are constructed by
X(j) = (x(j), ...., x(j + m − 1)) with a given m. The distance between vectors X(i) and X(j) is given by
d(X(i), X(j)). As a result, we get the relative frequency of X(i) being similar to X(j):

Cm
i (r) =

K
n − m + 1

, (10)

where K is the number of j satisfying d(X(i), X(j)) ≤ r for a given X(i).
We obtain the approximate entropy

ApEn = φm(r)− φm+1(r), (11)

in which

φm(r) =
1

n − m − 1

n−m+1

∑
i=1

log Cm
i (r). (12)

Figure 8 depicts the approximate entropy [33] for parameter a. ApEn measures regularity and
unpredictability of x. Significantly small values of ApEn indicate regular signals. As shown in Figure 8,
system’s complex behavior can be witnessed for two ranges of a ([1, 1.21], and [1.903, 2.275]). Table 2
reports three examples of calculated ApEn values for a. The values of ApEn in the case 1 (0.2162), and
the case 3 (0.3526) verify the complexity of system (1). Tiny value of ApEn (7.418 × 10−7 ≈ 0) confirms
the periodical behavior of the system in the case 2.
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Figure 8. Approximate entropy (ApEn) of system (1) calculated for a ∈ [1, 2.5].

Table 2. Examples of calculated ApEn values.

Cases a ApEn

1 1 0.2162
2 1.5 7.418 × 10−7

3 2 0.3526

4. Chaos Prediction

Artificial neuron network is constructed by connecting many neurons [34,35]. Numerous
applications of neural networks in practice have been found in computer vision, pattern recognition,
natural language processing, and robotics [36,37]. Ability of neuron network to represent nonlinear
system has been investigated and attracted considerable interest [38–40]. Predicting chaotic system is
challenge due to its sensitivity with initial conditions.

In this section, we build a simple feed-forward neural network (see Figure 9) to predict signals of
system (1). As illustrated in Figure 9, the artificial neuron network includes four layers: input layer,
two hidden layers, and output layer. It is considered as a deep neural network because there are
multiple layers before the output layer [41]. The input layer includes three neurons. Each hidden layer
is composed of ten neurons while there are only three neurons in the output layer. The numbers of
hidden neurons and hidden layers are selected by considering the specific dynamics of the system such
as multistability, and slow-fast dynamics. The computational roles of hidden layers are similar in order
to model the dynamical system from its time series. It is worth noting that the hardest task of machine
learning, choosing the suitable balance between model complexity and simplicity, must be considered
seriously. The effective and robust architecture of the neural network as well as the optimization of
network’s parameters guarantee the good performance of the network. In this work, we construct a
simple feed-forward neural network. Compared with advanced networks, for example convolutional
neural network, recurrent neural network, liquid state machine, and echo state network, the proposed
architecture is effective and robust when being applied to system (1).

A dataset is generated by running system (1) with different initial conditions. The proposed
neural network is trained with the data set (x, y, z) by applying the Levenberg–Marquardt algorithm.
It is noted that there are different training algorithms such as the Levenberg–Marquardt algorithm,
Bayesian Regularization algorithm, Scaled Conjugate Gradient algorithm, and the Fletcher–Powell
Conjugate Gradient [37,42]. In this work, we use the Levenberg–Marquardt algorithm because of its
good convergence and robustness. The obtained performance is 2.3051 × 10−9. After the training
process, we achieve a network matching with the data set. Outputs of the network present expected
signals. Figure 10 illustrates the prediction results (X, Y, Z) compared with actual data (x, y, z).
The agreement of the prediction results with the actual data shows the capability of the network for
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predicting chaos of system (1) in short term. In comparison to other works [43–45], the neural network
is simple and displays good performance.

Figure 9. Neuron network includes four layers. Data set is provided by system (1) and is used
for training.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. Signals x, y, z of system (1) (black color) and desired signals X, Y, Z at the output of the
neural network (red color): (a) x and X, (b) y and Y, (c) z and Z.

5. Conclusions

Our work introduces a symmetry nonlinear system with remarkable dynamics. There are only
five nonlinear terms in the system, which generates chaos. By considering the initial conditions,
we find coexisting attractors in the system verifying its multistability feature. Entropy measurement
also indicates the system’s complexity. We believe that our work contributes to the known list of
chaotic systems with algebraic simplicity. It is possible for us to apply a modified version of such
a system to describe turbulent flows [46,47]. We implemented a neural-based approach to predict
a system’s chaos in short-term. Long-term prediction of such chaotic signals should be considered.
In addition, prediction results will be applied to control chaos in our future investigation. In addition,
realization of the system for practical chaos-based applications will be studied in our future works.
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Abstract: By introducing a simple feedback, a hyperchaotic hidden attractor is found in the newly
proposed Lorenz-like chaotic system. Some variables of the equilibria-free system can be controlled in
amplitude and offset by an independent knob. A circuit experiment based on Multisim is consistent
with the theoretic analysis and numerical simulation.
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1. Introduction

As we all know, chaos is ubiquitous in nature and human society, and has great potential in
engineering applications. However, there exists great challenge in conditioning broadband chaotic
signals, and appropriate amplitude and polarity are the key specifications for chaos generation and
transmission [1–3], and therefore, recently great efforts have been made on the research of amplitude
control and offset boosting. Normally, the amplitude of system variable requires further adjusting a
couple of parameters. In many cases, a unipolar signal is more suitable for transmitting in inter-coupled
integrated circuits. Such a challenge exists in the conversion from the bipolar signal to unipolar
signal. An independent non-bifurcation parameter to rescale the signal without revising the Lyapunov
exponents is important for chaos application. Suitable signal control saves the modulator in chaos-based
applications [4,5], including amplitude control [6,7] and offset boosting [8,9].

In addition, hidden attractors exist in chaos, but one cannot find them from the neighborhood
of any equilibrium point. Thus, it is of great value in theoretical and physical significance and
engineering application to study the realization method of hidden attractors. The Chua system,
Lorenz-like systems, and the chaotic systems with stable equilibria [10–15], line equilibria [16–18],
or no equilibria [19–24] give us impressive points. Hyperchaos with higher complexity is beneficial
to secure communication, so some research extends to hyperchaos. A hyperchaotic system with a
hidden attractor was proposed by Wang et al. [25]; Chlouverakis and Sprott [26] claimed the simplest
hyperchaotic snap system in algebra; and Yuan et al. [27] showed a memristive multi-scroll hyperchaotic
system. Other many hyperchaotic systems have come out of the Lorenz-like system [28–31]. Some
other hyperchaotic ones have been proposed, including a memristive hyperchaotic system [32,33],
fractional order hyperchaotic system [34,35] or hyperchaotic multi-wing system [36,37]. To the best
of our knowledge, there is no relevant research on a hyperchaotic hidden attractor with geometric
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control. Based on a three-dimensional Lorenz-like system, Wang et al. [38] put forward a hyperchaotic
system for producing multi-wing attractors; while in this work, the proposed system has four features
as follows:

I) There exists a parameter to control amplitude and frequency of signals in a small range.
II) Amplitude of x and y can be controlled simultaneously.
III) There is an offset boosting controller.
IV) A special parameter can realize both amplitude and offset control of one system variable.

As shown in Figure 1, the proposed hyperchaotic system has multiple independent geometric
controllers including controllers for rescaling amplitude, frequency and offset. Some of the reported
4-D hyperchaotic Lorenz-like systems are listed in Table 1. In the paper, the system controllers are
signal controllers and multistability observers as well. In Section 2, the mathematical model of the
hyperchaotic system is given. In Section 3, complex dynamic behavior is analyzed. The process
of amplitude control and offset boosting is discussed in Section 4. In Section 5, multistability is
investigated. In Section 6, the analog circuit is given. Finally, we give the conclusions and discussion.

Figure 1. Hyperchaotic attractor with multiple independent controllers.

Table 1. Comparison of the Lorenz-like hyperchaotic systems.

Reference Number of Terms
Number of

Equilibrium
Amplitude/Frequency

Control
Amplitude/Offset

Control

[15] 9 one no not mentioned

[28] 10 line equilibrium no not mentioned

[30] 10 one no not mentioned

[31] 9 one no not mentioned

[38] 9 no no not mentioned

this work 9 no yes yes

2. Model Description

A 3-D Lorenz-like chaotic system is proposed by Cang et al [39], which is,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x = −ay− xz,
.
y = −x + xz,
.
z = −d− xy.

(1)
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System (1) has a simple rotational symmetric structure with six terms. Based on system (1), a new
hyperchaotic system is proposed as, ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = −ay− xz− u,
.
y = −cx + xz,
.
z = −b−mxy,
.
u = kx− y.

(2)

where x, y, z, u are system variables, and a, b, c, k are bifurcation parameters of system (2). When a = 5,
b = 4, c = 1, k = 0.5 and m = 1, system (2) has a hyperchaotic attractor with Lyapunov exponents (0.3606,
0.1222, 0, −1.4827) and a Kaplan-Yorke dimension of DKY = 3.3256 under initial conditions (1, −1, −1,
1), as shown in Figure 2.

Figure 2. Hyperchaotic attractor of system (2) with a = 5, b = 4, c = 1, k = 0.5, m = 1 and initial conditions
[1, −1, −1, 1]: (a) x-y plane, (b) x-z plane, (c) y-z plane, (d) x-u plane.

The hyper-volume contraction is

∇V =
∂

.
x
∂x

+
∂

.
y
∂y

+
∂

.
z
∂z

+
∂

.
u
∂u

= −z (3)

When a = 5, b = 4, c = 1 and k = 0.5, the dissipative curve of Equation (3) is as shown in Figure 3.
The negative average of ∇V proves that system (2) is dissipative.
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Figure 3. Dissipative curve of system (2).

3. Basic Dynamic Analysis

3.1. Anylis of Equilibria

For system (2), the equilibria can be solved by the following equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−ay− xz− u = 0
−cx + xz = 0
−b−mxy = 0
kx− y = 0

(4)

The fourth equation indicates that y = kx, but the third equation means that b = −mxy, then
b = −mkx2, which means that there is no real solution, correspondingly the hyperchaotic attractor of
system (2) is hidden.

3.2. Bifurcation Analysis

For system (2), the parameters modify the dynamics effectively. To make the demonstration
simpler, we ignore the multistability caused by the special structure of symmetry. When b = 4, c = 1,
k = 0.5, m = 1 under initial conditions (1, −1, −1, 1), Lyapunov exponent spectra and bifurcation diagram
when a varies in [−10, 23.4] are shown in Figure 4, where a typical transition from period to chaos
shows up and finally system (1) results in the state of hyperchaos. Typical phase trajectories are shown
in Figure 5. Quasi-periodicity was not found in the examination interval of system (2). When a = 5,
c = 1, k = 0.5, m = 1 and initial conditions are (1, −1, −1, 1), when b varies in [0, 15], system (2) heads to
hyperchaos from chaos. Lyapunov exponent spectra and bifurcation diagrams are shown in Figure 6,
which shows a robust hyperchaos. Both cases have almost linearly scaled Lyapunov exponents in
specific regions indicating the function of frequency rescaling.
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Figure 4. Dynamical behavior of system (2) with b = 4, c = 1, k = 0.5, m = 1 under initial conditions [1,
−1, −1, 1]: (a) Lyapunov exponents, (b) bifurcation diagram.

Figure 5. Typical phase trajectories of system (2) with b = 4, c = 1, k = 0.5, m = 1 under initial condition
[1, −1, −1, 1] in the plane x-u: (a) a = −5 (period), (b) a = −0.6 (chaos), (c) a = 3 (chaos), (d) a = 5
(hyperchaos).
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Figure 6. Dynamical behavior of system (2) with a = 5, c = 1, k = 0.5, m = 1under initial condition [1, −1,
−1, 1]: (a) Lyapunov exponents, (b) bifurcation diagram.

Comparing Figures 4 and 6, we can see that the parameter a or b visits chaos quickly but modifies
the solution in its own way. The parameter a almost has positive correlation with amplitude in a
limited range. Meanwhile parameter b has positive correlation with amplitude and frequency, which
is distinct and different from other systems. Typical phase trajectories and waveforms are shown in
Figure 7.

Figure 7. Chaotic oscillations of system (2) with c = 1, k = 0.5, m = 1 under initial condition [1, −1, −1, 1]:
(a) phase trajectory in x-z (b = 4), (b) signal x(t), (c) phase trajectory in y-u plane (a = 5), (d) signal y(t).

Fix the parameters a = 5, b = 4, k = 0.5, m = 1, when parameter c varies in [0, 1.7]; the Lyapunov
exponent spectra and bifurcation diagram are shown in Figure 8a,b. When c varies in [0, 1.4], system
(2) exhibits hyperchaos, while when c varies in [1.4, 1.7], system (2) presents chaos. When a = 5, b = 4,
c = 1 and m = 1, the parameter k varies in [0.15, 7.8]; the Lyapunov exponent spectra and bifurcation
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diagram are shown in Figure 8c,d. When k varies in [0.15, 1.82], system (2) keeps chaos, and when c
varies in [1.82, 7.8], system (2) exhibits hyperchaos. Comparing the Lyapunov exponents controlled by
parameters c and k, system (2) has relatively robust hyperchaos under the parameters c.

Figure 8. Dynamical behavior of system (2) with a = 5, b = 4, m = 1 under initial conditions [1, −1, −1,
1]: (a,b): Lyapunov exponents and bifurcation diagram of c when k = 0.5, (c,d): Lyapunov exponents
and bifurcation diagram of k when c = 1.

3.3. Amplitude Control

Besides the above two control knobs, the parameter m in the third dimension in system (2) is a
single non-bifurcation knob for amplitude control. To understand this rescaling mechanism, we turn
back to the initial system (2). Here, we take the transformation: x→ hx, y→ hy, z→ z, u→ hu(h > 0) ,
which only leaves an additional coefficient in the third dimension:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = −ay− xz− u,
.
y = −cx + xz,
.
z = −b−mh2xy,
.
u = kx− y.

(5)

indicating that the amplitude of variables x, y and u can be controlled by the parameter m, with the
signal z unchanged. It also has no effect on the frequency of the hyperchaotic chaotic signals.

The output signals are controlled by the non-bifurcation parameter m in system (2). As shown
in Figure 9, the amplitude of the signals x, y and u are rescaled by the non-bifurcation parameter m.
When m = 0.25, the amplitudes of the x, y and u signals are very large. The amplitudes of the x, y and u
signals decrease with an inverse proportion to the parameter m without changing the amplitude of z.
Figure 10 shows the phase trajectories on the planes of x-u and y-z when the control parameter m varies.
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Figure 9. Rescaled variables in system (2) with a = 5, b = 4, c = 1, k = 0.5 under initial condition [1, −1,
−1, 1]: (a) signal x(t), (b) signal y(t), (c) signal u(t), (d) signal z(t).

Figure 10. Phase trajectories of system (2) with a = 5, b = 4, c = 1, k = 0.5 under initial condition [1, −1,
−1, 1]: (a) x-u, (b) y-z.

As we can see in Figure 11a, when the parameter m varies in [0, 5], the average of the absolute
values of state variables x, y and u significantly decreases with an inverse proportion to m, while
the average of signal z basically has no change. The corresponding Lyapunov exponent spectrum of
parameter m varies in [0, 5] are shown in Figure 11b. It can be further proved that the parameter m of
system (2) does not change the frequency of the signals.
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Figure 11. Dynamical evolution of system (2) with a = 5, b = 4, c = 1, k = 0.5 and initial condition [1, −1,
−1, 1]: (a) average values of the absolute value of chaotic signals, (b) invariable Lyapunov exponents.

3.4. Offset Boosting

Since the derivative of a constant is zero, when a constant is added to a variable in a dynamical
system, the system exhibits the same dynamics. To understand this, we turn back to the initial system
(2). Here, we take the transformation: u→ u− n , which does not change the system equation but only
leaves an additional constant in the first equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = −ay− xz− u + n,
.
y = −cx + xz,
.
z = −b−mxy,
.
u = kx− y.

(6)

When changing the variable u with u− n (n is a constant), system (2) gives the same dynamics.
Therefore, if the variable u does not show in the other equations in system (2), the introduced constant
will give a boosting control of the variable u. The chaotic signal u(t) can be revised from unipolar to
bipolar or vice versa.

When a = 5, b = 4, c = 1, k = 0.5 and m = 1, the signal u is boosted from a bipolar to a unipolar one,
which is indicated by the red and blue attractors in Figure 12a. The waveform of chaotic signal u(t) is
shown in Figure 12b. The change of parameter n causes the up and down translation of the signal
u(t). Some monostable systems have relatively large areas of basins of attraction; therefore, the initial
conditions do not need to modify according to the variable which makes the offset control simpler, as
shown in Figure 13.

Figure 12. Typical chaotic oscillation of system (6) with a = 5, b = 4, c = 1, k = 0.5, m = 1 under initial
condition [1, −1, −1, 1]: (a) phase trajectory in the plane of x-u, (b) waveform u(t).

37



Symmetry 2020, 12, 550

Figure 13. Dynamical evolution of system (6) with a= 5, b= 4, c= 1, k= 0.5, m= 1 under initial conditions
[1, −1, −1, 1]: (a) Lyapunov exponent spectra of n, (b) average values of the hyperchaotic signal.

Here the offset of the variable u is boosted along the u-axis according to the constant n. When n is
positive, u is moved in the positive direction, and negative n causes the opposite direction. When the
boosting controller n is changed from −30 to 30, system (6) has the same Lyapunov exponents, which
is shown in Figure 13. The average value of variable u changes linearly with the increase of parameter
n, while others remain unchanged.

3.5. Mixed Geometric Control

More striking, parameter c almost has a positive correlation with the offset of signal z, almost
without changing other signals, and also has a negative correlation with the amplitude of variable x
and positive correlation with the amplitude of variable y. Figure 14 shows the typical phase trajectories
and waveforms. Figure 15 shows the corresponding Lyapunov exponent spectra and average value
of the x, y and z signals. Therefore, all in all, there are five parameters, a, b, c, m and n, rescaling the
system variables, some of which are restricted in a specific region, as shown in Table 2.

Figure 14. Typical chaotic oscillation of system (2) with a = 5, b = 4, k = 0.5, m = 1 under initial conditions
[1, −1, −1, 1]: (a) phase trajectory in x-z, (b) signal z(t), (c) phase trajectory in x-y, (d) signal x(t).
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Figure 15. Dynamical evolution of system (2) with a = 5, b = 4, k = 0.5, m = 1 under initial conditions [1,
−1, −1, 1]: (a) Lyapunov exponent spectra of c, (b) average values of the signals x, y and z.

Table 2. Five independent parameters in system (2) for geometric control.

Parameters Execution Interval Amplitude Control Frequency Control Offset Control

a [6.9, 23.3] positive control with x positive no

b [3, 13] positive control with x,
y, z, u positive no

c [10, 50] positive control with y
negative control with x no z

m [0.1, 5] Positive control with x,
y, u no no

n [−30, 30] no no u

4. Bistability Analysis

In all the above analysis, we did not consider the multistability in each issue to simplify the
demonstration. In fact, for the special structure of symmetry, coexisting attractors exist in their own
basins of attraction in phase space. Specifically, for symmetrical systems, when the symmetry is broken,
a pair of symmetrical coexisting attractors usually show up.

System (2) is a rotational symmetric system, which can be proved by the invariance of
transformation x→ −x, y→ −y, z→ z, u→ −u . Symmetric systems are prone to show multistability
due to the effect of broken symmetry. In general, predicting multistability seems not easy in theory.
A common method to identify multistability is using the basins of attraction based on the ergodic
initial conditions. Alternative methods can resort to non-bifurcation manipulation, in which a linear
transformation is performed on the basin of attraction to generate a dynamical dispersion for a fixed
initial condition, which can reveal different coexisting symmetrical pairs by generating different average
values [40].

When offset boosting is introduced from the variables x and u,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = −ay− (x + d)z− (u− d),
.
y = (z− c)(x + d),
.
z = −b−m(x + d)y,
.
u = k(x + d) − y.

(7)

and the average values of variables x and u will change according to the offset control parameter d.
The coexisting attractors are drawn into different areas of the basin since the basins of attraction of
the coexisting symmetric pair of attractors also change according to the offset parameter, as shown
in Figure 16. In Figure 16a, the averages of variables x and u are revised by the offset parameters,
while the average values of variable y remains the same. From Figure 16b, the invariance of Lyapunov
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exponents indicates the same structure of the symmetric pair of coexisting attractors. The typical phase
trajectories of the symmetrical attractors of the system (2) under a pair of opposite initial conditions
are shown in Figure 17.

Figure 16. Dynamical behaviors of system (7) with a = 5, b = 4, k = 0.5, m = 1 and initial condition [1, −1,
−1, 1], when parameter d varies in [−5, 5]: (a) average values of the signals, (b) Lyapunov exponents.

Figure 17. Coexisting symmetrical chaotic attractors of system (2) with a = 5, b = 4, c = 1.3, k = 0.5, m = 1
with initial conditions IC1 = (1, −1, −1, 1) (green); IC2 = (−1, 1, −1, −1) (red).

To further verify the multistability in system (2), the basin of attraction is shown in Figure 18,
which has the predicted symmetry and complex fractal structure. To show the types of attractors more
clearly and comprehensively, the similar chaotic attractors are presented using an identical color in
the basin of attraction. It can be clearly seen that there are two areas in different colors in the basin.
The corresponding Lyapunov exponents of the two attractors are (0.2137, 0.0623, 0, -1.5761), and the
Kaplan-Yorke dimension is 3.1751.
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Figure 18. Basins of attraction of system (2) with a = 5, b = 4, c = 1.3, k = 0.5, m = 1 in plane of z(0) = −1
and u(0) = 0.

Both chaotic and hyperchaotic attractors show sensitivity to the initial condition, and furthermore,
multistability and hyperchaos make the sensitivity more complicated. From two initial conditions in
the same basin of attraction, even a slight difference results in great divergence in system (2), which is
shown in Figure 19a. While from the two initial conditions in different basins of attraction, the slight
difference leads to two separate phase trajectories, as shown in Figure 19b.

Figure 19. Dynamical behavior of system (2) with a = 5, b = 4, k = 0.5, m = 1 under different initial
condition (a) c = 1; (b) c = 1.3.

5. Circuit Implementation

The analog circuit of system (2) is designed as shown in Figure 20 with the circuit equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
x = − 1

R1C1
y− 1

R2C1
xz− 1

R3C1
u

.
y = − 1

R4C2
x + 1

R5C2
xz

.
z = − 1

R6C3
+ 1

R7C3
xy

.
u = 1

R8C4
x− 1

R9C4
y

(8)
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Figure 20. Circuit schematic of system (8).

Totally, the hyperchaotic circuit consists of four channels, which contain the integration, addition,
subtraction, and nonlinear operations. The circuit is powered by 18V. The variables x, y, z and u
in system (2) are the state voltages of the capacitors in four channels. The corresponding circuit
element parameters can be selected as C1 = C2 = C3 = C4 = 10nF, R2 = R5 = R7 = 4kΩ,
R3 = R4 = R9 = 40kΩ, R1 = 8kΩ, R6 = 100kΩ, R8 = 80kΩ, R10 = R11 = 10kΩ. Here,
a common time scale of 1000 is applied for better demonstration in the oscilloscope. The phase
trajectories in circuit (8) under amplitude control are shown in Figure 21. Circuit experiment proves
that the parameter m rescales the amplitude of x, y and u. Symmetric attractors are shown in Figure 22.

Figure 21. Circuit simulation of system (8) with a = 5, b = 4, c = 1.3, k = 0.5, m = 1 (green), m = 4 (red)
under initial condition [1, −1, −1, 1]: (a) x-u plane, (b) y-z plane.
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Figure 22. Circuit simulation of symmetric attractors in system (8) with a = 5, b = 4, c = 1.3, k = 0.5,
m = 1 under initial conditions IC1= (1, −1, −1, 1)(green), IC2= (−1, 1, −1, −1)(red): (a) x-y plane, (b) x-z
plane, (c) y-z plane, (d) x-u plane.

6. Discussion and Conclusions

A hidden hyperchaotic attractor is found, which has the property of amplitude control and offset
boosting. The proposed system shares a symmetric structure, where one can find an independent knob
for amplitude control. An extra introduced dimension leaves an opportunity for attractor shifting in
phase space by an independent controller. Broken symmetry induced bistability is also well addressed
in this work. All the coexisting symmetric attractors governed by the basin of attraction can be rescaled
by the non-bifurcation parameter. Numerical and circuit simulation agree with each other proving the
properties found in the hyperchaotic system.
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Abstract: In this work, we introduce a chaotic system with infinitely many equilibrium points laying
on two closed curves passing the same point. The proposed system belongs to a class of systems
with hidden attractors. The dynamical properties of the new system were investigated by means of
phase portraits, equilibrium points, Poincaré section, bifurcation diagram, Kaplan–Yorke dimension,
and Maximal Lyapunov exponents. The anti-synchronization of systems was obtained using the
active control. This study broadens the current knowledge of systems with infinite equilibria.

Keywords: chaos; bifurcation; closed curve equilibrium; synchronization

1. Introduction

Chaotic systems have been widely studied and used in various practical fields by mathematicians,
physicists, scientists, and engineers in the past four decades; see [1–4] and the references therein.
Many chaotic systems with different shapes of attractors have been reported, such as chaotic systems
with butterfly attractors (see, e.g., [5]) and systems with multiscroll chaotic attractors (see, e.g., [6]).
Recent developments include some different types of chaotic systems with no equilibrium points
(see, e.g., [7]), with a single stable equilibrium (see, e.g., [8]), with a line of equilibrium points (see,
e.g., [9]), with a circular equilibrium (see, e.g., [10]), with circle and square equilibrium (see, e.g., [11]),
with rounded square loop equilibrium (see, e.g., [12]), and with different closed curve equilibrium
(see, e.g., [13]). Furthermore, it has also been applied in many different areas including information
processing (see, e.g., [14]) and chaotic masking communication (see, e.g., [15]).

According to a new classification of chaotic dynamics [16], there are two kinds of attractors:
self-excited attractors and hidden attractors. Recall that an attractor is referred to as being self-excited if
its basin of attraction intersects any arbitrarily small open neighborhood of an equilibrium, otherwise it
is called a hidden attractor. The basin of attraction for a hidden attractor is not connected with any
unstable fixed point. For example, hidden attractors are observed in the systems without fixed points,
with no unstable fixed points, or with one stable fixed point. A system with infinitely many equilibrium
points can be classified as one system with hidden attractors, for the reason that we do not know which
part of the equilibria may be used to localize the hidden attractors, which should be treated in detail
(see, e.g., [17]). Recent important investigations and developments in the study of chaotic dynamical
systems with practical problems and challenges have been asked to satisfy at least one of the following
criteria as Sprott mentioned in [18]: (S1) The system should credibly model some important unsolved problem
in nature and shed light on that problem; (S2) the system should exhibit some behavior previously unobserved;
(S3) the system should be simpler than all other known examples exhibiting the observed behavior. An important
ongoing research topic is dedicated to discovering and developing new and novel chaotic systems
with different shapes of closed curve equilibrium.
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The main goal of this work is to present a new system with infinitely many equilibrium points
arranged on two closed curves passing the same point, which extends the general knowledge about
such systems. Our new chaotic system (see Section 2 below for details) is meaningful for satisfying
two of the three conditions, (S1), (S2), and (S3), as well as there being a certain novelty value in
this work. In Section 2, some dynamical properties of the proposed system, which have been
studied using a bifurcation diagram, phase portrait, Poincaré section, maximal Lyapunov exponents,
and Kaplan–Yorke dimension, are presented. The ability of anti-synchronization of the new system is
also discussed in Section 3.

2. A New Family with Two Closed Curve Equilibrium

In this work, motivated by the known dynamic systems mentioned above, we study the following
general model given by

u̇ = w,

v̇ = −w f (u, v, w),

ẇ = g(u, v),

(1)

where u, v and w are three state variables, f (u, v, w) and g(u, v) are two nonlinear functions.
The equilibrium points in model (1) can be obtained by calculating

w = 0,

−w f (u, v, w) = 0,

g(u, v) = 0.

(2)

It is obtained that the equilibrium points locate on a curve described by g(u, v) = 0 in the plane
w = 0. In fact, by selecting appropriate functions f and g, some known systems, both chaotic and with
different closed curve equilibrium, can be constructed.

(Example A)

Take f (u, v, w) = αv + βv2 + uw and g(u, v) = u2 + v2 − 1, then model (1) will deduce the
following system

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 + v2 − 1,

(3)

which was introduced and studied by Gotthans, Sprott, and Petrzela [11] in 2016. The chaotic
systems (3) has circle equilibrium (see Figure 1).

Figure 1. The circle-shape of equilibrium points of system (3) in the plane w = 0.
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(Example B)

Let f (u, v, w) = αv + βv2 + uw and g(u, v) = u2 − |uv|+ v2 − 1. Then, model (1) deduces the
following system:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |uv|+ v2 − 1,

(4)

which was established by Wang, Pham, and Volos [19] in 2017. The chaotic system (4) has cloud-shaped
curve equilibrium, as shown in Figure 2.

Figure 2. The cloud-shape of equilibrium points of system (4) in the plane w = 0.

(Example C)

Very recently, Zhu and Du [13] discovered and studied a new family of systems with different
equilibrium (as shown in Figure 3) described by

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = |u|k + |v|k − 1,

(5)

where k ∈N. In fact, the chaotic system (5) can be obtained by putting f (u, v, w) = αv + βv2 + uw and
g(u, v) = |u|k + |v|k − 1 into model (1). In [13], Zhu and Du analyzed the dynamical properties of their
proposed systems using the methods of equilibrium points, eigenvalues, phase portraits, maximal
Lyapunov exponents, and Kaplan–Yorke dimension; see [13] for more details.

Figure 3. Different shapes of equilibrium points of system (5), k = 1, 2, 3, 4, 5, from the interior to the
outside, respectively, in the plane w = 0.
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The results established in [11,13,19] are very important for indicating the existence of chaotic
systems with different shapes of equilibrium points (see Table 1). Note that the first two equations of
the systems proposed in [13,19] are the same as in [11]. The difference is the third equation. When we
choose a different third equation, we can get different systems to display new features, such as different
shapes of equilibrium point and other dynamic properties.

Table 1. Chaotic systems with infinitely many equilibrium points.

System Equilibrium Closed Curve Equilibrium Paper

Gotthans, Sprott, and Petrzela u2 + v2 − 1 = 0 Circle [11]
Zhu and Du |u|k + |v|k − 1 = 0 Circle, Square, etc [13]
Wang, Pham, and Volos u2 − |uv|+ v2 − 1 = 0 Cloud-shaped [19]
New system (see below) u2 − |u|+ |v|+ v2 = 0 Eye-shaped This work

To the best of our knowledge, there is no paper devoted to the study of chaotic dynamical systems
with eye-shaped curve equilibrium. Therefore, this study is an important ongoing research topic.
In this paper, motivated and inspired by this, two functions, f (u, v, w) and g(u, v), are chosen in the
following forms

f (u, v, w) = αv + βv2 + uw,

g(u, v) = u2 − |u|+ |v|+ v2,
(6)

where α and β are two positive parameters. Substituting (6) into system (1), our new system is
described as

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2.

(7)

It is verified that system (7) has infinitely many equilibrium points (u∗, v∗). These equilibrium
points are located on the curve in the coordinate plane described by

(u∗)2 − |u∗|+ |v∗|+ (v∗)2 = 0. (8)

It means that the new system (7) has eye-shaped curve equilibrium as shown in Figure 4. Note that
the eye-shaped curve is different from some other shapes reported, such as line, square, circle,
or cloud-shaped [11,19], and is symmetric about the u-axis, v-axis, and origin. Furthermore, system (7)
has hidden attractors [17]. Above all, investigating system (7) will strengthen our understanding of
hidden attractors.

Figure 4. The eye-shape of equilibrium points of system (7) in the plane w = 0.
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For α = 5, β = 30, and initial conditions (0.06, 0.01, 0.01), the new system (7) has chaotic
attractors (see Figures 5 and 6). For the simulation, we used the Wolf et al. method to calculate
the Lyapunov exponents [20], the time of computation was 1000, and we obtained the Lyapunov
exponents (0.0424, 0,−0.2484). The method of Wolf et al. is rooted conceptually in a previously
developed technique that could only be applied to analytically defined model systems to monitor
the long-term growth rate of small volume elements in an attractor. In addition, the corresponding
Kaplan–Yorke dimension of system (7) is 2.1707. Poincaré return maps are often used to transform
complicated behavior of a dynamic system in phase space to discrete maps in a lower dimensional
space to reveal the complicated behaviors. Poincaré return maps corresponding with phase portraits
in Figure 6 are presented in Figure 7; there are some dense points in the Poincaré section, and it can be
determined that the motion is a chaotic state. These results reveal that the system is chaotic.

Figure 5. 3D view of the chaotic attractor and eye-shape of equilibrium points located in the plane
w = 0 of system (7) for α = 5, β = 30.

(a) (b) (c)

Figure 6. The projection of the trajectory of system (7) in (a) u-v plane, (b) u-w plane, (c) v-w plane for
α = 5, β = 30.

(a) (b) (c)

Figure 7. The Poincaré section of system (7) for (a) z = 0.2, (b) y = 0.2, (c) x = −0.2 for α = 5, β = 30.
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Gradually changing the value of the parameter β or α, the bifurcation plot of the system can be
discovered in Figure 8. Figures 9 and 10 reveal the diagram of Maximal Lyapunov Exponents and the
diagram of Kaplan–Yorke dimension of system (7) for α = 5, β ∈ [28, 48], respectively.

(a) (b)

Figure 8. Bifurcation plot of system (7) for (a) α = 5, β ∈ [28, 48] and (b) β = 30, α ∈ [3, 5.5].

β

Figure 9. Maximal Lyapunov Exponents spectrum of system (7) for α = 5, β ∈ [28, 48].

β

Figure 10. Kaplan–Yorke dimension of system (7) for α = 5, β ∈ [28, 48].

The new system with eye-shaped equilibrium has periodic behavior in the range 36 ≤ β ≤ 48.
For instance, the system can display period-1 behavior for α = 5, β = 45, period-2 behavior for
α = 5, β = 38, and period-4 behavior for α = 5, β = 36 (see Figure 11a–c, respectively).
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(a) (b) (c)

Figure 11. Periodic behavior of system (7) in the u-w plane: (a) period-1 (β = 45), (b) period-2 (β = 38),
(c) period-4 (β = 36).

3. Anti-Synchronization of New Systems

Synchronization of chaos is a phenomenon that may occur when two, or more, dissipative chaotic
systems are coupled. Since the pioneering work of Pecora and Carroll related to synchronization
in chaotic systems [21], some methods of chaotic synchronization have been presented related to
complete, generalized, lag, and imperfect phase synchronization [22]. Many papers on applications
of chaos synchronization for cryptographic [23], kinetics [24], physiology [25], neural networks [26],
and economics [27] have appeared.

In the following, we consider the anti-synchronization of the systems with eye-shaped equilibrium
related to the driver-response system. The driver system with eye-shaped closed curve equilibrium is
as follows:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2,

where u, v, and w are are three state variables, and the value of α = 5, β = 30.
The response system is described as

u̇1 = w1 + h1,

v̇1 = −w1(αv1 + βv2
1 + u1w1) + h2,

ẇ1 = u2
1 − |u1|+ |v1|+ v2

1 + h3,

(9)

where the control is h = [h1, h2, h3]
T .

In order to reveal the difference between the driver system (7) and the response system (9),
the state errors can be defined as

e1 = u + u1,

e2 = v + v1,

e3 = w + w1,

(10)

and we obtain

ė1 = u̇ + u̇1,

ė2 = v̇ + v̇1,

ė3 = ẇ + ẇ1.

(11)
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Combining (7), (9), (10), and (11), we get the state errors system

ė1 = e3 + h1,

ė2 = −w(αv + βv2 + uw)− w1(αv1 + βv2
1 + u1w1) + h2,

ė3 = u2 − |u|+ |v|+ v2 + u2
1 − |u1|+ |v1|+ v2

1 + h3.

(12)

We choose the control proposed by

h1 = −e3 − k1e1,

h2 = w(αv + βv2 + uw) + w1(αv1 + βv2
1 + u1w1)− k2e2,

h3 = −u2 + |u| − |v| − v2 − u2
1 + |u1| − |v1| − v2

1 − k3e3,

(13)

where ki > 0 (i = 1, 2, 3) are the positive gain constants used to control the rate of anti-synchronization.
By substituting (12) into (11), we get the state errors system

ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.

(14)

Obviously, the eigenvalues (−k1,−k2,−k3) of the Jacobian matrix of the state errors system are
negative. Then, the complete anti-synchronization between the driver system (7) and the response
system (9) is proved.

In numerical simulation, we assume the initial values of the driver system (7) and the response
system (9) to be

u(0) = 0.06,

v(0) = 0.01,

w(0) = 0.01,

u1(0) = −0.20,

v1(0) = −0.09,

w1(0) = 0.07.

(15)

Then, the initial values of the state errors system (12) are

e1(0) = 0.40,

e2(0) = −0.08,

e3(0) = 0.08.

(16)

The positive gain constants here are selected as k1 = k2 = k3 = 3. It is obvious in Figure 12 that
there exists anti-synchronization of the respective states of the new systems with two closed curve
equilibrium (7) and (9). The time history of the synchronization errors e1, e2, e3 is shown in Figure 13
which plots the anti-synchronization of the driver-response system.
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(a) (b) (c)

Figure 12. Anti-synchronization of the driver-response system: (a) u, u1, (b) v, v1, (c) w, w1, the driver
system (dashed lines), the response system (solid lines).

(a) (b) (c)

Figure 13. Time history of the anti-synchronization of the state errors system: (a) e1 − t, (b) e2 − t,
(c) e3 − t.

4. Conclusions

In this work, we propose and study the following new system:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2,

with eyed-shaped equilibrium points which are located on two closed curves passing the same point.
In Section 2, some dynamical properties of the proposed system are presented, which were investigated
using bifurcation diagram, phase portrait, maximal Lyapunov exponents, and Kaplan-Yorke dimension.
Furthermore, the anti-synchronization of systems is obtained by using active control in Section 3.
This study will broaden the current knowledge of chaotic systems with infinitely many equilibria.
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Abstract: This paper investigates the chaotic behavior of a modified jerk circuit with Chua’s diode.
The Chua’s diode considered here is a nonlinear resistor having a symmetric piecewise linear
voltage-current characteristic. To describe the system, we apply fundamental laws in electrical circuit
theory to formulate a mathematical model in terms of a third-order (jerk) nonlinear differential
equation, or equivalently, a system of three first-order differential equations. The analysis shows that
this system has three collinear equilibrium points. The time waveform and the trajectories about
each equilibrium point depend on its associated eigenvalues. We prove that all three equilibrium
points are of type saddle focus, meaning that the trajectory of (x(t), y(t)) diverges in a spiral form but
z(t) converges to the equilibrium point for any initial point (x(0), y(0), z(0)). Numerical simulation
illustrates that the oscillations are dense, have no period, are highly sensitive to initial conditions,
and have a chaotic hidden attractor.

Keywords: chaos theory, electrical circuit analysis, jerk circuit, Chua’s diode, system of differential
equations, hidden attractor.

PACS: 02.10.Ud; 02.30.Hq; 05.45.Pq; 84.32.-y

1. Introduction

Nowadays, chaos theory is an important subject dealing with physics, mathematics,
and engineering. A chaos system is a nonlinear dynamical system that has a non-periodic
oscillation of waveforms. It is sensitive to initial conditions and has the self-similarity property.
A significant development of chaos theory is the discovery of the celebrated Chua’s system by
L.O. Chua in 1983. This system was described by a set of three first-order ordinary differential
equations (ODEs). Chua’s discovery has encourged others to look for more chaotic systems,
for example, systems of the type Rössler, jerk [1,2], circulant [3,4], hyperjerk [5,6], and hyper
chaotic [5,7,8]. In addition, several chaotic circuits have been investigated, for example, Lorenz-based
chaotic circuits [9,10], Chua’ circuits [11–14], Wien-type chaotic oscillator [15], and chaotic jerk
circuits [16–19]. Chaos theory has increasingly attracted much attention due to its wide
applications in physical/natural/health sciences and engineering, for example, communication
systems, weather forecasting, image encryption [20], celestial mechanics [21], population models [22],
hydrology [23], cardiotocography [24], and dynamical disease [25]. Chaos theory as formulated for
physical dynamic systems turns out to be useful in social science. For example, chaos theory can be
applied to a simple nonlinear model concerning arms race; see, for example [26,27]. The works [28,29]
substantiate the chaotic phenomena in dynamic love affair models.

L.O. Chua [14] investigated the chaotic theory for a simple famous circuit in Figure 1,
known nowadays as Chua’s circuit. The circuit consists of only resistors, capacitors, and a nonlinear
resistor. The nonlinear resistor, also called Chua’s diode, consists of many op-amps. Many researchers

Symmetry 2020, 12, 1803; doi:10.3390/sym12111803 www.mdpi.com/journal/symmetry
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discussed several ways to modify the classical Chua’s circuit to a more complicated circuit having
chaotic phenomenon. Morgul [30] used an inductorless realization of a Chua’s diode consisting
of the Wien-bridge oscillator, coupled in parallel with the same nonlinear resistor used in the
classical Chua’s diode. Numerical experiments illustrated similar chaotic behavior. Aissi and
Kazakos [31] modified the Chua’s circuit by replacing the op-amps in Chua’s diode with RC op-amps.
Stouboulos et al. [32] modified the oscillator so that it consists of a nonlinear resistor and a negative
conductance, demonstrating the birth and catastrophe of the double-bell strange attractor for different
values of frequency. Kyprianidis [33] investigated the anti-monotonicity of the Chua’s circuit, which is
the creation of forward period-doubling bifurcation sequences followed by reverse period-doubling
sequences. The work [34] of Kyprianidis and Fotiadou shows a possible way to replace the piecewise
linear characteristic of the Chua’s diode with a smooth cubic polynomial. Recently, the work [35]
investigates chaotic behavior of the classical Chua’s circuit with two nonlinear resistors. The existence
of two nonlinear resistors in that case implies that the system has three equilibrium points.

Figure 1. Chua’s circuit [14].

In 2011, Sprott [19] studied a simple chaotic jerk circuit, as shown in Figure 2, consisting of
only five electronic components: two capacitors, an inductor, an adaptive resistor and a nonlinear
resistor. His work shows a chaotic behavior of the trajectories around the equilibriums of the system,
and launches a quest for other circuits that chaotically oscillate. Indeed, this circuit can be formulated
into a third-order ODE consisting of a nonlinear term, called a “jerk”or the third-order derivative of
a variable.

Figure 2. A chaotic jerk circuit [19].
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According to much recent interest about chaotic oscillators based on jerk equations, this paper
investigates the chaotic behavior of a new chaotic jerk circuit. We modify the chaotic jerk circuit in [19]
so that there is a Chua’s diode connected parallel to the nonlinear resistor as in Figure 3. The existence of
Chua’s diode discriminates the proposed system to the system [19]. The voltage-current characteristic
of the Chua’s diode satisfies a symmetric piecewise linear relation. To describe our system
(see Section 2), we apply fundamental laws in electrical circuit theory to formulate a mathematical
model in terms of a third-order (jerk) nonlinear ODE, or a system of three first-order ODE. The analysis
in Section 3 shows that this system has three collinear symmetric equilibrium points. The time
waveform about each equilibrium point depends on its associated eigenvalues. We prove that all three
equilibrium points are of type saddle focus node, meaning that the trajectories of (x(t), y(t)) diverge
in a spiral form but z(t) converges to the equilibrium point for any initial value (x(0), y(0), z(0)).
Numerical simulation in Section 4 illustrates the chaotic phenomenon, including time waveforms,
trajectories about each equilibrium point, effects of changing initial points, and existence of a chaotic
hidden attractor. Finally, we summarize the paper in Section 5. In particular, we compare our work
to [14,19].

Figure 3. A modified chaotic jerk circuit with Chua’s diode.

2. Formulation of a Modified Chaotic Jerk Circuit with Chua’s Diode to a System of ODEs

In this section, we formulate a mathematical model for a modified chaotic jerk circuit with Chua’s
diode in terms of a system of ODEs concerning a piecewise linear function and exponential term.
We divide the circuit into four parts, as illustrated in Figure 3. Our analysis is based on fundamental
theory of electrical circuit analysis such as Ohm’s law, Kirchhoff’s current law (KCL) and Kirchhoff’s
voltage law (KVL).

For Part 1, using KCL and the current-voltage equation for the capacitor, we have

vR1

R1
= iR1 = iC1 = C1

dvC1

dt
= C1v̇C1 .

