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ABSTRACT
Recently, systems with chaos and the absence of equilibria have received a great deal of atten-
tion. In ourwork, a simple five-termsystemand its anti-synchronization arepresented. It is special
that the system has a hyperbolic sine nonlinearity and no equilibrium. Such a system generates
chaotic behaviours, which are verified by phase portraits, positive Lyapunov exponent as well as
an electronic circuit. Moreover, the system displays multistable characteristic when changing its
initial conditions. By constructing an adaptive control, chaos anti-synchronization of the system
with no equilibrium is obtained and illustrated via a numerical example.
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1. Introduction

The discovery of Lorenz has promoted the investiga-
tion of various chaotic systems [1–6]. Numerous stud-
ies have attempted to explain chaos synchronization
[7–10]. Different schemes have been developed for syn-
chronization of chaos, for example adaptive synchro-
nization scheme [11], active control scheme [12], back-
stepping control [13], hybrid function synchronization
[14], etc. Moreover, applications of chaotic systems
have been reported in robust watermarking algorithm
[15], cryptography [16–18], S-Box generation [19–21],
steganography [22], or modulation scheme for cogni-
tive radio [23].

Numerous chaotic systems with different terms were
studied. Butterfly attractor was observed in a 10-term
system by Pehlivan et al. [24]. Bao et al. found chaos
in a nine-term system with four line equilibria [25].
By using three quadratic nonlinearities, Vaidyanathan
constructed an eight-term polynomial chaotic system
[26]. A seven-term chaotic system with a single cubic
nonlinearity was reported in [27]. A Lorenz system
family with six terms was presented by Pehlivan and
Uyaroglu [28]. However, therewere few chaotic systems
with five terms [29,30]. Five-term systems are attractive
because of their algebraic simplicity. Especially, a five-
term system is one of simple continuous systems which
generate chaos [31]. Thus, the purpose of this work is
to study a five-term system with hyperbolic sine non-
linearity and its chaos anti-synchronization. Moreover,
such a five-term system is a systemwithout equilibrium
[32–36].

2. The systemwith five terms and its chaos

A five-term system is studied in this work. The simple
system with five-term is described by

ẋ = y,

ẏ = −a sinh (x) − yz,

ż = y2 − b,

(1)

in which a and b are positive parameters (a,b>0). Spe-
cially, there is a hyperbolic sine term in system (1).
We set the right-hand side of system (1) to find its
equilibrium points:

y = 0, (2)

− a sinh (x) − yz = 0, (3)

y2 − b = 0. (4)

By comparing Equations (2) and (4), we confirm that
system (1) is a non-equilibrium one due to b>0.

When a=1 and b=2, system (1) displays chaotic
behaviour for initial conditions (x(0), y(0), z(0)) =
(0, 0.1, 0) as shown in Figure 1. Chaos in system (1) is
also verified by the positive Lyapunov exponent L1 =
0.0977. It is noting that few chaotic systems without
equilibrium have been found [32–36].

Multistability leads to complex behaviours in a
dynamical system [37–39]. Multistability features have
been investigated in numerous systems recently
[40–43]. Interestingly, we have found that system with-
out equilibrium (1) displays various behaviours when
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Figure 1. Chaotic behaviour in (a) x − y plane, (b) x − z plane, (c) y − z plane, and (d) x − y − z space. The set of parameters is
a= 1, b= 2 while initial conditions are (x(0), y(0), z(0)) = (0, 0.1, 0).

changing the initial conditions. Figure 2 illustrates the
multistability property of the five-term system. In addi-
tion, the bifurcation diagram versus initial conditions
is reported in Figure 3. We set x(0) = 0 and z(0) = 0
while y(0) is changed from 0.5 to 3.5.

3. Electronic circuit of the five-term system

The dynamics of the simple five-term no-equilibrium
system has been investigated in the preceding section
by using numerical methods. It is revealed that sys-
tem (1) exhibits complex dynamical behaviours includ-
ing chaos and multistability. In this section, we design
and implement an electronic circuit in PSpice capable
to mimic the dynamics of system (1) in order to vali-
date the numerical results carried out previously. The
schematic diagram of the proposed electronic circuit
for system (1) is depicted in Figure 4.