Now, since vR1 = vC2 , we obtain v̇C1 = vC2 /(R1C1). Without loss of generality, we may normalize
the value of R1C1 to be 1 ms and we thus have

v̇C1 = vC2 . (1)

Similarly, for Part 2 we reach v̇C2 = vC3 /(R2C2). Setting the time constant R2C2 := 1 yields

v̇C2 = vC3 . (2)
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For Part 3, we have by KCL that iR3b + iNR + iD = iR3a + iC3 . It follows that

v̇C3 = − vC1

R3bC3
− vC3

R3aC3
+

iNR

C3
+

iD
C3

.

Setting the time constants R3aC3 and R3bC3 to be 1ms, we get

v̇C3 = −vC1 − vC3 + R3a(iNR + iD). (3)

The circuit in Figure 4 is a more complicated one since it consists of two nonlinear resistors.
For the nonlinear resistor on the left, we have by Ohm’s law that vNR = iR3 R3, ve = (R2c + R3c)iR3

and vNR − ve = ixR1, where ve is the voltage of the op-amp on the left hand side. Combining these
three equations to get vNR = ixRx where

Rx = −R1cR3c

R2c
.

Similarly, for the nonlinear resistor on the right, we obtain that vNR = iyRy where

Ry = −R4cR6c

R5c
.

Using KCL at node c, we have iNR − ix − iy = 0. Then the current iNR satisfies the relation

vNR = iNR(Rx + Ry).

However, as pointed out in [19], the behavior of iNR depends on the voltage vC1 . Indeed,
when ve < v f , the graph of iNR with respect to vC1 is as follows:

From Figure 5, we have

iNR =

(
1

Rx
+

1
R4c

)
vC1 +

1
2

(
1

Ry
− 1

R4c

) ( ∣∣∣∣∣vC1 +
v f ,max

v f
vC1

∣∣∣∣∣−
∣∣∣∣∣vC1 −

v f ,max

v f
vC1

∣∣∣∣∣
)

, (4)

where v f ,max is the maximum voltage at the node f . The current iD through the diode D depends on
the time-derivative of the voltage vC1 (see, e.g., [18]) as follows:

iD = k2T2ev̇C1
/kT ,

where k is the Boltzmann constant and T is the absolute temperature of the P-N junction. Let us denote
α := kT. Of particular interest is that the chaos persists when α tends to zero. Since

lim
α→0+

α2ey/α = ∞.

At Part 4, we use KCL to analyze this part and we get iR4b = iR4a . From Parts 2 and 4, we have by
Ohm’s law that vC2 /R4b = vR4a /R4a and, thus, the second capacitive voltage is

vC2 =
R4b
R4a

vR4a .

For convenience, denote

m0 = R3a

(
1

Rx
+

1
Ry

)
, m1 = R3a

(
1

Rx
+

1
R4c

)
.
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Figure 4. Two nonlinear resistors in Chua’s circuit.

Figure 5. I-V characteristic of nonlinear resistors.

Let us rescale the variables vC1 , vC2 , vC3 to new variables x, y, z so that the current iNR is reduced to

g(x) = m1x + 0.5(m0 − m1) (|x + 1| − |x − 1|) , (5)

so that the characteristic in Figure 5 becomes that in Figure 6.
Thus, the third-order (jerk) system can be described by the group of Equations (1)–(3),

or equivalently, the following system of three first-order ODEs:

ẋ = y,

ẏ = z,

ż = −x − z + g(x) + α2e
y
α .

(6)
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Figure 6. Changing scales of I-V characteristic of nonlinear resistors.

3. Analysis for Chaotic Behavior of the System

In order to analyze the behavior of the dynamical system (6), we need to find all its equilibrium
points. Note that Figure 6 illustrates how the three-segment piecewise function g(x) depends on the
range of x. The investigation of equilibrium points is thus divided into three cases in Sections 3.1–3.3.
We then prove that each equilibrium point is of type saddle focus in Section 3.4. In Section 3.5,
we describe how to find an initial point to localize a hidden attractor of the system.

3.1. Case 1: −1 < x < 1

From Equation (5), we have g(x) = m0x. At the equilibrium point, we get y = ẋ = 0, z = ẏ = 0, and

−x − z + m0x + α2ey/α = ż = 0.

Thus, the equilibrium for Case 1 is given by E1 = (x1, y1, z1) = ( α2

1−m0
, 0, 0). When α tends to 0,

the equilibrium point reaches the origin (0, 0, 0).
The system (6) can be put in the vector form

X′(t) = AX(t) + B(t), (7)

where

X(t) =

⎡
⎢⎣x(t)

y(t)
z(t)

⎤
⎥⎦ , B(t) =

⎡
⎢⎣ 0

0
α2ey(t)/α

⎤
⎥⎦ , A =

⎡
⎢⎣ 0 1 0

0 0 1
m0 − 1 0 −1

⎤
⎥⎦ .

3.2. Case 2: − v f
ve

� x � −1

In this case, we have g(x) = m1x − m0 + m1. At the equilibrium point, we obtain y = ẋ = 0,
z = ẏ = 0, and

−x − z + m1x − m0 + m1 + α2ey/α = ż = 0.
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Thus, the equilibrium for Case 2 is given by

E2 = (x2, y2, z2) = (
α2 − m0 + m1

1 − m1
, 0, 0).

When α → 0, we have (x2, y2, z2) reaches the point (−m0+m1
1−m1

, 0, 0). The system (6) can be put in
the vector form (7) where

A =

⎡
⎢⎣ 0 1 0

0 0 1
m1 − 1 0 −1

⎤
⎥⎦ , B(t) =

⎡
⎢⎣ 0

0
−m0 + m1 + α2ey(t)/α

⎤
⎥⎦ .

3.3. Case 3: 1 � x � v f
ve

We have g(x) = m1x + m0 − m1 and, thus, the equilibrium point is given by

E3 = (x3, y3, z3) = (
α2 + m0 − m1

1 − m1
, 0, 0).

When α → 0, we have (x3, y3, z3) reaches (m0−m1
1−m1

, 0, 0). We also have the vector form (7) where
the Jacobian matrix A is the same as that in the previous case, and

B(t) =

⎡
⎢⎣ 0

0
m0 − m1 + α2ey(t)/α

⎤
⎥⎦ .

Thus, the system (6) has three colinear equilibrium points on the X-axis. Note that when
α → 0, we have that the points E2 and E3 are opposite to each other with respect to the origin
E1. This observation shows the symmetry of the equilibrium points.

3.4. Type of Equilibrium Points

Recall the following theorem:

Theorem 1 (see, e.g., [36]). Let A(t) = [aij(t)] ∈ Rn×n be a continuous matrix-valued function on an interval
I (i.e., each aij(t) is a real-valued continuous function on I). Let B(t) ∈ Rn be a continuous vector-valued
function on I. Then the following initial value problem

X′(t) = A(t)X(t) + B(t), X(0) = X0,

has a unique solution X(t) ∈ Rn on the interval I.

This theorem guarantees the Equation (7) has a unique solution X(t) on any time interval
(note that, in this case, A is a constant matrix). Thus in all cases of x, given an initial
point (x(0), y(0), z(0)), the trajectory of (x(t), y(t), z(t)) is uniquely determined. The trajectory
of (x(t), y(t), z(t)) in a neighborhood of each equilibrium point depends on the signs of the
real/imaginary parts of the eigenvalues of the coefficient matrix A.

For Case 1: −1 < x < 1, we have the characteristic equation

det (λI − A) = λ3 + λ2 + 1 − m0 = 0.
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Since all parameters of the equation are real and the equation degree is odd, we have that a root
(says λ1) is real and other roots are a conjugate pair of complex numbers. Note that m0 < 0 from
Figure 6. Now, the product of all roots (eigenvalues) satisfies

λ1λ2λ3 = m0 − 1 < 0.

Since (λ2, λ3) is a complex conjugate pair, the real root λ1 must be negative. Write λ2 = a + ib
and λ3 = a − ib, where a, b ∈ R. Since the sum of products of two roots of the cubic equation satisfies

λ1λ2 + λ2λ3 + λ3λ1 = 1,

we get

a2 + 2λ1a + b2 = 1.

Solving this quadratic equation to obtain

a = −λ1 ±
√

λ2
1 − b2 − 1.

Since λ1 < 0 and
√

λ2
1 − b2 − 1 < |λ1|, we get a > 0. Hence, an eigenvalue is a negative real and

two other eigenvalues are a conjugate pair of complex numbers having positive real parts. Therefore,
this equilibrium is a saddle focus, and the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t)
converges to the equilibrium point for any initial point (x(0), y(0), z(0)).

For Cases 2 and 3, the Jacobian matrices are the same and we have the characteristic equation

det (λI − A) = λ3 + λ2 + 1 − m1 = 0.

Since m1 < 0 (from Figure 6), we obtain the same conclusion as in Case 1, i.e., the equilibrium
point is a saddle focus.

We summarize the above discussion in the following theorem:

Theorem 2. The system (6) has three equilibrium points, each of which is of type saddle focus. Moreover,
the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t) converges to the equilibrium point for any initial
point (x(0), y(0), z(0)).

Since the equilibrium points are saddle foci, our system has chaotic behavior.

3.5. Localization of a Hidden Attractor of The System

Recall that an oscillation in a dynamical system can be numerically localized if an initial condition
from its neighborhood leads to asymptotic behavior. Such an oscillation is known as an attractor,
and its attracting set is called the basin of attraction. If the basin of attraction intersects a small
neighborhood of an equilibrium point, then such attractor is said to be self-excited; otherwise it is
called a hidden attractor. The hidden attractor was discovered in [37] for a generalized Chua’s circuit,
and then was discovered in the classical Chua’s circuit [38].

In order to find a hidden attractor of the system, we will find a suitable initial point
(x(0), y(0), z(0)) so that our system will have chaos. First, let us write the system (6) into a first-order
vector differential equation

X′(t) = AX(t) + ψ(rTX(t))q (8)

where X(t) = [x(t) y(t) z(t)]T ∈ R3, A ∈ R3×3, r ∈ R3, q ∈ R3, and q : R → R is a continuous
piecewise-differentiable function. Here, (·)T denotes the transposition operation. To find a periodic
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oscillation, we introduce a coefficient k of harmonic linearization so that the matrix A0 = A + kqrT of
the linear system

X′(t) = A0X(t)

has a pair of pure-imaginary eigenvalues ±iω0 for some ω0 > 0, and the rest of the eigenvalues have
negative real parts. Then the system (8) has a periodic solution X(t) such that

σ(t) := rTX(t) ≈ a cos ω0t,

where the amplitude a is a solution of the integral equation

∫ 2π/ω0

0
(ψ(a cos ω0t))a cos ω0t − k(a cos ω0t)2 dt = 0.

Denoting φ(σ) = ψ(σ)− kσ, we can write Equation (8) to

X′(t) = A0X(t) + qφ(rTx).

Let us change φ(σ) to εφ(σ) where ε is a small positive number, and investigate a periodic solution
of the system

X′(t) = A0X(t) + εqφ(rTx). (9)

Let us introduce the describing function

Φ(a) =
∫ 2π/ω0

0
φ(a cos (ω0t)) cos (ω0t) dt.

We make an invertible linear transformation X(t) = SY(t) where S ∈ R3×3 is a nonsingular
matrix. The following theorem tells us how to choose an initial point in order to get a hidden attractor
of the system.

Theorem 3 ([39]). If there is a positive number a0 such that Φ(a0) = 0 and b1Φ′(a0) < 0, then the system (9)
has a stable periodic solution with initial point

X(0) = S[y1(0) y2(0) y3(0)]T

where y1(0) = a0 + O(ε), y2(0) = 0, and y3 = On−2(ε) with period O(ε) + 2π
ω0

.

4. Numerical Experiment

In this section, we provide a numerical experiment to illustrate the chaotic behavior of the
proposed circuit via MATLAB. Consider the circuit in Figure 3 with the following parameters:
R1 = 1 kΩ, R2 = 200 Ω, R3a = 500 Ω, R3b = 500 Ω, R4a = 1 kΩ, R4b = 1 kΩ, R1c = 250 Ω,
R2c = 250 Ω, R3c = 500 Ω, R4c = 750 Ω, R5c = 180 Ω, R6c = 400 Ω, C1 = 1 μF, C2 = 5 μF,
C3 = 2 μF, m0 = −0.1768, m1 = −1.1468, and α = 0.026077. We set the initial condition to be
X(0) = (x(0), y(0), z(0)) = (0,−0.7, 0).

Remark 1. In order to obtain the chaotic phenomenon, one can adjust some parameter values of electronics
devices in the circuit so that the eigenvalues of the Jacobian matrix satisfy the condition for the type of equilibrium
point (see Section 3.4).
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4.1. Mathematical Analysis of the System

For the case of −1 < x < 1, the equilibrium points of the system are given by

E1 = (
α2

1 − m0
, 0, 0) = (5.77838 × 10−4, 0, 0).

In this case, we reach the system X′(t) = AX(t) + B(t) where

A =

⎡
⎢⎣ 0 1 0

0 0 1
−1.1768 0 −1

⎤
⎥⎦ , B(t) =

⎡
⎢⎣ 0

0
α2ey(t)/α

⎤
⎥⎦ .

The eigenvalues of the system associated with the equilibrium point E1 are the solutions of the
cubic equation

λ3 + λ2 + 1.1768 = 0.

We get the following eigenvalues

λ1 = −1.51364, λ2 = 0.25682 + 0.84351i, λ3 = 0.25682 − 0.84351i.

For the case −v f /ve � x � −1, we can obtain the equilibrium point

E2 = (
α2 − m0 + m1

1 − m1
, 0, 0) = (−0.969422, 0, 0)

associated with eigenvalues

λ1 = −1.72307, λ2 = 0.36154 + 1.05603i, λ3 = 0.36154 − 1.05603i.

For the case 1 � x � v f /ve, the system has the equilibrium point E3 = (0.452152, 0, 0). Note that
E2 and E3 have the same eigenvalues since their associated matrices are the same.

From the signs of real/imaginary parts of the associated eigenvalues, we conclude that the three
equilibrium points E1, E2, E3 are saddle foci. Hence, the proposed circuit has a chaotic behavior.

4.2. Time Waveforms and Trajectories of The System

The time waveforms of x(t), y(t) and z(t) are reported in Figures 7–9, where the time interval is
in ms. We see that the oscillations in the figures are non-periodic.

Figure 7. The time waveform of x(t).
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Figure 8. The time waveform of y(t).

Figure 9. The time waveform of z(t).

The trajectories of x(t), y(t), z(t) in 2D and 3D are numerically simulated in Figures 10–13. We see
that the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t) converges to the equilibrium point.
The trajectories are dense and seem to have no periodic. Thus, chaotic behavior occurs in the modified
jerk circuit with Chua’s diode. Moreover, the attractor of the system is shown by the blue lines in
Figures 10–13. From the 3D plot in Figure 13, we see that the oscillation does not connect with the
equilibrium points E1, E2, E3, thus the system has a hidden attractor.

Figure 10. The trajectories of (x(t), y(t)) in 2D.
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Figure 11. The trajectories of (x(t), z(t)) in 2D.

Figure 12. The trajectories of (y(t), z(t)) in 2D.

4.3. Effects of Changing Initial Points

Now, we investigate the effect of changing initial points. First, we compare the system
behavior when initial values have small changes in the X-axis, namely, I1 = (0,−0.7, 0) and
I2 = (0.0001,−0.7, 0); see Figure 14. Next, we consider the case of small changes in the Y-axis,
namely, I1 = (0,−0.7, 0) and I2 = (0,−0.7001, 0); the resulting simulation is shown in Figure 15.
Finally, the effect of small changes in the Z-axis of the initial point, namely, I1 = (0,−0.7, 0) and
I2 = (0,−0.7, 0.0001) is illustrated in Figure 16.

From Figures 14–16, we see that a small difference in initial points leads to a big difference in
oscillations of x(t), y(t), z(t). Thus our dynamical system is highly sensitive to initial conditions,
a characteristic of a chaotic system.
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Figure 13. The trajectories of (x(t), y(t), z(t)) in 3D.

Figure 14. Effects of changing initial points in X-axis from I1 = (0,−0.7, 0) to I2 = (0.0001,−0.7, 0).

Figure 15. Effects of changing initial points in Y-axis from I1 = (0,−0.7, 0) to I2 = (0,−0.7001, 0).
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Figure 16. Effects of changing initial points in Z-axis from I1 = (0,−0.7, 0) to I2 = (0,−0.7, 0.0001).

5. Conclusions

We modify a jerk circuit with Chua’s diode, and investigate its chaotic properties. This system
can be mathematically described by a system of ordinary differential equations with a piecewise linear
function and exponential term. The analysis shows that this system has three collinear equilibrium
points. The time waveform about each equilibrium point depends on its associated eigenvalues.
Indeed, all three equilibrium points are of type saddle focus, meaning that the trajectories of x(t)
and y(t) diverge in a spiral form but z(t) converges to the equilibrium point for any initial point
(x(0), y(0), z(0)). Numerical simulation illustrates that the oscillations are dense, have no period,
are highly sensitive to initial conditions, and has a chaotic hidden attractor. Table 1 shows the
comparison between three chaotic systems: the proposed system in this paper and the two existing
systems in [14,19]. One of the advantages of the proposed system is a higher sensitivity to initial
conditions. Therefore, the proposed system enables an alternative model for chaotic theory.

Table 1. The comparisons of a modified chaotic jerk circuit and other related systems.

No. Terms of Comparison Ref. [19] Ref. [14] This Paper

1 Number of equilibrium points 1 3 3

2 Number of eigenvalues 3 9 9

3 Types of trajectories 1 saddle focus node
1 stable focus node and

2 saddle foci 3 saddle foci

4 Number of components 14 5 15

5 Positions of equilibrium points a point 3 symmetric points 3 symmetric points

6 Jerk-circuit type yes no yes

7 Existence of Chua’s diode no yes yes

8 Existence of chaotic attractors yes yes yes

9 Sensitivity to initial conditions
√√ √ √√√

10 Nonlinear system yes yes yes
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Abstract: This manuscript introduces two new chaotic oscillators based on autonomous Boolean
networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require
a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs
do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov
exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators,
is insensitive to incommensurate time-delays paths. As a result, they can be implemented using
distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations
verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is
also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors
of those implementations are analyzed using time-series, time-lag embedded attractors, frequency
spectra, Poincaré maps, and Lyapunov exponents.

Keywords: chaotic oscillator; lyapunov exponents; poincare map; integrated circuit; fpga; time-delay;
boolean networks

1. Introduction

Chaos behavior is one of the most studied topics in nonlinear dynamics in recent years. Such
interest relies mainly on its extreme sensitivity to the initial conditions. From a real-world application
point of view, the random-like patterns generated by chaotic oscillators are currently pointed out
as the core for obtaining significant engineering applications, for instance, secure-communications
schemes [1–7]; radars [8–10]; sonars [11,12]; liquid mixing [13,14]; adaptive logic gates [15,16]; true
random number generators (TRNGs) [17,18]; collective phenomena in physics and biology [19,20];
navigation and control of autonomous mobile robots [21–23]; Internet of Things [24–29]; and so forth.
Thereupon, the cutting edge chaos-based applications may need reliable, robust, compact, and faster
chaos oscillators.

A remarkable solution to obtain chaotic behavior consists of exploiting the delay paths in
autonomous Boolean networks (ABNs) [30–34]. Kauffman proposed the Boolean networks in 1969 as a
mathematical framework for studying gene regulatory networks. The mathematics describing ABNs
has shown that they could display aperiodic patterns if the Boolean functions have instantaneous
response times, the link time-delays are incommensurate, and their nodes perform asymmetric Boolean
operations, such as the combination of logic exclusive-OR (XOR) and XNOR functions.

In the context of ABNs, deterministic chaos, also known as Boolean chaos, was initially
demonstrated by using Boolean functions implemented with electronic logic circuits (logic gates

Symmetry 2020, 12, 506; doi:10.3390/sym12040506 www.mdpi.com/journal/symmetry
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and field-programmable gate arrays FPGAs) [10,35–38]. At circuit level, the basic principle for
obtaining Boolean chaos depends on three main characteristics; the asymmetry between the logic
states, the short-pulse rejection phenomenon, and, most importantly, the degradation effect [30,31].

As is well-known, the incommensurate delay between two different nodes of an ABN is the
critical parameter to obtain chaotic behaviors since it induces the degradation effect [30–34]. Rosin et al.
analyzed two ABNs, one composed of a logic XOR function and two delays τnk and τnl , and the other
one with a logic XNOR function and three delays τnk , τnl , and τnm [38]. They showed that Boolean
chaos arises in an FPGA-based implementation when the delays for each of the three delay paths
are τnk ≥ 2.8 ns, τnl ≥ 1.7 ns, and τnm ≥ 0.56 ns, respectively. To attain the time-delays, they required
18 extra logic NOT gates to connect the nodes of ABN. Besides, if those time-delays reduce below the
minimum, the ABN does not show chaos and evolves to periodic oscillations only, as was analyzed
in Ref. [35]. Park et al. presented an ABN composed of a logic XOR gate and ring oscillator [39].
The proposed logic circuit synthesized on an application-specific IC (ASIC), but the design is not
straightforward because it also demands specific incommensurate delays in the feedback path to
observe Boolean chaos.

Based on the discussion mentioned above, we note a possible benefit of using ABNs can be to get
Boolean chaos oscillators with relatively high oscillation frequencies and small form factors since they
depend on logic functions only. However, we also found that the proposed ABNs have high sensitivity
to the time-delay among network nodes for generating chaos behavior. From a practical point of view,
that condition is very complicated to satisfy since the time-delays are heavily related to the electronics
technology chosen for implementation. Due to the electronic logic gates being heterogeneous, they do
not have the same intrinsic time-delay. As a consequence, the dynamical behaviors of the ABN can be
affected by placing the oscillator on a different area into an integrated circuit or FPGA. In conclusion,
the previously reported Boolean chaos oscillators may not be suitable for physical realizations with
multiple hardware approaches.

In this paper, we propose two ABNs with three and two nodes, respectively. The nodes perform
the logic XOR and XNOR operations. This asymmetric approach avoids fixed points in the ABNs,
and therefore, their dynamics can converge to chaotic oscillations. By applying the Lyapunov exponent
method, we experimentally demonstrate that the Boolean chaos oscillators do not require specific
incommensurate time-delays to show chaotic behaviors. Indeed, the Boolean chaos was observed
under a wide range of the time-delays for the ABNs nodes. We prove our findings by implementing
the proposed ABNs using various logic electronic circuits without any modification neither of the
proposed networks nor adding additional path delays. Three discrete physical realizations using
commercial logic gates, a Generic Array Logic (GAL), and FPGA are presented. Besides, we design an
integrated circuit realization at 180nm fabrication technology.

The structure of the manuscript is as follows. Section 2 introduces the two ABNs and gives the
mathematical demonstrations of their equilibrium points. Section 3 shows the analysis based on the
Lyapunov exponents to determine the insensibility to time-delays. Section 4 presents the Lyapunov
exponents for three different discrete implementations to prove that the ABNs are not affected by
the technology. Section 5 introduces a straightforward methodology to design an integrated circuit
of the Boolean chaos oscillators. Time-series, phase space reconstruction, Lyapunov exponents, and
Poincare maps validate the observed chaos behavior. Finally, the last section concludes the paper.

2. Mathematical Preliminaries

A Boolean network consists of a number of logical nodes interconnected through direct or indirect
links. These are nonlinear networks requiring a mathematical base for analysis. Among the present
models there are: the Kauffman (N-K) networks, Boolean differential equations, and piecewise-linear
differential equations [33,34]. This work uses the Boolean differential equations to develop important
mathematical considerations.
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2.1. Boolean Differential Equations

Let us consider a system with state variables {v1, v2, . . . , vn}, vi ∈ R, i = 1, . . . , n. If a Boolean
variable xi is related to each state vi, depending on a set of thresholds σi ∈ R. Then, the set of Boolean
variables x = {x1, x2, . . . , xn} gives a simple qualitative description of the system with 2n possible
states. By adding the time dependence through a set of delays {τij}, i = 1, . . . , n, j = 1, . . . , n, τij > 0,
where τij is the time it takes for xj to affect xi, there is an associated time delay for each pair of state
variables not necessarily obeying τij = τji. In this manner, the feedbacks among the Boolean variables
can be described by a system of Boolean differential equations as follows [33,34]:

x1(t) = f1(x1(t − τ11), x2(t − τ12), . . . , xn(t − τ1n)),

x2(t) = f2(x1(t − τ21), x2(t − τ22), . . . , xn(t − τ2n)), (1)
...

xn(t) = fn(x1(t − τn1), x2(t − τn2), . . . , xn(t − τnn)),

with fi : Bn → B, i = 1, . . . , n, being a set of Boolean functions where B = {0, 1}. The system (1)
determines the dynamics of a Boolean network considering time delays, thereby defining an
Autonomous Boolean Network (ABN) [33,34]. The dynamics of the ABN given by Equation (1) is
numerically solved once the Boolean functions are defined with initial conditions on an interval
xi(t) = xi0(t) for t0 − τ ≤ t ≤ t0, i = 1, . . . , n, where τ = max{τij} is the memory length of the system.

2.2. Boolean Chaos

In an ideal ABN, the transitions of the signals are arbitrarily fast and the number of transitions
increases with time, following a power law. These increasingly fast dynamics result in an
unlimited growth of frequency over time, referred to as an ultraviolet catastrophe [30]. However,
that phenomenon does not occur in nature because the information-transmitting links and the
processing nodes (for instance real logic gates) have a maximum operation frequency, which are
physically realized. Hence, they cannot transmit or generate signals above a certain frequency [31]. As a
result, the nonideal behaviors of real logic devices are responsible for the origin of chaos in ABNs [30,31].
Those behaviors are (i) Short-pulse rejection (SPR), known as pulse filtering, preventing pulses shorter
than a minimum duration from passing through the gate (Theorem 1). (ii) The asymmetry between
the logic states, making the propagation delay time through the gate depending on whether the
transition is a fall or rise. (iii) The degradation effect triggering a change in the events propagation
delay time when they appear in rapid succession. Among them, the degradation effect is the main
nonideal behavior source of deterministic chaos in an ABN [32], since Boolean chaos originates from a
history-dependent delay [30,31], as defined Lemma 1.

Theorem 1. For a symmetric ABN consisting of a single XOR logic operation with two self-inputs having
delays τ1 and τ1, and with τspr sufficiently small not collapsing to the always-off state occurs before t = τ2,
the trajectory will never reach the always-off state.

Lemma 1. For a class of experimental ABN containing at least one XOR connective and feedback loop,
deterministic chaos may arise if and only if the degradation effect, which is exhibited at some level in any real
ABN, is presented.

On the other hand, if the ABN has equal delays, the links will produce only regular oscillations.
In addition, the fixed points caused by using only symmetric logic functions in the network nodes
conduct that the dynamics will always collapse into a low or high logic state, respectively. Theorem 2
and Lemma 2 postulates the conditions. As a reference, the complete proofs of Theorems and Lemmas
can be found in [31,35].
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Theorem 2. For a symmetric ABN consisting of a single exclusive-OR (XOR) logic operation with two
self-inputs having delays τ1 and τ2, the attractors are always periodic.

Lemma 2. The experimentally realized ABNs should not include a Boolean fixed point, for which all Boolean
functions are satisfied simultaneously.

2.3. Lyapunov Exponents for ABNs

One of the most reliable tools to demonstrate chaotic behavior is computing the Lyapunov
exponent’s spectrum [1–29]. A positive Lyapunov exponent is a signature of chaos [40]. It is defined
as the exponential divergence of trajectories with nearly identical initial conditions. For the ABNs
case, since the states are discrete, indicating a phase space composed just by 2N states, the Lyapunov
exponent’s needs to be computed from distance measures tailored for Boolean systems [41].

Zhang et al. proposed a method to estimate the largest Lyapunov exponent using the Boolean
distance definition [30]. The approach works as follows. (i) Acquire experimentally a long time series
from an output voltage of the ABN. (ii) Convert that voltage to a Boolean variable x(t). (iii) Given any
two segments of starting at times ta and tb, define a Boolean distance with d(s) = 1

T
∫ s+T

s x(t′ + ta)⊕
x(t′ + tb)dt′, where T is a fixed parameter, ⊕ is the XOR logic operation, and the Boolean distance
d(s) evolves as a function of the time s. (iv) Search in x(t) for all the pairs ta and tb corresponding to
the earliest times in each interval T over which d(0) < 0.01. v. Finally, v) compute ln〈d(s)〉, where 〈〉
means an average over all matching (ta, tb) pairs.

As a conclusion, the divergence ln〈d(s)〉 increases exponentially, as expected for an adequate
definition of distance between trajectories in a chaotic system [40].

3. The Proposed Boolean Chaos Oscillators (BCOs) and Their Fixed Points

Motivated by Ref. [30], this work introduces two ABNs composed by three and two nodes,
respectively. The nodes of ABNs perform asymmetric logic functions, i.e., a combination of Boolean
operations XOR and XNOR. We detail the proposed ABNs as follows.

3.1. BCO-1

Figure 1a shows the first Boolean chaos oscillator (BCO). It consists of three nodes where each
node has three inputs and one output that propagates to three different nodes. Nodes A and B
perform the XOR logic operation while node C executes the XNOR. Expressing BCO-1 in the form of
Equation (1), we obtain the following system of Boolean delay equations:

Xa(t) = Xa(t − τaa)⊕ Xb(t − τab)⊕ Xc(t − τac),

Xb(t) = Xa(t − τba)⊕ Xb(t − τbb)⊕ Xc(t − τbc), (2)

Xc(t) = Xa(t − τca)⊕ Xb(t − τcb)⊕ Xc(t − τcc)⊕ 1,

with Boolean functions fi : B3 → B, i = 1, . . . , 3, and ⊕ the logic XOR operation. The signal
propagation time from node j to node i is τij for i, j = a, b, c.
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(a)

Xa Xb Xc

τac τab τaa τbc τba τbb τcb τca τcc

A B C

Input A B C

000 0 0 1

001 1 1 0

010 1 1 0

011 0 0 1

100 1 1 0

101 0 0 1

110 0 0 1

111 1 1 0

(b)

Figure 1. (a) Autonomous Boolean networks (ABN) for the proposed Boolean chaos oscillator (BCO-1).
(b) An implementation of BCO-1 using electronic logic gates and its look-up table.

Theorem 3. For an autonomous Boolean network given by the system of Equation (2), the orbits are always
oscillating [36].

Proof. A Boolean fixed point provokes nonoscillating dynamics due to some orbits eventually
collapsing into the fixed point. To demonstrate the proposed Boolean chaos oscillator converges
to sustained oscillations indefinitely, we must prove that there is not a fixed point. By contradiction,
we demonstrate this theorem. Let us assume that the BCO-1 has a fixed point (X∗

a , X∗
b , X∗

c ), such that:

X∗
a = Xa(t − τ),

X∗
b = Xb(t − τ),

X∗
c = Xc(t − τ),

for t >> τ = max{τaa, τab, τac, τba, τbb, τbc, τca, τcb, τcc}. In this manner, the system of Equation (2)
recast as:

Xa(t) = Xa(t)⊕ Xb(t)⊕ Xc(t), (3)

Xb(t) = Xa(t)⊕ Xb(t)⊕ Xc(t), (4)

Xc(t) = Xa(t)⊕ Xb(t)⊕ Xc(t)⊕ 1. (5)

By substituting Equations (3) and (4) into (5), we obtain:

Xc(t) = Xa(t)⊕ Xb(t)⊕ Xc(t)⊕ Xa(t)⊕ Xb(t)⊕
Xc(t)⊕ Xc(t)⊕ 1. (6)

Equation (6) implies Xc(t) = Xc(t). Since the Boolean space is 2n, the possible states for Xc(t)
are {1, 0}. Thus, “1” = “0”, or vice-versa indicates a contradiction which leads us to conclude that
Boolean network (2) does not have fixed points, and therefore, always oscillates.

3.2. BCO-2

Figure 2a shows the second Boolean chaos oscillator introduced in this work. The proposed
topology consists of two nodes, where each node has three inputs and one output connecting to
two different nodes. While node A performs the XOR logic operation, node B executes the XNOR.
Additionally, the ABN includes two logic NOT operations to obtain the opposed Boolean states for
both nodes. The set of Boolean delay equations for the BCO-2 are:
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Xa(t) = Xa(t − τaa)⊕ Xb(t − τab)⊕¬Xa(t − τaã),

Xb(t) = Xa(t − τba)⊕ Xb(t − τbb)⊕ (7)

¬Xb(t − τbb̃)⊕ 1,

with ⊕ and ¬ indicating the logic XOR and NOT operations, respectively. In addition, the Boolean
functions fi : B2 → B, i = 1, . . . , 2. Similarly to the previous case, it is necessary to prove that the
system (7) does not have a Boolean fixed point.

(a)

Input A B

000 0 1

001 1 0

010 1 0

011 0 1

100 1 0

101 0 1

110 0 1

111 1 0

XbXa

τaa τbb

A B

τaã τab τbb̃τba

(b)

Figure 2. (a) ABN for the second Boolean chaos oscillator (BCO-2). (b) An implementation of BCO-2
using electronic logic gates and its look-up table.

Theorem 4. For an autonomous Boolean network given by the system of Equation (7), the orbits are always
oscillating [36].

Proof. We assume that the BCO-2 has the fixed point (X∗
a , X∗

b ), such that X∗
a = Xa(t − τ) and X∗

b =

Xb(t − τ), for t >> τ = max{τaa, τab, τaã, τba, τbb, τbb̃}. Therefore, system (7) is rewritten as:

Xa(t) = Xa(t)⊕ Xb(t)⊕¬Xa(t), (8)

Xb(t) = Xa(t)⊕ Xb(t)⊕¬Xb(t)⊕ 1, (9)

By inserting Equation (8) into (9), we obtain:

Xb(t) = Xa(t)⊕ Xb(t)⊕¬Xa(t)⊕ Xb(t)⊕
¬Xb(t)⊕ 1. (10)

Equation (10) means Xb(t) = Xb(t). This again implies a contradiction and it is possible to
claim that the autonomous Boolean network (7) does not have a fixed point and it will oscillate
permanently.

3.3. Boolean Sensitivity Caused by Asymmetric Logic Functions

As demonstrated in the previous subsection, the presented BCOs do not have fixed points.
In this manner, when an autonomous Boolean network is realized experimentally it should include
asymmetric Boolean functions to achieve chaotic dynamics [31,35]. As a result, the preference for
using logic XOR and XNOR functions in the proposed BCOs lies on the look-up table for these logic
operations. Firstly, the idea is considering an equal number of “1”s and “0”s as the output of the
XNOR operation to avoid converging into a physical Boolean fixed-point, i.e., where all entries of the
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look-up table have the same value, and hence inputs and outputs can be the same. From the look-up
tables in Figures 1b and 2b, the outputs are different for all inputs, including the cases “000” and “111”.
On the other hand, since the number of “0”s and “1”s in the look-up tables is equal, the proposed
BCOs can have a higher Boolean sensitivity E = 2Kρ(1 − ρ) [30,35]. This is possible with randomly
chosen Boolean functions of bias ρ = 0.5 (equal number of zeros and ones) and high in-degree K (the
number of input connections to a node) or most effectively by using XOR and XNOR Boolean functions
as herein.

4. Boolean Chaos Robust to Different Incommensurate Time-Delays

The chaos-based applications demand the exploration of different typologies and implementations
to find those that are the most suitable. In addition, the chaotic behavior must be robust. It means
that the chaos should be generated consistently for a wide range of parameter values. In the ongoing
literature, the reported autonomous Boolean networks only show chaos in certain ranges of the
feedback delays [10,30,31,35–39], as was discussed in the Introduction section. At the experimental
level, those approaches incorporate an even number of logic NOT gates in the link to act as a time-delay
buffer to add extra signal propagation times. Then, the published works need several pairs of NOT
gates to satisfy the specific incommensurate time-delays for each one of their links connecting nodes.
Otherwise, the chaotic behavior converges to either periodic oscillations or stable dynamics in the
Boolean levels high or low.

Conversely, the proposed BCOs in Figures 1 and 2 do not require additional logic NOT
gates to generate chaotic oscillations. This means that the chaos behavior depends solely on the
incommensurate time-delays, arising only from the intrinsic delay associated with each XOR and
XNOR gate. In this manner, we state the following Lemma and Corollary.

Lemma 3. The Boolean chaotic oscillators of Figures 1 and 2 composed only by logic XOR-XNOR functions
evolve to sustained chaotic oscillations not only for different time-delays of the feedback path (additional pairs of
logic NOT gates) but also when the time-delays in their links are a function just of the intrinsic delay of each
XOR-XNOR gates (no extra logic NOT gates).

Corollary 1. As a consequence of Theorems 3 and 4, an autonomous Boolean network without fixed points
always presents periodic behavior if its delays are commensurate.

Proof. To demonstrate Lemma 3 and Corollary 1, we show the physical implementation of the BCOs
in Figures 1 and 2 using commercial off-the-shelf logic gates (74HCXXX family), as shown in Figure 3a.
The discrete implementation makes it possible to change the time-delay between feedback nodes easily.
Then, we study the dynamics of the proposed BCOs using the Lyapunov exponent method.

The scenario is as follows. First, we consider different cases for the incommensurate time-delays
of the links. Those time-delays were realized using a pair of two NOT gates wired in series. Thus,
from the experimental output signal of nodes C (BCO-1) and B (BCO-2) for each case in Tables 1 and 2,
respectively, we collect a long enough time series. For instance, the BCO-1 output signal of node C
for cases 1, 3, and 7 is given in Figure 4a,d,g, respectively. On the other hand, Figure 5a,d present the
results for the output signal of node B of BCO-2 for cases 1 and 5, respectively.

Next, we compute the largest Lyapunov exponent, λmax, applying the Boolean distance algorithm
introduced in Section 2.3. The results in Tables 1 and 2 shows the largest Lyapunov exponent, λmax,
is positive for all cases indicating the proposed BCOs generate robust Boolean chaos. Besides, the
chaotic behavior was also verified in the BCOs (both cases 1 in Tables 1 and 2, respectively), without
extra time-delays with exception from those incommensurate intrinsic delays of the logic XOR and
XNOR gates, i.e., the BCO-1 and BCO-2 do not include any logic NOT gates in the feedback paths.
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(a) (b) (c)
Figure 3. Experimental setup for BCOs in Figures 1 and 2 using (a) logic gates 74HCXXX, (b) GAL
22V10, and (c) FPGA Spartan6.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Chaotic oscillations from the output voltage in the node C for BCO-1. The measurements
exhibit a 100 ns of time and a 2 V of voltage grid per square. Case 1 in Table 1 with (a) logic gates
74HCXXX, (b) GAL22V10, and (c) FPGA Spartan6. Case 3 in Table 1 with (d) logic gates 74HCXXX,
(e) GAL22V10, and (f) FPGA Spartan6. Case 7 in Table 1 with (g) logic gates 74HCXXX, (h) GAL22V10,
and (i) FPGA Spartan6.

(a) (b) (c)

(d) (e) (f)
Figure 5. Chaotic oscillations from the output voltage in the node B for BCO-2. The measurements
exhibit a 100 ns of time and a 2 V of voltage grid per square. Case 1 in Table 2 with (a) logic gates
74HCXXX, (b) GAL22V10, and (c) FPGA Spartan6. Case 5 in Table 2 with (d) logic gates 74HCXXX,
(e) GAL22V10, and (f) FPGA Spartan6.
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Tables 1 and 2 suggest the most suitable case for obtaining Boolean chaos is when no other delay
paths are incorporated in the links because the higher the time-delays, the lower the magnitude of
the largest Lyapunov exponent. From the physical implementation point of view, that is a remarkable
feature because we can get a small form factor with the proposed Boolean chaos oscillators. Moreover,
since the chaos generation does not depend on determined time-delays, the proposed BCOs can be
implemented with several hardware technologies, as demonstrated in the next subsection.

Table 1. Largest Lyapunov exponent (λmax) of the BCO in Figure 1 for different time-delays in the
feedback paths. The symbol “-” means no extra time-delay, while “

√
” refers to a time-delay composed

of two logic NOT gates.

Case Time-Delay Lyapunov Exponent

τaa τab τac τba τbb τbc τca τcb τcc λmax

1 - - - - - - - - - 0.2306
2 - - - - - - - -

√
0.2079

3
√

- - - - - - - - 0.2275
4

√
- - - - - - -

√
0.2057

5
√

- - -
√

- - -
√

0.2076
6

√ √ √
- - - - - - 0.2101

7 - - - - - -
√ √ √

0.2121
8

√ √ √
- - -

√ √ √
0.1774

9
√ √ √ √ √ √

- - - 0.1808
10

√ √ √ √ √ √ √ √ √
0.1896

11 -
√ √ √ √ √ √ √ √

0.1862
12 -

√ √ √ √ √ √ √
- 0.1707

Table 2. Lyapunov exponent of BCO in Figure 2 for different time-delays in the feedback paths.

Case Time-Delay Lyapunov Exponent

τaa τab τaã τbb τba τbb̃ λmax

1 - - - - - - 0.1644
2 - -

√
- - - 0.0960

3 - - - - -
√

0.1495
4

√
- -

√
- - 0.1442

5 -
√

- - - - 0.1525
6 - - - -

√
- 0.1448

Boolean Chaos Robust to Distinct Discrete Physical Implementation

This subsection presents three different physical implementations of the Boolean chaos oscillators.
The dynamics are affected by physical constraints and hardware differences. This may lead to
time-delay variations where the boolean chaos displays. Therefore, the BCO-1 and BCO-2 are
constructed with three different electronic devices (i) commercial-off-the-shelf logic gates (introduced
previously), (ii) a GAL, and (iii) an FPGA. The experiments in Figure 3 demonstrate the robust
generation of Boolean chaos. From the circuit conception, the implementations show the chaotic
behavior source is the degradation effect [32]. In addition, there are no additional procedures to
calculate the delay paths to achieve chaotic oscillations.

The implementation considers all cases of Tables 1 and 2, but for the sake of simplicity, the
Table 3 displays only the examples where the largest Lyapunov exponent is higher. In particular,
case 1 for both BCOs is of particular interest because they do not need extra time-delays for
generating chaos. More specifically, we use the GAL22V10 for realizing both BCOs, as given in
Figure 3b. The programming of the GAL was performed with VHDL language. Figure 4b,e,h give the
experimental results for the cases 1, 3, and 7 of BCO-1; while Figure 5b,e shows the results for cases 1
and 5 of BCO-2. For FPGA implementation, the Spartan 6 was employed (Figure 3c). The experimental
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results are shown in Figure 4c,f,i for cases 1, 3, 7 in Table 1, respectively. Figure 5c,f display the output
signal for cases 1 and 5 in Table 2, respectively.

The measurements exhibit a 100 ns of time and a 2V of voltage grid per square. For all the three
presented implementations, the output voltages (Figures 4 and 5) show the cumbersome temporal
oscillations without evident periodicity. This continuous-time evolution can be identified as Boolean
chaos. To verify the chaotic behavior, we compute the largest Lyapunov exponent for each implemented
case of the corresponding technology, as shown in Figure 6. Table 3 also shows that the Lyapunov
exponents for the three physical implementations have a similar value. This behavior suggests
the Boolean chaos of proposed BCOs is robust to the distinct physical implementations changing
the technology.

(a) Case 1 Table 1 (b) Case 3 Table 1 (c) Case 7 Table 1

(d) Case 1 Table 2 (e) Case 5 Table 2

Figure 6. The divergence ln〈d(s)〉 to determine the largest Lyapunov exponent of the attractor for cases
in Table 3 from each discrete physical implementation (Logic gates, GAL, FPGA).

Table 3. Largest Lyapunov exponent (λmax) for BCOs in Figures 1 and 2 implemented experimentally
with different design technologies considering the time-delays of Tables 1 and 2.

Logic Gates GAL FPGA

BCO-1

λmax (case 1, Table 1) 0.230 0.224 0.209
λmax (case 3, Table 1) 0.227 0.221 0.194
λmax (case 7, Table 1) 0.212 0.211 0.185

BCO-2

λmax (case 1, Table 2) 0.164 0.160 0.157
λmax (case 5, Table 2) 0.152 0.150 0.148

It is worth to noting that, although the intrinsic time-delays of the logic XOR and XNOR gates
change among the physical realizations, Case-1 for both BCOs continues generating chaotic behavior.
In agreement with Lemma 4, the fact that there is Boolean chaos, for various implementations without
extra time-delays in the feedback links, demonstrates that the proposed BCOs are not overly sensitive
to heterogeneous intrinsic time-delays.
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5. An Application Specific Integrated Circuit for the Proposed Boolean Chaos Oscillators

5.1. Chip Design

This section describes the integrated circuit-based implementation of the prospected BCOs in this
work. The Boolean chaos generators are described with Verilog, a Hardware Description Language
(HDL), using the UMC 180 nm Generic Core Cell Library. The BCO-1 hardware description in Figure 7a
uses one XNOR3S and two XOR3S cells from the Generic Core library. That verilogHDL code
synthesizes the three logic gates, whereas the Encounter tool (from Cadence Design Systems) executes
a generic routing algorithm. Similarly, the BCO-2 of Figure 7b uses one XOR3S and one XNOR3S for
the description with the verilogHDL code. The integrated circuit was part of a multiprocess wafer
run and is shown in Figure 8 (Left). The size of BCO-1 is 75 μm × 60 μm while the BCO-2 has physical
dimensions of 32 μm × 26 μm. The area for biasing rails is considered in both scenarios. In any case,
it is possible to reduce the size with routing optimization.

Xa Xb Xc

τac τab τaa τbc τba τbb τcb τca τcc

A B C

module osc2 v(A);
output A;
wire xa, xb, xc;
XOR3S g1(.O(xa), .I1(xa), .I2(xb), .I3(xc));
XOR3S g2(.O(xb), .I1(xa), .I2(xb), .I3(xc));
XNOR3S g3(.O(xc), .I1(xa), .I2(xb), .I3(xc));
assign A = xc;
endmodule

BCO1

(a)

module osc3 v(A);
output A;
wire xa, xb, xc;
XOR3S g1(.O(xa), .I1(xa), .I2(xa), .I3(xb));
XNOR3S g2(.O(xb), .I1(xb), .I2(xb), .I3(xa));
assign A = xb;
endmodule

XbXa

τaa τbb

A B

τaã τba τbb̃τba

BCO2

(b)

Figure 7. (a) Synthesis codes in VerilogHDL for (a) BCO-1, and (b) BCO-2, respectively.

BCO-1
60 μm

90 μmBCO-2

VDD Osc

D.U.T.

DSOS104AB2962A

Figure 8. Microphotography of the chip and the test-bench for the integrated circuit.

It is worth noting that the design process of the IC is straightforward, and it does not
depend on critical design considerations. However, all the design processes were executed in a
semiautomated way using the generic cells and routing tool from Cadence software and UMC 180 nm
fabrication technology. Therefore, this demonstrates, once again, the flexibility and robustness of the
proposed BCOs.

On the other hand, Figure 8 (Right) shows the test-bench for the integrated circuit. The chip-die is
mounted on an FR4 printed circuit board. It is biased with a low-noise VDD = 1.8 V voltage source
model B2962A while the oscilloscope DSOS104A captures the voltage time-series for further analysis.

5.2. Experimental Results of the Integrated BCO-1 and BCO-2

Now, we present the continuous-time behavior of both BCO-1 and BCO-2 on the integrated circuit.
Figure 9 shows the real-time obtained waveforms and the respective dynamical analysis considering:
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(i) time-series of the output voltage; (ii) frequency spectra; (iii) time-lag reconstructions of the attractors;
(iv) Poincaré mapping set; (v) and largest Lyapunov exponent.
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Figure 9. Chaotic dynamics measured experimentally from the integrated circuit of 180 nm at distinct
settings for both Boolean chaos oscillators. Top to bottom: Time-series, time-lag embedded attractor,
frequency spectrum, Poincaré map, the divergence ln〈d(s)〉 to determine the largest Lyapunov exponent
λmax of the attractor. (a) Experimental results for BCO-1 @ VDD = 3.3 V with λmax = 0.4496;
(b) Experimental results for BCO-1 @ VDD = 2.8 V with λmax = 0.4243; (c) Experimental results
for BCO-2 @ VDD = 3.3 V with λmax = 0.2492.
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Figure 9a presents the BCO-1 features for VDD = 3.3 V. The time-series shows a random evolution
since it has variable cycle amplitudes regarding maxima and minima, and the frequency content
is characterized for a predominant broad distribution and with strong content up to 200 MHz,
therefore suggesting chaotic oscillations. Besides, the time-lag embedded attractor (lag equal to
the first minimum of the time-lag mutual information function) exhibits a chaotic behavior in phase
space, whose underlying complexity can be more properly appreciated on the corresponding Poincaré
map for amplitudes of successive local maxima. In this manner, the arbitrarily chosen plane sections
the attractor in two and thereby enables the visualization of its complex geometry. We found that
the Poincaré map has a dense set of points, which has been identified as characteristic dynamics of
the chaotic behavior. To quantify these observations, we determine the largest Lyapunov exponent
(λmax) of the attractor. The result shows the time evolution of the ln〈d(s)〉. This divergence presents
an almost constant slope for the first part of the curve and then it saturates at a maximum value,
corresponding to the uncorrelated signals x(s + T + ta) and x(s + T + tb). Next, we estimate the value
of λmax, assuming that the divergence of the initially similar segments is exponential in the region of
constant slope. As a result, the average of all pairs of similar segments is our estimate of the largest
Lyapunov exponent for the BCO-1, giving λmax = 0.4496, which demonstrates that the CMOS Boolean
oscillator integrated at 180 nm is chaotic.

Figure 9b shows the dynamical analysis for the same BCO-1 but now with VDD = 2.8 V. This BCO-1
displays a clear chaotic attractor in the 0–4 V range and is validated with the Poincaré set. The results
for time-series, frequency spectrum up to 150 MHz, Poincaré map, and λmax = 0.4243 have a
similar response to the previous case. Therefore, we can conclude the BCO-1 is robust against bias
voltage variations.

The same test is included for the BCO-2 biased to VDD = 3.3 V. The circuit presents a chaotic
oscillation but the on-chip pad originates an explicit limitation of the voltage swing. This prototype
uses internal pad connections and the reduced swing is a consequence of the extended bonding and
absence of I/O cells. Therefore, the on-die probes represent an important load impedance and limit
output swing to 200 mV. Figure 9c shows the time evolution, spectral content up to 160 MHz, chaotic
attractor, and Poincaré map showing the expected results. Finally, Figure 9c also shows the largest
Lyapunov exponent, which has a slope less abrupt but still presents a positive exponent (λmax = 0.2492)
in spite of the small values of the continuous-time sequence.

5.3. Comparison with Similar Implementations

For the sake of reference, Table 4 highlights the principal features of the recent True Random
Number Generator (TRNG), systems based on chaotic circuits. The two new boolean chaotic oscillators
exhibit competitive numbers compared to the references [20,42]. The comparison includes the most
recent works with attempts to fully integrate the system-on-chip. The work in [20] presents a set of
inverted-based chaotic oscillators. The area and power consumption are affordable, but the system uses
additional off-chip biasing circuits. The chaotic circuit in [42] is fully integrated with the disadvantage
of increasing the circuit resources. This is the result of the multiattractor analog system requiring a
large bandwidth but the band limitation or frequency centroid is not reported. The two new boolean
chaotic oscillators in this work present a reduced circuit size and power dissipation, not considering
the chip input-output cells. The proposed boolean chaotic circuits present the most extended frequency
span content compared to the recent on-chip implementations.
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Table 4. Comparison of the principal features of recent TRNG based on chaotic systems.

This Work BCO-1 This Work BCO-2 [20] [42]

Chaos source Boolean chaos Boolean chaos Chaotic oscillation Multiattractor
Integrated Fully Fully Partially Fully

Technology 180 nm 180 nm 180 nm 180 nm
Size (μm)2 4500 832 28, 000 (315, 000 × 383, 000)

Static power (μw) 0.2 0.09 25 3660
Speed limit (MHz) 200 160 10 NA

6. Conclusions

Two autonomous Boolean networks that generate Boolean chaos have been introduced. From
the mathematical model, it was shown that the logical states would never reach a fixed-point, and
therefore, will oscillate permanently. The proposed Boolean chaos oscillators exhibited no dependence
on incommensurate time-delays, as demonstrated by computing the Lyapunov exponents under
various scenarios for the delay paths. The correct physical implementations of the two Boolean chaos
oscillators are good evidence of the predicted conditions. Therefore, the BCOs are reliable and robust
to be implemented with multiple circuit implementations, both discrete as integrated.

In particular, the synthesis of the chaotic oscillators in an integrated circuit has shown the benefits
of a compact CMOS chaos generator with areas 0.0045 mm2 and 0.000 832 mm2 for BCO-1 and BCO-2,
respectively, as well as high-speed chaotic oscillations with relevant amplitude content up to 200 MHz.
Several dynamical analyses such as time-series, chaotic attractors, Poincaré maps, and Lyapunov
exponents validated the experimental results.

In this manner, the proposed Boolean chaos oscillators could be useful for various engineering
applications, for instance, random number generators, since the design is straightforward,
robust, compact, and can be implemented in many options of hardware without needing
special considerations.
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4. Herceg, M.; Miličević, K.; Matić, T. Frequency-translated differential chaos shift keying for chaos-based
communications. J. Frankl. Inst. 2016, 353, 2966–2979.

86



Symmetry 2020, 12, 506

5. Dmitriev, A.; Efremova, E.; Nikishov, A.Y. Generating dynamic microwave chaos in self-oscillating ring
system based on complementary metal-oxide-semiconductor structure. Tech. Phys. Lett. 2010, 36, 430–432.
[CrossRef]

6. Herceg, M.; Vranješ, D.; Grbić, R.; Job, J. Chaos-Based transmitted-reference ultra-wideband communications.
Int. J. Electron. 2019, 106, 160–172. [CrossRef]

7. Gomez-Pavon, L.; Munoz-Pacheco, J.; Luis-Ramos, A. Synchronous Chaos Generation in an Er+3-Doped
Fiber Laser System. IEEE Photonics J. 2015, 7, 1–6. [CrossRef]

8. Liu, Z.; Zhu, X.; Hu, W.; Jiang, F. Principles of chaotic signal radar. Int. J. Bifurc. Chaos 2007, 17, 1735–1739.
[CrossRef]

9. Xu, H.; Li, L.; Li, Y.; Zhang, J.; Han, H.; Liu, L.; Li, J. Chaos-Based Through-Wall Life-Detection Radar. Int. J.
Bifurc. Chaos 2019, 29, 1930020. [CrossRef]

10. Qiao, J.; Xu, H.; Zhang, J.; Han, H.; Wang, B. High-resolution and anti-jamming chaotic guided radar
prototype for perimeter intrusion detection. J. Electromagn. Waves Appl. 2019, 33, 1060–1069. [CrossRef]

11. Fortuna, L.; Frasca, M.; Rizzo, A. Chaotic pulse position modulation to improve the efficiency of sonar
sensors. IEEE Trans. Instrum. Meas. 2003, 52, 1809–1814. [CrossRef]

12. Shin, S.; Kim, M.H.; Choi, S.B. Ultrasonic distance measurement method with crosstalk rejection at high
measurement rate. IEEE Trans. Instrum. Meas. 2018, 68, 972–979. [CrossRef]

13. Honglad, S.; San-Um, W. Automatic stand-alone liquid mixer with chaotic PWM control using diode-based
Rössler system. In Proceedings of the IEEE 2014 International Electrical Engineering Congress (iEECON),
Chonburi, Thailand, 19–21 March 2014; pp. 1–4.

14. Xie, T.; Chen, M.; Xu, C.; Chen, J. High-throughput extraction and separation of Ce (III) and Pr (III) using a
chaotic advection microextractor. Chem. Eng. J. 2019, 356, 382–392. [CrossRef]

15. Murali, K.; Sinha, S.; Mohamed, I.R. Chaos computing: Experimental realization of NOR gate using a simple
chaotic circuit. Phys. Lett. A 2005, 339, 39–44. [CrossRef]

16. Kia, B.; Mobley, K.; Ditto, W.L. An integrated circuit design for a dynamics-based reconfigurable logic block.
IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 715–719. [CrossRef]

17. Wannaboon, C.; Tachibana, M.; San-Um, W. A 0.18-μm CMOS high-data-rate true random bit generator
through Δ Σ modulation of chaotic jerk circuit signals. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 063126.
[CrossRef]

18. Li, B.; Liao, X.; Jiang, Y. A novel image encryption scheme based on improved random number generator
and its implementation. Nonlinear Dyn. 2019, 95, 1781–1805. [CrossRef]

19. Minati, L. Experimental implementation of networked chaotic oscillators based on cross-coupled inverter
rings in a CMOS integrated circuit. J. Circuits Syst. Comput. 2015, 24, 1550144. [CrossRef]
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Abstract: For studying biological conditions with higher precision, the memory characteristics
defined by the fractional-order versions of living dynamical systems have been pointed out as a
meaningful approach. Therefore, we analyze the dynamics of a glucose-insulin regulatory system by
applying a non-local fractional operator in order to represent the memory of the underlying system,
and whose state-variables define the population densities of insulin, glucose, and β-cells, respectively.
We focus mainly on four parameters that are associated with different disorders (type 1 and type 2
diabetes mellitus, hypoglycemia, and hyperinsulinemia) to determine their observation ranges as
a relation to the fractional-order. Like many preceding works in biosystems, the resulting analysis
showed chaotic behaviors related to the fractional-order and system parameters. Subsequently,
we propose an active control scheme for forcing the chaotic regime (an illness) to follow a periodic
oscillatory state, i.e., a disorder-free equilibrium. Finally, we also present the electronic realization of
the fractional glucose-insulin regulatory model to prove the conceptual findings.

Keywords: fractional-order; glucose-insulin system; chaotic attractor; active control; synchronization

1. Introduction

Homeostasis is the tendency of organisms to auto-regular and maintain their internal environment
in a stable state [1], For instance, an excellent model to describe the homeostatic process in the organism is
the glucose-insulin system [1,2]. On one side, when the glucose level is low, arises diverse pathologies
(anxiety, tremors, obfuscation, coma, etc.). On the other side, microvascular damages in the retina, kidney,
and neuronal injuries, which lead to chronic renal insufficiency and blindness, are originated by high
glucose concentrations. The principal pathology of glucose homeostasis is diabetes. Diabetes can be
stated as a chronic disorder provoked when the pancreas does not produce insulin in enough quantities,
and also if the body cannot successfully process it, resulting in atypical high blood sugar levels.
Because of the autoimmune annihilation of β-cells, the insulin released by the pancreas to the human
organism is not enough to maintain a certain healthy level, and therefore, the Type 1 Diabetes Mellitus
(T1DM) may be manifested. On the contrary, when the beta-cells can produce supranormal, or average
concentrations of insulin, but cannot be adequately used in reducing glycemia, the Type 2 Diabetes
Mellitus (T2DM) appears [3].

Health agencies [4] demonstrate people, mainly adults, living with diabetes has almost quadrupled
from 1980 to 422 million. This rise is primarily due to the rise in T2DM and factors driving it, including
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overweight and obesity. Diverse mathematical models using ODEs and OdEs have provided a common
path to understand multiple complex systems [5,6]. In the last years, because of the long-memory
of fractional-order operators, fractional-order systems have gained extensive attention for describing
and understanding physical and biological systems [5,7–10]. For instance, the analysis of diverse
biological systems, such as bio-impedance, drug diffusion, respiratory tissue, and so forth, was reported
in [11] using fractional calculus. In [12], the authors characterize the trade-offs between HIV infection
and the tumor-immune system employing fractional-order biological systems. Kheiri and Jafari [13]
formulated a fractional-order theory that was focused on the multi-patch HIV/AIDS model to
analyze whether human migration has effects on the propagation of the HIV/AIDS outbreak. In [14],
the authors reported a fractional-order Izhikevich system to obtain insights on distinct neuronal spike
responses, including bursting, fast-, regular-spiking, and chattering, as the no-integer order varies.
The functioning at electrical level of a fractional-order system of an isolated β-cell is presented in [15,16].
In [17], was reported the comparison among diverse scenarios, such as integer, constant, no-constant
and fractional-order derivatives, in order to explain the memory index. In [18], the transmission issues
of a susceptible-infected-recovered model were analyzed. They found a proper yield of memory of the
fractional-order systems to forecast the pandemic spread. Finally, [19] discovered that the neuron’s
firing rate could be emulated with a fractional derivative and a slowly varying of the parameters.
Therefore, the unique rat neocortical pyramidal neurons have several time-scales.

Therefore, the study of fractional-order biological models continues been critical for an
accurate analysis of several health conditions, as well as being essential to understanding this
significant open-topic.

Additionally, the synchronization and collective dynamics play an essential role both in
physical [20–22] and biological systems [15,23–26]. By one side, the synchronization is necessary for
systems with stable behavior, for instance, the human heartbeat and respiration [27,28]; nevertheless,
on the other hand, the synchronized state could provoke severe pathologies such as the Parkinson’s
disease where the excessive synchronization correlates with a motor deficit. For the glucose-insulin
regulatory system, a synchronization state is mandatory, since this condition is closely related
to a disorder-free state where the glucose-insulin concentrations synchronize. In [29], the β-cell
synchronization is fundamental to effectuate a pulsatile insulin liberation, which carries more substantial
hypoglycemic results compared to constant secretion. In [30], the synchronization between gap-junctions
and adjacent cells is essential to limit the heterogeneity and biological noise, thence obtaining a robust
activation of the β-cells population within the islet. Pecora and Carroll in [31] showed that two
nonlinear dynamical systems could be synchronized by introducing appropriate coupling, since then,
a variety of approaches were proposed to deal with synchronized states of fractional-order chaos
generators, and these include backstepping, adaptive, and active controls [32,33]. Regarding the chaos
synchronization applying the active control method [34], it has been demonstrated that an active
controller can be straightforwardly designed to achieve synchronization globally if the nonlinearity
of the system is known. Thereupon, it is considered to be a promising control strategy due to its
straightforwardness. [33].

In addition, the experimental verification of fractional-order models is a topic that has been
attracting the attention of researchers [35–39]. In this scenario, ARM-based embedded systems
have become in a central block integrated with non-embedded technologies, such as FPGAs, DSPs,
and microcontrollers. Subsequently, now it is possible to implement complex software and hardware
functionality on a single chip [40]. Several digital hardware have been reported and verified
contemplating integer-order chaotic systems [41–43]. Notwithstanding, just a short-list of papers have
studied the implementation of fractional chaos oscillators on ARM platforms [44,45].

Motivated by the discussion mentioned above, we analyze the effect of a non-local fractional
operator in an asymmetrical glucose-insulin regulatory system. More specifically, the system parameters
that were related to hypoglycemia, hyperinsulinemia, T1DM, and T2DM, were studied by using both
analytical (stability of equilibrium) and numerical (bifurcation diagrams and basins of attraction)
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techniques. Additionally, we found that the system presents a chaotic attractor, as demonstrated by its
phase portraits and Lyapunov exponent spectrum. Besides, the theoretical insights of the glucose-insulin
interaction can be validated by using the proposed electronic implementation based on the embedded
SoC ARM Broadcom BCM2837B0. Latter, the synchronization between a chaotic behavior (disorder)
and periodic behaviors (average condition) were achieved by applying a simple control strategy.

The sections of the manuscript contain the following. The fractional-order glucose-insulin system,
in the sense of Caputo, is presented in Section 2. The stability of the equilibrium points is analyzed
in Section 3. Several dynamical analysis for the hypoglycemia, hyperinsulinemia, T1D, and T2D are
presented in Section 4. Two synchronization schemes using the active control approach are introduced
in Section 5. The ARM implementation is carried out in Section 6, which is followed by the conclusions
in Section 7.

2. Fractional-Order Glucose-Insulin Regulatory System

Because diverse biological systems present memory effects, direct generalization maybe by applying
fractional-order differential equations, i.e., arbitrary (non-integer) orders. In this manner, we can get
a closer insight into the real phenomena. The benefits of fractional-order are mainly to capture the
entire time evolution for physical processes, being a kind of memory index, as well as more degrees of
freedom for the resulting models. The analysis conducted in this work is inspired by the glucose-insulin
regulatory system in [46], as given in Equation (1). This model was derived from the Ackerman, Bajaj,
and Rao, and predator-prey Volterra models. As a consequence, the resulting system is formulated as
the trade-off relating the glucose and insulin, but including the beta-cells interaction. Apart from normal
metabolic conditions described by the classical relation between prey (glucose) and predator (insulin),
the model (1) also characterizes the metabolic disorders as chaotic oscillations. Abnormal biological
conditions, including glucose-insulin interactions, can be stated as chaotic evolutions of the dynamical
systems, as given in [47–50], to mention a few. From experimental data, Ref. [51] also discussed that
the T1DM may have chaotic behaviors. In this manner, the proposed analysis of the glucose-insulin
regulatory system is in the same line of previous studies, but instead applying fractional-calculus theory.

ẋ = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z − 0.06z2 + a7z3 − 0.19,

ẏ = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1 − y)− 1.37z + 0.3z2 − 0.22z3 − 0.56, (1)

ż = a15y − 1.35y2 + 0.5y3 + 0.42z + 0.15yz,

we now introduce a fractional-order version [52], but instead applying the Caputo’s definition.
Let us consider the fractional differential operator Dq f (t) = Jn−γDn f (t), with q > 0 and n ∈ N,
where Dn describes the n-order derivative, while Jγ defines the γ-order integral operator in the sense
of Riemann-Liouville as

Definition 1. For a function f (t), the fractional-order (γ) integral, with γ ∈ R+ can be determined by

Jγ f (t) =
1

Γ(γ)

∫ t

t0

(t − s)γ−1 f (s)ds, (2)

where t ≥ t0 and Γ(·) is the Gamma function, defined as Γ(s) =
∫ ∞

0 ts−1e−tdt.

In this manner, the Caputo operator of fractional-order can be established by

Definition 2. The fractional derivative of Caputo with order q for a function f (t) ∈ Cn([t0, ∞),R) is given as

Dq f (t) =
1

Γ(n − q)

∫ t

t0

f (n)(s)
(t − s)q−n+1 ds, (3)
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and when 0 < q < 1 is given, as follows

Dq f (t) =
1

Γ(1 − q)

∫ t

t0

f
′
(s)

(t − s)q ds. (4)

By substituting Equation (4) in Equation (1), we get the fractional-order glucose-insulin regulatory
system that is given by

Dq1 x = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z − 0.06z2 + a7z3 − 0.19, (5)

Dq2 y = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1 − y)− 1.37z + 0.3z2 − 0.22z3 − 0.56,

Dq3 z = a15y − 1.35y2 + 0.5y3 + 0.42z + 0.15yz,

where Dqi (x, y, z) with i = 1, 2, 3 is the the fractional derivative operator in Caputo’s sense [53],
qi is the fractional-order satisfying 0 < qi ≤ 1, (x, y, z) describe the population density of insulin,
the population size of glucose, and the population size of β-cells, respectively. The representative
reduction of insulin levels for glucose deficiency is described by a1, whereas the parameter a8 stands
for the impact of insulin on glucose. Additionally, the increment rate of insulin concentrations released
by b-cells is provided by a7. Finally, the increasing rate of the β-cells provoked, when the glucose levels
also grow, is given by a15 [46]. From the nature of how this system was conceived, the parameters
must be nonnegative [46].

The discrete-time version for the proposed system (5) is set as:

xn+1 = x0 +
hq1

Γ(q1 + 2)

(
f1(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α1,k,n+1 f1(xk, yk, zk)

)
,

yn+1 = y0 +
hq2

Γ(q2 + 2)

(
f2(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α2,k,n+1 f2(xk, yk, zk)

)
,

zn+1 = z0 +
hq3

Γ(q3 + 2)

(
f3(xp

n+1, yp
n+1, zp

n+1) +
n

∑
k=0

α3,k,n+1 f3(xk, yk, zk)

)
,

(6)

where

xp
n+1 = x0 +

1
Γ(q1)

n

∑
k=0

β1,k,n+1 f1(xk, yk, zk),

yp
n+1 = y0 +

1
Γ(q2)

n

∑
k=0

β2,k,n+1 f2(xk, yk, zk),

zp
n+1 = z0 +

1
Γ(q3)

n

∑
k=0

β3,k,n+1 f3(xk, yk, zk),

(7)

with

αi,k,n+1 =

⎧⎪⎨
⎪⎩

nqi+1 − (n − qi)(n + 1)qi , k = 0, k = 0
(n − k + 2)qi+1 + (n − k)qi+1 − 2(n − k + 1)q+1, 1 ≤ k ≤ n,
1, k = n + 1,

(8)

and
βi,k,n+1

hqi

qi

(
(n + 1 − k)q

i − (n − k)q
i

)
. (9)

note that x0, y0, z0 are the initial values for, f1(x, y, z) = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z −
0.06z2 + a7z3 − 0.19, f2(x, y, z) = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1 − y)− 1.37z + 0.3z2 − 0.22z3 − 0.56
and f3(x, y, z) = a15y − 1.35y2 + 0.5y3 + 0.42z + 0.15yz, whether qi = q, i = 1, 2, 3 the system is
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said to be commensurate then the convergence order is described as |y(tn)− yn| = O(hmin(2,1+q)),
h → 0 [54–56].

3. Stability Analysis of Fractional-Order Glucose-Insulin Model

A non-local differential equation with fractional-order q ∈ (0, 1), normally has a stability region
larger than that of the integer-order version with q = 1 [57]. We introduce the following theorems and
definitions to discuss the stability of the proposed fractional-order system.

Definition 3. A system denoted as

Dqi xi(t) = fi(x1(t), x2(t), . . . , xn(t), t), xi(0) = ci, i = 1, 2, . . . , n, (10)

with trajectory x(t) = 0, where ci are the starting conditions is t−q asymptotically stable if there is a nonnegative
real q, so that:

∀||x(t)||with t ≤ t0, ∃N(x(t)), such that ∀t > t0, ||x(t)|| ≤ Nt−q.

Subsequently, fractional-order systems are known to have long memory, since they obey a behavior like t−q,
which slowly tends to 0 for the solutions x(t). A particular case of Mittag–Leffler stability is stated as power-law
stability t−q. [58,59].

Theorem 1. Let a commensurate order system described by Dqx = Ax, with x(0) = x0, 0 < q < 1, x ∈ Rn

and A ∈ Rn×n, is asymptotically stable if | arg(λ)| > qπ/2, is fulfilled for all eigenvalues of A. Besides,
the critical eigenvalues fulfilling | arg(λ)| = qπ/2 holding geometric multiplicity of one, where the geometric
multiplicity of an eigenvalue is called the dimension of the subspace vectors v for Av = λv [60–65].

Theorem 2. Let Dqx = Ax, with x(0) = x0 an incommensurate-order system, where x = (x1, x2, . . . , xn)T ∈
Rn, Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T , qi ∈ R+, i = 1, 2, . . . , n., qi ∈ (0, 1), and A = (aij) ∈ Rn×n,
i = j = 1, 2, . . . , n. By supposing w as the lowest common multiple of the denominators ui’s of qi’s, with qi = vi/ui,
(ui, vi) = 1, ui, vi ∈ Z+ for i = 1, 2, . . . , n., the matrix of system is given by

Δ(λ) =

⎡
⎢⎢⎢⎢⎣

λwq1 − a11 −a12 . . . −a1n
−a21 λwq2 − a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λwqn − ann

⎤
⎥⎥⎥⎥⎦ . (11)

Therefore, the system Dqx = Ax is globally asymptotically stable if the roots λ’s of its characteristic
equation det(Δ(λ)) = 0 fulfil | arg(λ)| > π/2w, [60–65].

Theorem 3. The equilibria E∗ with a instability measure defined as

ρ = (π/2w)− min
i
{| arg(λi)|}, (12)

is asymptotically stable if and only if (12) is defined nonpositive. Where λi’s are the roots of characteristic equation:
det(diag([λwq1 λwq2 . . . λwqn ])− ∂ f /∂x|x=E∗) = 0, ∀E∗ ∈ Ω [64,65].

Remark 1. If ρ is nonnegative, the underlying system can show a chaotic evolution since the equilibrium E∗ is
unstable [64,65].
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The first step consists of finding the equilibrium points of (5), which are calculated via f(x) = 0,
as follows

0 = −a1x + 0.1xy + 1.09y2 − 1.08y3 + 0.03z − 0.06z2 + a7z3 − 0.19, (13)

0 = −a8xy + 3.84x2 + 1.2x3 + 0.3y(1 − y)− 1.37z + 0.3z2 − 0.22z3 − 0.56,

0 = a15y − 1.35y2 + 0.5y3 + 0.42z + 0.15yz.

Because of the biological interpretation of state variables [46], the stability analysis for E∗ =

(x∗, y∗, z∗) is only performed for nonnegative fixed points. Equation (5) has the following Jacobian

J =

⎛
⎜⎝ −a1 + 0.1y∗ 0.1x∗ + 2.18y∗ − 3.24y∗2 0.03 − 0.12z∗ + 3a7z∗2

−a8y∗ + 7.68x∗ + 3.6x∗2 −a8x + 0.3(1 − 2y∗) −1.37 + 0.6z − 0.66z∗2

0 a15 − 2.7y∗ + 1.5y∗2 + 0.15z 0.42 + 0.15y∗

⎞
⎟⎠ . (14)

By setting a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3, we compute the equilibrium points
and eigenvalues, as shown in Table 1. As can be noted, the system (5) has two nonnegative fixed
points characterized for saddle points of index-1 and index-2, respectively. According to Theorem 1,
chaos behavior may arise in the fractional-order glucose-insulin system when | arg(λ)| > qπ/2, holds.
Therefore, the minimum commensurate fractional-order leading to chaotic oscillations is q > 0.7638,
which is remarkably lower than that reported in [52].

Table 1. Nonnegative equilibrium points and eigenvalues of the system (5).

Ei Equilibrium Point Eigenvalues

E1 (0.802, 1.853, 1.286) λ1 = 1.4652, λ2,3 = −1.4353 ± 7.7140i
E2 (0.584, 0.832, 0.728) λ1 = −2.5327, λ2,3 = 0.7664 ± 1.9699i

The chaotic attractor existence and local stability of the equilibria are presented below.
The Jacobian matrix considering the equilibria E1 and parameter a1 is

JE1 =

⎛
⎜⎝ −a1 + 0.1853 −7.0110 9.8541

8.0788 −0.9887 −1.6903
0 0.6420 0.6420

⎞
⎟⎠ , (15)

which generates the characteristic equation given, as follows

P(λ) = λ3 + (a1 + b1)λ
2 + (b2a1 + b3)λ + b4a1 − b5 = 0, (16)

where b1 = 0.1054, b2 = 0.2907, b3 = 56.9826, b4 = 0.395, and b5 = 90.7232, when considering the
Routh–Hurwitz theory, obtaining the following conditions a1 + b1 > 0, b2a1 + b3 > 0, and b4a1 − b5 > 0,
which become in a1 > −b1 and b3 > −b2a1, respectively. Due b5 > b4a1, there is a root positive which
is unstable and a pair of complex conjugate with the negative real part. Thus E1 is unstable being a
saddle point of index 1.
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The presence of a Hopf bifurcation in the system (5) at the equilibrium point E1 is analyzed by
replacing λ = iω in (16) obtaining

(iw)3 + (a1 + b1)(iω)2 + (b2a1 + b3)(iω) + b4a1 − b5 = 0, (17)

then
− (iw)3 − (a1 + b1)ω

2 + (b2a1 + b3)(iω) + b4a1 − b5 = 0, (18)

taking into account the real part of (18), therefore,

ω2 =
b5 − b4a1

−(a1 + b1)
, (19)

because a1 + b1 > 0, and b5, b4, a1 > 0, hence ω2 < 0, so it is not possible, then, the equilibrium point
E1 does not suffer a Hopf bifurcation.

In order to study the stability of E1 we consider the discriminant D(P) of characteristic
equation P(λ), given as follows

D(P) = 18d1d2d3 + (d1d2)
2 − 4d3d3

1 − 4d3
2 − 27d2

3, (20)

where d1 = (a1 + b1), d2 = (b2a1 + b3), and d3 = (b4a1 − b5). Following the Routh–Hurwitz stability
conditions for fractional-order differential equations [66], we establish the following terms:

(i) If D(P) < 0, d1 > 0, d2 > 0, d1d2 = d3, then the equilibrium point E1 is locally asymptotically
stable ∀q ∈ (0, 1).

(ii) d3 > 0 is the necessary condition for the equilibrium point E1 to be locally asymptotically stable.

Remark 2. For parameter values di, i = 1, 2, 3 with d1 = 1.4054, d2 = 57.3606 and d3 = −90.2097 the
discriminant D(P) = −1.098041820× 106, but d1d2 = 80.6144 �= d3, and d3 < 0 thence, the Routh–Hurwitz
conditions are unsatisfied. Thus, the E1 is unstable for the given parameters.

When q1 = q2 = q3 ≡ q = 0.9 = 9/10, with w = 10, the characteristic equation of (5) in the
equilibrium point E1 = (0.802, 1.853, 1.286) is given by Theorem 3, as follows

λ27 + (a1 + b1)λ
18 + (b2a1 + b3)λ

9 + b4a1 − b5 = 0, (21)

if we set a1 = 1.3 the characteristic equation has an unstable root λ = 1.0434 and the | arg(λ)| <
π/20, moreover the E1 is saddle point. While the characteristic equation at the equilibrium point
E2 = (0.584, 0.832, 0.728) is

λ27 + (a1 − 0.3002)λ18 + (−0.217a1 + 0.868)λ9 − 1.2036a1 + 12.88179578 = 0, (22)

by considering a1 = 1.3 we obtain unstable roots λ1,2 = 1.0771± 0.1444i. thence, the instability measure
of the system is ρ = (π/2w) − 0.1333 > 0. Therefore, the fractional-order system (5) satisfies the
necessary condition for exhibiting a chaotic attractor according to Theorem 3. This can be understood
by locating the respective eigenvalues in the complex plane. Figure 1, displays the 27 eigenvalues of
the system in the complex plane, the unstable region is delimited by the red lines which is denoted
by π/2w. The eigenvalues for E1 are given in Figure 1a, we can observe that the system has one
eigenvalue in the unstable region, it is a saddle point of index 1. Meanwhile, Figure 1b shows the
eigenvalues of equilibrium point E2; it has two unstable eigenvalues (saddle point of index 2).
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Figure 1. Eigenvalues of the system (5) in the complex plane. (a) eigenvalues for equilibria E1,
(b) eigenvalues for equilibria E2.

Figure 2(a)-(c), exhibits the chaotic attractor found in the glucose-insulin model (5) for
fractional-orders q1 = q2 = q3 = 0.9. The results were computed by applying the predictor-corrector
scheme Adams–Bashforth–Moulton (ABM) [54–56]. Due to Caputo’s fractional differential operator (4)
permits to select both homogeneous and inhomogeneous initial conditions, the ABM algorithm can be
executed without particular constraints [56].

As well known, the differential equations that model dynamical systems regularly present
symmetries and, therefore, it is rare the solutions do not evolve in a symmetrical orientation. The most
common effect is asymmetric attractors for a proper range of parameters, which almost all converges
to a singlesymmetric attractor [67]. For dynamical systems with three state variables x, y, and z,
there are three types of involuntary symmetries: inversion, rotation, and reflection. We consider the
following transformations (x, y, z) → (−x,−y,−z), (x, y, z) → (−x,−y, z), and (x, y, z) → (−x, y, z)
corresponding to the invariance of the equations with changes of sign in three, two, and one variable,
respectively. As a result, the system (5) does not have a symmetry under the proposed transformations,
and its trajectories (x(t), y(t), z(t)) cannot cross the (0, 0, 0) coordinate.
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Figure 2. Chaotic attractor of the fractional-order glucose-insulin model (5) for fractional-orders q = 0.9,
a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3, (x0, y0, z0) = (0.5, 1.2, 1), and integration step-size h = 0.01.
(a) x − y phase plane, (b) x − z phase plane, (c) y − z phase plane.
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4. Numerical Analysis of the Non-Local Fractional Operators on Hypoglycemia,
Hyperinsulinemia, T1DM, and T2DM

As reported in [46–48], when the chaotic behavior appears, it could mean the existence of some
disorders in the inherent dynamics of a biological system. In this manner, we analyze four health
disorders related to fractional-order glucose-insulin model (5) through one- and two-dimensional
bifurcation diagrams and Lyapunov exponents. In particular, we construct a map that relates the
fractional-order derivative with a specific parameter, such as a1 (hypoglycemia), a7 (hyperinsulinemia),
a8 (T1DM), and a15 (T2DM).

4.1. Hypoglycemia: Parameter a1 as a Function of Fractional-Order q

For patients with diabetes, hypoglycemia emerges when the reduction of blood glucose
concentration reduces below 185 3.9 mmol/L (70 mg/dL) [68]. This is a critical condition,
since hypoglycemia may lead to a life-alarming state. In Equation (5), this complication is analyzed
when considering the parameter a1 and the fractional-order q. It means that, if the rate of
insulin decrease, which is represented by a1 in the system (5), gets low, then the hypoglycemia
phenomenon emerge. Therefore, we suppose that the underlying system converges into a chaotic
behavior as shown in Figure 2.

Figure 3a exhibits the bifurcation diagram of system (5) with a fixed fractional-order and considering
a1 as a critical parameter. The bifurcation diagram was made when considering the following: when the
state-variable x intersects the Poincaré plane provided by x − px = 0 with px = 0.5, the measure
r =

√
y2 + z2 is delineated. It can be observed that system is stable for values of parameter a1 > 1.5 but

as the parameter diminishes the behavior turns chaotic.

1.3 1.4 1.5 1.6 1.7 1.8
a

1

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

r

(a)

0 50 100 150 200 250
Time (s)

-80

-60

-40

-20

0

20

40

Ly
ap

un
ov

 E
xp

on
en

ts

1
= 2.690

2
= 0.000

3
=-22.565

(b)

Figure 3. (a) Bifurcation diagram varying the hypoglycemia parameter a1 and setting q = 0.9,
and (b) its Lyapunov exponent spectrum when a1 = 1.3.

Additionally, we observed that the fractional-order q produces a shift concerning the bifurcation
diagram showed in Ref. [46]. This consideration exemplifies the importance of considering a
fractional-order derivative in the dynamical system, i.e., when values lesser than a1 = 2.3 are set in
the integer-order system [46], chaotic behavior was observed; however, this limit is different for the
fractional-order model (a1 ≤ 1.45). It is at this moment when we could mention that a disorder appears.
The numerical results of Lyapunov exponents denoted by λi with i = 1, 2, 3 are shown in Figure 3b for
a1 = 1.3 and q = 0.9 by applying Wolf’s algorithm [69]. The fractional-order glucose-insulin system is
chaotic because of the exponents are λ1 > 0, λ2 = 0 and λ3 < 0 with |λ1| < |λ2 + λ3|. Those results
imply that the system is sensitive to tiny variations of its initial conditions [70,71].
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Besides, a two-dimensional bifurcation diagram between the hypoglycemia parameter a1 and q is
presented in Figure 4. The unbounded behavior is represented by green regions, whereas chaos regions
are denoted by red color. The black regions lead to healthy behavior (free of hypoglycemia). We found
the lower the fractional-order, the lower the effect of a1. The basin of attraction in the plane x(0)− y(0)
for z(0) = 1, q = 0.9 and a1 = 1.3, is plotted in Figure 4b, the yellow region stand for a chaotic
attractor shown in Figure 2, whereas initial conditions from blue region converge into a unbounded
behavior. Finally, Figure 5a–c and Figure 6, presents the phase portraits and Lyapunov exponents,
respectively, of healthy behavior for system (5) obtaining a Lyapunov exponent with magnitude zero
and two negatives.

(a) (b)

Figure 4. (a) Two-dimensional bifurcation diagram for the hypoglycemia parameter a1 and fractional-order
q, where green region stands for unbounded behavior, red for chaotic behavior, and blue regions lead
to healthy (periodic) behavior. (b) Basin of attraction on the x(0)− y(0) plane with z(0) = 1, q = 0.9,
and a1 = 1.3 showing the chaotic behavior. The initial conditions marked in the yellow color lead into a
bounded chaotic attractor, whereas the initial conditions in blue region converge into unbounded behavior.
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Figure 5. Stable behavior of the fractional-order system (5) considering q = 0.9, a1 = 1.55, and initial
conditions (x0, y0, z0) = (0.5, 1.2, 1), with a integration step-size h = 0.01. (a) x − y phase plane,
(b) x − z phase plane, (c) y − z phase plane.

4.2. Hyperinsulinemia: Parameter a7 as a Function of Fractional-Order q

Hyperinsulinemia means the quantity of insulin in the blood is higher than normal levels.
Hyperinsulinemia is most often caused by insulin resistance, both humans and animals [72].
A condition in which the body is not capable of acts in the right form to the effects of insulin.
Consequently, in order to compensate the high blood glucose levels, the pancreatic β-cells irrigate
more insulin [73–76]. Hyperinsulinemia condition is analyzed in the fractional-order glucose-insulin
regulatory system (5) by the parameter a7. Figure 7a shows the bifurcation diagram for different values
of a7 as a function of fractional order q.
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Figure 6. Lyapunov spectrum of (5): a1 = 1.55 and q = 0.9.
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Figure 7. (a) Bifurcation diagram varying the hyperinsulinemia parameter a7 and setting q = 0.95
and (b) Two-dimensional bifurcation diagram for a7 and fractional-order q where the unbounded
behavior is represented by the green regions; chaotic behavior is denoted by red regions, and the
healthy behavior (free of hyperinsulinemia) is given by the blue regions.

From Figure 7a, we can observe that the system is stable when the values for a7 are small,
which describes the increased rate of insulin. If a7 increases, the system becomes in a chaotic manner,
which can be proved by Proposition 1 as follows

Proposition 1. When q1 = q2 = q3 ≡ q = 0.95 and a1 = 2.04, a7 = 2.4, a8 = 0.22, a15 = 0.3, the system
(5) exhibits a chaotic attractor.

Proof. To demonstrate the nonlinear behavior (chaotic behavior) in (5), it is mandatory that the
instability measure ρ defined in (12) is nonnegative. When considering q = 0.95, a7 = 2.4, and w = 100,
the characteristic equation at the equilibrium point E1 = (0.802, 1.866, 1.273) is

λ285 + 2.149λ190 + 58.565λ95 − 102.703, (23)

with a unstable root λ = 1.0049, whereas the characteristic polynomial at E2 = (0.606, 0.889, 0.812) is

λ285 + 1.764λ190 + 1.658λ95 + 17.26, (24)
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with unstable roots λ1,2 = 1.0090 ± 0.0137i, then ρ = (π/2w) − 0.0136 > 0. This result implies
system (5) could generate a chaotic attractor when q = 0.95 and a1 = 2.04, a7 = 2.4, a8 = 0.22,
a15 = 0.3.

Besides, the phenomenon antimonotonicity is stated in Figure 7a, which refers to the creation of
period orbits followed by their nullification with reverse bifurcation sequences [77]. This phenomenon
is one of the most common paths to chaos [78,79]. Antimonotonicity was found in Equation (5) by
sweeping a7 in the interval 2.6 ≤ a7 ≤ 3.2 with q = 0.95. Additionally, we obtain the Lyapunov
exponents λ1 = 1.6617, λ2 =0, λ3 =-24.7646) indicating chaos.

On the other hand, Figure 7b gives the two-dimensional bifurcation diagram between the
hyperinsulinemia parameter a7 and the fractional-order q. The unbounded behavior is represented
by the green regions; chaotic behavior is denoted by red regions and the healthy behavior (free of
hyperinsulinemia) is given by the blue regions. We found that hyperinsulinemia disorder depends on
the value of fractional-order. For values q < 0.92, the hyperinsulinemia tends to periodic oscillations.

4.3. Type-2 Diabetes Mellitus: Parameter a7 as a Function of Fractional-Order q

The abnormal insulin secretion of the pancreatic β-cells is commonly related to T2DM or
non-insulin-dependent diabetes mellitus, which is known to be a disorder with insulin resistance [80–82].
The interconnection among T2DM, insulin resistance, and obesity relies on the β-cell dysfunction [80,83].
T2DM condition is characterized by the parameter a8 in (5). Figure 8a shows the bifurcation diagram for
the parameter a8 with a fractional-order q = 0.98. The parameter a8 is appropriate to understand the
insulin resistance of the human body since it describes the effect of emitted insulin on glucose level [46].
In the bifurcation diagram, that phenomenon is detected when a8 < 0.37, which is associated with
chaotic behavior, as demonstrated by Proposition 2.
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Figure 8. (a) Bifurcation diagram varying the T2DM parameter a8 and setting q = 0.98 and (b)
Two-dimensional bifurcation diagram for a8 and fractional-order q, the chaotic behavior is denoted by
red regions, and the periodic behavior (healthy behavior) is given by the blue regions.