The circuit comprises seven resistors, three capaci-
tors, two analogue multipliers chips (AD633JN), a pair
of semiconductor diodes (1N4148) and a quadruple
operational amplifier (TL084CN). The analogue mul-
tipliers and pair of semiconductor diodes connected
in anti-parallel are used to implement respectively, the

quadratic nonlinearity and the hyperbolic sine term.
The current–voltage characteristic (I−V ) of the pair
of semiconductor diodes (D1 and D2) is defined by the
following Shockley diode equation [44]:

Id = ID1 − ID2 = 2Is sinh(Vd
/
ηVT ), (5)

where Is is the saturation current of the junction, η

is an ideality factor (1 < η < 2) and VT is a thermal
voltage. By applying Kirchhoff ’s laws into the circuit of
Figure 4, we obtain its mathematical model given by
the following set of three coupled first-order differential
equations:

dVx

dt
= Vy

RC
,

dVy

dt
= −2Is sinh(Vx

/
ηVT )

C
− VyVz

10R1C
,

dVz

dt
= V2

y

10R2C
− VDC

R3C
,

(6)

whereVx,Vy andVz are the output voltages of the oper-
ational amplifiers OP_1, OP_2 and OP_3, respectively.
System (6) is equivalent to system (1) with the follow-
ing settings of variables and parameters: x = Vx/ηVT ,
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Figure 2. Various behaviours of the five-term system in y − z plane when keeping a= 1, and b = 2. We have observed the five-
term system for different initial conditions: (a) (x(0), y(0), z(0)) = (0, 0.5, 0), (b) (x(0), y(0), z(0)) = (0, 1, 0), (c) (x(0), y(0), z(0)) =
(0, 1.5, 0), (d) (x(0), y(0), z(0)) = (0, 2, 0), (e) (x(0), y(0), z(0)) = (0, 2.5, 0), and (f ) (x(0), y(0), z(0)) = (0, 3, 0).

y = Vy/ηVT , z = Vz/ηVT , t = τRC, a = 2RIs/ηVT
and b = R/R3. For a=1 and b=2, the circuit com-
ponents have the following values: VDC = 1V, C =
10 nF, R = 10 k�, R1 = R2 = 1 k�, R3 = 5 k�, Is =
2.682 nA, VT = 26mV and η = 1.9. The power supply

is ±15V. The PSpice chaotic phase portraits of the cir-
cuit in (Vx,Vy), ((Vx,Vz) and (Vy,Vz) planes are shown
in Figure 5.

One can see from Figure 5 that the PSpice results
agree with those obtained numerically. These results
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Figure 3. The bifurcation diagram versus initial conditions. We
set x(0) = 0 and z(0) = 0while y(0) is changed from0.5 to 3.5.

confirm that the proposed electronic circuit is capable
to mimic the dynamical behaviours of system (1).

4. Anti-synchronization of the five-term
system

Investigation of chaos synchronization is vital in the
theoretical issues and engineering applications [45–48].
Authors proposed numerous kinds of synchronization

such as complete synchronization, phase synchroniza-
tion, anti-phase synchronization, lag synchronization,
anticipating synchronization, projective synchroniza-
tion and anti-synchronization [49–56]. It is noted that
anti-synchronization is an attractive scheme, where two
dynamical systems are synchronized in amplitude, but
with opposite sign [57–59]. Anti-synchronization was
applied in different areas, for example temporal pat-
tern recognition [60], memristive neural network [61],
multi-degree-of-freedom dynamical system [62], secu-
rity communication [63] and coupled systems [64,65].
Motivated by the fact that chaos anti-synchronization
phenomena are of fundamental importance in the
study of dynamical systems, in this section, the anti-
synchronization of two non-equilibrium systems (mas-
ter and slave ones) is reported. The master system with
five terms is described by

ẋ1 = y1,

ẏ1 = −a sinh (x1) − y1z1,

ż1 = y21 − b.