Proposition 2. When q1 = q2 = q3 ≡ q = 0.98, and a1 = 2.04, a7 = 2.01, a8 = 0.27, a15 = 0.3,
the system (5) exhibits a chaotic attractor.

Proof. By applying Theorem 3, we can determine the instability measure ρ. When ρ is strictly positive,
a chaos condition could be established. By selecting q = 0.98, a8 = 0.27, and w = 100 the characteristic
polynomial at E1 = (0.814, 1.813, 1.320) is

λ294 + 2.174λ196 + 54.782λ98 − 82.2, (25)
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with unstable root λ = 1.0033, while at the equilibrium point E2 = (0.63, 0.937, 0.879) is

λ294 + 1.818λ196 + 2.903λ98 + 16.537, (26)

with unstable roots λ1,2 = 1.0089 ± 0.0140i, where the instability measure of the system is ρ =

(π/2w)− 0.0138 > 0. Thus, the system (5) fulfills the essential requirement for getting chaos when
q = 0.98 and a1 = 2.04, a7 = 2.01, a8 = 0.27, a15 = 0.3.

Additionally, we compute the Lyapunov exponents λ1 = 0.56, λ2 = 0, λ3 = −21.03.
Figure 8b sketches the two-dimensional bifurcation diagram for the T2DM parameter a8 and the
fractional-order q. Analogous previous cases, the red areas evolve to chaos, whereas the blue regions
converge to a stable behavior (healthy condition). There is a linear fit between the fractional-order
and T2DB. The lower the fractional-order, the lower the value for a8, where the T2DM disorder
is observed. Besides, for q < 0.97 the T2DM disappear for 0.25 < a8 < 0.7. These results suggest that
the T2DM is not presented in the glucose-insulin system (5) for lowers fractional-orders.

4.4. Type-1 Diabetes Mellitus: Parameter a15 as a Function of Fractional-Order q

T1DM is a common autoimmune disease that originates when the pancreatic β-cells cannot
produce insulin at normal levels, and patients will require hormone dosage for their entire life. [84].
The fractional-order system (5) exhibits this condition when the density of β-cells distinguished
by a15 reduces and, therefore, the pancreas may not secrete sufficient insulin to stabilize the
glucose concentration.

The bifurcation diagram of Equation (5) is shown in Figure 9a when considering a15 as critical
parameter with q = 0.95. As can be seen, the system (5) exhibits different types of steady behaviors
for specific values of a15. However, whether this parameter decreases, the system behaves chaotically,
as is demonstrated in Proposition 3.
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Figure 9. (a) Bifurcation diagram varying the T1DM parameter a15 and setting q = 0.95, and (b)
Two-dimensional bifurcation diagram for a15 and fractional-order q. The unbounded behavior is
represented by the green regions; chaotic behavior is denoted by red regions, and the periodic behavior
(healthy behavior) is given by the blue regions.

Proposition 3. When q1 = q2 = q3 ≡ q = 0.95 and a1 = 2.04, a7 = 2.01, a8 = 0.22, a15 = 0.26,
the system (5) exhibits a chaotic attractor.
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Proof. By selecting q = 0.95, a15 = 0.26, and w = 100, we attain the characteristic polynomial at
E1 = (0.823, 1.881, 1.366) as

λ285 + 2.159λ190 + 61.954λ95 − 106.369, (27)

being λ = 1.0048 the unstable root. At the equilibrium point E2 = (0.618, 0.883, 0.867), we obtain

λ285 + 1.765λ190 + 1.535λ95 + 17.503, (28)

with unstable roots λ1,2 = 1.0091 ± 0.0137i. Therefore, ρ = (π/2w)− 0.0135 > 0. In this manner,
the proposed system (1) fulfills Theorem 3 for generating a chaotic attractor.

The Lyapunov exponents when q = 0.95 and a1 = 2.04, a7 = 2.01, a8 = 0.22, a15 = 0.26 are
λ1 = 1.7733, λ2 = 0, and λ3 = −24.3966. Similarly previous case, Figure 9b presents the two-dimensional
bifurcation diagram relating a15 and the fractional-order q. The green, red, and blue colors denote
unbounded, chaotic, and steady-state behaviors, respectively. A healthy behavior, free of T1DM, is
found for fractional-orders lowers than q < 0.925. Those results may imply that lower fractional-orders
mitigate the effect of the reduction of population density of β-cells for T1DM.

5. Synchronization between Fractional-Order Glucose Insulin Systems

Synchronization is a nonlinear phenomenon that was observed in biological systems; it is seen on
isolated cells [15], clusters of cells as in organisms, and even in collective dynamics of populations [25].
Regarding the glucose-insulin system, it has been shown pancreatic β-cells also present a collective behavior
whose synchronization underlies a small-world functional organization [24–26]. Thus, the synchronization
is crucial to effectuate a pulsatile insulin liberation in cells, which guarantees more substantial hypoglycemic
effects. Hence, we study the synchronization between fractional-order glucose-insulin regulatory systems.
We expect that the synchronization state converges into a periodic behavior, because it is the typical
response in a suband blood glucose concentrations. We define thject with normal metabolic conditions,
allowing with this, the synchronization between the insulin e drive and response system, as follows

Dq1 x1 = −a1x1 + 0.1x1y1 + 1.09y2
1 − 1.08y3

1 + 0.03z1 − 0.06z2
1 + a7z3

1 − 0.19, (29)

Dq2 y1 = −a8x1y1 + 3.84x2
1 + 1.2x3

1 + 0.3y1(1 − y1)− 1.37z1 + 0.3z2
1 − 0.22z3

1 − 0.56,

Dq3 z1 = a15y1 − 1.35y2
1 + 0.5y3

1 + 0.42z1 + 0.15y1z1,

and

Dq1 x2 = −â1x2 + 0.1x2y2 + 1.09y2
2 − 1.08y3

2 + 0.03z2 − 0.06z2
2 + â7z3

2 − 0.19 + u1, (30)

Dq2 y2 = −â8x2y2 + 3.84x2
2 + 1.2x3

2 + 0.3y2(1 − y2)− 1.37z2 + 0.3z2
2 − 0.22z3

2 − 0.56 + u2,

Dq3 z2 = â15y2 − 1.35y2
2 + 0.5y3

2 + 0.42z2 + 0.15y2z2 + u3,

where u1, u2, u3 in (30) represents the unknown control terms, and the error can be defined by

e1 = x2 − x1,

e2 = y2 − y1, (31)

e3 = z2 − z1.
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To achieve the synchronization, it is essential that the errors ei → 0 as t → ∞ with i = 1, 2, 3.
Equation (31), together with (29) and (30), yield the error system

Dq1 e1 = −â1x2 + 0.1x2y2 + 1.09y2
2 − 1.08y3

2 + 0.03z2 − 0.06z2
2 + â7z3

2 +

+a1x1 − 0.1x1y1 − 1.09y2
1 + 1.08y3

1 − 0.03z1 + 0.06z2
1 − a7z3

1 + u1, (32)

Dq2 e2 = −â8x2y2 + 3.84x2
2 + 1.2x3

2 + 0.3y2(1 − y2)− 1.37z2 + 0.3z2
2 − 0.22z3

2

+a8x1y1 − 3.84x2
1 − 1.2x3

1 − 0.3y1(1 − y1) + 1.37z1 − 0.3z2
1 + 0.22z3

1 + u2,

Dq3 e3 = â15y2 − 1.35y2
2 + 0.5y3

2 + 0.42z2 + 0.15y2z2

−a15y1 + 1.35y2
1 − 0.5y3

1 − 0.42z1 − 0.15y1z1 + u3.

Let us define the active control functions ui with i = 1, 2, 3

u1 = V1 + â1x2 − 0.1x2y2 − 1.09y2
2 + 1.08y3

2 − 0.03z2 + 0.06z2
2 − â7z3

2 −
a1x1 + 0.1x1y1 + 1.09y2

1 − 1.08y3
1 + 0.03z1 − 0.06z2

1 + a7z3
1,

u2 = V2 + â8x2y2 − 3.84x2
2 − 1.2x3

2 − 0.3y2(1 − y2) + 1.37z2 − 0.3z2
2 + 0.22z3

2

−a8x1y1 + 3.84x2
1 + 1.2x3

1 + 0.3y1(1 − y1)− 1.37z1 + 0.3z2
1 − 0.22z3

1,

u3 = V3 − â15y2 + 1.35y2
2 − 0.5y3

2 − 0.42z2 − 0.15y2z2

+a15y1 − 1.35y2
1 + 0.5y3

1 + 0.42z1 + 0.15y1z1, (33)

where the linear functions V1, V2, V3 are given by

V1 = −e1,

V2 = −e2, (34)

V3 = −e3.

By using (33) and (34), the error system (32) becomes

⎡
⎢⎣Dq1 e1

Dq2 e2

Dq3 e3

⎤
⎥⎦ =

⎡
⎢⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎥⎦
⎡
⎢⎣e1

e2

e3

⎤
⎥⎦ . (35)

The synchronization error vanishes eventually because of the eigenvalues are −1,−1,−1 in
Equation (35).

The synchronization scenario is as follows. The drive system has a periodic behavior, while the
response system is in a chaotic state. We study the Type-1 Diabetes Mellitus (parameter a8), since it is
the most common disorder, and affects most world population as well as it is correlated with obesity.
For this case, a8 = 0.5 and â8 = 0.27 for drive and response systems, respectively, while a1 = â1,
a7 = â7, and a15 = â15. The fractional-order are q1 = q2 = q3 = q = 0.95 in both systems with
x1(0) = 0.53, y1(0) = 1.31, z1(0) = 1.03 and x2(0) = 0.5, y2(0) = 1.1, z2(0) = 1.3, for drive and
response systems, respectively. Figure 10a–c show the phase planes between the periodic (free of
T1DM) and chaotic (with T1DM) systems. Additionally, the synchronization error by considering (36)
is given in Figure 11. Due to the error tends to zero as time evolves, we infer that the proposed control
strategy is suitable for forcing the system with the disorder to a state free of T1DM. It is worth noting
that the control strategy can be extended to incorporate uncertainties and improve the robustness of the
synchronization using other approaches, as shown in [22,85]. From a practical biological point of view,
for instance, recent works have employed optical-based control using a light-activated Na+ channel,
to attain insulin from β-cells both in-vitro and vivo [86,87]. Therefore, our results could be useful for
future works where the glucose-insulin system could be controlled with an artificial control signal.
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ln(error1(t)) = ln ([x2 − x1])
2 ; ln(error2(t)) = ln ([y2 − y1])

2 ; ln(error3(t)) = ln ([z2 − z1])
2 . (36)
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Figure 10. Synchronization planes for the fractional-order glucose-insulin systems (29) and (30) with
a8 = 0.5, â8 = 0.27, and q = 0.95, respectively. (a) x1 − x2 phase plane, (b) y1 − y2 phase plane, (c)
z1 − z2 phase plane.
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Figure 11. Synchronization error between the fractional-order glucose-insulin systems (29) and (30)
when a8 = 0.5, â8 = 0.27, q = 0.95, and (x1, y1, z1, x2, y2, z2) = (0.53, 1.31, 1.03, 0.49, 1, 0.8), respectively.

6. Physical Realization of the Fractional-Order Glucose-Insulin System Based on an
ARM Processor

As well known, the experimental realization of fractional-order dynamical systems is a hot
topic that has been attracting the attention of researchers since it is a path for demonstrating the
complex dynamics, including chaos [35–39,44,45]. For fractional-order systems, there three typical
approaches for getting electronic circuits: frequency-domain approximation, numerical algorithms,
and the Adomian decomposition method [35–39,44,45]. The first-mentioned is not recommended for
chaos detection, since it may induce incorrect results [62,63]. On the other hand, the second and latter
approaches are good options for physically implementing fractional-order systems in re-programmable
digital hardware [44,45]. Therefore, we chose the numerical algorithm approach for programming the
ABM method. Subsequently, we select herein the ARM SoC Broadcom BCM2837B0 for the experimental
verification of the fractional-order glucose-insulin regulatory system. The SoC contains an ARM core
with 64-bit. An SDRAM LPDDR2 with 1GB. The ARM cores are capable of running at up to 1.4 GHz.
It’s possible to create an interface by using the GPIO port with a 16-bit monotonic voltage output
D/A converter AD569. Figure 12a,b present the block diagram of the working principle and the main
instructions of the pseudo-code, respectively.

After initializing the ARM processor, we set the initial values, h, q, x0, y0, z0. Because of the negative
values of the system (1), a positive integer φ is needed to offset the time-series of the state-variables to
avoid losing data. In this manner, all computed data are now positive. Next, we multiply the data by a
positive integer γ to fit them to the DAC resolution of 214 bits. Finally, the obtained results visualize in
an oscilloscope, as shown in Figures 13 and 14. We analyze the scenario related to hypoglycemia.
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First, we implement the case where system (1) presents the hypoglycemia condition, as given in
Figure 13. As can be seen, the experimental phase portraits are pretty similar to those that are shown in
Figure 1. Finally, the case when the fractional-order system (1) is free of hypoglycemia, i.e., an steady-state
and, therefore, convergers to a periodic attractor, is given in Figure 14. Similar to the previous case,
the experimental results are in good agreement with Figure 4. Subsequently, it indicates that the
fractional-order glucose-insulin regulatory system was successfully realized on an ARM digital platform.

(a) (b)

Figure 12. (a) Simplified diagram of the implementation of the fractional-order glucose-insulin
regulatory system (1), and (b) the main steps of the proposed algorithm for implementing it on
an ARM digital platform.

(a) (b) (c)

Figure 13. Experimental phase portraits of the fractional-order glucose-insulin regulatory system (1)
showing hypoglycemia (chaos behavior) with h = 0.01, a1 = 1.3, a7 = 2.01, a8 = 0.22, a15 = 0.3,
q1 = q2 = q3 = 0.9 and (x0, y0, z0) = (0.5, 1.2, 1). (a) x − y plane, (b) x − z plane, (c) y − z plane.

(a) (b) (c)

Figure 14. Experimental phase portraits of the fractional-order glucose-insulin regulatory system (1)
depicting a steady-state free of hypoglycemia with h = 0.01, a1 = 1.55, a7 = 2.01, a8 = 0.22, a15 = 0.3,
q1 = q2 = q3 = 0.9 and (x0, y0, z0) = (0.5, 1.2, 1).(a) x − y plane, (b) x − z plane, (c) y − z plane.
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7. Conclusions

The dynamical analysis, synchronization, and physical realization of a glucose-insulin regulatory
system has been presented by using Caputo’s non-local fractional-order operator. In particular,
we studied four common disorders, such as T1DM, T2DM, Hypoglycemia, and Hyperinsulinemia.
We found that the fractional-order system switches between a chaotic behavior (a health disorder)
and a disorder-free state, not only for the values of systems parameters, but also as a function of
the fractional-order, due it adds more degrees of freedom in the model.To understand that insight,
we computed two-dimensional bifurcations diagrams, which demonstrated the importance of
considering the fractional-order (memory index) for getting a higher approximation of the observed
behavior because fractional-order systems describe the whole-time domain in the solution, while the
integer-order model is related to the local properties. Additionally, a phenomenon of antimonotonicity
was observed in the parameter related to the hyperinsulinemia case. Besides, by applying the
straightforward active control method, we showed that stable behavior in the fractional glucose-insulin
system under the T1DM condition could be attained when it synchronizes with a disorder-free system.
We remark that the synchronization can be extended to the remaining conditions. Finally, the electronics
approach-based validation of chaotic and periodic behaviors was shown using an ARM digital platform.
The experimental observations were in good agreement with the theoretical findings.

In this manner, the system-of-a-chip circuit designs are the right candidate for exploiting the
advantages of the fractional-order models due to their simplicity, programmable characteristics,
and portability, therefore increasing the fractional-order-based oncoming applications. As future work,
an analysis related to robustness of the synchronization scheme will be developed.
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Abstract: Using different chaotic systems in secure communication, nonlinear control, and many
other applications has revealed that these systems have several drawbacks in different aspects.
This can cause unfavorable effects to chaos-based applications. Therefore, presenting a chaotic map
with complex behaviors is considered important. In this paper, we introduce a new 2D chaotic
map, namely, the 2D infinite-collapse-Sine model (2D-ICSM). Various metrics including Lyapunov
exponents and bifurcation diagrams are used to demonstrate the complex dynamics and robust
hyperchaotic behavior of the 2D-ICSM. Furthermore, the cross-correlation coefficient, phase space
diagram, and Sample Entropy algorithm prove that the 2D-ICSM has a high sensitivity to initial values
and parameters, extreme complexity performance, and a much larger hyperchaotic range than existing
maps. To empirically verify the efficiency and simplicity of the 2D-ICSM in practical applications,
we propose a symmetric secure communication system using the 2D-ICSM. Experimental results are
presented to demonstrate the validity of the proposed system.

Keywords: hyperchaotic behavior; symmetric encryption; arduino microcontrollers; optical channel

1. Introduction

Numerous phenomena have been comprehended by studying the complex behaviors in many
natural and non-natural dynamical systems. Understanding the chaotic behavior, which is a kind
of nonlinear complex dynamical behavior, has provided a significant description of these systems.
Although dynamical systems with chaotic behaviors are deterministic, long-term prediction of their
behaviors is impossible [1]. Moreover, the sensitivity, topological mixing, and orbits density are the
main characteristics of the chaotic systems [2–4]. Therefore, chaotic systems have valuable applications
in various fields including computer science, telecommunication, physics, engineering, etc. [5–10].
In particular, due to the similarity between the characteristics of chaotic systems and the diffusion and
confusion properties of cryptography [11], a wide body of chaos-based cryptographic applications has
been presented in the last few years [12–17].
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For the time being, discrete-time systems and continuous-time systems are the major types of
chaotic systems. The former type is described by a difference equation, and it can be implemented
through an iterative procedure, while the latter one is usually represented by a partial and/or ordinary
differential equation. Edward Lorenz was the first to present a chaotic system with continuous-
time [18]. Subsequently, several well-known continuous-time chaotic and hyperchaotic systems have
been proposed such as Rössler [19], Sprott [20], Chen [21], and Lü [22] systems. On the other hand,
the Logistic map, which was presented by Robert May, is the first clear example of a discrete-time
system with chaotic behavior [23]. Since then various discrete-time chaotic and hyperchaotic systems
have been presented in the literature [24–28].

During the past recent years, significant efforts in the prediction of chaotic systems’ behaviors have
been devoted through determining their parameters [29], or estimating their states [30]. Predicting
the behavior of a chaotic system can render chaos-based cryptosystem insecure [31]. This has raised
the need for measuring the complexity of the employed chaotic systems [32,33]. Therefore, numerous
algorithms have emerged to measure the complexity of the systems’ time series such as Fuzzy
Entropy [34], Modified Permutation-Entropy [35], and Sample Entropy [36].

Due to the performance drawbacks of many existing chaotic systems in some attributes,
for instance, frail chaos (i.e., chaotic behavior appears only in insulated zones of the system’
parameters), it motivated researchers to propose systems with robust chaos that can encourage
chaos-based cryptographic applications. An example of such weakness is that through a slight
perturbation to a single parameter, it could make the system collapse into a non-chaotic zone of the
system [37].

Based on the aforementioned description, this paper proposes a new chaotic discrete-time system,
called the 2D infinite-collapse-Sine model (2D-ICSM). The 2D-ICSM exhibits a wide hyperchaotic
range, good ergodicity, high complexity, and sensitivity. Therefore, 2D-ICSM could be an ideal source
for chaos-based cryptographic applications. The main contributions of this work are as follows.

1. We introduce an analytical framework to understand the dynamical behavior of the 2D-ICSM
including stability of its fixed points, bifurcation diagram, and Lyapunov Exponents.

2. We experimentally evaluate the complexity, sensitivity, and randomness of the 2D-ICSM using
Sample Entropy, cross-correlation coefficient, and NIST-800-22 statistical test, respectively.

3. To demonstrate the efficiency and simplicity of the 2D-ICSM in practical applications, we design
a secure communication system, and then experimented tested it on an optical channel with
Arduino microcontrollers.

This paper is organized as follows. Section 2 introduces the 2D-ICSM and studies the stability
of its equilibria. In Section 3, we analyze the dynamics of the 2D-ICSM. Section 4 demonstrates the
high sensitivity and randomness of the 2D-ICSM. Section 5 demonstrates the detailed complexity
performance of the 2D-ICSM. In Section 6, we introduce the proposed secure communication system.
Section 7 illustrates the implementation of the communication system. Conclusions are presented in
Section 8.

2. The 2D Infinite-Collapse-Sine Model

In this section, we introduce a new 2D chaotic map, called the 2D infinite-collapse-Sine model
(2D-ICSM), and then discusses its stability analysis.

2.1. Definition of 2D-ICSM

Among existing 1D discrete-time dynamical systems, the infinite collapse model is considered
as one of the best maps that show robust chaotic performance [38]. Mathematically, its dynamical
equation is given by

xn+1 = sin
(

β

xn

)
, (1)
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where β is the control parameter and x is the state variable. The dynamical behavior of this map
can be illustrated by depicting its bifurcation diagram and trajectory in the phase plane, as shown in
Figure 1. It can be seen that the numerical solution of this map is in the range of [−1, 1]. Besides that,
the bifurcation diagram of this map shows that the chaotic attractor appears in limited regions of its
parameter. Meanwhile, several non-chaotic regions can be observed as the parameter α increasing.
Furthermore, Figure 1b demonstrates that its trajectory only occupies a small space in the phase
plane. Such behaviors are widely observed in the existing 1D chaotic maps such as Logistic, Tent,
and Sine maps.

Figure 1. Dynamical behavior of the infinite collapse map (1) with x0 = 0.5: (a) bifurcation diagram for
β ∈ [0, 8] and (b) chaotic attractor for β = 2.

To tackle the aforementioned issues, we propose a new 2D chaotic map, which consists of four
terms with two control parameters. Mathematically, it is defined as follows,

⎧⎨
⎩

xn+1 = sin (βyn) ,

yn+1 = (α + 2)xn + sin
(

β

yn

)
,

(2)

where α is the amplitude parameter and β is the internal frequency parameter. It can be seen that the
proposed 2D infinite-collapse-Sine model (2D-ICSM) is mainly designed by using three components
including a linear variable, 1D Sine map, and 1D infinite collapse map. The linear state variable xn

is used to modulate the output of a 1D infinite collapse map. Therefore, it can enhance the chaotic
behavior of the state variable yn+1. Meanwhile, the 1D Sine map is employed to boost randomness to
the state variable xn+1.

2.2. Stability Analysis

For discrete-time systems, the fixed point of a function form a graphical point of view is an
element in the domain that maps to itself by the function. For instance, P is a fixed point of the function
F(x) only when Fn(P) = P. To simplify the calculation of the fixed points of 2D-ICSM, we reduce its
dimension to become 1D as follows,

y(v) = (α + 2) sin
(

βy(v)
)
+ sin

(
β

y(v)

)
, (3)

The fixed points of the 2D-ICSM are calculated for two different sets of system parameters.
For each set of parameters, we obtain the fixed points of the variable y by Equation (3), and subsequently,
the corresponding points of the variable x can be easily obtained by the first equation of the system (2).
Figure 2 illustrates how the fixed points of the variable y can be obtained using the graphical method.
From this figure, one can notice that the number of fixed points is increased as the values of the
amplitude and internal frequency parameters increase. Now, let us collect some fixed points from each
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set of system parameters to investigate their stability. First, we have extracted the following fixed point
from the first set of the system parameters,

{
P1 =

(
x(1), y(1)

)
= (0.6687, 2.4092).

Second, we have extracted three different fixed points from the second set as follows,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1 =
(

x(1), y(1)
)
= (0.9168, 4.1324),

P2 =
(

x(2), y(2)
)
= (0.7607, 3.5738),

P3 =
(

x(3), y(3)
)
= (0.1334, 1.5039).
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Figure 2. Fixed points of the 2D-ICSM: (a) for the parameters α = β = 1; (b) for the parameters
α = β = 2.

The stability of the above-fixed points can be determined by obtaining the Jacobian matrix,
which is given by

J =

⎛
⎜⎝

∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

⎞
⎟⎠ .

Using the above matrix, the 2D-ICSM is Linearized at any arbitrary fixed point Pi = (x∗, y∗)
as follows,

JPi =

(
0 β cos(βy)

2 + α − β

y2 cos
(

β
y

)) .

Thus, the eigenvalues are obtained by solving the following equation,

λ2 +

(
β

y2 cos
(

β

y

))
λ − (2 + α)β cos(βy) = 0.

It is well-known that the stability of fixed points is dependent on the eigenvalues. When an
eigenvalue is within the interval [−1, 1], then the fixed point exhibits a stable state. Otherwise, it shows
an unstable state. Moreover, the stability of the obtained fixed points is as illustrated in Table 1. All the
selected fixed points of the 2D-ICSM are unstable.
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Table 1. The fixed points of the 2D infinite-collapse-Sine model (2D-ICSM) and their stability analysis.

Parameters Fixed Points λ1 λ2 Stability Analysis

α = 1, β = 1 P1 1.53297 −1.53297 unstable

P1 1.8162 −1.8162 unstable

α = 2, β = 2 P2 2.17218 −2.17218 unstable

P3 2.8715 −2.8715 unstable

3. Dynamical Behaviors

This section investigates the dynamical behaviors of 2D-ICSM through the bifurcation diagram,
Lyapunov Exponents, and phase space.

3.1. Bifurcation Diagram and Lyapunov Exponents

Typically, the bifurcation diagram and Lyapunov Exponents are used to determined the
non-chaotic and chaotic regions of a dynamical system when one of its parameters varies.
Furthermore, the Lyapunov exponent is used to evaluate the chaotic properties of a dynamical
system. In other words, it could recognize the chaotic and hyperchaotic behaviors of the system.
A system is recognized as chaotic when there is one positive Lyapunov Exponent value for each
parameter value, whereas the hyperchaotic system has more than one positive Lyapunov Exponent
value. The hyperchaotic system exhibits a higher level of randomness, and the generated sequences by
the hyperchaotic system show extreme unpredictability.

To investigate the dynamics of 2D-ICSM, we depict its bifurcation diagram and Lyapunov
Exponents with the initial values (0.5, 0.5) and for the parameters 0 ≤ α ≤ 8 and β = 12,
as shown in Figure 3. It can be seen that 2D-ICSM is hyperchaotic among the whole parameter
range, which indicates that its sequences are extremely hard to be predicted.
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Figure 3. Dynamics of the 2D-ICSM with the initial values (0.5, 0.5) and for the parameter β = 12:
(a) bifurcation diagram; (b) Lyapunov Exponents.

3.2. Hyperchaotic Attractor

The set of numerical values, which is generated by a chaotic/hyperchaotic map with specific
sets of initial values and control parameters, is called chaotic/hyperchaotic attractor. For a 2D map,
its attractor can be described by a group of points that occupies a particular region in the phase space.
A chaotic/hyperchaotic model has better performance when its attractor is geometrically complicated
and occupies a larger range in the phase space. To illustrate the hyperchaotic range of the 2D-ICSM,
Figure 4f depicts its attractor in the 2D phase space with the parameters α = 6 and β = 12. Besides that,
this figure plots the attractors of several existing chaotic and hyperchaotic models to demonstrate the
complicated behavior of the 2D-ICSM. It can be observed that the hyperchaotic attractor of 2D-ICSM
fully occupies a 2D phase space ranging x ∈ [−1, 1] and y ∈ [−9, 9]. This means that 2D-ICSM
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can generate more unpredictable hyperchaotic sequences and it has a better competitive ergodicity
property than existing models.
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Figure 4. Chaotic and hyperchaotic attractors of different 2D maps: (a) 2D-SLMM [12]; (b) 2D-SIMM [13];
(c) 2D Ushiki map [39]; (d) 2D-LASM [14]; (e) 2D-LICM [15]; (f) the 2D-ICSM.

4. Performance Evaluations

In this section, the sensitivity of the initial conditions and the control parameters is measured by
the cross-correlation coefficient. Furthermore, the quantitative values of the randomness of sequences
generated by the 2D-ICSM are determined using NIST-800-22 randomness tests.

4.1. Cross-Correlation Coefficient

To estimate the sensitivity of the initial conditions and the control parameters of the 2D-ICSM,
we use the cross-correlation coefficient (CCF); its equation is given by

CCF(αt, βt) =
∑N

t=1(αt − A(α))(βt − A(β))√
∑N

t=1(αt − A(α))2 ∑N
t=1(β − A(β))2

, (4)

where A(α) represents the mean value of the time series αt, meanwhile A(β) represents the mean
value of the time series βt. When CCF(αt, βt) is close to 0, then it can be indicated that these two-time
series are diverging.

Figure 5 presents the sensitivity of the 2D-ICSM with the parameters α ∈ [0, 8] and β = 12. In this
figure, the sensitivity is estimated by calculating the CCF between the original time series and the
modified time series. It is important to mention here that the modified time series was generated by
the 2D-ICSM using a very small error, e = 5 × 10−5, which was added to the initial value x0 and the
parameter α, as shown in Figure 5a,b, respectively. It can be observed that the 2D-ICSM has a high
level of sensitivity to its initial values and control parameters.
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Figure 5. The CCF analysis of the 2D-ICSM with 0 ≤ α ≤ 8 and β = 12: (a) the CCF with the initial
values (0.1 + e, 0.1); (b) the CCF with the initial values (0.1, 0.1) and for α + e.

4.2. Chaos-Based Pseudorandom Number Generator

A chaotic map could be a suitable source to generate pseudorandom numbers when it has high
sensitivity, good ergodicity, and extreme unpredictability. The existence of these features in a chaotic
map can be determined by the NIST-800-22 randomness tests.

It is, therefore, crucial to determine the existence of such features in the 2D-ICSM to examine its
ability to be a PRNG. In this regard, we propose a simple strategy, which directly employs the chaotic
sequences as pseudorandom numbers by converting each of their values to a 32-bit binary stream
using the IEEE 754 float standard. Figure 6 displays the NIST SP800-22 test results of pseudorandom
numbers generated by the 2D-ICSM. In this figure, the generated sequence by 2D-ICSM has a length
of 100, 000, 000 binary bits. It is important to state here that a chaotic map can pass the statistical tests
of NIST-800-22 only when the corresponding p-values are greater than the experimental significance
level [40]. Consequently, the results in Figure 6 demonstrates the high randomness of the generated
pseudo random numbers by the 2D-ICSM.
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Figure 6. The p-values of the binary sequence generated by PRNG of the 2D-ICSM with the parameters
α = 6 and β = 12.

5. Complexity-Based Sample Entropy

In this section, the complexity of 2D-ICSM is investigated through a fundamental algorithm,
namely, Sample Entropy (SamEn). The authors of [36] presented SamEn to calculate how much extra
information is required to predict the (t + 1)th output of a trajectory using its previous (t) outputs.
SamEn with larger values indicate a lower degree of regularity of a chaotic map. In other words,
the chaotic map exhibits a high level of complexity and unpredictability.

The SamEn algorithm for a given time series {x(i), i = 0, 1, 2, . . . , N − 1} is outlined as follows:

1. Reconstruction: the time series can be reconstructed as follows,

Xi = {xi, xi+τ , ..., xi+(m−1)τ}, Xi ∈ Rm (5)

where m is embedding dimension and τ is time delay.
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2. Counting the vector pairs: For a given tolerance parameter r, let Bi be the number of vectors Xj
such that

d[Xi, Xj] ≤ r, i �= j (6)

here, d[Xi, Xj] is the distance between Xi and Xj, which is defined as

d[Xi, Xj] = max{|x(i + k)− x(j + k)| :

0 ≤ k ≤ m − 1}. (7)

3. Calculating θm(r): According to the obtained number of vector pairs, we can get

Cm
i (r) = Bi

N−(m−1)τ , (8)

then calculate θm(r) by

θm(r) =
∑

N−(m−1)τ
i=1 lnCm

i (r)
[N−(m−1)τ] . (9)

4. Calculating SamEn: Repeating the above steps we can get θm+1(r), then SamEn is given by

SamEn(m, r, N) = θm(r)− θm+1(r). (10)

Figure 7a plots SamEn results of the 2D-ICSM when the two parameters α and β are varying
simultaneously. This figure provides a more clear vision of the complexity of 2D-ICSM. It can be
seen from this figure that the 2D-ICSM exhibits high complexity in most of its parameters setting.
However, the highest SamEn values appear whenever the α and β are increasing.

Moreover, Figure 7b depicts the SamEn results of the 2D-ICSM and different chaotic and
hyperchaotic maps. It is quite clear that the 2D-ICSM has the largest SamEn values, which indicates
that one needs more information to predict the generated sequences by this map.
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Figure 7. SamEn simulation: (a) SamEn values of the 2D-ICSM when its parameters vary; (b) SamEn
results of different chaotic and hyperchaotic maps, where parameter φ represents α, a, a2, α1, for the
2D-ICSM, 2D-LASM [14], 2D-SIMM [13], and 2D-SLMM [12], respectively.

6. Chaos Based Cryptography

This section investigates the performance of 2D-ICSM in cryptography applications by designing
a symmetric secure communication system. Figure 8 displays the schematic diagram of the
proposed symmetric secure communication scheme. As can be observed in this figure, the proposed
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communication system is designed to transmit a message M(s) between two points in which the
2D-ICSM is employed to encrypt the information.

Figure 8. Schematic diagram of the proposed secure communication scheme using the 2D-ICSM.

6.1. Arduino Transmitter

In the proposed communication system, the Arduino is considered as the core of transmission.
Here, we employ the Arduino Uno R3 microcontroller boards, which are simple and implemented at a
low cost. It has 14 digital input/output pins (6 of them can be used as PWM outputs), 6 analog inputs,
a 16 MHz crystal oscillator, a USB connection, and a reset button [41].

First, we convert the signal from the bipolar form to the unipolar form, and this is due to
the fact that the Arduino analog inputs only accept unipolar signals in the range from 0 V to 5 V.
The communication starts with a message M(s), which is sent to the analog input A0 of the Arduino
transmitter, as shown in Figure 9. Second, the input signal is converted from analog to digital using an
embedded 8-bit ADC at a maximum rate of 8000 samples per second. Finally, this signal is encrypted
by the 2D-ICSM and Delta modulator.

Figure 9. The transmitter circuit.

6.2. Delta Modulation

The Delta modulation is a simple and robust A / D conversion method [42]. It has a comparator in
the forward path and an integrator in the feedback path of a simple control loop, as shown in Figure 10.
The signal M(k) is the input of the comparator. Meanwhile, U(n) is the integrated output, which has
a binary form. The value of Delta modulation depends on the current sample, if it is less than the
previous sample, then zero is transmitted as a signal, whereas if the current sample is greater than the
previous one, then number one is sent as a transmitted signal. Algorithm 1 illustrates the pseudocode
of the Delta modulation process.
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Figure 10. Diagram of the Delta Modulator.

Algorithm 1: Delta Modulation
Input: M(k).
Output: Mb(k).

1 if M(k) > ∑ U(n), where ∑ U(n) = U(n − 1) + U(n − 2) + · · ·+ U(0), then

2 Mb(k) = +v;
3 else

4 Mb(k) = −v;
5 end

6.3. Encryption Process

The encryption process begins after obtaining the signal Mb(k) from the Delta modulator.
First, the secret key of the proposed encryption scheme is mainly generated from the initial values
and a control parameter of the 2D-ICSM, as illustrated in Figure 11. As can be seen from this figure,
the secrete key consists of 5 parts with 232 bits in which (x0, y0) and α are the initial values control
parameter of the 2D-ICSM. Meanwhile, s and z are added to increase the security by increasing the key
space and changing the initial values and control parameters. It is crucial to state here that the proposed
key is symmetric, which means that it can be used for both encryption and decryption processes.

Figure 11. The secret key structure.

Now, the obtained signal Mb(k) can be encrypted using the hyperchaotic sequence generated
by the 2D-ICSM. Algorithm 2 illustrates the pseudo-code of generating the secrete key and the
encryption process.
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Algorithm 2: The encryption process.
Input: The secret key of size 232 bits, Mb(k), and the length of input data Q.
Output: The serial data Me(k) and si.

1 x0 =
(

∑64
j=1 k[j]× 264−j

)
/264;

2 y0 =
(

∑128
j=65 k[j]× 2128−j

)
/264;

3 α =
(

∑192
j=129 k[i]× 2192−j

)
/264;

4 s =
(

∑212
j=193 k[j]× 2212−j

)
/220;

5 z =
(

∑232
j=213 k[j]× 2232−j

)
;

6 x = (x0 + s × z) mod 1;
7 y = (y0 + s × z) mod 1;
8 α = (α0 + s × z) mod 8;
9 Generate the hyperchaotic sequence ci using the 2D-ICSM;

10 for i=1 to Q do

11 Obtain N-bit key vectors si from the chaotic sequence ci;
12 Me(k) = (!Mb(k)AND si)OR (Mb(k)AND !si).
13 end

It is crucial to mention here that the encrypted signal will be the pulses (1’s on and 0’s off) that is
sent from pin 1 in Arduino (board 1) to the electronic laser circuit as shown in Figure 9. The laser diode
output depends on the diode injected current instead of voltage. The Arduino pin 1 is used to power
the diode directly. Its processor draws 30 mA with 40 mA outputs. When the current enters into the
laser diode circuit (LDC), it should be controlled by a modulated data stream. This current has high
speed, where this circuit inverts the signal phase before the Laser diode (LD) is injected. Figure 12
shows a simulation example of the LDC. The inputs of the data stream are modulated through the
LDC directly. The output of LD as an emitted light represents the reaction of “one” or “zero” logic.
The direct modulation is considered as the most commonly used. It is utilized to modulate the light
intensity for the transmission of information through free space.

Figure 12. The input signal (yellow) and the output signal of the laser diode circuit (LDC) (blue).

Besides that, the laser beam transmitted by the photodiode is received in the form of light pulses.
The photodiode acts as a semiconductor device used to convert light into a current that converts the
received beam into an electrical signal within a voltage range between two volts (0–0.5). The encoded
signal received by the photodiode passes various stages to amplify the signal voltage and return it to
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5 volts, as can be seen in Figure 13. Furthermore, the binary signal is inverted and then sent it to pin 0
of Arduino (Board 2), as shown in Figure 12.

Figure 13. The receiver circuit.

6.4. Decryption Process

The decryption signal is referred to by Md(k). This output signal is sent to Pin 5, which in
turn sends it immediately to delta demodulation, which is designed by an analog electronics via the
operating amplifier. Figure 13 shows the delta demodulation composite of a Delta demodulation
integrator. An op-amplifier as a low pass filter is used to send the signals and obtain the final Mr(s),
which is equal to the original signal M(s).

7. Experimental Implementation

This section investigates the simplicity of the proposed secure communication system in
simulation and hardware implementation.

7.1. Simulation Implementation

The simulation results of the proposed secure communication system are presented here by
Matlab 2017b programs and implemented in a computer with specification Core i3-2.00 GHz, Intel
CPU, and 4 GB RAM. The decimal values of the secret key are selected as x0 = 0.9382, y0 = 0.3171,
α = 4.6516, s = 0.5782, and z = 149936. Figure 14a–f depicts the simulation results of the proposed
communication system. Empirical correctness of the system can be observed through the retrieved
signal Mr(s), which is completely identical to the original signal M(s) that has been encrypted,
and then sent through a free-space optical channel.
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Figure 14. Simulation results: (a) the original signal; (b) the modulated output Mb(k); (c) the encrypted
binary data Me(k); (d) the serial binary data; (e) the decrypted binary data; (f) the retrieved signal.

Key Sensitivity Analysis

The employed key for the encryption scheme is considered highly sensitive when the encrypted
message cannot be recovered, as a slight difference in one of the key components would result in an
incorrect decrypted ciphertext. Therefore, we hereby investigate the key sensitivity of the proposed
secure communication scheme, as shown in Figure 15. In this figure, a signal has been encrypted by k1,
and using the same key, we could recover the signal, as shown in Figure 15a–c. However, when we
change the 14th decimal place in the parameters, or initial conditions, or both to obtain three other
keys, namely, k2, k3, and k4, respectively, Figure 15d–f demonstrates that these keys fail to recover the
original signal, which means that the proposed communication system has a robust and sensitive key.
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Figure 15. Key sensitivity analysis: (a) the original signal; (b) the encrypted signal; (c) the decrypted
with the right key (k1); (d–f) the decrypted signal with the wrong keys (k2, k3, k4), in which the change
occurred slightly in the parameters and initial conditions, only the parameters, and only the initial
condition, respectively.

7.2. Hardware Implementation

The encryption algorithm is applied to a signal between (0 Hz–200 Hz) based on two
microcontroller boards of Arduino Uno R3. The properties of these boards are non-expensive, have a
simple design, and powerful microcontrollers that depend on the ATmega328 chip. The input and
output pins are digital which consists of 14 digits, six of them are used as pulse width modulation
(PWM) outputs, the other six are analog inputs. Besides that, the other 2 digits are used as 16 MHz
crystal oscillator, the USB connection, and a reset button. These materials can be implemented by
utilizing the C++ language. The computer with specification Core i3- 2.00 GHz, Intel CPU, and RAM
4 GB is used to run the software that is designed by the C++/C programing language, which is used
to implement the two Arduino boards. These experiments have been implemented in a lab using a
200 MHz digital oscilloscope and a digital function generator. It is shown in Figure 16.

Figure 16. Work environment and laboratory materials.
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The experiment was conducted in the laboratory. The results presented in Figure 17a refers to
the sent message that appears in blue, while the retrieved message appears in yellow, and Figure 17a
refers to the serial binary data.

Figure 17. Oscilloscope outputs: (a) the sent message appeared in blue, and the reconstructed message
appeared in yellow; (b) the serial data.

8. Conclusions

In summary, this paper introduces the 2D-ICSM, which is a new hyperchaotic map designed
using the 1D infinite collapse model as seed. The fixed points of certain parameters of the 2D-ICSM
have been calculated, and then the stability of these points was analyzed by the graphical method.
Performance evaluations including Lyapunov exponents, bifurcation diagram, cross-correlation
coefficient, phase space diagram, NIST-800-22 randomness test, and Sample Entropy algorithm showed
that the 2D-ICSM has a wide hyperchaotic range, high sensitivity, good ergodicity, sufficient level of
randomness, and extreme complexity performance. Therefore, the 2D-ICSM could be an ideal source
for many chaos-based practical applications. To demonstrate the efficiency of 2D-ICSM, we proposed a
secure communication system, which is designed to transmit a message between two points. The input
message is modulated using a simple Delta modulator and then encrypted using the 2D-ICSM. In the
receiver side, the 2D-ICSM along with Delta demodulation are employed to retrieve the original
message. It is crucial to state that the transmitted message by the proposed communication system
could be an image, a text, or a sound. Simulation and empirical results have verified the efficiency and
simplicity of the proposed secure communication system.
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Abstract: This work proposes a modified logistic map based on the system previously proposed by
Han in 2019. The constructed map exhibits interesting chaos related phenomena like antimonotonicity,
crisis, and coexisting attractors. In addition, the Lyapunov exponent of the map can achieve higher
values, so the behavior of the proposed map is overall more complex compared to the original.
The map is then successfully applied to the problem of random bit generation using techniques like
the comparison between maps, XOR, and bit reversal. The proposed algorithm passes all the NIST
tests, shows good correlation characteristics, and has a high key space.

Keywords: random bit generation; logistic map; chaos; chaos-based cryptography

1. Introduction

Chaos theory has found numerous applications over the last 50 years, including, but not
limited to, encryption, engineering, secure communications, robotics, biology, and economics—see,
for example, Refs. [1–4] and the references cited therein. Nonlinear systems with chaotic properties are
deterministic systems with high sensitivity to small changes in initial conditions and parameters
which lead to completely different solution trajectories. This sensitivity, combined with their
deterministic nature, makes chaotic systems a perfect basis for designs that require high complexity
and increased security.

Due to their abovementioned usability, there is an ongoing demand for constructing novel
chaotic systems. Moreover, it is of interest to develop minimal chaotic systems that can provide high
performance when implemented on FPGA [5,6]. Most of constructed chaotic maps are modifications
of known chaotic systems. These modifications usually follow simple techniques, such as introducing
additional nonlinear terms in the system’s differential/difference equations, changing an existing
term to a higher-order term, or even by adding new variables to make the system hyperchaotic that
is, having at least two positive Lyapunov exponents, which can only happen for four-dimensional
systems or higher.

The logistic map [7,8] is one of the most well-known one-dimensional discrete time systems
with chaotic behavior. Originally considered as a population model, it eventually found numerous
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applications in encryption, due to its simple and elegant form. This has also lead to many subsequent
modifications of the map—see, for example, [9–17].

In this study, we consider a modification of the logistic map considered in [9]. The proposed
modification is obtained by combining the map [9] with the conventional logistic map. This is done by
multiplying the values of the map in [9] by the values of the logistic map computed from the decimal
part of the same map, yielding a more complex behavior. The original map [9] exhibits a symmetric
bifurcation diagram and constant chaos with a constant Lyapunov exponent, yet the proposed chaotic
map showcases a plethora of chaos related phenomena, like antimonotonicity, crisis, and coexisting
attractors, and the symmetric bifurcation diagram is now modified. In addition, the Lyapunov
exponent of the new map can reach higher values, so overall the proposed map has a more complex
chaotic behavior compared to the original map, and consequently compared to the classic logistic map
as well. The emergence of many chaos related phenomena in the proposed system is an indication
that the method of combining a given map with the logistic map derived from its decimal part can be
generally utilized as a technique to make the behavior of a given system more complex.

Moreover, the proposed map is applied to the problem of pseudo-random bit generation [2,3,
10,11,13,18–36]. The term pseudo comes from the fact that a deterministic system is used to generate
the sequence, rather than a random process, which is the case in true random bit generators. If the
generator is properly designed though, the resulting sequence will have the characteristics of a random
sequence. The method used utilizes various simple techniques like combinations of multiple maps,
the comparison between different decimal parts of a number, bit reversal, and the XOR operator.
The sequences obtained by the pseudo-random bit generator based on the new map passes all 15
of the NIST statistical tests, shows good correlation and cross-correlation characteristics, and has a
satisfactory key space. Thus, it is suitable for encryption related applications.

The rest of the work is structured as follows: In Section 2, the proposed modification of the
well-known logistic map is presented and studied. In Section 3, the considered chaotic system is
applied to the problem of random bit generation. Finally, Section 4 concludes the work with a
discussion on future research topics.

2. The Proposed Map

In [9], the following modified logistic map was proposed:

xi = 2β − x2
i−1
β

(1)

The behavior of one-dimensional map Equation (1) depends on a single parameter β. This map
exhibits constant chaos for all values of its parameter, with a full mapping of the state values on
xi ∈ [−2β; 2β] provided that x0 ∈ [−2β; 2β]. Its symmetric bifurcation diagram is shown in Figure 1
and the diagram of its Lyapunov exponent in Figure 2.

Figure 1. Bifurcation diagram of Equation (1), with respect to parameter β.
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Figure 2. Diagram of the Lyapunov exponent of Equation (1), with respect to parameter β.

Here, a modified version of Equation (1) is proposed, given by

xi = pi

(
2β − x2

i−1
β

)
(2)

where pi = r · mod (xi−1, 1) · (1 − mod (xi−1, 1)). With the above modification, the values of the
chaotic map Equation (1) are multiplied by the value pi ∈ [0; 1] which is actually the classic logistic
map with bifurcation parameter r, computed using the decimal part of xi−1, mod (xi−1, 1) ∈ [0; 1]
instead of xi−1. The mod operator is used here to take the decimal part of xi−1, so that pi is bounded
on the interval [0; 1].

The bifurcation diagram of map Equation (2) with respect to parameter β and r = 4 is shown in
Figure 3. The initial condition in each iteration is chosen as x0 = 0.1. From Figure 3, it can be seen that
the system exhibits a similar but more complex behavior compared to Label (1), with small periodic
windows appearing. This behavior can be seen more clearly in the zoomed subures. It is observed that
the system exhibits crisis phenomena, where it exists abruptly from chaos and reenters it following a
period doubling route. What is also interesting is that there are small windows where the phenomenon
of antimonotonicity appears. This is when the system enters chaos by following a period doubling
route, and then exists from chaos by following a reverse period halving route. This is observed in the
subfigures around the value of β = 1.02. The chaotic oscillation mode is verified by the diagram of
the Lyapunov exponent shown in Figure 4. In addition, Figure 5 shows a full plot for the Lyapunov
exponent up to β = 150. From this figure, it can be seen that the Lyapunov exponent slowly increases
to reach a value higher than 5, while there are also very small periodic windows appearing.

Similar phenomena can be observed for different values of the parameter r. For example,
the bifurcation diagram and the curve of the Lyapunov exponent with respect to β for r = 3.8 can be
seen in Figures 6 and 7. Again, antimonotonicity appears around the value of β = 1.1. The system
also exits abruptly from chaos and re-enters it through a period doubling route.

In addition to the rich dynamical behavior with respect to parameter β, the proposed map also
exhibits chaotic oscillations with respect to parameter r, as seen in Figures 8 and 9 where β = 10.
The system here exhibits crisis phenomena again.

Moreover, as can be seen from Figures 4, 5, 7 and 9, it is important to note that the system can
achieve a Lyapunov exponent value that is higher than that of the system in [9] and also the classic
logistic map, which both achieve the higher value at around 0.7.

To study the existence of coexisting attractors in the system, its continuation diagram is plotted.
The continuation diagram is similar to the bifurcation diagram, with the difference that, in each
iteration, the initial value of the chaotic map is taken to be equal to the final value of its previous
simulation. The continuation diagram can thus be computed as the bifurcation parameter increases
or decreases. Figure 10 shows the bifurcation diagram (black, x0 = 0.1.) of the map with respect
to β with r = 4, overlapping with its forward (red) and backward (green) continuation diagrams.
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This plot reveals coexisting attractors for the system around the value of β = 1.05. This means that,
depending on the initial condition of the system, its steady-state behavior may converge to different
attracting regions.

Figure 3. Bifurcation diagram of Equation (2), with respect to parameter β, for r = 4.

Figure 4. Diagram of the Lyapunov exponent Equation (2), with respect to parameter β, for r = 4.

Figure 5. Wider diagram of the Lyapunov exponent Equation (2), with respect to parameter β, for
r = 4.
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Figure 6. Bifurcation diagram of Equation (2), with respect to parameter β, for r = 3.8.

Figure 7. Diagram of the Lyapunov exponent Equation (2), with respect to parameter β, for r = 3.8.

Figure 8. Bifurcation diagram of Equation (2), with respect to parameter r, for β = 10.

133



Symmetry 2020, 12, 829

Figure 9. Diagram of the Lyapunov exponent Equation (2), with respect to parameter r, for β = 10.

Figure 10. Bifurcation diagram (black), forward continuation diagram (red), and backward continuation
diagram (green) for Equation (2), with respect to parameter β, for r = 4.

3. Application to Random Bit Generation

To apply the proposed map to pseudo-random bit generation, an algorithm was devised with
the aim of having pseudo-random properties, weak correlation, and high key space. The proposed
algorithm utilizes the techniques of comparing different decimal parts from different maps, as was
performed in [23] for one map, the technique of bit reversal [19,22], performed here in a chaotic way,
depending on the values of a logistic map, and also the XOR operator, which is commonly used in
PRBGs [19–21,31,37].

The algorithm is outlined as follows:

Step 1. First, two modified logistic maps x0, y0, one classic logistic map z0, as well as two bit sequences
b0, d0 are initialized, and the maps’ parameters are chosen.

Step 2. In every iteration, the decimal part of xi + yi is compared to the decimal part of 106(xi · yi)

and depending on the result a 0 or 1 is produced and saved in bi. Similarly, the decimal part
of 106(xi + yi) is compared to the decimal part of xi · yi and depending on the result a 0 or 1 is
produced and saved in di.

Step 3. For every 10 iterations, the value of the logistic map z( i
10 ) is compared to the decimal part of

xi + yi. Depending on the result, a bit reversal is performed on the last ten digits of b or d.
Step 4. Once the desired bitstream length is reached, the obtained sequence is computed using

XOR(b, d).
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A full description of the proposed technique is described in Algorithm 1. Note that, when the
decimal part is computed in each iteration, its sign is discarded, so a positive value is always returned.
The modulo operation is performed using the rem command in Matlab.

Algorithm 1 The Proposed Random Bit Generator.
Data: Initialize initial conditions: x0, y0, z0, parameter values: rx, ry, rz, βx, βy, Bit subsequences b0, d0

and bitstream length: �.
for i=1:� do

xi = rx · mod (xi−1, 1)(1 − mod (xi−1, 1)
(

2βx − x2
i−1
βx

)

yi = ry · mod (yi−1, 1)(1 − mod (yi−1, 1))
(

2βy − y2
i−1
βy

)
if mod (xi + yi, 1) ≤ mod (106(xi · yi), 1) then

bi = 0
else

bi = 1
end if

if mod (106(xi + yi, 1)) ≤ mod (xi · yi, 1) then

di = 0
else

di = 1
end if

% Perform bit reversal for every 10 bits
if mod (i, 10) = 0 then

z i
10

= rzz i
10−1(1 − z i

10−1)

if z i
10

≤ mod (xi + yi, 1) then

b(i−9):i = bi:−1:(i−9)
else

d(i−9):i = di:−1:(i−9)
end if

end if

end for

bitstream= XOR(b, d)

The proposed technique was tested using the National Institute of Standards and Technology
(NIST) statistical test package [38]. The suite consists of 15 tests that are used to test the randomness of
a sequence. For each test, a p-value is calculated. If the value exceeds a significance value a, the test is
passed. A set of 50 bit sequences of 106 bits each was considered, for parameter values βx = βy = 40,
rx = ry = rz = 4 and arbitrarily chosen initial values. The results are shown in Table 1, where it can be
seen that all the tests are passed. For tests that have multiple case runs, only the last p-value is printed.

In addition, Figure 11 depicts the autocorrelation and cross-correlation plots for a bit sequence
of length 105, generated for parameter values βx = βy = 30, rx = ry = rz = 4. For pseudo-random
sequences, the auto-correlation should have a delta like form, and the cross-correlation should be
close to zero [3,13], which is verified in Figure 11a. For the cross-correlation, two bit sequences were
generated for the same parameter values and initial conditions, with the only difference taken as
follows: In (b), the initial condition of the first map was chosen as x0 = 0.1 and x′0 = x0 + 10−16. In (c),
the parameter of the first map is chosen as rx = 4 and r′x = 4 − 10−15. In (d), the parameter of the first
map is chosen as βx = 40 and β′

x = 40 + 10−14.
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As for the key space, the proposed technique utilizes two modified logistic maps and one logistic
map, each with different initial conditions and parameters. Thus, in the case of the floating-point data
type with double precision [39], there are overall eight key parameters, so the upper bound for the key
space is (4 − 3.6)108·16 = 2210−110128 = 2210127 ≈ 22(103)42.3 ≈ 222423 = 2425. This is higher than the
value of 2100 that is required to resist brute force attacks, as reported in [40].

Table 1. NIST statistical test results, with a = 0.01.

If P ≥ α, the Test Is Successful

No. Statistical Test p-Value Proportion Result

1 Frequency 0.289667 49/50 success

2 Block Frequency 0.383827 48/50 success

3 Cumulative Sums 0.419021 49/50 success

4 Runs 0.122325 50/50 success

5 Longest Run 0.383827 50/50 success

6 Rank 0.616305 49/50 success

7 FFT 0.191687 49/50 success

8 Non-Overlapping Template 0.991468 49/50 success

9 Overlapping Template 0.739918 50/50 success

10 Universal 0.699313 50/50 success

11 Approximate Entropy 0.534146 50/50 success

12 Random Excursions 0.407091 32/32 success

13 Random Excursions Variant 0.066882 32/32 success

14 Serial 0.171867 50/50 success

15 Linear Complexity 0.911413 48/50 success

Figure 11. (a) auto-correlation; (b) cross-correlation, with the initial condition of the first map being
chosen as x0 = 0.1 and x′0 = x0 + 10−16; (c) cross-correlation, with the parameter of the first map is
chosen as rx = 4 and r′x = 4 − 10−15; (d) cross-correlation, with the parameter of the first map being
chosen as βx = 40 and β′x = 40 + 10−14.

4. Conclusions

In the present work, the modified version of the logistic map proposed in [9] was presented.
The extensive dynamical analysis has shown that the proposed system exhibits phenomena like crisis,
antimonotonicity, and coexisting attractors. This technique to increase the complexity of a map can
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be tested on other systems in the future. The map was then applied to constuct the chaos-based
pseudo-random bit generator, utilizing techniques like multiple map comparison, bit reversal,
and XOR. In addition, the key space of the proposed algorithm is much higher than the indicated
threshold of 2100. Future aspects of this work will consider the application of the proposed PRBG
to image encryption, the generation of multiple bits per iteration, as well as fractional versions
of the map. It is of interest to develop the adaptive chaotic maps with controllable symmetry of a
higher order based on the proposed map. It was previously shown that such systems are prospective
for stream encryption algorithms [29,41]. Moreover, the obtained results can be applied to other
cryptographic problems, including encoding multimedia data, creating watermarks and QR codes,
generating checksums using chaotic hash functions, etc.
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Abstract: In this article, a new chaotic system with hyperbolic sinusoidal function is introduced.
This chaotic system provides a new category of chaotic flows which gives better perception of chaotic
attractors. In the proposed chaotic flow with hyperbolic sinusoidal function, according to the changes
of parameters of the system, the self-excited attractor and two forms of hidden attractors are occurred.
Dynamic behavior of the offered chaotic flow is studied through eigenvalues, bifurcation diagrams,
phase portraits, and spectrum of Lyapunov exponents. Moreover, the existence of double-scroll
attractors in real word is considered via the Orcard-PSpice software through an electronic execution
of the new chaotic flow and illustrative results between the numerical simulation and Orcard-PSpice
outcomes are obtained. Lastly, random number generator (RNG) design is completed with the
new chaos. Using the new RNG design, a novel voice encryption algorithm is suggested and voice
encryption use and encryption analysis are performed.

Keywords: chaotic flow; hyperbolic sinusoidal function; hidden attractor; voice encryption; symmetry

1. Introduction

Chaotic flows are mathematical models originated from the rules of defining chaotic behaviors [1,2].
In the former decades, the chaos theory has been employed in numerous fields such as digital
signature [3], secure cryptography [4], pseudorandom number generation [5], secure communication [6],
weak signal detection [7], DC-DC boost converter [8], image encryption [9], neurophysiology [10],
secure data transmission [11], etc. For the control and synchronization purposes of chaotic systems,
several techniques like active control [12], fuzzy control [13], linear matrix inequality (LMI) [14],
sampled-data control [15], impulsive adaptive control [16], intermittent control [17] and sliding mode
control (SMC) [18] have been introduced.

Recently, Wei (2011) announced a chaotic system with no equilibrium point [19]. Jafari et al. (2013)
discovered a set of 17 elementary quadratic chaos systems with no equilibrium points [20]. A chaos
system possessing a stable equilibrium point was recently found in [21,22]. It is observed that Shilnikov
method [23,24] is not applicable to check chaos behavior in special dynamical systems with no equilibrium
point or with stable equilibrium points. Such dynamical systems can be viewed as systems with hidden
chaotic attractors in scientific computing [24–26]. Chaotic systems with hidden attractors can result in
unexpected disastrous behavior in mechanical systems and electronic circuits.

It is stimulating that chaotic flows containing infinite number of equilibrium points have achieved
much consideration in the past decade. Especially, structures with uncountable equilibrium points
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are categorized as systems with hidden attractors [27,28]. Hidden attractors do not have basins of
attraction related to the unstable equilibria. As stated by the recent investigations, hidden attractors
are fundamental in engineering usages, for instance, radio-physical oscillator [29], multilevel DC/DC
converter [30], electromechanical systems [31] or relay system with hysteresis [32].

In recent years, some new chaotic flows have been planned via cascade chaos, dimension expansion,
and physics modelling [1,33]. An extensive body of scientists has been devoted on counteracting
degradation and performance improvement of existing chaotic flows. As chaos is broadly employed in
nonlinear control, synchronization, and other usages, the design problem of the chaotic flows with
complex chaotic behaviors is more attractive [34].

In addition, a widespread application of chaotic systems is that of encryption schemes, voice,
text or image. In these schemes, RNGs are the most basic constructs. The fact that the numbers used
in encryption have a high randomness and a big impact on the quality of the encryption. In the last
few years, some encryption schemes, especially for sound messages, based mainly on discrete chaotic
maps, have been presented. In 2016, Sadkhan et al. presented a new speech scrambling system using a
hybrid use of different chaotic maps [35]. In 2018, Mobayen et al. proposed the implementation of a
sound encryption method based on a novel chaotic system with boomerang-shaped equilibrium [36].
On the same year, Raheema et al. presented an efficient Simulink model, speech scrambling based
chaotic maps for encryption of data such as voice, video and text, because it possesses high sensitive to
initial values and model external parameters [37].

The objective of this article is to investigate a novel chaotic flow with hyperbolic sinusoidal
function. The proposed chaotic flow provides a new category of chaotic systems which helps in more
perception of chaotic attractors. In this chaotic flow, because of the variations of the parameters,
the self-excited attractor and two forms of hidden attractors (no equilibrium point and line of equilibria)
are created. Next, the proposed chaotic system with hidden attractors has been used in the design of
an RNG algorithm. Finally, this RNG algorithm is used in a sound encryption scheme.

The rest of this work is organized as follows. In the following section, mathematical form of new
chaotic structure is given and different scenarios are proposed. Moreover, some discussions for chaotic
flow covering dynamic features such as spectrum of the Lyapunov exponents, bifurcation diagrams,
and Poincaré map are proposed. In Section 3, the circuit design of presented chaotic flow is provided
and PSpice representation of the chaotic attractors is presented. In Section 4, the engineering application
containing RNG algorithm design and voice encryption algorithm is described. As a final point,
conclusions are provided in Section 5.

2. Chaotic Flow with a Hyperbolic Sinusoidal Function

In the search for chaos flows with hyperbolic sinusoidal function, we study the form of a
three-dimensional chaotic structure as:

.
x = a1x + a2y + a3z + a4xy + a5xz + a6yz + b,
.
y = a7xy + a8xz + a9yz + a10sinh(y) + c,
.
z = a11x + a12y + a13z + a14xy + a15xz + a16yz

(1)

where x, y and z denote the system states; a1, . . . , a16 indicate the coefficients of the terms; b and c are
two scalars which define the chaos behavior.

A computer examination is executed investigating millions of combinations of different forms,
various initial states and different constant values, looking for dissipative cases for which the largest
Lyapunov exponent is bigger than 0.001. The system is in chaos state if the largest Lyapunov exponent
is bigger than zero, and the system is in steady period state if the largest Lyapunov exponent is smaller
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than zero [38,39]. Therefore, in the present work, a three-dimensional chaotic flow is reported which is
specified by:

.
x = x− ayz + b,
.
y = xz− sinh(y) + c,
.
z = x

(2)

where the parameter a6 in (1) has been denoted as parameter a in system (2).
Next, three different scenarios depending on the values of system’s (2) parameters b, c are discussed

in details.

2.1. Scenario A: Line of Equilibria

If b = c = 0, the chaotic flow (2) will have a line of equilibria, i.e., EA = [0, 0, z∗]T, where z∗ is
the equilibrium point value in z axis and T means the transpose of the vector. To analyze the state
trajectories in the vicinity of the equilibrium point, the Jacobian matrix is obtained from (2) as:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −az −ay
z −cosh(y) x
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

For equilibrium point EA = [0, 0, z∗]T, the Jacobian matrix is defined as

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −az∗ 0
z∗ −1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Therefore, the eigenvalues of the linearized system are achieved as

|λI − J| =
∣∣∣∣∣∣∣∣∣
λ− 1 az∗ 0
−z∗ λ+ 1 0
−1 0 λ

∣∣∣∣∣∣∣∣∣ = λ
(
λ2 + az∗2 − 1

)
= 0⇒ λ1 = 0,λ2,3 = ±

√
1− az∗2. (5)

The equilibrium is a saddle node for − 1√
a
< z∗ < 1√

a
. The equilibrium point is an unstable node for

z∗ = ± 1√
a
. For the values z∗ > 1√

a
and z∗ < − 1√

a
, since one eigenvalue is zero and two eigenvalues are

imaginary, the stability of the equilibrium point cannot be determined by this method; the equilibrium
point may be stable, unstable or marginally stable.

If one design parameter is varied and the norm of the state variables vector is plotted for finding the
fixed points of the system versus the changing parameter, finally the bifurcation diagram is obtained [40].
In the bifurcation diagrams, the fixed points maybe disappear, appear, or change their stability nature
when the design parameter is changed. Those variations may occur even for infinitesimal changes in
the parameter. Bifurcation diagram is used for the stability analysis of a dynamical system [41,42].
Moreover, the Lyapunov exponents spectrum makes it possible to qualitatively quantify a local property
with respect to the attractor’s stability. The positive/negative values of the Lyapunov exponents can
be observed as a measure of the averaged exponential divergence/convergence of neighborhood
trajectories [43,44]. The bifurcation diagram for y, when the states cut the plane z = 0 with dz/dt < 0,
as well as the spectrum of system’s Lyapunov exponents (LEi, i = 1, 2, 3), by varying the value of a
to explore the dynamical form of system (2), while keeping the initial states as [x0, y0, z0] = [2, 0.2, 1],
are depicted in Figure 1. Therefore, the suggested structure (2) is integrated via the classical Runge-Kutta
integration algorithm [45], numerically. For all of the parameters, the simulation calculations are
executed via the parameters and variables in extended precision mode. In addition, the spectrum of
the Lyapunov exponents are found via the Wolf’s algorithm [46].
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(a) 

(b) 

Figure 1. (a) Bifurcation diagram, (b) Lyapunov exponents spectrum of dynamics (2), when changing a
from 1.85 to 2.4, and b = c = 0.

The dynamics (2) shows a chaotic attractor, for a = 2 (Figure 2), and a limit cycle of Period-1,
for a = 2.35 (Figure 3). The spectrum of Lyanpunov exponents (Figure 1b) approves the dynamic
behavior of the system as it has been revealed via bifurcation diagram.

2.2. Scenario B: No Equilibrium Point

If b � 0, c = 0 and by keeping a = 2, for obtaining the equilibrium point, we solve
.
x = 0,

.
y = 0

and
.
z = 0, that is

x− 2yz + b = 0,
xz− sinh(y) = 0,
x = 0.

(6)

Consequently, the chaotic flow has no equilibrium point in this case. Therefore, it belongs to the
category of chaotic systems containing hidden attractors.
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Taking the bifurcation diagram of y (Figure 4a), along with the Lyapunov exponents spectrum
(Figure 4b) by changing b for 0 < b < 0.005, in order to explore the dynamics (2), for initial conditions
[x0, y0, z0] = [2, 0.2, 1], interesting dynamical behavior has been investigated. As it is obtained from
bifurcation diagram (Figure 4a), the system passes from a chaotic region, for b ∈ [0, 0.075), to a periodic
one as the parameter b increases.

Figure 2. Strange chaos attractor for a = 2 and b = c = 0 in Scenario A.

Figure 3. Limit cycle of period-1 for b = c = 0 and a = 2.35 in Scenario A.
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(a) (b) 

Figure 4. (a) Bifurcation diagram, (b) spectrum of Lyapunov exponents of (2), when changing b from 0
to 0.01, for a = 2, c = 0.

The strange attractors of the system (2) are displayed for a = 2, b = 0.005 and c = 0 in Figure 5. In this
case, the Lyapunov exponents are LE1 = 0.14107, LE2 = 0, LE3 = −1.33835, which confirmed the chaotic
behavior of the system (2). The Kaplan-York dimension of the chaotic flow is DKY = 2.1054. Besides,
the Poincaré map in x-y plane presents the folding properties of chaos when z = 0 with dz/dt < 0 (Figure 6).

Figure 5. Strange chaotic attractors for a = 2, b = 0.005 and c = 0.
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Figure 6. Poincaré map of chaotic system (2) in the x–y plane, for a = 2, b = 0.005 and c = 0.

2.3. Scenario C: Self-Excited Attractor

If b = 0, c � 0 and a = 2 this chaotic flow has only one equilibrium EC =
[
0, sinh−1(b), 0

]T
. For the

equilibrium point EC, the Jacobian matrix is found as:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −2sinh−1(b)
0 −cosh(sinh−1(b)) 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Then, the eigenvalues of the linearized chaotic flow are obtained as:

|λI − J| =
∣∣∣∣∣∣∣∣∣
λ− 1 0 2sinh−1(c)

0 λ+ cosh(sinh−1(c)) 0
−1 0 λ

∣∣∣∣∣∣∣∣∣
=
(
λ+ cosh(sinh−1(c))

)(
λ2 − λ+ 2sinh−1(c)

)
= 0

⇒ λ1 = −cons(sinh−1(c)) = −√1 + c2,λ2,3 =
1±
√

1−8sinh−1(c)
2 .

(8)

For c > 0.1253, the eigenvalues of the chaotic flow are found as λ = −√1 + c2, 1±iω
2 , and the

equilibrium point is a saddle focus. For c < 0.1253, the eigenvalues of the chaotic flow are obtained as

λ = −√1 + c2, 1±√Δ
2 , and the equilibrium point is a saddle node.

Figure 7 depicts the bifurcation diagram of variable y as well as the spectrum of Lyapunov
exponents by varying c, for 0< c< 0.05, to explore the dynamics (2), for initial states [x0, y0, z0] = [2, 0.2, 1].
It is shown from bifurcation diagram (Figure 7a) that the system passes from a chaotic region for
c ∈ [0, 0.0285) to a periodic one as the parameter c increases. The respective spectrum of Lyapunov
exponents to parameter c displays the aforementioned system’s (2) dynamical behavior for a = 2 and
b = 0.

The strange attractors of (2) for a = 2, b = 0, and c = 0.02 are demonstrated in Figure 8.
For these parameter’s values, the Lyapunov exponents are LE1 = 0.09822, LE2 = 0, LE3 = −1.27669,
which confirmed the chaotic behavior of system (2). The Kaplan-York dimension is DKY = 2.07699.
Furthermore, the Poincaré maps in x–y plane, when z = 0 with dz/dt < 0 (Figure 9) presents the folding
features of chaos.
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(a) (b) 

Figure 7. (a) Bifurcation diagram, (b) Lyapunov exponents spectrum of (2) when changing c from 0 to
0.05, for a = 2, b = 0.

Figure 8. Strange attractors for a = 2, b = 0 and c = 0.02.
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Figure 9. Poincaré map of system (2) in the x-y plane, for a = 2, b = 0 and c = 0.02.

3. Circuit Design of the Proposed Chaotic Flow

In recent years, the physical realizations of theoretical chaos forms have been investigated
extensively for approving the feasibility and employing them in practical usages [47–50]. Therefore,
in this section, a circuit realization with the hyperbolic sinusoidal nonlinearity is presented.
For the reason of easiness, the general design methodology is applied according to the operational
amplifiers [51,52]. The circuit is designed by using the common electronic components as displayed in
Figure 10. There are an inverting amplifier (U4), three integrators (U1–U3), and two analog multipliers
(U7, U8) of type AD633. The circuit for simulating the hyperbolic sinusoidal nonlinearity, in the dotted
frame, includes three resistors (RS1–RS3), two operational amplifiers (U5, U6) and two diodes (D1, D2).

Based on Figure 8, via the Kirchhoff’s laws, the circuital equation of the circuit is found as

.
X = 1

RC

[
X − R

R11V YZ + Vb
]
,

.
Y = 1

RC

[
XZ
1V − 2ISRS3R

R4
sinh

( RS2
nVTRS1

)
+ Vc

]
,

.
Z = 1

RC X

(9)

where IS, n and VT are diode’s reverse bias saturation current, the diode’s ideality factor, and the
thermal voltage, correspondingly. Normalizing the Equation (9) with τ = t/RC, the dimensionless
structure can be designated by

.
X = X − R

R11V YZ + Vb,
.
Y = XZ

1V − 2ISRS3R
R4

sinh
( RS2

nVTRS1

)
+ Vc,

.
Z = X

(10)

The variables (X, Y, Z) are equivalent to output voltages of integrators (U1–U3), when the power
supply is ±15 VDC. The system (10) corresponds to the suggested system with the hyperbolic sinusoidal
nonlinear function (2). The electronic components are selected for a = 2, and b = c = 0; then we have R
= R4 = 30 kΩ, R1 = 15 kΩ, R2 = 10 kΩ, R3 = 90 kΩ, RS1 = 100 kΩ, RS2 = 50.66 kΩ, RS3 = 18.65 MΩ and
C = 10 nF. The planned circuit of Figure 10 has been executed in Multisim, and some PSpice results are
presented in Figure 11. One can obviously confirm the consistency of the simulations (Figure 11) and
numerical outcomes (Figure 2).
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Figure 10. Schematic of circuit simulation for the system with hyperbolic sinusoidal nonlinear function (2).

 
(a) 

Figure 11. Cont.
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(b) 

 
(c) 

Figure 11. PSpice chaotic attractors of system with hyperbolic sinusoidal nonlinearity in (a) X–Y plane,
(b) X–Z plane, and (c) Y–Z plane (x: 2 V/Div, y: 2 V/Div).

4. Voice Encryption Algorithm Design and Its Analysis

Chaos-based cryptography is one of the topics that has been intensively studied in recent years
because of the randomness and rich dynamics of chaotic systems [53–58]. These works usually focus
on image encryption. A new RNG algorithm design is performed by using the developed chaotic form
and National Institute of Standards and Technology (NIST) 800-22 [59] randomness tests are employed
to study the randomness of the obtained random numbers. It is noted that the NIST statistical test suit
is used for the evaluation of the advanced encryption standard candidate algorithms. At first, a voice
encryption algorithm is proposed using the obtained random number. Then, the voice encryption
is executed by using the proposed algorithm and frequency spectrum analysis of the encryption
procedure is executed.

4.1. RNG Algorithm Design and NIST 800-22 Test Results

In this subsection, an RNG algorithm design is developed via the newly introduced chaos in
order to obtain the random numbers to be employed in the algorithm. The design process of the
RNG algorithm is carried out as exposed in Algorithm 1 (see Appendix A). In the design process of
the RNG algorithm, firstly the initial states and parameters of the chaotic system are defined. Then,
the sampling interval of the system is determined and the chaotic system is considered by using
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fourth-order Runge-Kutta (RK-4) integration algorithm using this sampling value. As an outcome of
the system analysis, float values are found for each cycle from each phase. On the float values obtained
from each phase, the step values of the decimal parts after the comma are subjected to the mode 2
operation. As a result, 15 bits are generated from each phase in the each cycle. Further, these obtained
values are added to the number sequences for each phase (rngx, rngy, rngz). This process continues for
each number sequence until the 1 M. bit is generated for the NIST 800-22 randomness examinations.
Because at least 1 M. bit is needed for NIST 800-22 tests. After 1 M bits are generated from each phase,
the phases are subjected to Exclusive Or (XOR) processing in binary form and new random number
sequences are generated as named rngxy, rngxz, rngyz, rngxyz in the Algorithm 1. The generated
values from the x and y phases are subjected to XOR processing to obtain a rngxy random number
sequence. Similarly, generated from the phases y and z for rngyz, the x and z phases for rngyz and the
x, y, z phases for rngxyz are subjected to XOR processing. Finally, NIST 800-22 tests are employed to all
obtained random bit sequences. When random bit sequences are tested singularly, they cannot pass
some tests. For this reason, random bit sequences generated are subjected to 2 or 3 XOR operations.

For the safe use of random numbers, they must have an appropriate randomness. The NIST
800-22 tests are a set of internationally accepted and frequently used tests in the literature that define
the numbers’ randomness via a variety of different tests. The NIST 800-22 test outcomes for the random
number sequences originated from the developed RNG algorithm are displayed in Table 1. According to
the test outcomes, it is seen that all the random numbers created passed all the examinations.

Table 1. NIST 800-22 NIST Test Results.

NIST Statistical Tests
p-Value

(x⊕y)
p-Value

(x⊕z)
p-Value

(y⊕z)
p-Value
(x⊕y⊕z)

Results

Frequency (Monobit) Test 0.32708 0.70840 0.07409 0.83679 Passed
Block-Frequency Test 0.05028 0.44384 0.87530 0.24483 Passed

Cumulative-Sums Test 0.49997 0.79399 0.12548 0.88754 Passed
Runs Test 0.28235 0.05285 0.01530 0.34010 Passed

Longest-Run Test 0.91108 0.88963 0.46730 0.057827 Passed
Binary Matrix Rank Test 0.17994 0.15263 0.55596 0.39136 Passed

Discrete Fourier Transform Test 0.17441 0.92688 0.52063 0.20211 Passed
Overlapping Templates Test 0.63213 0.12006 0.96148 0.29966 Passed

Maurer’s Universal Statistical Test 0.59708 0.81350 0.40059 0.48723 Passed
Approximate Entropy Test 0.95048 0.38285 0.27585 0.52635 Passed

Random-Excursions Test (x = −4) 0.82604 0.57997 0.40488 0.34822 Passed
Random-Excursions Variant Test (x = −4) 0.74935 0.63538 0.19136 0.46211 Passed

Serial Test-1 0.53650 0.89087 0.74965 0.92028 Passed
Serial Test-2 0.13577 0.48589 0.27236 0.75602 Passed

Linear-Complexity Test 0.72956 0.94527 0.31945 0.78612 Passed

4.2. Voice Encryption Algorithm Design and Its Application

A new voice encryption algorithm is developed via RNG algorithm introduced in the previous
section, voice encryption usage and its analysis are performed. The block diagram of the encryption
process is presented in Figure 12. In the encryption algorithm, after entering initial states and parameters
of chaotic system, these values are transmitted to the receiving side as a key for generation of the
random number sequences to be employed in the decryption process. In order to realize the bit-based
encryption, the values are obtained from the voice file consisting of float values with appropriate
sampling step and converted into binary form. With random bit sequences past all NIST 800-22
randomness tests obtained from the RNG, the voice file in the binary form is encrypted. XOR operation
is used in encryption process. After the encryption operation, the encrypted binary bit array is changed
to the float form to generate the encrypted voice file. After the encrypted voice data is sent to the
receiver side in this way, the decryption process is performed by applying the reverse operations in the
encryption. Thus, the original voice file is attained on the receiving side.
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Figure 12. The block diagram of encryption process.

The voice files in encryption procedure are shown in Figure 13. The original, encrypted and
decrypted voice file is demonstrated in Figure 13a–c, respectively. When comparing the original and
encrypted voice file in Figure 13a,b; it is seen that a very different file is gotten than the original and the
encryption process is successful. When Figure 13a,c are examined, it is observed that the decryption
procedure is successful. Figure 14 shows the frequency spectrum analysis results of the encryption
process. Frequency spectrum analysis is carried out to determine the frequency range of voice files.
To determine the success of the encryption process, frequency spectrum analyzes are performed on
original and encrypted voice files. The spectrum analysis results of original and encrypted voice files
are illustrated in Figure 14a,b. If we compare these two graphs, it seems that the encrypted voice
file has a rather wide frequency spectrum range than the original. When these results are evaluated,
it shows the success of the encryption process.

  
(a) (b) (c) 

Figure 13. The voice file (a) original; (b) encrypted; (c) decrypted.
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(a) (b) 

Figure 14. The spectrum analysis outcomes of original and encrypted voice files. (a) Original,
(b) Encrypted.

5. Conclusions and Discussion

In this article, a new chaotic system with hyperbolic sinusoidal nonlinearity is designed.
The proposed system belongs to a new category of dynamical systems with hidden chaotic flows,
which assist in further understanding of chaotic attractors and also to use them in interesting applications
like cryptography and secure communication schemes. The feature of hidden chaotic attractors, such as
in systems with line of equilibria or in systems with no equilibrium point, makes them more suitable
for the aforementioned applications, due to the fact that using systems with hidden attractors adds
complexity to the dynamical system, which is used in this kind of applications. Therefore, in this work
a voice encryption scheme, which is based on the specific systems was studied. Based on the variations
of parameters of the system, this flow presented two classes of hidden attractors (with line of equilibria
and no equilibrium point) plus a self-excited attractor, which has been reported to the literature for the
first time. Dynamical behavior of the proposed system was explored and its bifurcation diagram and
spectrum of Lyapunov exponents were propounded. For the appropriate selection of the parameters,
the flow could display periodic oscillations and double-scroll chaos attractors. The system’s electronic
simulation investigated the confirmation of the double-scroll chaos attractor in real word. Via the
proposed chaotic system, a novel RNG design was realized and random number generation was
performed. NIST 800-22 randomness examinations were employed to the produced numbers and it
was determined that all tests passed. By using RNG design, a novel voice encryption algorithm was
established and encryption process was done. Frequency spectrum analysis of the voice encryption
procedure was executed. In line with the analysis outcomes, it has been found that the new RNG design
produces high random numbers and that the suggested encryption algorithm effectively achieves
the encryption process. Therefore, authors aim with this work to attract the interest of the research
community in the use of chaotic dynamical systems with hidden attractors in encryption schemes,
as the results are proved to be very promising. Finally, as a future plan, the hardware implementation
of the specific approach has been planned.
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Appendix A

Algorithm 1 RNG Design Algorithm Pseudo Code

1: Start

2: rngx=[[] rngy=[[] rngz=[[] rngxy=[[] rngyz=[[] rngxz=[[] rngxyz=[[]
3: Entering system parameters and initial conditions of chaotic systems
4: Determination of the appropriate value of (Δh=0.001)
5: while i<=1000000 do

6: Sampling with determination Δh value
7: Solving the chaotic system using RK4 algorithm
8: Obtaining time series float values (x,y,z) (each value 15 digit)
9: for k = 0 to 14 do

10: rngx[i]=mod(x[k], 2);
11: rngy[i]=mod(y[k], 2);
12: rngz[i]=mod(z[k], 2);
13: i=i+1
14: end for

15: end while

16: rngxy=bitxor(rngx, rngy);
17: rngyz=bitxor(rngy, rngz);
18: rngxz=bitxor(rngx, rngz);
19: rngxyz = bitxor(rngxy, rngz);
20: The implementation of NIST tests for each new array (rngxy, rngyz, rngxz, rngxyz)
21: rng=[rngxy,rngyz,rngxz,rngxyz]
22: End

References

1. Hua, Z.; Zhou, B.; Zhou, Y. Sine-Transform-Based Chaotic System With FPGA Implementation. IEEE Trans.
Ind. Electron. 2018, 65, 2557–2566. [CrossRef]

2. Thoai, V.P.; Kahkeshi, M.S.; Huynh, V.V.; Ouannas, A.; Pham, V.-T. A Nonlinear Five-Term System: Symmetry,
Chaos, and Prediction. Symmetry 2020, 12, 865. [CrossRef]

3. Chain, K.; Kuo, W.-C. A new digital signature scheme based on chaotic maps. Nonlinear Dyn. 2013, 74,
1003–1012. [CrossRef]

4. Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K. Sliding mode control design for synchronization of
fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control 2017, 5, 115–123.
[CrossRef]

5. Deng, Y.; Hu, H.; Liu, L. Feedback control of digital chaotic systems with application to pseudorandom
number generator. Int. J. Mod. Phys. C 2015, 26, 1550022. [CrossRef]

6. Castro-Ramírez, J.; Martínez-Guerra, R.; Cruz-Victoria, J.C. A new reduced-order observer for the
synchronization of nonlinear chaotic systems: An application to secure communications. Chaos Interdiscip. J.
Nonlinear Sci. 2015, 25, 103128. [CrossRef]

7. Wang, G.; Chen, D.; Lin, J.; Chen, X. The application of chaotic oscillators to weak signal detection.
IEEE Trans. Ind. Electron. 1999, 46, 440–444. [CrossRef]

8. Sakthivel, R.; Santra, S.; Anthoni, S.M.; Kuppili, V. Synchronisation and anti-synchronisation of chaotic
systems with application to DC–DC boost converter. IET Gener. Transm. Distrib. 2017, 11, 959–967. [CrossRef]

9. Chen, E.; Min, L.; Chen, G. Discrete Chaotic Systems with One-Line Equilibria and Their Application to
Image Encryption. Int. J. Bifurc. Chaos 2017, 27, 1750046. [CrossRef]

155



Symmetry 2020, 12, 2047

10. Glushkov, A.V.; Khetselius, O.; Brusentseva, S.V.; Zaichko, P.A.; Ternovsky, V.B. Studying interaction dynamics
of chaotic systems within a non-linear prediction method: Application to neurophysiology. Adv. Neural Netw.
Fuzzy Syst. Artif. Intell. 2014, 21, 69–75.

11. Aguilar-López, R.; Martínez-Guerra, R.; Perez-Pinacho, C.A. Nonlinear observer for synchronization of
chaotic systems with application to secure data transmission. Eur. Phys. J. Spec. Top. 2014, 223, 1541–1548.
[CrossRef]

12. Radwan, A.; Moaddy, K.; Salama, K.N.; Momani, S.; Hashim, I. Control and switching synchronization of
fractional order chaotic systems using active control technique. J. Adv. Res. 2014, 5, 125–132. [CrossRef]
[PubMed]

13. Boulkroune, A.; Bouzeriba, A.; Hamel, S.; Bouden, T. Adaptive fuzzy control-based projective synchronization
of uncertain nonaffine chaotic systems. Complexity 2015, 21, 180–192. [CrossRef]

14. Mobayen, S. Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties:
An LMI approach. Complexity 2016, 21, 14–19. [CrossRef]

15. Ma, D.; Sun, Q.; Li, X. Synchronization of master-slave chaotic system with coupling time-varying delay
based on sampled-data control. In Proceedings of the Control and Decision Conference (CCDC), 2015 27th
Chinese, Qingdao, China, 23–25 May 2015; pp. 6545–6550.

16. Xiong, W.; Huang, J. Finite-time control and synchronization for memristor-based chaotic system via
impulsive adaptive strategy. Adv. Differ. Equ. 2016, 2016, 101. [CrossRef]

17. Song, Q.; Huang, T. Stabilization and synchronization of chaotic systems with mixed time-varying delays via
intermittent control with non-fixed both control period and control width. Neurocomputing 2015, 154, 61–69.
[CrossRef]

18. Mobayen, S.; Baleanu, D.; Tchier, F. Second-order fast terminal sliding mode control design based on LMI
for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control 2017, 23,
2912–2925. [CrossRef]

19. Wei, Z. Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 2011, 376, 102–108. [CrossRef]
20. Jafari, S.; Sprott, J.C.; Golpayegani, S. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A

2013, 377, 699–702. [CrossRef]
21. Wang, X.; Chen, G. A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul.

2012, 17, 1264–1272. [CrossRef]
22. Molaie, M.; Jafari, S.; Sprott, J.C.; Golpayegani, S. Coexisting hidden attractors in a 4-D simplified Lorenz

system. Int. J. Bifurc. Chaos 2013, 23, 1350188. [CrossRef]
23. Shilnikov, L.P. A case of the existence of a denumerable set of periodic motions. Sov. Math. 1965, 24, 163–166.
24. Leonov, G.A.; Kuznetsov, N.V.; Kuznetsova, O.A.; Seledzhi, S.M.; Vagaitsev, V.I. Hidden oscillations in

dynamical systems. Trans. Syst. Contr. 2011, 6, 54–67.
25. Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Hidden attractor in smooth chua systems. Phys. D Nonlinear Phenom.

2012, 241, 1482–1486. [CrossRef]
26. Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert

Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos
2013, 23, 1330002. [CrossRef]

27. Wang, Z.; Volos, C.; Kingni, S.T.; Azar, A.T.; Pham, V.-T. Four-wing attractors in a novel chaotic system with
hyperbolic sine nonlinearity. Opt. Int. J. Light Electron Opt. 2017, 131, 1071–1078. [CrossRef]

28. Pham, V.-T.; Volos, C.; Kingni, S.T.; Kapitaniak, T.; Jafari, S. Bistable Hidden Attractors in a Novel Chaotic
System with Hyperbolic Sine Equilibrium. Circuitssyst. Signal Process. 2017, 37, 1028–1043. [CrossRef]

29. Kuznetsov, A.; Kuznetsov, S.; Mosekilde, E.; Stankevich, N. Co-existing hidden attractors in a radio-physical
oscillator system. J. Phys. A Math. 2015, 48, 125101. [CrossRef]

30. Zhusubaliyev, Z.T.; Mosekilde, E. Multistability and hidden attractors in a multilevel DC/DC converter.
Math. Comput. Simul. 2015, 109, 32–45. [CrossRef]

31. Kiseleva, M.A.; Kuznetsov, N.V.; Leonov, G.A. Hidden attractors in electromechanical systems with and
without equilibria. IFAC Pap. 2016, 49, 51–55. [CrossRef]

32. Zhusubaliyev, Z.T.; Mosekilde, E.; Rubanov, V.G.; Nabokov, R.A. Multistability and hidden attractors in a
relay system with hysteresis. Phys. D Nonlinear Phenom. 2015, 306, 6–15. [CrossRef]

33. Yu, M.; Sun, K.; Liu, W.; He, S. A hyperchaotic map with grid sinusoidal cavity. Chaossolitons Fractals 2018,
106, 107–117. [CrossRef]

156



Symmetry 2020, 12, 2047

34. Zhang, X.; Li, C.; Lei, T.; Liu, Z.; Tao, C. A symmetric controllable hyperchaotic hidden attractor. Symmetry
2020, 12, 550. [CrossRef]

35. Sadkhan, S.B.; Ali, H. A proposed speech scrambling based on hybrid chaotic key generators. In Proceedings
of the 2016 Al-Sadeq IEEE International Conference on Multidisciplinary in IT and Communication Science
and Applications (AIC-MITCSA), Al-Najaf, Iraq, 9–10 May 2016; pp. 1–6.