(7)

In system (7), a and b are unknown parameters. By
using the adaptive control u = [ux, uy, uz]T, the slave

Figure 4. Electronic circuit diagram of the chaotic five-term system (1).

Figure 5. Phase portraits of chaotic attractors in different planes: (Vx , Vy), (Vx , Vz) and (Vy , Vz) using the designed circuit. The values
of electronic components are those setting in the text.
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system with five terms is

ẋ2 = y2 + ux,

ẏ2 = −a sinh (x2) − y2z2 + uy,

ż2 = y22 − b + uz.

(8)

We calculate the state errors of system (7) and sys-
tem (8):

ex = x2 + x1,

ey = y2 + y1,

ez = z2 + z1.

(9)

It is noted that â and b̂ are the estimations of the
unknown parameters (a, b), thus we define the param-
eter estimation error:

ea = a − â,

eb = b − b̂.
(10)

For getting the anti-synchronization (x2 = −x1,
y2 = −y1, z2 = −z1), we introduce the following adap-
tive control:

ux = −ey − kxex,

uy = â (sinh (x1) + sinh (x2)) + y1z1 + y2z2 − kyey,

uz = −y21 − y22 + 2b̂ − kzez,
(11)

with positive gain constants (kx > 0, ky > 0, kz > 0).
Moreover, we construct the parameter update law:

˙̂a = −ey (sinh (x1) + sinh (x2)) ,

˙̂b = −2ez.
(12)

We can confirm the anti-synchronization when
applying adaptive control law (11) and parameter
update law (12) as follows.

The selected Lyapunov function is

V
(
ex, ey, ez, ea, eb

) = 1
2

(
e2x + e2y + e2z + e2a + e2b

)
.
(13)

Thus, the differentiation of (13) is

V̇ = exėx + eyėy + ezėz + eaėa + ebėb. (14)

From (9), we get

ėx = −kxex,

ėy = −ea (sinh (x1) + sinh (x2)) − kyey,

ėz = −2eb − kzez.

(15)

A simple calculation of (10) gives

ėa = −˙̂a,
ėb = −˙̂b.

(16)

Figure 6. Time history of anti-synchronization errors between
master five-term system (7) and slave five-term system (8).

Figure 7. The time series of state variables of themaster system
(black solid curves) and the slave system (red dotted curves): (a)
x1(t) and x2(t), (b) y1(t) and y2(t), (c) z1(t) and z2(t) (colour
online).

By combining (15), (16) and (14), it is simple to
calculate the differentiation of the Lyapunov function:
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V̇ = −kxe2x − kye2y − kze2z . (17)

As a result, the anti-synchronization is obtained due
to ex → 0, ey → 0, and ez → 0 exponentially as
t → ∞ [66].

For the numerical example, we fixed the parameter
values

a = 1, b = 2. (18)

We assume that the initial states of master system (7),
slave system (8) and the parameter estimate are given
by

x1(0) = 0, y1(0) = 0.1, z1(0) = 0, (19)

x2(0) = 1, y2(0) = −2, z2(0) = 1.7, (20)

â(0) = 1.5, b̂(0) = 1.5. (21)

For selected gain constants kx = 4, ky = 4, and kz =
4, the time-history of the anti-synchronization errors
ex, ey, ez is reported in Figure 6. In addition, the time
series of state variables of the master and slave systems
are displayed in Figure 7.We observe the time evolution
in opposition of states variables of the master and slave
systems which is the signature of anti-synchronization
process.

5. Conclusions

This work has introduced an attractive chaotic system
with five-terms, which include a hyperbolic sine term.
The simple system has no equilibrium and displays
different behaviours depending on initial conditions.
Chaotic behaviour of the system is validated by a cir-
cuit, in which the hyperbolic sine term was realized
with two diodes. Anti-synchronization of the system
has been obtained by designing an adaptive control and
illustrated by a numerical example. In our future works,
applications of such a system with five terms will be
investigated.
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