36. Mobayen, S.; Vaidyanathan, S.; Sambas, A.; Kacar, S.; Çavuşoğlu, Ü. A novel chaotic system with
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Abstract: In this paper, an improved encryption algorithm based on numerical methods and
rotation–translation equation is proposed. We develop the new encryption-decryption algorithm by
using the concept of symmetric key instead of public key. Symmetric key algorithms use the same
key for both encryption and decryption. Most symmetric key encryption algorithms use either block
ciphers or stream ciphers. Our goal in this work is to improve an existing encryption algorithm
by using a faster convergent iterative method, providing secure convergence of the corresponding
numerical scheme, and improved security by a using rotation–translation formula.

Keywords: nonlinear equations; iterative methods; rotation–translation formula; symmetric encryption

1. Introduction

Cryptography is a practice and study of techniques of hidden data transfer so that only the
intended receivers can extract and read the data [1]. It is the study of mathematical methods related
to different aspects of informational security such as data origin, entity authentication, data integrity
and confidentiality. The source data, which is to be protected by cryptography, is called plaintext.
The procedure of transforming plaintext into an unreadable form termed ciphertext is called encryption.
Decryption is the reverse process, recovering the plaintext back from a ciphertext. A cryptographic
system is a set of algorithms, seeded by key that encrypt given messages into ciphertext and recover
them back into input data. The scheme for a secret key encryption is first proposed by Shannon [2].

There are two categories of key-based cryptographic algorithms: symmetric key (secret key)
cryptography and public key (asymmetric key) cryptography. In the first category, a sender and
recipient share a private key known only to both of them. The same key is used for encryption
and decryption. The most commonly used symmetric algorithms are AES (Advanced Encryption
Standard) [3], Cha Cha [4], Blowfish [5], and IDEA (International Data Encryption Algorithm) [6].
By contrast, for asymmetric key cryptography, two keys are used: the first one is made publicly
available to senders for encrypting plaintext while the second key is kept secret and is used by
the receivers for decrypting the ciphertext. The most ordinarily exploited asymmetric schemes
are the Rivest–Shamir–Adleman (RSA) cryptosystem [7] and ECC (Elliptic-curve cryptography) [8].
Symmetric encryption schemes are usually faster than public key counterparts and thus are preferred
for encrypting big data.

In symmetric key cryptography, either stream ciphers or block ciphers can be used. An example of
stream cipher is the Vigenere Cipher. These types of ciphers encrypt the letters or digits (typically
bytes) of a message one at a time, while block ciphers take a number of bits and encrypt them as a
single unit. Until now, many symmetric data encryption algorithms have been proposed. Some of
them use classical schemes for text encryption. In [9], an extension of a public key cryptographic
scheme to support a private key cryptographic scheme which is a mix of AES and ECC is presented.
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Plain text encryption based on AES, Blowfish, and SALSA20 is designed and experimentally evaluated
in [10].

Some of them use chaotic equations for text encryption. In Reference [11], a novel scheme
for digital image encryption based on a mix of chaos theory and DNA calculation is presented.
In [12], a chaos-based pseudorandom generation scheme based on a six-dimensional chaotic system is
proposed. A text encryption architecture is given. Novel symmetric data encryption algorithms based
on logistic chaotic formula are presented in [13–15]. A chaotic logistic map filtered with binary function
is proposed to text encryption scheme in Reference [16]. In [17], a chaos-based encryption technique
based on logistic, pinchers, and sine-circle maps is proposed. An algorithm of chaotic data encryption
system by using private characteristic of electrocardiogram (ECG) signal and logistic map is designed
in [18]. In [19,20], the chaotic behaviour of a Chua system is used in novel text encryption scheme
designs. A novel pseudorandom bit generation scheme based on rotation equations is proposed in [21].
The technique has good statistical properties measured by test packages. A novel encryption method
based on modified pulsed-coupled spiking neurons circuit is presented in Reference [22]. In [23],
a modified quadratic map for numeric sensor data encryption is proposed.

2. Symmetric Key Encryption Algorithms Based on Numerical Methods

One of the first published works that consider symmetric key encryption algorithm based on numerical
methods is by Ghosh in [24] (see also [25,26]), where it is shown that any nonlinear function with one
variable f (z) can be defined as a key. The encryption process then is defined as finding the solution of
the equation

f (z)− ci = 0, (1)

where ci represents the numerical code of the ith symbol in the plaintext (e.g., the ASCII code).
The function f (z) must be chosen in such a way that the corresponding formula (1) has at least one
real root for any i. Then, the set of roots {z∗i } represents the ciphertext. On the receiver side, each entry
z∗i is decoded by substituting it into f (z) giving rise to the plaintext character ci = f (z∗i ) (the value
f (z∗i ) must be appropriately rounded to recover ci). In [24], as a key function f (z), the authors use a
cubic polynomial and, for the numerical solution of equations f (z)− ci = 0, they use the Newton’s
iterative method. We have to mention that, in solving nonlinear Equation (1), we can use different
iterative methods. Analogous to this algorithm, an example of a public key cryptosystem based on
numerical methods is considered in [27].

It is important to say that the main weaknesses of such algorithms can be summarized in
the following:

1. Lack of rules on how to choose the function f and suitable iterative method so that the convergence
of the process is always guaranteed.

2. Vulnerability to attack because in these types of algorithms the same letter is encoded with the
same real number of each occurrence in the plaintext.

Our aim in the present work is to develop a new algorithm that solves the disadvantages
mentioned above. In order to achieve this, the new scheme will be based on employing numerical
iterative methods and rotation–translation formula.

3. On Numerical Methods and Rotation–Translation Equation

3.1. On Numerical Methods for Solving Nonlinear Equations

Although the Newton’s iterative method

zk+1 = zk − f (zk)

f ′(zk)
, k = 0, 1, 2, . . . (2)
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is one of the most popular and commonly used methods, numerical analysis offers many iterative
methods that can be used in the stage of solution of Equation (1). In general to calculate the roots of
nonlinear equations (of the type (1)), we have to use approximate (iterative) methods. When studying
an iterative method, two of the most important aspects to consider are:

• the convergence speed of the iteration,
• an interval of convergence and the rules for choosing the initial approximations.

Most of the known iterative algorithms for solving nonlinear equations are only locally convergent,
i.e., before using such a method, we need to locate the unknown root at a sufficiently small interval.
Even if the root sought is located at the appropriate interval, if we do not choose the initial
approximation in a proper way, the process may not be convergent. Usually, iterative methods
of this type require the following convergence conditions:

• need to have an interval [a, b] containing a single root of f , and
• the derivatives f ′ and f ′′ must not have zeros in the interval [a, b].

Then, the corresponding iterative process converges to the sought root for an initial approximation
z0 which is the end of the interval [a, b], where f (z0) f ′′(z0) > 0 (or f (z0) f ′′(z0) < 0).

For some examples of more computationally efficient and higher order iterative methods, we refer
the reader to [28].

In the encryption algorithm that we will introduce later, we will use the following iterative
function

zk+1 = zk − h(zk)

2

(
3 f ′(uk) + f ′(zk)

3 f ′(uk)− f ′(zk)

)
, k = 0, 1, 2, . . . (3)

where h(zk) =
f (zk)
f ′(zk)

and uk = zk − 3
2 h(zk). This iterative algorithm is explored by Jarrat in [29], and it

is known as Jarrat’s method (see also [30]).
The reason we prefer iteration method (3) over method (2) is its faster convergence. The order

of convergence of Jarrat’s method is four, while the one of Newton’s method is only two (see [30]).
In addition, method (3) has higher computational efficiency, although at each step of the iteration one
value of f and two values of f ′ are calculated (while in the Newton’s method, one value of f and one
value of f ′ are calculated). Thus, if the function f is a polynomial, then calculating the value of the
function f is always more complex than calculating its derivative f ′.

3.2. Base of Rotation–Translation Equation

In order to avoid the vulnerability to statistical attack, we include additional randomness by using
the following space contraction formula based on rotation–translation equation of the form [31]

xk+1 = a + b(xk cos θk − yk sin θk),

yk+1 = b(xk sin θk + yk cos θk),
(4)

where the angle of rotation is

θk = c +
d

x2
k + y2

k
. (5)

The translation value is a = 6, the space contraction value is b = 0.8 < 1, and rotation values are
c = a/2 and d = a. The rotation–translation Equation (4) with initial conditions x0 = 0.233, y0 = −0.67
is presented in Figure 1.
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Figure 1. Space contraction.

4. Proposed Encryption Algorithm Based on Numerical Method and Rotation–Translation
Equation

Here, we describe an encryption algorithm based on space contraction and numerical method.
Any nonlinear function or polynomial f with one variable can be defined as part of a key.

We consider plaintext P with byte length of L. The initial values x0 and y0 from Equation (4),
and an initial iteration number M0, are determined. The rotation–translation formula, Equation (4),
is iterated for M0 times.

The proposed algorithm based on numerical method and space contraction is given below:

1. Read the symbols from the plaintext data and get the ASCII values of the different symbols;
2. Construct a system of L nonlinear equations by subtracting the ASCII values from the function f

and equate with zero;
3. Solve individually the nonlinear equations and put the results αi into an array B;
4. The loop of Equation (4) continues, and as an output, two real numbers xi and yi are generated.

We take the sum of xi and yi to produce the real number di = xi + yi, which is put into an array R.
5. Return to Step 4 until a stream of real numbers R with length L is reached.
6. We get the sum of the two arrays B and R to produce E, the output array of real numbers.

Remark 1. In Step 2 of Encryption algorithm, it is desirable that the function or polynomial f is such that each
equation of the type f (z)− ci = 0 has at least one real root, and it is easy to determine the initial approximation,
which guarantees the convergence of the iterative process.

4.1. Approaches for Choosing a Nonlinear Function

In the following, we consider two example functions that are suitable for selecting in the
above algorithm.

4.1.1. Nonlinear Function

Let f (z) has the following form
f (z) = ez − z2 − p, (6)

where p is a real parameter such that p ≥ 1. For its first derivative,

f ′(z) = ez − 2z,
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we conclude that f ′(z) > 0 for all z ∈ R, i.e., the function f (z) is monotonically increasing for all z ∈ R.
This and the limits

lim
z→−∞

f (z) = −∞ and lim
z→∞

f (z) = ∞

show that the function f (z) has only one real root. From the second derivative of f

f ′′(z) = ez − 2,

and because f ′′(z) > 0 for ∀z > ln 2, it follows that the function f (z) is convex for z ∈ (ln 2, ∞).
Therefore, all these properties are also valid for the functions

gi(z) = f (z)− ci,

where ci is an integer value (the corresponding ASCII code). Then, for any i, the function gi(z) is
monotonous, convex, and has a real root in the interval (ln 2, ∞). Indeed, it can be shown that each
one function gi(z) has a real root in the finite interval (ln 2, 6).

4.1.2. Polynomial Function

We consider a fifth degree monic polynomial having the following form:

f (z) = z5 − z4 + z3 − pz2 + qz − (p + 2q), (7)

where p and q are real parameters such that p, q ∈ [1, 10]. From the fundamental theorem of algebra,
it follows that f (z) has at least one real root. Using the Descartes’ rules of sign, we can prove that f (z)
has no negative real root, hence it has at least one real positive root (see Appendix A). Examining the
first two derivatives of f , it can be shown that the function f (z) is monotonically increasing, convex
and has a real root in the interval

( 9
8 , ∞

)
, for any p, q ∈ [1, 10]. By using the bounding theorems (see

Appendix A), it can be shown that f (z) has a real root in the finite interval
(

9
8 , 2|p + 2q|1/5

)
.

4.2. An Example of Encryption

In order to demonstrate the proposed algorithm, we will use the following example:
The text to be encrypted: “Shumen university”.
As a key function, we use the polynomial

f (z) = z5 − z4 + z3 − z2 + z − 3,

which is obtained by Equation (7) in the case of p = q = 1. During the encryption process (Step 3 of
the Algorithm), we have to solve in series nonlinear equations of the type

f (z)− ci = 0, (8)

where ci represents the ASCII code of the i-th character in the text, i.e., ci ∈ [1, 255]. From the analysis
of the polynomial (7) and using the bounding theorems for the roots of polynomials, we deduce that
Equation (8) has a real root in the interval

( 9
8 , 6
)

for any ci ∈ [1, 255]. Moreover, this interval is such that
the iterative process (3) is convergent to the solution for any initial approximation z0 ∈ ( 9

8 , 6
)
. For this

reason, we use the same initial approximation for each Equation (8) obtained during the encryption
process, namely the middle point of the interval: z0 = 6+9/8

2 ≈ 3.56.
We solve all the equations by iterative function (3) and by using the following stopping criteria

• | f (zk)| ≤ ε, and
• |zk − zk+1| ≤ ε,

where ε = 10−15.
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As a result, for all the equations, the stopping criteria are reached after three iterations.
For comparison, if we use the Newton iterative method (2) instead of the Jarrats’ method for solving the
corresponding equations, with the same initial approximation, we get six iterations for each equation,
see Table 1.

Table 1. Number of iterations for Jarrats’method (JM) and Newton method (NM), and generated
arrays.

Letter ASCII NM JM Array B Array R Array E
(Char) Code Iterations Iterations Reached Root (αi) di ei = αi + di

S 83 6 3 2.596938615169214 1.13761418319195 3.73455279836116
h 104 6 3 2.707594514758099 3.83246813052273 6.54006264528082
u 117 6 3 2.767550880788345 2.58986907946370 5.35741996025204
m 109 6 3 2.731316748315844 4.91511042783787 7.64642717615371
e 101 6 3 2.692927857503279 2.09200715087053 4.78493500837380
n 110 6 3 2.735958159508397 7.52948634851868 10.2654445080271

94 6 3 2.657327240630354 0.10782288092075 2.76515012155110
U 85 6 3 2.608365856583876 5.70292778455835 8.31129364114222
n 110 6 3 2.735958159508397 1.30796668243219 4.04392484194058
i 105 6 3 2.712409561369016 7.38162948307289 10.0940390444419
v 118 6 3 2.771941812496392 0.13478345799064 2.90672527048704
e 101 6 3 2.692927857503279 5.23813805178474 7.93106590928801
r 114 6 3 2.754198397484480 1.66157719938621 4.41577559687069
s 115 6 3 2.758679632039476 7.40857522965636 10.1672548616958
i 105 6 3 2.712409561369016 0.16954303210037 2.88195259346938
t 116 6 3 2.763130305077092 6.32301454738480 9.08614485246189
y 121 6 3 2.784941120909602 0.81874887373720 3.60368999464681

The output array of real numbers E is in the last column of Table 1, and this is the encrypted text
that the recipient receives.

4.3. Brute-Force Attack Analysis

The set of all initial values constitutes the key size. The key size of the novel encryption algorithm
has the following initial key values x0, y0, M0 and at least three real coefficients ai of the polynomial
f (for monic polynomial f of degree n ≥ 3). The two seeds x0 and y0 are constructed by randomly
choosing two floating-point values that belonging to the intervals [0.5, 7] and [−0.8, 2], respectively.
The novel encryption algorithm does not propose weak keys. As stated in the IEEE Standard for
floating-point arithmetic [32], the computational precision of the 64-bit floating point variable is about
10−15 ≈ 249. The key size of the novel encryption is (249)5 + 232 > 2248, which is sufficient enough to
defeat brute-force attack [33]. The key space is comparable to state-of-the-art chaos-based encryption
algorithms; for example, [10,13,16].

4.4. Statistical Test Analysis of the Proposed Encryption

In an attempt to evaluate randomness of the improved encryption algorithm, we used NIST [34],
ENT [35], and PractRand [36] statistical test applications. The output numbers ei from array E are
converted to bytes as follows: si = mod(abs(integer(ei × 1015))), 256), where integer(e) calculates the
integer part of e, truncating the value at the decimal point, abs(e) calculates the absolute value of e,
and mod(e, w) calculates the reminder after division. The bytes si are produced. Using the improved
encryption, 103 sequences of 125,000 bytes are produced.

The NIST suite software (version sts-2.1.2) includes 15 statistical tests: monobit, block frequency,
cumulative sums forward and reverse, runs, longest run of ones, rank, Fourier, non-overlapping
templates, overlapping templates, universal, approximate entropy, serial one and two, linear
complexity, random excursion, and random excursion variant.
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The output results of the first 13 tests are in Table 2. The minimum hit rate for each statistical test
with the excluding of the random excursion variant test is approximately 980 for a sample size of 1000
byte stings. The minimum hit rate for the random excursion variant test is approximately 600 for a
sample size of 614 byte strings. The random excursion test outputs 8 p-values which are tabulated in
Table 3. The random excursion variant test calculates 18 randomness probability numbers: p-values,
and they are in Table 4.

The improved encryption algorithm passed successfully all the NIST tests.

Table 2. NIST test suite results.

NIST Test p-Value Success Rate

Monobit 0.556460 992/1000
Block frequency 0.010093 981/1000
Cumulative sums forward 0.399442 993/1000
Cumulative sums reverse 0.299736 993/1000
Runs 0.605916 986/1000
Longest run of ones 0.605916 988/1000
Rank 0.830808 988/1000
Fourier 0.200115 980/1000
Non overlapping templates 0.498222 990/1000
Overlapping templates 0.859637 992/1000
Universal 0.653773 988/1000
Approximate entropy 0.693142 988/1000
Serial one 0.894918 990/1000
Serial two 0.282626 986/1000
Linear complexity 0.051942 995/1000

Table 3. NIST Random excursion test results.

State p-Value Success Rate

−4 0.696617 610/614
−3 0.746463 606/614
−2 0.211467 610/614
−1 0.501472 606/614
+1 0.933509 607/614
+2 0.584363 605/614
+3 0.873629 610/614
+4 0.672912 608/614

Table 4. NIST Random excursion variant test results.

State p-Value Success Rate

−9 0.283657 608/614
−8 0.444875 607/614
−7 0.699986 609/614
−6 0.775401 607/614
−5 0.876173 610/614
−4 0.921867 607/614
−3 0.135745 607/614
−2 0.036332 610/614
−1 0.574229 612/614
+1 0.345203 609/614
+2 0.366645 607/614
+3 0.517714 610/614
+4 0.024235 612/614
+5 0.990938 612/614
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Table 4. Cont.

State p-Value Success Rate

+6 0.447934 610/614
+7 0.232430 609/614
+8 0.193732 611/614
+9 0.659297 611/614

The ENT application includes six tests to bit or byte sequences. We tested a stream of 125,000,000
bytes (1,000,000,000 bits) of the improved encryption and tabulated the output results in Table 5.
The novel encryption passed successfully all the ENT tests.

Table 5. ENT test results.

ENT Test Input of Bits Input of Bytes

Entropy 1.000000 7.999999
Optimum compression Reduce size by 0% Reduce size by 0%
χ2 square 0.16, exceed 68.56 % 242.28, exceed 70.66%
Arithmetic mean value 0.5000 127.5055
Monte Carlo for π 3.141226994 (error 0.01%) 3.141226994 (error 0.01%)
Serial correlation −0.000002 0.000180

The third suite is PractRand. We tested our improved encryption algorithm for strings up to 1 GB
(bytes) in length, passing all statistical tests successfully as shown in Table 6.

Table 6. PractRand test results.

Test Name Raw Processed Evaluation

BCFN(2,13):! R = +0.0 “pass” normal
BCFN(2+0,13−0) R = −0.7 p = 0.608 normal
BCFN(2 + 1,13 − 0) R = +2.3 p = 0.172 normal
BCFN(2 + 2,13 − 1) R = −0.1 p = 0.504 normal
BCFN(2 + 3,13 − 1) R = −2.2 p = 0.812 normal
BCFN(2 + 4,13 − 2) R = −4.4 p = 0.968 normal
BCFN(2 + 5,13 − 3) R = −1.1 p = 0.669 normal
BCFN(2 + 6,13 − 3) R = −4.1 p = 0.960 normal
BCFN(2 + 7,13 − 4) R = +4.8 p = 0.032 normal
BCFN(2 + 8,13 − 5) R = +3.3 p = 0.093 normal
BCFN(2 + 9,13 − 5) R = −0.3 p = 0.524 normal
BCFN(2 + 10,13 − 6) R = −4.3 p = 0.981 normal
BCFN(2 + 11,13 − 6) R = −0.9 p = 0.614 normal
BCFN(2 + 12,13 − 7) R = +1.6 p = 0.219 normal
BCFN(2 + 13,13 − 8) R = −2.7 p = 0.914 normal
DC6-9x1Bytes-1 R = −1.0 p = 0.795 normal
Gap-16:! R = +0.0 “pass” normal
Gap-16:A R = +0.0 p = 0.614 normal
Gap-16:B R = −3.2 p = 0.987 normal
(Low1/8)BCFN(2,13):! R = +0.0 “pass” normal
(Low1/8)BCFN(2+0,13 − 1) R = −1.7 p = 0.754 normal
(Low1/8)BCFN(2+1,13 − 2) R = +1.0 p = 0.336 normal
(Low1/8)BCFN(2+2,13 − 3) R = +1.7 p = 0.243 normal
(Low1/8)BCFN(2+3,13 − 3) R = −0.7 p = 0.605 normal
(Low1/8)BCFN(2+4,13 − 4) R = +2.7 p = 0.138 normal
(Low1/8)BCFN(2+5,13 − 5) R = −0.3 p = 0.528 normal
(Low1/8)BCFN(2+6,13 − 5) R = −0.9 p = 0.626 normal
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Table 6. Cont.

Test Name Raw Processed Evaluation

(Low1/8)BCFN(2+7,13 − 6) R = −2.3 p = 0.838 normal
(Low1/8)BCFN(2+8,13 − 6) R = −2.4 p = 0.853 normal
(Low1/8)BCFN(2+9,13 − 7) R = +1.6 p = 0.223 normal
(Low1/8)BCFN(2+10,13 − 8) R = +3.1 p = 0.096 normal
(Low1/8)DC6-9x1Bytes-1 R = −0.5 p = 0.730 normal
(Low1/8)Gap-16:! R = +0.0 “pass” normal
(Low1/8)Gap-16:A R = −0.1 p = 0.675 normal
(Low1/8)Gap-16:B R = −1.7 p = 0.888 normal

The different statistical tests clearly show the high quality of the proposed algorithm. Table 7
summarizes some of the computed values of our proposed scheme with other algorithms.
The performance test of the novel scheme is based on the average response time with data size
of 1 MB. The execution is done on mobile Dell Inspiron computer i7-3630QM (2.4 GHz, 8GB RAM).

Table 7. Comparison of our improved symmetric key encryption with other algorithms.

Algorithm Key Size Correlation Entropy Arithmetic Mean Performance Evaluation

Proposed 2248 −0.000002 7.999999 127.5055 0.105
[14] Murillo-Escobar 2128 −0.002100 7.994500 - -
[21] Stoyanov 2015 2100 0.000001 7.999998 127.4982 0.19
[37,38] AES-128 2128 −0.002100 7.954880 127.5281 0.12

Based on the good test outputs, we can infer that the novel text encryption based on numerical
method and rotation–translation formula has satisfying statistical characteristics and provides a
reasonable level of security.

5. Conclusions

We have presented an improved encryption algorithm based on numerical method and
rotation–translation formula. The new method uses a faster convergent iterative algorithm and adds
additional randomness by using the space contraction equation. Two exemplary ways of constructing
nonlinear functions or polynomials with corresponding properties are described. In the examples
considered, we demonstrate how to determine the interval containing the desired root and in which
the iterative method is guaranteed to be convergent. Our security analysis shows that the improved
encryption scheme can be successfully used for information security.
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Appendix A

Appendix A.1. Real Roots Counting of Polynomials

Consider a monic polynomial of degree n

f (x) = xn + an−1xn−1 + . . . + a1x + a0 .
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From the fundamental theorem of algebra, it follows that f has n real or complex roots,
counting multiplicities. If the coefficients a0, a1, . . . , an−1 are all real, then the complex roots occur in
conjugate pairs.

Using the following Descartes’ rules of sign, we can count the number of real positive zeros of f .
Descartes’ rules
Let p be the number of variations in the sign of the coefficients an, an−1, . . . , a0 (where an = 1 and

the zero coefficients are ignored). Let m be the number of real positive zeros of f . Then,

• m ≤ p;
• p − m is an even integer.

A negative zero of f (x), if exists, is a positive zero of f (−x).

Appendix A.2. Bounds of Real Roots of Polynomials

The first result in the theory of the location of polynomial zeros is due to Gauss, which is improved
by Cauchy in [39], where he proves the following theorem.

Theorem A1 (Cauchy). Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with complex coefficients, where n ≥ 1 and an �= 0. Then, all the zeros of f (x) lie inside the
circle of radius

R = 1 + max
0≤k≤n−1

∣∣∣∣ ak
an

∣∣∣∣
about the origin.

Another bound given by Lagrange is:
Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with complex coefficients, where n ≥ 1 and an �= 0. Then, all the zeros of f (x) lie
inside the circle of radius

R = 2 max

(∣∣∣∣ an−1

an

∣∣∣∣ ,
∣∣∣∣ an−2

an

∣∣∣∣
1/2

, . . . ,
∣∣∣∣ a0

an

∣∣∣∣
1/n
)

about the origin.
The next theorem is about bounding positive real roots of polynomials with real coefficients due

to Cauchy.

Theorem A2 (Cauchy). Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with real coefficients, where n ≥ 1 and an > 0 and which has s > 0 strictly negative coefficients.
Then, every positive real root of f (x) is no larger than r:

R = max

(∣∣∣∣s an−1

an

∣∣∣∣
1/i

: 1 ≤ i ≤ n and an−i < 0

)
.

More recent and sharper results are obtained by Joyal, Labelle, and Rahman [40] by proving.
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Theorem A3. If M = max0≤i<n−1 |ai|, then all the zeros of the monic polynomial

f (x) = xn + an−1xn−1 + . . . + a1x + a0

are contained in the disc

|x| ≤ 1
2

(
1 + |an−1|+

√
(1 − |an−1|)2 + 4M

)
.
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Abstract: We propose a new chaotic map combined with delay and cascade, called tent delay-sine
cascade with logistic map (TDSCL). Compared with the original one-dimensional simple map,
the proposed map has increased initial value sensitivity and internal randomness and a larger chaotic
parameter interval. The chaotic sequence generated by TDSCL has pseudo-randomness and is
suitable for image encryption. Based on this chaotic map, we propose an image encryption algorithm
with a symmetric structure, which can achieve confusion and diffusion at the same time. Simulation
results show that after encryption using the proposed algorithm, the entropy of the cipher is extremely
close to the ideal value of eight, and the correlation coefficients between the pixels are lower than 0.01,
thus the algorithm can resist statistical attacks. Moreover, the number of pixel change rate (NPCR)
and the unified average changing intensity (UACI) of the proposed algorithm are very close to the
ideal value, which indicates that it can efficiently resist chosen-plain text attack.

Keywords: chaotic map; image encryption; simultaneous confusion and diffusion

1. Introduction

With the development of information technologies, data security has aroused wide public concern.
As an important data format, images occupy a large proportion of network data. Their secure
transmission plays a vital role in personal and military privacy. In recent years, many chaotic image
encryption algorithms have been proposed [1–10] due to the excellent properties of chaotic maps, such
as initial value sensitivity and intrinsic randomness.

Researchers have improved the single chaotic map or combined multiple chaotic maps to improve
chaotic properties, producing larger secret key spaces and more random chaotic sequences. Pak et al. [3]
proposed a structure to modify two same chaotic maps to produce better performance than a single
map [11–14]. Li et al. [15] improved the logistic map using linear delay. Zhou et al. [6] proved
that cascading chaotic maps can increase the Lyapunov exponent, and many chaotic maps can be
generated with the cascade model. Hua et al. [4] combined the logistic map and sine map to generate a
two-dimensional (2D) map. This paper proposes a new framework that combines the cascade model
and delay. This framework rationally integrates three chaotic maps to overcome the performance flaws
of one-dimensional (1D) chaotic maps [16]. The experimental results showed that the chaotic maps
produced by this model have initial value sensitivity and a large parameter interval.

Based on the proposed chaotic map, we constructed a new image encryption algorithm. Generally,
image encryption algorithms can be divided into two steps: confusion and diffusion. Confusion
involves randomly changing the position of pixels. The two commonly used confusion algorithms are:
performing row and column confusion on a image, and reshaping a two-dimensional image into a
vector, and then performing position confusion on it [17–19]. The basic diffusion methods are based
on an XOR operation or mod operation after addition [20,21].

Symmetry 2020, 12, 355; doi:10.3390/sym12030355 www.mdpi.com/journal/symmetry
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In this paper, a new simultaneous confusion and diffusion algorithm is proposed, which is applied
in the vertical and horizontal directions based on an XOR operation. After analysis, the algorithm can
resist chosen-plain text attacks and statistical attacks.

The rest of the paper is organized as follows. In Section 2, the proposed chaotic map is introduced.
Section 3 shows the details of the image encryption algorithm. The proposed algorithm is analyzed
and compared with other works in Section 4. Section 5 concludes the work.

2. Chaotic Map

This section proposes a new chaotic map with delay and cascade using tent, sine, and logistic maps,
which we have named tent delay-sine cascade with logistic map (TDSCL). Through the combination
of these three kinds of maps, we verified that this new chaotic map has excellent chaotic complexity
using the following analysis and comparison.

2.1. The Structure of Chaotic Maps

First, this section reviews three chaotic maps including tent map, sine map, and logistic
map. Based on these three chaotic maps, the TDSCL map is generated. The tent map is defined
mathematically as [22]:

xn+1 = Tλ(xn) =

{
2λxn f or xn < 0.5
2λ(1 − xn) f or xn ≥ 0.5

(1)

where λ is the control parameter with the range of [0, 1].
The structure of the sine map is defined as [23]:

xn+1 = Sα(xn) = αsin(πxn) (2)

where α is the control parameter with a range of [0, 1], and the map is chaotic with α ∈ (0.87, 1) . For all
n ≥ 1, xn is bounded within [0, 1]. The diagrams of bifurcation are shown in Figure 1b.

The logistic map is a simple 1D chaotic map. As a discrete chaotic map, Figure 1c shows its
bifurcation, with outputs in the range of [0, 1] and an initial input value in [0, 1]. The structure of the
logistic map is defined by [24]:

xn+1 = Lμ(xn) = 4μxn(1 − xn) (3)

where μ is the control parameter in the range of [0, 1].

(a) (b) (c)

Figure 1. The bifurcation diagram for the (a) tent map, (b) sine map, and (c) logistic map.

The above three chaotic maps all have flaws, producing no chaotic behavior in some ranges of
parameters. Specifically, these three maps only show chaotic characteristics at the rightmost part of
the parameter variation range, and the chaotic interval may be discontinuous. To overcome these
flaws, we designed a novel chaotic map structure, which is shown in Figure 2. As shown in Figure 2,
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T(x) represents the tent map with a delay item input, and the sine map is indicated by S(x). Then,
the outputs of T(x) and S(x) are added as the input of f (x). The function f (x) is taken as ex in this
paper, and cascaded with L(x), thereby obtaining the output result of the chaotic map.

xn+1 = μ f ◦ F(xn)(1 − f ◦ F(xn))mod1 (4)

F(xn) =

{
2xn−1 + sin(πxn) xn < 0.5
2(1 − xn−1) + sin(πxn) xn ≥ 0.5

(5)

Figure 2. The structure of the tent delay-sine cascade with logistic map (TDSCL).

Here, the control parameters for the tent map and the sine map are set to 1, and the parameter
μ for the logistic map is used as the control parameter for this new map. Equations (4) and (5) show
the mathematical formulae. The circle symbol in Equation (4) represents the composition of two
functions. Compared to the 1D delay and linearly coupled logistic chaotic map (DLCL) [15] and a
two-dimensional logistic-modulated sine-coupling logistic chaotic map (LSMCL) [1], the structure of
TDSCL produces better chaotic performance. In the following section, we use the trajectory, Lyapunov
exponent, and permutation entropy (PE) to analyze the characteristics of chaotic maps.

2.2. Chaotic Performance of TDSCL

2.2.1. Chaotic Trajectory

For a chaotic system, the trajectory on the phase plane can show the randomness of outputs [25].
The larger the space occupied by the trajectory, the better the random outputs of the chaotic systems.
Figure 3 shows the trajectories of TDSCL, DLCL, and LSMCL. The trajectory of TDSCL can fill the
entire phase space compared to DLCL and LSMCL. This indicates that the sequence generated by the
TDSCL chaotic map has better randomness and ergodicity.

(a) (b) (c)

Figure 3. Trajectories for (a) TDSCL with μ = 1, (b) delay and linearly coupled logistic chaotic map
(DLCL) with μ = 1 , and (c) logistic-modulated sine-coupling logistic chaotic map (LSMCL) with
θ = 0.75.
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2.2.2. Lyapunov Exponent

One of the most important features of a chaotic system is a strong sensitivity to initial values.
The Lyapunov exponent (LE) [26] provides a quantitative description of the initial state sensitivity of
a chaotic system. A maximum Lyapunov exponent of the chaotic map greater than 0 indicates that
the system is in a chaotic state. For a two-dimensional chaotic system, if the system’s two Lyapunov
exponents are greater than 0, then the system is in a hyperchaotic state.

In Figure 4a–c, the Lyapunov exponents of TDSCL, DLCL, and LSMCL are calculated. From these
diagrams, TDSCL displays hyperchaotic behavior when approximately μ ∈ (0.05, 1]. When μ = 1,
the maximum Lyapunov exponent of TDSCL is close to 9.2. Therefore, compared with the other two
maps, TDSCL not only has a larger chaotic state interval, but also a larger Lyapunov exponent in
a large continuous interval. Compared with DLCL and LSMCL, TDSCL is more sensitive to small
changes in the initial value of the system and has better unpredictability.

(a) (b) (c)

Figure 4. Lyapunov exponent: (a) TDSCL, (b) DLCL, and (c) LSCML.

2.2.3. Permutation Entropy

The permutation entropy can be used to measure the complexity of chaotic sequences [27]. For a
given chaotic system, an entropy of the generated chaotic sequence close to 1 indicates that the chaotic
system has unpredictability. As shown in Figure 5, the PE of DLCL is close to 1, only when μ in the
interval of [0.7, 1], and the permutation entropy of LSMCL is always less than 0.8. The permutation
entropy value of TDSCL is very close to 1 when μ ∈ [0.1, 1]. This indicates that the chaotic sequences
generated by TDSCL have more complex dynamic behaviour.

(a) (b) (c)

Figure 5. Permutation entropy for (a) TDSCL, (b) DLCL, and (c) LSCML.

3. Image Encryption Algorithm

In the proposed algorithm, the secret key consists of 16 parameters {x1(1), x1(2), n1, u1, x2(1),
x2(2), n2, u2, x3(1), x3(2), n3, u3, x4(1), x4(2), n4, and u4}, where xi(1), xi(2) are the first two values of
the chaotic sequence, ui is the control parameter of the chaotic map, and ni is related to the length of the
generated chaotic sequence. As shown in Figure 6, the first step in the encryption algorithm obtaining
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chaotic sequences is based on the key. Then, confusion and diffusion are performed simultaneously.
The details of the algorithm are introduced below.

Figure 6. The image encryption architecture.

3.1. Simultaneous Horizontal Confusion and Diffusion

• Step 1. Generate diffusion matrix S1.

Iterate Equation (4) n1 + M × N times with initial value x1(1), x1(2) and control parameter u1.
M, N are the height and width of the image I that is being processed, respectively. Then, the diffusion
matrix S1 is obtained by the generated chaotic sequence x1 using Equation (6).

S1(i, j) =
⌊

x1(n1 + (i − 1)× M + j)× 106
⌋

mod256. (6)

where i = 1, 2, ..., M and j = 1, 2, ..., N. S1 is the matrix of M by N, each value of which is derived
from the chaotic sequence x1. With the given parameter u1, the generated chaotic sequence x1 has
considerable randomness.

• Step 2. Set i = 1.

• Step 3. Obtain begin index bi
1 and circle shift the first row of the image I(1, :) right by ti

1 pixels

Obtain x2(1), x2(2), n2, u2 from the secret key and and calculate the initial value as well as iteration
time of chaotic map by adjusting them with the pixel value of image I according to Equation (7).

⎧⎪⎪⎨
⎪⎪⎩

xi
2(1) = (x2(1) + I(ri, 1)/255)mod1,

xi
2(2) = x2(2),

ni
2 = n2 + I(ri, N)

(7)

where:

ri =

{
M, i = 1

i − 1, else.
(8)

Then, using initial value xi
2(1), xi

2(2) and parameter u2, iterate Equation (4) ni
2 + 2 times. Obtain

bi
1 and ti

1 according to Equation (9).

⎧⎨
⎩

bi
1 =

⌊
xi

2(n
i
2 + 1)× 106

⌋
modN

ti
1 =

⌊
xi

2(n
i
2 + 2)× 106

⌋
modN.

(9)
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• Step 4. Horizontal diffusion.

The horizontal diffusion operation is performed based on the XOR operation. The operation
process is as follows:

f or j = 1 : N

i f j = 1

I(i, cj) = I(i, cj)⊕ S1(i, j)

else

I(i, cj) = I(i, cj−1)⊕ I(i, cj)⊕ S1(i, j)

end i f

end f or

where

cj =

⎧⎪⎪⎨
⎪⎪⎩

bi
1, j = 1

N, (bi
1 + j − 1) = N

(bi
1 + j − 1)modN, else.

(10)

• Step 5. Circle shift I(i, :) horizontally by ti
1 pixels.

• Step 6. Let i = i + 1 and repeat steps 3 to 5 until all rows have been processed.

3.2. Simultaneous Vertical Confusion and Diffusion

The simultaneous operation of vertical confusion and diffusion is similar to the process introduced
in the subsection above.

• Step 1. Generate diffusion matrix S2.

Iterate the formula in Equation (4) n3 + M × N times with initial value x3(1), x3(2) and control
parameter u3. Then, the diffusion matrix S3 is obtained according to:

S2(k, l) =
⌊

x3(n3 + (k − 1)× M + l)× 106
⌋

mod256. (11)

where k = 1, 2, .., M and l = 1, 2, ..., N.

• Step 2. Set l = 1.

• Step 3. Generate index bl
2 and circle shift the first column of the image I(:, 1) by tl

2 pixels.

Obtain x4(1), x4(2), n4, u4 from the secret key and adjust them with the pixel value of image I
according to Equation (12).

⎧⎪⎪⎨
⎪⎪⎩

xl
4(1) = (x4(1) + I(1, pl)/255)mod1,

xl
4(2) = x4(2),

nl
4 = n4 + I(M, pl)

(12)

where:

pl =

{
N, l = 1

l − 1, else.
(13)
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Then, using the initial value xl
4(1), xl

4(2) and parameter u4, iterate Equation (4) nl
4 + 2 times.

Obtain bl
2 and tl

2 according to Equation (14).

⎧⎨
⎩

bl
2 =

⌊
xl

4(n
l
4 + 1)× 106

⌋
modN

tl
2 =

⌊
xl

4(n
l
4 + 2)× 106

⌋
modN.

(14)

• Step 4. Vertical diffusion.

The vertical diffusion process is as follows:

f or k = 1 : M

i f k = 1

I(qk, l) = I(qk, l)⊕ S2(k, j)

else

I(qk, l) = I(qk−1, l)⊕ I(qk, l)⊕ S2(k, l)

end i f

end f or

where:

qk =

⎧⎪⎪⎨
⎪⎪⎩

bl
2, k = 1

M, (bl
2 + k − 1) = M

(bl
2 + k − 1)modM, else.

(15)

• Step 5. Circle shift I(:, l) vertically by tl
2 pixels.

• Step 6. Let l = l + 1, and repeat steps 3 to 5 until all columns have been processed.

4. Experiment Results and Analysis

4.1. Simulation Results

To verify the feasibility of the encryption algorithm proposed in this paper, some pictures were
used for testing. Figure 7 shows the original images in the first column, the encrypted images in the
second column, and the decrypted images in the last column.

(a) (b) (c)

Figure 7. Cont.
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(d) (e) (f)

Figure 7. Simulation results of the proposed image encryption algorithm: (a,d) original images,
(b,e) encrypted images, and (c,f) decrypted images.

4.2. Secret Key Space

In the proposed algorithm, the secret key contains 16 parameters. The parameters of the chaotic
map are double precise, and the parameters related to the number of iterations are in the range of
0 to 1000. Thus, the secret key space can reach 0.81 × 10192 > 2637, which is large enough to resist
statistical attacks.

4.3. Statistical Analysis

4.3.1. Correlation Coefficient Analysis

In plain images, the correlation between adjacent pixels is fairly strong, and the correlation
between adjacent pixels can be used by the attacker to obtain some useful information. Therefore,
after image encryption, the correlation between adjacent pixels of the encrypted image is closer to
0, indicating that the pixel distribution is random. We selected 4000 pairs of adjacent pixels in plain
images and encrypted images, and then calculated the correlation coefficient of two horizontal, vertical
and diagonal adjacent pixels using Equation (16):

Cxy =
E{[x − E(x)][y − E(y)]}√

D(x)
√

D(y)
(16)

where E(x) and D(x) represent the expectation and variance of variable x, respectively. Table 1
shows the experimental results of the tested images by performing the encryption in two rounds.
The correlation coefficient of three directions is close to 0 after the encryption.

Figure 8 shows the correlation of the Lena image and its cipher image. The adjacent pixel pairs of
the plain image in all directions are densely on the line of y = x, and the adjacent pixel pairs of the
cipher image in all directions are evenly distributed in the rectangular area.

(a) (b) (c)

Figure 8. Cont.
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(d) (e) (f)

Figure 8. Adjacent pixels correlation analysis: the correlation between two horizontal, vertical,
and diagonal pixels in (a–c) a plain image and (d–f) an encrypted image.

Table 1. The correlation coefficient in three directions for tested images.

Color Image Horizontal Vertical Diagonal

4.2.01.tiff original 0.9723 0.9843 0.9602
encrypted 0.0001 0.0013 0.0040

4.2.02.tiff original 0.9347 0.9413 0.8860
encrypted –0.0032 –0.0044 0.0011

4.2.03.tiff original 0.8736 0.8261 0.7843
encrypted 0.0075 –0.0012 –0.0014

4.2.04.tiff original 0.9456 0.9727 0.9213
encrypted –0.0040 0.0042 0.0063

4.2.05.tiff original 0.9364 0.9302 0.8819
encrypted 0.0007 0.0022 –0.0007

4.2.06.tiff original 0.9581 0.9564 0.9282
encrypted 0.0049 –0.0002 –0.0029

4.2.07.tiff original 0.9634 0.9704 0.9363
encrypted –0.0043 –0.0004 –0.0008

4.3.2. Histogram Analysis

An image histogram can reflect the frequency distribution of pixel values in an image [15]. In this
experiment, Figure 9 shows the histograms of the plain and cipher images. The histogram of the
cipher image has a balanced pixels distribution. This indicates that it is difficult for the attackers to
obtain valid statistical information from the encrypted image. As the pixel values of the encrypted
image have no obvious regularity, the attacker cannot obtain the original image through brute force
analysis of the cipher. Therefore, the encryption system proposed in this paper has the ability to resist
statistical attacks.

4.4. Key Sensitivity Test

Key sensitivity can be tested by the number of pixel change rate (NPCR) and the unified average
changing intensity (UACI) [28]. In this test, we calculated the NPCR and UACI of two encrypted images
based on changing a small value, set to 10−15 for keys. The mathematical formulas for calculating
NPCR and UACI are defined as [29]:

{
NPCR = ∑M

j=1 ∑N
j=1

D(i,j)
M×N × 100%,

UACI = ∑M
j=1 ∑N

j=1
|C(i,j)−C‘(i,j)|

255×M×N × 100%,
(17)

D(i, j) =

{
0, i f C(i, j) = C‘(i, j)
1, i f otherwise

(18)
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where C(i, j) and C‘(i, j) are the cipher image generated by the original key and the changed key in the
key sensitivity test, respectively. The ideal values of NPCR and UACI are 99.6094% and 33.4635% for
an 8-bit grey scale image, respectively [1]. Table 2 lists the simulation results. The NPCR and UACI
of our proposed algorithm are very close to the expected value. The analysis results showed that the
algorithm can resist chosen-plain text attacks.

(a) (b)

(c) (d)

Figure 9. Histograms of (a,b) Lena and the encrypted image and (c,d) Pepper and the encrypted image.

Table 2. The number of pixel change rate (NPCR) and the unified average changing intensity (UACI)
of different images for key sensitivity.

Image NPCR UACI

4.2.01.tiff 0.9959 0.3354
4.2.02.tiff 0.9960 0.3340
4.2.03.tiff 0.9958 0.3345
4.2.04.tiff 0.9958 0.3349
4.2.05.tiff 0.9962 0.3354
4.2.06.tiff 0.9962 0.3357
4.2.07.tiff 0.9960 0.3356

4.5. Resistance Against Chosen-plain Text Attack

To resist chosen-plain text attacks, an encryption system must have strong plaintext sensitivity.
Similarly, plaintext sensitivity can use the same key to encrypt two distinct plaintext images,
and calculate the NPCR and UACI values of the two images. We calculated the average NPCR
and UACI for obtaining two cipher images 200 times, by performing two rounds of encryption in
Table 3 .
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Table 3. The NPCR and UACI of chosen-plain text analysis.

Image NPCR UACI

4.2.01.tiff 0.9961 0.3348
4.2.02.tiff 0.9961 0.3345
4.2.03.tiff 0.9961 0.3346
4.2.04.tiff 0.9961 0.3352
4.2.05.tiff 0.9961 0.3348
4.2.06.tiff 0.9961 0.3350
4.2.07.tiff 0.9961 0.3351

4.6. Information Entropy

Information entropy reflects the uncertainty of an image [30]. The larger the entropy, the greater
the uncertainty. The entropy of an image was calculated according to Equation (19)

H = −
L

∑
i=0

p(i)log2 p(i) (19)

where L is the number of pixel grey levels, and p(i) is the probability that the grey value i appears.
From Table 4, the information entropy of the encrypted images approaches the ideal value of eight,
which indicates that the encrypted images have considerable uncertainty.

Table 4. The information entropy of different images.

Image Entropy

4.2.01.tiff 7.9969
4.2.02.tiff 7.9973
4.2.03.tiff 7.9973
4.2.04.tiff 7.9972
4.2.05.tiff 7.9971
4.2.06.tiff 7.9973
4.2.07.tiff 7.9971

4.7. Comparison with Other Methods

Table 5 compares the correlation coefficient, the ability against chosen-plain text attacks,
and information entropy between the proposed algorithm and others’ using 4.2.05.tiff. Our algorithm
performs one and two rounds of encryption, and the results are listed in Table 5. The correlation
coefficient of our algorithm is closer to 0, which indicates that the encrypted image has less visible
information using our algorithm. For NPCR and UACI, our proposed algorithm is closer to the
ideal values compared with the other three algorithms. This algorithm has a good ability to resist
chosen-plain text attacks.

Table 5. Comparison of the proposed method and other methods.

Paper
Correlation

NPCR UACI Entropy
Horizontal Vertical Diagonal

Paper [31] 0.0062 0.0074 0.0009 0.9942 0.3352 7.9974
Paper [32] 0.0054 0.0089 0.0021 0.9965 0.3351 7.9970
Paper [2] 0.0028 0.0041 0.0010 0.9962 0.3363 7.9970

Proposed with one iteration 0.0001 −0.0007 −0.0025 0.9961 0.3344 7.9971
Proposed with two iteration 0.0007 −0.0022 −0.0007 0.9961 0.3346 7.9977
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Moreover, the entropy of the encrypted image using the proposed algorithm with two iterations
is larger than others. We show that the entropy of the encrypted image with two iterations is larger
than that of one iteration.

4.8. Encryption Efficiency Analysis

In this paper, the simulation is performed on Inter(R) Core(TM) i7-6700K CPU @ 4.00 GHz with
16.0 GB in MATLAB R2019b. The average encryption time of a 256 × 256 image is 0.425 s, and the
decrypted time is 0.452 s. To analyze the proposed encryption algorithm, the encryption throughput
(ET) and number of cycles [33] are calculated by:

ET =
Imagesize(byte)

Encryptiontime(second)
, (20)

Number o f cycles per byte =
CPUspeed(Hertz)

ET(byte)
. (21)

The ET of the proposed algorithm is 0.1471 MBps (million byte per second) and the algorithm needs
25,932.68 cpu cycles to finish one-byte operation.

5. Conclusions

In this paper, we constructed a new chaotic map, named TDSCL, which combines the delay tent
map with the sine map, which is then cascaded with the logistic map. Compared with the DLCL and
LSMCL methods, the simulation results indicated with the chaotic map that our proposed method
has a larger Lyapunov exponent and permutation entropy, which demonstrates that it has a better
initial value sensitivity and randomness. In addition, we proposed an image encryption algorithm
with simultaneous confusion and diffusion in the vertical and horizontal directions. We analyzed
the algorithm in terms of the key space, key sensitivity, ability against chosen-plain text attacks,
and information entropy. The simulation results showed that this algorithm can resist statistical attacks
and chosen-plain text attacks.
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* Correspondence: ozkaynak@firat.edu.tr; Tel.: +90-424-237-0000

Received: 22 February 2020; Accepted: 16 March 2020; Published: 5 April 2020

Abstract: Symmetry plays an important role in nonlinear system theory. In particular, it offers several
methods by which to understand and model the chaotic behavior of mathematical, physical and
biological systems. This study examines chaotic behavior in the field of information security. A
novel method is proposed to improve the performance of chaos-based substitution box structures.
Substitution box structures have a special role in block cipher algorithms, since they are the only
nonlinear components in substitution permutation network architectures. However, the substitution
box structures used in modern block encryption algorithms contain various vulnerabilities to
side-channel attacks. Recent studies have shown that chaos-based designs can offer a variety of
opportunities to prevent side-channel attacks. However, the problem of chaos-based designs is that
substitution box performance criteria are worse than designs based on mathematical transformation.
In this study, a postprocessing algorithm is proposed to improve the performance of chaos-based
designs. The analysis results show that the proposed method can improve the performance criteria.
The importance of these results is that chaos-based designs may offer opportunities for other practical
applications in addition to the prevention of side-channel attacks.

Keywords: chaos; cryptography; substitution box; postprocessing

1. Introduction

Developments in Industry 4.0, the Internet of Things (IoT) and artificial intelligence have changed
our lives significantly. Although these changes make our lives easier in many ways, guaranteeing the
security of the huge quantities information called big data is a serious problem. Strong cryptographic
protocols are needed to address this problem. However, cryptology is a complex discipline. It is
not enough to demonstrate that only certain security requirements are met. New methods and
countermeasures should be constantly researched as new attack techniques are developed [1,2].
Application attacks are an important cryptanalysis technique that threatens existing encryption
protocols [3]. One of the attack techniques, called side-channel analysis, is based on the principle of
obtaining the secret key of the algorithm with the help of measurements such as sound, heat, light and
power consumption after the encryption protocol is implemented on hardware such as a computer,
mobile phones or FPGA cards.

Recent studies have shown that chaos-based encryption protocols may be more resistant to
side-channel attacks than encryption protocols based on mathematical techniques. In the analysis
carried out in [4], first, a side-channel analysis of the AES block encryption algorithm was performed.
In the second stage of the analysis, a side-channel analysis of the AES block encryption algorithm was
performed using chaotic substitution box (s-box) structures instead of the s-box structure based on
mathematical methods proposed by Nyberg [5,6]. The second design is more resistant to side-channel
attacks than the standard AES algorithm. In other words, chaos-based s-box structures are more
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resistant to side-channel attacks than the AES s-box structure, which has the best-known s-box design
criteria. However, when a literature review was undertaken, it was shown that even chaos-based
designs with the best s-box performance criteria were worse than the Nyberg s-box structure. For
example, for nonlinearity measurements, which play an important role in confusion and diffusion
requirements, the best achievable value in chaos-based designs is 106.75, while in the Nyberg s-box
structure, that value is 112, which is the upper bound value that can be reached [7].

It is therefore possible for chaos-based designs to be more resistant to side-channel attacks than
mathematical designs. However, the poor performance criteria for these designs are an important
problem. This study seeks to address this problem. Various studies have been published showing
that the performance criteria can be improved with the help of optimization algorithms. However, in
these approaches, there is another design problem, i.e., the additional processing cost of optimization
algorithms. In this study, it has been shown that s-box performance criteria can be improved by
applying various postprocessing techniques to chaos-based s-box designs. The practical applicability
of the proposed method, its simple structure, and the speed of producing results have been evaluated
as the advantages of the proposed method. This also raised a new research question regarding how
s-box structures with better performance criteria can be obtained by using different postprocessing
techniques in the future.

The rest of the study is organized as follows. In Section 2, the general design principle of
chaos-based s-box structures and the basic milestones related to the literature are explained. In
Section 3, the details of the proposed postprocessing technique are presented to improve the s-box
performance criteria. In Section 4, the success of the proposed method is tested by providing various
analysis results. The obtained results are interpreted and a road map for future studies is presented in
Section 5.

2. Chaos-Based S-Box Structures

Chaos theory offers researchers various opportunities in many areas of science [8]. The rich
dynamics that it contains have always made chaotic systems a popular research area. In addition to its
use in modeling and control areas, its random behavior has led cryptography experts to focus on this
field [9]. The basic idea behind this interest is that confusion and diffusion requirements can be met
with the principle of sensitive dependence on initial conditions and control parameters. Confusion and
diffusion requirements are two important properties of encryption protocols. These requirements were
identified by Claude Shannon in 1945. “Confusion makes it difficult to find the key from the ciphertext
and if a single bit in a key is changed, most or all the bits in the ciphertext will be affected. Diffusion
means that if we change a single bit of the plaintext, then (statistically) half of the bits in the ciphertext
should change”. It has been suggested that these requirements can be met using chaotic systems,
since chaotic outputs are extremely sensitive to changes in initial conditions and control parameters,
and have a nonlinear characteristic. Researchers have used chaotic systems as an entropy source in
cryptographic designs. They used the initial condition and control parameters of chaotic systems as
the secret key of cryptographic protocols. It has been suggested that different entropy sources can be
produced by using different initial conditions and control parameters, as they will produce different
outputs with small changes that may occur in the initial conditions and control parameters. Many
cryptographic protocols such as image encryption algorithms [10,11], key generators [12,13] and s-box
designs [14] have been proposed using this design idea, as visualized in Figure 1.
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Figure 1. General design approach for chaos-based cryptographic protocol designs.

Although this design approach has been widely studied, the security analysis of some proposals has
not been done according to certain criteria, which has caused various security problems. Chaos-based
s-box designs stand out as a design class that is not affected by these problems, because the requirements
for s-box performance analysis are almost standardized [15,16]. Bijective, nonlinearity, bit independence
criterion (BIC), strict avalanche criterion (SAC) and input/output XOR distribution criteria are the
standard measurements used in analysis processes of s-boxes. A nonlinearity criterion can be associated
with the confusion criterion, which is one of the general characteristics of encryption algorithms; the
ideal value for this criterion is 112, and the ideal value for the strict avalanche criterion is 0.5. This
value indicates the difficulty of making statistical inferences. Values smaller or greater than 0.5 increase
the success of statistical analysis. BIC measurement is related to nonlinearity and SAC measurements
through the relationship between input and output bits. Input/output XOR distribution is related to
differential cryptanalysis. To show its resistance against differential attacks, the maximum value that
can be calculated. The expected value is 4; larger values indicate that differential attacks can be more
successful [14–16].

In the simplest terms, s-box structures have the mathematical model given in Equation (1). In
other words, it is a bijective function that converts values in a certain range to values in another
range. The AES s-box structure is a nonlinear function that maps 256 values between 0 and 255 to 256
values between 0 and 255. Therefore, in the literature, attempts have been made to obtain different
s-box structures by converting the chaotic system outputs to 256 different values. Many different
s-box structures have been generated by changing the initial conditions and control parameters. Also,
different chaotic system classes or different conversion algorithms have been used to improve the s-box
performance criteria.

S :
Fn

2
(x1, . . . , xn)

→ Fm
2

(y1, . . . , ym)
(1)

When design studies are classified in terms of chaotic system types, there are two general
classes: discrete and continuous-time chaotic systems. Discrete-time systems are among the preferred
systems for researchers in the design process [17–21]. The main reason for this is that the systems
can produce very fast results due to their simple mathematical models. The biggest advantage of
continuous-time systems is that they have more complex mathematical models than discrete-time
systems [22–26]. It is thought that this complexity will positively affect the quality of the entropy
source. To use this advantage of continuous-time systems most effectively, special chaotic systems
such as hyperchaotic [27,28], time-delay [29,30] and fractional-order systems [31,32] have also been
used in the design process.

Another remarkable element of the general design architecture visualized in Figure 1 is the
conversion function. The purpose of this function is to convert chaotic system outputs into an entropy
source. In the literature, two conversion functions are most common. The first is the threshold value
function. As stated in Equation (2), the chaotic system outputs are converted to 0 or 1 values by
comparing them with a threshold value. Choosing the appropriate threshold value is a critical design
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problem. It has been shown that successful results can be obtained if 0.5 is selected as the threshold
value in many sources [33,34]. The other conversion function is the mode function. It has been shown
in various studies that the mode function has various advantages, since it is a one-way function which
guarantees various statistical properties [35–37]. Due to these advantages, in the proposed method,
the mode function has been used to transform the chaotic entropy source into s-box structures.

fthreshold(x) :

⎧⎪⎪⎨⎪⎪⎩0 x ≤ 0.5

1 x > 0.5
(2)

3. Detail of Proposed Method

Block encryption algorithms are ineffective in the encryption of digital images. One of the most
important reasons for this problem is the high correlation between the pixel values of an image [38].
Usually, images are represented by a matrix with a size of m× n . The values of m and n indicate the
values of the row and column, respectively. One of the proposed approaches to solving the correlation
problem is to reposition the matrix cells using the zigzag transformation method, as shown in Figure 2.
In this study, we propose the use of the zigzag reading approach as a postprocessing technique.

Figure 2. General structure of zigzag transformation approach.

Since AES-like s-box designs comprise a matrix with a size of 16 × 16, the zigzag transformation
approach can be easily performed. The flowchart of the proposed method is given in Figure 3. The
operation of the algorithm is given step by step below. Also, the pseudo code is expressed in Table 1
for the logistic map.
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Figure 3. Flowchart of the proposed method.

Step 1. A discrete or continuous time chaotic system is chosen.
Step 2. The initial condition and control parameter values in which the chaotic system can exhibit rich

random features are determined.
Step 3. State variable(s) of the chaotic system are calculated. Preferably, the first 1000 values can be

ignored to eliminate the effects of transient response.
Step 4. The status variable value, which is the fractional value, is converted to a decimal value between

0–255 by applying mod 256.
Step 5. If the decimal value is not included in the s-box, it is added, otherwise a new state variable

value is calculated, which continues until the table is full.
Step 6. The positions of s-box cells are shuffled using zigzag transformation.
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Table 1. The pseudo code of chaotic s-box generation.

ChaoticSboxGenerate()
begin

sbox=[0:255]
for(k=0;k<256;I++)
sbox[k]=-1
end for

xOld= Random_Selection [0,1]

for(i=0;I<1000;I++)
xNew=4*xOld*(1-xOld)
xOld=xNex
end for

j=0;
while (j<sbox.lenght)
value=(xNex*100000000)%256
if(!contain(sbox,value))
sbox[j]=value
j++;
end if
xNew=r*xOld*(1-xOld)
xOld=xNex
end while

return ZigZagTransform(sbox)
end

contain(array, value)
begin
for(int i=0;i<array.length;i++)
if(array[i]==value)
return true
end if
end for
return false
end

4. Performance Analysis of Proposed Method

The study is based on a general s-box generator algorithm to examine the effect of the proposed
postprocessing technique on the s-box performance. A flowchart of the s-box generator algorithm is
given in Figure 3. The details of this algorithm and the program prepared for the Windows operating
system can be accessed from [7,14]. Researchers can generate s-box structures using the original
method, and verify their performance improvements for new s-box structures modified using the
postprocessing technique through the program in [14].

The effect of the proposed method on the performance criteria was analyzed in this section.
As explained, there are five basic criteria for s-box performance analysis. The bijective criterion
is guaranteed by the proposed method. Therefore, this criterion is not included in the analysis
tables. Two main categories can be used to classify chaotic systems. These categories are discrete
and continuous-time chaotic systems. Discrete-time systems are first-order difference equations.
Continuous-time chaotic systems are at least third-order differential equations [8]. An analysis of six
different chaotic systems was carried out using three different chaotic systems for both chaotic system
classes. Twenty-five different s-box structures were generated for each chaotic system class. Logistic
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map, sine map, and circle map are used as discrete-time chaotic systems. Performance comparisons for
original and improvement s-box structures are given in Tables 2–4 respectively. Similarly, performance
comparisons for the original and improved s-box structures generated for each of the continuous-time
Lorenz, Labyrinth Rene Thomas system, and Chua systems are given in Tables 5–7, respectively. To
show the success of the proposed method, care was taken to ensure that the average nonlinearity
property of all the original s-box structures used in the analysis was less than 103. Performance
improvement was observed in all the s-box structures given in the analysis tables.

Table 2. Performance comparisons for original and improved s-boxes based on a logistic map.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

L.map_1 100.75 0.4971 102.71 0.4992 12 105 0.5046 103.64 0.5009 10
L.map_2 102.5 0.5051 104.86 0.5012 12 103 0.5056 102.93 0.5004 12
L.map_3 102.75 0.502 103.21 0.5022 12 104.5 0.5027 102.93 0.4983 12
L.map_4 103.5 0.4985 104.29 0.4981 10 104.75 0.5049 103.71 0.4979 10
L.map_5 101.75 0.4998 103.21 0.4996 10 104.5 0.4983 103.64 0.5011 12
L.map_6 103.25 0.4976 103.64 0.4968 10 103.75 0.4973 103.29 0.5013 12
L.map_7 102 0.5051 103.07 0.5017 12 104.25 0.491 103.64 0.501 12
L.map_8 101.25 0.5056 103.29 0.503 12 103.75 0.4934 103.86 0.4962 12
L.map_9 103.75 0.5059 102.64 0.4997 10 104.5 0.4907 103.86 0.4978 10
L.map_10 103 0.5015 104.71 0.5023 12 104.5 0.498 103.5 0.5018 10
L.map_11 103.5 0.5012 103.36 0.4999 10 104 0.4998 104.14 0.5018 12
L.map_12 103.25 0.5049 103.64 0.4948 10 103.5 0.5 102.36 0.4978 12
L.map_13 102.25 0.5042 103.64 0.503 12 103.25 0.5022 104.07 0.4963 10
L.map_14 102 0.512 103.36 0.4969 12 103 0.4971 102.86 0.5007 12
L.map_15 102.75 0.5007 103.86 0.5001 10 103.25 0.5088 104 0.5005 12
L.map_16 101 0.5039 103.07 0.4976 10 103.5 0.5005 102.86 0.4974 12
L.map_17 102.5 0.5134 102.86 0.5 10 103.5 0.5056 104.29 0.4978 10
L.map_18 103.5 0.499 103.64 0.4941 12 103.75 0.5161 103.64 0.4957 10
L.map_19 102.75 0.5073 102.93 0.5037 12 103.75 0.5002 102.5 0.5018 10
L.map_20 103.25 0.491 103 0.4951 10 104 0.5042 103,5 0.4993 10
L.map_21 102.5 0.5078 102.86 0.4985 10 103.75 0.5154 103.64 0.5013 14
L.map_22 102.75 0.4966 103.71 0.4997 10 103.75 0.5066 103 0.4973 12
L.map_23 102.25 0.5012 103.5 0.5015 12 103.25 0.5044 103.36 0.5022 12
L.map_24 102.5 0.5068 104.36 0.4986 12 104.25 0.511 104.21 0.5006 10
L.map_25 103.25 0.5012 103.29 0.4992 12 104.24 0.5071 104.71 0.5027 10
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Table 3. Performance comparisons for original and improved s-boxes based on a sine map.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

S.map_1 101.75 0.5122 104.07 0.4985 14 103.5 0.4924 103.64 0.4911 12
S.map _2 103 0.5046 102.86 0.4964 12 104.5 0.5027 103.64 0.4977 10
S.map _3 102.25 0.4988 102.5 0.498 12 104.25 0.4978 103.93 0.5017 12
S.map _4 103 0.5063 103.79 0.5029 12 104.5 0.5034 103.43 0.5013 12
S.map _5 103.25 0.4973 103.57 0.4978 12 104.5 0.51 103.93 0.5006 12
S.map _6 102.5 0.51 104 0.4967 12 103 0.511 103.64 0.4921 10
S.map _7 103.5 0.501 102.79 0.4991 12 103.75 0.5093 103.5 0.504 10
S.map _8 102.5 0.5002 104.07 0.5005 12 105 0.5083 103.79 0.5029 10
S.map _9 103.75 0.5002 103.57 0.495 12 104 0.5103 103 0.4988 12
S.map _10 101.5 0.4973 103.57 0.4981 10 103.25 0.4934 104 0.499 12
S.map _11 103.75 0.4934 104.29 0.4999 12 104.5 0.5083 104.5 0.4952 12
S.map _12 102 0.5054 103 0.4963 12 103 0.5103 103.43 0.4963 12
S.map _13 102.5 0.4993 104.29 0.4967 14 103.75 0.4971 103 0.501 12
S.map _14 101.5 0.5007 103.64 0.501 10 102.5 0.5056 104.14 0.5003 10
S.map _15 102 0.499 103.71 0.5003 12 102.75 0.498 103.71 0.4957 12
S.map _16 103 0.5002 104.07 0.5026 12 130.25 0.5166 103 0.4925 12
S.map _17 101.75 0.4973 102.86 0.4995 12 102 0.4961 103.43 0.4998 10
S.map _18 103 0.5022 103.07 0.4972 10 103.5 0.4988 103.14 0.499 10
S.map _19 102.75 0.4978 103.43 0.4998 10 104.75 0.4976 103.07 0.5005 12
S.map _20 103.25 0.4973 103.21 0.4959 12 104.75 0.501 103.86 0.5013 12
S.map _21 102.25 0.4934 103.21 0.4978 10 104.5 0.4998 104.14 0.5029 12
S.map _22 103.25 0.5017 102.86 0.4987 12 105 0.5029 105.07 0.5017 10
S.map _23 103 0.5012 103.57 0.5014 12 103.75 0.5107 104.36 0.4997 12
S.map _24 103 0.5078 103.71 0.4994 10 103.75 0.5059 104 0.5007 10
S.map _25 102.75 0.5044 103.14 0.5009 10 103.25 0.5005 103.29 0.5021 12

Table 4. Performance comparisons for original and improved s-boxes based on a circle map.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

C.map_1 102.25 0.5098 102.93 0.495 12 104.25 0.5015 102.79 0.5031 10
C.map_2 103.5 0.5027 103.29 0.501 10 105.5 0.5042 103.64 0.5055 10
C.map_3 102.75 0.5029 104.14 0.4902 12 105.75 0.5005 103.07 0.495 10
C.map_4 103.5 0.4915 103.43 0.4973 10 104.25 0.5005 102.86 0.4974 10
C.map_5 102 0.5115 103.57 0.4965 12 102.5 0.5007 104.07 0.501 12
C.map_6 103.25 0.5105 102.93 0.5022 12 104.5 0.4917 103.29 0.4988 10
C.map_7 102.25 0.498 102.93 0.5024 12 104.25 0.502 103.64 0.4983 12
C.map_8 100.75 0.4998 104.07 0.4961 12 105 0.4954 103.71 0.5026 12
C.map_9 102 0.498 103.07 0.5009 12 102.75 0.5066 103.86 0.4977 10
C.map_10 103.25 0.4978 103.36 0.5017 12 103.5 0.5037 103 0.4986 14
C.map_11 103 0.4946 103 0.5034 14 104.25 0.5007 103.5 0.5004 12
C.map_12 103.5 0.4944 103.29 0.5019 12 105.25 0.4976 103.43 0.4946 10
C.map_13 103.5 0.4932 102.71 0.502 10 104 0.5 103.36 0.4957 12
C.map_14 103.25 0.5061 103.21 0.4982 10 105.5 0.5039 103.29 0.4995 10
C.map_15 102 0.4951 104.63 0.5052 10 104.25 0.5029 103.93 0.5015 10
C.map_16 102.25 0.4968 104 0.4957 10 104 0.5037 104.86 0.5044 10
C.map_17 102.75 0.4939 104.07 0.5012 10 104.5 0.4924 103.79 0.4971 12
C.map_18 102.75 0.5083 102 0.4979 10 103 0.5015 104.21 0.4983 10
C.map_19 103 0.51 103 0.5017 10 104.25 0.4978 103.71 0.4976 10
C.map_20 101.5 0.5078 103 0.5011 12 103.25 0.5034 102.5 0.5025 14
C.map_21 101.75 0.501 102.43 0.4977 10 102.25 0.4993 104 0.4992 10
C.map_22 102 0.5027 103 0.4925 10 102.25 0.5112 103.71 0.5014 10
C.map_23 103 0.4976 103.14 0.5002 10 103.75 0.4937 102.57 0.4995 14
C.map_24 102.75 0.4917 104.57 0.4983 10 103.75 0.4956 104.79 0.5004 12
C.map_25 101.75 0.5171 102.86 0.5014 12 104.75 0.5073 102.79 0.4966 10
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Table 5. Performance comparisons for original and improved s-boxes based on a Lorenz system.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

Lorenz_1 101.5 0.4902 103.64 0.4988 10 103.75 0.4973 103.21 0.5041 12
Lorenz _2 103.25 0.5044 103.29 0.5063 12 105 0.5037 102.79 0.4989 12
Lorenz _3 101.75 0.5063 103.36 0.4911 12 103 0.4998 103 0.4985 12
Lorenz _4 102.75 0.5042 103.5 0.5005 12 104.25 0.5027 103.21 0.5013 10
Lorenz _5 103.75 0.5095 104.86 0.4928 12 104.25 0.5024 103 0.5039 12
Lorenz _6 103.5 0.4944 103.79 0.5015 12 105.5 0.4937 104 0.4991 10
Lorenz _7 102.5 0.5027 103.21 0.4959 12 106.25 0.4929 104.07 0.499 14
Lorenz _8 102.25 0.4978 103.14 0.5002 14 103.25 0.4912 103.21 0.5029 12
Lorenz _9 102.25 0.4954 104.21 0.5 12 105.5 0.499 103.07 0.4957 12
Lorenz _10 103.25 0.5029 103.36 0.4959 12 103.75 0.5068 103.43 0.5028 12
Lorenz _11 101.5 0.5002 104.07 0.5018 10 103.75 0.4961 103.07 0.5036 12
Lorenz _12 101.25 0.5085 103.71 0.4981 10 103 0.5015 103.29 5033 12
Lorenz _13 101 0.5029 103.64 0.4989 10 105 0.5039 103.21 0.4993 12
Lorenz _14 102.75 0.4934 103.93 0.4938 12 104.5 0.4988 103.5 0.4992 12
Lorenz _15 103.25 0.4995 103 0.4996 10 103.5 0.4985 103.29 0.5045 10
Lorenz _16 103 0.4961 103.07 0.4987 14 103.25 0.5071 104.07 0.5008 12
Lorenz _17 103.75 0.5093 103.57 0.5015 12 104.25 0.4917 103.86 0.4958 14
Lorenz _18 102.75 0.5068 103.07 0.4994 10 103.25 0.4939 103.29 0.499 12
Lorenz _19 101.25 0.4998 102.79 0.5029 12 103 0.491 104.79 0.5029 10
Lorenz _20 103.25 0.5098 102.79 0.5015 10 104.25 0.499 103.57 0.4973 10
Lorenz _21 103.5 0.4973 103.21 0.4959 12 103.75 0.4971 102.71 0.4985 12
Lorenz _22 103.25 0.5046 103.21 0.4964 12 104.24 0.4988 103.29 0.4986 12
Lorenz _23 102.75 0.5017 103 0.504 12 103.75 0.5007 103.86 0.4991 12
Lorenz _24 103.5 0.5005 103.14 0.5007 10 103.75 0.4978 102.43 0.4964 12
Lorenz _25 102.75 0.5017 104.14 0.5003 12 105.5 0.4993 103.71 0.4993 12

Table 6. Performance comparisons for original and improved s-boxes based on the Labyrinth Rene
Thomas system.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

Thomas_1 101.75 0.5046 103.86 0.5018 10 103.5 0.4966 103.86 0.4997 10
Thomas _2 103.25 0.4993 103.29 0.4995 10 104.5 0.4932 103.07 0.4971 12
Thomas _3 102.5 0.5039 104.43 0.4937 12 104 0.5002 103.5 0.5022 12
Thomas _4 103.5 0.5132 104.07 0.4962 12 104 0.5032 102.93 0.4957 12
Thomas _5 102.5 0.5037 103.64 0.4982 12 104 0.5022 103.86 0.5033 14
Thomas _6 103.25 0.51 103.29 0.499 12 104.25 0.5015 103.36 0.4952 10
Thomas _7 103.25 0.4944 103.36 0.4967 12 104.25 0.5034 104.14 0.5047 10
Thomas _8 103 0.5054 102.93 0.502 12 104.75 0.5137 103.57 0.502 12
Thomas _9 103.25 0.4893 103.43 0.4962 12 105.25 0.5088 103.64 0.5017 12
Thomas _10 102 0.4963 104.07 0.4939 12 105.5 0.5095 103.71 0.4992 10
Thomas _11 103 0.5071 102.79 0.4975 10 104 0.502 103.29 0.496 10
Thomas _12 102 0.4976 104.71 0.4963 12 103 0.5149 103.43 0.5031 12
Thomas _13 102.25 0.5037 103.14 0.4941 10 103.5 0.5083 103.5 0.4999 10
Thomas _14 102.75 0.5 103.36 0.5001 10 103 0.4971 103.14 0.5008 12
Thomas _15 103.25 0.5117 102.29 0.4978 10 104 0.5063 104.07 0.4951 12
Thomas _16 103 0.5017 102.64 0.502 10 104 0.5105 103.86 0.5037 12
Thomas _17 101 0.4961 103.07 0.501 12 104.25 0.4897 103.86 0.498 10
Thomas _18 102.5 0.5056 103.86 0.4994 10 103.5 0.5078 103.57 0.5047 10
Thomas _19 103.5 0.4995 103.14 0.5017 10 103.75 0.4924 103.21 0.4967 14
Thomas _20 103 0.5078 103.5 0.4971 10 104.5 0.5012 104.07 0.5006 12
Thomas _21 103.25 0.5095 104 0.4996 12 104 0.5049 103 0.4983 10
Thomas _22 103 0.5027 104.14 0.5009 10 103.75 0.4998 104.21 0.5017 10
Thomas _23 102.5 0.5088 104 0.5021 12 104 0.5056 104.57 0.4983 10
Thomas _24 102.5 0.5051 104.14 0.4969 12 104.5 0.4998 103.5 0.498 10
Thomas _25 103.25 0.4983 102.86 0.5059 12 103.5 0.4951 103.79 0.5001 10
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Table 7. Performance comparisons for original and improved s-boxes based on a Chua circuit.

Performance Criteria for Original S-box Performance Criteria for Improved S-box

Name.
Average

Nonlinearity
SAC BIC-Non. BIC-SAC XOR

Average
Nonlinearity

SAC BIC-Non. BIC-SAC XOR

Chua_1 103.75 0.4922 103.64 0.4988 14 104.25 0.5051 103.64 0.4999 10
Chua _2 103.75 0.4995 103.29 0.494 12 104.75 0.5078 104.21 0.4943 12
Chua _3 102.25 0.4939 103.79 0.506 12 105.5 0.5063 102.86 0.5001 12
Chua _4 103.25 0.5032 104.57 0.5054 10 105 0.51 103.21 0.5046 10
Chua _5 103.5 0.4954 103 0.5028 12 103.75 0.4956 103.5 0.4948 10
Chua _6 103.5 0.5034 103.29 0.502 12 104.25 0.5027 104 0.4973 10
Chua _7 103 0.5027 103.57 0.5024 12 103.75 0.5051 103.21 0.4995 12
Chua _8 102.5 0.5029 104.29 0.5015 10 104 0.5068 103.21 0.4994 10
Chua _9 102.75 0.5059 103.29 0.5011 10 105.25 0.5034 103.5 0.5009 12

Chua _10 103 0.4956 103.43 0.4958 12 104.5 0.5027 103.57 0.4986 12
Chua _11 102.75 0.5022 103.36 0.4971 12 104.25 0.4968 103.79 0.498 12
Chua _12 103.75 0.5039 103.43 0.4999 10 104.75 0.4976 104.07 0.5018 12
Chua _13 101.75 0.498 104.07 0.4981 12 104.75 0.4985 103.57 0.4993 12
Chua _14 102 0.5 103.64 0.4994 12 103.5 0.5024 104.29 0.502 12
Chua _15 102.5 0.5049 104 0.4994 10 103.5 0.5029 103.36 0.5037 12
Chua _16 103 0.4939 103.29 0.4993 14 104.25 0.5081 102.71 0.5006 10
Chua _17 103 0.5044 103.86 0.502 12 105.5 0.4998 103.57 0.4979 12
Chua _18 103 0.4922 103.64 0.5012 12 103.5 0.4983 102.29 0.4979 12
Chua _19 102.75 0.5034 104.57 0.4998 12 104.25 0.5 103.57 0.4931 10
Chua _20 103.25 0.5056 103.79 0.4992 12 103.5 0.4922 102.5 0.4976 12
Chua _21 102.25 0.5007 103.14 0.5065 12 103.5 0.4956 103.07 0.4956 14
Chua _22 103.25 0.4917 103.36 0.4985 10 105 0.5088 103.5 0.4937 12
Chua _23 101.25 0.4995 103.36 0.493 12 103.75 0.4915 103.29 0.4992 12
Chua _24 103 0.5103 102.79 0.4929 14 104.5 0.5007 103.64 0.5042 10
Chua _25 102.75 0.499 103.57 0.4985 12 103.25 0.5034 103 0.5013 12

The statistical properties of the chaotic data used in the s-box generation process are not included
in this section. In [35], it is shown that the performance criteria of the s-box structures to be generated
using the data which do not show chaotic behavior may be better than the s-box structures generated
from chaotic data. In addition, in the code given in Table 1, the initial condition of the logistic map
used as the chaotic system was chosen randomly. In other words, the proposed method provides
performance improvement, regardless of the statistical properties of the entropy source. This is another
strength of the proposed method.

5. Conclusions

Chaotic systems will provide various opportunities for cryptology sciences. Among these,
a successful design approach is chaos-based s-box designs. However, the fact that chaos-based s-boxes
are worse in terms of performance criteria than designs based on mathematical transformations is
a serious problem. This problem is addressed in the study. The question of whether performance
improvements of chaos-based designs can be achieved using various postprocessing methods was
explored. In the study, the zigzag transformation method, which has a very simple structure, was
used. It was observed that the proposed method provides performance improvements in chaos-based
s-box structures that have performance characteristics that can be evaluated below average. Since the
performance criteria of the chaos-based s-box structures are very close to each other, comparisons were
made using the nonlinearity measurement, which is a criterion that can reflect the difference in the best
way. In a literature review for the s-box, it was observed that the average value for the nonlinearity
value is 103. Therefore, care was taken to ensure that the average nonlinearity value of all the s-box
values used in the analysis was below 103. In line with these conditions, 150 different s-box structures
were generated. The generated s-box structures were obtained from six different chaotic systems
selected from two different chaotic system classes. The reason for using different chaotic systems was
to show that the proposed method can be successful for all chaotic systems. All these s-box structures
are explicitly presented for the examination of other researchers on a web page [39].

If a general evaluation is made, the advantages of the proposed method are listed below.
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• It has been shown that s-box performance criteria can be improved using a
postprocessing algorithm.

• The proposed postprocessing algorithm for performance improvements has a simple and
elegant structure.

• Speed, computational complexity, and user friendliness are strong features of the proposed method.
• Considering these advantages, it can be said that the proposed postprocessing algorithm is a

more convenient method for performance improvement compared to the optimization algorithms
described in the literature to date.

• The proposed method can give successful results, regardless of the chaotic system type and class.
• Only the s-box generator should not be considered as the output of the study. It has been shown

that new designs can be developed that can be used as a counter measurement to prevent side
channel attacks.

Despite these advantages, the proposed postprocessing idea should be based on a more robust
foundation in future studies. Some possible avenues for future studies are listed below.

• Many different postprocessing algorithms can be developed to achieve performance improvements.
An example is the displacement of s-box rows or columns.

• In this study, postprocessing was applied to only one s-box generator. The success of the proposed
method on different s-box generators should be evaluated.

• The postprocessing technique gives successful results for the nonlinearity criteria of 103 and below.
However, the question of how performance improvements can be achieved for designs with better
nonlinearity measurements should be investigated.

• The fact that the performance improvement is independent of the chaotic system type and class
reveals that the proposed method can produce successful outputs from different entropy sources.
Performance improvements will be investigated for s-box structures that will be designed in the
future using different entropy sources.

• The practical applicability of chaos-based s-box structures in the field of information security
should be investigated.

• Applications of the obtained outputs in different fields can be investigated, such as W-MSR-type
resilient algorithms, to cope with attacks in complex networks [40,41].
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Abstract: All kinds of dynamic symmetries in dozy-chaos (quantum-classical) mechanics (Egorov, V.V.
Challenges 2020, 11, 16; Egorov, V.V. Heliyon Physics 2019, 5, e02579), which takes into account the
chaotic dynamics of the joint electron-nuclear motion in the transient state of molecular “quantum”
transitions, are discussed. The reason for the emergence of chaotic dynamics is associated with a
certain new property of electrons, consisting in the provocation of chaos (dozy chaos) in a transient
state, which appears in them as a result of the binding of atoms by electrons into molecules and
condensed matter and which provides the possibility of reorganizing a very heavy nuclear subsystem
as a result of transitions of light electrons. Formally, dozy chaos is introduced into the theory of
molecular “quantum” transitions to eliminate the significant singularity in the transition rates, which
is present in the theory when it goes beyond the Born–Oppenheimer adiabatic approximation and the
Franck–Condon principle. Dozy chaos is introduced by replacing the infinitesimal imaginary addition
in the energy denominator of the full Green’s function of the electron-nuclear system with a finite
value, which is called the dozy-chaos energy γ. The result for the transition-rate constant does not
change when the sign of γ is changed. Other dynamic symmetries appearing in theory are associated
with the emergence of dynamic organization in electronic-vibrational transitions, in particular with
the emergence of an electron-nuclear-reorganization resonance (the so-called Egorov resonance) and
its antisymmetric (chaotic) “twin”, with direct and reverse transitions, as well as with different values
of the electron–phonon interaction in the initial and final states of the system. All these dynamic
symmetries are investigated using the simplest example of quantum-classical mechanics, namely, the
example of quantum-classical mechanics of elementary electron-charge transfers in condensed media.

Keywords: quantum mechanics; molecular quantum transitions; singularity; dozy chaos; dozy-chaos
mechanics; charge transfer; condensed matter; direct and reverse processes; optical band shapes;
Egorov resonance

1. Introduction

A new physical theory—dozy-chaos mechanics or quantum-classical mechanics [1–4]—is designed
to describe elementary physico-chemical processes, taking into account the chaotic dynamics of their
transient state. The simplest version of quantum-classical mechanics is the quantum-classical mechanics
of elementary electron transfers in condensed media [5,6]. This theory arose about twenty years
ago [5,6] and proved its efficiency in explaining the optical spectra of polymethine dyes and their
aggregates [3–11] and other physico-chemical phenomena [2,12–14]. The very first attempts to create
it [15–18], which later turned out to be its particular cases [2,4,5,7–9], were undertaken more than thirty
years ago. Quantum-classical mechanics can be considered as a kind of “generalization” of quantum
mechanics, in which a new property of the electron is revealed [1,2,19]. This new property arises for an
electron when it forms chemical bonds between atoms and consists in the appearance as a result of
this ability to provoke chaos in the vibrational motion of nuclei in the process of molecular quantum
transitions. The theoretical discovery of this unique ability of the electron made it possible to find
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out the reason for the reorganization of the structure of the nuclear subsystem of the molecule and
molecular systems as a result of electronic transitions in them. In other words, the discovery of the
ability of an electron to create chaos in the motion of nuclei in a transient molecular state made it
possible to explain how a light electron manages to shift the equilibrium positions of vibrations of very
heavy nuclei, which occurs as a result of the redistribution of the electron charge during molecular
“quantum” transitions. This chaos is called dozy chaos [7,8,20], since it occurs only in a transient
molecular state and is absent in the initial and final adiabatic molecular states. As a result of the
appearance of dozy chaos, the energy spectrum of electrons and nuclei in the transient state becomes
continuous, which indicates the classical nature of the motion of electrons and nuclei in this state,
while the initial and final states are quantum states that differ sharply from each other in the electronic
and nuclear structure. For this reason, dozy-chaos mechanics can also be called quantum-classical
mechanics [1–3,19], and the electron itself, which creates chaos in the transient state, can be called a
quantum-classical electron [19]. Consequently, the molecular “quantum” transition can be called the
quantum-classical molecular transition.

Formally, dozy chaos arises, in theory, as a result of replacing the infinitesimal imaginary addition
iγ (γ > 0) in the energy denominator of the spectral representation of the full Green’s function of
an electron-nuclear system with a finite value [5–8,20]. This procedure of changing the quantity γ
is forced and is associated with the elimination of an essential singularity that exists in the rates
of molecular transitions if their dynamics are considered beyond the Born–Oppenheimer adiabatic
approximation and the Franck–Condon principle [21–26]. The quantity γ can be considered as the
width of the electron-nuclear energy levels in the transient molecular state, which ensures the exchange
of energy and motion between electrons and nuclei in the transient state. However, as the comparison
of theoretical results with experimental data on the optical spectra of polymethine dyes and their
aggregates shows, the value of γ turns out to be much larger than the value of the vibrational quantum
�ω of nuclei: γ >> �ω [1–9,19,20]. This circumstance points to the fact that the exchange of energy
and motion between electrons and nuclei is so intense that it leads to chaos in their joint motion in
a transient state. This chaos is the dozy chaos that we discussed above, and the quantity γ is called
dozy-chaos energy [7,8,20].

Note that the well-known imaginary, damping gamma terms in the standard theory of
radiation–matter interactions [27,28] are related to removing resonance singularities in perturbation
theory. In quantum-classical mechanics, we are talking about the elimination of an essential singularity
in the rates of electron-nuclear(-vibrational) transitions, which arises when taking into account the
full-fledged electron-nuclear motion in the transient state, that is, when considering the electron-nuclear
motion beyond the Born–Oppenheimer adiabatic approximation and the Franck–Condon principle.
This motion is singular due to the incommensurability of the masses of light electrons and heavy
nuclei and regardless of whether it is resonant or non-resonant. This is the fundamental novelty of our
problem and our approach to its solution, where it becomes necessary to damp the singular dynamics
in molecular systems, in comparison with the standard theory of radiation–matter interactions, where it
becomes necessary to damp only resonances in atomic systems. Moreover, our imaginary gamma term
already exists in the energy denominator of the total electron-nuclear(-vibrational) Green’s function,
by definition, as an infinitely small quantity. To eliminate the singularity in the rates of molecular
transitions, which, as indicated above, exists within the framework of quantum mechanics, this
gamma-term is simply assumed not to be infinitely small but finite, and thus becomes the dozy-chaos
energy γ. For details of the discussion of this issue, see [2–4,7,8].

Dozy chaos is a mix of chaotic motions of the electronic charge, nuclear reorganization, and the
electromagnetic field (dozy-chaos radiation) via which electrons and nuclei interact in the transient state.
Apparently, the main mechanism for the occurrence of dozy chaos is associated with the interaction of
an electron with optical phonons (see more details in Section 3 in [1]).

The emergence of chaos in dynamical systems is usually associated with the presence of any
nonlinear interactions in them. In quantum-classical mechanics [2], the electron–phonon interaction in
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the original Hamiltonian is assumed to be linear (see term
∑
κVκ(r)qκ in Equation (1), Section 2) and

has the same form as in the standard theory of many-phonon transitions [29], on the basis of which it
was built. The condition γ >> �ω arising in the complete Green’s function of the system (see above)
leads to its modification and, therefore, takes the whole theory beyond the scope of quantum mechanics.
Therefore, it presents a challenge to solve the inverse problem, namely, using the modified Green’s
function or/and the general result for the rate constant of quantum-classical transitions (see Section 3),
to find the form of the original non-Hermitian Hamiltonian [1] that corresponds to such a modified
Green function or/and our overall result for the rate constant. In this non-Hermitian Hamiltonian
obtained from the solution of the inverse problem, the electron–phonon interaction can turn out to be
nonlinear [1]. Thus, the successful solution of the inverse problem will make it possible to clarify, in
more detail, the nature of dozy chaos. On the other hand, it is also a challenge to register dozy chaos in
an experiment, for example, using X-ray free-electron lasers [2,20].

The quantum-classical electron that provokes dozy chaos can be considered as some organizing
physical principle in nature [19], and quantum-classical mechanics itself, and in this particular case, the
quantum-classical mechanics of elementary electron transfers in condensed media, can be considered
as the physical theory in which this organizing principle was discovered in science.

In any fundamental physical theory, as a rule, some kind of symmetry laws arises. Dozy-chaos
mechanics, or in other words, quantum-classical mechanics, is no exception. The purpose of this
concept review of the dozy-chaos mechanics of elementary charged particle (electron or proton)
transfers in condensed media is to draw attention to a certain set of symmetries that arise in theory
and are associated with various features and modes of charge-transfer dynamics. We call this set of
symmetries dynamic symmetry in dozy-chaos mechanics.

2. On Dozy-Chaos Mechanics of Elementary Electron Transfers

The Hamiltonian for describing the elementary electron transfers in condensed media has the
form [1–9]:

H = − �2

2m
Δr + V1(r) + V2(r− L) +

∑
κ

Vκ(r)qκ +
1
2

∑
κ

�ωκ

(
q2
κ − ∂

2

∂q2
κ

)
(1)

where 1 and 2 are the indices of the electron donor and acceptor, respectively; m is the effective mass
of the electron; r is the electron’s radius vector; qκ are the real normal phonon coordinates; ωκ are
the eigenfrequencies of normal vibrations; κ is the phonon index;

∑
κ Vκ(r)qκ is the electron–phonon

coupling term. In comparison with the Hamiltonian in the standard theory of many-phonon transitions
(see [29]), in the theory of elementary electron transfers, the Hamiltonian is complicated merely by an
extra electron potential well V2(r− L) set apart from the original well V1(r) by the distance L ≡ |L| [5,6].
The nuclear reorganization energy E associated with the reorganization of the structure of the nuclear
subsystem of the molecular system during electronic transitions in it (see Section 1), in this case, during
elementary electron transfers in condensed matter, is defined as follows [2–4]

E =
1
2

∑
κ

�ωκq̃2
κ (2)

where q̃κ are the shifts of the normal phonon coordinates qκ, which correspond to the shifts in the
equilibrium positions of the nuclei, caused by the presence of an electron in the medium on the donor
1 or on the acceptor 2.

The solution to the problem is sought by Green’s function method:

GH
(
r, r

′
; q, q′; EH

)
=
∑

s

Ψs(r, q) Ψs ∗
(
r
′
, q′

)
EH − Es − iγ

(3)
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where Ψs(r, q) are the eigenfunctions of the total Hamiltonian H of the system—in our case, the
Hamiltonian (1); (r, q) is the set of all electronic and nuclear (phonon) coordinates; Es are the
eigenvalues of H and EH is the exact value of the total energy of the system; iγ (γ > 0) is the
standard, infinitesimally small imaginary additive—the energy denominator vanishes when γ = 0;
the aforementioned singularity in the rates of “quantum” transitions is eliminated by replacing γ
in the energy denominator of Green’s function (3) with a finite quantity [2–9]. The general formula
for the rate constant of electron photo-transfers is obtained using the technique first described by
Egorov [15,16], which generalizes the generating polynomial technique of Krivoglaz and Pekar [30,31]
in the theory of many-phonon processes [29]; see the review article [2] for details.

3. General Formula for the Rate Constant of Electron Photo-Transfers

The general result for the rate constant (optical absorption) K is expressed in terms of Green’s
function of the elementary electron-charge transfers and two generating functions (see [2,5]):

K ∝ ∞∑
ω1=−∞

∞∑
ω′1=−∞

GE(ω1, L)GE ∗
(
ω′1, L

)
× 1

(2πi)3

∮
dx

xω1+1

∮ dy

yω
′
1+1

∮
dz

zω12+1 Q(n1; x, y, z)S(n1; x, y, z)
(4)

where the contours encircle the points x = 0, y = 0, and z = 0, correspondingly. Green’s function
of the elementary electron-charge transfers GE(ω1, L) and the generating functions Q(n1; x, y, z) and
S(n1; x, y, z) can be found in [2,5], where n1 ≡ nκ1,l1 (Planck’s distribution function) is as follows

nκ1,l1 =
[
exp

(
�ωκ,l/kBT

)
− 1

]−1
(5)

The energy �Ω of the absorbed photon and the heat energy �ω12 > 0 are related by the law of
conservation of energy:

�Ω = J1 − J2 + �ω12 (6)

J1 is the electron binding energy on the donor 1 and J2 is the electron-binding energy on the
acceptor 2. The heat energy �ω12 < 0 corresponds to the inverse processes relative to optical absorption,
i.e., to luminescence [3,29] (see Section 10). The wavelength λ, indicated on the x-axis in the figures
below, corresponds to the frequency Ω in Equation (6) by the standard formula λ = 2πc/Ωnrefr (c
and nrefr are the speed of light in vacuum and the refractive index, respectively). The conservation
law (Equation (6)) corresponds to the entire shape of the optical band as a whole: by varying the heat
energy �ω12, we vary the frequency of light Ω and determine one or another part of the absorption
band [2–9,29].

4. The Analytical Result for Optical Absorption Band Shapes and Its Invariance with Respect to
the Change in the Sign of Dozy-Chaos Energy γ

From the general result of dozy-chaos mechanics of elementary electron transfers, Equation (4), the
expression for the light absorption factor K (the optical extinction coefficient ε [2–9,29] is proportional to
K), has been obtained. The obtained expression for K in the framework of the Einstein model of nuclear
vibrations in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω), although
it is rather complex, is fully expressed in elementary functions and has the following form [2,5,6]:

K = K0 exp W (7)

W = 1
2 ln

(ωτ sinh βT
4π cosh t

)
− 2
ωτ

(
coth βT − cosh t

sinh βT

)
+(βT − t) 1

ωτΘ − sinh βT
4ωτΘ2cosh t

(8)
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1 <<
1
ωτΘ

≤ 2cosh t
ωτ sinh βT

(9)

where βT ≡ �ω/2kBT,

t =
ωτe

θ

⎡⎢⎢⎢⎢⎣AC + BD
A2 + B2 +

2Θ(Θ − 1)

(Θ − 1)2 + (Θ/θ0)
2 +

θ0
2

θ02 + 1

⎤⎥⎥⎥⎥⎦ (10)

|θ0| >> E
2J1

(11)

θ ≡ τe

τ
=

L E

�
√

2J1/m
, Θ ≡ τ

′
τ

=
E

�ω12
, θ0 ≡ τ0

τ
=

E
γ

(12)

τe =
L√

2J1/m
, τ =

�

E
, τ′ = 1

ω12
, τ0 =

�

γ
(13)

Here, we use the notation

A = cos
(
θ
θ0

)
+ Λ +

(
1
θ0

)2

N (14)

B = sin
(
θ
θ0

)
+

1
θ0

M (15)

C = θ

[
cos

(
θ
θ0

)
− 1− ξ2

2θ0
sin

(
θ
θ0

)]
+ M (16)

D = θ

[
sin

(
θ
θ0

)
+

1− ξ2

2θ0
cos

(
θ
θ0

)]
− 2
θ0

N (17)

and ξ ≡
(
1− E

J1

)1/2

(J1 > E by definition) (18)

and where we finally have

Λ = −(Θ − 1)2E +

[
(Θ − 1)θ
ρ

+ Θ(Θ − 2)
]
E

1−ρ
1−ξ (19)

M = 2Θ(Θ − 1)E−
[
(2Θ − 1)θ
ρ

+ 2Θ(Θ − 1)
]
E

1−ρ
1−ξ (20)

N = Θ
[
ΘE−

(
θ
ρ
+ Θ

)
E

1−ρ
1−ξ

]
(21)

E ≡ exp
( 2θ

1 + ξ

)
, ρ ≡

√
ξ 2 +

1− ξ 2

Θ
(22)

The factor K0 becomes
K0 = Ke

0Kp
0 (23)

where

Ke
0 =

2τ3 J1

m

(
A2 + B2

)
ρ3Θ4ξ

θ2
[
(Θ − 1)2 +

(
Θ
θ0

)2]2[
1 +

(
1
θ0

)2] ·η (24)

and η ≡ exp
(
− 4θ

1− ξ2

)
(25)
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and

Kp
0 =

1
ωτ

[
1 +

sinh(βT − 2t)
sinh βT

]2
+

cosh(βT − 2t)
sinh βT

(26)

Inequalities (9) and (11) are not any significant restrictions on the parameters of the system and
associated with items of routine approximations made in the calculations (see [2]). The time scales τe,
τ, and τ0, given by Equation (13), control the dynamics of elementary electron-transfer processes. They
are discussed in Section 9. The time scale τ′ (see Equation (13)) together with the law of conservation
of energy (6) and the other parameters of a donor–acceptor system control the dynamics of producing
the shape of optical bands [2,4].

Let us consider further the issues related to the change in the sign of the dozy-chaos energy γ.
On the one hand, in standard quantum mechanics, where the value of γ is infinitesimal and where
this value is introduced formally in order to avoid zero in the energy denominator of the spectral
representation of Green’s function (see Equation (3)), the sign of γ can be either positive or negative.
On the other hand, in quantum-classical mechanics, although the value of γ becomes a finite value, the
choice of its sign turns out to be insignificant here too. It is easy to show, for example, that our result
for the light absorption factor K, given by Equations (6)–(26), is an even function of γ. For this, it is
sufficient to consider those equations that include the dimensionless quantity θ0 = E

γ (see Equation
(12)), in which the reorganization energy E is positive by definition (see Equation (2)). So, it is easy to
see that the quantity t = t(Θ,θ0) (see Equation (10)) is an even function of θ0: in the nontrivial term
AC + BD, the cofactors A and C are even functions of θ0, and the cofactors B and D are odd functions
of θ0. Further, the factor Ke

0 (see Equation (24)) is obviously an even function of θ0.
The invariance with respect to the change in the sign of the dozy-chaos energy γ is consistent with

the physical case that both the virtual acts of transformation of electron movements and energies into
nuclear reorganization movements and energies and the reverse acts occur in the transient dozy-chaos
state [4,7–9]. For definiteness, we set γ > 0 here, there, and everywhere.

5. Potential Box with a Movable Wall. Optical Absorption Band Shapes as Dependent on the
Dozy-Chaos Energy γ: From Symmetry to Asymmetry

The reason for the appearance of a singularity in the rates of molecular “quantum” transitions
can be seen already from the example of a one-dimensional potential box with a movable wall [1].
The movable wall corresponds to the reorganization of the nuclear subsystem of the molecular
system. As indicated above (Section 1), within the framework of quantum mechanics, due to the
incommensurability of the masses of electrons and nuclei, the dynamics of nuclear reorganization
is singular. Accordingly, if the movable wall of the potential box moves without friction, then this
corresponds to an infinitely fast expansion of the potential box during the transition of an electron from
the ground state to the first excited state, which leads to a singular “collapse” of their energy levels.

The singularity can be eliminated by assuming that the wall moves with friction [1]. In the
exact theory, this assumption corresponds to the introduction of transient chaos into the dynamics of
reorganization of the electron-nuclear motion, that is, the introduction of dozy chaos.

In Figure 1, optical absorption band shapes (for kBT > �ωκ/2), as dependent on the dozy-chaos
energy γ, are computed from Equations (6)–(26). At high energies γ, the band shape is close to
symmetric and is Gaussian-like (see Section 6). With a decrease in the value of γ, in the red region of the
spectrum, a peak appears against the background of a Gaussian-like band, which, with decreasing γ,
shifts more and more to the red region of the spectrum and becomes more and more pronounced. Thus,
with a decrease in the value of the dozy-chaos energy γ, the band shape transforms from symmetric
to asymmetric.
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Figure 1. Singularity in the rate of molecular quantum transitions: the optical absorption band shape
dependent on the dozy chaos available to a given quantum transition; the band shape with the strongly
pronounced peak (J-band) corresponds to the least dozy chaos [9]. The dozy-chaos-dependent optical
absorption band is displaced to the red spectral region and narrowed. The position, the intensity, and
the width of the optical absorption band are determined by the ratio between the dozy-chaos energy γ
and the reorganization energy E (see Section 4). The smaller the value of γ is, the higher the degree of
organization of the molecular “quantum” transition and the higher the intensity and lower the width
of the optical band. The position of the wing maximum is determined by the energy E, whereas the
position of the peak is determined by the energy γ [9].

6. Passage to the Limit to the Standard Theory of Many-Phonon Transitions and the Symmetry of
the Standard Result. The Reason for the Asymmetry of the Optical Absorption Band Shape in
Dozy-Chaos Mechanics

The limit passage from expressions (6)–(26) for the optical absorption K to the standard result in
the theory of many-phonon transitions [29] can be realized by letting the dozy-chaos energy γ tend to
infinity (θ0 = E/γ→ 0 according to Equation (12)) in Equation (10) for t (see Figure 3 in [2]) and to
zero (θ0 →∞ ) in Equation (24) for Ke

0 (see Equation (162) in [2]). An equation of the standard type for
the optical absorption K (for kBT > �ωκ/2) is thus obtained [2,5]:

K =
a2�√

4πλrkBT
exp

(
−2L

a

)
exp

⎡⎢⎢⎢⎢⎣− (�ω12 − λr)
2

4λrkBT

⎤⎥⎥⎥⎥⎦ (27)

where a ≡ �/
√

2mJ1 andλr ≡ 2E. A formula of this type was obtained by Markus in his electron-transfer
model [32–37] and is often called the Marcus formula, and the energy λr is called the reorganization
energy of Marcus. Similar and more general formulas were previously obtained in the theory of
many-phonon transitions (see [29,38]) for optical transitions by Huang and Rhys [39] and Pekar [40–42]
(see also Lax [43] and Krivoglaz and Pekar [30]), and for nonradiative transitions, by Huang and
Rhys [39] and Krivoglaz [31].

The result in the standard theory of many-phonon transitions, given by Equation (27) and
corresponding to high (i.e., room) temperatures, is a symmetric Gaussian function for the shape of
the optical absorption band. It completely neglects the dynamics of the transient molecular state.
This result corresponds to the high values of the dozy-chaos energy γ in dozy-chaos mechanics (see
Figure 1). Physically, large values of γ in dozy-chaos mechanics correspond to a pronounced chaos in
the transient state and, hence, a weak organization of the quantum-classical molecular transition (see
Section 1). With a decrease in the dozy-chaos energy γ, the transient state becomes less chaotic and the
organization of the quantum-classical transition increases, which is manifested in the appearance of a
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narrow optical absorption peak in the red spectral region and a strong asymmetry of the absorption
band shape (see Figure 1).

We also note that the half-width of the Gaussian function for the shape of the optical absorption
band (Equation (27))

w1/2 = 2
√

2 ln 2
√

2λrkBT (28)

is determined both by the individual properties of the “donor-acceptor +medium” system, which are
expressed in the reorganization energy λr, and by the properties of an ensemble of these systems, which
are expressed in temperature T. In other words, even within the framework of the well-known standard
theory of many-phonon transitions [29,38], the effects of homogeneous and inhomogeneous broadening
in the optical band cannot be separated. The introduction into the theory of a new “homogeneous effect”
in the form of the dozy-chaos energy γ in Green’s function of the system (Equation (3)) further confuses
homogeneous and inhomogeneous effects in the shape of an optical band, greatly complicating the
analytical result for it (cf. Equation (27) and Equations (6)–(26)). A discussion of the physical meaning
of each of the terms included in this complex analytical result (Equations (6)–(26)) can be found in [2,4].
Our complex result gives a greater variety of optical band shapes (see, e.g., Figure 1) compared to the
two band shapes, Lorentzian and Gaussian, which are the result of homogeneous and inhomogeneous
effects known from the standard quantum theory of spectral line broadening. These two differences can
only be understood in an open quantum system framework where the quantum system is coupled to
an external classical bath. In contrast to the standard quantum theory, where the dynamics of quantum
transitions are not considered, in quantum-classical mechanics, this bath, which is already quantum
here, enters the entire closed quantum “donor-acceptor +medium” system (see the last, phonon term
in the Hamiltonian (1)) and becomes classical only in a dynamic (chaotic) transient state (see Green’s
function (3) with γ >> �ω).

7. The Egorov Resonance

One of the main results of quantum-classical mechanics is a dynamic electron-nuclear-
reorganization resonance (the so-called transferon resonance) [5,6] (see also [2]) or, according to [10],
the Egorov resonance [1,10]

(2τe)
−1 = τ−1 (29)

where τe is the characteristic time of motion of the electron in the donor–acceptor system and τ is the
characteristic time of motion of the reorganization of nuclear vibrations in the environment. These
times are given by the following equations

τe =
L√

2J1/m
(30)

where L is the distance between the donor and the acceptor of an electron (see Section 2; L is equal to
the length of the polymethine chain—the main optical chromophore of polymethine dyes, (see Section
7 in [1]) [3–9]; J1 is the binding energy of the electron on the donor 1 (see Section 3; electronic energy of
the ground state of the dye) [3–9], and

τ =
�

E
(31)

where E is the energy of reorganization of the nuclear vibrations in the medium (see Section 2, Equation
(2)). Equations (30) and (31) are a part of Equation (13) (see Section 4).

8. Implementation of the Egorov Resonance in the Quasi-Symmetric Serious of Optical Band
Shapes of a Representative Polymethine Dye

Experimentally, the dynamic electron-nuclear-reorganization resonance (the Egorov resonance,
see Section 7) manifests itself, for example, in polymethine dyes [3–9], namely, in the resonance nature
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of the dependence of the shape of the optical absorption band on the length of the polymethine chain L
(see Figure 2). The optical band with n = 3 corresponds to the Egorov resonance or is close to it.

Figure 2. Experimental [44,45] (a) and theoretical [6] (b) monomers’ optical absorption spectra,
dependent on the length of the polymethine chain L = 2(n + 2)d , where d are certain roughly
equal bond lengths in the chain (thiapolymethinecyanine in methanol at room temperature; ε is the
extinction coefficient) [4,9]. The optical absorption band with n = 3 corresponds to the dynamic
electron-nuclear-reorganization resonance (the Egorov resonance, see Section 7) or is close to it.
(Original citation)—Reproduced by permission of The Royal Society of Chemistry. For the short chains
(n = 0, 1, 2, 3), the tunnel effects, associated with the quantity η in Equation (25), can be neglected (η = 1).
For the long chains (n = 4, 5), the tunnel effects are small but they must be taken into account (η < 1).
The absorption bands are computed by Equations (6)-(26) with η ≤ 1 instead of the Gamow tunnel factor
(Equation (25)) when fitting them to the experimental data of Brooker and co-workers [44] (a) in terms
of wavelength λmax, extinction εmax, and half-width w1/2 with a high degree of accuracy. The following
parameters of the “dye + environment” system are used [6]: m = me, where me is the electron mass; d =

0.14 nm; ω = 5× 1013 s−1; nrefr = 1.33; for n = 0, 1, 2, 3, 4, 5, one has J1 = (5.63, 5.40, 4.25, 3.90, 3.74, 3.40)
eV, J1 − J2 = (1.71, 1.31, 1.11, 0.90, 0.74, 0.40) eV, E = (0.245, 0.248, 0.256, 0.275, 0.297, 0.496) eV, and
γ = (0.402, 0.205, 0.139, 0.120, 0.129, 0.131) eV, respectively; for n = 0, 1, 2, 3, factor η = 1, and for
n = 4, 5, factor η = 0.55, 0.1, respectively; T = 298 K.

To fit the theoretical result for the optical bands, which is given by Equations (6)–(26) to the
corresponding experimental data (Figure 2a), we need estimated numerical values for the ground-state
energies of the dye monomers, J1M, and also for the energy gaps between their ground and excited states,
J1M − J2M. These estimates follow from literature data [5,46–49]: J1M � 5 eV and J1M − J2M � 1 eV. In
addition, we need estimated numerical values for the reorganization energy of the nuclear environment
of dye monomers, EM. The estimate of EM is found from the Egorov resonance (see Equations (29)–(31))

from the length of the optical chromophore [5,6]:
√

2J1M/m
2LM

= EM
�

, where LM is the length of the optical
chromophore of the dye monomers (LM = 10d, d = 0.14 nm; see the caption to Figure 2).

Under resonance conditions (Equation (29)), the motion of the reorganization of the nuclei of the
medium significantly contributes to the electronic transition in the optical π-electron chromophore—the
polymethine chain with n = 3 as compared to the electronic transition in the optical π-electron
chromophores of polymethine dyes with n � 3. As can be seen from the numerical data in the caption to
Figure 2, the series of the dozy-chaos energies γ has a minimum at n = 3. Therefore, the appearance of
the resonant band corresponding to n = 3 can also be interpreted as the transfer of chaos (dozy chaos)
from the peak of a band into its wing(s) by a chaotic motion of the quantum-classical π-electronic state
of the polymethine chain embedded in the medium as a result of the transition from “non-resonant”
chains with n � 3 to the “resonant” chain with n = 3.
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Thus, the presence of symmetry in the shape of an optical band at high (room) temperatures
is associated with a primitive, Franck–Condon picture of the dynamics of molecular “quantum”
transitions. The loss of this symmetry and the appearance of a peak against the background of a wide
band wing are related, as already noted in Section 6, to the effect of self-organization of transition
dynamics in dozy-chaos mechanics, which is expressed, in particular, in the “pumping” of dozy chaos
from one part of the optical band to another part (from the peak region to the wing). Therefore, the
series for the shape of the optical bands of a representative polymethine dye, thiapolymethinecyanine,
depending on the length of its polymethine chain, has a quasi-symmetric character with respect to the
Egorov resonance (see Figure 2), which corresponds to the most organized quantum-classical transition.

9. The Egorov Resonance and Its “Antisymmetric Twin”

The five principal parameters of the problem, viz. electron mass m, electron-donor binding energy
J1 ≡ J, distance between the donor and the acceptor L, environmental reorganization energy E, and
dozy-chaos energy γ, may be combined into three quantities:

τe =
L√

2J/m
, τ =

�

E
, and τ0 =

�

γ
(32)

having a time dimension (cf. Equations (13)) and representing two physically meaningful resonances [6]:

(2τe)
−1 = τ−1 and (2τe)

−1 = τ−1
0 (33)

The former resonance is between the extended electron motion and the ordered constituent
of the environmental nuclear reorganization motion, i.e., it is the Egorov resonance (cf. Equations
(29)–(31)). The latter is between the electron motion and, conversely, the chaotic constituent of nuclear
reorganization. Since the dozy-chaos energy γ can be considered, in a sense, as the imaginary part
of a complex reorganization energy in which the reorganization energy E is its real part [9], then this
second resonance can be considered as some antisymmetric twin with respect to the Egorov resonance.
Both of these resonances can be regarded as the simplest dynamic invariants for the transient state.
The dynamic resonance-invariants are alternatives to the Born–Oppenheimer adiabatic invariants
(potential energy surfaces). In other words, these two resonances are the simplest manifestation of the
relationship between electron and nuclear movements in the transient state.

Details of the transient-state-dynamics interpretation based on the Heisenberg uncertainty
relation can be found in [6–8]. In particular, according to this interpretation, in the simplest cases,
elementary electron transfers can be considered as a motion of a free electron–phonon quasiparticle,
the so-called transferon, corresponding to the Egorov resonance, or, alternatively, as a motion of a free
electron–phonon antiquasiparticle, the so-called dissipon, corresponding to the antisymmetric twin of
the Egorov resonance.

10. Symmetry between Optical Absorption and Luminescence in the Standard Theory and Its
Violation in Dozy-Chaos Mechanics as a Consequence of the Dynamic Organization of
Quantum-Classical Transitions

10.1. Luminescence and Absorption Spectra. Their Mirror Symmetry

According to the standard theory of many-phonon processes [29], which ignores the dynamics of
the transient state, the transition from absorption spectra to luminescence spectra is carried out by
changing the sign before the heat energy �ω12. Then, the luminescence and absorption spectra appear
to be mirror-symmetric with respect to the “pure electronic” transition line �Ω = J1 − J2. If we apply
this standard rule to the shapes of optical absorption bands obtained according to quantum-classical
mechanics from Equations (6)–(26) and shown in Figure 1, then it can be seen that with decreasing
chaos (with decreasing the dozy-chaos energy γ), which corresponds to improving the dynamic
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self-organization of the “quantum” transition, the luminescence and absorption bands narrow and
shift towards each other and towards the “pure electronic” transition line (see Figure 1 in [3]). In other
words, with the improvement of the dynamic self-organization of quantum-classical transitions, the
corresponding luminescence and absorption bands are narrowed and their Stokes shift is reduced. A
detailed discussion of the physics related to the nature of the change in the position and shape of the
optical bands with decreasing quantity of γ can be found in [4,9].

10.2. Optical Spectra, Nature of the Small Stokes Shift, and Dynamic Asymmetry of Luminescence and
Absorption

A striking example of the considered molecular “quantum” transitions, with the dynamics of their
transient states taken into account, are the “quantum” transitions in the basic optical chromophore of
J-aggregates of polymethine dyes embedded in a solvent—in the system “J-aggregate+ environment” [4–
8,10,11].

Figure 3 compares the results of the experiment [50] with the result of fitting them to the theoretical
result (6)–(26) for optical absorption and the same theoretical result, in which the sign in the heat energy
�ω12 is changed to negative (Section 10.1), for luminescence (fluorescence). In the experiment, a very
small Stokes shift was obtained for the J-band [50]. Therefore, we are forced to assume that the energy
gap between the ground and excited electron states for fluorescence is greater than this gap for optical
absorption [3]. This fact means that at the very initial stage of spontaneous emission, the binding
energy of the electron in the excited state of the molecule, before the electron creates a photon, decreases
markedly. This effect can be associated with the spontaneous loosening of the excited electronic state
immediately before the act of production of a photon by an electron during spontaneous emission [3].
(For polymethine dyes and J-aggregates, the universal effect of spontaneous dynamic loosening is
abnormally strong due to the very long π-electron systems in which the quantum-classical transitions
under consideration occur [3].) Apparently, nothing of the kind occurs with optical absorption. In
other words, with respect to the loosening effect, the processes of optical absorption and luminescence
are asymmetric.

Figure 3. Experimental [50] (a) and theoretical [3] (b) absorption and fluorescence spectra of J-aggregates.
In the analytical result for the shape of the optical bands (Equations (6)–(26)), the transition from
absorption spectrum to fluorescence spectrum is carried out by changing the sign before the heat
energy �ω12. See details in the Egorov, Vladimir (2018), Mendeley Data, V2, https://doi.org/10.17632/
h4g2yctmvg.2.

10.3. Luminescence and Absorption Spectra. Their Mirror Asymmetry

It can be seen from Figure 3 that when the sign changes only in the heat energy �ω12, the
theoretical absorption and luminescence spectra turn out to be symmetric with respect to each other
(see Section 10.1), while the experiment shows their mirror asymmetry. According to quantum-classical
mechanics [3], when passing from optical absorption to luminescence, the sign should be changed not
only in the heat energy �ω12 but also in the quantity L (the distance between the donor and acceptor in
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the elementary electron-charge transfers). The change in the sign of L corresponds physically to the
reverse motion in space of the electron charge in the luminescence process relative to the absorption
process. After that, the luminescence and absorption spectra cease to be mirror-symmetric with respect
to the “pure electronic” transition line �Ω = J1 − J2 and, as we can see from Figure 4, the theory
reproduces well the asymmetry of the absorption and luminescence spectra, which is observed in the
experiment. This mirror asymmetry of the spectra is a consequence of taking the chaotic dynamics of
the transient state of quantum-classical transitions into account, and it manifests itself under conditions
of fairly weak dozy chaos, that is, under conditions of a sufficiently high degree of self-organization of
quantum-classical transitions.

Figure 4. (a) The same as in Figure 3a. (b) Theoretical absorption and fluorescence spectra [3], fitted
to the experimental data [50] (see (a)) in the J-aggregates. In the analytical result for the shape of the
optical bands (Equations (6)–(26)), the transition from absorption spectrum to fluorescence spectrum
is carried out by changing the sign before the heat energy �ω12 and before the length of the optical
chromophore (electron-charge-transfer distance) L as well. See details in the Egorov, Vladimir (2018),
Mendeley Data, V2, https://doi.org/10.17632/h4g2yctmvg.2.

11. A Simplified Version of Dozy-Chaos Mechanics—Nonradiative Transitions

All of the results of the optical spectra match, generally, weak dozy chaos (γ << E). Strong dozy
chaos (γ ≥ E) leads to the elucidation of important patterns in the reactions of proton transfers [12,51]
and comparatively fresh temperature-dependent effects on electron transfers in Langmuir–Blodgett
films [13,52]. In the case of strong dozy chaos, the dynamics of quantum-classical transitions become
weakly dependent on dozy chaos, and the electronic component of the complete electron-nuclear
amplitude of transitions can be fitted by the Gamow tunnel exponential, dependent on the transient
phonon environment. This elementary method permit us to evade the consideration of the imaginary
additive iγ in the spectral representation of the complete Green’s function and to word the physical
nature of the transient state, not in the concept of dozy chaos but in the concept of a large number of
tunnel and over-barrier energy states providing the “quantum” transition of an elementary charged
particle. This method was worked out [16] long before the development of quantum-classical
(dozy-chaos) mechanics [2–9], and now we can say that the concept of a large number of tunnel and
over-barrier states is a simplified version of the concept of dozy chaos.

The general result for the rate constant in the simplified version of dozy-chaos mechanics
K is expressed in terms of the the Gamow tunnel exponential, dependent on the transient
phonon-environment-energy �ω1 and one generating function [15,16]:

K ∝
∞∑

ω1=−∞

∞∑
ω′1=−∞

G0(ω1, L)G0 ∗
(
ω′1, L

)
× 1

(2πi)3

∮
dx

xω1+1

∮
dy

yω
′
1+1

∮
dz

zω12+1
S(n1; x, y, z) (34)
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where the contours encircle the points x = 0, y = 0, and z = 0, correspondingly (cf. Equation (4)). The
Gamow tunnel exponential is

G0 = G0(α, L) = exp(−αL) (35)

where the function α = α(ω1) is given by the following formula:

α ≡ α(ω1) = [2m(J + �ω1)]
1/2/� (36)

(here, there, and everywhere, J ≡ J1). The generating function is as follows:

S(n1; x, y, z) = exp
{
−∑
κ

q̃2
κ(2nκ1 + 1) + 1

2
∑
κ

q̃2
κ[(nκ1 + 1)(xωκyωκ + 1)zωκ

+nκ1(x−ωκ y−ωκ + 1)z−ωk ]
} (37)

The result (34) applies to both optical and nonradiative processes. In the case of optical processes,
the heat energy �ω12 is determined from the law of conservation of energy (6) (�ω12 > 0—absorption
and �ω12 < 0—luminescence), where the frequency Ω ≡ 0 in the cases of nonradiative endothermic
and exothermic processes:

�ω12 = J2 − J1 < 0 (38)

and
�ω12 = J1 − J2 ≡ −�ω21 > 0 (39)

From the general result for the rate constant in the simplified version of dozy-chaos mechanics,
Equations (34)–(39), in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω),
the simple expression for the rate constant K has been obtained [16]:

K ∝ exp
{
− 2L

a − 2E
�ω

[
coth �ω

2kBT − cosh t
sinh(�ω/2kBT)

]
+
(

�ω
2kBT − t

)
ω12
ω − �ω sinh(�ω/2kBT)

4E cosh t

(
ω12
ω

)2} (40)

(cf. Equations (7) and (8)), where exp
(
− 2L

a

)
is the Gamow exponential (cf. Equation (27)) and

t =
ω L√
2J/m

(41)

(cf. Equations (10) and (13)). If, as in the case of the complete theory for optical processes (Sections 2–4),
we assume that the expression for the rate constant of the reverse process Krev is obtained by changing
the sign in the heat energy �ω12 and in the donor–acceptor distance L (see Sections 10.1 and 10.3) in
corresponding expression for the rate constant of the direct process K in the considered simplified
version of dozy-chaos mechanics, then, applying this position to Equation (40), we obtain

Krev

K
= exp

(
−�ω12

kBT

)
exp

(4L
a

)
≡ K−1

eq exp
(4L

a

)
(42)

where Keq exp
(
− 4L

a

)
is the equilibrium constant of charged-particle-transfer reactions in the simplified

version of dozy-chaos mechanics. In the limit L→ 0 , we obtain from Equation (42) the well-known
detailed balance relationship in statistical physics and in the standard theory of many-phonon
transitions [29,31].
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12. The Simplified Version of Dozy-Chaos Mechanics: Proton-Transfer Reactions. On Symmetry
in the Brönsted Relationship

Grounded on the simplified version of dozy-chaos mechanics [16] (Section 11), in 1990, a theoretical
description of the basic experimental patterns in the Brönsted relationship [51] for the reactions of
proton transfer (acid-base catalysis) was given [12]. The Brönsted relationship was found by Brönsted
and Pedersen in 1924 (see [51]). The theory in [16] is immediately appropriate to the explanation of
electron transfers. To explain the reactions of transfers of heavy charged particles (proton transfers),
the result of thermic fluctuations of the potential barrier transparence must be considered because of
fluctuations in the barrier width. In contrast to the elementary proton transfer, the electron-transfer
process is insensitive to small fluctuations in the barrier width due to the large size of the electronic
wave function in the initial and final states. The analytical formulas for the proton-transfer rate
constants are obtained. In acid catalysis, the empirical Brönsted relationship is

lgK(acid) = α lgKemp
eq + a (43)

where K(acid) is the rate constant, Kemp
eq is the empirical equilibrium constant, and α and a are constants.

In base catalysis, the empirical Brönsted relationship is

lg K(base) = β lg Kemp
eq + b (44)

The theoretically-obtained Brönsted coefficients α and β (the Einstein model of nuclear vibrations
ωκ = constant ≡ ω) for direct (acid catalysis) and inverse (base catalysis) reactions [12]

α =
1
2
+

L kBT

�(2J/m)1/2
−
[
1− E sinh t

2J sinh(�ω/2kBT)

]
2m(kBT)2

�2γb
(45)

and

β =
1
2
− L kBT

�(2J/m)1/2
+

[
1− E sinh t

2J sinh(�ω/2kBT)

]
2m(kBT)2

�2γb
(46)

(t is given by Equation (41) and γb is barrier rigidity) are symmetric relative to 1
2 and meet the generally

known empirical equality [53,54]
α+ β = 1 (47)

(which directly follows from the Brönsted relationships (43) and (44)).

13. The Simplified Version of Dozy-Chaos Mechanics: Symmetrization of the Amplitude and
Rate Constant of the Transition for the Case of Different Electron–Phonon Interactions on the
Donor and Acceptor

Until now, both in the case of the complete theory for optical processes (Sections 2–4) and in the
case of its simplified version for nonradiative processes (Section 11), we have considered the case
of the same electron–phonon interaction when a light charged particle, in particular an electron, is
localized on the donor or on the acceptor. In other words, it was assumed that the reorganization
energy E ≡ E1 = E2 (Equation (2)). For example, “quantum” transitions and the corresponding
shapes of optical bands in polymethine dyes are well described by the case of the same value of the
electron–phonon interaction on the donor and on the acceptor, because charge alternation occurs in the
polymethine chain upon optical excitation [1,3–6]. In this section, we will briefly consider the case
of different electron–phonon interactions when an electron is localized on a donor or acceptor. This
corresponds to different magnitude shifts of the normal phonon coordinates q̃κ1 and q̃κ2 (in the case of
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the same interaction, q̃κ ≡ q̃κ1 = −q̃κ2 [2]) and an obvious redefinition of the reorganization energy E
(Equation (2)):

E1,2 =
1
2

∑
κ

�ωκq̃2
κ1,2 (48)

where E1 � E2. For example, in the case of nonradiative processes, the change in sign in the heat
energy �ω12 (Equations (38) and (39)) and in the donor–acceptor distance L ≡ |L ≡ L12| (Equation (1)) is
associated with the permutation of indices 1 and 2 in the reverse order. The assumption E1 � E2 leads
to asymmetry with respect to the permutation of indices 1 and 2 in the expression for the rate constant
of transitions and the loss of connection between forward and reverse processes, expressed in Equation
(42). To restore this connection, it is necessary to symmetrize the expression for the amplitude and rate
constant of electron transfers with respect to different values of the electron–phonon interaction at the
donor and at the acceptor, which leads to the case of reorganization energies E1 � E2.

The symmetrization method proposed in [14,17,18] consists of the fact that, in addition to the
transition amplitude [2–4]

A12 =
〈
Ψ2(r− L, q)

∣∣∣V∣∣∣Ψ1(r, q)
〉

(49)

which, in view of taking the wave function Ψ2 in the Born–Oppenheimer adiabatic approximation
Ψ2 = ΨBO

2 and taking into account the entire dynamics of the transition only in the wave function
Ψ1 = G Ṽ ΨBO

1 (G is Green’s function of the Hamiltonian H − Ṽ, Ṽ ≡ ∑
κ

Vκ(r)(qκ − q̃κ) [2–4]), can

be called the amplitude of the transition on the acceptor Aa
12, we introduce into the theory also

the amplitude
Ad

12 = Aa
21 (50)

in which, on the contrary, the wave function Ψ1 is taken in the adiabatic approximation Ψ1 = ΨBO
1 , and

the entire dynamics of the transition are taken into account only in the wave function Ψ2 = GṼ ΨBO
2 .

This new amplitude Ad
12 can be called the amplitude of the transition on the donor. Then, the half-sum

of these two amplitudes is taken as the total transition amplitude:

A12 =
Ad

12 + Aa
12

2
= A21 (51)

Since the symmetrization is carried out only with respect to the electron–phonon interaction, in
Equation (51), the permutation of indices 1 and 2 in the quantity L12 is not performed and the sign of
L ≡ |L| ≡ |L12| does not change.

Using Equation (51), for the case of different electron–phonon interactions on the donor and
acceptor in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω), the simple
analytical expression for the rate constant has been obtained [17,18]:

K ∝ 1
2

⎡⎢⎢⎢⎢⎣(E1e−t+E2et

E1et+E2e−t

)ω12
2ω

+
(

E1e−t+E2et

E1et+E2e−t

)− ω12
2ω
⎤⎥⎥⎥⎥⎦

× exp
{
− 2L

a − E1+E2
�ω coth �ω

2kBT +

√
(E1e−t+E2et)(E1et+E2e−t)

�ω sinh(�ω/2kBT)

+
(

�ω
2kBT − t

)
ω12
ω − �ω sinh(�ω/2kBT)

2
√
(E1e−t+E2et)(E1et+E2e−t)

(
ω12
ω

)2}
(52)

where e±t ≡ exp(±t). Substituting E2 = E1 ≡ E into Equation (52), we obtain Equation (40) for the rate
constant in the case of the same electron–phonon interaction on the donor and acceptor. It is easy to see
that Equation (52) satisfies the relationship of detailed balance in the simplified version of dozy-chaos
mechanics (Equation (42)).
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14. Conclusions

In this final section, we will list all kinds of symmetries in dozy-chaos mechanics of elementary
electron transfers considered in the article and discuss their physical meaning.

First of all, one should note the symmetry associated with the invariance of the expression for
the rate constant of elementary electron transfers with respect to sign reversal in the dozy-chaos
energy γ (Section 4). This invariance is consistent with the physical case that both the virtual acts
of transformation of electron movements and energies into nuclear reorganization movements and
energies and the reverse acts occur in the transient dozy-chaos state [4,7–9].

The result in the standard theory of many-phonon transitions [29], corresponding to high (that is,
room) temperatures, is a symmetric Gaussian function for the shape of the optical absorption band.
It completely neglects the dynamics of the transient molecular state. This result corresponds to the
high values of the dozy-chaos energy γ in dozy-chaos mechanics (see Figure 1). Physically, the high
values of γ in dozy-chaos mechanics correspond to the weak organization of the quantum-classical
molecular transition (Section 1). With a decrease in the dozy-chaos energy γ, the organization of the
quantum-classical transition increases, which is manifested in the appearance of a narrow optical
absorption peak in the red region of the spectrum and strong asymmetry of the absorption band
(Section 5, Figure 1). In other words, the presence of symmetry in the shape of an optical band
at high (room) temperatures is associated with a primitive, Franck–Condon picture of molecular
“quantum” transitions. The loss of this symmetry is associated with taking into account the effect
of self-organization of the dynamics of transitions in dozy-chaos mechanics, which is expressed, in
particular, in the “pumping” of dozy chaos from one part of the optical band (narrow peak) to another
part (wide wing).

A series for the shape of optical absorption bands in polymethine dyes, depending on the length
of the polymethine chain, has a quasi-symmetric and resonant character, where a certain “average”
chain length corresponds to the resonance (Section 8, Figure 2). In theory, this resonance—the “center
of symmetry” of the series—is the Egorov resonance (Section 7).

An important illustration of the dynamics of the transient state for the Egorov resonance (Equations
(29)–(31)) is a qualitative picture of the dynamics based on the use of the Heisenberg uncertainty
relation [6–8] (Section 9). In this picture, a quasiparticle called transferon corresponds to the Egorov
resonance. This quasiparticle has an antisymmetric twin—an antiquasiparticle called dissipon (Equation
(33)). The transferon is depicted by a narrow optical band and the dissipon by a broad one. Strictly
speaking, the dissipon is a certain broad resonance rather than (narrow) resonance proper.

Dozy-chaos mechanics, where the transition from absorption spectra to luminescence spectra is
carried out by changing only the sign in the heat energy �ω12, as in the standard theory of many-phonon
transitions [29], gives a mirror-symmetric picture of the shapes of absorption and luminescence bands
(Section 10.1). However, the need to take into account the dynamics of the “quantum” transition in the
theory leads to the need to change the sign in the donor–acceptor distance L as well. This, in turn, leads
to the appearance of mirror asymmetry in the pattern of absorption and luminescence band shapes
(Section 10.3): transitions with light emission give narrower bands in comparison with absorption
bands. Physically, this means that, as a result of taking into account the chaotic dynamics of “quantum”
transitions in dozy-chaos mechanics, transitions with emission of photons show themselves to be more
organized in comparison with transitions with absorption of photons.

Nonradiative transitions are considered within the framework of a simplified version of dozy-chaos
mechanics, in which the electronic component of the complete electron-nuclear amplitude of transitions
is fitted by the Gamow tunnel exponential, dependent on the transient phonon environment (Section 11).
As in dozy-chaos mechanics for optical processes in its full formulation, this simplified version of
dozy-chaos mechanics is considered for the case of the same electron–phonon interactions on the
donor and acceptor. Direct and reverse processes turn out to be related not by the standard detailed
balance relationship known from statistical physics but by a new, more complex, detailed balance
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relationship, which, in addition to the standard equilibrium constant, includes an exponential factor
with the donor–acceptor distance in the exponent (Equation (42)).

Within the framework of the simplified version of dozy-chaos mechanics and the Einstein model
of nuclear vibrations, the previously obtained [12] expressions for the Brönsted coefficients α and β for
proton-transfer reactions (Section 12), which satisfy the well-known symmetric relation (Equation (47)),
are given.

A simplified version of dozy-chaos mechanics is also considered for the case of electron–phonon
interactions on the donor and acceptor of different magnitudes (Section 13), where a special procedure
for the symmetrization of the total amplitude of the quantum-classical transition (Equation (51)) and
the corresponding rate constant is performed. The analytical result obtained earlier [17,18] for the
rate constant of nonradiative transitions (Equation (52)), which satisfies the new detailed balance
relationship (Equation (42)), is presented.

In conclusion, we note that it is of interest to generalize dozy-chaos mechanics for optical processes
in its full formulation (Sections 2–4) for the case of different electron–phonon interactions on the donor
and acceptor, as well as to construct a theory of nonradiative dozy-chaos processes in its full version. An
important point in the formulation of the problem in the theory of nonradiative dozy-chaos processes
is the determination of the perturbation operator in the amplitude of the transition which causes the
nonradiative transition. In the standard theory of many-phonon transitions [29], the well-known
operator of nonadiabaticity [29,31] is taken as such an operator (see [2]). It is also of interest to
generalize dozy-chaos mechanics to the case of nonlinear optics [1,10,19].
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